WO2019210506A1 - 一种正向-反向进给螺旋铣孔刀具 - Google Patents

一种正向-反向进给螺旋铣孔刀具 Download PDF

Info

Publication number
WO2019210506A1
WO2019210506A1 PCT/CN2018/085575 CN2018085575W WO2019210506A1 WO 2019210506 A1 WO2019210506 A1 WO 2019210506A1 CN 2018085575 W CN2018085575 W CN 2018085575W WO 2019210506 A1 WO2019210506 A1 WO 2019210506A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
zone
hole
cutting edge
cutting zone
Prior art date
Application number
PCT/CN2018/085575
Other languages
English (en)
French (fr)
Inventor
董志刚
康仁科
杨国林
朱祥龙
高尚
周平
郭东明
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to PCT/CN2018/085575 priority Critical patent/WO2019210506A1/zh
Priority to US17/053,044 priority patent/US20210362248A1/en
Priority to EP18917062.4A priority patent/EP3789144A4/en
Publication of WO2019210506A1 publication Critical patent/WO2019210506A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/02Milling surfaces of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0485Helix angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0485Helix angles
    • B23C2210/0492Helix angles different
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/20Number of cutting edges
    • B23C2210/203Number of cutting edges four
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/40Flutes, i.e. chip conveying grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/54Configuration of the cutting part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2220/00Details of milling processes
    • B23C2220/52Orbital drilling, i.e. use of a milling cutter moved in a spiral path to produce a hole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/27Composites, e.g. fibre reinforced composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2250/00Compensating adverse effects during milling
    • B23C2250/12Cooling and lubrication

Definitions

  • the invention relates to the field of hole making processing of composite materials, metals and composite materials and metal laminated structures, in particular to a forward-reverse feed spiral milling tool.
  • a large number of composite materials are used in the design of aerospace vehicles, and the problem of hole making of composite materials and metal laminated structures is often encountered in the assembly process of aircraft. There are often no other supporting materials on the back side of the composite during the hole making process. In this case, when the tool is cut out from the back side of the composite material, processing defects such as delamination, tearing, and burring often occur.
  • a common method of making holes is to use a drill bit to drill a hole. When this method is used, a large axial cutting force is generated.
  • Another new method of making holes is to use a special end mill for spiral milling.
  • the axial cutting force is still small compared to the borehole, but it still exists.
  • Composite materials are usually composed of multiple layers of fibers. Different fiber layers are usually weaker resin matrix materials. The axial force during processing is the main cause of structural damage in composites. When the side is cut, under the action of the cutting force of the tool, the fiber layer near the outlet side is deformed, and the resin matrix between the different fiber layers is broken to form processing defects such as delamination and tear, which affect the quality of the hole.
  • FIG. 1 shows a case where a machining defect is formed on the exit side of the drill hole, and as shown in Fig. 2, a machining defect is formed on the outlet side of the spiral milling hole.
  • a pad is added to the rear end of the composite material, when the tool is cut to the side near the exit of the composite material, the fiber layer near the outlet side is supported by the backing plate without major deformation, and the resin matrix between the fiber layers is not Will be destroyed, so as to avoid the occurrence of processing defects such as delamination, tearing, as shown in Figure 3 is the case of drilling a mat, as shown in Figure 4 is the spiral milling hole with a mat.
  • the back surface of the composite material cannot be installed with a backing plate during the hole making; in some cases, although the backing plate can be added during the hole making, the installation and disassembly of the backing plate will greatly increase the production cost and reduce the production efficiency. .
  • a feasible method is to use the forward-reverse feed spiral milling method of the composite material and the metal laminated structure to feed the processed composite material in the opposite direction to the normal spiral milling hole or the drilling processing feed direction. end.
  • the specific operation method is to use a special tool to feed a pre-machined hole in the direction of cutting from the metal side and cutting out from the side of the composite material, and then the step of the front end cutting portion is large and the diameter of the rear end neck is small.
  • the cutting portion of the tool passes through the pre-machined hole, and the tool has a certain amount of eccentricity with respect to the machining hole, and then is fed by a spiral milling hole from the composite material layer to the metal layer, using the cutting end and the neck
  • the cutting edge on the step surface of the transition zone performs one or more reaming of the pre-machined hole until the final required size is reached.
  • the processing method can change the direction of the axial cutting force of the composite material during processing, and utilize the metal layer of the composite material and the metal laminated structure as a backing plate to avoid processing defects such as delamination and tear of the composite material. As shown in Fig.
  • FIG. 5 a schematic diagram of a forward-reverse feed spiral milling method in the form of a reverse-feeding spiral-milling hole after pre-drilling a pre-machined hole is shown.
  • Fig. 6 the schematic diagram of the forward-reverse feed spiral milling method in the form of the reverse-feeding spiral-milling hole after the pre-machining hole of the spiral milling hole is used.
  • FIG. 7 is a schematic view showing a forward-reverse feed spiral milling method for a composite material single layer or a composite material laminate using a front-end end processing form.
  • the above processing method requires a special processing tool.
  • the diameter of the cutting end of the cutting tool is larger than that of the neck, and the cutting edge of the cutting part also needs a specially designed cutting edge.
  • a special tool is lacking.
  • the present invention is directed to the above problems, and studies to design a forward-reverse feed spiral milling tool, which firstly feeds a through-and small pre-machined hole from the inlet side forward feed, and then reverses from the outlet side.
  • the final aperture is spirally milled for the hole making of the composite material and the metal laminated structure, which solves the defects that the composite material is prone to delamination, tearing and the like, and the installation of the pad is time-consuming and laborious.
  • the invention adopts the following technical means:
  • a forward-reverse feed spiral milling cutter comprising a cutting portion, a neck portion and a shank connected in sequence;
  • the cutting portion includes a front end cutting zone, a circumferential cutting zone and a rear cutting zone which are sequentially connected;
  • the front cutting zone is an end mill structure or a bit structure.
  • the front end cutting zone includes four front cutting edges that are symmetrically distributed in the center and can be fed forward along the axis of the tool.
  • the front end cutting zone has a conical shape, and includes two front cutting edges which are symmetrically distributed in the center and can feed the drilling hole along the axis of the tool;
  • the circumferential cutting zone has a cylindrical shape and is a circumferential milling cutter structure, and a cylindrical cutting surface is provided with a spiral cutting edge extending to the front cutting edge and capable of cutting along a radial direction of the cutter;
  • the rear cutting zone has a truncated cone shape, the outer diameter of the large end is matched with the diameter of the circumferential cutting zone, and the outer diameter of the small end is matched with the diameter of the neck, and the rear cutting zone is An inclined cutting edge extending to the helical cutting edge and capable of feeding in opposite directions along the axis of the tool is provided on the side wall, the other end of the inclined cutting edge extending to the neck.
  • the length of the neck is greater than the hole depth of the through hole to be processed, the diameter of the handle is a value for facilitating the clamping, and the length satisfies the clamping requirements of common processing equipment.
  • a spiral groove for facilitating chip discharge is provided between adjacent front end cutting edges, between adjacent spiral cutting edges, and between adjacent inclined cutting edges.
  • the cutting portion is provided with a cooling hole for achieving cooling and lubrication of the cutting region during machining, and the cooling hole penetrates the rear end of the shank.
  • the difference between the diameter of the cutting portion (ie, the diameter of the circumferential cutting zone) and the diameter of the neck is as large as possible to achieve reverse spiral milling The material is quickly removed.
  • the helical cutting edge has a helix angle of less than 30° to ensure that the cutter can be smoothly discharged while the cutter is being spirally milled in the reverse direction.
  • the axial length of the circumferential cutting zone is as small as possible and greater than the lead of the feed trajectory in the reverse spiral milling.
  • the front cutting zone, the circumferential cutting zone, the rear cutting zone and the neck have a rounded transition between each other, and the radius of curvature of the rounded corner is 0.2 mm to 1 mm to improve the cutter Anti-wear ability.
  • one of the four front end cutting edges extends oppositely to the axis of the tool to intersect the cutter
  • the anterior material is removed during axial direction feeding, and another set of oppositely disposed leading edge cutting edges are not extended to the axis of the tool to terminate.
  • the circumferential cutting zone includes a front section of the cutting zone and a rear section of the cutting zone, the front section of the cutting zone having a front spiral that can be cut along the radial direction of the cutter a cutting edge, the rear section of the cutting zone having a rear helical cutting edge that can be cut along a radial direction of the cutter, the front helical cutting edge and the rear helical cutting edge being oppositely and symmetrically rotated,
  • the front helical cutting edge and the rear helical cutting edge have equal helix angles, the front helical cutting edge extending to the leading end cutting edge, the rear helical cutting edge extending to the inclined cutting edge,
  • the reverse direction of the cutting section adopts the opposite direction of rotation so that the cutter can be reversely fed into the spiral milling hole, the chips are discharged toward the cutting portion, the chip removal is easier, and the quality of the processed hole wall is improved;
  • the present invention is also applicable to the fabrication of single or multi-layer composites, single-layer metals, and metal laminates.
  • the present invention has the following beneficial effects:
  • the metal layer can serve as a backing plate, so that the fiber layer of the composite material does not have defects such as delamination and tear.
  • the present invention can be widely spread in the fields of hole making and the like.
  • FIG. 1 is a schematic view showing the principle of forming damage on the exit side of a composite material under the existing drilling processing method in the background art of the present invention.
  • FIG. 2 is a schematic view showing the principle of forming damage at the exit side of the composite material under the existing spiral milling hole processing method in the background art of the present invention.
  • Fig. 3 is a schematic view showing the principle of suppressing processing damage when there is a backing plate on the outlet side of the composite material in the prior art drilling method according to the prior art of the present invention.
  • Fig. 4 is a schematic view showing the principle of suppressing the damage of the processing when the outer side of the composite material has a backing plate under the existing spiral milling hole processing method in the background art of the present invention.
  • Fig. 5 is a schematic view showing a forward-reverse feed spiral milling method in the form of a reverse-feeding spiral-milling hole after pre-drilling a pre-machined hole in the background art of the present invention.
  • FIG. 6 is a schematic view of a forward-reverse feed spiral milling method in the form of a reverse-spinning spiral-milled hole after pre-machining a hole by using a spiral-milled hole in the background art of the present invention.
  • FIG. 7 is a schematic view of a forward-reverse feed spiral milling method for a composite single layer or a composite material laminate in a front-end and a back-end processing form in the background art of the present invention.
  • Figure 8 is a perspective view of a forward-reverse feed spiral milling tool in Embodiment 1 of the present invention.
  • Figure 9 is a front elevational view showing a forward-reverse feed spiral milling cutter in Embodiment 1 of the present invention.
  • Figure 10 is a schematic illustration of the front end cutting zone of a forward-reverse feed spiral milling tool in Embodiment 1 of the present invention.
  • Figure 11 is a physical diagram of a forward-reverse feed spiral milling cutter in Embodiment 1 of the present invention.
  • Figure 12 is a magnified view of the cutting portion of a forward-reverse feed spiral milling cutter according to Embodiment 1 of the present invention.
  • Figure 13 is a magnified view of the cutting portion at the rear end of the cutting portion of a forward-reverse feed spiral milling cutter according to Embodiment 1 of the present invention.
  • Figure 14 is a view showing the exit quality of a hole obtained by forward-reverse feed spiral milling of a composite material and a metal laminated structure by a forward-reverse feed spiral milling cutter according to Embodiment 1 of the present invention; Comparison of the exit quality processing results of the pre-machined holes obtained by feeding the spiral milling holes from the inlet side for the first time.
  • Figure 15 is a perspective view of a forward-reverse feed spiral milling tool in Embodiment 2 of the present invention.
  • Figure 16 is a front elevational view showing a forward-reverse feed spiral milling cutter in Embodiment 2 of the present invention.
  • Figure 17 is a schematic view showing the front end cutting zone of a forward-reverse feed spiral milling cutter in Embodiment 2 of the present invention.
  • Figure 18 is a perspective view of a forward-reverse feed spiral milling tool in Embodiment 3 of the present invention.
  • Figure 19 is a front elevational view showing a forward-reverse feed spiral milling cutter in Embodiment 3 of the present invention.
  • Figure 20 is a perspective view of a forward-reverse feed spiral milling cutter according to Embodiment 3 of the present invention.
  • Figure 21 is a magnified view of the cutting portion of a forward-reverse feed spiral milling cutter according to Embodiment 3 of the present invention.
  • Figure 22 is a magnified view of the cutting portion at the rear end of the cutting portion of a forward-reverse feed spiral milling cutter according to Embodiment 3 of the present invention.
  • Figure 23 is a view showing the quality of the hole outlet obtained by the hole making method using a combination of drilling and spiral milling in a forward-reverse feed spiral milling tool according to Embodiment 3 of the present invention, and the first time from the inlet side. Comparison of the export quality processing results of the pre-machined holes obtained by the forward feed drilling.
  • a forward-reverse feed spiral milling cutter for the composite material and the metal laminated hole firstly feeding a through and small pre-machined hole from the inlet side forward feed, and then from the outlet side Reverse spiral milling of the final aperture, as shown in Figure 6, Figure 7, forward feed machining pre-machined holes, reverse feed spiral milling holes to process the final aperture process schematic for composite materials and metal laminated structures
  • the hole is formed to solve the defects that the outlet side of the composite material is prone to delamination, tearing and the like, and the installation of the pad is time-consuming and laborious.
  • a forward-reverse feed spiral milling cutter includes a cutting portion 1, a neck portion 2 and a handle portion 3 which are sequentially connected;
  • the cutting portion includes a front end cutting zone 4, a circumferential cutting zone 5 and a rear cutting zone 6 which are sequentially connected;
  • the front end cutting zone 4 is an end mill structure including four front cutting edges that are symmetrically distributed in the center and can feed forward along the axis of the tool, the front cutting edge being perpendicular to the axis of the tool;
  • the circumferential cutting zone 5 has a cylindrical shape and is a peripheral milling cutter structure having a cylindrical cutting surface provided with a spiral cutting edge extending to the leading edge cutting edge and capable of cutting along the radial direction of the cutter;
  • the rear end cutting zone 6 has a truncated cone shape, the outer diameter of the large end is matched with the diameter of the circumferential cutting zone 5, and the outer diameter of the small end is matched with the diameter of the neck 2, the rear end
  • the side wall of the cutting zone 6 is provided with an inclined cutting edge extending to the spiral cutting edge and capable of feeding backwards along the axis of the cutter, the other end of the inclined cutting edge extending to the neck 2 ;
  • the length of the neck portion 2 is greater than the hole depth of the through hole to be processed, the diameter of the handle portion 3 is a value for facilitating the clamping, and the length satisfies the clamping requirements of common processing equipment.
  • a spiral groove for facilitating chip discharge is provided between adjacent front end cutting edges, between adjacent spiral cutting edges, and between adjacent inclined cutting edges.
  • the cutting portion 1 is provided with a cooling hole 7 for achieving cooling and lubrication of the cutting region during processing, the cooling hole 7 penetrating the rear end of the shank portion 3, and the cooling hole 7 is located in the circumferential cutting portion 5 .
  • the difference between the diameter of the cutting portion 1 and the diameter of the neck portion 2 is as large as possible without affecting the overall rigidity of the cutter, so as to achieve rapid material removal during reverse spiral milling.
  • the helical cutting edge has a helix angle of less than 30°.
  • the axial length of the circumferential cutting zone 5 is as small as possible and greater than the lead of the feed trajectory in the reverse spiral milling.
  • the front end cutting zone 4, the circumferential cutting zone 5, the rear end cutting zone 6 and the neck 2 have rounded corner transitions with each other having a curvature of 0.2 mm to 1 mm.
  • a pair of oppositely disposed front cutting edges 8 extend to intersect the axis of the cutter, and another set of oppositely disposed front cutting edges 9 do not extend to the cutter The axis terminates.
  • the physical view of the tool and the forward-reverse feed spiral milling of the composite material and the metal laminated structure by the tool of the embodiment obtain the exit quality of the hole and the first time from the inlet
  • a forward-reverse feed spiral milling cutter includes a cutting portion 10, a neck portion 11 and a shank portion 12 that are sequentially connected;
  • the cutting portion includes a front end cutting zone 13, a circumferential cutting zone 14 and a rear cutting zone 15 which are sequentially connected;
  • the front end cutting zone 13 is an end mill structure including four front end cutting edges that are symmetrically distributed in the center and can feed forward along the axis of the tool, the front cutting edge being perpendicular to the axis of the tool;
  • the circumferential cutting zone 14 has a cylindrical shape and is a peripheral milling cutter structure, which is divided into a front section of the cutting zone and a rear section of the cutting zone, and the front section of the cutting zone has a front spiral cutting edge which can be cut along the radial direction of the cutter.
  • the rear section of the cutting zone has a rear helical cutting edge that can be cut along a radial direction of the cutter, the front helical cutting edge and the rear helical cutting edge being oppositely and symmetrically rotated,
  • the front helical cutting edge and the rear helical cutting edge have equal helix angles, the front helical cutting edge extending to the leading end cutting edge, and the opposite direction of the cutting zone is reversed to allow the tool to be reversed
  • the rear end cutting zone 15 has a truncated cone shape, the outer diameter of the large end is matched with the diameter of the circumferential cutting zone 14, and the outer diameter of the small end is matched with the diameter of the neck 11, the rear end
  • the side wall of the cutting zone 15 is provided with a slanted cutting edge extending to the spiral cutting edge and capable of feeding backwards along the axis of the cutter, the other end of the inclined cutting edge extending to the neck 11 ;
  • the length of the neck portion 11 is larger than the hole depth of the through hole to be processed, the diameter of the handle portion 12 is a value for facilitating the clamping, and the length satisfies the clamping requirements of common processing equipment.
  • a spiral groove for facilitating chip discharge is provided between adjacent front end cutting edges, between adjacent spiral cutting edges, and between adjacent inclined cutting edges.
  • the cutting portion 13 is provided with a cooling hole 16 for achieving cooling and lubrication of the cutting region during processing, the cooling hole 16 penetrating the rear end of the shank portion 12, and the cooling hole 16 is located in the circumferential cutting portion 14. .
  • the difference between the diameter of the cutting portion 10 and the diameter of the neck portion 11 is as large as possible without affecting the overall rigidity of the cutter, so as to achieve rapid material removal during reverse spiral milling.
  • the helical cutting edge has a helix angle of less than 30°.
  • the axial length of the circumferential cutting zone 14 is as small as possible and greater than the lead of the feed trajectory in the reverse spiral milling.
  • the front end cutting zone 13, the circumferential cutting zone 14, the rear end cutting zone 15, and the neck 11 have a rounded transition with respect to each other, and the radius of the rounded corner is 0.2 mm to 1 mm.
  • a pair of oppositely disposed front cutting edges 17 extend to intersect the axis of the cutter, and another set of oppositely disposed front cutting edges 18 do not extend to the cutter The axis terminates.
  • the cutters described in Examples 1 and 2 can be used for the hole making of single or multi-layer composites, metals and laminates in addition to the composite and metal laminate holes. Firstly, a through-cut and small pre-machined hole is machined through the spiral milling hole, and then a hole having a depth smaller than the hole depth of the through hole to be processed and reaching the first half of the final hole is spirally milled from the inlet side, after which, The hole is machined in the second half of the spiral milling from the outlet side to obtain the through hole to be processed.
  • the invention can also be used for the making of metal materials by means of reverse spiral milling holes to eliminate flash and burrs on the exit side of the metal material.
  • a forward-reverse feed spiral milling cutter includes a cutting portion 1', a neck portion 2' and a handle portion 3' which are sequentially connected;
  • the cutting portion 1' includes a front end cutting zone 4', a circumferential cutting zone 5' and a rear cutting zone 6';
  • the front end cutting zone 4' is conical and has a drill bit structure, including two front cutting edges that are symmetrically distributed in the center and can feed the bore along the axis of the cutter;
  • the circumferential cutting zone 5' has a cylindrical shape and is a peripheral milling cutter structure having a cylindrical cutting surface provided with a spiral cutting edge extending to the front cutting edge and capable of cutting along a radial direction of the cutter;
  • the rear cutting zone 6' has a truncated cone shape, and the outer diameter of the large end is matched with the diameter of the circumferential cutting zone 5', and the outer diameter of the small end is matched with the diameter of the neck 2'.
  • the side wall of the rear end cutting zone 6' is provided with an inclined cutting edge extending to the spiral cutting edge and capable of feeding backward along the axis of the cutter, the other end of the inclined cutting edge extending to the Neck 2 ⁇ ;
  • the length of the neck portion 2' is larger than the hole depth of the through hole to be processed, the diameter of the handle portion 3' is a value for facilitating the clamping, and the length should meet the clamping requirements of common processing equipment.
  • a spiral groove for facilitating chip discharge is provided between adjacent front cutting edges, between adjacent spiral cutting edges, and between adjacent inclined cutting edges.
  • the cutting portion 1' is provided with a cooling hole 7' for achieving cooling and lubrication of the cutting region during processing, the cooling hole 7' is penetrated with the rear end of the handle portion 3', and the cooling hole 7' is located at the Inside the cutting zone 4'.
  • the difference between the diameter of the cutting portion 1' and the diameter of the neck portion 2' is as large as possible to achieve rapid material removal during reverse spiral milling.
  • the helical cutting edge has a helix angle of less than 30°.
  • the axial length of the circumferential cutting zone 5' is as small as possible and greater than the lead of the feed trajectory at the time of the reverse spiral milling.
  • the front end cutting zone 4', the circumferential cutting zone 5', the rear end cutting zone 6' and the neck 2' have rounded corner transitions with a radius of curvature of 0.2 mm. 1mm.
  • the tool forward feed drilling pre-machining hole, the reverse feed spiral milling hole is processed to produce a final aperture process schematic diagram, and a combination of drilling and spiral milling holes is used for the composite material.
  • a through and small pre-machined hole is first drilled from the inlet side through the front end cutting zone 4', and then the final hole is spirally milled out from the outlet side for
  • the hole making of the composite material and the metal laminated structure solves the defects that the composite material is prone to delamination, tearing, and the like, and the installation of the pad is time-consuming and laborious.
  • This embodiment can also be used for making holes in composite materials, metals, and laminated structures, and eliminating the flash and burrs on the material exit side by reverse spiral milling holes.
  • the invention is suitable for the hole making of the composite material and the metal laminated structure, and is also suitable for the single hole of the composite material, the composite material lamination, the metal single layer and the metal lamination hole, and the method of spirally milling the hole by the reverse feeding. Avoid processing defects such as burrs and flash on the exit side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

一种正向-反向进给螺旋铣孔刀具,包括依次连接的切削部(10)、颈部(11)和柄部(12);切削部包括依次连接的前端切削区(13)、圆周切削区(14)和后端切削区(15);前端切削区为立铣刀结构或钻头结构;圆周切削区呈圆柱形且为周铣刀结构;后端切削区呈圆台形。该刀具可避免复合材料出现超出加工要求的分层、撕裂等缺陷,提高加工质量,节约成本,简化加工过程,提高生产效率,并且提高刀具寿命。

Description

一种正向-反向进给螺旋铣孔刀具 技术领域
本发明涉及复合材料、金属及复合材料与金属叠层结构的制孔加工领域,具体涉及一种正向-反向进给螺旋铣孔刀具。
背景技术
航空航天飞行器设计中大量使用复合材料,在飞行器装配过程中经常遇到复合材料与金属叠层结构的制孔问题。制孔加工时复合材料背面经常没有其他支撑材料,这种情况下当刀具从复合材料背面切出时经常出现分层、撕裂、毛刺等加工缺陷。
常用的制孔方法为使用钻头钻孔,使用这种加工方法时,会产生较大的轴向切削力。还有一种新的制孔方法为使用特制立铣刀进行螺旋铣孔,其轴向切削力虽然较钻孔小,但仍然存在。复合材料通常是由多层纤维组合而成的,不同纤维层之间通常为强度较弱的树脂基体材料,加工中的轴向力是引起复合材料加工损伤的主要原因,在刀具从复合材料一侧切出时,在刀具轴向切削力的作用下,靠近出口侧纤维层产生变形,将不同纤维层之间的树脂基体拉断,形成分层、撕裂等加工缺陷,影响制孔质量,如图1所示为钻孔出口侧形成加工缺陷的情况,如图2所示为螺旋铣孔出口侧形成加工缺陷的情况。如果在复合材料后端增加一层垫板,当刀具切削到靠近复合材料出口一侧时,靠近出口侧的纤维层会受到垫板的支撑而不发生大的变形,纤维层间的树脂基体不会被破坏,从而避免分层、撕裂等加工缺陷的出现,如图3所示为钻孔有垫板的情况,如图4所示为螺旋铣孔有垫板的情况。但是实际生产中,有些情况下复合材料背面无法在制孔时加装垫板;有些情况下虽然能在制孔时加装垫板,但垫板的安装拆卸将大幅增加生产成本,降低生产效率。
对于背面无支撑的复合材料制孔,实现无垫板情况下的无缺陷高质量制孔是目前急需解决的技术难题。一种可行的方法是采用复合材料与金属叠层结构的正向-反向进给螺旋铣孔方法,沿与正常螺旋铣孔或钻孔加工进给方向相反的方向进给加工复合材料的出口端。具体操作方式是先用专用刀具沿着从金属侧切入、从复合材料侧切出的方向正向进给加工出一个预加工孔,然后将前端切削部直径大、后端颈部直径小的阶梯型刀具的切削部穿过该预加工孔,并使刀 具相对加工孔具有一定的偏心量,然后以螺旋铣孔的方式,从复合材料层至金属层反向进给,利用切削部后端与颈部过渡区域阶梯面上的切削刃,对预加工孔进行一次或多次扩孔,直至达到最终要求尺寸。采用这种加工方法可以改变加工中复合材料受到的轴向切削力方向,并利用复合材料与金属叠层结构的金属层作为垫板,避免复合材料出现分层、撕裂等加工缺陷。如图5所示为采用先钻预加工孔后反向进给螺旋铣孔形式的正向-反向进给螺旋铣孔方法示意图。如图6所示为采用先螺旋铣孔预加工孔后反向进给螺旋铣孔形式的正向-反向进给螺旋铣孔方法示意图。如图7所示为针对复合材料单层或复合材料叠层采用前后端分别加工形式的正向-反向进给螺旋铣孔方法示意图。
但上述加工方法需要特殊的加工刀具,刀具前端切削部直径大于颈部,切削部后端还需有专门设计的切削刃,目前缺少这样的专用刀具。
发明内容
本发明针对以上问题的提出,研究设计一种正向-反向进给螺旋铣孔刀具,首先从入口侧正向进给加工出一个贯通且较小的预加工孔,然后从出口侧反向螺旋铣出最终孔径,用于复合材料和金属叠层结构的制孔,解决复合材料出口易出现分层、撕裂等缺陷和垫板安装费时费力的缺点。本发明采用技术手段如下:
一种正向-反向进给螺旋铣孔刀具,包括依次连接的切削部、颈部和柄部;
所述切削部包括依次连接的前端切削区、圆周切削区和后端切削区;
所述前端切削区为立铣刀结构或钻头结构,当为立铣刀结构时,所述前端切削区包括中心对称分布且可沿所述刀具的轴线正向进给切削的四个前端切削刃,当为钻头结构时,所述前端切削区呈圆锥形,包括中心对称分布且可沿所述刀具的轴线正向进给钻孔的两个前端切削刃;
所述圆周切削区呈圆柱形且为周铣刀结构,其圆柱面上设有延伸至所述前端切削刃且可沿所述刀具的径向进给切削的螺旋形切削刃;
所述后端切削区呈圆台形,其大端的外沿直径与所述圆周切削区的直径相匹配,其小端的外沿直径与所述颈部的直径相匹配,所述后端切削区的侧壁上设有延伸至所述螺旋形切削刃且可沿所述刀具的轴线反向进给切削的倾斜切削刃,所述倾斜切削刃的另一端延伸至所述颈部。
所述颈部的长度大于待加工的通孔的孔深,所述柄部的直径为便于装夹的数值,且长度满足常用加工设备的装夹要求。
相邻所述前端切削刃之间、相邻所述螺旋形切削刃之间和相邻所述倾斜切削刃之间均设有便于切屑排出的螺旋槽。
所述切削部上设有实现加工中切削区域的冷却与润滑的冷却孔,所述冷却孔与所述柄部后端贯通。
在不影响所述刀具整体刚度的前提下,所述切削部的直径(即所述圆周切削区的直径)与所述颈部的直径的差值尽量大,以实现反向螺旋铣孔时的材料快速去除。
所述螺旋形切削刃的螺旋角小于30°,以保证所述刀具在反向螺旋铣孔时,切屑也能够顺畅排出。
所述圆周切削区的轴向长度尽量小且大于反向螺旋铣孔时进给轨迹的导程。
所述前端切削区、所述圆周切削区、所述后端切削区和所述颈部彼此之间具有圆角过渡,所述圆角的曲率半径为0.2mm~1mm,以提高所述刀具的抗磨损能力。
当所述前端切削区为立铣刀结构时,所述四个前端切削刃中,其中一组相对设置的所述前端切削刃延伸到所述刀具的轴线处相交,以使所述刀具沿其轴线方向进给时去除前部材料,另外一组相对设置的所述前端切削刃不延伸至所述刀具的轴线处即终止,以便于加工制造。
为便于反向进给螺旋铣孔时切屑的排出,所述圆周切削区包括切削区前段和切削区后段,所述切削区前段具有可沿所述刀具的径向进给切削的前螺旋形切削刃,所述切削区后段具有可沿所述刀具的径向进给切削的后螺旋形切削刃,所述前螺旋形切削刃和所述后螺旋形切削刃的旋向相反且对称,所述前螺旋形切削刃和所述后螺旋形切削刃的螺旋角相等,所述前螺旋形切削刃延伸至所述前端切削刃,所述后螺旋形切削刃延伸至所述倾斜切削刃,所述切削区后段采用相反的旋向可使刀具反向进给螺旋铣孔时,切屑向切削部方向排出,排屑更容易,提高加工孔壁质量;
除用于复合材料与金属叠层制孔外,本发明也可用于单层或多层复合材料、单层金属及金属叠层的制孔加工。
与现有技术相比,本发明具有以下有益效果:
1.可避免复合材料出现超出加工要求的分层、撕裂等缺陷,提高加工质量。在使用本发明第一次正向进给加工孔的过程中,由于复合材料背面无垫板,可 能产生较大的加工缺陷,但有缺陷的材料会在后续的反向进给螺旋铣孔过程中被切削掉,且反向进给螺旋铣孔过程不会再产生新的加工缺陷。这是因在反向进给螺旋铣孔过程中复合材料受到的轴向力方向发生了改变,不会使出口侧纤维层产生可能导致分层、撕裂的变形。当刀具反向进给螺旋铣孔接近复合材料与金属层的界面时,金属层可充当垫板,使复合材料在此处的纤维层也不出现分层、撕裂等缺陷。
2.复合材料出口侧无需使用额外垫板,节约成本,简化加工过程,提高生产效率。
3.提高刀具寿命。本发明使用的刀具前端切削区进行正向加工孔时,允许产生一定尺度内的加工缺陷,因此刀具前端切削区的前端切削刃产生一定磨损后,即使加工质量下降,也能继续使用,直至产生的加工缺陷超过允许值。本发明使用后端切削区反向进给螺旋铣孔时,由于金属层可以充当垫板,因此即使产生一定程度的磨损,也不会在复合材料靠近金属一侧产生加工缺陷。
基于上述理由本发明可在制孔加工等领域广泛推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明背景技术中现有钻孔加工方法下复合材料出口侧加工损伤形成原理示意图。
图2是本发明背景技术中现有螺旋铣孔加工方法下复合材料出口侧时加工损伤形成原理示意图。
图3是本发明背景技术中现有钻孔加工方法下复合材料出口侧有垫板时对加工损伤抑制原理示意图。
图4是本发明背景技术中现有螺旋铣孔加工方法下复合材料出口侧有垫板时对加工损伤抑制原理示意图。
图5是本发明背景技术中采用先钻预加工孔后反向进给螺旋铣孔形式的正向-反向进给螺旋铣孔方法示意图。
图6是本发明背景技术中采用先螺旋铣孔预加工孔后反向进给螺旋铣孔形式的正向-反向进给螺旋铣孔方法示意图。
图7是本发明背景技术中针对复合材料单层或复合材料叠层采用前、后端分别加工形式的正向-反向进给螺旋铣孔方法示意图。
图8是本发明的实施例1中一种正向-反向进给螺旋铣孔刀具的轴测图。
图9是本发明的实施例1中一种正向-反向进给螺旋铣孔刀具的主视图。
图10是本发明的实施例1中一种正向-反向进给螺旋铣孔刀具的前端切削区的示意图。
图11是本发明的实施例1中一种正向-反向进给螺旋铣孔刀具的实物图。
图12是本发明的实施例1中一种正向-反向进给螺旋铣孔刀具的切削部实物放大图。
图13是本发明的实施例1中一种正向-反向进给螺旋铣孔刀具的切削部后端切削区实物放大图。
图14是利用本发明的实施例1中的一种正向-反向进给螺旋铣孔刀具对复合材料与金属叠层结构的正向-反向进给螺旋铣孔加工获得孔的出口质量与第一次从入口侧正向进给螺旋铣孔得到的预加工孔的出口质量加工效果对比图。
图15是本发明的实施例2中一种正向-反向进给螺旋铣孔刀具的轴测图。
图16是本发明的实施例2中一种正向-反向进给螺旋铣孔刀具的主视图。
图17是本发明的实施例2中一种正向-反向进给螺旋铣孔刀具的前端切削区的示意图。
图18是本发明的实施例3中一种正向-反向进给螺旋铣孔刀具的轴测图。
图19是本发明的实施例3中一种正向-反向进给螺旋铣孔刀具的主视图。
图20是本发明的实施例3中一种正向-反向进给螺旋铣孔刀具的实物图。
图21是本发明的实施例3中一种正向-反向进给螺旋铣孔刀具的切削部实物放大图。
图22是本发明的实施例3中一种正向-反向进给螺旋铣孔刀具的切削部后端切削区实物放大图。
图23是利用本发明的实施例3中的一种正向-反向进给螺旋铣孔刀具采用钻孔和螺旋铣孔组合的制孔方法加工获得的孔出口质量和第一次从入口侧正向进给钻孔得到的预加工孔的出口质量加工效果对比图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种正向-反向进给螺旋铣孔刀具,用于复合材料与金属叠层制孔时,首先从入口侧正向进给加工出一个贯通且较小的预加工孔,然后从出口侧反向螺旋铣出最终孔径,如图6、图7所示,正向进给加工预加工孔,反向进给螺旋铣孔加工出最终孔径过程示意图,用于复合材料与金属叠层结构的制孔,解决复合材料出口侧易出现分层、撕裂等缺陷和垫板安装费时费力的缺点。
实施例1
如图8-图10所示,一种正向-反向进给螺旋铣孔刀具,包括依次连接的切削部1、颈部2和柄部3;
所述切削部包括依次连接的前端切削区4、圆周切削区5和后端切削区6;
所述前端切削区4为立铣刀结构,包括中心对称分布且可沿所述刀具的轴线正向进给切削的四个前端切削刃,所述前端切削刃与所述刀具的轴线垂直;
所述圆周切削区5呈圆柱形且为周铣刀结构,其圆柱面上设有延伸至所述前端切削刃且可沿所述刀具的径向进给切削的螺旋形切削刃;
所述后端切削区6呈圆台形,其大端的外沿直径与所述圆周切削区5的直径相匹配,其小端的外沿直径与所述颈部2的直径相匹配,所述后端切削区6的侧壁上设有延伸至所述螺旋形切削刃且可沿所述刀具的轴线反向进给切削的倾斜切削刃,所述倾斜切削刃的另一端延伸至所述颈部2;
所述颈部2的长度大于待加工的通孔的孔深,所述柄部3的直径为便于装夹的数值,且长度满足常用加工设备的装夹要求。
相邻所述前端切削刃之间、相邻所述螺旋形切削刃之间和相邻所述倾斜切削刃之间均设有便于切屑排出的螺旋槽。
所述切削部1上设有实现加工中切削区域的冷却与润滑的冷却孔7,所述冷却孔7与所述柄部3后端贯通,所述冷却孔7位于所述圆周切削区5内。
在不影响所述刀具整体刚度的前提下,所述切削部1的直径与所述颈部2的直径的差值尽量大,以实现反向螺旋铣孔时的材料快速去除。
所述螺旋形切削刃的螺旋角小于30°。
所述圆周切削区5的轴向长度尽量小且大于反向螺旋铣孔时进给轨迹的导程。
所述前端切削区4、所述圆周切削区5、所述后端切削区6和所述颈部2彼此之间具有圆角过渡,所述圆角的曲率为0.2mm~1mm。
所述四个前端切削刃中,其中一组相对设置的所述前端切削刃8延伸到所述刀具的轴线处相交,另外一组相对设置的所述前端切削刃9不延伸至所述刀具的轴线处即终止。
如图11-图14,为该刀具实物图以及是利用本实施例刀具对复合材料与金属叠层结构的正向-反向进给螺旋铣孔加工获得孔的出口质量与第一次从入口侧正向进给螺旋铣孔得到的预加工孔的出口质量加工效果对比图。
实施例2
如图15-图17所示,一种正向-反向进给螺旋铣孔刀具,包括依次连接的切削部10、颈部11和柄部12;
所述切削部包括依次连接的前端切削区13、圆周切削区14和后端切削区15;
所述前端切削区13为立铣刀结构,包括中心对称分布且可沿所述刀具的轴线正向进给切削的四个前端切削刃,所述前端切削刃与所述刀具的轴线垂直;
所述圆周切削区14呈圆柱形且为周铣刀结构,分为切削区前段和切削区后段,所述切削区前段具有可沿所述刀具的径向进给切削的前螺旋形切削刃,所述切削区后段具有可沿所述刀具的径向进给切削的后螺旋形切削刃,所述前螺旋形切削刃和所述后螺旋形切削刃的旋向相反且对称,所述前螺旋形切削刃和所述后螺旋形切削刃的螺旋角相等,所述前螺旋形切削刃延伸至所述前端切削刃,所述切削区后段采用相反的旋向可使刀具反向进给螺旋铣孔时,切屑向切削部方向排出,排屑更容易,提高加工孔壁质量;
所述后端切削区15呈圆台形,其大端的外沿直径与所述圆周切削区14的直径相匹配,其小端的外沿直径与所述颈部11的直径相匹配,所述后端切削区15的侧壁上设有延伸至所述螺旋形切削刃且可沿所述刀具的轴线反向进给切削的倾斜切削刃,所述倾斜切削刃的另一端延伸至所述颈部11;
所述颈部11的长度大于待加工的通孔的孔深,所述柄部12的直径为便于装夹的数值,且长度满足常用加工设备的装夹要求。
相邻所述前端切削刃之间、相邻所述螺旋形切削刃之间和相邻所述倾斜切削刃之间均设有便于切屑排出的螺旋槽。
所述切削部13上设有实现加工中切削区域的冷却与润滑的冷却孔16,所述 冷却孔16与所述柄部12后端贯通,所述冷却孔16位于所述圆周切削区14内。
在不影响所述刀具整体刚度的前提下,所述切削部10的直径与所述颈部11的直径的差值尽量大,以实现反向螺旋铣孔时的材料快速去除。
所述螺旋形切削刃的螺旋角小于30°。
所述圆周切削区14的轴向长度尽量小且大于反向螺旋铣孔时进给轨迹的导程。
所述前端切削区13、所述圆周切削区14、所述后端切削区15和所述颈部11彼此之间具有圆角过渡,所述圆角的曲率为0.2mm~1mm。
所述四个前端切削刃中,其中一组相对设置的所述前端切削刃17延伸到所述刀具的轴线处相交,另外一组相对设置的所述前端切削刃18不延伸至所述刀具的轴线处即终止。
实施例1和实施例2中所述的刀具除用于复合材料与金属叠层制孔外,也可用于单层或多层复合材料、金属及叠层的制孔加工。首先通过螺旋铣孔在复合材料上加工出一个贯通且较小的预加工孔,然后从入口侧螺旋铣出一个深度小于待加工通孔的孔深的达到最终孔径的前半段加工孔,之后,从出口侧反向螺旋铣后半段加工孔,得到待加工的通孔。本发明也可用于金属材料的制孔,通过反向螺旋铣孔消除金属材料出口侧的飞边和毛刺。
实施例3
如图18和图19所示,一种正向-反向进给螺旋铣孔刀具,包括依次连接的切削部1`、颈部2`和柄部3`;
所述切削部1`包括依次连接的前端切削区4`、圆周切削区5`和后端切削区6`;
所述前端切削区4`呈圆锥形且为钻头结构,包括中心对称分布且可沿所述刀具的轴线正向进给钻孔的两个前切削刃;
所述圆周切削区5`呈圆柱形且为周铣刀结构,其圆柱面上设有延伸至所述前切削刃且可沿所述刀具的径向进给切削的螺旋形切削刃;
所述后端切削区6`呈圆台形,其大端的外沿直径与所述圆周切削区5`的直径相匹配,其小端的外沿直径与所述颈部2`的直径相匹配,所述后端切削区6`的侧壁上设有延伸至所述螺旋形切削刃且可沿所述刀具的轴线反向进给切削的倾斜切削刃,所述倾斜切削刃的另一端延伸至所述颈部2`;
所述颈部2`的长度大于待加工的通孔的孔深,所述柄部3`直径为便于装夹 的数值,且长度应满足常用加工设备的装夹要求。
相邻所述前切削刃之间、相邻所述螺旋形切削刃之间和相邻所述倾斜切削刃之间均设有便于切屑排出的螺旋槽。
所述切削部1`上设有实现加工中切削区域的冷却与润滑的冷却孔7`,所述冷却孔7`与所述柄部3`后端贯通,所述冷却孔7`位于所述前端切削区4`内。
在不影响所述刀具整体刚度的前提下,所述切削部1`的直径与所述颈部2`的直径的差值尽量大,以实现反向螺旋铣孔时的材料快速去除。
所述螺旋形切削刃的螺旋角小于30°。
所述圆周切削区5`的轴向长度尽量小且大于反向螺旋铣孔时进给轨迹的导程。
所述前端切削区4`、所述圆周切削区5`、所述后端切削区6`和所述颈部2`彼此之间具有圆角过渡,所述圆角的曲率半径为0.2mm~1mm。
如图5所示,为本实施例刀具正向进给钻预加工孔,反向进给螺旋铣孔加工出最终孔径过程示意图,一种钻孔与螺旋铣孔组合的刀具,用于复合材料与金属叠层制孔时,首先通过所述前端切削区4`从入口侧正向进给钻出一个贯通且较小的预加工孔,然后从出口侧反向螺旋铣出最终孔径,用于复合材料与金属叠层结构的制孔,解决复合材料出口易出现分层、撕裂的等缺陷和垫板安装费时费力的缺点。
本实施例也可用于复合材料、金属及叠层结构的制孔,通过反向螺旋铣孔消除材料出口侧的飞边和毛刺。
如图20-图23,为该刀具实物以及利用本实施例刀具采用钻孔和螺旋铣孔组合的制孔方法加工获得的孔出口质量和第一次从入口侧正向进给钻孔得到的预加工孔的出口质量加工效果对比图。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
本发明适用于复合材料与金属叠层结构的制孔,同时也适用于复合材料单层、复合材料叠层、金属单层与金属叠层的制孔,通过反向进给螺旋铣孔的方式避免出口侧产生毛刺、飞边等加工缺陷。

Claims (10)

  1. 一种正向-反向进给螺旋铣孔刀具,其特征在于:包括依次连接的切削部、颈部和柄部;
    所述切削部包括依次连接的前端切削区、圆周切削区和后端切削区;
    所述前端切削区为立铣刀结构或钻头结构,当为立铣刀结构时,所述前端切削区包括中心对称分布且可沿所述刀具的轴线正向进给切削的四个前端切削刃,当为钻头结构时,所述前端切削区呈圆锥形,包括中心对称分布且可沿所述刀具的轴线正向进给钻孔的两个前端切削刃;
    所述圆周切削区呈圆柱形且为周铣刀结构,其圆柱面上设有延伸至所述前端切削刃且可沿所述刀具的径向进给切削的螺旋形切削刃;
    所述后端切削区呈圆台形,其大端的外沿直径与所述圆周切削区的直径相匹配,其小端的外沿直径与所述颈部的直径相匹配,所述后端切削区的侧壁上设有延伸至所述螺旋形切削刃且可沿所述刀具的轴线反向进给切削的倾斜切削刃,所述倾斜切削刃的另一端延伸至所述颈部。
  2. 根据权利要求1所述的刀具,其特征在于:所述颈部的长度大于待加工的通孔的孔深,所述柄部的直径为便于装夹的数值,且长度满足常用加工设备的装夹要求。
  3. 根据权利要求1所述的刀具,其特征在于:相邻所述前端切削刃之间、相邻所述螺旋形切削刃之间和相邻所述倾斜切削刃之间均设有便于切屑排出的螺旋槽。
  4. 根据权利要求1所述的刀具,其特征在于:所述切削部上设有实现加工中切削区域的冷却与润滑的冷却孔,所述冷却孔与所述柄部后端贯通。
  5. 根据权利要求1所述的刀具,其特征在于:在不影响所述刀具整体刚度的前提下,所述切削部的直径与所述颈部的直径的差值尽量大,以实现反向螺旋铣孔时的材料快速去除。
  6. 根据权利要求1所述的刀具,其特征在于:所述螺旋形切削刃的螺旋角小于30°。
  7. 根据权利要求1所述的刀具,其特征在于:所述圆周切削区的轴向长度尽量小且大于反向螺旋铣孔时进给轨迹的导程。
  8. 根据权利要求1所述的刀具,其特征在于:所述前端切削区、所述圆周 切削区、所述后端切削区和所述颈部彼此之间具有圆角过渡,所述圆角的曲率半径为0.2mm~1mm。
  9. 根据权利要求1所述的刀具,其特征在于:当所述前端切削区为立铣刀结构时,所述四个前端切削刃中,其中一组相对设置的所述前端切削刃延伸到所述刀具的轴线处相交,另外一组相对设置的所述前端切削刃不延伸至所述刀具的轴线处即终止。
  10. 根据权利要求1所述的刀具,其特征在于:所述圆周切削区包括切削区前段和切削区后段,所述切削区前段具有可沿所述刀具的径向进给切削的前螺旋形切削刃,所述切削区后段具有可沿所述刀具的径向进给切削的后螺旋形切削刃,所述前螺旋形切削刃和所述后螺旋形切削刃的旋向相反且对称,所述前螺旋形切削刃和所述后螺旋形切削刃的螺旋角相等,所述前螺旋形切削刃延伸至所述前端切削刃,所述后螺旋形切削刃延伸至所述倾斜切削刃。
PCT/CN2018/085575 2018-05-04 2018-05-04 一种正向-反向进给螺旋铣孔刀具 WO2019210506A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/085575 WO2019210506A1 (zh) 2018-05-04 2018-05-04 一种正向-反向进给螺旋铣孔刀具
US17/053,044 US20210362248A1 (en) 2018-05-04 2018-05-04 Helical Milling Tool with Forward-Backward Feeding
EP18917062.4A EP3789144A4 (en) 2018-05-04 2018-05-04 SPIRAL MILLING TOOL WITH FORWARD AND REVERSE TRANSPORT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085575 WO2019210506A1 (zh) 2018-05-04 2018-05-04 一种正向-反向进给螺旋铣孔刀具

Publications (1)

Publication Number Publication Date
WO2019210506A1 true WO2019210506A1 (zh) 2019-11-07

Family

ID=68386297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085575 WO2019210506A1 (zh) 2018-05-04 2018-05-04 一种正向-反向进给螺旋铣孔刀具

Country Status (3)

Country Link
US (1) US20210362248A1 (zh)
EP (1) EP3789144A4 (zh)
WO (1) WO2019210506A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102417214B1 (ko) * 2022-04-28 2022-07-06 한국에어로(주) 공기압축기 에어 엔드의 스크류 로터 제작용 절삭 공구

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551796B1 (zh) * 1965-09-14 1980-01-17
CN101657284A (zh) * 2007-04-12 2010-02-24 钴碳化钨硬质合金公司 用于纤维增强塑料材料的轨道式钻孔的端铣刀
CN101758275A (zh) * 2008-12-23 2010-06-30 鸿富锦精密工业(深圳)有限公司 旋转刀具及复合加工方法
CN202571427U (zh) * 2012-04-10 2012-12-05 天津大学 碳纤维复合材料以及钛合金螺旋铣孔专用刀具
CN103157846A (zh) * 2013-04-08 2013-06-19 西安西航集团莱特航空制造技术有限公司 机加工高效反倒角铣刀及其使用方法
WO2018000009A1 (de) * 2016-06-28 2018-01-04 Fill Gesellschaft M.B.H. Bohrwerkzeug

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012009328B3 (de) * 2012-03-21 2013-08-14 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Fräsbohrwerkzeug
CN102728882B (zh) * 2012-07-26 2014-08-06 浙江大学 基于齿背冷却方式的复合材料/钛合金螺旋铣专用刀具
JP6247807B2 (ja) * 2014-12-12 2017-12-13 株式会社 東陽 切削工具及びこの切削工具を備えた切削装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551796B1 (zh) * 1965-09-14 1980-01-17
CN101657284A (zh) * 2007-04-12 2010-02-24 钴碳化钨硬质合金公司 用于纤维增强塑料材料的轨道式钻孔的端铣刀
CN101758275A (zh) * 2008-12-23 2010-06-30 鸿富锦精密工业(深圳)有限公司 旋转刀具及复合加工方法
CN202571427U (zh) * 2012-04-10 2012-12-05 天津大学 碳纤维复合材料以及钛合金螺旋铣孔专用刀具
CN103157846A (zh) * 2013-04-08 2013-06-19 西安西航集团莱特航空制造技术有限公司 机加工高效反倒角铣刀及其使用方法
WO2018000009A1 (de) * 2016-06-28 2018-01-04 Fill Gesellschaft M.B.H. Bohrwerkzeug

Also Published As

Publication number Publication date
EP3789144A4 (en) 2021-12-15
US20210362248A1 (en) 2021-11-25
EP3789144A1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
WO2013099841A1 (ja) ドリル
US8602698B2 (en) Combination end milling/drilling/reaming cutting tool
US7575401B1 (en) PCD drill for composite materials
US10272504B2 (en) Tool with right-hand and left-hand cutting features extending along the full length of the cutting zone
US9370829B2 (en) Bit exchangeable drill
CN110653397B (zh) 钻磨加工刀具及钻磨加工方法
CN107008952B (zh) 一种带锥钻和锪窝断屑结构的叠层薄板制孔刀具
CN108637337A (zh) 一种正向-反向螺旋铣孔刀具
CN108608044B (zh) 一种复合材料与金属叠层结构的正向-反向进给螺旋铣孔方法
JP2020519457A (ja) 複合材料およびその積層構造に対する高品質な穴開けに用いられる縦刃ダブルステップマイクロ歯刃具
JP5476590B1 (ja) 複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置
Dahnel et al. Analysis of tool wear and hole quality during Ultrasonic Assisted Drilling (UAD) of Carbon Fibre Composite (CFC)/titanium alloy (Ti6Al4V) stacks
WO2019210506A1 (zh) 一种正向-反向进给螺旋铣孔刀具
CN108608019B (zh) 一种钻孔和螺旋铣孔组合的制孔方法
JP2008142834A (ja) ドリル
CN210254408U (zh) 一种用于加工碳纤维增强复合材料的交错刃钻铣复合刀具
WO2019210505A1 (zh) 一种正向-反向进给螺旋铣孔方法
US20230130145A1 (en) Rotary cutting tool with continuous major flutes and discontinuous minor flutes intersecting to form quadrilateral-shaped face portions
CN112453532B (zh) 一种碳纤维复合材料螺旋铣孔专用复合刀具及其加工方法
JP4176931B2 (ja) 管用テーパねじ切り工具及び管用テーパねじ切り方法
WO2016093186A1 (ja) 砥石工具及びその製造方法
TWM580487U (zh) 螺旋剪刃式銑刀結構
CN116079125B (zh) 一种碳纤维复合材料低损伤螺旋铣扩专用复合刀具
KR20200080609A (ko) 절삭 성능이 향상된 cfrp 구멍 가공용 공구
CN108620641A (zh) 一种钻孔与螺旋铣孔组合的刀具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018917062

Country of ref document: EP