WO2019211956A1 - Led illuminating device for plant cultivation and method for illuminating said led - Google Patents
Led illuminating device for plant cultivation and method for illuminating said led Download PDFInfo
- Publication number
- WO2019211956A1 WO2019211956A1 PCT/JP2019/012866 JP2019012866W WO2019211956A1 WO 2019211956 A1 WO2019211956 A1 WO 2019211956A1 JP 2019012866 W JP2019012866 W JP 2019012866W WO 2019211956 A1 WO2019211956 A1 WO 2019211956A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- led
- plant cultivation
- lighting device
- wavelength range
- ratio
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000000295 emission spectrum Methods 0.000 claims abstract description 58
- 238000005286 illumination Methods 0.000 claims abstract description 16
- 230000002194 synthesizing effect Effects 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 24
- 238000005516 engineering process Methods 0.000 abstract 2
- 238000005457 optimization Methods 0.000 abstract 1
- 241000196324 Embryophyta Species 0.000 description 43
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 11
- 240000003768 Solanum lycopersicum Species 0.000 description 11
- 241000220223 Fragaria Species 0.000 description 9
- 241000208822 Lactuca Species 0.000 description 9
- 235000003228 Lactuca sativa Nutrition 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 235000021012 strawberries Nutrition 0.000 description 6
- 238000009877 rendering Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 235000013399 edible fruits Nutrition 0.000 description 4
- 235000016623 Fragaria vesca Nutrition 0.000 description 3
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 3
- 235000015802 Lactuca sativa var crispa Nutrition 0.000 description 2
- 240000004201 Lactuca sativa var. crispa Species 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 235000007516 Chrysanthemum Nutrition 0.000 description 1
- 240000005250 Chrysanthemum indicum Species 0.000 description 1
- 235000004347 Perilla Nutrition 0.000 description 1
- 244000124853 Perilla frutescens Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000208422 Rhododendron Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 235000021384 green leafy vegetables Nutrition 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
Definitions
- the present invention relates to an illumination technique for plant cultivation having an LED (light emitting diode) as a light source.
- LED lighting devices for plant cultivation began with the combination of two types of light sources, a blue LED that emits monochromatic light near a wavelength of 450 nm and a red LED that emits monochromatic light near a wavelength of 620 nm. After that, a light source having a white LED that emits light in a continuous wavelength range from 400 nm to 700 nm was introduced. At the time of filing, white LEDs that have a lower color temperature than conventional white LEDs, emit light with high color rendering, and emit light in a continuous broadband from wavelengths of 400 nm to 780 nm are attracting attention as light sources for plant cultivation. .
- JP 2016-202072 A Japanese Unexamined Patent Publication No. 2016-007185
- LED light sources have achieved practical results, they have been evaluated as inferior to the results of fluorescent light sources. Further, in the cultivation of fruit and vegetables such as strawberries and tomatoes, satisfactory results have not been obtained with LED light sources with regard to coloring of fruits that are not pointed out with fluorescent light sources.
- the R / B ratio (red / blue ratio) and the R / FR ratio (red / far red ratio) are greatly different between the LED and the fluorescent lamp. It is mentioned. For this reason, if the R / B ratio and R / FR ratio of a light source are optimized, it can be expected to further improve the cultivation and cultivation effect of plants.
- the light source is composed of only white LEDs and the emission spectrum is to be optimized, a phosphor that easily deteriorates is used, and the optimized emission spectrum may change inappropriately over time. It becomes a problem.
- white LEDs with low color temperature and high color rendering which are increasing in demand as light sources for plant cultivation, also have a problem that light emission efficiency is low as compared with white LEDs and single color LEDs for general illumination.
- the present invention has been made in consideration of such circumstances, and provides an LED lighting technique for plant cultivation that can easily optimize the emission spectrum in order to efficiently improve the growth effect. Objective.
- a white LED having an emission spectrum having a wavelength range of at least 450 nm to 700 nm, a monochromatic LED having at least one peak in the emission spectrum, and a plurality of the white LEDs. And a circuit board on which the monochromatic LEDs are uniformly arranged in the group of white LEDs.
- the present invention provides an LED illumination technique for plant cultivation that can easily optimize the emission spectrum in order to improve the growth effect efficiently.
- A A graph in which a single LED emission spectrum of white LED, red LED, far-red LED and ultraviolet LED is applied to the LED lighting device for plant cultivation according to the sixth embodiment
- B white LED, The graph which synthesize
- FIG. 1A is a circuit diagram showing an LED illumination device 10A for plant cultivation according to the first embodiment of the present invention
- FIG. 1B is a partial circuit diagram showing an LED illumination device 10B of another example. is there.
- an LED illumination device 10A includes a white LED 11 having a continuous emission spectrum in a wavelength range of at least 450 nm to 700 nm, a monochromatic LED 12 having at least one peak in the emission spectrum, and a plurality of white LEDs. And a circuit board (not shown) on which the monochromatic LEDs 12 are uniformly arranged in the group of the white LEDs 11.
- Examples of the single color LED 12 include a red LED 12a, a far red LED 12b, and an ultraviolet LED 12c described later, but are not particularly limited. These single color LEDs 12 may be arranged in one type or may be arranged in combination of two or more types.
- a switch 16 for individually turning on / off energization of at least one single-color LED 12 is provided on a circuit board (not shown).
- the white LED 11 and the single color LED 12 are connected in series with each other and connected to the constant current circuit 15a.
- a group of white LEDs 11 and single color LEDs 12 connected in series with each other is further connected in parallel (three rows in the figure) and connected to the constant current circuit 15a. Has been.
- the arrangement of the white LED 11 and the single color LED 12 in the LED lighting device 10 is arranged so that one of them is not unevenly distributed as a whole so that each light emission is uniformly mixed with the irradiation surface.
- one single-color LED 12 is regularly arranged every two white LEDs 11, but it is not particularly necessary to have regularity in this arrangement.
- each of the three exemplified columns has the same arrangement, but may have a different arrangement.
- the LED lighting device 10 is structurally compatible with a conventional straight tube fluorescent lamp by accommodating a circuit board on which a white LED 11 and a single color LED 12 are mounted in a transparent cylinder and aligning the base shape and length. be able to.
- the LED lighting device 10 is structurally compatible with a conventional incandescent bulb by accommodating a circuit board on which a white LED 11 and a single color LED 12 are mounted in a transparent hemisphere and aligning the base shape and size. Can be given.
- the white LED 11 and the single color LED 12 are arranged in a planar shape on a circular circuit board.
- the single color LED 12 is lit when the switch 16 is open, and the single color LED is closed.
- the LED 12 is turned off.
- the switch 16 does not have to be provided for all the single color LEDs 12, and may be provided according to the adjustment amount of the monochromatic light to be combined with the light emission of the white LED 11. Further, the switch 16 specifically short-circuits or conducts each other by inserting or removing a conductor from a printed pattern of wiring that is not electrically connected on a circuit board (not shown). This is realized with a jumper or the like. Alternatively, the switch 16 may be a mechanical type that performs ON / OFF reversibly.
- the LED lighting device 10 by configuring the LED lighting device 10 with the white LED 11 and the single color LED 12, adjusting the arrangement number ratio thereof, the R / B ratio (red / blue ratio) and R / FR ratio of the emission spectrum ( Red / far red ratio) and the like can be optimized, and the cultivation and cultivation effect of the plant can be improved.
- the number of monochromatic LEDs 12 to be lit can be easily changed without changing the wiring pattern of a circuit board (not shown), and the R / B ratio and R / B of the emission spectrum can be changed.
- the FR ratio and the like can be optimized. This means that if the optimum conditions such as the R / B ratio and R / FR ratio differ depending on the type of plant and the stage of cultivation, the optimum conditions can be set only by setting the switch 16 without significantly changing the design specifications of the product. Can be set. Alternatively, the emission spectrum distribution can be easily changed even in an experiment for searching for the optimum condition of the cultivated plant.
- the LED illumination method for plant cultivation according to the first embodiment is not limited to using the LED illumination device 10 described above. That is, monochromatic LEDs are uniformly arranged in a group of white LEDs arranged in plural, and the white LED emits a continuous emission spectrum having a wavelength range of at least 450 nm to 700 nm, and at least one peak is emitted from the monochromatic LED. By emitting in the emission spectrum.
- FIG. 2 (A) is a graph in which single emission spectra of the white LED 11 and the red LED 12a (monochromatic LED 12) applied to the plant lighting LED illumination device 10 according to the second embodiment are overwritten
- FIG. B) is a graph in which the emission spectra of the white LED 11 and the red LED 12a are synthesized. 2 that are related to FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
- a chip having a color rendering value Ra of approximately 80 for general illumination and a color temperature of 5000 K is selected as the white LED 11, and the single color LED 12 is centered in the wavelength range of 600 nm to 700 nm.
- the chip of the red LED 12a having a peak with a wavelength of 660 nm is selected.
- the peak top derived from the red LED 12a existing in the red wavelength range of 600 nm to 700 nm, and the peak top derived from the white LED 11 existing in the blue wavelength range of 415 nm to 500 nm is adjusted so that the R / B ratio of.
- Example 7 shows the effect of the LED lighting method for plant cultivation according to the second embodiment in the column of Example 2 of the table of FIG.
- Comparative Example 1 a 40-type fluorescent lamp was used, and the cultivation evaluation performed on lettuce, tomato seedlings, and strawberries was represented by a reference value of 100 points.
- lettuce was performed with leaf lettuce, tomato was performed with self-rooted tomato seedlings, and growth judgment materials were comprehensively judged with a sense of volume, stock width, leaf size, color, and the like.
- the leaf lettuce was determined 20 days after planting, and the tomato seedlings were determined 19 days after sowing.
- the growth judgment materials were comprehensively judged on petiole length, number of fruits, fruit weight, etc., and judged in the first month after planting.
- Example 2 the evaluation of the second embodiment (Example 2) was 120 points for lettuce, 40 points for tomato, and 120 points for strawberry.
- the peak top R / B ratio was 2.5.
- the peak top R / B ratio is not limited to this value, and the peak top R / B ratio is 2.0 to 3.0. It is desirable to be included in the range. In the Example which remove
- the specification of the emission spectrum with which the excellent plant-growing effect can be obtained can be defined by the ratio of the integral value of the wavelength range of the emission spectrum.
- the R / B ratio between the integrated value in the red wavelength range of 600 nm to 700 nm and the integrated value in the blue wavelength range of 415 nm to 500 nm may be specified in the range of 1.6 to 4.3.
- the R / G ratio between the integrated value in the red wavelength range of 600 nm to 700 nm and the integrated value in the green wavelength range of 500 nm to 600 nm may be specified in the range of 1.2 to 2.5.
- FIG. 3 (A) was overwritten with a single emission spectrum of white LED 11, red LED 12a (single color LED 12) and far red LED 12b (single color LED 12) applied to the LED lighting device for plant cultivation according to the third embodiment.
- FIG. 3B is a graph in which emission spectra of the white LED 11, the red LED 12a, and the far red LED 12b are synthesized.
- the same reference numerals are used to refer to those in FIG. 1 and FIG.
- the circuit board of the LED lighting device 10 includes a white LED 11, a red LED 12a as the single color LED 12, and a far red LED 12b having a peak with a center wavelength of 735 nm in the wavelength range of 700 nm to 800 nm as the single color LED 12. Is arranged.
- the number of lighting of the far red LED 12b is adjusted so that the R / FR ratio with the peak top derived from the far red LED 12b existing in the far red wavelength range approaches 5.
- Example 7 shows the effect of the LED lighting method for plant cultivation according to the third embodiment in the column of Example 3 in the table of FIG.
- evaluation of 3rd Embodiment was 150 points for lettuce, 50 points for tomatoes, and 130 points for strawberries.
- Example 3 the peak top R / FR ratio was 5. However, the peak top R / FR ratio is in the range of 4.0 to 6.0 without being limited to this value. It is desirable to be included in. In the Example which remove
- the specification of the emission spectrum with which the excellent plant-growing effect can be obtained can be defined by the ratio of the integral value of the wavelength range of the emission spectrum.
- the R / FR ratio between the integrated value in the red wavelength range of 600 nm to 700 nm and the integrated value in the far red wavelength range of 700 nm to 800 nm may be specified in the range of 2.6 to 7.3.
- FIG. 4 (A) is a graph in which the single light emission spectra of the white LED 11 and the ultraviolet LED 12c (monochromatic LED 12) applied to the plant lighting LED illumination device 10 according to the fourth embodiment are overwritten
- FIG. B) is a graph in which the emission spectra of the white LED 11 and the ultraviolet LED 12c are synthesized. 4 that are related to FIGS. 1 to 3 are denoted by the same reference numerals, and redundant description is omitted.
- a white LED 11 and an ultraviolet LED 12c having a peak with a central wavelength of 395 nm in a wavelength range of 350 nm to 425 nm as a monochromatic LED 12 are arranged.
- the lighting number of the ultraviolet LED 12c is adjusted so that the B ratio approaches 1.
- Example 7 shows the effect of the LED lighting method for plant cultivation according to the fourth embodiment in the column of Example 4 in the table of FIG.
- evaluation of 4th Embodiment was 100 points for lettuce, 100 points for tomato seedlings, and 150 points for strawberries.
- the peak top UVA / B ratio is 1 but is not limited to this value.
- the peak top UVA / B ratio is in the range of 0.5 to 1.5. It is desirable to be included in. In the Example which remove
- the specification of the emission spectrum with which the excellent plant-growing effect can be obtained can be defined by the ratio of the integral value of the wavelength range of the emission spectrum.
- the UVA / B ratio between the integrated value in the ultraviolet wavelength range of 350 nm to 425 nm and the integrated value in the far red wavelength range of 415 nm to 500 nm may be specified in the range of 0.5 to 1.5.
- FIG. 5 (A) was overwritten with a single emission spectrum of white LED 11, red LED 12a (single color LED 12) and ultraviolet LED 12c (single color LED 12) applied to the LED lighting device 10 for plant cultivation according to the fifth embodiment.
- FIG. 5B is a graph in which the emission spectra of the white LED 11, the red LED 12a, and the ultraviolet LED 12c are synthesized. 5 that are related to FIGS. 1 to 4 are denoted by the same reference numerals, and redundant description is omitted.
- the white LED 11 and the red LED 12a and the ultraviolet LED 12c as the single color LED 12 are arranged on the circuit board of the LED lighting device 10 according to the fifth embodiment.
- the number of lighting of the red LED 12a and the ultraviolet LED 12c is adjusted so as to be in the same state.
- Example 7 shows the effect of the LED lighting method for plant cultivation according to the fifth embodiment in the column of Example 5 of the table of FIG.
- evaluation of 5th Embodiment was lettuce 120 points, a tomato seedling 110 points, and a strawberry 170 points.
- Example 5 the peak top R / B ratio was 2.5 and the UVA / B ratio was 1.
- the present invention is not limited to this value. It is desirable to be included in the range. In the Example which remove
- the specification of the emission spectrum that provides an excellent plant-growing effect can be defined by the ratio of the integrated value in the wavelength range of the emission spectrum.
- FIG. 6A shows a white LED 11, a red LED 12a (single color LED 12), a far red LED 12b (single color LED 12), and an ultraviolet LED 12c (single color LED 12) applied to the LED lighting device 10 for plant cultivation according to the sixth embodiment.
- FIG. 6B is a graph obtained by combining the emission spectra of the white LED 11, the red LED 12a, the far red LED 12b, and the ultraviolet LED 12c. 6 that are related to FIGS. 1 to 5 are denoted by the same reference numerals, and redundant description is omitted.
- a white LED 11 and a red LED 12a, a far red LED 12b, and an ultraviolet LED 12c as a single color LED 12 are arranged.
- Example 7 shows the effect of the LED lighting method for plant cultivation according to the sixth embodiment in the column of Example 6 of the table of FIG.
- the evaluation of the sixth embodiment was 150 points for lettuce, 130 points for tomato seedlings, and 200 points for strawberries.
- Example 6 the peak top R / B ratio was 2.5, the R / FR ratio was 5, and the UVA / B ratio was 1.
- the present invention is not limited to this value.
- Each ratio is preferably included in the above-described range.
- the specification of the emission spectrum that provides an excellent plant-growing effect can be defined by the ratio of the integrated value in the wavelength range of the emission spectrum.
- the effectiveness of the effect on leaf vegetables such as lettuce and fruit vegetables such as tomato and strawberry was confirmed using the LED lighting device for plant cultivation according to each embodiment.
- the effectiveness of the effect for electric cultivation such as chrysanthemums, perillas, and rhododendrons has been confirmed.
- 10 (10A, 10B) ... LED lighting device, 11 ... white LED, 12 ... single color LED, 12a ... red LED, 12b ... far red LED, 12c ... ultraviolet LED, 15a ... constant current circuit, 16 ... switch.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ecology (AREA)
- Botany (AREA)
- Forests & Forestry (AREA)
- Environmental Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cultivation Of Plants (AREA)
- Led Devices (AREA)
- Led Device Packages (AREA)
Abstract
Provided is an LED illumination technology for plant cultivation, said technology allowing easy optimization of an emission spectrum in order to efficiently enhance the growth effect. An LED illuminating device (10) is provided with: white LEDs (11) having an emission spectrum in which the wavelength range is continuous from at least 450 nm to 700 nm; monochrome LEDs (12) having at least one peak in the emission spectrum; and a circuit board on which the plurality of white LEDs (11) are arranged, and the monochrome LEDs (12) are uniformly arranged in the group of white LEDs (11).
Description
本発明は、LED(発光ダイオード)を光源に持つ植物栽培用の照明技術に関する。
The present invention relates to an illumination technique for plant cultivation having an LED (light emitting diode) as a light source.
植物工場に設置される照明装置において、光源を、これまで主流であった蛍光灯からLEDに置き換えることが検討されている。その理由は、LEDに置き換われば、蛍光灯の短所すなわち消費電力及び発熱が大きく寿命が短いことが解消され、植物工場における生産コストの改善が期待できるからである。
In a lighting device installed in a plant factory, it has been studied to replace a light source with an LED from a fluorescent lamp which has been mainstream until now. The reason is that if the LED is replaced, the disadvantage of the fluorescent lamp, that is, the large power consumption and heat generation, is eliminated, and the lifetime is short, and the production cost in the plant factory can be expected to be improved.
植物栽培用のLED照明装置の製品化は、波長450nm付近で単色発光する青色LEDと波長620nm付近で単色発光する赤色LEDとの2種類の組み合わせを光源に持つものから始まった。その後、波長が400nm~700nm付近までの連続した波長域で発光する白色LEDを光源に持つものが登場した。そして出願時においては、それまでの白色LEDよりも色温度が低く且つ高演色で発光し波長400nm~780nmまでの連続的な広帯域で発光する白色LEDが、植物栽培用の光源として注目されている。
Commercialization of LED lighting devices for plant cultivation began with the combination of two types of light sources, a blue LED that emits monochromatic light near a wavelength of 450 nm and a red LED that emits monochromatic light near a wavelength of 620 nm. After that, a light source having a white LED that emits light in a continuous wavelength range from 400 nm to 700 nm was introduced. At the time of filing, white LEDs that have a lower color temperature than conventional white LEDs, emit light with high color rendering, and emit light in a continuous broadband from wavelengths of 400 nm to 780 nm are attracting attention as light sources for plant cultivation. .
これまで光源として長期にわたり蛍光灯を採用してきた結果、植物工場による栽培植物の成果は、一定の満足度を獲得するに至っている。しかし、光源をLEDに置き換えた結果、栽培植物の成果に関し、満足度が低下する事例が報告されてきている。
As a result of adopting fluorescent lamps as a light source for a long time, the results of cultivated plants by plant factories have reached a certain level of satisfaction. However, as a result of replacing the light source with the LED, there have been reported cases in which the degree of satisfaction is reduced with respect to the result of the cultivated plant.
具体的には、レタス等の葉菜類の栽培において、LED光源は、実用的な成果を上げているものの、蛍光灯光源による成果と対比すると見劣りするとの評価がなされている。またイチゴやトマト等の果菜類の栽培においては、蛍光灯光源では指摘されることがない果実の色付き等に関し、LED光源では満足のいく成果が得られていない。
Specifically, in the cultivation of leafy vegetables such as lettuce, although LED light sources have achieved practical results, they have been evaluated as inferior to the results of fluorescent light sources. Further, in the cultivation of fruit and vegetables such as strawberries and tomatoes, satisfactory results have not been obtained with LED light sources with regard to coloring of fruits that are not pointed out with fluorescent light sources.
この理由として、光源の発光スペクトルを対比してみると、LEDと蛍光灯とでは、互いにR/B比(赤/青比)及びR/FR比(赤/遠赤色比)が、大きく相違することが挙げられている。このため、光源のR/B比及びR/FR比を最適化すれば、植物の栽培育成効果をさらに向上させることが期待できる。
As a reason for this, when comparing the emission spectrum of the light source, the R / B ratio (red / blue ratio) and the R / FR ratio (red / far red ratio) are greatly different between the LED and the fluorescent lamp. It is mentioned. For this reason, if the R / B ratio and R / FR ratio of a light source are optimized, it can be expected to further improve the cultivation and cultivation effect of plants.
ところで、白色LEDのみで光源を構成し、その発光スペクトルを最適化しようとすると、劣化し易い蛍光体を使用することとなり、最適化した発光スペクトルが経年的に不適切に変化していくことが課題となる。また、植物栽培用の光源として需要が増えている低色温度かつ高演色の白色LEDも、一般照明用の白色LEDや単色LEDと対比して、発光効率が低い課題がある。
By the way, if the light source is composed of only white LEDs and the emission spectrum is to be optimized, a phosphor that easily deteriorates is used, and the optimized emission spectrum may change inappropriately over time. It becomes a problem. In addition, white LEDs with low color temperature and high color rendering, which are increasing in demand as light sources for plant cultivation, also have a problem that light emission efficiency is low as compared with white LEDs and single color LEDs for general illumination.
本発明はこのような事情を考慮してなされたもので、効率的に育成効果を向上させるために、発光スペクトルを容易に最適化することができる植物栽培用のLED照明技術を提供することを目的とする。
The present invention has been made in consideration of such circumstances, and provides an LED lighting technique for plant cultivation that can easily optimize the emission spectrum in order to efficiently improve the growth effect. Objective.
本発明に係る植物栽培用のLED照明装置において、波長範囲が少なくとも450nm~700nmまで連続する発光スペクトルを持つ白色LEDと、少なくとも一つのピークを発光スペクトルに持つ単色LEDと、複数の前記白色LEDを配置するとともに、この白色LEDの群中において前記単色LEDを均一に配置する回路基板と、を備えることを特徴とする。
In the LED illuminating device for plant cultivation according to the present invention, a white LED having an emission spectrum having a wavelength range of at least 450 nm to 700 nm, a monochromatic LED having at least one peak in the emission spectrum, and a plurality of the white LEDs. And a circuit board on which the monochromatic LEDs are uniformly arranged in the group of white LEDs.
本発明により、効率的に育成効果を向上させるために、発光スペクトルを容易に最適化することができる植物栽培用のLED照明技術が提供される。
The present invention provides an LED illumination technique for plant cultivation that can easily optimize the emission spectrum in order to improve the growth effect efficiently.
(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1(A)は本発明の第1実施形態に係る植物栽培用のLED照明装置10Aを示す回路図であり、図1(B)はその他の例のLED照明装置10Bを示す部分回路図である。 (First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1A is a circuit diagram showing anLED illumination device 10A for plant cultivation according to the first embodiment of the present invention, and FIG. 1B is a partial circuit diagram showing an LED illumination device 10B of another example. is there.
以下、本発明の実施形態を添付図面に基づいて説明する。
図1(A)は本発明の第1実施形態に係る植物栽培用のLED照明装置10Aを示す回路図であり、図1(B)はその他の例のLED照明装置10Bを示す部分回路図である。 (First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1A is a circuit diagram showing an
図1(A)に示すように、LED照明装置10Aは、波長範囲が少なくとも450nm~700nmまで連続する発光スペクトルを持つ白色LED11と、少なくとも一つのピークを発光スペクトルに持つ単色LED12と、複数の白色LED11を配置するとともにこの白色LED11の群中において単色LED12を均一に配置する回路基板(図示略)と、を備えている。
As shown in FIG. 1A, an LED illumination device 10A includes a white LED 11 having a continuous emission spectrum in a wavelength range of at least 450 nm to 700 nm, a monochromatic LED 12 having at least one peak in the emission spectrum, and a plurality of white LEDs. And a circuit board (not shown) on which the monochromatic LEDs 12 are uniformly arranged in the group of the white LEDs 11.
白色LED11には、発光効率に優れる一般照明用のものを用いる。前述したように、育成効果を向上させる目的で、この一般照明用の白色LEDよりも色温度が低く且つ高演色で発光する植物栽培用の白色LED(演色値Ra=90前後、色温度3000K前後)が市販されている。しかし、この植物栽培用の白色LEDは、チップの発光効率が悪く、光量が少ないので、積極的に採用する必要はない。
The white LED 11 is for general illumination with excellent luminous efficiency. As described above, for the purpose of improving the growth effect, the white LED for plant cultivation that emits light with higher color rendering than the white LED for general illumination (color rendering value Ra = 90, color temperature around 3000K) ) Is commercially available. However, this white LED for plant cultivation does not need to be positively adopted because the light emission efficiency of the chip is poor and the amount of light is small.
単色LED12としては、後述される赤色LED12a、遠赤色LED12b、紫外線LED12c等が挙げられるが、特に限定はない。これら単色LED12を一種類の配置する場合もあるし、二種類以上を組み合わせて配置する場合もある。
Examples of the single color LED 12 include a red LED 12a, a far red LED 12b, and an ultraviolet LED 12c described later, but are not particularly limited. These single color LEDs 12 may be arranged in one type or may be arranged in combination of two or more types.
図1(B)に示すように、LED照明装置10Bにおいて、図示略の回路基板には、少なくとも1つの単色LED12に、個別に通電をON/OFFさせるスイッチ16が設けられている。
As shown in FIG. 1 (B), in the LED lighting device 10B, a switch 16 for individually turning on / off energization of at least one single-color LED 12 is provided on a circuit board (not shown).
図1(B)のLED照明装置10Bでは、白色LED11及び単色LED12は、互いに直列に接続され、定電流回路15aに接続されている。そして、図1(A)のLED照明装置10Aでは、互いに直列に接続された白色LED11及び単色LED12の群が、さらに相互に並列(図示は3列)に接続されて、定電流回路15aに接続されている。
In the LED illumination device 10B of FIG. 1B, the white LED 11 and the single color LED 12 are connected in series with each other and connected to the constant current circuit 15a. In the LED lighting device 10A of FIG. 1A, a group of white LEDs 11 and single color LEDs 12 connected in series with each other is further connected in parallel (three rows in the figure) and connected to the constant current circuit 15a. Has been.
ここで、LED照明装置10における白色LED11及び単色LED12の配置は、それぞれの発光が照射面に対して均一に混色するように、全体的にいずれか一方が偏在しないように配置されている。図1(A)の例示では、白色LED11の二つおきに単色LED12が一つ規則的に配置されているが、この配置に規則性を持たせる必要は特にない。また、図1(A)では、例示される三つの列の各々が同じ配列をとるが、異なる配列をとってもよい。
Here, the arrangement of the white LED 11 and the single color LED 12 in the LED lighting device 10 is arranged so that one of them is not unevenly distributed as a whole so that each light emission is uniformly mixed with the irradiation surface. In the illustration of FIG. 1 (A), one single-color LED 12 is regularly arranged every two white LEDs 11, but it is not particularly necessary to have regularity in this arrangement. In FIG. 1A, each of the three exemplified columns has the same arrangement, but may have a different arrangement.
LED照明装置10は、白色LED11及び単色LED12を実装させた回路基板を透明な円筒に収容し、口金形状や長さ等をそろえることにより、従来の直管蛍光灯と構造的に互換性をもたせることができる。また、LED照明装置10は、白色LED11及び単色LED12を実装させた回路基板を透明な半球体に収容し、口金形状や大きさ等をそろえることにより、従来の白熱電球と構造的に互換性をもたせることができる。白熱電球と互換性をもたせる場合、円形の回路基板に、白色LED11及び単色LED12が面状に配置されることになる。
The LED lighting device 10 is structurally compatible with a conventional straight tube fluorescent lamp by accommodating a circuit board on which a white LED 11 and a single color LED 12 are mounted in a transparent cylinder and aligning the base shape and length. be able to. The LED lighting device 10 is structurally compatible with a conventional incandescent bulb by accommodating a circuit board on which a white LED 11 and a single color LED 12 are mounted in a transparent hemisphere and aligning the base shape and size. Can be given. In order to provide compatibility with an incandescent bulb, the white LED 11 and the single color LED 12 are arranged in a planar shape on a circular circuit board.
スイッチ16は、図1(B)のように、通電のON/OFFの対象となる単色LED12に並列接続されている場合は、このスイッチ16が開状態で単色LED12は点灯し、閉状態で単色LED12は消灯する。
As shown in FIG. 1B, when the switch 16 is connected in parallel to the single color LED 12 to be energized, the single color LED 12 is lit when the switch 16 is open, and the single color LED is closed. The LED 12 is turned off.
なお、スイッチ16は、全ての単色LED12に対して設けられる必要はなく、白色LED11の発光に合成させる単色光の調整代に応じて設ければよい。また、スイッチ16は、具体的には、回路基板(図示略)上で、電気的につながっていない配線のプリントパターンに導体を挿入したり抜いたりすることで相互を短絡させたり導通させたりする、ジャンパ等で実現される。もしくは、スイッチ16は、ON/OFFを可逆的に行う機械式のものであっても良い。
Note that the switch 16 does not have to be provided for all the single color LEDs 12, and may be provided according to the adjustment amount of the monochromatic light to be combined with the light emission of the white LED 11. Further, the switch 16 specifically short-circuits or conducts each other by inserting or removing a conductor from a printed pattern of wiring that is not electrically connected on a circuit board (not shown). This is realized with a jumper or the like. Alternatively, the switch 16 may be a mechanical type that performs ON / OFF reversibly.
このように、LED照明装置10を白色LED11及び単色LED12で構成することにより、これらの配置数比を調整することで、発光スペクトルのR/B比(赤/青比)及びR/FR比(赤/遠赤色比)等を最適化することができ、植物の栽培育成効果を向上させることができる。
In this way, by configuring the LED lighting device 10 with the white LED 11 and the single color LED 12, adjusting the arrangement number ratio thereof, the R / B ratio (red / blue ratio) and R / FR ratio of the emission spectrum ( Red / far red ratio) and the like can be optimized, and the cultivation and cultivation effect of the plant can be improved.
また、スイッチ16が設けられることで、回路基板(図示略)の配線パターンを変更することなく、点灯させる単色LED12の数を容易に変更することができ、発光スペクトルのR/B比及びR/FR比等を最適化することができる。このことは、栽培植物の種類や育成段階によって、R/B比及びR/FR比等の最適条件が異なる場合、製品の設計仕様を大きく変更することなく、スイッチ16の設定のみで最適条件を設定することができる。もしくは、栽培植物の最適条件を探索する実験においても、発光スペクトルの分布を容易に変更することができる。
Further, by providing the switch 16, the number of monochromatic LEDs 12 to be lit can be easily changed without changing the wiring pattern of a circuit board (not shown), and the R / B ratio and R / B of the emission spectrum can be changed. The FR ratio and the like can be optimized. This means that if the optimum conditions such as the R / B ratio and R / FR ratio differ depending on the type of plant and the stage of cultivation, the optimum conditions can be set only by setting the switch 16 without significantly changing the design specifications of the product. Can be set. Alternatively, the emission spectrum distribution can be easily changed even in an experiment for searching for the optimum condition of the cultivated plant.
なお第1実施形態に係る植物栽培用のLED照明方法は、上述したLED照明装置10を用いることに限定されない。すなわち、複数が配置されている白色LEDの群中において単色LEDを均一に配置し、この白色LEDから波長範囲が少なくとも450nm~700nmまで連続する発光スペクトルを発光させ、さらに単色LEDから少なくとも一つのピークを発光スペクトルに発光させることにより実施される。
The LED illumination method for plant cultivation according to the first embodiment is not limited to using the LED illumination device 10 described above. That is, monochromatic LEDs are uniformly arranged in a group of white LEDs arranged in plural, and the white LED emits a continuous emission spectrum having a wavelength range of at least 450 nm to 700 nm, and at least one peak is emitted from the monochromatic LED. By emitting in the emission spectrum.
(第2実施形態)
次に図1及び図2を参照して本発明における第2実施形態について説明する。図2(A)は第2実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11及び赤色LED12a(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図2(B)は白色LED11及び赤色LED12aの発光スペクトルを合成したグラフである。なお、図2において図1と関連することは同一符号で示して重複する説明を省略する。 (Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 2 (A) is a graph in which single emission spectra of thewhite LED 11 and the red LED 12a (monochromatic LED 12) applied to the plant lighting LED illumination device 10 according to the second embodiment are overwritten, and FIG. B) is a graph in which the emission spectra of the white LED 11 and the red LED 12a are synthesized. 2 that are related to FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
次に図1及び図2を参照して本発明における第2実施形態について説明する。図2(A)は第2実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11及び赤色LED12a(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図2(B)は白色LED11及び赤色LED12aの発光スペクトルを合成したグラフである。なお、図2において図1と関連することは同一符号で示して重複する説明を省略する。 (Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 2 (A) is a graph in which single emission spectra of the
第2実施形態に係るLED照明装置10の回路基板には、白色LED11として一般照明用の演色値Ra=80付近、色温度5000Kのチップを選択し、単色LED12として600nm~700nmの波長範囲において中心波長が660nmのピークを有する赤色LED12aのチップを選択している。
For the circuit board of the LED lighting device 10 according to the second embodiment, a chip having a color rendering value Ra of approximately 80 for general illumination and a color temperature of 5000 K is selected as the white LED 11, and the single color LED 12 is centered in the wavelength range of 600 nm to 700 nm. The chip of the red LED 12a having a peak with a wavelength of 660 nm is selected.
そして、図2(B)に示される合成発光スペクトルにおいて、600nm~700nmの赤色波長範囲に存在する赤色LED12a由来のピークトップと、415nm~500nmの青色波長範囲に存在する白色LED11由来のピークトップと、のR/B比が2.5に近づく様に、赤色LED12aの点灯数が調整されている。
In the synthetic emission spectrum shown in FIG. 2B, the peak top derived from the red LED 12a existing in the red wavelength range of 600 nm to 700 nm, and the peak top derived from the white LED 11 existing in the blue wavelength range of 415 nm to 500 nm The number of lighting of the red LED 12a is adjusted so that the R / B ratio of.
図7のテーブルの実施例2の列に、第2実施形態に係る植物栽培用のLED照明方法の効果を示す。比較例1として、40型蛍光灯を使用し、レタス、トマト苗、イチゴに対して実施した栽培評価を、100ポイントの基準値で表した。
7 shows the effect of the LED lighting method for plant cultivation according to the second embodiment in the column of Example 2 of the table of FIG. As Comparative Example 1, a 40-type fluorescent lamp was used, and the cultivation evaluation performed on lettuce, tomato seedlings, and strawberries was represented by a reference value of 100 points.
なお、レタスはリーフレタスで行い、トマトはトマト自根苗で行い、生育の判断材料は目視による量感、株幅、葉寸、色等を総合的に判断した。そして、リーフレタスは定植から20日後に判定し、トマト自根苗は播種から19日目に判定した。また、イチゴは「とちおとめ」6株に対し、生育の判断材料は葉柄長、果実数、果実重等を総合的に判断し、定植から1か月目に判定した。
In addition, lettuce was performed with leaf lettuce, tomato was performed with self-rooted tomato seedlings, and growth judgment materials were comprehensively judged with a sense of volume, stock width, leaf size, color, and the like. The leaf lettuce was determined 20 days after planting, and the tomato seedlings were determined 19 days after sowing. In addition, for 6 strawberries “Tochiotome”, the growth judgment materials were comprehensively judged on petiole length, number of fruits, fruit weight, etc., and judged in the first month after planting.
その結果、第2実施形態(実施例2)の評価は、レタスが120ポイント、トマトが40ポイント、イチゴが120ポイントであった。なお、この実施例2において、ピークトップのR/B比が2.5の場合を示したが、この値に限定されることはなくピークトップのR/B比は2.0~3.0の範囲に含まれることが望ましい。この範囲を外した実施例では、蛍光灯を使用した比較例に対比して、格段に優れた植物の育成効果が実現されない。
As a result, the evaluation of the second embodiment (Example 2) was 120 points for lettuce, 40 points for tomato, and 120 points for strawberry. In Example 2, the peak top R / B ratio was 2.5. However, the peak top R / B ratio is not limited to this value, and the peak top R / B ratio is 2.0 to 3.0. It is desirable to be included in the range. In the Example which remove | excluded this range, compared with the comparative example which uses a fluorescent lamp, the growth effect of the plant outstanding was not implement | achieved.
なお、優れた植物の育成効果が得られる発光スペクトルの仕様を、発光スペクトルの波長範囲の積分値の比で規定することができる。具体的には、600nm~700nmの赤色波長範囲の積算値と415nm~500nmの青色波長範囲の積算値とのR/B比を1.6~4.3の範囲で規定するとよい。さらに、600nm~700nmの赤色波長範囲の積算値と500nm~600nmの緑色波長範囲の積算値とのR/G比を1.2~2.5の範囲で規定するとよい。
In addition, the specification of the emission spectrum with which the excellent plant-growing effect can be obtained can be defined by the ratio of the integral value of the wavelength range of the emission spectrum. Specifically, the R / B ratio between the integrated value in the red wavelength range of 600 nm to 700 nm and the integrated value in the blue wavelength range of 415 nm to 500 nm may be specified in the range of 1.6 to 4.3. Further, the R / G ratio between the integrated value in the red wavelength range of 600 nm to 700 nm and the integrated value in the green wavelength range of 500 nm to 600 nm may be specified in the range of 1.2 to 2.5.
(第3実施形態)
次に図1及び図3を参照して本発明における第3実施形態について説明する。図3(A)は第3実施形態に係る植物栽培用のLED照明装置に適用される、白色LED11、赤色LED12a(単色LED12)及び遠赤色LED12b(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図3(B)は白色LED11、赤色LED12a及び遠赤色LED12bの発光スペクトルを合成したグラフである。なお、図3において図1及び図2と関連することは同一符号で示して重複する説明を省略する。 (Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 3 (A) was overwritten with a single emission spectrum ofwhite LED 11, red LED 12a (single color LED 12) and far red LED 12b (single color LED 12) applied to the LED lighting device for plant cultivation according to the third embodiment. FIG. 3B is a graph in which emission spectra of the white LED 11, the red LED 12a, and the far red LED 12b are synthesized. In FIG. 3, the same reference numerals are used to refer to those in FIG. 1 and FIG.
次に図1及び図3を参照して本発明における第3実施形態について説明する。図3(A)は第3実施形態に係る植物栽培用のLED照明装置に適用される、白色LED11、赤色LED12a(単色LED12)及び遠赤色LED12b(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図3(B)は白色LED11、赤色LED12a及び遠赤色LED12bの発光スペクトルを合成したグラフである。なお、図3において図1及び図2と関連することは同一符号で示して重複する説明を省略する。 (Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 3 (A) was overwritten with a single emission spectrum of
第3実施形態に係るLED照明装置10の回路基板には、白色LED11と、単色LED12として赤色LED12aと、単色LED12として700nm~800nmの波長範囲において中心波長が735nmのピークを有する遠赤色LED12bと、が配置されている。
The circuit board of the LED lighting device 10 according to the third embodiment includes a white LED 11, a red LED 12a as the single color LED 12, and a far red LED 12b having a peak with a center wavelength of 735 nm in the wavelength range of 700 nm to 800 nm as the single color LED 12. Is arranged.
そして、図3(B)に示される合成発光スペクトルにおいて、R/B比(=2.5)は、図2(B)の状態を維持しつつ、赤色LED12a由来のピークトップと700nm~800nmの遠赤色波長範囲に存在する遠赤色LED12b由来のピークトップとのR/FR比が5に近づく様に、遠赤色LED12bの点灯数が調整されている。
In the synthetic emission spectrum shown in FIG. 3 (B), the R / B ratio (= 2.5) maintains the state of FIG. 2 (B), while the peak top derived from the red LED 12a and 700 nm to 800 nm. The number of lighting of the far red LED 12b is adjusted so that the R / FR ratio with the peak top derived from the far red LED 12b existing in the far red wavelength range approaches 5.
図7のテーブルの実施例3の列に、第3実施形態に係る植物栽培用のLED照明方法の効果を示す。その結果、第3実施形態(実施例3)の評価は、レタスが150ポイント、トマトが50ポイント、イチゴが130ポイントであった。
7 shows the effect of the LED lighting method for plant cultivation according to the third embodiment in the column of Example 3 in the table of FIG. As a result, evaluation of 3rd Embodiment (Example 3) was 150 points for lettuce, 50 points for tomatoes, and 130 points for strawberries.
なお、この実施例3において、ピークトップのR/FR比が5の場合を示したが、この値に限定されることはなくピークトップのR/FR比は4.0~6.0の範囲に含まれることが望ましい。この範囲を外した実施例では、蛍光灯を使用した比較例に対比して、格段に優れた植物の育成効果が実現されない。
In Example 3, the peak top R / FR ratio was 5. However, the peak top R / FR ratio is in the range of 4.0 to 6.0 without being limited to this value. It is desirable to be included in. In the Example which remove | excluded this range, compared with the comparative example which uses a fluorescent lamp, the growth effect of the plant outstanding was not implement | achieved.
なお、優れた植物の育成効果が得られる発光スペクトルの仕様を、発光スペクトルの波長範囲の積分値の比で規定することができる。具体的には、600nm~700nmの赤色波長範囲の積算値と700nm~800nmの遠赤色波長範囲の積算値とのR/FR比を2.6~7.3の範囲で規定するとよい。
In addition, the specification of the emission spectrum with which the excellent plant-growing effect can be obtained can be defined by the ratio of the integral value of the wavelength range of the emission spectrum. Specifically, the R / FR ratio between the integrated value in the red wavelength range of 600 nm to 700 nm and the integrated value in the far red wavelength range of 700 nm to 800 nm may be specified in the range of 2.6 to 7.3.
(第4実施形態)
次に図1及び図4を参照して本発明における第4実施形態について説明する。図4(A)は第4実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11及び紫外線LED12c(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図4(B)は白色LED11及び紫外線LED12cの発光スペクトルを合成したグラフである。なお、図4において図1~図3と関連することは同一符号で示して重複する説明を省略する。 (Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 4 (A) is a graph in which the single light emission spectra of thewhite LED 11 and the ultraviolet LED 12c (monochromatic LED 12) applied to the plant lighting LED illumination device 10 according to the fourth embodiment are overwritten, and FIG. B) is a graph in which the emission spectra of the white LED 11 and the ultraviolet LED 12c are synthesized. 4 that are related to FIGS. 1 to 3 are denoted by the same reference numerals, and redundant description is omitted.
次に図1及び図4を参照して本発明における第4実施形態について説明する。図4(A)は第4実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11及び紫外線LED12c(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図4(B)は白色LED11及び紫外線LED12cの発光スペクトルを合成したグラフである。なお、図4において図1~図3と関連することは同一符号で示して重複する説明を省略する。 (Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 4 (A) is a graph in which the single light emission spectra of the
第4実施形態に係るLED照明装置10の回路基板には、白色LED11と、単色LED12として350nm~425nmの波長範囲において中心波長が395nmのピークを有する紫外線LED12cと、が配置されている。
On the circuit board of the LED lighting device 10 according to the fourth embodiment, a white LED 11 and an ultraviolet LED 12c having a peak with a central wavelength of 395 nm in a wavelength range of 350 nm to 425 nm as a monochromatic LED 12 are arranged.
そして、図4(B)に示される合成発光スペクトルにおいて、350nm~425nmの紫外線波長範囲に紫外線LED12c由来のピークトップと415nm~500nmの青色波長範囲に存在する白色LED11由来のピークトップとのUVA/B比が1に近づく様に、紫外線LED12cの点灯数が調整されている。
In the synthetic emission spectrum shown in FIG. 4B, the UVA / peak of the peak top derived from the ultraviolet LED 12c in the ultraviolet wavelength range of 350 nm to 425 nm and the peak top derived from the white LED 11 existing in the blue wavelength range of 415 nm to 500 nm. The lighting number of the ultraviolet LED 12c is adjusted so that the B ratio approaches 1.
図7のテーブルの実施例4の列に、第4実施形態に係る植物栽培用のLED照明方法の効果を示す。その結果、第4実施形態(実施例4)の評価は、レタスが100ポイント、トマト苗が100ポイント、イチゴが150ポイントであった。
7 shows the effect of the LED lighting method for plant cultivation according to the fourth embodiment in the column of Example 4 in the table of FIG. As a result, evaluation of 4th Embodiment (Example 4) was 100 points for lettuce, 100 points for tomato seedlings, and 150 points for strawberries.
なお、この実施例4において、ピークトップのUVA/B比が1の場合を示したが、この値に限定されることはなくピークトップのUVA/B比は0.5~1.5の範囲に含まれることが望ましい。この範囲を外した実施例では、蛍光灯を使用した比較例に対比して、格段に優れた植物の育成効果が実現されない。
In Example 4, the peak top UVA / B ratio is 1 but is not limited to this value. The peak top UVA / B ratio is in the range of 0.5 to 1.5. It is desirable to be included in. In the Example which remove | excluded this range, compared with the comparative example which uses a fluorescent lamp, the growth effect of the plant outstanding was not implement | achieved.
なお、優れた植物の育成効果が得られる発光スペクトルの仕様を、発光スペクトルの波長範囲の積分値の比で規定することができる。具体的には、350nm~425nmの紫外線波長範囲の積算値と415nm~500nmの遠赤色波長範囲の積算値とのUVA/B比を0.5~1.5の範囲で規定するとよい。
In addition, the specification of the emission spectrum with which the excellent plant-growing effect can be obtained can be defined by the ratio of the integral value of the wavelength range of the emission spectrum. Specifically, the UVA / B ratio between the integrated value in the ultraviolet wavelength range of 350 nm to 425 nm and the integrated value in the far red wavelength range of 415 nm to 500 nm may be specified in the range of 0.5 to 1.5.
(第5実施形態)
次に図1及び図5を参照して本発明における第5実施形態について説明する。図5(A)は第5実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11、赤色LED12a(単色LED12)及び紫外線LED12c(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図5(B)は白色LED11、赤色LED12a及び紫外線LED12cの発光スペクトルを合成したグラフである。なお、図5において図1~図4と関連することは同一符号で示して重複する説明を省略する。 (Fifth embodiment)
Next, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 5 (A) was overwritten with a single emission spectrum ofwhite LED 11, red LED 12a (single color LED 12) and ultraviolet LED 12c (single color LED 12) applied to the LED lighting device 10 for plant cultivation according to the fifth embodiment. FIG. 5B is a graph in which the emission spectra of the white LED 11, the red LED 12a, and the ultraviolet LED 12c are synthesized. 5 that are related to FIGS. 1 to 4 are denoted by the same reference numerals, and redundant description is omitted.
次に図1及び図5を参照して本発明における第5実施形態について説明する。図5(A)は第5実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11、赤色LED12a(単色LED12)及び紫外線LED12c(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図5(B)は白色LED11、赤色LED12a及び紫外線LED12cの発光スペクトルを合成したグラフである。なお、図5において図1~図4と関連することは同一符号で示して重複する説明を省略する。 (Fifth embodiment)
Next, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 5 (A) was overwritten with a single emission spectrum of
第5実施形態に係るLED照明装置10の回路基板には、白色LED11と、単色LED12として赤色LED12a及び紫外線LED12cと、が配置されている。
The white LED 11 and the red LED 12a and the ultraviolet LED 12c as the single color LED 12 are arranged on the circuit board of the LED lighting device 10 according to the fifth embodiment.
そして、図5(B)に示される合成発光スペクトルにおいて、R/B比(=2.5)は図2(B)と同じ状態、さらにUVA/B比(=1)は図4(B)と同じ状態となるように赤色LED12a及び紫外線LED12cの点灯数が調整されている。
In the synthetic emission spectrum shown in FIG. 5B, the R / B ratio (= 2.5) is the same as in FIG. 2B, and the UVA / B ratio (= 1) is the same as that in FIG. The number of lighting of the red LED 12a and the ultraviolet LED 12c is adjusted so as to be in the same state.
図7のテーブルの実施例5の列に、第5実施形態に係る植物栽培用のLED照明方法の効果を示す。その結果、第5実施形態(実施例5)の評価は、レタスが120ポイント、トマト苗が110ポイント、イチゴが170ポイントであった。
7 shows the effect of the LED lighting method for plant cultivation according to the fifth embodiment in the column of Example 5 of the table of FIG. As a result, evaluation of 5th Embodiment (Example 5) was lettuce 120 points, a tomato seedling 110 points, and a strawberry 170 points.
なお、この実施例5において、ピークトップのR/B比が2.5でかつUVA/B比が1の場合を示したが、この値に限定されることはなく、各々の比が前記した範囲に含まれることが望ましい。この範囲を外した実施例では、蛍光灯を使用した比較例に対比して、格段に優れた植物の育成効果が実現されない。また、前記したように優れた植物の育成効果が得られる発光スペクトルの仕様を、発光スペクトルの波長範囲の前記した積分値の比で規定することができる。
In Example 5, the peak top R / B ratio was 2.5 and the UVA / B ratio was 1. However, the present invention is not limited to this value. It is desirable to be included in the range. In the Example which remove | excluded this range, compared with the comparative example which uses a fluorescent lamp, the growth effect of the plant outstanding was not implement | achieved. In addition, as described above, the specification of the emission spectrum that provides an excellent plant-growing effect can be defined by the ratio of the integrated value in the wavelength range of the emission spectrum.
(第6実施形態)
次に図1及び図6を参照して本発明における第6実施形態について説明する。図6(A)は第6実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11、赤色LED12a(単色LED12)、遠赤色LED12b(単色LED12)及び紫外線LED12c(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図6(B)は白色LED11、赤色LED12a、遠赤色LED12b及び紫外線LED12cの発光スペクトルを合成したグラフである。なお、図6において図1~図5と関連することは同一符号で示して重複する説明を省略する。 (Sixth embodiment)
Next, a sixth embodiment of the present invention will be described with reference to FIGS. FIG. 6A shows awhite LED 11, a red LED 12a (single color LED 12), a far red LED 12b (single color LED 12), and an ultraviolet LED 12c (single color LED 12) applied to the LED lighting device 10 for plant cultivation according to the sixth embodiment. FIG. 6B is a graph obtained by combining the emission spectra of the white LED 11, the red LED 12a, the far red LED 12b, and the ultraviolet LED 12c. 6 that are related to FIGS. 1 to 5 are denoted by the same reference numerals, and redundant description is omitted.
次に図1及び図6を参照して本発明における第6実施形態について説明する。図6(A)は第6実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11、赤色LED12a(単色LED12)、遠赤色LED12b(単色LED12)及び紫外線LED12c(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図6(B)は白色LED11、赤色LED12a、遠赤色LED12b及び紫外線LED12cの発光スペクトルを合成したグラフである。なお、図6において図1~図5と関連することは同一符号で示して重複する説明を省略する。 (Sixth embodiment)
Next, a sixth embodiment of the present invention will be described with reference to FIGS. FIG. 6A shows a
第6実施形態に係るLED照明装置10の回路基板には、白色LED11と、単色LED12として赤色LED12a、遠赤色LED12b及び紫外線LED12cと、が配置されている。
On the circuit board of the LED lighting device 10 according to the sixth embodiment, a white LED 11 and a red LED 12a, a far red LED 12b, and an ultraviolet LED 12c as a single color LED 12 are arranged.
そして、図6(B)に示される合成発光スペクトルにおいて、R/B比(=2.5)は図2(B)と同じ状態、R/FR比(=5)は図3(B)と同じ状態、さらにUVA/B比(=1)は図4(B)と同じ状態となるように赤色LED12a、遠赤色LED12b及び紫外線LED12cの点灯数が調整されている。
In the synthetic emission spectrum shown in FIG. 6B, the R / B ratio (= 2.5) is the same as in FIG. 2B, and the R / FR ratio (= 5) is the same as FIG. 3B. The number of lighting of the red LED 12a, the far red LED 12b, and the ultraviolet LED 12c is adjusted so that the same state and the UVA / B ratio (= 1) are the same as those in FIG. 4B.
図7のテーブルの実施例6の列に、第6実施形態に係る植物栽培用のLED照明方法の効果を示す。その結果、第6実施形態(実施例6)の評価は、レタスが150ポイント、トマト苗が130ポイント、イチゴが200ポイントであった。
7 shows the effect of the LED lighting method for plant cultivation according to the sixth embodiment in the column of Example 6 of the table of FIG. As a result, the evaluation of the sixth embodiment (Example 6) was 150 points for lettuce, 130 points for tomato seedlings, and 200 points for strawberries.
なお、この実施例6において、ピークトップのR/B比が2.5でR/FR比が5でかつUVA/B比が1の場合を示したが、この値に限定されることはなく、各々の比が前記した範囲に含まれることが望ましい。この範囲を外した実施例では、蛍光灯を使用した比較例に対比して、格段に優れた植物の育成効果が実現されない。また、前記したように優れた植物の育成効果が得られる発光スペクトルの仕様を、発光スペクトルの波長範囲の前記した積分値の比で規定することができる。
In Example 6, the peak top R / B ratio was 2.5, the R / FR ratio was 5, and the UVA / B ratio was 1. However, the present invention is not limited to this value. Each ratio is preferably included in the above-described range. In the Example which remove | excluded this range, compared with the comparative example which uses a fluorescent lamp, the growth effect of the plant outstanding was not implement | achieved. In addition, as described above, the specification of the emission spectrum that provides an excellent plant-growing effect can be defined by the ratio of the integrated value in the wavelength range of the emission spectrum.
以上説明した通り、各実施形態に係る植物栽培用のLED照明装置を用いて、レタスなどの葉菜類、トマトやイチゴなどの果菜類に対する効果の有効性を確認した。その他、キク類、シソ類、ギキョウ類などの電照栽培用としての効果の有効性も確認している。
As described above, the effectiveness of the effect on leaf vegetables such as lettuce and fruit vegetables such as tomato and strawberry was confirmed using the LED lighting device for plant cultivation according to each embodiment. In addition, the effectiveness of the effect for electric cultivation such as chrysanthemums, perillas, and rhododendrons has been confirmed.
10(10A、10B)…LED照明装置、11…白色LED、12…単色LED、12a…赤色LED、12b…遠赤色LED、12c…紫外線LED、15a…定電流回路、16…スイッチ。
10 (10A, 10B) ... LED lighting device, 11 ... white LED, 12 ... single color LED, 12a ... red LED, 12b ... far red LED, 12c ... ultraviolet LED, 15a ... constant current circuit, 16 ... switch.
Claims (11)
- 波長範囲が少なくとも450nm~700nmまで連続する発光スペクトルを持つ白色LEDと、
少なくとも一つのピークを発光スペクトルに持つ単色LEDと、
複数の前記白色LEDを配置するとともに、この白色LEDの群中において前記単色LEDを均一に配置する回路基板と、を備えることを特徴とする植物栽培用のLED照明装置。 A white LED having an emission spectrum having a wavelength range of at least 450 nm to 700 nm, and
A monochromatic LED having at least one peak in the emission spectrum;
An LED lighting device for plant cultivation, comprising: a plurality of white LEDs, and a circuit board that uniformly arranges the monochromatic LEDs in the group of white LEDs. - 請求項1に記載の植物栽培用のLED照明装置において、
前記単色LEDは、600nm~700nmの波長範囲において前記ピークを有する赤色LEDであることを特徴とする植物栽培用のLED照明装置。 In the LED lighting device for plant cultivation according to claim 1,
The LED lighting device for plant cultivation, wherein the monochromatic LED is a red LED having the peak in a wavelength range of 600 nm to 700 nm. - 請求項2に記載の植物栽培用のLED照明装置において、
前記単色LEDとして、700nm~800nmの波長範囲において前記ピークを有する遠赤色LEDがさらに設けられていることを特徴とする植物栽培用のLED照明装置。 In the LED lighting device for plant cultivation according to claim 2,
An LED lighting apparatus for plant cultivation, wherein the monochromatic LED is further provided with a far-red LED having the peak in a wavelength range of 700 nm to 800 nm. - 請求項1に記載の植物栽培用のLED照明装置において、
前記単色LEDは、350nm~425nmの波長範囲において前記ピークを有する紫外線LEDであることを特徴とする植物栽培用のLED照明装置。 In the LED lighting device for plant cultivation according to claim 1,
The LED lighting apparatus for plant cultivation, wherein the monochromatic LED is an ultraviolet LED having the peak in a wavelength range of 350 nm to 425 nm. - 請求項2に記載の植物栽培用のLED照明装置において、
前記単色LEDとして、350nm~425nmの波長範囲において前記ピークを有する紫外線LEDがさらに設けられていることを特徴とする植物栽培用のLED照明装置。 In the LED lighting device for plant cultivation according to claim 2,
An LED lighting device for plant cultivation, wherein the monochromatic LED is further provided with an ultraviolet LED having the peak in a wavelength range of 350 nm to 425 nm. - 請求項3に記載の植物栽培用のLED照明装置において、
前記単色LEDとして、350nm~425nmの波長範囲において前記ピークを有する紫外線LEDがさらに設けられていることを特徴とする植物栽培用のLED照明装置。 In the LED lighting device for plant cultivation according to claim 3,
An LED lighting device for plant cultivation, wherein the monochromatic LED is further provided with an ultraviolet LED having the peak in a wavelength range of 350 nm to 425 nm. - 請求項1から請求項6のいずれか1項に記載の植物栽培用のLED照明装置において、
前記回路基板には、少なくとも1つの前記単色LEDに、通電を個別にON/OFFさせるスイッチが設けられていることを特徴とする植物栽培用のLED照明装置。 In the LED lighting device for plant cultivation according to any one of claims 1 to 6,
An LED lighting device for plant cultivation, wherein the circuit board is provided with a switch for individually turning on / off energization of at least one of the monochromatic LEDs. - 請求項2,3,5,6のいずれか1項に記載の植物栽培用のLED照明装置において、
前記白色LED及び前記単色LEDの発光スペクトルを合成した600nm~700nmの波長範囲及び415nm~500nmの波長範囲は、
各々のピークトップのR/B比が2.0~3.0の範囲に含まれるか、
又は積算値のR/B比が1.6~4.3の範囲に含まれ、積算値のR/G比が1.2~2.5の範囲に含まれることを特徴とする植物栽培用のLED照明装置。 In the LED lighting device for plant cultivation according to any one of claims 2, 3, 5, and 6,
The wavelength range of 600 nm to 700 nm and the wavelength range of 415 nm to 500 nm obtained by synthesizing the emission spectra of the white LED and the monochromatic LED are as follows:
Whether the R / B ratio of each peak top is included in the range of 2.0 to 3.0,
Alternatively, the R / B ratio of the integrated value is included in the range of 1.6 to 4.3, and the R / G ratio of the integrated value is included in the range of 1.2 to 2.5. LED lighting device. - 請求項3又は請求項6に記載の植物栽培用のLED照明装置において、
前記白色LED及び前記単色LEDの発光スペクトルを合成した600nm~700nmの波長範囲及び700nm~800nmの波長範囲は、
各々のピークトップのR/FR比が4.0~6.0の範囲に含まれるか、
又は積算値のR/FR比が2.6~7.3の範囲に含まれることを特徴とする植物栽培用のLED照明装置。 In the LED lighting device for plant cultivation according to claim 3 or claim 6,
The wavelength range of 600 nm to 700 nm and the wavelength range of 700 nm to 800 nm obtained by synthesizing the emission spectra of the white LED and the monochromatic LED are as follows:
The R / FR ratio of each peak top is included in the range of 4.0 to 6.0,
Alternatively, the LED lighting device for plant cultivation, wherein the integrated value R / FR ratio is included in the range of 2.6 to 7.3. - 請求項4又は請求項6に記載の植物栽培用のLED照明装置において、
前記白色LED及び前記単色LEDの発光スペクトルを合成した350nm~425nmの波長範囲及び415nm~500nmの波長範囲は、
各々のピークトップのUVA/B比が0.5~1.5の範囲に含まれるか、
又は積算値のUVA/B比が0.5~1.5の範囲に含まれることを特徴とする植物栽培用のLED照明装置。 In the LED lighting device for plant cultivation according to claim 4 or claim 6,
The wavelength range of 350 nm to 425 nm and the wavelength range of 415 nm to 500 nm, in which the emission spectra of the white LED and the monochromatic LED are synthesized,
Whether the UVA / B ratio of each peak top is in the range of 0.5 to 1.5,
Alternatively, the LED lighting device for plant cultivation, wherein the integrated value UVA / B ratio is included in the range of 0.5 to 1.5. - 波長範囲が少なくとも450nm~700nmまで連続する発光スペクトルを持つ白色LEDを発光させるステップと、
少なくとも一つのピークを発光スペクトルに持つ単色LEDを発光させるステップと、を含み、
複数が配置されている前記白色LEDの群中において、前記単色LEDが均一に配置されていることを特徴とする植物栽培用のLED照明方法。 Emitting a white LED having an emission spectrum having a continuous wavelength range from at least 450 nm to 700 nm;
Emitting a monochromatic LED having at least one peak in the emission spectrum,
An LED illumination method for plant cultivation, wherein the single color LEDs are uniformly arranged in a group of the white LEDs in which a plurality are arranged.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-088368 | 2018-05-01 | ||
JP2018088368A JP2021119743A (en) | 2018-05-01 | 2018-05-01 | Led illuminating device for plant cultivation and method for illuminating the led |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019211956A1 true WO2019211956A1 (en) | 2019-11-07 |
Family
ID=68385919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012866 WO2019211956A1 (en) | 2018-05-01 | 2019-03-26 | Led illuminating device for plant cultivation and method for illuminating said led |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021119743A (en) |
WO (1) | WO2019211956A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023161915A3 (en) * | 2022-12-02 | 2023-10-05 | Otto Horlacher | Horticultural lighting and method of use |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021058141A (en) * | 2019-10-08 | 2021-04-15 | 史朗 武藤 | Illumination for plant cultivation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012239417A (en) * | 2011-05-19 | 2012-12-10 | Ushio Inc | Light source apparatus for raising plant |
JP5102190B2 (en) * | 2008-12-08 | 2012-12-19 | Mkvドリーム株式会社 | Plant cultivation method |
JP2016086783A (en) * | 2014-11-10 | 2016-05-23 | 株式会社東芝 | Illumination system |
JP2016202050A (en) * | 2015-04-20 | 2016-12-08 | 住友電気工業株式会社 | Light source unit, cultivation module, and cultivation method |
US20170241632A1 (en) * | 2016-02-19 | 2017-08-24 | Ken Nguyen | Led lighting system and opertaing method for irradiation of plants |
JP2018510656A (en) * | 2015-03-25 | 2018-04-19 | ヴィータビーム リミテッド | Method and apparatus for stimulating plant growth and development with near infrared and visible light |
-
2018
- 2018-05-01 JP JP2018088368A patent/JP2021119743A/en active Pending
-
2019
- 2019-03-26 WO PCT/JP2019/012866 patent/WO2019211956A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5102190B2 (en) * | 2008-12-08 | 2012-12-19 | Mkvドリーム株式会社 | Plant cultivation method |
JP2012239417A (en) * | 2011-05-19 | 2012-12-10 | Ushio Inc | Light source apparatus for raising plant |
JP2016086783A (en) * | 2014-11-10 | 2016-05-23 | 株式会社東芝 | Illumination system |
JP2018510656A (en) * | 2015-03-25 | 2018-04-19 | ヴィータビーム リミテッド | Method and apparatus for stimulating plant growth and development with near infrared and visible light |
JP2016202050A (en) * | 2015-04-20 | 2016-12-08 | 住友電気工業株式会社 | Light source unit, cultivation module, and cultivation method |
US20170241632A1 (en) * | 2016-02-19 | 2017-08-24 | Ken Nguyen | Led lighting system and opertaing method for irradiation of plants |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023161915A3 (en) * | 2022-12-02 | 2023-10-05 | Otto Horlacher | Horticultural lighting and method of use |
Also Published As
Publication number | Publication date |
---|---|
JP2021119743A (en) | 2021-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10398000B2 (en) | LED structure with a dynamic spectrum and a method | |
JP6534695B2 (en) | Lighting assembly | |
US10448579B2 (en) | Lighting device capable of providing horticulture light and method of illuminating horticulture | |
RU2580325C2 (en) | Light emitting device, light source based on light-emitting diode for plant cultivation and plant factory | |
RU2667769C2 (en) | Horticulture lighting device and method for stimulating plant growth and bio-rhythm of plants | |
JP5779678B2 (en) | Lamp for plant cultivation and plant cultivation method using the same | |
US20160338169A1 (en) | Led structure with quasi-continuous spectrum and method of illumination | |
US11980144B2 (en) | Light source for plant cultivation | |
WO2019211956A1 (en) | Led illuminating device for plant cultivation and method for illuminating said led | |
US20170102132A1 (en) | LED Lighting Module for Plant Factory and LED Lighting Device for Plant Factory having Same Mounted thereon | |
KR20110075386A (en) | Led lighting module for plant cultivation | |
KR20100090963A (en) | Apparatus for accelerating plant growth | |
Hawley | Development of a variable-spectra LED array for optimized plant development | |
JP2021058141A (en) | Illumination for plant cultivation | |
JP2018120853A (en) | Light source device, light source device for plant factory, process for rearing plant and method of application of light source | |
KR20150135698A (en) | LED lighting module for plant-culture factory, and LED lighting apparatus for plant-culture factory using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19796310 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19796310 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |