WO2019210768A1 - 一种电压互感器铁磁谐振的快速消除方法及装置 - Google Patents

一种电压互感器铁磁谐振的快速消除方法及装置 Download PDF

Info

Publication number
WO2019210768A1
WO2019210768A1 PCT/CN2019/082008 CN2019082008W WO2019210768A1 WO 2019210768 A1 WO2019210768 A1 WO 2019210768A1 CN 2019082008 W CN2019082008 W CN 2019082008W WO 2019210768 A1 WO2019210768 A1 WO 2019210768A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
thyristor
ferromagnetic resonance
open
resonance
Prior art date
Application number
PCT/CN2019/082008
Other languages
English (en)
French (fr)
Inventor
王洪林
王凯
张琦雪
王光
陈俊
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to RU2020111489A priority Critical patent/RU2743460C1/ru
Priority to US16/649,438 priority patent/US11264793B2/en
Publication of WO2019210768A1 publication Critical patent/WO2019210768A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/05Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers for capacitive voltage transformers, e.g. against resonant conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/005Emergency protective circuit arrangements for limiting excess current or voltage without disconnection avoiding undesired transient conditions
    • H02H9/007Emergency protective circuit arrangements for limiting excess current or voltage without disconnection avoiding undesired transient conditions avoiding or damping oscillations, e.g. fenoresonance or travelling waves

Definitions

  • the invention relates to fault elimination of a voltage transformer of a power system, in particular to a method and a device for harmonic elimination control when a ferromagnetic resonance occurs in a voltage transformer of a neutral point indirect grounding system.
  • a common countermeasure against the ferromagnetic resonance phenomenon of voltage transformers is to install a microcomputer harmonic elimination device.
  • the basic principle of the device is: the microcomputer harmonic elimination device is connected to the secondary side opening triangular voltage of the voltage transformer, and the analysis is carried out.
  • the open triangle voltage harmonic characteristics and the harmonic component size identify the ferromagnetic resonance.
  • the short circuit connection or access
  • a small damping resistor R ⁇ destroys the resonance generating condition, thereby eliminating resonance.
  • the existing microcomputer harmonic elimination devices mostly input a harmonic elimination loop with a short delay or no delay when detecting the resonance.
  • This method has a large difference in the harmonic elimination effect in the field application, and often has a harmonic elimination failure.
  • a new resonance or resonance is more serious. Therefore, it is necessary to control the harmonic elimination process more accurately, so that it can be more effective when the harmonic elimination circuit is input. Quickly eliminate resonance.
  • the object of the present invention is to provide a fast harmonic elimination control method and device for generating a ferromagnetic resonance of a voltage transformer, which can more accurately control the harmonic elimination process and reduce the influence of the nonlinear characteristic of the transformer on the harmonic elimination process.
  • the resonance can be effectively and quickly eliminated when a resonance fault occurs.
  • the technical solution adopted by the invention is: a method for quickly eliminating ferromagnetic resonance of a voltage transformer, comprising the following steps:
  • Step 1 real-time acquisition of the three-phase voltage secondary value and the open triangular voltage of the voltage transformer
  • Step 2 according to the real-time collected three-phase voltage secondary value or the open triangular voltage, real-time calculation of the zero-sequence voltage corresponding to the magnetic flux ⁇ 0 ;
  • Step 3 When detecting the ferromagnetic resonance of the voltage transformer, further check whether the absolute value of the flux linkage corresponding to the zero sequence voltage or the absolute value of the open triangle voltage falls within the set range, and if so, trigger and connect to the voltage
  • the thyristor harmonic elimination circuit at both ends of the open-end triangular winding of the transformer is quickly turned on to eliminate the ferromagnetic resonance; otherwise, the thyristor harmonic elimination loop is not triggered.
  • the flux linkage ⁇ 0 corresponding to the zero-sequence voltage is calculated by the three-phase voltage secondary value or the open triangular voltage, and the calculation formula is as follows:
  • ⁇ 0 - ⁇ (U A +U B +U C )dt
  • U A , U B and U C are respectively three-phase voltage secondary values, and 3U 0 is an open triangular voltage.
  • the ferromagnetic resonance of the voltage transformer includes frequency division ferromagnetic resonance, fundamental frequency ferromagnetic resonance, and frequency doubled ferromagnetic resonance.
  • the absolute value of the flux linkage corresponding to the zero-sequence voltage falls within the set range, and the magnetic flux ⁇ 0 corresponding to the zero-sequence voltage satisfies
  • K1 can range from 0.01 to 0.2.
  • the absolute value of the open triangular voltage falls within the set range, that is, the absolute value of the open triangular voltage 3U 0 satisfies
  • the maximum value of the open triangular voltage is acquired in the previous resonant period during resonance, and K2 is a coefficient.
  • K2 can range from 0.8 to 1.0.
  • the thyristor circuit includes a thyristor that can be bi-directionally connected and a harmonic elimination resistor connected in series, and the thyristor circuit is installed in parallel on the output port of the secondary side open triangle circuit of the voltage transformer. It is connected in parallel with the open triangular voltage measuring circuit.
  • triggering the thyristor loop means that a conduction command is issued to the thyristor in the loop, so that both the forward and reverse directions of the thyristor are in a conducting state.
  • the invention also provides a rapid elimination device for ferromagnetic resonance of a voltage transformer, comprising an acquisition unit, a calculation unit and a detection harmonic elimination unit, wherein:
  • the collecting unit collects the three-phase voltage secondary value and the opening triangular voltage of the voltage transformer in real time
  • the calculating unit receives the measurement data of the acquisition unit, and calculates the magnetic flux ⁇ 0 corresponding to the zero sequence voltage in real time according to the three-phase voltage secondary value or the open triangular voltage collected in real time;
  • the detecting harmonic elimination unit receives the measurement calculation data of the acquisition unit and the calculation unit, and when detecting the ferromagnetic resonance of the voltage transformer, further checks whether the absolute value of the flux linkage corresponding to the zero sequence voltage or the absolute value of the open triangle voltage is Fall into the set range, and if so, trigger the thyristor harmonic elimination circuit connected to the open ends of the triangular winding of the voltage transformer to quickly turn on, eliminating the ferromagnetic resonance; otherwise, the thyristor elimination circuit is not triggered. through.
  • the flux linkage ⁇ 0 corresponding to the zero-sequence voltage is calculated by the three-phase voltage secondary value or the open triangular voltage, and the calculation formula is as follows:
  • ⁇ 0 - ⁇ (U A +U B +U C )dt
  • U A , U B and U C are respectively three-phase voltage secondary values, and 3U 0 is an open triangular voltage.
  • the absolute value of the flux linkage corresponding to the zero-sequence voltage falls within the set range, and the magnetic flux ⁇ 0 corresponding to the zero-sequence voltage satisfies
  • K1 can range from 0.01 to 0.2.
  • the absolute value of the open triangular voltage falls within the set range, that is, the absolute value of the open triangular voltage 3U 0 satisfies
  • K2 can range from 0.8 to 1.0.
  • the thyristor circuit comprises a bidirectionally conductive thyristor and a harmonic elimination resistor connected in series therewith, and the thyristor circuit is installed in parallel on the output of the secondary side open triangle circuit of the voltage transformer.
  • the port is connected in parallel with the open triangular voltage measuring circuit.
  • triggering the thyristor loop means that a conduction command is issued to the thyristor in the loop, so that both the forward and reverse directions of the thyristor are in a conducting state.
  • the beneficial effects of the invention are: for the harmonic elimination measure of the ferromagnetic resonance of the ungrounded system voltage transformer, on the basis of the conventional secondary harmonic elimination principle, the voltage transformer flux linkage and the open triangle voltage analysis control the harmonic elimination circuit are adopted.
  • the triggering method is put into the harmonic elimination loop when the zero-sequence voltage corresponding to the minimum flux linkage or the open triangular voltage is maximum, thereby avoiding the influence of the core saturation on the harmonic elimination process; reducing the operation time of the harmonic elimination device and the harmonic elimination discharge
  • the current effectively increases the success rate of the harmonic elimination and reduces the influence of the operation of the harmonic elimination device on the system and the relay protection device.
  • Figure 2 shows a schematic diagram of a thyristor harmonic elimination circuit.
  • FIG. 1 is a schematic flow chart of the method of the present invention; the following steps are included:
  • Step 1 real-time acquisition of the three-phase voltage secondary value and the open triangular voltage of the voltage transformer
  • Step 2 according to the real-time collected three-phase voltage secondary value or the open triangular voltage, real-time calculation of the zero-sequence voltage corresponding to the magnetic flux ⁇ 0 ;
  • Step 3 When detecting the ferromagnetic resonance of the voltage transformer, further check whether the absolute value of the flux linkage corresponding to the zero sequence voltage or the absolute value of the open triangle voltage falls within the set range, and if so, trigger and connect to the voltage
  • the thyristor harmonic elimination circuit at both ends of the open-end triangular winding of the transformer is quickly turned on to eliminate the ferromagnetic resonance; otherwise, the thyristor harmonic elimination loop is not triggered.
  • the flux linkage ⁇ 0 corresponding to the zero-sequence voltage is calculated by the three-phase voltage secondary value or the open triangular voltage, and the calculation formula is as follows:
  • ⁇ 0 - ⁇ (U A +U B +U C )dt
  • U A , U B , U C , and 3U 0 are three-phase voltage secondary values and open triangular voltages, respectively.
  • the ferromagnetic resonance of the voltage transformer includes frequency division ferromagnetic resonance, fundamental frequency ferromagnetic resonance, and frequency doubled ferromagnetic resonance.
  • the absolute value of the flux linkage corresponding to the zero-sequence voltage falls within the set range, and the magnetic flux ⁇ 0 corresponding to the zero-sequence voltage satisfies
  • K1 can range from 0.01 to 0.2.
  • the absolute value of the open triangular voltage falls within the set range, that is, the absolute value of the open triangular voltage 3U 0 satisfies
  • the maximum value of the open triangular voltage is acquired in the previous resonant period during resonance, and K2 is a coefficient.
  • K2 can range from 0.8 to 1.0.
  • the thyristor circuit includes a thyristor that can be bi-directionally connected and a harmonic elimination resistor connected in series, and the thyristor circuit is installed in parallel on the output port of the secondary side open triangle circuit of the voltage transformer. It is connected in parallel with the open triangular voltage measuring circuit.
  • Figure 2 shows a schematic diagram of the thyristor harmonic elimination circuit.
  • triggering the thyristor loop means that a conduction command is issued to the thyristor in the loop, so that both the forward and reverse directions of the thyristor are in a conducting state.
  • the secondary phase voltage rating is 57.74V, and the peak value is According to the description of the invention, the nominal value of the flux linkage corresponding to the zero sequence voltage can be obtained.
  • the system has triple frequency resonance.
  • the triplet voltage appears in the open triangle.
  • a 0 is the triple frequency voltage amplitude.
  • step 2 the zero sequence voltage corresponding to the magnetic flux ⁇ 0 is calculated.
  • the open triangular voltage satisfies
  • ⁇ K ⁇ U 0.max , taking the coefficient K 0.9, there is
  • the range of the triggering time calculated according to the zero-sequence voltage corresponding to the magnetic flux ⁇ 0 and the range of the triggering time calculated according to the open triangular voltage are coincident in most cases.
  • the triangular voltage of the opening is maximum at resonance, the corresponding flux linkage is basically The upper limit is the minimum value. Therefore, the triggering moments calculated by the two methods are basically the same, and the two methods have no conflict.
  • the invention also provides a rapid elimination device for ferromagnetic resonance of a voltage transformer, comprising an acquisition unit, a calculation unit and a detection harmonic elimination unit, wherein:
  • the collecting unit collects the three-phase voltage secondary value and the opening triangular voltage of the voltage transformer in real time
  • the calculating unit receives the measurement data of the acquisition unit, and calculates the magnetic flux ⁇ 0 corresponding to the zero sequence voltage in real time according to the three-phase voltage secondary value or the open triangular voltage collected in real time;
  • the detecting harmonic elimination unit receives the measurement calculation data of the acquisition unit and the calculation unit, and when detecting the ferromagnetic resonance of the voltage transformer, further checks whether the absolute value of the flux linkage corresponding to the zero sequence voltage or the absolute value of the open triangle voltage is Fall into the set range, and if so, trigger the thyristor harmonic elimination circuit connected to the open ends of the triangular winding of the voltage transformer to quickly turn on, eliminating the ferromagnetic resonance; otherwise, the thyristor elimination circuit is not triggered. through.
  • the flux linkage ⁇ 0 corresponding to the zero-sequence voltage is calculated by the three-phase voltage secondary value or the open triangular voltage, and the calculation formula is as follows:
  • ⁇ 0 - ⁇ (U A +U B +U C )dt
  • U A , U B , U C , and 3U 0 are three-phase voltage secondary values and open triangular voltages, respectively.
  • the absolute value of the flux linkage corresponding to the zero-sequence voltage falls within the set range, and the magnetic flux ⁇ 0 corresponding to the zero-sequence voltage satisfies
  • K1 can range from 0.01 to 0.2.
  • the absolute value of the open triangular voltage falls within the set range, that is, the absolute value of the open triangular voltage 3U 0 satisfies
  • K2 can range from 0.8 to 1.0.
  • the thyristor circuit includes a thyristor that can be bi-directionally connected and a harmonic elimination resistor connected in series therewith, and the thyristor circuit is installed in parallel on the output of the secondary side open triangle circuit of the voltage transformer.
  • the port is connected in parallel with the open triangular voltage measuring circuit.
  • triggering the thyristor loop means that a conduction command is issued to the thyristor in the loop, so that both the forward and reverse directions of the thyristor are in a conducting state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ac-Ac Conversion (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了一种电压互感器铁磁谐振的快速消除方法,方法首先采样电压互感器的三相电压和开口三角电压,并通过积分算法计算零序电压对应的磁链,当检测到互感器发生铁磁谐振时,进一步检查零序电压对应的磁链绝对值或者开口三角电压绝对值是否分别落入设定的范围内,若是则启动二次消谐回路进行消谐。本发明还公开了相应的电压互感器铁磁谐振的快速消除装置。本方法及装置在常规的二次消谐原理的基础上对消谐触发时刻进行了精确分析控制,能够有效消除电压互感器铁芯饱和对消谐过程的影响,极大的提高单次消谐的成功概率。

Description

一种电压互感器铁磁谐振的快速消除方法及装置 技术领域
本发明涉及电力系统电压互感器的故障消除,尤其涉及中性点非直接接地系统电压互感器发生铁磁谐振时消谐控制方法及装置。
背景技术
在中性点非直接接地系统中,一些用于测量对地电压的电压互感器,其原边绕组的中性点直接接地,当发生空载母线合闸、单相接地故障消失或者系统负荷剧烈变化时,电压互感器的励磁电感会出现非线性变化,可能会与系统对地电容形成参数匹配,从而引发铁磁谐振现象,引起系统过电压和电压互感器过电流,进而造成绝缘破坏、接地或相间故障,以及电压互感器熔丝熔断、烧毁或爆炸,甚至还会出现避雷器爆炸、弱绝缘闪络、接地选线装置误动等故障,严重影响系统安全运行。
针对电压互感器出现的铁磁谐振现象目前一种常见的应对措施是装设微机消谐装置,该装置的基本原理是:微机消谐装置接入电压互感器二次侧开口三角电压,通过分析开口三角电压谐波特征及谐波分量大小识别铁磁谐振,当发生电压互感器铁磁谐振时,在电压互感器开口三角绕组处通过电子开关器件多次短时触发短接(或接入小的阻尼电阻R ),破坏谐振产生条件,从而消除谐振。
目前现有的微机消谐装置多是在检测到谐振时经短延时或不经延时投入消谐回路,这种方法在现场应用中消谐效果差异较大,经常会出现消谐失败的情况,极端情况下,甚至会出现投入消谐回路后产生新的谐振或谐振更加严重的情况,因此,需要对消谐过程进行更加准确的控制,以使得投入消谐回路时能够更有效,更快的消除谐振。
发明内容
本发明的目的是,提出一种电压互感器发生铁磁谐振时的快速消谐控制方法及装置,对消谐过程进行更加准确的控制,减小互感器非线性特性对消谐过程的影响,使得发生谐振故障时能够有效快速的消除谐振。
本发明采取的技术方案是:一种电压互感器铁磁谐振的快速消除方法,包括如下步骤:
步骤1,实时采集电压互感器的三相电压二次值和开口三角电压;
步骤2,根据实时采集的三相电压二次值或开口三角电压,实时计算零序电压对应的磁链ψ 0
步骤3,当检测到电压互感器发生铁磁谐振时,进一步检查零序电压对应的磁链绝对值或者开口三角电压绝对值是否分别落入设定的范围内,若是,则触发并接在电压互感器开口三角绕组两端的可控硅消谐回路快速导通,消除铁磁谐振;否则,不触发可控硅消谐回路导通。
进一步地,所述步骤2中,零序电压对应的磁链ψ 0通过三相电压二次值或者开口三角电压进行计算,计算公式如下所示:
ψ 0=-∫(U A+U B+U C)dt
或ψ 0=-∫(3U 0)dt
其中U A、U B、U C分别为三相电压二次值,3U 0为开口三角电压。
进一步地,所述步骤3中,电压互感器发生铁磁谐振包括分频铁磁谐振、基频铁磁谐振、倍频铁磁谐振。
进一步地,所述步骤3中,零序电压对应的磁链绝对值落入设定的范围内指的是,零序电压对应的磁链ψ 0满足|ψ 0|≤K1*ψ N,其中K1为系数,
Figure PCTCN2019082008-appb-000001
U m为电压互感器额定二次电压峰值,ω为工频角频率。其中K1取值范围可以为0.01~0.2。
进一步地,所述步骤3中,开口三角电压绝对值落入设定的范围内指的是,开口三角电压3U 0的绝对值满足|3U 0|≥K2*U max,其中U max为检测到谐振时的前一个谐振周期内采集到开口三角电压的最大值,K2为系数。其中K2取值范围可以为0.8~1.0。
进一步地,所述步骤3中,可控硅回路包括可双向导通的可控硅和与其串联的消谐电阻,可控硅回路并联安装在电压互感器二次侧开口三角回路的输出端口,与开口三角电压测量回路并联连接。
进一步地,所述步骤3中,触发可控硅回路是指,向回路中的可控硅发出导通指令,使得可控硅正向和反向均处于导通状态。
本发明还提供了一种电压互感器铁磁谐振的快速消除装置,包括采集单元、计算单元、检测消谐单元,其中:
所述采集单元实时采集电压互感器的三相电压二次值和开口三角电压;
所述计算单元接收采集单元的测量数据,根据实时采集的三相电压二次值或开口三角电压,实时计算零序电压对应的磁链ψ 0
所述检测消谐单元,接收所述采集单元和计算单元的测量计算数据,当检测到电压互感器发生铁磁谐振时,进一步检查零序电压对应的磁链绝对值或者开口三角电压绝对值是否分别落入设定的范围内,若是,则触发并接在电压互感器开口三角绕组两端的可控硅消谐回路快速导通,消除铁磁谐振;否则,不触发可控硅消谐回路导通。
进一步地,所述计算单元中,零序电压对应的磁链ψ 0通过三相电压二次值或者开口三角电压进行计算,计算公式如下所示:
ψ 0=-∫(U A+U B+U C)dt
或ψ 0=-∫(3U 0)dt
其中U A、U B、U C分别为三相电压二次值,3U 0为开口三角电压。
进一步地,所述检测消谐单元中,零序电压对应的磁链绝对值落入设定的范围内指的是,零序电压对应的磁链ψ 0满足|ψ 0|≤K1*ψ N,其中K1为系数,
Figure PCTCN2019082008-appb-000002
U m为电压互感器额定二次电压峰值,ω为工频角频率。其中K1取值范围可以为0.01~0.2。
进一步地,所述检测消谐单元中,开口三角电压绝对值落入设定的范围内指的是,开口三角电压3U 0的绝对值满足|3U 0|≥K2*U max,其中U max为检测到谐振时的前一个谐振周期内采集到开口三角电压的最大值,K2为系数。其中K2取值范围可以为0.8~1.0。
进一步地,所述检测消谐单元中,可控硅回路包括可双向导通的可控硅和与其串联的消谐电阻,可控硅回路并联安装在电压互感器二次侧开口三角回路的输出端口,与开口三角电压测量回路并联连接。
进一步地,所述检测消谐单元中,触发可控硅回路是指,向回路中的可控硅发出导通指令,使得可控硅正向和反向均处于导通状态。
本发明的有益效果是:针对不接地系统电压互感器发生铁磁谐振时的消谐措施,在常规二次消谐原理的基础上,采用电压互感器磁链和开口三角电压分析控制消谐回路触发的方法,在零序电压对应的磁链最小或开口三角电压最大的时候投入消谐回路,避免了铁芯饱和对消谐过程的影响;减小了消谐装置的动作时间以及消谐放电电流,有效的提高消谐的成功率,减小消谐装置动作对系统以及继电保护装置等的影响。经过大量试验验证,无论何种频率的铁磁谐振,采用此种触发机制均能够大大提高消谐成功的概率,大幅度降低消谐过程所需要的时间,减少对整个系统的影响。
附图说明
图1所示为本发明方法流程示意图;
图2所示为可控硅消谐回路示意图。
具体实施方式
以下结合附图和具体实施例进一步说明。
本发明提供了一种电压互感器铁磁谐振的快速消除方法,如图1所示为本发明方法流程示意图;包括如下步骤:
步骤1,实时采集电压互感器的三相电压二次值和开口三角电压;
步骤2,根据实时采集的三相电压二次值或开口三角电压,实时计算零序电压对应的磁链ψ 0
步骤3,当检测到电压互感器发生铁磁谐振时,进一步检查零序电压对应的磁链绝对值或者开口三角电压绝对值是否分别落入设定的范围内,若是,则触发并接在电压互感器开口三角绕组两端的可控硅消谐回路快速导通,消除铁磁谐振;否则,不触发可控硅消谐回路导通。
进一步地,所述步骤2中,零序电压对应的磁链ψ 0通过三相电压二次值或者开口三角电压进行计算,计算公式如下所示:
ψ 0=-∫(U A+U B+U C)dt
或ψ 0=-∫(3U 0)dt
其中U A、U B、U C、3U 0分别为三相电压二次值和开口三角电压。
进一步地,所述步骤3中,电压互感器发生铁磁谐振包括分频铁磁谐振、基频铁磁谐振、倍频铁磁谐振。
进一步地,所述步骤3中,零序电压对应的磁链绝对值落入设定的范围内指的是,零序电压对应的磁链ψ 0满足|ψ 0|≤K1*ψ N,其中K1为系数,
Figure PCTCN2019082008-appb-000003
U m为电压互感器额定二次电压峰值,ω为工频角频率。其中K1取值范围可以为0.01~0.2。
进一步地,所述步骤3中,开口三角电压绝对值落入设定的范围内指的是,开口三角电压3U 0的绝对值满足|3U 0|≥K2*U max,其中U max为检测到谐振时的前一个谐振周期内采集到开口三角电压的最大值,K2为系数。其中K2取值范围可以为0.8~1.0。
进一步地,所述步骤3中,可控硅回路包括可以双向导通的可控硅和与其串联的消谐电阻,可控硅回路并联安装在电压互感器二次侧开口三角回路的输出端口,与开口三角电压测量回路并联连接。如图2所示为可控硅消谐回路示意图。
进一步地,所述步骤3中,触发可控硅回路是指,向回路中的可控硅发出导通指令,使得可控硅正向和反向均处于导通状态。
一不接地系统正常情况下系统无零序电压,即开口三角电压3U 0=0V。零序电压对应的磁链ψ 0=-∫(3U 0)dt=0。
对于一般的电压互感器,二次侧相电压额定值为57.74V,峰值即为
Figure PCTCN2019082008-appb-000004
根据发明内容描述,可以求得零序电压对应的磁链的额定值
Figure PCTCN2019082008-appb-000005
某一时刻系统发生三倍频谐振,此时开口三角出现三倍频电压量,设出现谐振时开口三角电压值3U 0=A 0sin(3ωt),其中A 0为三倍频电压幅值,取300V,3ω=3×2π×50Hz为三倍频的谐振角频率。
(1)根据零序电压对应磁链计算触发时刻
根据步骤2中的公式可计算出零序电压对应磁链ψ 0
Figure PCTCN2019082008-appb-000006
当ψ 0满足|ψ 0|≤K*ψ N时触发消谐回路导通,取系数K=0.2,有
Figure PCTCN2019082008-appb-000007
可以求出t取值为
Figure PCTCN2019082008-appb-000008
Figure PCTCN2019082008-appb-000009
即当t在以上范围内时,满足磁链ψ 0条件,触发消谐回路导通。
(2)根据开口三角电压计算触发时刻
开口三角电压为3U 0=300sin(300π·t),开口三角电压的最大值3U 0.max=300V,开口三角电压满足|3U 0|≥K·U 0.max,取系数K=0.9,有|300sin(300π·t)|≥300×0.9,可以求出t取值为
Figure PCTCN2019082008-appb-000010
Figure PCTCN2019082008-appb-000011
即当t在以上范围内时,满足开口三角电压的条件,触发消谐回路导通。
根据零序电压对应磁链ψ 0计算的触发时刻范围和根据开口三角电压计算的触发时刻范围在大多数情况下是重合的,谐振时当开口三角电压为最大值时,其对应的磁链基本上为最小值,因此,通过这两种方法计算的触发时刻基本一致,两种方法没有冲突。
本发明还提供了一种电压互感器铁磁谐振的快速消除装置,包括采集单元、计算单元、检测消谐单元,其中:
所述采集单元实时采集电压互感器的三相电压二次值和开口三角电压;
所述计算单元接收采集单元的测量数据,根据实时采集的三相电压二次值或开口三角电压,实时计算零序电压对应的磁链ψ 0
所述检测消谐单元,接收所述采集单元和计算单元的测量计算数据,当检测到电压互感 器发生铁磁谐振时,进一步检查零序电压对应的磁链绝对值或者开口三角电压绝对值是否分别落入设定的范围内,若是,则触发并接在电压互感器开口三角绕组两端的可控硅消谐回路快速导通,消除铁磁谐振;否则,不触发可控硅消谐回路导通。
进一步地,所述计算单元中,零序电压对应的磁链ψ 0通过三相电压二次值或者开口三角电压进行计算,计算公式如下所示:
ψ 0=-∫(U A+U B+U C)dt
或ψ 0=-∫(3U 0)dt
其中U A、U B、U C、3U 0分别为三相电压二次值和开口三角电压。
进一步地,所述检测消谐单元中,零序电压对应的磁链绝对值落入设定的范围内指的是,零序电压对应的磁链ψ 0满足|ψ 0|≤K1*ψ N,其中K1为系数,
Figure PCTCN2019082008-appb-000012
U m为电压互感器额定二次电压峰值,ω为工频角频率。其中K1取值范围可以为0.01~0.2。
进一步地,所述检测消谐单元中,开口三角电压绝对值落入设定的范围内指的是,开口三角电压3U 0的绝对值满足|3U 0|≥K2*U max,其中U max为检测到谐振时的前一个谐振周期内采集到开口三角电压的最大值,K2为系数。其中K2取值范围可以为0.8~1.0。
进一步地,所述检测消谐单元中,可控硅回路包括可以双向导通的可控硅和与其串联的消谐电阻,可控硅回路并联安装在电压互感器二次侧开口三角回路的输出端口,与开口三角电压测量回路并联连接。
进一步地,所述检测消谐单元中,触发可控硅回路是指,向回路中的可控硅发出导通指令,使得可控硅正向和反向均处于导通状态。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何等同替换或改动,并不超出本发明保护范围。

Claims (13)

  1. 一种电压互感器铁磁谐振的快速消除方法,其特征是,包括如下步骤:
    步骤1,实时采集电压互感器的三相电压二次值和开口三角电压;
    步骤2,根据实时采集的三相电压二次值或开口三角电压,实时计算零序电压对应的磁链ψ 0
    步骤3,当检测到电压互感器发生铁磁谐振时,进一步检查零序电压对应的磁链绝对值或者开口三角电压绝对值是否分别落入设定的范围内,若是,则触发并接在电压互感器开口三角绕组两端的可控硅消谐回路快速导通,消除铁磁谐振;否则,不触发可控硅消谐回路导通。
  2. 根据权利要求1所述的电压互感器铁磁谐振的快速消除方法,其特征是,所述步骤2中,零序电压对应的磁链ψ 0通过三相电压二次值或者开口三角电压进行计算,计算公式如下所示:
    ψ 0=-∫(U A+U B+U C)dt
    或ψ 0=-∫(3U 0)dt
    其中U A、U B、U C分别为三相电压二次值,3U 0为开口三角电压。
  3. 根据权利要求1所述的电压互感器铁磁谐振的快速消除方法,其特征是,所述步骤3中,电压互感器发生铁磁谐振包括分频铁磁谐振、基频铁磁谐振、倍频铁磁谐振。
  4. 根据权利要求1或2所述的电压互感器铁磁谐振的快速消除方法,其特征是,所述步骤3中,零序电压对应的磁链绝对值落入设定的范围内指的是,零序电压对应的磁链ψ 0满足|ψ 0|≤K1*ψ N,其中K1为系数,
    Figure PCTCN2019082008-appb-100001
    U m为电压互感器额定二次电压峰值,ω为工频角频率。
  5. 根据权利要求1所述的电压互感器铁磁谐振的快速消除方法,其特征是,所述步骤3中,开口三角电压绝对值落入设定的范围内指的是,开口三角电压3U 0的绝对值满足 |3U 0|≥K2*U max,其中U max为检测到谐振时的前一个谐振周期内采集到开口三角电压的最大值,K2为系数。
  6. 根据权利要求1所述的电压互感器铁磁谐振的快速消除方法,其特征是,所述步骤3中,可控硅消谐回路包括可双向导通的可控硅和与其串联的消谐电阻,可控硅消谐回路并联安装在电压互感器二次侧开口三角回路的输出端口,与开口三角电压测量回路并联连接。
  7. 根据权利要求1所述的电压互感器铁磁谐振的快速消除方法,其特征是,所述步骤3中,触发可控硅消谐回路是指,向回路中的可控硅发出导通指令,使得可控硅正向和反向均处于导通状态。
  8. 一种电压互感器铁磁谐振的快速消除装置,其特征是,包括采集单元、计算单元、检测消谐单元,其中:
    所述采集单元实时采集电压互感器的三相电压二次值和开口三角电压;
    所述计算单元接收采集单元的测量数据,根据实时采集的三相电压二次值或开口三角电压,实时计算零序电压对应的磁链ψ 0
    所述检测消谐单元,接收所述采集单元的测量数据和计算单元的计算数据,当检测到电压互感器发生铁磁谐振时,进一步检查零序电压对应的磁链绝对值或者开口三角电压绝对值是否分别落入设定的范围内,若是,则触发并接在电压互感器开口三角绕组两端的可控硅消谐回路快速导通,消除铁磁谐振;否则,不触发可控硅消谐回路导通。
  9. 根据权利要求8所述的电压互感器铁磁谐振的快速消除装置,其特征是,所述计算单元中,零序电压对应的磁链ψ 0通过三相电压二次值或者开口三角电压进行计算,计算公式如下所示:
    ψ 0=-∫(U A+U B+U C)dt
    或ψ 0=-∫(3U 0)dt
    其中U A、U B、U C分别为三相电压二次值,3U 0为开口三角电压。
  10. 根据权利要求8或9所述的电压互感器铁磁谐振的快速消除装置,其特征是,所述检测消谐单元中,零序电压对应的磁链绝对值落入设定的范围内指的是,零序电压对应的磁 链ψ 0满足|ψ 0|≤K1*ψ N,其中K1为系数,
    Figure PCTCN2019082008-appb-100002
    U m为电压互感器额定二次电压峰值,ω为工频角频率。
  11. 根据权利要求8所述的电压互感器铁磁谐振的快速消除装置,其特征是,所述检测消谐单元中,开口三角电压绝对值落入设定的范围内指的是,开口三角电压3U 0的绝对值满足|3U 0|≥K2*U max,其中U max为检测到谐振时的前一个谐振周期内采集到开口三角电压的最大值,K2为系数。
  12. 根据权利要求8所述的电压互感器铁磁谐振的快速消除装置,其特征是,所述检测消谐单元中,可控硅消谐回路包括可双向导通的可控硅和与其串联的消谐电阻,可控硅消谐回路并联安装在电压互感器二次侧开口三角回路的输出端口,与开口三角电压测量回路并联连接。
  13. 根据权利要求8所述的电压互感器铁磁谐振的快速消除装置,其特征是,所述检测消谐单元中,触发可控硅消谐回路是指,向回路中的可控硅发出导通指令,使得可控硅正向和反向均处于导通状态。
PCT/CN2019/082008 2018-05-04 2019-04-10 一种电压互感器铁磁谐振的快速消除方法及装置 WO2019210768A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2020111489A RU2743460C1 (ru) 2018-05-04 2019-04-10 Способ и устройство для быстрого устранения ферромагнитного резонанса трансформатора напряжения
US16/649,438 US11264793B2 (en) 2018-05-04 2019-04-10 Method and device for quickly eliminating ferromagnetic resonance of voltage transformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810417417.6 2018-05-04
CN201810417417.6A CN110445109B (zh) 2018-05-04 2018-05-04 一种电压互感器铁磁谐振的快速消除方法及装置

Publications (1)

Publication Number Publication Date
WO2019210768A1 true WO2019210768A1 (zh) 2019-11-07

Family

ID=68386970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082008 WO2019210768A1 (zh) 2018-05-04 2019-04-10 一种电压互感器铁磁谐振的快速消除方法及装置

Country Status (4)

Country Link
US (1) US11264793B2 (zh)
CN (1) CN110445109B (zh)
RU (1) RU2743460C1 (zh)
WO (1) WO2019210768A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725783A (zh) * 2019-12-11 2020-09-29 长沙理工大学 一种配网电压互感器中性点加装间隙与电阻串联组合的配电网消谐方法
CN111880138A (zh) * 2020-08-19 2020-11-03 国网福建省电力有限公司 一种基于铁磁特性的零序电流互感器测量精度优化方法
CN112345977A (zh) * 2020-10-21 2021-02-09 河南华润电力首阳山有限公司 电气设备及其pt二次回路断线判断方法、系统和装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113452003B (zh) * 2020-03-26 2022-07-22 南京南瑞继保电气有限公司 一种中性点接地系统铁磁谐振的快速消除方法及装置
CN112332391A (zh) * 2020-11-24 2021-02-05 国网北京市电力公司 谐波消除方法、系统及装置
CN112666381B (zh) * 2020-12-30 2023-08-04 广东电网有限责任公司电力科学研究院 一种配电网络雷击过电压空间分布特性监测方法和系统
CN113671412A (zh) * 2021-09-10 2021-11-19 国网安徽省电力有限公司检修分公司 一种小电流接地选线装置
CN114172138B (zh) * 2021-12-06 2024-02-02 黄冈师范学院 一种通信电路谐振清除方法
CN114552532B (zh) * 2022-01-21 2023-11-03 国网山东省电力公司阳谷县供电公司 一种组合式铁磁谐振的快速消除装置及系统
CN115296263B (zh) * 2022-08-19 2023-05-16 云南电网有限责任公司曲靖供电局 Pid调节的主动匹配电阻的电压互感器铁磁谐振消谐方法
CN115411698B (zh) * 2022-09-01 2023-04-21 云南电网有限责任公司曲靖供电局 一种通过电子负载主动投入电阻的pt铁磁谐振消谐方法
CN115602430B (zh) * 2022-12-15 2023-04-18 清华四川能源互联网研究院 一种基于铁芯磁化补偿的谐波抑制装置和方法
CN116706839B (zh) * 2023-06-08 2024-02-06 深圳瑞能电气设备有限公司 一种微机电力谐振诊断消除装置及其消除方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377680A (zh) * 2014-11-21 2015-02-25 国家电网公司 用于电磁式电压互感器的二次交流消谐装置
CN107332219A (zh) * 2017-07-10 2017-11-07 合肥东玖电气有限公司 一种用于微机的消谐系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401272A (en) * 1965-08-30 1968-09-10 Westinghouse Electric Corp Ferroresonant transient suppression system
US3624499A (en) * 1970-09-29 1971-11-30 Westinghouse Electric Corp Electrical transformer with zero sequence voltage indicator
US3666991A (en) * 1970-11-23 1972-05-30 Bouligny Inc R H Resonance suppressing method and apparatus
RU2145131C1 (ru) * 1997-06-05 2000-01-27 Государственный университет "Львивська политэхника" Нерезонирующий трансформатор напряжения
PL203206B1 (pl) * 2003-07-17 2009-09-30 Abb Spo & Lstrok Ka Z Ogranicz Układ zabezpieczający dla przekładników napięciowych średniego napięcia
UA67276C2 (en) * 2003-08-18 2006-01-16 Tetiana Ivanivna Yefimenko Device for compensating phase capacitive short-circuit currents and limiting internal overvoltages in a high-voltage electric network
CN201008093Y (zh) * 2007-01-19 2008-01-16 保定博为科技有限公司 一种电压互感器铁磁谐振消除装置
CN102269785A (zh) * 2010-06-02 2011-12-07 阿海珐输配电英国有限公司 在线铁磁共振检测的方法和系统
CN102226974B (zh) * 2011-03-28 2012-07-25 江西赣电电气有限公司 一种能消除铁磁谐振的电压互感器
CN202535069U (zh) * 2012-03-30 2012-11-14 上海市电力公司 一种串联铁磁谐振回路
CN103199514B (zh) * 2013-02-25 2015-04-22 重庆大学 一种消除铁磁谐振的方法
CN103199553A (zh) * 2013-03-22 2013-07-10 王少夫 一种电力系统铁磁谐振快速消除方法
CN104167727B (zh) * 2014-07-24 2016-01-20 广东电网有限责任公司电力科学研究院 中压配电网铁磁谐振辨识与抑制的系统和方法
CN105098769B (zh) * 2015-06-19 2017-06-13 浙江大学 一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法
CN205355803U (zh) * 2016-02-03 2016-06-29 安徽新在线科技股份有限公司 抗谐振4pt全过电压抑制装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377680A (zh) * 2014-11-21 2015-02-25 国家电网公司 用于电磁式电压互感器的二次交流消谐装置
CN107332219A (zh) * 2017-07-10 2017-11-07 合肥东玖电气有限公司 一种用于微机的消谐系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725783A (zh) * 2019-12-11 2020-09-29 长沙理工大学 一种配网电压互感器中性点加装间隙与电阻串联组合的配电网消谐方法
CN111880138A (zh) * 2020-08-19 2020-11-03 国网福建省电力有限公司 一种基于铁磁特性的零序电流互感器测量精度优化方法
CN111880138B (zh) * 2020-08-19 2022-11-08 国网福建省电力有限公司 一种基于铁磁特性的零序电流互感器测量精度优化方法
CN112345977A (zh) * 2020-10-21 2021-02-09 河南华润电力首阳山有限公司 电气设备及其pt二次回路断线判断方法、系统和装置
CN112345977B (zh) * 2020-10-21 2023-11-24 河南华润电力首阳山有限公司 电气设备及其pt二次回路断线判断方法、系统和装置

Also Published As

Publication number Publication date
US11264793B2 (en) 2022-03-01
CN110445109B (zh) 2022-03-29
US20200287379A1 (en) 2020-09-10
CN110445109A (zh) 2019-11-12
RU2743460C1 (ru) 2021-02-18

Similar Documents

Publication Publication Date Title
WO2019210768A1 (zh) 一种电压互感器铁磁谐振的快速消除方法及装置
US11435409B2 (en) Temporary overvoltage and ground fault overvoltage protection based on arrester current measurement and analysis
CN107765077B (zh) 一种励磁涌流识别方法及识别装置
WO2022068074A1 (zh) 一种缓慢发展型永久性故障预警方法和系统
CN107064741A (zh) 一种配电网线路异名相两点相继接地故障选线方法
CN107765076B (zh) 一种励磁涌流识别方法及识别装置
CN103368155B (zh) 抑制变压器直流偏磁的电容隔直流可控开断桥式电路
CN108649532B (zh) 一种注入式变压器线路缺相保护方法及装置
CN103954879B (zh) 一种带并联电抗器同杆双回线故障性质判别方法
CN105044543A (zh) 一种pt断线后电抗器故障判别方法
Das et al. A novel hybrid differential algorithm for turn to turn fault detection in shunt reactors
CN210534262U (zh) 一种谐振接地系统的大电流故障选线系统
CN109884436B (zh) 电力电容器成套装置在线监测方法
CN105352427B (zh) 一种变压器绕组变形量在线检测方法
WO2013007151A1 (zh) 串联电容器装置的控制保护方法、装置与系统
CN103779835A (zh) 基于铁耗无功功率特性变压器绕组匝间短路继电保护方法
Vahidi et al. A novel approach to adaptive single phase autoreclosure scheme for EHV power transmission lines based on learning error function of ADALINE
CN109103846B (zh) 一种基于比相和比幅原理的抽能电抗器保护方法及系统
Liu et al. Single‐pole fault protection for MMC‐HVDC transmission line based on improved transient‐extracting transform
WO2021227128A1 (zh) 一种漏电保护动作装置的动作特性测试方法及测试电路
Upadhyay et al. Design and implementation of adaptive autoreclosure for EHV transmission line
He et al. Adaptive traveling waves based protection of distribution lines
CN113452003B (zh) 一种中性点接地系统铁磁谐振的快速消除方法及装置
KR100383720B1 (ko) 송전선로의 아크사고 검출 및 고장거리 추정방법
Eissa et al. Laboratory investigation for power transformer protection technique based on positive sequence admittance approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19795882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19795882

Country of ref document: EP

Kind code of ref document: A1