JP2021119743A - Led illuminating device for plant cultivation and method for illuminating the led - Google Patents

Led illuminating device for plant cultivation and method for illuminating the led Download PDF

Info

Publication number
JP2021119743A
JP2021119743A JP2018088368A JP2018088368A JP2021119743A JP 2021119743 A JP2021119743 A JP 2021119743A JP 2018088368 A JP2018088368 A JP 2018088368A JP 2018088368 A JP2018088368 A JP 2018088368A JP 2021119743 A JP2021119743 A JP 2021119743A
Authority
JP
Japan
Prior art keywords
led
plant cultivation
lighting device
monochromatic
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018088368A
Other languages
Japanese (ja)
Inventor
裕司 大畠
Yuji Ohata
裕司 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibakawa Manufacturing Co Ltd
Original Assignee
Shibakawa Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibakawa Manufacturing Co Ltd filed Critical Shibakawa Manufacturing Co Ltd
Priority to JP2018088368A priority Critical patent/JP2021119743A/en
Priority to PCT/JP2019/012866 priority patent/WO2019211956A1/en
Publication of JP2021119743A publication Critical patent/JP2021119743A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ecology (AREA)
  • Botany (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cultivation Of Plants (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

To provide an LED illumination technology for plant cultivation, allowing easy optimization of an emission spectrum to efficiently enhance the growth effect.SOLUTION: An LED illuminating device 10 is provided with: white LEDs 11 having an emission spectrum in which the wavelength range is continuous from at least 450 nm to 700 nm; monochrome LEDs 12 having at least one peak in the emission spectrum; and a circuit board on which the plurality of white LEDs 11 are arranged, and the monochrome LEDs 12 are uniformly arranged in the group of white LEDs 11.SELECTED DRAWING: Figure 1

Description

本発明は、LED(発光ダイオード)を光源に持つ植物栽培用の照明技術に関する。 The present invention relates to a lighting technique for plant cultivation using an LED (light emitting diode) as a light source.

植物工場に設置される照明装置において、光源を、これまで主流であった蛍光灯からLEDに置き換えることが検討されている。その理由は、LEDに置き換われば、蛍光灯の短所すなわち消費電力及び発熱が大きく寿命が短いことが解消され、植物工場における生産コストの改善が期待できるからである。 In lighting equipment installed in plant factories, it is being considered to replace the light source from the fluorescent lamp, which has been the mainstream until now, with an LED. The reason is that if the LED is replaced, the disadvantages of the fluorescent lamp, that is, the large power consumption and heat generation and the short life are eliminated, and the production cost in the plant factory can be expected to be improved.

植物栽培用のLED照明装置の製品化は、波長450nm付近で単色発光する青色LEDと波長620nm付近で単色発光する赤色LEDとの2種類の組み合わせを光源に持つものから始まった。その後、波長が400nmから700nm付近までの連続した波長域で発光する白色LEDを光源に持つものが登場した。そして出願時においては、それまでの白色LEDよりも色温度が低く且つ高演色で発光し波長400nmから780nmまでの連続的な広帯域で発光する白色LEDが、植物栽培用の光源として注目されている。 The commercialization of LED lighting equipment for plant cultivation began with a combination of two types of light sources: a blue LED that emits a single color at a wavelength of around 450 nm and a red LED that emits a single color at a wavelength of around 620 nm. After that, a light source having a white LED that emits light in a continuous wavelength range from 400 nm to 700 nm appeared. At the time of filing, a white LED having a lower color temperature and a higher color rendering index than the conventional white LED and emitting light in a continuous wide band from a wavelength of 400 nm to 780 nm has been attracting attention as a light source for plant cultivation. ..

特開2016−202072号公報Japanese Unexamined Patent Publication No. 2016-202072 特開2016−007185号公報Japanese Unexamined Patent Publication No. 2016-007185

これまで光源として長期にわたり蛍光灯を採用してきた結果、植物工場による栽培植物の成果は、一定の満足度を獲得するに至っている。しかし、光源をLEDに置き換えた結果、栽培植物の成果に関し、満足度が低下する事例が報告されてきている。 As a result of using fluorescent lamps as a light source for a long period of time, the results of cultivated plants by plant factories have reached a certain level of satisfaction. However, as a result of replacing the light source with an LED, there have been reports of cases in which satisfaction with the results of cultivated plants is reduced.

具体的には、レタス等の葉菜類の栽培において、LED光源は、実用的な成果を上げているものの、蛍光灯光源による成果と対比すると見劣りするとの評価がなされている。またイチゴやトマト等の果菜類の栽培においては、蛍光灯光源では指摘されることがない果実の色付き等に関し、LED光源では満足のいく成果が得られていない。 Specifically, in the cultivation of leafy vegetables such as lettuce, it has been evaluated that the LED light source has achieved practical results, but is inferior to the results of the fluorescent light source. Further, in the cultivation of fruit vegetables such as strawberries and tomatoes, satisfactory results have not been obtained with the LED light source regarding the coloring of fruits, which is not pointed out by the fluorescent light source.

この理由として、光源の発光スペクトルを対比してみると、LEDと蛍光灯とでは、互いにR/B比(赤/青比)及びR/FR比(赤/遠赤色比)が、大きく相違することが挙げられている。このため、光源のR/B比及びR/FR比を最適化すれば、植物の栽培育成効果をさらに向上させることが期待できる。 The reason for this is that when comparing the emission spectra of the light source, the R / B ratio (red / blue ratio) and the R / FR ratio (red / far red ratio) of the LED and the fluorescent lamp are significantly different from each other. Is mentioned. Therefore, if the R / B ratio and the R / FR ratio of the light source are optimized, it can be expected that the cultivation and cultivation effect of the plant will be further improved.

ところで、白色LEDのみで光源を構成し、その発光スペクトルを最適化しようとすると、劣化し易い蛍光体を使用することとなり、最適化した発光スペクトルが経年的に不適切に変化していくことが課題となる。また、植物栽培用の光源として需要が増えている低色温度かつ高演色の白色LEDも、一般照明用の白色LEDや単色LEDと対比して、発光効率が低い課題がある。 By the way, if a light source is composed of only white LEDs and an attempt is made to optimize the emission spectrum thereof, a phosphor that is easily deteriorated is used, and the optimized emission spectrum may change inappropriately over time. It becomes an issue. Further, a white LED having a low color temperature and a high color performance, which is in increasing demand as a light source for plant cultivation, has a problem of low luminous efficiency as compared with a white LED for general lighting and a monochromatic LED.

本発明はこのような事情を考慮してなされたもので、効率的に育成効果を向上させるために、発光スペクトルを容易に最適化することができる植物栽培用のLED照明技術を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and in order to efficiently improve the growing effect, it is intended to provide an LED lighting technique for plant cultivation that can easily optimize the emission spectrum. The purpose.

本発明に係る植物栽培用のLED照明装置において、波長範囲が少なくとも450nmから700nmまで連続する発光スペクトルを持つ白色LEDと、少なくとも一つのピークを発光スペクトルに持つ単色LEDと、複数の前記白色LEDを配置するとともに、この白色LEDの群中において前記単色LEDを均一に配置する回路基板と、を備えることを特徴とする。 In the LED lighting device for plant cultivation according to the present invention, a white LED having a continuous emission spectrum with a wavelength range of at least 450 nm to 700 nm, a monochromatic LED having at least one peak in the emission spectrum, and a plurality of the white LEDs are used. In addition to being arranged, it is characterized by including a circuit board for uniformly arranging the monochromatic LEDs in the group of white LEDs.

本発明により、効率的に育成効果を向上させるために、発光スペクトルを容易に最適化することができる植物栽培用のLED照明技術が提供される。 INDUSTRIAL APPLICABILITY The present invention provides an LED lighting technique for plant cultivation in which the emission spectrum can be easily optimized in order to efficiently improve the growing effect.

(A)本発明の第1実施形態に係る植物栽培用のLED照明装置を示す全体回路図、(B)その他の例のLED照明装置を示す部分回路図。(A) An overall circuit diagram showing an LED lighting device for plant cultivation according to the first embodiment of the present invention, and (B) a partial circuit diagram showing an LED lighting device of another example. (A)第2実施形態に係る植物栽培用のLED照明装置に適用される、白色LED及び赤色LEDの単体の発光スペクトルを重ね書きしたグラフ、(B)白色LED及び赤色LEDの発光スペクトルを合成したグラフ。(A) A graph in which the emission spectra of a single white LED and a red LED, which are applied to the LED lighting device for plant cultivation according to the second embodiment, are superimposed, and (B) the emission spectra of the white LED and the red LED are synthesized. Graph. (A)第3実施形態に係る植物栽培用のLED照明装置に適用される、白色LED、赤色LED及び遠赤色LEDの単体の発光スペクトルを重ね書きしたグラフ、(B)白色LED、赤色LED及び遠赤色LEDの発光スペクトルを合成したグラフ。(A) A graph in which the emission spectra of a single unit of white LED, red LED and far-red LED, which are applied to the LED lighting device for plant cultivation according to the third embodiment, are overlaid, (B) white LED, red LED and The graph which combined the emission spectrum of the far-red LED. (A)第4実施形態に係る植物栽培用のLED照明装置に適用される、白色LED及び紫外線LEDの単体の発光スペクトルを重ね書きしたグラフ、(B)白色LED及び紫外線LEDの発光スペクトルを合成したグラフ。(A) A graph in which the emission spectra of a single white LED and an ultraviolet LED, which are applied to the LED lighting device for plant cultivation according to the fourth embodiment, are overlaid, and (B) the emission spectra of the white LED and the ultraviolet LED are synthesized. Graph. (A)第5実施形態に係る植物栽培用のLED照明装置に適用される、白色LED、赤色LED及び紫外線LEDの単体の発光スペクトルを重ね書きしたグラフ、(B)白色LED、赤色LED及び紫外線LEDの発光スペクトルを合成したグラフ。(A) A graph in which the emission spectra of white LEDs, red LEDs, and ultraviolet LEDs, which are applied to the LED lighting device for plant cultivation according to the fifth embodiment, are overlaid, and (B) white LEDs, red LEDs, and ultraviolet rays. The graph which combined the emission spectrum of LED. (A)第6実施形態に係る植物栽培用のLED照明装置に適用される、白色LED、赤色LED、遠赤色LED及び紫外線LEDの単体の発光スペクトルを重ね書きしたグラフ、(B)白色LED、赤色LED、遠赤色LED及び紫外線LEDの発光スペクトルを合成したグラフ。(A) A graph in which the emission spectra of white LEDs, red LEDs, far-red LEDs, and ultraviolet LEDs, which are applied to the LED lighting device for plant cultivation according to the sixth embodiment, are overlaid, (B) white LEDs, The graph which combined the emission spectrum of a red LED, a far red LED and an ultraviolet LED. 各実施形態に係る植物栽培用のLED照明方法の効果を示すテーブル。A table showing the effect of the LED lighting method for plant cultivation according to each embodiment.

(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1(A)は本発明の第1実施形態に係る植物栽培用のLED照明装置10Aを示す回路図であり、図1(B)はその他の例のLED照明装置10Bを示す部分回路図である。
(First Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1A is a circuit diagram showing an LED lighting device 10A for plant cultivation according to the first embodiment of the present invention, and FIG. 1B is a partial circuit diagram showing an LED lighting device 10B of another example. be.

図1(A)に示すように、LED照明装置10Aは、波長範囲が少なくとも450nmから700nmまで連続する発光スペクトルを持つ白色LED11と、少なくとも一つのピークを発光スペクトルに持つ単色LED12と、複数の白色LED11を配置するとともにこの白色LED11の群中において単色LED12を均一に配置する回路基板(図示略)と、を備えている。 As shown in FIG. 1A, the LED lighting device 10A includes a white LED 11 having a continuous emission spectrum having a wavelength range of at least 450 nm to 700 nm, a monochromatic LED 12 having at least one peak in the emission spectrum, and a plurality of white LEDs. A circuit board (not shown) for arranging the LEDs 11 and uniformly arranging the monochromatic LEDs 12 in the group of the white LEDs 11 is provided.

白色LED11には、発光効率に優れる一般照明用のものを用いる。前述したように、育成効果を向上させる目的で、この一般照明用の白色LEDよりも色温度が低く且つ高演色で発光する植物栽培用の白色LED(演色値Ra=90前後、色温度3000K前後)が市販されている。しかし、この植物栽培用の白色LEDは、チップの発光効率が悪く、光量が少ないので、積極的に採用する必要はない。 As the white LED 11, one for general lighting having excellent luminous efficiency is used. As mentioned above, for the purpose of improving the growing effect, a white LED for plant cultivation that emits light with a lower color temperature and higher color rendering than this white LED for general lighting (color rendering value Ra = around 90, color temperature around 3000K). ) Is commercially available. However, this white LED for plant cultivation does not need to be positively adopted because the luminous efficiency of the chip is low and the amount of light is small.

単色LED12としては、後述される赤色LED12a、遠赤色LED12b、紫外線LED12c等が挙げられるが、特に限定はない。これら単色LED12を一種類の配置する場合もあるし、二種類以上を組み合わせて配置する場合もある。 Examples of the monochromatic LED 12 include a red LED 12a, a far-red LED 12b, and an ultraviolet LED 12c, which will be described later, but are not particularly limited. One type of these monochromatic LEDs 12 may be arranged, or two or more types may be arranged in combination.

図1(B)に示すように、LED照明装置10Bにおいて、図示略の回路基板には、少なくとも1つの単色LED12に、個別に通電をON/OFFさせるスイッチ16が設けられている。 As shown in FIG. 1 (B), in the LED lighting device 10B, the circuit board (not shown) is provided with a switch 16 for individually turning on / off the energization of at least one monochromatic LED 12.

図1(B)のLED照明装置10Bでは、白色LED11及び単色LED12は、互いに直列に接続され、定電流回路15aに接続されている。そして、図1(A)のLED照明装置10Aでは、互いに直列に接続された白色LED11及び単色LED12の群が、さらに相互に並列(図示は3列)に接続されて、定電流回路15aに接続されている。 In the LED lighting device 10B of FIG. 1B, the white LED 11 and the monochromatic LED 12 are connected in series with each other and are connected to the constant current circuit 15a. Then, in the LED lighting device 10A of FIG. 1A, a group of white LEDs 11 and monochromatic LEDs 12 connected in series to each other are further connected to each other in parallel (three rows in the drawing) and connected to the constant current circuit 15a. Has been done.

ここで、LED照明装置10における白色LED11及び単色LED12の配置は、それぞれの発光が照射面に対して均一に混色するように、全体的にいずれか一方が偏在しないように配置されている。図1(A)の例示では、白色LED11の二つおきに単色LED12が一つ規則的に配置されているが、この配置に規則性を持たせる必要は特にない。また、図1(A)では、例示される三つの列の各々が同じ配列をとるが、異なる配列をとってもよい。 Here, the arrangement of the white LED 11 and the monochromatic LED 12 in the LED lighting device 10 is arranged so that one of them is not unevenly distributed as a whole so that the respective light emission is uniformly mixed with respect to the irradiation surface. In the example of FIG. 1A, one monochromatic LED 12 is regularly arranged every two white LEDs 11, but it is not particularly necessary to give regularity to this arrangement. Further, in FIG. 1A, each of the three illustrated columns has the same sequence, but may have different sequences.

LED照明装置10は、白色LED11及び単色LED12を実装させた回路基板を透明な円筒に収容し、口金形状や長さ等をそろえることにより、従来の直管蛍光灯と構造的に互換性をもたせることができる。また、LED照明装置10は、白色LED11及び単色LED12を実装させた回路基板を透明な半球体に収容し、口金形状や大きさ等をそろえることにより、従来の白熱電球と構造的に互換性をもたせることができる。白熱電球と互換性をもたせる場合、円形の回路基板に、白色LED11及び単色LED12が面状に配置されることになる。 The LED lighting device 10 accommodates a circuit board on which a white LED 11 and a single color LED 12 are mounted in a transparent cylinder, and by aligning the shape and length of the base, it is structurally compatible with a conventional straight tube fluorescent lamp. be able to. Further, the LED lighting device 10 is structurally compatible with the conventional incandescent light bulb by accommodating the circuit board on which the white LED 11 and the monochromatic LED 12 are mounted in a transparent hemisphere and matching the shape and size of the base. Can be held. For compatibility with incandescent light bulbs, the white LED 11 and the monochromatic LED 12 are arranged in a plane on a circular circuit board.

スイッチ16は、図1(B)のように、通電のON/OFFの対象となる単色LED12に並列接続されている場合は、このスイッチ16が開状態で単色LED12は点灯し、閉状態で単色LED12は消灯する。 When the switch 16 is connected in parallel to the monochromatic LED 12 to be turned on / off as shown in FIG. 1B, the monochromatic LED 12 lights up when the switch 16 is open and monochromatic when the switch 16 is closed. The LED 12 goes out.

なお、スイッチ16は、全ての単色LED12に対して設けられる必要はなく、白色LED11の発光に合成させる単色光の調整代に応じて設ければよい。また、スイッチ16は、具体的には、回路基板(図示略)上で、電気的につながっていない配線のプリントパターンに導体を挿入したり抜いたりすることで相互を短絡させたり導通させたりする、ジャンパ等で実現される。もしくは、スイッチ16は、ON/OFFを可逆的に行う機械式のものであっても良い。 The switch 16 does not have to be provided for all the monochromatic LEDs 12, and may be provided according to the adjustment allowance of the monochromatic light to be combined with the light emission of the white LED 11. Specifically, the switch 16 short-circuits or conducts each other on a circuit board (not shown) by inserting or removing a conductor into a printed pattern of wiring that is not electrically connected. , Jumper, etc. Alternatively, the switch 16 may be a mechanical type that reversibly turns ON / OFF.

このように、LED照明装置10を白色LED11及び単色LED12で構成することにより、これらの配置数比を調整することで、発光スペクトルのR/B比(赤/青比)及びR/FR比(赤/遠赤色比)等を最適化することができ、植物の栽培育成効果を向上させることができる。 In this way, by configuring the LED lighting device 10 with the white LED 11 and the monochromatic LED 12, the R / B ratio (red / blue ratio) and the R / FR ratio (red / blue ratio) of the emission spectrum can be adjusted by adjusting the arrangement number ratio of these. The red / far-red ratio) can be optimized, and the effect of cultivating and growing plants can be improved.

また、スイッチ16が設けられることで、回路基板(図示略)の配線パターンを変更することなく、点灯させる単色LED12の数を容易に変更することができ、発光スペクトルのR/B比及びR/FR比等を最適化することができる。このことは、栽培植物の種類や育成段階によって、R/B比及びR/FR比等の最適条件が異なる場合、製品の設計仕様を大きく変更することなく、スイッチ16の設定のみで最適条件を設定することができる。もしくは、栽培植物の最適条件を探索する実験においても、発光スペクトルの分布を容易に変更することができる。 Further, by providing the switch 16, the number of monochromatic LEDs 12 to be lit can be easily changed without changing the wiring pattern of the circuit board (not shown), and the R / B ratio and R / of the emission spectrum can be changed. The FR ratio and the like can be optimized. This means that if the optimum conditions such as R / B ratio and R / FR ratio differ depending on the type of cultivated plant and the growing stage, the optimum conditions can be set only by setting the switch 16 without significantly changing the product design specifications. Can be set. Alternatively, the distribution of the emission spectrum can be easily changed even in an experiment for searching for the optimum conditions of the cultivated plant.

なお第1実施形態に係る植物栽培用のLED照明方法は、上述したLED照明装置10を用いることに限定されない。すなわち、複数が配置されている白色LEDの群中において単色LEDを均一に配置し、この白色LEDから波長範囲が少なくとも450nmから700nmまで連続する発光スペクトルを発光させ、さらに単色LEDから少なくとも一つのピークを発光スペクトルに発光させることにより実施される。 The LED lighting method for plant cultivation according to the first embodiment is not limited to using the LED lighting device 10 described above. That is, a monochromatic LED is uniformly arranged in a group of white LEDs in which a plurality of LEDs are arranged, a continuous emission spectrum having a wavelength range of at least 450 nm to 700 nm is emitted from the white LED, and at least one peak is emitted from the monochromatic LED. Is carried out by causing the light emission spectrum to emit light.

(第2実施形態)
次に図1及び図2を参照して本発明における第2実施形態について説明する。図2(A)は第2実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11及び赤色LED12a(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図2(B)は白色LED11及び赤色LED12aの発光スペクトルを合成したグラフである。なお、図2において図1と関連することは同一符号で示して重複する説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 2A is a graph in which the emission spectra of the white LED 11 and the red LED 12a (monochromatic LED 12), which are applied to the LED lighting device 10 for plant cultivation according to the second embodiment, are overlaid. B) is a graph in which the emission spectra of the white LED 11 and the red LED 12a are combined. It should be noted that, in FIG. 2, the matters related to FIG. 1 are indicated by the same reference numerals, and duplicate description will be omitted.

第2実施形態に係るLED照明装置10の回路基板には、白色LED11として一般照明用の演色値Ra=80付近、色温度5000Kのチップを選択し、単色LED12として600nmから700nmの波長範囲において中心波長が660nmのピークを有する赤色LED12aのチップを選択している。 For the circuit board of the LED lighting device 10 according to the second embodiment, a chip having a color rendering index Ra = 80 for general lighting and a color temperature of 5000 K is selected as the white LED 11, and the monochromatic LED 12 is centered in the wavelength range of 600 nm to 700 nm. A red LED 12a chip having a peak wavelength of 660 nm is selected.

そして、図2(B)に示される合成発光スペクトルにおいて、600nmから700nmの赤色波長範囲に存在する赤色LED12a由来のピークトップと、415nmから500nmの青色波長範囲に存在する白色LED11由来のピークトップと、のR/B比が2.5に近づく様に、赤色LED12aの点灯数が調整されている。 Then, in the synthetic emission spectrum shown in FIG. 2B, the peak top derived from the red LED 12a existing in the red wavelength range of 600 nm to 700 nm and the peak top derived from the white LED 11 existing in the blue wavelength range of 415 nm to 500 nm. The number of lights of the red LED 12a is adjusted so that the R / B ratio of the above approaches 2.5.

図7のテーブルの実施例2の列に、第2実施形態に係る植物栽培用のLED照明方法の効果を示す。比較例1として、40型蛍光灯を使用し、レタス、トマト苗、イチゴに対して実施した栽培評価を、100ポイントの基準値で表した。 The column of Example 2 in the table of FIG. 7 shows the effect of the LED lighting method for plant cultivation according to the second embodiment. As Comparative Example 1, the cultivation evaluation carried out on lettuce, tomato seedlings, and strawberries using a 40-inch fluorescent lamp was expressed with a reference value of 100 points.

なお、レタスはリーフレタスで行い、トマトはトマト自根苗で行い、生育の判断材料は目視による量感、株幅、葉寸、色等を総合的に判断した。そして、リーフレタスは定植から20日後に判定し、トマト自根苗は播種から19日目に判定した。また、イチゴは「とちおとめ」6株に対し、生育の判断材料は葉柄長、果実数、果実重等を総合的に判断し、定植から1か月目に判定した。 Lettuce was used for leaf lettuce, tomatoes were used for tomato root seedlings, and growth was judged by comprehensively judging the volume, plant width, leaf size, color, etc. by visual inspection. Then, leaf lettuce was judged 20 days after planting, and tomato self-rooted seedlings were judged 19 days after sowing. In addition, for 6 strains of "Tochiotome" for strawberries, the petiole length, the number of fruits, the fruit weight, etc. were comprehensively judged as the factors for judging the growth, and the judgment was made one month after planting.

その結果、第2実施形態(実施例2)の評価は、レタスが120ポイント、トマトが40ポイント、イチゴが120ポイントであった。 As a result, the evaluation of the second embodiment (Example 2) was 120 points for lettuce, 40 points for tomato, and 120 points for strawberry.

(第3実施形態)
次に図1及び図3を参照して本発明における第3実施形態について説明する。図3(A)は第3実施形態に係る植物栽培用のLED照明装置に適用される、白色LED11、赤色LED12a(単色LED12)及び遠赤色LED12b(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図3(B)は白色LED11、赤色LED12a及び遠赤色LED12bの発光スペクトルを合成したグラフである。なお、図3において図1及び図2と関連することは同一符号で示して重複する説明を省略する。
(Third Embodiment)
Next, a third embodiment of the present invention will be described with reference to FIGS. 1 and 3. FIG. 3A superimposes the emission spectra of the white LED11, the red LED12a (monochromatic LED12), and the far-red LED12b (monochromatic LED12) applied to the LED lighting device for plant cultivation according to the third embodiment. FIG. 3B is a graph in which the emission spectra of the white LED 11, the red LED 12a, and the far-red LED 12b are combined. It should be noted that, in FIG. 3, the matters related to FIGS. 1 and 2 are indicated by the same reference numerals, and redundant description will be omitted.

第3実施形態に係るLED照明装置10の回路基板には、白色LED11と、単色LED12として赤色LED12aと、単色LED12として700nmから800nmの波長範囲において中心波長が735nmのピークを有する遠赤色LED12bと、が配置されている。 The circuit board of the LED lighting device 10 according to the third embodiment includes a white LED 11, a red LED 12a as the monochromatic LED 12, and a far-red LED 12b having a peak of 735 nm in the center wavelength in the wavelength range of 700 nm to 800 nm as the monochromatic LED 12. Is placed.

そして、図3(B)に示される合成発光スペクトルにおいて、R/B比(=2.5)は、図2(B)の状態を維持しつつ、赤色LED12a由来のピークトップと700nmから800nmの遠赤色波長範囲に存在する遠赤色LED12b由来のピークトップとのR/FR比が5に近づく様に、遠赤色LED12bの点灯数が調整されている。 Then, in the synthetic emission spectrum shown in FIG. 3 (B), the R / B ratio (= 2.5) is 700 nm to 800 nm with the peak top derived from the red LED 12a while maintaining the state of FIG. 2 (B). The number of lights of the far-red LED 12b is adjusted so that the R / FR ratio with the peak top derived from the far-red LED 12b existing in the far-red wavelength range approaches 5.

図7のテーブルの実施例3の列に、第3実施形態に係る植物栽培用のLED照明方法の効果を示す。その結果、第3実施形態(実施例3)の評価は、レタスが150ポイント、トマトが50ポイント、イチゴが130ポイントであった。 The column of Example 3 in the table of FIG. 7 shows the effect of the LED lighting method for plant cultivation according to the third embodiment. As a result, the evaluation of the third embodiment (Example 3) was 150 points for lettuce, 50 points for tomato, and 130 points for strawberry.

(第4実施形態)
次に図1及び図4を参照して本発明における第4実施形態について説明する。図4(A)は第4実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11及び紫外線LED12c(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図4(B)は白色LED11及び紫外線LED12cの発光スペクトルを合成したグラフである。なお、図4において図1〜図3と関連することは同一符号で示して重複する説明を省略する。
(Fourth Embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 1 and 4. FIG. 4A is a graph in which the emission spectra of the white LED 11 and the ultraviolet LED 12c (monochromatic LED 12), which are applied to the LED lighting device 10 for plant cultivation according to the fourth embodiment, are overlaid. B) is a graph in which the emission spectra of the white LED 11 and the ultraviolet LED 12c are combined. It should be noted that, in FIG. 4, the matters related to FIGS. 1 to 3 are indicated by the same reference numerals, and redundant description will be omitted.

第4実施形態に係るLED照明装置10の回路基板には、白色LED11と、単色LED12として350nmから425nmの波長範囲において中心波長が395nmのピークを有する紫外線LED12cと、が配置されている。 On the circuit board of the LED lighting device 10 according to the fourth embodiment, a white LED 11 and an ultraviolet LED 12c having a peak with a central wavelength of 395 nm in the wavelength range of 350 nm to 425 nm as a monochromatic LED 12 are arranged.

そして、図4(B)に示される合成発光スペクトルにおいて、350nmから425nmの紫外線波長範囲に紫外線LED12c由来のピークトップと415nmから500nmの青色波長範囲に存在する白色LED11由来のピークトップとのUVA/B比が1に近づく様に、紫外線LED12cの点灯数が調整されている。 Then, in the synthetic emission spectrum shown in FIG. 4B, UVA / of the peak top derived from the ultraviolet LED 12c in the ultraviolet wavelength range of 350 nm to 425 nm and the peak top derived from the white LED 11 existing in the blue wavelength range of 415 nm to 500 nm. The number of lights of the ultraviolet LED 12c is adjusted so that the B ratio approaches 1.

図7のテーブルの実施例4の列に、第4実施形態に係る植物栽培用のLED照明方法の効果を示す。その結果、第4実施形態(実施例4)の評価は、レタスが100ポイント、トマト苗が100ポイント、イチゴが150ポイントであった。 The column of Example 4 in the table of FIG. 7 shows the effect of the LED lighting method for plant cultivation according to the fourth embodiment. As a result, the evaluation of the fourth embodiment (Example 4) was 100 points for lettuce, 100 points for tomato seedlings, and 150 points for strawberries.

(第5実施形態)
次に図1及び図5を参照して本発明における第5実施形態について説明する。図5(A)は第5実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11、赤色LED12a(単色LED12)及び紫外線LED12c(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図5(B)は白色LED11、赤色LED12a及び紫外線LED12cの発光スペクトルを合成したグラフである。なお、図5において図1〜図4と関連することは同一符号で示して重複する説明を省略する。
(Fifth Embodiment)
Next, a fifth embodiment of the present invention will be described with reference to FIGS. 1 and 5. FIG. 5A is an overlay of the emission spectra of the white LED 11, the red LED 12a (monochromatic LED 12), and the ultraviolet LED 12c (monochromatic LED 12) applied to the LED lighting device 10 for plant cultivation according to the fifth embodiment. FIG. 5B is a graph in which the emission spectra of the white LED 11, the red LED 12a, and the ultraviolet LED 12c are combined. It should be noted that, in FIG. 5, the matters related to FIGS. 1 to 4 are indicated by the same reference numerals, and redundant description will be omitted.

第5実施形態に係るLED照明装置10の回路基板には、白色LED11と、単色LED12として赤色LED12a及び紫外線LED12cと、が配置されている。 A white LED 11 and a red LED 12a and an ultraviolet LED 12c as monochromatic LEDs 12 are arranged on the circuit board of the LED lighting device 10 according to the fifth embodiment.

そして、図5(B)に示される合成発光スペクトルにおいて、R/B比(=2.5)は図2(B)と同じ状態、さらにUVA/B比(=1)は図4(B)と同じ状態となるように赤色LED12a及び紫外線LED12cの点灯数が調整されている。 Then, in the synthetic emission spectrum shown in FIG. 5 (B), the R / B ratio (= 2.5) is in the same state as in FIG. 2 (B), and the UVA / B ratio (= 1) is in FIG. 4 (B). The number of lights of the red LED 12a and the ultraviolet LED 12c is adjusted so as to be in the same state as above.

図7のテーブルの実施例5の列に、第5実施形態に係る植物栽培用のLED照明方法の効果を示す。その結果、第5実施形態(実施例5)の評価は、レタスが120ポイント、トマト苗が110ポイント、イチゴが170ポイントであった。 The column of Example 5 in the table of FIG. 7 shows the effect of the LED lighting method for plant cultivation according to the fifth embodiment. As a result, the evaluation of the fifth embodiment (Example 5) was 120 points for lettuce, 110 points for tomato seedlings, and 170 points for strawberries.

(第6実施形態)
次に図1及び図6を参照して本発明における第6実施形態について説明する。図6(A)は第6実施形態に係る植物栽培用のLED照明装置10に適用される、白色LED11、赤色LED12a(単色LED12)、遠赤色LED12b(単色LED12)及び紫外線LED12c(単色LED12)の単体の発光スペクトルを重ね書きしたグラフであり、図6(B)は白色LED11、赤色LED12a、遠赤色LED12b及び紫外線LED12cの発光スペクトルを合成したグラフである。なお、図6において図1〜図5と関連することは同一符号で示して重複する説明を省略する。
(Sixth Embodiment)
Next, a sixth embodiment of the present invention will be described with reference to FIGS. 1 and 6. FIG. 6A shows white LED11, red LED12a (monochromatic LED12), far-red LED12b (monochromatic LED12), and ultraviolet LED12c (monochromatic LED12) applied to the LED lighting device 10 for plant cultivation according to the sixth embodiment. FIG. 6B is a graph in which the emission spectra of a single unit are overlaid, and FIG. 6B is a graph in which the emission spectra of the white LED 11, the red LED 12a, the far-red LED 12b, and the ultraviolet LED 12c are combined. It should be noted that, in FIG. 6, the matters related to FIGS. 1 to 5 are indicated by the same reference numerals, and redundant description will be omitted.

第6実施形態に係るLED照明装置10の回路基板には、白色LED11と、単色LED12として赤色LED12a、遠赤色LED12b及び紫外線LED12cと、が配置されている。 A white LED 11 and a red LED 12a, a far-red LED 12b, and an ultraviolet LED 12c as monochromatic LEDs 12 are arranged on the circuit board of the LED lighting device 10 according to the sixth embodiment.

そして、図6(B)に示される合成発光スペクトルにおいて、R/B比(=2.5)は図2(B)と同じ状態、R/FR比(=5)は図3(B)と同じ状態、さらにUVA/B比(=1)は図4(B)と同じ状態となるように赤色LED12a、遠赤色LED12b及び紫外線LED12cの点灯数が調整されている。 Then, in the synthetic emission spectrum shown in FIG. 6 (B), the R / B ratio (= 2.5) is in the same state as in FIG. 2 (B), and the R / FR ratio (= 5) is in FIG. 3 (B). The number of lights of the red LED 12a, the far-red LED 12b, and the ultraviolet LED 12c is adjusted so that the UVA / B ratio (= 1) is the same as that in FIG. 4B.

図7のテーブルの実施例6の列に、第6実施形態に係る植物栽培用のLED照明方法の効果を示す。その結果、第6実施形態(実施例6)の評価は、レタスが150ポイント、トマト苗が130ポイント、イチゴが200ポイントであった。 The column of Example 6 in the table of FIG. 7 shows the effect of the LED lighting method for plant cultivation according to the sixth embodiment. As a result, the evaluation of the sixth embodiment (Example 6) was 150 points for lettuce, 130 points for tomato seedlings, and 200 points for strawberries.

以上説明した通り、各実施形態に係る植物栽培用のLED照明装置を用いて、レタスなどの葉菜類、トマトやイチゴなどの果菜類に対する効果の有効性を確認した。その他、キク類、シソ類、ギキョウ類などの電照栽培用としての効果の有効性も確認している。 As described above, the effectiveness of the effect on leafy vegetables such as lettuce and fruit vegetables such as tomato and strawberry was confirmed by using the LED lighting device for plant cultivation according to each embodiment. In addition, we have confirmed the effectiveness of the effects of chrysanthemums, perilla, and platycodon grandiflorum for electric lighting cultivation.

10(10A、10B)…LED照明装置、11…白色LED、12…単色LED、12a…赤色LED、12b…遠赤色LED、12c…紫外線LED、15a…定電流回路、15b…定電圧回路、16…スイッチ。 10 (10A, 10B) ... LED lighting device, 11 ... white LED, 12 ... monochromatic LED, 12a ... red LED, 12b ... far red LED, 12c ... ultraviolet LED, 15a ... constant current circuit, 15b ... constant voltage circuit, 16 …switch.

Claims (8)

波長範囲が少なくとも450nmから700nmまで連続する発光スペクトルを持つ白色LEDと、
少なくとも一つのピークを発光スペクトルに持つ単色LEDと、
複数の前記白色LEDを配置するとともに、この白色LEDの群中において前記単色LEDを均一に配置する回路基板と、を備えることを特徴とする植物栽培用のLED照明装置。
A white LED with a continuous emission spectrum with a wavelength range of at least 450 nm to 700 nm,
A monochromatic LED with at least one peak in the emission spectrum,
An LED lighting device for plant cultivation, characterized in that a plurality of the white LEDs are arranged and a circuit board for uniformly arranging the monochromatic LEDs in the group of the white LEDs is provided.
請求項1に記載の植物栽培用のLED照明装置において、
前記単色LEDは、600nmから700nmの波長範囲において前記ピークを有する赤色LEDであることを特徴とする植物栽培用のLED照明装置。
In the LED lighting device for plant cultivation according to claim 1.
The monochromatic LED is an LED lighting device for plant cultivation, which is a red LED having the peak in the wavelength range of 600 nm to 700 nm.
請求項2に記載の植物栽培用のLED照明装置において、
前記単色LEDとして、700nmから800nmの波長範囲において前記ピークを有する遠赤色LEDがさらに設けられていることを特徴とする植物栽培用のLED照明装置。
In the LED lighting device for plant cultivation according to claim 2.
An LED lighting device for plant cultivation, wherein a far-red LED having the peak in the wavelength range of 700 nm to 800 nm is further provided as the monochromatic LED.
請求項1に記載の植物栽培用のLED照明装置において、
前記単色LEDは、350nmから425nmの波長範囲において前記ピークを有する紫外線LEDであることを特徴とする植物栽培用のLED照明装置。
In the LED lighting device for plant cultivation according to claim 1.
The monochromatic LED is an LED lighting device for plant cultivation, which is an ultraviolet LED having the peak in the wavelength range of 350 nm to 425 nm.
請求項2に記載の植物栽培用のLED照明装置において、
前記単色LEDとして、350nmから425nmの波長範囲において前記ピークを有する紫外線LEDがさらに設けられていることを特徴とする植物栽培用のLED照明装置。
In the LED lighting device for plant cultivation according to claim 2.
An LED lighting device for plant cultivation, wherein an ultraviolet LED having the peak in a wavelength range of 350 nm to 425 nm is further provided as the monochromatic LED.
請求項3に記載の植物栽培用のLED照明装置において、
前記単色LEDとして、350nmから425nmの波長範囲において前記ピークを有する紫外線LEDがさらに設けられていることを特徴とする植物栽培用のLED照明装置。
In the LED lighting device for plant cultivation according to claim 3.
An LED lighting device for plant cultivation, wherein an ultraviolet LED having the peak in a wavelength range of 350 nm to 425 nm is further provided as the monochromatic LED.
請求項1から請求項6のいずれか1項に記載の植物栽培用のLED照明装置において、
前記回路基板には、少なくとも1つの前記単色LEDに、通電を個別にON/OFFさせるスイッチが設けられていることを特徴とする植物栽培用のLED照明装置。
The LED lighting device for plant cultivation according to any one of claims 1 to 6.
An LED lighting device for plant cultivation, wherein the circuit board is provided with a switch for individually turning on / off the energization of at least one of the monochromatic LEDs.
波長範囲が少なくとも450nmから700nmまで連続する発光スペクトルを持つ白色LEDを発光させるステップと、
少なくとも一つのピークを発光スペクトルに持つ単色LEDを発光させるステップと、を含み、
複数が配置されている前記白色LEDの群中において、前記単色LEDが均一に配置されていることを特徴とする植物栽培用のLED照明方法。
A step of emitting a white LED having a continuous emission spectrum with a wavelength range of at least 450 nm to 700 nm,
Including a step of emitting a monochromatic LED having at least one peak in the emission spectrum.
An LED lighting method for plant cultivation, wherein the monochromatic LEDs are uniformly arranged in a group of white LEDs in which a plurality of LEDs are arranged.
JP2018088368A 2018-05-01 2018-05-01 Led illuminating device for plant cultivation and method for illuminating the led Pending JP2021119743A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018088368A JP2021119743A (en) 2018-05-01 2018-05-01 Led illuminating device for plant cultivation and method for illuminating the led
PCT/JP2019/012866 WO2019211956A1 (en) 2018-05-01 2019-03-26 Led illuminating device for plant cultivation and method for illuminating said led

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018088368A JP2021119743A (en) 2018-05-01 2018-05-01 Led illuminating device for plant cultivation and method for illuminating the led

Publications (1)

Publication Number Publication Date
JP2021119743A true JP2021119743A (en) 2021-08-19

Family

ID=68385919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018088368A Pending JP2021119743A (en) 2018-05-01 2018-05-01 Led illuminating device for plant cultivation and method for illuminating the led

Country Status (2)

Country Link
JP (1) JP2021119743A (en)
WO (1) WO2019211956A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021058141A (en) * 2019-10-08 2021-04-15 史朗 武藤 Illumination for plant cultivation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023161915A2 (en) * 2022-12-02 2023-08-31 Otto Horlacher Horticultural lighting and method of use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239417A (en) * 2011-05-19 2012-12-10 Ushio Inc Light source apparatus for raising plant
JP5102190B2 (en) * 2008-12-08 2012-12-19 Mkvドリーム株式会社 Plant cultivation method
JP2016086783A (en) * 2014-11-10 2016-05-23 株式会社東芝 Illumination system
US20170241632A1 (en) * 2016-02-19 2017-08-24 Ken Nguyen Led lighting system and opertaing method for irradiation of plants

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016154570A1 (en) * 2015-03-25 2016-09-29 Vitabeam Ltd. Method and apparatus for stimulation of plant growth and development with near infrared and visible lights
JP2016202050A (en) * 2015-04-20 2016-12-08 住友電気工業株式会社 Light source unit, cultivation module, and cultivation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102190B2 (en) * 2008-12-08 2012-12-19 Mkvドリーム株式会社 Plant cultivation method
JP2012239417A (en) * 2011-05-19 2012-12-10 Ushio Inc Light source apparatus for raising plant
JP2016086783A (en) * 2014-11-10 2016-05-23 株式会社東芝 Illumination system
US20170241632A1 (en) * 2016-02-19 2017-08-24 Ken Nguyen Led lighting system and opertaing method for irradiation of plants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021058141A (en) * 2019-10-08 2021-04-15 史朗 武藤 Illumination for plant cultivation

Also Published As

Publication number Publication date
WO2019211956A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
US11602102B2 (en) Horticulture lighting system and horticulture production facility using such horticulture lighting system
US10398000B2 (en) LED structure with a dynamic spectrum and a method
US10485183B2 (en) Lighting assembly
US10172295B2 (en) Method for providing horticulture light to a crop and lighting device for horticulture lighting
US10448579B2 (en) Lighting device capable of providing horticulture light and method of illuminating horticulture
JP5779678B2 (en) Lamp for plant cultivation and plant cultivation method using the same
JP3180774U (en) LED lamp for plant cultivation and LED lamp system for plant cultivation
US20160278304A1 (en) Apparatus and Method for Accelerating Horticultural Growth with LEDs
US20200232613A1 (en) Assembly for improved installation and method of use
JP2021119743A (en) Led illuminating device for plant cultivation and method for illuminating the led
US9927075B2 (en) LED lighting module for plant factory and LED lighting device for plant factory having same mounted thereon
US11758633B2 (en) Method and system for generating a dynamic lighting scenario
US20170102132A1 (en) LED Lighting Module for Plant Factory and LED Lighting Device for Plant Factory having Same Mounted thereon
KR101183666B1 (en) Led lamp module for plant cultivating
KR20110075386A (en) Led lighting module for plant cultivation
KR20100090963A (en) Apparatus for accelerating plant growth
Hawley Development of a variable-spectra LED array for optimized plant development
JP2018120853A (en) Light source device, light source device for plant factory, process for rearing plant and method of application of light source
Caglayan et al. USING OF LED LIGHTING TECHNOLOGIES TO SUBSTITUTE TRADITIONAL LIGHTING SYSTEMS IN GREENHOUSES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220201