WO2019211529A1 - Injection de vapeur d'eau dans une combustion - Google Patents

Injection de vapeur d'eau dans une combustion Download PDF

Info

Publication number
WO2019211529A1
WO2019211529A1 PCT/FR2018/000159 FR2018000159W WO2019211529A1 WO 2019211529 A1 WO2019211529 A1 WO 2019211529A1 FR 2018000159 W FR2018000159 W FR 2018000159W WO 2019211529 A1 WO2019211529 A1 WO 2019211529A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
oxygen
hydrogen
container
water
Prior art date
Application number
PCT/FR2018/000159
Other languages
English (en)
Inventor
Jose Buendia
Original Assignee
Piccaluga, Pierre
MARTY, Fabien
Perrichon, Claude-Annie
PICCALUGA, Elina
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/FR2018/000104 external-priority patent/WO2019197731A1/fr
Priority claimed from PCT/FR2018/000124 external-priority patent/WO2019211526A1/fr
Priority claimed from PCT/FR2018/000133 external-priority patent/WO2019197732A1/fr
Application filed by Piccaluga, Pierre, MARTY, Fabien, Perrichon, Claude-Annie, PICCALUGA, Elina filed Critical Piccaluga, Pierre
Priority to PCT/FR2018/000165 priority Critical patent/WO2019211530A1/fr
Publication of WO2019211529A1 publication Critical patent/WO2019211529A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0221Details of the water supply system, e.g. pumps or arrangement of valves
    • F02M25/0224Water treatment or cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • F02M25/028Adding water into the charge intakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/032Producing and adding steam
    • F02M25/035Producing and adding steam into the charge intakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present release highlights the maximum and minimum limits to not exceed the zones of pollution acceptable by the use of fuels, including gas oil, gasoline, kerosene.
  • Fig. 1 shows the curve (1) of the pollutions below, above a limit (2) of acceptable demand energy efficiency.
  • the pollution is either CO 2 or NO x, the two values of the components of the pollution fall to the optimal level of the value of the slider (2) of FIG. 1 determining the range of the market values to be used, for the use of petrol 95 or E10.
  • the balancing point is fragile, the nature is of frightening precision, because there are tilts undergone in the variation of the instantaneous regimes which cause pollution rates which go from some NOX or co2 which rock to 1 see 2 to 3 thousand ppm, which is dangerous for your health. Studies show that the arrival of direct injections has drastically increased pollution rates. Using particulate filters after combustion brings nothing to the major problem of combustion, its side effects to eradicate, the density of gasoline or gas oil is involved to switch to gas mode.
  • the low pollution threshold In the state of the required energies, the low pollution threshold is known, the addition of hydrogen or oxygen or both makes it possible to compensate the energy of the maximum threshold to be respected for gasoline or gas oil in order to do not pollute, a fine fuel allows the extension of energy.
  • the first is the supply of hydrogen by a hydrogen reservoir whose input is controlled by an electronic flow management, vaporization window, low flow mixed in the air sleeve air intake of the combustion. This hydrogen supply can also be achieved by specific injectors, just like those for diesel or gasoline. Quantity management and flow timing are defined by those skilled in the art who parameter injectors. The quantity is small and does not require a large reserve for security.
  • the second variant involves quantum physics with the use of graphene or graphene oxide which with metals, copper, aluminum, iron constituting the walls of the container, allows to obtain hydrogen and consequently oxygen.
  • This quantum process of reactions allows the suction demand Fig.2, by licking, the evaporation of water (11) in a container (10).
  • the evaporation of the water vapor is controlled by an adjustable window (3) for adjusting the flow rate in the windsock (2), to have enough hydrogen to fill the initial yield of the fuel, gasoline, diesel, for a minimum pollution solution (2) Fig.1 with optimized efficiency.
  • the container, device made for this purpose allows the delivery of water vapor during the aspirations of the carburation on demand.
  • the container is placed under the windsock so as to promote the evaporation of the water, at the request of the depression of the suction of the air which becomes concomitant with the evaporation of the water, containing more particularly hydrogen which also leaves oxygen, which will inevitably participate in the final combustion after the specific preparations of the properties of the container, device.
  • the present oxygen will be abandoned by the hydrogen obtained by the relation put into play by the container, determining the electronic reactions of chemistry, modifying the valence forces by the presence of graphene oxide.
  • the container is perfectly appropriate by the quality of the walls to honor the flow and quality by the metering of the amount of metallic material, aluminum or copper or the two products mixed in the excipient of the concrete plaster container which are piezo products 'Chemical reaction stabilizers' constituting the walls of the container and ensuring safety.
  • the container may be molded in a polymer that serves as a shape and a support.
  • Copper powders allow a fine and less powerful preparation than aluminum and a greater stability of the pre-separation hydrogen / oxygen bond thanks to the piezo products, to avoid any runaway premature explosion of oxygen / hydrogen dissociation.
  • the container is very important, it is made of a mixture of concrete, or plaster for example, with graphene oxide at a rate of 20 to 50% volume of the concrete plaster excipient.
  • the powders of copper, or aluminum or the 2 are about a few microns to a particle size of the millimeter, at a rate of 5 to 50% of the volume of the excipient, by the realization of those skilled in the art , the size of the container takes into account the heat engine with hydrogen / oxygen fuel power by those skilled in the art.
  • Graphene or graphene oxide with aluminum or copper with piezo products constitute the chemical preparation of the disintegration dissolution of steam water, prepared for the hydrogen / oxygen to be separated, the container with metal products 'antenna' , provides a free electron management of atoms by reducing the magnetic and electromagnetic forces conducive to hydrogen / oxygen extractions.
  • At least one antenna (12) Fig. 2 placed in the container has its foot immersed in the container and draws excess electrons, which changes the stoichiometry of the water.
  • the water (11) fig.2 in the container (10) is adjusted by a precise water level control, by the probe (7) and pump (4), from the reserve (5).
  • a precise amount of water is required for the oxygen / hydrogen preparation transformations related to the shape and volume of the container.
  • the level too large capacity in amount of water does not allow the container sufficient chemical preparation of the water treatment by the separation device, the power of preparation of the container is in direct relationship of the relationship with the need of energy of the -motor (8).
  • the water / steam flow prepared to obtain oxygen / hydrogen does not endanger, but must be sufficiently regulated, which is the key to safety and safe performance.
  • Those skilled in the art must be able to adjust the exact proportions required, controlled by the electronic control (9).
  • this adjustable window (3) by the control electronics (9) measures the thermals, terppérature of the engine or the boiler not to exceed.
  • This electronic control allows the passage of the water vapor prepared to initiate the fracture of the molecules available by and from the container, without realizing the actual 'oxygen / hydrogen' particles which will prove to be available, easily breakable only in combustion, not before, it is all the art of the process and the measurement of the apparatuses which is a preparation of the fracture prepared "oxygen / hydrogen", more than to create hydrogen oxygen before the combustion, which is dangerous.
  • the art of the process is to prepare the particles to be in a dissociable state before conversion, final fracturing within the combustion.
  • the containing apparatus prepares the fracturing, the separation of the hydrogen oxygen particles brought to the limit of their cohesion.
  • the container by its structure and its or copper or metal antennas, allows the preparation of the separation of oxygen / hydrogen components substantially unstructured in a state of transition .
  • the water / vapor, in transition, but not yet dissociated in oxygen / hydrogen is ready to be broken, tipped by a lower compression effort and / or thermal effect reducing, breaking the last chemical bonds, valences that disappear in favor of the oxygen combustion, hydrogen, fuel components, created instantly, simultaneously.
  • This process by setting up the device, avoids any danger to users in the water / steam transition phase while being very efficient at the time of carburation.
  • the method and apparatus "containing / antenna + water" (10, 12 + 11) is useful for all diesel engine engines, boilers, furnaces, whose particular water / steam flow oxygen / hydrogen must be very well calibrated, regulated by its admission window to carburation. Indeed the tests show a very high temperature rise of combustion in boilers or furnaces, if one does not regulate the supply of steam water which then creates hydrogen oxygen prepared.
  • the water vapor absorbed by the licking surface of the air intake of the carburetion by at least one adjustable intake window (3) is regulated by an electronic temperature control servocontrol (9) which optimizes the combustion by the flow of water vapor by sliding the window (3) evaporation of water / steam in the air intake sleeve (2) regulated by the mechanical and electronic management (1).
  • the device ensures the complement of carburation which allows by its flexibility of combustion and its fast flame front to decrease the combustion stresses, oxygen hydrogen as an elastic cushion allows the good stoichiometry of gasoline carburation, for example gas oil, stoichiometry which is self-adjusting, by the adaptive cushion of the best combustion 0 oxygen / hydrogen and gasoline or diesel without causing pollution and which allows high performance performance of thermal engines without damaging the environment.
  • the antenna or antennas whose foot is immersed in the wall of the container is made of rigid electric wire, metallic copper aluminum or multi-strand wire, it may be in superconducting 1 millimeter to sections of several millimeters in diameter, its size depends on the container.
  • the 2 to 5 or 8 turns of the antenna are sufficient to modify the stoichiometry of the water.
  • the humidity of the air already works in oxygen transition mode, without filling the device with water, because the device optimizes the ideal stoichiometry, performances, yields.
  • the container molded in a polymer, for example plastic is for a car, or a truck about the horizontal section of the air filter, which simplifies the implementation of the device 0 in the air filter, which then receives a low water level, about 1 to 3 or a few centimeters.
  • the container to avoid excessive movements of water must remain homogeneous on the water section, the container is partitioned. For a boiler or a furnace like no partitioning, one refers to the size of the air filter existing or to be envisaged.
  • the water consumption is about 2 liters for 300 to 500 kilometers, water contained in the water tank (5). 2, which by the regulated pump (4) and its supply pipe (7) feeds the container (10).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Near-Field Transmission Systems (AREA)
  • Wind Motors (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

Les études montrent que l'arrivée des injections directes a fait monter drastiquement les taux de pollution. Utiliser des filtres à particules après combustion n'apporte rien au problème majeur de ces effets secondaires à éradiquer, la densité d'essence ou gasoil est en cause pour passer en mode gaz. Pour conserver le seuil idéal, nous respectons la stœchiométrie naturelle de la combustion et le rendement au-dessus de ce seuil est assuré par l'apport externe d'énergie carburant, gaz, liquide léger qui ne pollue pas, afin de pouvoir augmenter les rendements sans polluer. Dans l'état actuel des énergies demandées, le seuil de faible pollution est connu, l'addition d'hydrogène ou d'oxygène ou les deux permet de compenser l'énergie du seuil maxi à respecter de l'essence ou du gasoil afin de ne pas polluer, un carburant fin permet l'extension d'énergie.

Description

INJECTION DE VAPEUR D'EAU DANS UNE COMBUSTION
La nature a ses conditions, ses lois, dès que l’excès se présente, il y a violation des principes de l’intelligence des électrons, tout comme apparaît le comportement de fentes de Young, MIT 5 explique finalement que le choix des électrons, relève d’une intelligence car il y a réactivité.
Il y a des incontournables, la matière reste stable et elle exprime des conditions critiques d’instabilité, aussi cela permet de comprendre et de mettre en œuvre un dispositif avec ses variantes pour optimiser les conditions d’usage des carburants sans polluer ou réduire les pollutions Suivant la stœchiométrie correcte. Dépasser les normes admissibles que les physiciens- -0 ont tendance à booster en performances ne respecte pas les obligations biologiques de la matière, faute de quoi il y a pollution due aux forces de tensions actives de la densité du gasoil/essence.
La présente déppse met en évidence les limites maxi et mini pour ne pas dépasser les zones de - pollutions acceptables par l’usage des carburants, notamment le gasoil, essence, kérosène.
La course au rendement se trouve entachée par les pollutions. La Fig. 1 montre la courbe (1) des5 pollutions en-dessous, au-dessus d’une limite (2) de rendement d’énergie demandée acceptable.
La pollution est soit du co2 ou du NOX, les deux valeurs des composantes de la pollution chutent au niveau optimal de la valeur du curseur (2) de la Fig.l déterminant la plage des valeurs vénales à utiliser, pour l’usage d’essence 95 ou E10. Le point d’équilibrage est fragile, la nature est d’une précision effroyable, car il y a basculements subis dans la variation des régimes0 instantanés qui causent des taux de pollutions qui vont de quelques NOX ou co2 qui basculent à 1 voir 2 à 3 mille ppm, ce qui est dangereux pour la santé. Les études montrent que l’arrivée des injections directes a fait monter drastiquement les taux de pollution. Utiliser des filtres à particules après combustion n’apporte rien au problème majeur de la combustion, de ses effets secondaires à éradiquer, la densité d’essence ou gasoil est en cause pour passer en mode gaz.
5 Pour conserver le seuil idéal (2), nous respectons la stœchiométrie naturelle de la combustion et le rendement au-dessus de ce seuil est assuré par l’apport externe d’énergie carburant, gaz, liquide léger qui ne pollue pas, afin de pouvoir augmenter les rendements (3) sans polluer.
Dans l’état qctuel des énergies demandées, le seuil de faible pollution est connu, l’addition d’hydrogène ou d’oxygène ou les deux permet de compenser l’énergie du seuil maxi à respecter0 de l’essence ou du gasoil afin de ne pas polluer, un carburant fin permet l’extension d’énergie. Plusieurs variantes sont possibles, la première est l’apport d’hydrogène par un réservoir hydrogène dont l’apport est commandé par une gestion électronique de débit, fenêtre de vaporisation, débit faible mélangé dans la manche à air de l’apport air de la combustion. Cet apport hydrogène peut aussi être réalisé par des injecteurs spécifiques, tout comme ceux pour le5 gasoil ou l’essence. La gestion quantité et l’instant du débit sont définis par l’homme de l’art qui paramètre les injecteurs. La quantité est faible et ne nécessite pas une grande réserve par sécurité. La deuxième variante fait intervenir la physique quantique avec l’usage de graphène ou l’oxyde de graphène qui avec des métaux, cuivre, aluminium, fer constituant les parois du contenant, permet d’obtenir de l’hydrogène et par voie de conséquence de l’oxygène.
Ce procédé quantique de réactions, permet à la demande par aspiration Fig.2, par léchage, l’évaporation de l’eau (11) dans un contenant (10). L’évaporation de la vapeur d’eau est contrôlée par une fenêtre ajustable (3) de réglage de débit dans la manche à air (2), d’avoir suffisamment d’hydrogène pour combler le rendement initial du carburant, essence, gasoil, pour une solution à minima de pollution (2) Fig.1 avec un rendement optimisé.
Le contenant, dispositif réalisé pour cet usage permet la délivrance de vapeur d’eau lors des aspirations de la carburation à la demande. Le contenant est posé sous la manche à air de façon à favoriser l’évaporation de l’eau, à la demande de la dépression de l’aspiration de l’air qui devient concomitante avec l’évaporation de l’eau, contenant plus particulièrement de l’hydrogène qui laisse aussi l’oxygène, qui participeront inévitablement à la combustion en final après les préparations spécifiques des propriétés du contenant, dispositif. L’oxygène présent sera délaissé par l’hydrogène obtenu par la relation mise en jeu par le contenant, déterminant les réactions électroniques de chimie, modifiant les forces de valences par la présence de l’oxyde de graphène. Ce contenant est parfaitement approprié par la qualité des parois pour honorer le débit et qualité par le dosage de la quantité de matière métallique, d’aluminium ou de cuivre ou des 2 produits mélangés dans l’excipient du contenant plâtre béton qui sont des produits piézo‘retardateurs stabilisateurs de réactions chimiques’ constituant les parois du contenant et assurant la sécurité. Le contenant peut être moulé dans un polymère qui lui sert de forme et de support.
Les poudres de cuivre permettent une préparation fine et moins forte que l’aluminium et une stabilité plus grande de la pré-séparation liaison hydrogène/oxygène grâce aux produits piézo, pour éviter tout emballement d’explosion prématurée de dissociation d’oxygène/hydrogène.
Le contenant est très important, il est fait d’un mélange de béton, ou plâtre par exemple, avec de l’oxyde de graphène à raison de 20 à 50% volume de l’excipient béton plâtre. Les poudres de cuivre, ou d’aluminium ou les 2, sont environ de quelques 30 microns à une granulométrie du millimètre, à raison de 5 à 50% de volume de l’excipient, par la réalisation de l’homme de l’art, la grandeur du contenant tient compte du moteur thermique à pouvoir en carburant hydrogène/oxygène par l’homme de l’art.
Le graphène ou oxyde de graphène avec l’aluminium ou le cuivre avec les produits piézo constituent la préparation chimique de la dissolution désagrégation de l’eau vapeur, préparée pour l’hydrogène/oxygène à séparer, le contenant avec les produits métalliques ‘antenne’, apporte une gestion de la liberté des électrons des atomes en réduisant les forces magnétiques et électromagnétiques propices aux extractions hydrogène/oxygène. Au moins une antenne (12) Fig. 2 placée dans le contenant a son pied immergé dans le contenant et tire les excès d’électrons, ce qui modifie la stœchiométrie de l’eau. L’eau (11) fig.2 dans le contenant (10) est ajustée par un contrôle de niveau d’eau précis, par le palpeur (7) et là pompe (4), depuis la réserve (5).
Une quantité d’eau précise est requise pour les transformations en préparation de l’oxygène/hydrogène en rapport avec la forme et le volume du contenant. Le niveau capacité trop grand en quantité d’eau ne permet pas par le contenant la préparation chimique suffisante du traitement eau par l’appareil de séparation, la puissance de préparation du contenant est en rapport direct de la relation avec la nécessité d’énergie du -moteur (8). Cependant le débit eau/vapeur préparé en vue de l’obtention de l’oxygène/hydrogène ne met pas en danger, mais doit être suffisamment régulé, ce qui est la clé de sécurité et du rendement sans danger. L’homme de l’art doit savoir ajuster les proportions justes demandées, commandées par la régulation électronique (9). En effet, c’est la surface de la fenêtre variable qui régule l’aspiration de la vapeur d’eau, cette fenêtre réglable (3) par l’électronique de régulation (9) mesure les thermies, terppérature du moteur ou de la chaudière à ne pas dépasser. Cette régulation électronique permet le passage de la vapeur d’eau préparée pour amorcer la fracture des molécules disponibles par et depuis le contenant, sans réaliser proprement dit les particules ‘oxygène/hydrogène’ qui ne se révéleront disponibles, sécables facilement que dans la combustion, pas avant, c’est tout l’art du procédé et la mesure des appareils qui est une préparation de la fracture préparée‘’oxygène/hydrogène”, plus que de créer de l’hydrogène oxygène avant la combustion, ce qui est dangereux.
L’art du procédé est de préparer les particules à être dans un état dissécable avant conversion, fracturation définitive au sein de la combustion. L’appareil contenant prépare la fracturation, la séparation des particules hydrogène oxygène portées à la limite de leur cohésion.
Ce qui rend le contenant très particulier pour de l’eau en état vapeur est que le contenant par sa structure et son ou ses antennes en cuivre ou métalliques, permet la préparation de la séparation des composantes oxygène/hydrogène sensiblement déstructurées dans un état de transition. L’eau/vapeur, en transition, mais pas encore dissociée en oxygène/hydrogène est prête pour être cassée, basculée par un moindre effort de compression et/ou effet thermique réduisant, cassant les dernières liaisons chimiques, valences qui disparaissent au bénéfice de la combustion en oxygène, hydrogène, composantes carburants, créées instantanément, simultanément.
Ce procédé par la mise en place de l’appareil, évite tout danger aux utilisateurs dans la phase de transition eau/vapeur tout en étant très performant au moment de la carburation.
Le procédé et appareil” contenant/antenne + eau'” (10, 12 +11) est utile pour tous les moteurs essences diesels, chaudières, fours, dont le débit eau/vapeur particulier oxygène/hydrogène doit être très bien calibré, régulé par sa fenêtre d’admission à la carburation. En effet les essais montrent une montée en température très élevée des combustions dans les chaudières ou fours, si on ne régule pas l’apport d’eau vapeur qui crée ensuite l’hydrogène oxygène préparés. La vapeur d’eau absorbée par la surface de léchage de l’admission d’air de la 5 carburation par au moins une fenêtre d’admission modulable (3) est régulée par un asservissement de contrôle électronique de température (9) qui optimise la combustion par le débit de vapeur d’eau par le glissement de la fenêtre (3) d’évaporation d’eau/vapeur dans la manche d’admission air (2) régulé par la gestion mécanique et électronique (1).
La création du carburant oxygène/hydrogène auto-réalisé par de l’eau préprogrammée optimisée 10 pour la combustion est préétablie avant la combustion. C’est son débit en mode vapeur particulier pré-préparé, préprogrammé en mode instable, sécable, qui doit faire l’objet de toutes les attentions par la régulation de la fenêtre d’admission (3) qui doit être régulée par un contrôle d’asservissement thermique électronique (9), fenêtre placée sur le contenant (10). La fenêtre est ajustée par le glissement sous le contenant pour l’évaporation de l’eau, la combustion adéquate 1-5 sans risque de montée thermique trop élevée du moteur, du four, de la chaudière.
L’appareil assure le complément de carburation qui permet par sa souplesse de combustion et son front de flamme rapide de diminuer les contraintes de combustion, oxygène hydrogène comme un coussin élastique permet la bonne stœchiométrie de la carburation essence, gasoil par exemple, stœchiométrie qui est auto ajustée, par le coussin adaptatif de la meilleure combustion 0 oxygène/hydrogène et de l’essence ou du gasoil sans provoquer de la pollution et qui permet de grandes performances de rendement des moteurs thermiques sans altérer l’environnement.
L’antenne ou les antennes, dont le pied est immergé dans la paroi du contenant est faite de fil électrique rigide, métallique cuivre aluminium ou en fil multibrin, il peut être en supraconducteur de 1 millimètre à des sections de plusieurs millimètres de diamètre, sa grandeur dépend du 5 contenant. Les 2 à 5 voir 8 spires de l’antenne sont suffisantes pour modifier la stœchiométrie de l’eau. L’humidité de l’air fonctionne déjà en mode de transition hydrogène oxygène, sans remplir d’eau l’appareil, car le dispositif optimise la stœchiométrie idéale, les performances, rendements. Le contenant moulé dans un polymère, plastique par exemple est pour une voiture, ou un camion d’environ la section horizontale du filtre à air, ce qui simplifie l’implémentation de l’appareil 0 dans le filtre à air, qui reçoit alors une hauteur d’eau faible, d’environ 1 à 3 ou quelques centimètres. Le contenant afin d’éviter les mouvements trop importants de l’eau, doit rester homogène sur la section de l’eau, le contenant est cloisonné. Pour une chaudière ou un four idem sans cloisonnement, on se rapporte à la dimension du filtre à air existant ou à prévoir.
La consommation d’eau est environ 2 litres pour 300 à 500 kilomètres, eau contenue dans le 5 réservoir d’eau (5) Fig. 2 , qui par la pompe régulée (4) et son tuyau d’alimentation (7) alimente le contenant (10).

Claims

REVENDICATIONS
1° Procédé sans danger, dont l’art du procédé est de préparer les particules à être dans un état dissécable avant conversion fracturation définitive au sein de la combustion pour apporter un complément de carburation oxygène/hydrogène pour tout moteur thermique, chaudière, four, qui est d’apporter un carburant auto-réalisé dans la combustion qui est préétabli avant la combustion sous forme de vapeur d’eau, son débit en mode vapeur particulier pré-préparé, en mode sécable, doit faire l’objet de toutes les attentions par la régulation de la fenêtre d’admission de carburation, c’est l’usage de produits quantiques comme le graphène ou l’oxyde de graphène avec un métal comme le cuivre ou l’aluminium mélangés à des produits piézo permet la transition de l’eau préprogrammée‘oxygène/hydrogène’ pour assurer la meilleure stœchiométrie de la combustion d’essence, de gasoil, de kérosène, avec de grand rendement sans pollution 2°- Appareil suivant la revendication 1 est constitué d’un contenant et de son eau, d’une fenêtre d’admission d’eau/vapeur pour la régulation d’admission de vapeur d’eau dans la manche de carburation d’air du moteur thermique, le contenant est constitué de graphène ou d’oxyde de graphène mélangé avec un excipient piézo plâtre, béton et avec des poudres d’aluminium ou de cuivre ou les deux, l’humidité de l’air fonctionne déjà en mode de transition hydrogène oxygène. 3°- Appareil suivant la revendication let 2 est le contenant qui est très important, il est fait d’un mélange de béton ou plâtre par exemple de produits piézo, avec de l’oxyde de graphène à raison de 20 à 50% volume de l’excipient béton plâtre, les poudres de cuivre, ou d’aluminium ou les 2, sont environ de quelques 30 microns à une granulométrie du millimètre, à raison de 5 à 50% de volume de l’excipient, par la réalisation de l’homme de l’art, la grandeur du contenant tient compte du moteur à pouvoir en carburant hydrogène/oxygène.
4°- Appareil suivant la revendication 1, 2 est la présence d’au moins une antenne dont le pied est immergé dans la paroi du contenant, elle est faite de fil électrique rigide, métallique cuivre aluminium ou en fil multibrins, le fil peut être en supraconducteur de 1 millimètre à des sections de plusieurs millimètres de diamètre, sa grandeur dépend du contenant, les 2 à 5 voir 8 spires de l’antenne sont suffisantes pour modifier la stœchiométrie de l’eau.
5°- Appareil suivant la revendication let 2, le contenant, moulé dans un polymère, plastique, le filtre à air par exemple est pour une voiture ou un camion, d’environ la section horizontale du filtre à air, ce qui simplifie l’implémentation de l’appareil, dispositif, le contenant est cloisonné afin d’éviter les mouvements trop importants de l’eau, qui doit rester homogène sur la section du contenant cloisonné, pour une chaudière ou un four idem sans cloison, on se rapporte à la dimension du filtre à air, la hauteur d’eau doit rester faible de 1 à 3 centimètres environ. 6°- Appareil suivant toutes les revendications, est caractérisé par la présence sur le contenant d’au moins une fenêtre d’admission modulable régulée par un asservissement de contrôle électronique de température qui optimise la combustion par le débit de vapeur d’eau par le 5 glissement de la fenêtre d’évaporation d’eau/vapeur dans la manche d’admission, air régulé par la gestion mécanique et électronique pour la combustion adéquate sans risque de montée thermique trop élevée.
7°- Appareil suivant toutes les revendications assure le complément de carburation qui permet par sa souplesse de combustion et son front de flamme rapide de diminuer les contraintes de0 combustion, F oxygène/hydrogène comme un coussin élastique permet la bonne stœchiométrie de la carburation essence, gasoil par exemple, stœchiométrie qui est auto ajustée par la combustion oxygène/hydrogêne qui est un coussin adaptatif de la meilleure combustion de l’essence ou du gasoil sans provoquer de pollution et qui permet de grandes performances de rendement des moteurs thermiques sans altérer l’environnement.
-5 8°- Appareil suivant les revendications 1 est l’apport d’hydrogène par un réservoir hydrogène dont l’apport est commandé par une gestion électronique de débit, fenêtre de vaporisation, débit faible mélangé dans la manche à air de l’apport air de la combustion.
9° Appareil suivant les revendications 1 et 8, cet apport hydrogène peut aussi être réalisé par des injecteurs spécifiques, tout comme ceux pour le gasoil ou l’essence, la gestion quantité et0 l’instant du débit sont définis par l’homme de l’art qui paramètre les injecteurs.
10°- Appareil selon toutes les revendications de 1 à 7 est cette régulation électronique qui permet le passage de la vapeur d’eau préparée pour amorcer la fracture des molécules disponibles par et depuis le contenant, sans réaliser proprement dit les particules‘oxygène/hydrogène’ séparées, qui ne se révéleront disponibles, sécables facilement que dans la combustion, pas avant, c’est5 tout l’art du procédé et la mesure des appareils qui est une préparation de la fracture préparée ” oxygène/hydrogène”, plus que de créer de l’hydrogène oxygène avant la combustion, ce qui est dangereux.
l l°- Apparejl selon les revendications 1 et 2 répond au procédé par la mise en place de l’appareil, qui évite tout danger aux utilisateurs dans la phase de transition eau/vapeur tout en0 étant très performant au moment de la carburation, l’humidité de l’air fonctionne déjà en mode de transition hydrogène oxygène sans remplir d’eau l’appareil.
5
PCT/FR2018/000159 2018-05-02 2018-06-06 Injection de vapeur d'eau dans une combustion WO2019211529A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/FR2018/000165 WO2019211530A1 (fr) 2018-05-02 2018-06-07 Procédé et appareil pour la dissociation de l'eau en oxygène et hydrogène

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FRPCT/FR2018/000104 2018-05-02
PCT/FR2018/000104 WO2019197731A1 (fr) 2018-04-12 2018-05-02 Depollution des champs variables
FRPCT/2018/000124 2018-05-17
PCT/FR2018/000124 WO2019211526A1 (fr) 2018-05-02 2018-05-17 Filtre magnetique pour une stoechiometrie optima
FRPCT/FR2018/000133 2018-05-22
PCT/FR2018/000133 WO2019197732A1 (fr) 2018-04-12 2018-05-22 Filtre magnétique pour une atmosphère de vie optimale

Publications (1)

Publication Number Publication Date
WO2019211529A1 true WO2019211529A1 (fr) 2019-11-07

Family

ID=68387089

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/FR2018/000154 WO2019211528A2 (fr) 2018-05-02 2018-06-04 La conduction du champ electrique par la physique quantique
PCT/FR2018/000159 WO2019211529A1 (fr) 2018-05-02 2018-06-06 Injection de vapeur d'eau dans une combustion
PCT/FR2018/000165 WO2019211530A1 (fr) 2018-05-02 2018-06-07 Procédé et appareil pour la dissociation de l'eau en oxygène et hydrogène

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/000154 WO2019211528A2 (fr) 2018-05-02 2018-06-04 La conduction du champ electrique par la physique quantique

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/000165 WO2019211530A1 (fr) 2018-05-02 2018-06-07 Procédé et appareil pour la dissociation de l'eau en oxygène et hydrogène

Country Status (1)

Country Link
WO (3) WO2019211528A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115310259A (zh) * 2022-06-30 2022-11-08 华北电力大学(保定) 基于软行动者-批评者的园区综合能源系统梯级优化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479907A (en) * 1982-08-19 1984-10-30 Takashi Ogura Method of and apparatus for producing highly humid air
EP0907012A1 (fr) * 1996-06-21 1999-04-07 World Fusion Limited Moteur a combustion interne utilisant les gaz provenant de la decomposition de l'eau
WO2008039050A1 (fr) * 2006-09-28 2008-04-03 Gabriel Carrillo Villa Dispositif de vaporisation par ultrasons pour moteurs à combustion interne
US20080271706A1 (en) * 2007-05-04 2008-11-06 Sharpe Thomas H Hydrogen gas injector plug for diesel engines
WO2009070132A1 (fr) * 2007-11-27 2009-06-04 Ahern Brian S Fumigation aqueuse pour systèmes de combustion
US20140245989A1 (en) * 2013-03-04 2014-09-04 Kao-Shan Lin Gaseous state molecular combustion-supporting device
EP3159304A1 (fr) * 2015-10-19 2017-04-26 Nokia Technologies Oy Appareil et procédés associés permettant la séparation de l'eau
EP3312138A1 (fr) * 2016-10-18 2018-04-25 Fondazione Bruno Kessler Matériau à base de graphène pour la génération d'hydrogène et de chaleur dans un environement aqueux et son procédé de production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180185814A1 (en) * 2015-05-06 2018-07-05 The Regents Of The University Of California Nanostructured composites for gas separation and storage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479907A (en) * 1982-08-19 1984-10-30 Takashi Ogura Method of and apparatus for producing highly humid air
EP0907012A1 (fr) * 1996-06-21 1999-04-07 World Fusion Limited Moteur a combustion interne utilisant les gaz provenant de la decomposition de l'eau
WO2008039050A1 (fr) * 2006-09-28 2008-04-03 Gabriel Carrillo Villa Dispositif de vaporisation par ultrasons pour moteurs à combustion interne
US20080271706A1 (en) * 2007-05-04 2008-11-06 Sharpe Thomas H Hydrogen gas injector plug for diesel engines
WO2009070132A1 (fr) * 2007-11-27 2009-06-04 Ahern Brian S Fumigation aqueuse pour systèmes de combustion
US20140245989A1 (en) * 2013-03-04 2014-09-04 Kao-Shan Lin Gaseous state molecular combustion-supporting device
EP3159304A1 (fr) * 2015-10-19 2017-04-26 Nokia Technologies Oy Appareil et procédés associés permettant la séparation de l'eau
EP3312138A1 (fr) * 2016-10-18 2018-04-25 Fondazione Bruno Kessler Matériau à base de graphène pour la génération d'hydrogène et de chaleur dans un environement aqueux et son procédé de production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RONI PELEG: "Researchers produce robust graphene-based catalyst to split water into hydrogen and oxygen", 27 July 2017 (2017-07-27), XP055537657, Retrieved from the Internet <URL:https://www.graphene-info.com/researchers-produce-robust-graphene-based-catalyst-split-water-hydrogen-and-oxygen> [retrieved on 20181221] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115310259A (zh) * 2022-06-30 2022-11-08 华北电力大学(保定) 基于软行动者-批评者的园区综合能源系统梯级优化方法

Also Published As

Publication number Publication date
WO2019211530A1 (fr) 2019-11-07
WO2019211528A2 (fr) 2019-11-07

Similar Documents

Publication Publication Date Title
Dai et al. Experimental study on evaporation characteristics of diesel/cerium oxide nanofluid fuel droplets
Lin et al. Engine performance and emission characteristics of three-phase diesel emulsions prepared by an ultrasonic emulsification method
Lin et al. Emulsification characteristics of three-and two-phase emulsions prepared by the ultrasonic emulsification method
US8679202B2 (en) Glycerol containing fuel mixture for direct injection engines
JP5986703B2 (ja) エマルジョン燃料供給装置及びその供給方法
WO2019211529A1 (fr) Injection de vapeur d&#39;eau dans une combustion
US20190136790A1 (en) Gasoline Particulate Reduction Using Optimized Port Fuel Injection Plus Direct Injection
JP2006241243A (ja) 内燃機関用燃料改質装置
KR20060106331A (ko) 친환경 청정 유중수형 마이크로캡슐화 연료, 그의 제조방법 및 제조 시스템
Dunin et al. Analysis of the nozzle hole diameter effect to common rail diesel engine characteristics using a calculated model of an internal combustion engine
JP2004100501A (ja) 混合気を圧縮自着火させる内燃機関、および内燃機関の制御方法
EP1287096B1 (fr) Procede de regeneration d&#39;un filtre a particules et dispositif permettant la mise en oeuvre du procede
RU2349631C1 (ru) Способ приготовления мелкодисперсной эмульсии воды в жидкой органической среде
Kowalski et al. Engine test results of fuel-water microemulsion
JP2012021105A (ja) 化石油水可溶化用添加剤、該添加剤の製造方法及び、該添加剤を用いた化石油水可溶化の製造方法
JP2010138362A (ja) エマルジョン燃料油の生成方法
Hsieh et al. An emulsification method of bio-oils in diesel
JP2018109478A (ja) エマルジョン燃料供給装置及びその供給方法
Fang et al. Experimental study on the evaporation performance of suspended CeO2 nano-fuel droplets
Indudhar et al. Effect of injection timing and injection pressure on the performance of biodiesel ester of hongeoil fuelled common rail direct injection (CRDI) engine
KR20200036674A (ko) 미세금속입자를 함유하는 연료용 조성물 및 그 제조방법
Jankowski et al. Some aspects using of micro emulsion fuel-water for supply of combustion engines
Faik et al. The investigation of droplet combustion characteristics of biodiesel-diesel blends using high speed camera
RU2529035C1 (ru) Нанокомпонентная энергетическая добавка и жидкое углеводородное топливо
Mahdi et al. The effect of different in-line mixing method of water-in-diesel emulsion fuel on the diesel engine performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748952

Country of ref document: EP

Kind code of ref document: A1