WO2019209082A1 - 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019209082A1
WO2019209082A1 PCT/KR2019/005106 KR2019005106W WO2019209082A1 WO 2019209082 A1 WO2019209082 A1 WO 2019209082A1 KR 2019005106 W KR2019005106 W KR 2019005106W WO 2019209082 A1 WO2019209082 A1 WO 2019209082A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
dci
terminal
pdsch
base station
Prior art date
Application number
PCT/KR2019/005106
Other languages
English (en)
French (fr)
Inventor
신석민
황승계
김선욱
박창환
박한준
안준기
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/050,701 priority Critical patent/US11503579B2/en
Priority to EP19793737.8A priority patent/EP3787362B1/en
Priority to KR1020207031820A priority patent/KR102453416B1/ko
Publication of WO2019209082A1 publication Critical patent/WO2019209082A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a method for transmitting and receiving data in a wireless communication system, and more particularly to narrow-band Internet of Things (NarrowB ⁇ nd-Internet of Things, NB-IoT) Multiple transport blocks in a wireless communication system that supports (Multi Transport Block: TB) relates to a method for transmitting and receiving data through scheduling and an apparatus supporting the same.
  • NarrowB ⁇ nd-Internet of Things NB-IoT
  • Multiple transport blocks in a wireless communication system that supports Multi Transport Block: TB
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service, and the explosive increase in traffic causes shortage of resources and users require faster services. Therefore, a more advanced mobile communication system is required. .
  • the present specification proposes a method for transmitting and receiving data in a wireless communication system supporting a narrowband Internet of Things (NB-IoT).
  • NB-IoT narrowband Internet of Things
  • the present specification proposes a method for transmitting and receiving data through scheduling of multiple transport blocks in a wireless communication system supporting NB-IoT.
  • the present specification proposes a method for transmitting and receiving a plurality of data through a single DCI by transmitting scheduling information related to scheduling of multiple transport blocks.
  • PDSCH downlink shared channel
  • NB-IoT narrow band of Internet of Things
  • the first DCI includes scheduling information related to reception of the plurality of PDSCHs.
  • the at least one PDSCH is received without receiving the separate DCI.
  • the present invention may further include receiving the separate DCI when the indication information does not indicate scheduling of the multiple transport block, wherein the separate DCI is configured to provide scheduling information of one of the at least one PDSCH.
  • the first PDCCH is a control channel for a single cell multicast control channel (SC-MCCH)
  • the first PDSCH is a shared channel for the SC-MCCH.
  • the present invention may further include receiving a second PDCCH for a single cell multicast traffic channel (SC-MTCH), wherein the plurality of PDSCHs are shared channels for the SC-MTCH. to be.
  • SC-MTCH single cell multicast traffic channel
  • the second PDCCH includes a second DCI for scheduling of the plurality of PDSCH
  • the plurality of PDSCHs are based on the second DCI and the first PDSCH. Is received.
  • the first PDCCH is a control channel for a single cell multicast traffic channel (SC-MTCH), and the first PDSCH is a shared channel for the SC-MTCH.
  • SC-MTCH single cell multicast traffic channel
  • the present invention receiving a second PDCCH for a single cell multicast control channel (SC-MCCH), the second PDCCH scheduling of the second PDSCH for the SC-MCCH A second DCI for; And receiving the second PDSCH for the SC-MCCH based on the second DCI, wherein the plurality of PDSCHs are received based on the first DCI and the first PDSCH.
  • SC-MCCH single cell multicast control channel
  • the first PDCCH is received based on the SC-MCCH.
  • the plurality of PDSCHs include one legacy PDSCH and at least one enhanced PDSCH, and the at least one enhanced PDSCH is for a terminal capable of scheduling the multiple transport block. PDSCH.
  • the first DCI includes scheduling information for the legacy PDSCH and the at least one enhanced PDSCH.
  • the scheduling information may include gap information indicating a subframe gap from the transmission end time of the legacy PDSCH to the transmission time point of the at least one enhanced PDSCH transmitted after the transmission of the legacy PDSCH or the at least enhanced PDSCH.
  • the first DCI further includes number information indicating the number of the at least one PDSCH.
  • the present invention also provides a first downlink control channel (Physical) including first downlink control information (DCI) to a terminal.
  • a first downlink control channel Physical
  • DCI first downlink control information
  • Downlink Control Channel transmitting PDCCH ⁇ ; Transmitting a first PDSCH based on the first DCI, wherein the first generation includes indication information indicating whether a multi transport block is scheduled; And repeatedly transmitting a plurality of PDSCHs to the terminal according to the indication information, wherein the plurality of repeatedly transmitted PDSCHs are scheduled through one DCI.
  • RF module radio frequency module
  • a processor functionally connected to the RF module, the processor comprising: a first downlink control channel (Physical) including first downlink control information (DCI) from a base station;
  • a first downlink control channel Physical
  • DCI first downlink control information
  • Receive Downlink Control Channel (PDCCH) and receive a first PDSCH based on the first DCI, wherein the first PDSCH includes indication information indicating whether to schedule a multi transport block, Receiving a PDSCH, at least one PDSCH of the plurality of PDSCH is provided without receiving a separate DCI according to the indication information.
  • a plurality of downlink shared channels (PDSCHs) or a plurality of uplink shared channels (IPSCHs) are transmitted through one DCI by transmitting information and scheduling information related to scheduling of multiple transport blocks.
  • Physical Uplink shared channel (PUSCH) has the effect of transmitting and receiving.
  • DCI downlink control information
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • 3 is a downlink sub in a wireless communication system to which the present invention can be applied Represents the structure of a frame.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 5 illustrates an example of a component carrier and awake merging in a wireless communication system to which the present invention can be applied.
  • FIG. 6 is a diagram illustrating the division of cells of a system supporting carrier aggregation.
  • 7 and 8 are flowcharts illustrating an example of an operation of a terminal for multi-TB scheduling of one or more physical channels / signals to which the method proposed by the present invention can be applied.
  • 9 and 10 are flowcharts illustrating an example of an operation of a base station for multi-TB scheduling of one or more physical channels / signals to which the method proposed by the present invention can be applied.
  • 11 is a flowchart illustrating an example of signaling between a base station and a terminal that performs multi-TB scheduling of one or more physical channels / signals to which the method proposed by the present invention can be applied.
  • FIG. 12 is a flowchart illustrating an example of a UE operation associated with a SC-PTM (Sing Cell Point to Multipoint) to which the method proposed by the present invention can be applied.
  • SC-PTM Serving Cell Point to Multipoint
  • FIG. 13 is a flowchart illustrating an example of an operation of a base station associated with a SC-PTM (Sing Cell Point to Multipoint) to which the method proposed by the present invention can be applied.
  • SC-PTM Single Cell Point to Multipoint
  • FIG. 14 is a SC-MCCH (Single Cell Multicast) proposed in the present invention
  • FIG. 1 shows an example of multiple TB scheduling for a control channel).
  • FIG. 15 illustrates another example of multi-TB scheduling for a Single Cell Multicast Control Channel (SC-MCCH) proposed in the present invention.
  • SC-MCCH Single Cell Multicast Control Channel
  • FIG. 16 is a diagram illustrating another example of multi-TB scheduling for a Single Cell Multicast Control Channel (SC-MCCH) proposed in the present invention.
  • SC-MCCH Single Cell Multicast Control Channel
  • FIG. 17 is a diagram illustrating another example of multi-TB scheduling for a single cell multicast control channel (SC-MCCH) proposed in the present invention.
  • SC-MCCH single cell multicast control channel
  • SC-MCCH single cell multicast control channel
  • 19 is a flowchart illustrating an example of a terminal operation related to unicast to which the method proposed by the present invention can be applied.
  • 20 is a flowchart illustrating an example of an operation of a base station related to unicast to which the method proposed by the present invention can be applied.
  • 21 is a flowchart illustrating an example of a terminal operation for multi-TB scheduling to which the method of limiting may be applied in the present invention.
  • FIG. 22 is a flowchart illustrating an example of a base station operation for multi-TB scheduling to which a method of limiting may be applied in the present invention.
  • FIG. 23 illustrates multi-TB scheduling to which the method proposed in the present invention can be applied.
  • FIG. 1 is a flowchart illustrating an example of an operation of a terminal for receiving downlink data.
  • FIG. 1 is a flowchart illustrating an example of an operation of a base station for transmitting downlink data through scheduling.
  • FIG. 25 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • FIG. 26 is another example of a block diagram of a wireless communication apparatus to which the methods proposed herein may be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • base station in this document 0 2019/209082 10 1 »(: 1/10 ⁇ 019/005106
  • the particular acknowledgment described as being performed may, in some cases, be performed by an upper node of the base station. That is, a number of network nodes £ including a base station.
  • various operations performed for communication with a terminal in a network made may be performed by a base station or network nodes other than the base station.
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( It can be replaced with terms such as Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) device, Machine-to-Machine (M2M) device, and Device-to-Device (D2D) device.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS It can be replaced with terms such as Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) device, Machine-to-Machine (M2M) device, and Device-to-Device (D2D) device.
  • WT Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • the transmitter is part of a base station and the receiver is at the terminal. It can be part.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • CDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • NOMA non-orthogonal mult-pie access
  • CDMA may be implemented by a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • 5G new radio defines Enhanced Mobile Broadband (eMBB), Massive Machine Type Communications (MMTC), Ultra Reliable and Low Latency Communications (URLLC), and vehicle-to-everything (V2X), depending on the usage scenario.
  • eMBB Enhanced Mobile Broadband
  • MMTC Massive Machine Type Communications
  • URLLC Ultra Reliable and Low Latency Communications
  • V2X vehicle-to-everything
  • the 5G NR standard is a standalone (SA) and non-standalone (NSA) based on the co-existence between the NR system and the LTE system. Separate.
  • 5G NR supports various subcarrier spacings, and supports CP-OFDM in downlink and CP-OFDM and DFT-S-OFDM in SC.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described in order to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the text may be described by the standard document.
  • eLTE eNB is the evolution of an eNB that supports connectivity to EPC and NGC.
  • gNB Node supporting NR as well as connection to NGC.
  • New RAN A radio access network that supports NR or E-UTRA or interacts with NGC.
  • Network slice A network slice defined by the operator to provide an optimized solution for specific market scenarios that require specific requirements with end-to-end coverage.
  • Network function is a well-defined external Logical nodes within the network infrastructure with well-defined functional coordination with interfaces.
  • NG-C Control plane interface used for the NG2 reference point between the new RAN and NGC.
  • NG-U User plane interface used for the NG3 reference point between the new RAN and NGC.
  • Non-standalone NR A deployment configuration that requires an LTE eNB as an anchor for control plane connection to EPC or an eLTE eNB as an anchor for control plane connection to NGC.
  • Non-Standalone E-UTRA Deployment configuration requiring eLTE eNB to gNB as an anchor for control plane connection to NGC.
  • User plane gateway The endpoint of the NG-U interface.
  • NR NR Radio Access or New Radio system in general
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • Type 1 radio frame structure and TDD (Time Division) applicable to FDD (Frequency Division Duplex) It supports Type 2 radio frame structure applicable to Duplex.
  • Type 1A illustrates a structure of a type 1 radio frame.
  • Type 1 radio frames can be applied to both full duplex and half duplex FDD.
  • a radio frame consists of 10 subframes.
  • One subframe consists of two consecutive slots in the time domain, and subframe i consists of slot 2i and slot 2i + l.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe is 1ms long and one slot is 0. It may be 5 ms.
  • uplink transmission and downlink transmission are distinguished in the frequency domain. While there is no restriction on full-duplex FDD, the terminal cannot simultaneously transmit and receive in half-duplex FDD operation.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol has one symbol period. It is to express. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1B illustrates a frame structure type 2.
  • an uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • 0 ' is a downlink U indicates a subframe for uplink transmission
  • 'S' indicates a downlink pilot time slot (DwPTS), guard period (GP), and uplink pilot time slot (UpPTS). It represents a special subframe consisting of three fields.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the uplink-downlink configuration may be classified into seven types, and positions and / or numbers of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe S exists in every half-frame, and in case of having a period of 5ms downlink-uplink switching time, it exists only in the first half-frame.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only. Subframes immediately following the UpPTS and subframe subframes 2019/209082 17 1> (: 1/1 ( ⁇ 2019/005106 This section is for uplink transmission.
  • the uplink-downlink configuration may be known to both the base station and the terminal as system information.
  • the base station may notify the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only an index of the configuration information.
  • the configuration information is a kind of downlink control information and can be transmitted through PDCCH (Physical Downlink Control Channel) like other scheduling information, and is commonly transmitted to all terminals in a cell through broadcast channel as broadcast information. May be
  • PDCCH Physical Downlink Control Channel
  • Table 2 shows the special subframes. Length).
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes 70 FDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number of resource blocks iTDL included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated. data region).
  • Examples of the downlink control channel used in 3GPP LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), and a Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Downlink control information (DCI) is used to control information transmitted through the PDCCH. do.
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information, or an uplink transmission (Tx) power control command for a certain terminal group.
  • PDCCH is a resource allocation and transmission format of DL-SCH (Downlink Shared Channel) (also called a downlink grant) and UL-SCH (Uplink Shared).
  • DL-SCH Downlink Shared Channel
  • UL-SCH Uplink Shared
  • Resource allocation information also called uplink grant
  • the plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of a set of one or a plurality of consecutive CCEs.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups. Format and use of PDCCH The number of bits of the possible PDCCH is determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • CRC Cyclic Redundancy Check
  • RNTI Radio Network Temporary Identifier
  • RNTI Radio Network Temporary Identifier
  • the system information more specifically, the PDCCH for the system information block (SIB), the system information identifier and the system information RNTI (SI-RNTI) may be masked to the CRC.
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • EPDCCH enhanced PDCCH
  • the EPDCCH is located in a physical resource block (PRB) specifically configured for the terminal.
  • PRB physical resource block
  • the PDCCH may be transmitted in up to three OFDM symbols in the first slot in the subframe, but the EPDCCH may be transmitted in a resource region other than the PDCCH.
  • the start time (ie, symbol) of the EPDCCH in the subframe may be configured in the terminal through higher layer signaling (eg, RRC signaling, etc.).
  • EPDCCH is a transport format, resource allocation and HARQ information associated with the DL-SCH, UL- A transport format, resource allocation and HARQ information associated with an SCH, and resource allocation information associated with a sidelink shared channel (SL-SCH) and a physical sidelink control channel (PSCCH) may be carried.
  • SL-SCH sidelink shared channel
  • PSCCH physical sidelink control channel
  • EPDCCH is one or more consecutive advanced CCEs (ECCEs)
  • Each ECCE may be composed of a plurality of enhanced resource element groups (EREGs).
  • EREG is used to define the mapping of ECCE to RE.
  • the terminal may monitor the plurality of EPDCCHs. For example, one or two EPDCCH sets in one PRB pair in which the UE monitors EPDCCH transmission may be configured.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) carrying uplink control information is allocated to the control region.
  • a PUSCH Physical Uplink Shared Channel
  • a PUCCH for one UE is allocated a resource block (RB) pair in a subframe. Descriptions belonging to the RB pair occupy different subcarriers in each of the two slots. This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • the communication environment considered in the embodiments of the present invention includes both a multi-carrier support environment. That is, a multi-carrier system or a carrier aggregation (CA) system used in the present invention refers to at least one having a bandwidth smaller than a target band when configuring a target broadband to support broadband. This refers to a system that aggregates and uses a component carrier (CC).
  • multi-carrier means the aggregation (or carrier aggregation) of the carrier, wherein the aggregation of the carrier is not only merge between adjacent carriers ( 0011 911 01 ) Means all merges between adjacent non-contiguous carriers.
  • the number of component carriers aggregated between downlink and uplink may be set differently.
  • 'DL CC' downlink component carriers
  • 'UL CC' uplink component carriers
  • carrier aggregation may be used interchangeably with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
  • Carrier aggregation in which two or more component carriers are combined, aims to support up to 100 MHz bandwidth in an LTE-A system.
  • the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system in order to maintain backward compatibility with the existing IMT system.
  • 3GPP LTE-advanced system ie LTE-A
  • the carrier aggregation system used in the present invention may support carrier aggregation by defining a new bandwidth regardless of the bandwidth used in the existing system.
  • the LTE-A system uses the concept of a cell to manage wireless resources.
  • the aforementioned carrier aggregation environment may be referred to as a multiple cell environment.
  • a cell is defined as a combination of a downlink resource (DL CC) and an uplink resource (UL CC), but the uplink resource is not an essential element. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • DL CC downlink resource
  • UL CC uplink resource
  • the DL CC and the UL CC may be configured on the contrary. That is, when a specific UE has a plurality of configured serving cells, a carrier aggregation environment in which a UL CC has more than the number of DL CCs may be supported. That is, carrier aggregation may be understood as the aggregation of two or more cells, each having a different carrier frequency (center frequency of the cell).
  • the one cell (cell) is to be distinguished from the 'cell 1 ' as the area covered by the base station is generally used.
  • Cells used in the LTE-A system include a primary cell (PCell: Primary Cell) and a secondary cell (SCell: Secondary Cell).
  • PCell Primary Cell
  • SCell Secondary Cell
  • P cell and S cell may be used as a serving cell.
  • PCell Primary Cell
  • SCell Secondary Cell
  • I 3 cells There is only one configured serving cell.
  • one or more serving cells may exist, and the entire serving cell includes a PCell and one or more SCells.
  • Serving cells can be configured via RRC parameters.
  • PhysCellM is a cell's physical layer identifier and has an integer value from 0 to 503.
  • SCelllndex is a short identifier used to identify an SCell and has an integer value from 1 to 7.
  • ServCelllndex is a short identifier used to identify a serving cell (P cell or S cell) and has an integer value from 0 to 7. A value of 0 is applied to the P cell, and SCelllndex is pre-assigned to apply to the S cell. In other words, the cell having the smallest cell ID (or cell index) in ServCelllndex becomes a P cell.
  • P cell means a cell operating on a primary frequency (or primary CC).
  • the UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process, and may also refer to a cell indicated in a handover process.
  • the P cell refers to a cell serving as a center of control-related communication among serving cells configured in a carrier aggregation environment. That is, the UE may receive and transmit a PUCCH only in its own Pcell, and may use only the Pcell to acquire system information or change a monitoring procedure.
  • Evolved Universal Terrestrial Radio Access merges carriers Only the Pcell may be changed for the handover procedure by using an RRCConnectionReconfigutaion message of a higher enumeration including a mobility controlInfo to a UE supporting an environment.
  • the S cell may refer to a cell operating on a secondary frequency (or, secondary CC). Only one PCell may be allocated to a specific UE, and one or more SCells may be allocated.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • PUCCH does not exist in the remaining cells excluding the P cell, that is, the S cell, among the serving cells configured in the carrier aggregation environment.
  • the E-UTRAN adds the SCell to the UE supporting the carrier aggregation environment, the E-UTRAN may provide all system information related to the operation of the related cell in the RRC_CONNECTED state through a dedicated signal.
  • the change of the system information may be controlled by the release and addition of the related SCell, and at this time, an RRC connection reconfigutaion message of a higher layer may be used.
  • the E-UTRAN may perform dedicated signaling having different parameters for each terminal, rather than broadcasting in an associated Scell.
  • the E-UTRAN may configure a network including one or more Scells in addition to the Pcells initially configured in the connection establishment process.
  • the Pcell and the SCell may operate as respective component carriers.
  • the primary component carrier (PCC ) is 2019/209082 27 1 »(: 1 ⁇ 1 ⁇ 2019/005106
  • the secondary component carrier 0: 0 can be used in the same meaning as the three cells.
  • 5 shows an example of a component carrier and carrier aggregation in a wireless communication system to which the present invention can be applied.
  • Fig. 5 (k) shows a single carrier structure used in the 1 / large system.
  • the component carriers are 10: and ⁇ 007 ⁇ .
  • One component carrier may have a frequency range of 2 ⁇ .
  • 5 indicates a carrier aggregation structure used in the system of £ 1: yaw. 5 shows the case where three component carriers having a frequency magnitude of 20 in this case are combined. ] (:( : W 007 ⁇ 3 each, but 1 (:( : and
  • the UE can simultaneously monitor three (::), receive downlink signals / data, and transmit uplink signals / data.
  • This approach is equally applicable to uplink transmission.
  • the linkage between the carrier CC of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by a higher layer message such as an RRC message or system information.
  • a combination of DL resources and UL resources may be configured by a linkage defined by SIB2 (System Information Block Type2). Specifically, the linkage carries the UL grant
  • This may mean a mapping relationship between a DL CC on which a PDCCH is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) on which data for HARQ is transmitted and a UL CC on which a HARQ ACK / NACK signal is transmitted ( Alternatively, this may mean a mapping relationship between DL CCs.
  • a configured cell may be configured for each terminal as a cell capable of carrier merging based on a measurement report among cells of a base station as shown in FIG. 5.
  • the configured cell may reserve resources for ack / nack transmission in advance for PDSCH transmission.
  • An activated cell is a cell configured to actually transmit PDSCH / PUSCH among configured cells.
  • CSI reporting and Sounding Reference Signal (SRS) transmission are performed for PDSCH / PUSCH transmission.
  • SRS Sounding Reference Signal
  • a de-activated cell is determined by command or timer operation of a base station.
  • CSI reporting and SRS transmission may be stopped.
  • Narrowband Physical Downlink used in NB-IoT
  • the UE needs to monitor NPDCCH candidates (ie, set of NPDCCH candidates) as set by higher layer signaling for control information.
  • the monitoring may mean trying to decode respective NPDCCHs in the set according to all DCI formats monitored.
  • the set of NPDCCH candidates for monitoring may be defined as NPDCCH search space.
  • the UE may perform monitoring using an identifier (eg, C-RNTI, P-RNTI, SC-RNTI, G-RNTI) corresponding to the corresponding NPDCCH search space.
  • the terminal may include: a) Type1-NPDCCH common search space, b) Typel-NPDCCH common search space, c) Type2-NPDCCH common search space, c) Type2-NPDCCH common search space It is necessary to monitor one or more of NPDCCH common search space, d) Type2A-NPDCCH common search space, and e) NPDCCH UE-specific search space.
  • the UE does not need to simultaneously monitor the NPDCCH UE-specific discovery space and the Type1-NPDCCH common discovery space.
  • the UE does not need to simultaneously monitor the NPDCCH UE-specific discovery space and the Type2-NPDCCH common discovery space.
  • the terminal is a common search space Type1 -NPDCCH and common search space Type2 -NPDCCH There is no need to monitor at the same time.
  • the UE is Type 1A-NPDCCH common discovery space or Type2A- of the subframe receiving the NPDSCH allocated by the NPDCCH for the DCI CRC scrambled by the P-RNTI or the subframe of the Type 1-NPDCCH common discovery space monitored by the UE NPDCCH There is no need to monitor the common search space.
  • the UE is a type of a subframe that receives the NPDSCH allocated by the NPDCCH for the DCI CRC scrambled by a subframe or C-RNTI (or temporary C-RNTI) of the Type 2-NPDCCH common search space monitored by the UE There is no need to monitor the 1A-NPDCCH common search space or the Type2A-NPDCCH common search space.
  • the UE does not need to monitor the Type2A-NPDCCH common discovery space in the same subframe that monitors the Type 1A-NPDCCH common discovery space. In addition, the UE does not need to monitor the TypelA-NPDCCH common search space in a subframe that receives the NPDSCH allocated by the NPDCCH for the DCI CRC scrambled by the SC-RNTI.
  • the UE does not need to monitor the Type2A-NPDCCH common search space in a subframe in which the UE receives the NPDSCH allocated by the NPDCCH for the DCI CRC scrambled by G-RNTI or SC-RNTI.
  • NPDCCH search space at aggregation level and repetition level is defined by a set of NPDCCH candidates.
  • the aggregation and repetition levels defining the search space and the corresponding monitored NPDCCH candidates are set by higher layers.
  • the parameter npdcch-NumRepetitions can be listed as shown in Table 3 by substituting the values (31 show 3 ⁇ ; 11:11 ⁇ 6).
  • k k b .
  • k b denotes a b-th consecutive NB-IoT downlink subframe from subframe k0 except subframe used for SI message transmission
  • b is ux R
  • u is 0, 1, ( R_ / R) -l.
  • the subframe k0 means a subframe satisfying Equation 1.
  • Equation 1 For the NPDCCH terminal-specific search space, G shown in Equation 1 is given by the higher layer parameter nPDCCH-startSF-UESS, It is given by the layer parameter nPDCCH-startSFoffset-UESS.
  • G shown in Equation 1 is given by a higher layer parameter npdcch-StartSF-CSS-RA, It is given by the layer parameter npdcch-Offset-.
  • Equation 1 In case of NPDCCH Type2-NPDCCH common search space, G shown in Equation 1 is given by the higher layer parameter npdcch-startSF-SC-MTCm]. It is given by the layer parameter npdcch_Offset-SC-MTCH.
  • k is k0 and is determined from the location of the NB-IoT paging opportunity subframe.
  • k is k0 and k0 is
  • Equation 2 G is given by the upper layer parameter npdcch-StartSF-SC-MCCH 6 ]], and CX ⁇ is given by the upper layer parameter npdcch-Offset-SC-MCCH.
  • the terminal When the terminal is set by the upper layer as a PRB for monitoring the NPDCCH terminal-specific light color region, the terminal should monitor the NPDCCH terminal-specific search space in the NB-I O T carrier set by the higher layer. In this case, the terminal does not expect to receive NPSS, NSSS, and NPBCH in the corresponding NB-IoT carrier.
  • the PRB is not configured by the higher layer, the UE should monitor the NPDCCH UE-specific discovery space on the same NB-IoT carrier on that NPSS / NSSS / NPBCH is detected.
  • the NB-IoT terminal detects the NPDCCH having the DCI format N0 ending in the subframe n, and the corresponding NPUSCH format 1 transmission is performed in the subframe n +. In the case of starting at k, the UE does not need to monitor the NPDCCH of any subframe starting from the subframe n + 1 to the subframe n + k ⁇ 1.
  • the NB-IoT terminal detects an NPDCCH having a DCI format N0 ending in subframe n or a random access response grant ending in subframe n ( Receives an NPDSCH carrying a random access response grant, and if the corresponding NPUSCH format 1 transmission starts in the subframe n + k, the UE is in the range from subframe n + 1 to subframe n + k-1 Random starting 2019/209082 35 1 »(: 1 ⁇ 1 ⁇ 2019/005106 It is not necessary to monitor this in the subframe.
  • the NB-IoT terminal is a higher layer parameter Is configured, the terminal detects an NPDCCH having a 001 format 1 ⁇ or 2 ending in subframe] 1, and if the NPDSCH transmission starts at subframe no, the terminal is in subframe 11-2 to subframe 11 There is no need to monitor the band of any subframe starting in the range up to + urinary-1.
  • the NB-IoT terminal is a higher layer parameter If not configured, the 101 terminal terminates in subframe 11 in 001 format or. Detect, If the transmission starts in subframe 11, the UE does not need to monitor the NPDCCH of any subframe starting in the range from subframe 11 + 1 to subframe] 1 + -1.
  • NB-IoT UE ends in subframe ⁇ ] :) ,
  • the terminal is from subframe 11 + 1 to subframe 11 +] ⁇ ;-1 Monitor 1 ⁇ 1 of any subframe starting in the range up to 2019/209082 36 1 »(: 1 ⁇ 1 ⁇ 2019/005106 No need.
  • the terminal does not need to receive any transmission in subframe 11 + 1.
  • NB- IoT terminal is higher Not configured, and if the UE has a large transmission ending in subframe II, the UE needs to monitor ⁇ of any subframes that start within the range of subframe 11 + 1 to subframe 11 + 3. none.
  • the terminal If the NB-IoT terminal receives this ending in subframe 11 and does not need to monitor the corresponding format 2, the terminal starts any subframe 11 + 1 to subframe 11 + 12. There is no need to monitor the subframe.
  • the terminal ends the candidate in subframe XI and another NPDCCH search space in which the terminal has a starting subframe 0 before subframe turn off + 5 of When configured to monitor candidates, the NPDCCH search space There is no need to monitor candidates.
  • the terminal ends subframe 11 + 5 after 1> 13 (: 3 ⁇ 4 candidates) of the NPDCCH search space in subframe II. If configured for monitoring of NPDCCH candidates in another NPDCCH search space with a starting subframe node before, There is no need to monitor candidates. 2019/209082 37 1 » (: 1/10 ⁇ 019/005106 The UE does not need to monitor the NPDCCH candidates in the NPDCCH search space during the NPUSCH UL gap.
  • the starting OFDM symbol for the NPDCCH is given by index l ⁇ PDCCHStart, in the first slot of subframe k.
  • the index l_cc H s tai : t is given by the higher layer parameter eutaControlRegionSize.
  • the index l PDCCHStart is 0.
  • PCI format Downlink Control Information Format
  • the DCI format OB may be used for scheduling of a PUSCH in each of multiple subframes of a Licensed-Assisted Access (LLA) SCel l, and may transmit the following information.
  • LLA Licensed-Assisted Access
  • Carrier Indicator (eg 0 or 3 bits)
  • PUSCH trigger A A value of 0 indicates non-triggered scheduling and a value of 1 indicates triggered scheduling (eg 1 bit ⁇ .
  • Timing offset (e.g. 4 bits): If PUSCH trigger A is 0, the timing offset field indicates an absolute timing offset for PUSCH transmission, otherwise, The first two bits of this field indicate the timing offset for UL offset 1, and the last two bits indicate the scheduling of the PUSCH through triggered scheduling is valid or time window.
  • Fomat0B-rl4 consists of two by the upper layer, the 1 bit field is applied, otherwise the 2 bit field is applied.
  • Table 6 below shows an example in which a bit value of the number field of scheduled subframes is determined.
  • Resource block assignment 5 or 6 bits provide resource allocation in the UL subframe.
  • Modulation and coding scheme eg 5 bits
  • HARQ process number eg 4 bits
  • Table 7 below shows an example of the HARQ process number.
  • Each scheduled PUSCH corresponds to one bit.
  • Table 8 below shows an example of the redundancy version.
  • 031 Request 1, 2, or 3 bits.
  • 2-bit fields are 5 or less Terminals composed of cells, one or more I)] " cells, and terminals whose corresponding 001 format is mapped to the terminal specific search space given by 01 ⁇ 11, by higher layers having one or more 031 processes.
  • Configured and corresponding 0 1 1 format is composed of two 031 measurement sets by the terminals mapped to the terminal specific search space given by 0-1 1, and a higher layer with parameter 081 81 ⁇ ⁇ , 001 format Applied to terminals mapped to a terminal-specific search space given by.
  • the 3-bit field is configured for 5 or more cells, and 001
  • the format is given by C-RNTI: Applies to terminals mapped to a specific search space.
  • PUSCH end symbol (eg 1 bit): A value of 0 indicates the last symbol of the last scheduled subframe, and a value of 1 indicates the last second symbol of the last scheduled subframe.
  • Table 9 shows an example of RNTI values
  • Table 10 shows an example of the use of RNTI values and associated transport and logical channels.
  • PRB Physical Resource Block
  • the NB-LTE system may be used as a communication method for implementing IoT by supporting a device (or terminal) such as a machine-type comirmnation (MTC) in a cellular system.
  • a device or terminal
  • MTC machine-type comirmnation
  • the NB-LTE system may be referred to as NB-IoT.
  • the NB-IoT system does not need to allocate an additional band for the NB-IoT system by using the same OFDM system as the OFDM parameters such as subcarrier spacing used in the existing LTE system.
  • the OFDM parameters such as subcarrier spacing used in the existing LTE system.
  • assigning 1 PRB of the legacy LTE system band for NB-IoT there is an advantage that the frequency can be used efficiently.
  • the physical channels of the NB-IoT system include N-Primary Synchronization Signal (N-PSS) / N-Secondary Synchronization Signal (N-SSS), N-PBCH (N-Physical Broadcast Channel), and N-PDCCH. It may be defined as / N- EPDCCH, N-PDSCH and the like. Here, 'N-' may be used to distinguish it from legacy LTE.
  • control channel used in the MTC may be defined as MPDCCH.
  • a legacy UE and an enhanced UE may be defined as follows.
  • Legacy terminal One transport block (TB) with one DCI Can be scheduled. DCI format for multi-TB block scheduling cannot be recognized.
  • Enhanced UE Multiple transport blocks can be scheduled through one DCI, and the DCI format for multiple transport block scheduling can also be recognized.
  • monitoring a search space means that a predetermined area of N-PDCCH is decoded according to a DCI format (DCI format) to be received through the search space, and then a corresponding CRC is pre-defined. It may also refer to the process of scrambling to a specific RNTI value to check whether it matches (ie, matches) a desired value.
  • DCI format DCI format
  • each terminal recognizes a single PRB as a single carrier, and thus, the PRB referred to herein may be interpreted as the same meaning as the carrier.
  • DCI format NO, DCI format N1, and DCI format N2 referred to herein may mean the DCI format NO, DCI format N1, and DCI format N2 described above (eg, defined in the 3GPP standard).
  • the embodiments proposed herein are described based on the relationship between a radio frame and a subframe, but this is the case in a next generation wireless communication system (e.g., an NR system).
  • a next generation wireless communication system e.g., an NR system
  • the same can be applied to the relationship of (subframe). That is, the radio frame of the present specification may mean a frame.
  • mapping of data and / or information to resources may be set not only in a subframe unit but also in a slot unit constituting the subframe.
  • SIB1-NB may be mapped in a slot unit within a subframe.
  • the number of OFDM symbols constituting the slot, the number of slots per frame and / or subframe may be set according to the number of numerology and / or the cyclic prefix length.
  • LTE LAA of the existing NB-IoT system e.g., NB-IoT system of Release 14
  • only multiple subframe scheduling for PUSCH transmission is introduced.
  • the base station may indicate the total number of subframes to be scheduled through the corresponding DCI, which may be determined based on the parameter maxNumberO; fSchedSubframes-FormatOB-r 14 ⁇ ⁇ value transmitted through RRC signaling. have.
  • one HARQ process number may be informed through the HARQ process number field, and the HARQ process number may be determined in ascending order according to the total number of subframes to be scheduled.
  • the new data indicator and the redundancy version can be delivered using 1 bit for each subframe, and other MCS / resource allocation / timing offset can be applied in common.
  • the existing NB-IOT system initially used only a single HARQ process, but then two HARQ processes were introduced.
  • the HARQ process number may indicate whether the terminal can store several different information in a buffer of the terminal from initial transmission to completion of retransmission.
  • a single HARQ process terminal receives a DCI once and then receives a DL grant or UL. 2019/209082 45 1 »(: 1 ⁇ 1 ⁇ 2019/005106 Upon receiving a grant, perform the operation on the next 131 1 grant or ⁇ grant until all retransmissions for that 1technology1 process II) are completed. You can't.
  • the terminal does not perform the terminal specific search space monitoring operation until all retransmissions for the corresponding 1 1 ms process 113 are completed.
  • the 3 ⁇ 470 process terminal may process two different 1 ms grants or 1 ms grant.
  • FIG. 7 and 8 are flowcharts illustrating an example of an operation of a terminal for multi-TB scheduling of one or more physical channels / signals to which the method proposed by the present invention can be applied.
  • FIG. 7 shows an example of uplink transmission of a terminal
  • FIG. 8 shows an example of downlink reception of a terminal.
  • the terminal may receive configuration information on scheduling to transmit uplink data to the base station (37010) and receive 1 ⁇ 1 for multi-TB scheduling based on the configuration information (37020).
  • 0 [1] may include scheduling information for transmitting uplink data to the base station by the terminal.
  • Uplink data can be transmitted (3030).
  • the terminal may continuously transmit uplink data to the base station until all scheduled TBs are transmitted.
  • the terminal may receive configuration information on multi-TB scheduling to receive downlink data from the base station (S8010), and may receive DCI for multi-TB scheduling based on the configuration information (S8020 ⁇ ).
  • the terminal may receive downlink data based on the TB scheduled from the base station based on the received DCI (S8030).
  • the terminal may continuously receive downlink data from the base station until all scheduled TBs are received.
  • the UE may transmit HARQ-Ack feedback to the base station according to whether feedback is required for the received TBs (S8040).
  • 9 and 10 are flowcharts illustrating an example of an operation of a base station for multi-TB scheduling of one or more physical channels / signals to which the method proposed by the present invention can be applied.
  • the base station transmits configuration information for multi-TB scheduling to receive downlink data to the terminal (S9010), and may receive DCI for multi-TB scheduling based on the configuration information (S9020).
  • the DCI may include scheduling information for transmitting uplink data to the base station by the UE. 2019/209082 47 1 »(: 1 ⁇ 1 ⁇ Since 2019/005106, the base station transmits ⁇ ) scheduled from the terminal based on Based on the uplink data can be received (39030).
  • the base station is scheduled Uplink data can be continuously received from the terminal until received.
  • FIG. 10 shows an example of downlink transmission of a base station.
  • the base station transmits configuration information for multi-TB scheduling to transmit downlink data to the terminal ( ⁇ 10010), and transmits multicasting: # 1 for multiple 1: 6 scheduling based on the configuration information (310020).
  • the base station is scheduled to the terminal based on the received 1) (: 1 Based on the downlink data can be transmitted (310030).
  • the base station may continue to transmit the downlink data to the terminal until all scheduled TB is transmitted.
  • the base station determines whether it is necessary to receive feedback on the received seed. Feedback may be received (310040).
  • FIG. 11 is a diagram of multiplexing one or more physical channels / signals to which the method proposed in the present invention can be applied.
  • FIG. 11 shows an example of signaling for transmitting and receiving uplink data and downlink data between a terminal and a base station described with reference to FIGS. 7 to 10.
  • downlink data does not require retransmission of a single cell point to multipoint (eg, single cell-multicast control channel (SC-MCCH), single cell-multicast traffic channel (SC-MTCH)) May correspond to the transmission.
  • SC-MCCH single cell-multicast control channel
  • SC-MTCH single cell-multicast traffic channel
  • multi-TB scheduling is applied to the SC-PTM
  • multi-TB scheduling is applied to the SC-PTM.
  • SC-MCCM can be used for transmission of the SC-MCCH.
  • FIG. 1 is a flowchart illustrating an example of a terminal operation associated with a cell point to multipoint).
  • the UE may transmit scheduling information related to TBs through DCI.
  • the terminal may receive configuration information (for example, higher layer signaling) related to the SC-PTM procedure from the base station (S12010).
  • configuration information for example, higher layer signaling
  • step S12010 may be omitted.
  • the terminal may receive (or monitor) the first NPDCCH in the search space set based on the configuration information transmitted from the base station.
  • DCI for scheduling for the first NPDSCH to which the SC-MCCH is delivered through the first NPDCCH may be delivered (ie, transmitted) (S12020).
  • the UE may receive (ie, receive) the SC-MCCH from the base station through the first NPDSCH scheduled by the first NPDCCH (S12030).
  • the UE may receive (or monitor) the second NPDCCH based on the received SC-MCCH (in the configured search space) (S12040).
  • the DCI for scheduling for the second NPDSCH to which the SC-MTCH is delivered through the second NPDCCH may be transmitted (that is, transmitted).
  • scheduling information for multiple TBs may be transmitted using DCI for legacy terminals, or a separate DCI may be set for scheduling information for multiple TBs.
  • the terminal may receive (that is, receive) the SC-MTCH from the base station through the second NPDSCH scheduled by the second NPDCCH (S12050).
  • FIG. 13 illustrates an example of an operation of a base station related to a SC-PTM (Sing Cell Point to Multipoint) to which the method proposed by the present invention can be applied. Is a flowchart.
  • SC-PTM Single Cell Point to Multipoint
  • the base station may transmit configuration information (for example, higher layer signaling) related to the SC-PTM procedure to the terminal (S13010).
  • configuration information for example, higher layer signaling
  • step S13010 may be omitted.
  • the base station may transmit (ie, transmit) the DCI for scheduling for the first NPDSCH to which the SC-MCCH is transmitted through the first NPDCCH (S13020). Thereafter, the base station may transmit (ie, transmit) the SC-MCCH to the terminal through the first NPDSCH scheduled by the first NPDCCH (L3030).
  • the base station is based on the SC-MCCH (in the configured search space) the second
  • NPDCCH can be transmitted (S13040).
  • the DCI for scheduling for the second NPDSCH to which the SC-MTCH is delivered through the second NPDCCH may be transmitted (that is, transmitted). Thereafter, the base station may transmit the SC-MTCH to the terminal through the second NPDSCH scheduled by the second NPDCCH (S13050).
  • the multi-TB scheduling proposed in the present invention may be used for transmission of the SC-MCCH and / or transmission of the ST-MTCH.
  • SC-MCCH Single Cell Multicast
  • Figure 1 shows an example of multiple TB scheduling for Control Channel.
  • the base station is a legacy legacy DCI without establishing a new DCI 2019/209082 51 1 » (the 1 '/ ⁇ 3 ⁇ 42019 / 005106 and-through the NPDSGH for its transmission can transmit information related to multiple scheduling and scheduling to the terminal.
  • the base station as shown in FIG. 14 for
  • NPDCCH first 13 (: 03 ⁇ 4)
  • the base station may transmit the configuration information related to 3 ⁇ 2- ⁇ to the terminal before the transmission of 1]: 01.
  • the base station may transmit -band over 01 (first 01) scheduled by the first NPDCCH.
  • the base station is multiplexed on the first NPDSCH Instruction information indicating whether scheduling may be included.
  • Enhanced terminal through the indication information is multiple We can see that it is scheduled, and then we send 3 (:-103 ⁇ 4) 2 1 ⁇ 1) (: ⁇ 3 can receive the second 1) (: 1.
  • the base station may transmit the second NPDCCH based on the first module!
  • the second 1) (1: NPDSCH (second) Via- may include scheduling information for receiving units, and And the second NPDSCH is scheduled It may be repeatedly transmitted at regular intervals until it is transmitted.
  • the legacy terminal is multiplexed from the base station Indication information indicating whether to schedule and a second ⁇ ) [1] transmitted through the second
  • Scheduling information related to scheduling is not recognized.
  • the legacy terminal is used for all? 0031 and the base station transmits; 2019/209082 52
  • the enhanced terminal uses the indication information indicating whether multiple 1: 6 scheduling is included in the first NPDSCH transmitted from the base station. It can recognize whether or not it is scheduled.
  • the terminal is transmitted through the second generation
  • the scheduling information is actually scheduled At least one of the number, the scheduling delay for multiple 1: 6, and / or the number of iterations for multiple 1m.
  • 2nd Scheduled multiple It can be transmitted repeatedly until all are transmitted, and the scheduling information associated with the second generation ⁇ transmission can be the same.
  • the enhanced recognizes whether multiple seedlings are scheduled through the first one, and multiples through the second generation.
  • the scheduling information related to the transmission it is repeatedly transmitted without receiving a second it is transmitted Since it is possible to know the scheduling information and scheduling information, it is possible to receive the second subcarrier repeatedly transmitted without monitoring the second ⁇ ⁇ (3 ⁇ 4).
  • Example 1 (For example, (3- 2019/209082 53 1 »(: 1 ⁇ 1 ⁇ by 2019/005106 value) It may be set to include scheduling information of multiple TBs. At this time, whether or not multi-scheduling can be indicated explicitly 0/0 ££ through a flag of 1 bit, the specific parameter value (for example,: ⁇ ! 1 ::) can be implicitly indicated by setting one of the preset values.
  • a specific range of drawing values (for example? 00? 3) can be set to (3-1 1) indicative of multiple scheduling, and
  • the legacy terminal has multiple values of 3-13 ⁇ 4 ⁇ 1. Since it is not possible to recognize whether or not scheduling is instructed, it is possible to monitor the first NPDCCH for scheduling the band according to the existing operation, and to receive 3 (that-1># 01) for which the parent 0031 schedules.
  • the enhanced terminal has a corresponding value of 3-1 1'1 Because we can recognize whether or not to schedule,
  • the scheduling delay for the multiple seedlings informs the UE of only one value. 2019/209082 54
  • the 1 ⁇ 1 ⁇ 2019/005106 scheduling delay transmitted to the terminal is the first to transmit the next seedling from the last subframe in which 03 ⁇ 4 carrying the previous seedling is transmitted. It can be set to be used as a scheduling delay of the interval to subframe).
  • the scheduling delay value may be independently set and transmitted to the terminal as many as the number of seed scheduled scheduled for the flexible scheduling of the base station.
  • the number of repetitions for the multiple seedlings may also be set to transmit only one value to the terminal and to be used as the number of repetitions of all, and the number of repetitions is independent of the actual number of scheduled?: 6 for the flexible scheduling of the base station. It may be set to be transmitted to the terminal.
  • the base station generates and transmits a new 1 ′ 1 for 01 to legacy terminals, but includes scheduling information such as 3 (:, resource allocation, repetition count, etc.) included in each 1 ′ 1. May be scheduled identically to the information contained in the 1: 1 previously transmitted.
  • the enhanced terminal may obtain indication information indicating whether to schedule multiple seedlings through a 30 ⁇ 0 ⁇ payload. It can recognize scheduling and scheduling information for transmission of multiple frames.
  • the enhanced terminal may recognize that the band for 3 ⁇ that-1 01 to be transmitted afterwards contains the same scheduling information as 1) (:( : 11) for the previously transmitted word.
  • the enhanced terminal is subsequently transmitted Without monitoring, it is possible to receive NPDSCHs for transmission of scheduled multiple TBs.
  • Such a method can reduce the broadcasting load of the base station. That is, even when the base station schedules the SC-MTCH as a single TB for the legacy terminal, the enhanced terminal can be recognized and received like multi-TB scheduling by transmitting additional information for the enhanced terminal in the SC-MCCH.
  • Example l-l_legacy indicates multi-TB scheduling information using the DCI and SC-MTCH payload>
  • FIG. 15 illustrates another example of multi-TB scheduling for a Single Cell Multicast Control Channel (SC-MCCH) proposed in the present invention.
  • SC-MCCH Single Cell Multicast Control Channel
  • indication information indicating whether multiple TBs are scheduled may be included in the payload of the SC-MTCH rather than the payload of the SC-MCCH and transmitted.
  • the indication information indicating whether multiple TBs are scheduled may be transmitted through the SC-MTCH payload instead of the SC-MCCH payload.
  • Embodiments 1 to 1 are the same as legacy devices until the UE receives the second NPDSCH for delivering the SC-MTCH, but the enhanced UE determines whether multiple TBs are scheduled through indication information included in the SC-MTCH payload. 2019/209082 56
  • the terminal schedules the band-which is subsequently transmitted based on the scheduling information for the transmission of the multi frame included in: 11 and the indication information included in the second yo0301 for the stage. 2nd You may not.
  • the scheduling information may include whether there is a TB to be continuously transmitted later, a scheduling delay up to and including Repetition counts, etc.
  • Scheduling information for scheduling may be set as follows. Transmitted after the transmission of the second 03 ⁇ 4 containing the indication information Information about whether there is a 1-bit field can be represented, the maximum scheduling The number of yo When scheduled, the terminal may expect that the information for subsequent?: 8 is no longer transmitted at the last 1: 6.
  • scheduling delay (for example, from the last subframe in which the NPDSCH transmitting the previous 1: 6 to the first subframe in which 1 0301 delivering the next one is transmitted) is given as an offset of the first obtained scheduling delay value. Can be given a new value.
  • the same value as the scheduling delay value transmitted previously may be used, and the following number of repetitions of?: 6 may be given as an offset of the initially obtained repetition number value or may be given as a new value.
  • the base station is a new to the legacy terminals each time MCS, resource allocation, repetition frequency, etc. to be transmitted in the DCI but transmitted in the DCI may be included in the scheduling information and transmitted in the same manner as the information included in the previously transmitted DCI.
  • the enhanced UE may not monitor the NPDCCH for the SC-MTCH transmitted after receiving the scheduling information and whether multiple TBs are scheduled through the SC-MTCH payload.
  • Such a method can reduce the broadcasting load of the base station. That is, even when the base station schedules the SC-MTCH as a single TB for the legacy terminal, the enhanced terminal may be recognized and received like multi-TB scheduling by including additional information for the enhanced terminal in the SC-MCCH and transmitting the same.
  • Embodiment 2 is an example of a method of scheduling multiple TBs through a compact DCI (or wake-up signal) instead of the enhanced DCI for scheduling multiple TBs.
  • the compact DCI is a legacy DCI format (for example, DCI format NO,
  • the base station When using a compact DCI, the base station is advantageous in terms of resource management because it does not need to allocate a large search area because the DCI payload is small, and the terminal needs only to monitor the search space for a shorter time. There is an advantage.
  • the wake-up signal is a signal introduced to the NB-IoT / eMTC while monitoring the paging search space (paging search space) on the terminal side. Introduced to reduce energy consumption.
  • transmitting multi-TB scheduling information using SC-MCCH or SC-MTCH payload is similar to the methods 1 and 1-1, but the proposed methods of MCS, resource allocation, repetition frequency, etc. received through legacy DCI It can be configured to be transmitted between multiple TBs scheduled using a compact DCI or wake-up signal so that it can be configured more flexibly.
  • compact DCI can be easily created by removing only those that are not needed in the legacy DCI format.
  • a search space for the compact DCI may be newly set, and corresponding information may be set differently for each TMGI through the SIB or through the SC-MCCH payload.
  • the RNTI value used may be set to use a G-RNTI value corresponding to the corresponding TMGI.
  • the multi-TB scheduling can provide independent MCS, resource allocation, number of repetitions, etc., thus efficiently managing resources on the base station side.
  • a separate DCI format may be configured for scheduling of multiple TBs.
  • a new DCI format for scheduling of multiple TBs is improved.
  • a separate DCI format for scheduling of multiple TBs may be set in addition to the previously set DCI format, and the base station may schedule multiple seedlings by transmitting the DCI of the enhanced DCI format to the UE.
  • the enhanced terminal monitors 1x1 in the search space and receives an enhanced 1x1 signal from the base station and receives the multiplex.
  • Scheduling information related to scheduling may be obtained, and multiplexes may be transmitted and received through the received scheduling information.
  • both the legacy terminal and the enhanced terminal can recognize and decode the 30 ⁇ 0 ⁇ payload.
  • the information is basically included and transmitted, and 30 ⁇ ä information, which can be recognized and decoded only by the enhanced terminal, may be additionally included and transmitted.
  • the legacy terminal cannot decode and recognize the 301 ⁇ 101 information for the enhanced terminal.
  • the information may be transmitted by being included in legacy 30 ⁇ information (for example, scheduling carrier index, search space information for-,-, etc.) set as an independent value, and improved to receive the information.
  • the UEs may be configured to monitor the corresponding 0 (: 1) by recognizing that the [] scheduling 1: 1 is an enhanced 1 ⁇ 1.
  • the UE When using this method, the UE does not have to blind decode different 001 sizes.
  • Scheduling information that can be transmitted over 1 (eg, The number of scheduled TBs, scheduling dilrea, etc.) can be set through the following method.
  • SIB system information block
  • SIB 20 informs the UE of the maximum number of multi-TBs to be used for multi-TB scheduling of each SC-MTCH and schedules the SC-MTCH. Through the improved DCI, the number of TBs actually scheduled can be transmitted to the UE.
  • the SIB may include the maximum number of TBs scheduled, and the enhanced DCI may include the number of TBs actually scheduled.
  • Each SC-MTCH may be configured to follow the maximum number of one common multiple seedlings or to include the maximum number of independent multiple TBs for each SC-MTCH in order to prevent a large increase in the number of fields of the enhanced DCI. .
  • Method 2 The payload of the SC-MCCG is set to include the maximum number of multi-TBs to be used for multi-TB scheduling for each SC-MTCH, and the TB actually scheduled through the enhanced DCI which actually schedules the SC-MTCH. The number can be instructed to the terminal.
  • each SC-MTCH may be configured to include the maximum number of one common multi-TB or the maximum number of independent multi-TBs for each SC-MTCH in order to prevent a large increase in the number of fields of the enhanced DCI.
  • Method 3 Actually scheduled through improved 1 ⁇ 1 The number can be informed to the terminal. In this case, Maximum schedulable multiple because field 001 can be large to contain counts The number may be limited.
  • the base station can flexibly set the number of TBs scheduled.
  • Method 4 Multiple Scheduling information for scheduling may be delivered to the terminal using an explicit field or a specific parameter in the 30 ⁇ 0 ⁇ payload rather than enhanced! ⁇ 1. At this time, the actual-schedule The count can be specified for each 30 ⁇ using an explicit field.
  • the maximum number may be predefined in seedlings or 301 3 ⁇ 4, or may be defined only in the standard.
  • certain parameter values for example, (: ⁇ 1 ! 1 :!) Is set to one of the values promised in advance, the base station may implicitly indicate to the terminal the number of specific seedlings actually scheduled.
  • At least one specific value You can indicate the number (for example, Seedling is 2 m, ?? 2, the civilian, and 3 may indicate the need.
  • the terminal is scheduled from the base station When receiving 5-111 1 corresponding to the number; ⁇ 1 ] :; Scheduled, actually scheduled The number can be recognized.
  • This method uses a number of separately scheduled numbers for the enhanced 001 field. 0 2019/209082 62 You can reduce the size of the DCI by not adding a field to indicate.
  • the actual scheduling delay value may be transmitted to the terminal through the improved DCI.
  • the scheduling delay value is transmitted to the terminal only one value, and the transmitted scheduling delay value is transmitted between all TBs (for example, the NPDSCH transmitting the next TB from the last subframe in which the NPDSCH transmitting the previous TB is transmitted). It can be used as a scheduling delay value of the interval to the first subframe).
  • the scheduling delay value may be independently transmitted to the terminal by the number of TBs actually scheduled for the flexible scheduling of the base station.
  • the scheduling delay value may be set based on a general subframe or based on a valid subframe.
  • the base station may indicate the scheduling delay to the terminal to be fully dynamic.
  • the enhanced DCI may include both an actual scheduling delay value for TB transmission and an offset value (scheduling delay offset value) for each scheduling delay value.
  • the delay is determined using the scheduling delay value transmitted through the DCI.
  • the delay is determined by using both the schedule, delay 0, and the scheduling delay offset.
  • the starting subframe of the NPDSCH may be determined using the value.
  • the scheduling delay is called 'X' and the scheduling delay offset is ⁇ ⁇ 02019/209082 63
  • 11 may indicate the last subframe in which the NPDCCH for scheduling this is transmitted, or may indicate the last subframe in which the transmission unit transmitted immediately before is transmitted.
  • These values may be set based on a general subframe or based on a valid subframe.
  • Method 2 can make the length of improved 1 1 small, and can indicate flexible scheduling delay.
  • the scheduling delay value may be set to be transmitted through an explicit field of the 30-payload or by using a specific parameter without being transmitted through improved 1: 1.
  • the configurable scheduling delay values may follow the legacy value and use the new value. It can indicate a scheduling delay value.
  • the base station may implicitly instruct the terminal of the scheduling delay of the actual child by setting a specific parameter value (for example,) as one of the previously promised values.
  • At least one specific value of yo can indicate a particular scheduling delay (for example, seedlings are 12 3-3, seedlings 1 are 14 3, and seedlings 2 are 16 hoops). Can direct).
  • the terminal may recognize the actual scheduling delay through the value of request! ⁇ :: when receiving (1-1 between 3-1) corresponding to the scheduling delay value from the base station.
  • This method can reduce the size of the DCI because it is not necessary to add a field indicating a scheduling delay separately to the enhanced DCI field.
  • information such as MCS or resource allocation may be commonly used.
  • a method for downlink or uplink may be additionally considered.
  • Embodiment 4_ A method of transmitting scheduling information of multiple TBs through an improved DCI and starting transmission and reception of the next TB when retransmission is completed.
  • scheduling information related to scheduling of multiple TBs is transmitted through one enhanced DCI, and when all retransmissions of the HARQ process corresponding to the preceding TB are completed, the initial TB corresponding to the next TB is completed. You can start sending / receiving.
  • the multi-TB scheduling is performed through the enhanced DCI from the situation in which transmission / reception related to one TB is terminated.
  • the compact DCI or wake up signal can be monitored and decoded to indicate the transmission / reception point (e.g., scheduling delay), resource allocation, or MCS for the subsequent TB through the corresponding compact DCI or wake up signal.
  • the UE may receive RRC signaling in advance so as to monitor enhanced ⁇ ) (1) or a discovery space for enhanced DCI may be independently configured through SIB.
  • FIG. 16 illustrates another example of multi-TB scheduling for a Single Cell Multicast Control Channel (SC-MCCH) proposed by the present invention.
  • SC-MCCH Single Cell Multicast Control Channel
  • At least one new NPDSCH for the SC-MTCH may be generated in the legacy NPDSCH for the SC-MTCH, and the legacy DCI may be configured without setting an improved DCI (eg, DCI for scheduling of multiple TBs).
  • the UE can recognize the legacy NPDSCH and at least one new NPDSCH as a multi-TB scheduling NPDSCH using the SC-MCCH payload.
  • the base station may generate at least one new NPDSCH for scheduling of multiple TBs in addition to the legacy NPDSCH and transmit the SC-MTCH to the UE.
  • At least one new NPDSCH is an NPDSCH generated for multi-TB scheduling and a legacy terminal cannot recognize and decode at least one new NPDSCH generated, and only an enhanced terminal can recognize and decode at least one new NPDSCH generated.
  • a new SC-MTCH NPDSCH for example, a new NPDSCH
  • a legacy SC-MTCH NPDSCH eg, a legacy NPDSCH
  • the base station transmits a 30 ⁇ 0 ⁇ payload so that the enhanced UE can recognize the information included in the payload of the DCI transmitted in the SC-MTCH NPDCCH search space.
  • 2019/209082 66 1 » (: 1 ⁇ 1 ⁇ 2019/005106
  • the newly set scheduling information of 30 1 [3 ⁇ 4 can be included and transmitted together.
  • the indication information indicating whether or not scheduling may be included in the NPDSCH for 3 (-): and may be transmitted.
  • the UE may be configured to receive the legacy NPDSCH and the new one, and one or more new 01 may be generated and transmitted.
  • Scheduling information for scheduling may be set as follows.
  • the base station is legacy. New time from the end of the transfer! Is the subframe spacing to the start point? However, the terminal may transmit the terminal to the terminal, and may additionally transmit the difference between the two NPSCHs,, and 163 to the terminal.
  • the base station will Scheduling delay value of! Can be transmitted to the terminal, additionally, And one difference and three differences can be transmitted to the terminal.
  • the legacy terminal may be transmitted in the search space for the new master legacy terminal (eg, type 2-033), thus monitoring the bundle to find 1 ⁇ 1 that is not being transmitted, thus reducing power consumption. Can increase.
  • the new master legacy terminal eg, type 2-033
  • a new NPDSCH may be transmitted at a time earlier than the legacy 0 ms. 2019/209082 67 1 »(the 1 ⁇ 1 ⁇ 2019/005106 Third, new values and the same values as certain parameters of legacy shocks (eg scheduling delays, etc.) Depending on the particular parameter (eg, number of repetitions, etc.) the new transfer position can be determined.
  • the scheduling delay is long enough for new teeth to be sent. It may be transmitted at an earlier point in time.
  • a new 1 ⁇ 3301 may be sent later than the legacy 1 ⁇ 0301.
  • the collision does not occur even if the new stage is transmitted before the legacy 01.
  • the legacy scheduling delay is new. If it is not enough to be sent (for example, 3? Considering the number and number of repetition levels), a new 13 ⁇ 4301 transmission can be established after the legacy NPDSCH transmission.
  • the improved terminal is legacy New with NPDSCH? ⁇ !! By tying it up Recognize as scheduled and receive both. Since it is not necessary to define a separate carrier or a separate search space for a service, the base station may not send the same service information to each other twice, and may transmit scheduling information through the existing DCI.
  • two new NPDSCHs are added after the legacy NPDSCHs, and the legacy NPDSCHs may be transmitted by dividing the entire SC-MTCH information into three pieces.
  • the legacy terminal must receive all the legacy DCI and receive each legacy NPDSCH to receive the full SC-MTCH information.
  • the enhanced UE can receive the full SC-MTCH information by receiving new NPDSCHs transmitted following the legacy NPDSCH.
  • the legacy terminal there is more gain in delay than the legacy terminal, and power consumption can be reduced if decoding is successfully completed and no subsequent NPDSCHs are received.
  • the legacy DCI transmitted later can be received once more, and then the legacy NPDSCH and the new NPDSCH can be received.
  • FIG. 4 shows another example of multi-TB scheduling for a control channel).
  • FIG. 17 unlike FIG. 16, when a UE monitors 1 ⁇ 1 for a legacy zone and a new scheduling in a search space, a separate 001 search is performed thereafter. You can receive legacy teeth and new ones without them.
  • the fifth embodiment multiplexes the legacy NPDSCH and at least one new NPDSCH using 3 (: ⁇ ⁇ (use payload and one legacy 1: 1: 1. How to recognize.
  • the base station Instruction information related to whether or not scheduled-included in the model for transmission, and Scheduling information for scheduling is included in 1-1 of NPDCCH for 3 ⁇ 4 03-1 (3 ⁇ 4) and transmitted.
  • the scheduling information may include the information as described above.
  • the base station may transmit the legacy NPDSCH and at least one new one scheduled through 1 ⁇ ⁇ 1 to the terminal, and may repeatedly perform such an operation.
  • a base station can be used for- new schedule
  • one legacy word and two new words can be transmitted to the terminal.
  • 1 legacy is transmitted to UE, then one legacy Two new ones can be repeatedly transmitted to the terminal.
  • 1 to 1) (:( :: 11 included for the band transmitted from the base station! 1 may include the same or similar scheduling information. That is, it can be scheduled through one 1) (1) which is repeatedly transmitted.
  • the terminal After recognizing whether or not it has been scheduled, receiving 1x1 rules for scheduling legacy bands and new 03 ⁇ 4s does not (or skips) subsequent 1x1 transmissions, and thus allows multiple legacy modules 0301 and multiple new NPDSCHs to be received. Can be received.
  • an improved terminal is a terminal having the same function as shown in FIG. 17, an improved terminal is a terminal having the same function as shown in FIG. 17, an improved terminal is a terminal having the same function as shown in FIG. 17, an improved terminal is a terminal having the same function as shown in FIG. 17, an improved terminal is a terminal having the same function as shown in FIG. 17, an improved terminal is a terminal having the same function as shown in FIG. 17, an improved terminal is a terminal having the same terminal.
  • the terminal may receive a band for this based on the first 1: 1, and when the method described in FIG. 14 is used. It is possible to recognize whether multiple TB7 ⁇ is scheduled through the included indication information.
  • the indication information is used.
  • the enhanced terminal is used for scheduling the legacy module and the new generation for the generation.
  • the second]] (1 may include legacy NPDSCH for -band and scheduling information for scheduling of a new band.
  • the enhanced UE Since the enhanced UE knows all of the information about legacy and new NPDSCHs that will exist later through the second 1X) 1, it receives the next legacy 01 and the new ones without having to receive legacy 1) 0: 1 that is transmitted later. can do.
  • multiplexing is performed on the legacy NPDSCH for 3 ()-1 01 transmitted first.
  • Indication information indicating whether or not scheduling may be included, and the enhanced terminal may include multiple It can be recognized whether it is scheduled or not.
  • the terminal does not need to monitor ⁇ ) (: 1) in a specific search space, thereby reducing the power consumption of the terminal.
  • # 1, # 2, and # 3 may include the same information regardless of a transmission position.
  • the present method is not limited to the method of repeatedly transmitting the same information. It is not limited either.
  • the relationship and information between the legacy NPDSCH and the new NPDSCHs may be indicated by payloads of 30-generations. Furthermore, a structure in which new generations are not tied to the legacy generation may be considered.
  • NPDSCH with different information May be
  • This method delivers information represented by fewer bits of the same information to the legacy NPDSCH (e.g., low quality broadcast) and conveys information represented by more bits of the same information to the enhanced NPDSCH (e.g., High-definition broadcasting) can be used.
  • legacy NPDSCH e.g., low quality broadcast
  • enhanced NPDSCH e.g., High-definition broadcasting
  • NPDSCH for the SC-MTCH independent of the legacy NPDSCH for the SC-MTCH, and is enhanced with legacy DCI and SC-MCCH payload without enhanced DCI (eg, DCI for scheduling of multiple TBs). Can recognize multiple TB scheduling NPDSCH.
  • the NPDSCH of the new SC-MTCH may be configured independently of the legacy SC-MTCH NPDSCH.
  • the base station additionally includes scheduling information of the new SC-MTCH NPDSCH in the SC-MCCH payload so that the enhanced terminal can decode and recognize the information included in the payload of the legacy DCI to be transmitted in the SC-MTCH NPDCCH search space. can do.
  • the base station determines whether the legacy SC-MTCH NPDSCH is included in the multi-TB scheduling NPDSCH through a specific method (for example, a specific field of a legacy DCI or a reserved state for scheduling the SC-MCCH payload or the SC-MTCH NPDSCH). You can indicate whether or not.
  • a specific method for example, a specific field of a legacy DCI or a reserved state for scheduling the SC-MCCH payload or the SC-MTCH NPDSCH. You can indicate whether or not.
  • the legacy SC-MTCH NPDSCH is included in the multi-TB scheduling NPDSCH 2019/209082 73 1 »(: 1 ⁇ 1 ⁇ 2019/005106) the improved terminal as in Example 5 A new 30-recognition can be received.
  • schedule If included, as in the fifth embodiment, the transmission time of the legacy and the new collection may be set according to a specific rule.
  • Embodiment 6 does not need to define a separate carrier or a separate search space for one service and does not need an improved 1 1.
  • the base station needs to send the same service information more than once (for example, one for the legacy terminal and one for the enhanced terminal).
  • legacy 001 not only legacy 001 but also enhanced 1x1 for multiple scheduling may be transmitted.
  • improved 1) (1 : 1 is legacy 1) (: 1 Since the scheduling information related to the scheduling may be included, the improved payload size of 1-1 may be less than or equal to the legacy payload size of legacy 13: 1.
  • legacy New 3 -1 ⁇ ] for improved terminal ([ 2019/209082 74 1 »(: 1 ⁇ 1 ⁇ 2019/005106
  • 1 ⁇ 03 (31 may be set, so that the base station may be decoded and recognized along with the information contained in the legacy 1 ⁇ 1 payload to be transmitted in the-versus NPDCCH search space. 50-new payload and improved 1: 1 payload
  • 1 01 scheduling information may be additionally transmitted.
  • the time payload may additionally indicate a yaw value for legacy 1) for the particular service (in addition to the value of 3-111 ⁇ 1 for the enhanced 1): 1 and for the improved 1 ⁇ 1. Only when the value of 1 ⁇ 111 is set, the enhanced terminal may be set to monitor the enhanced 1 :(: 1.
  • the enhanced terminal is legacy If the enhanced 1 1 can be monitored and received simultaneously in the same search space, and the value of (3-1 0: 1 for the improved ⁇ ) (: 1 is not set, the base station It is regarded as unscheduled and the enhanced terminal receives the legacy 1 ⁇ 1
  • the scheduling operation may be performed.
  • the base station may indicate whether the enhanced 1: 1 is transmitted for each service explicitly (for example, indication information related to whether to support the multi-scheduling support), and the enhanced terminal may use the legacy to know the full multi-TB scheduling information. You may need to receive both information delivered to! 1 and enhanced information to 1! 1.
  • the enhanced terminal may determine that no 1 ⁇ 1 is detected in the corresponding search space regardless of whether the improved 1) (: 1 is detected, and the legacy 1 1 is improved. If all 1 ⁇ 1 are detected, the enhanced terminal can receive multiple 13 scheduled modules 0 «using the information contained in two 1) (1). ⁇ ⁇ 0 2019/209082 75 Unlike the above method, the enhanced UE does not always monitor the two DCIs, but monitors the legacy DCI and starts monitoring the enhanced DCI when the legacy DCI is detected.
  • the enhanced DCI may be applied to the compact DCI or WUS like signal described above, and when a new discovery space in which the compact is transmitted is created, only the enhanced terminal may receive the multi-TB scheduling information by monitoring the discovery space. .
  • the information related to the search space in which the compact DCI is transmitted may be transmitted through the SC-MCCG payload, and as described in the fifth embodiment, transmission timings of the legacy NPDSCH and the new NPDSCH may be set according to a specific rule.
  • the base station may not send the same service information twice to each other because it is not necessary to define a separate carrier for one service.
  • an enhanced DCI (or a WUS like signal, etc.) must be set in order to flexibly transfer the multi scheduling information, and a new SC-MTCH NPDSCH must be additionally transmitted before or after the legacy SC-MTCH NPDSCH.
  • the legacy NPDSCH for SC-MTCH Independent of the legacy NPDSCH for SC-MTCH, there is a new NPDSCH for SC_MTCH, and enhanced UE using not only Tegacy DCI but also enhanced DCI (eg, DCI for multi-TB scheduling) and SC-MCCH payload Can recognize multiple TB scheduling NPDSCH.
  • the enhanced DCI may include 4 scheduling information related to scheduling of multiple TBs not transmitted to the legacy DCI (eg, scheduling delay between multiple NPDSCHs, number of TBs, multiple TB dedicated MCS index, etc.).
  • the payload size of the enhanced DCI may be less than or equal to the period size of the legacy DCI.
  • the new SC-MTCH NPDSCH for the enhanced terminal can be configured independently regardless of the legacy SC-MTCH NPDSCH.
  • the base station schedules the new SC-MTCH NPDSCH to the SC-MCCH payload and the enhanced DCI payload so that the enhanced UE can decode and recognize the information included in the payload of the legacy DCI to be transmitted in the SC-MTCH NPDSCH search space. Additional information can be sent.
  • the difference from the seventh embodiment is that the legacy SC-MTCH NPDSCH and the enhanced SC-MTCH NPDSCH can be independently configured in terms of the base station.
  • the base station may determine that the legacy SC-MTCH NPDSCH is multi-TB scheduling NPDSCH through a specific method (eg, a specific field or reserved state of legacy (or enhanced) DCI scheduling the SC-MCCH payload or SC-MTCH NPDSCH). Whether it is included in the terminal can be instructed.
  • a specific method eg, a specific field or reserved state of legacy (or enhanced) DCI scheduling the SC-MCCH payload or SC-MTCH NPDSCH.
  • the enhanced UE may recognize and receive the legacy SC_MTCH NPDSCH and the new SC-MTCH NPDSCH together as the multi-TB scheduling NPDSCH. If the legacy SC-MTCH NPDSCH is included in the multi-TB scheduling NPDSCH, as described in Embodiment 5, the transmission time of the legacy NPDSCH and the new NPDSCH may be set according to a specific rule.
  • this method does not need to define a separate carrier for one service, the base station does not have to transmit the same service information to each other twice.
  • an improved DCI or WUS like signal, etc. may be needed to flexibly convey multiple scheduling information.
  • a new SC-MTCH NPDSCH must be transmitted before or after the legacy SC-MTCH NPDSCH.
  • Examples 5 to 8 can be applied to the collision handling (collision handling) as follows. That is, when a collision (eg, some or all, including processing time?) Occurs between the SC-MTCH NPDCCH search space and the new NPDSCH, the priority of which operation the UE performs first must be determined.
  • a collision eg, some or all, including processing time
  • the UE may consider that the new NPDSCH transmission is not performed and may monitor the SC-MTCH NPDCCH search space.
  • monitoring of the SC-MTCH NPDCCH search space may have a higher priority than reception of a new NPDSCH.
  • the SC-MTCH NPDCCH search space may be monitored at all times, and the base station may not miss the scheduling of the SC-MTCH NPDSCH.
  • the terminal may receive the new NPDSCH without monitoring the SC_MTCH NPDCCH search space.
  • the reception of the new NPDSCH may have a higher priority than the monitoring of the SC-MTCH NPDCCH search space.
  • the terminal may determine that it is to transmit a new NPDSCH. Therefore, it may be desirable for the enhanced terminal to receive the new NPDSCH.
  • the UE that does not know the information on which the new NPDSCH is transmitted should monitor the next search space because the DCI is not detected even though the search space is monitored.
  • FIG. 18 is a diagram illustrating another example of multi-TB scheduling for a Single Cell Multicast Control Channel (SC-MCCH) proposed in the present invention. .
  • SC-MCCH Single Cell Multicast Control Channel
  • the NPDSCHs that are subsequently transmitted through the SC-MCCH payload or the SC-MTCH payload and the legacy DCI are multi-TB scheduling.
  • the UE may not receive the DCI for scheduling the NPDSCH for transmission of multiple TBs.
  • the UE may receive the DCI transmitted in the search space after the missing DCI again and recognize scheduling information for multi-TB scheduling.
  • the terminal monitors the DCI after receiving one DCI Period information (or number information) indicating the number of NPDSCHs for the SC-OTCH that can be received without information may be included in the DCI and transmitted to the terminal.
  • the UE may schedule TB scheduling in the search space after the time indicated by the period information.
  • the DCI for may be searched again.
  • the UE may monitor and receive the DCI in a subsequent search space, and search for the DCI until the time indicated by the period information. If not, it is possible to receive the NPDSCH for transmission of multiple TB.
  • the enhanced UE may determine that the legacy DCI may be skipped later through the SC-MCCH payload or the SC-MTCH payload and the legacy DCI.
  • the UE may be configured to monitor the legacy DCI as mandatory for each Multi TB Scheduling refresh period, which is period information set by the base station.
  • the UE must essentially monitor the legacy DCI in the search space that exists every T * N times.
  • the 'specific time point' may be or or HSFN, and may be a period of a search space in which DCI scheduling SC-MCCH is delivered; If the legacy DCI is omitted from the corresponding search space, the UE may monitor the legacy DCI at the location of the next search space.
  • the UE implicitly knows how many multiple TBs are scheduled afterwards, and the UE knows in advance where the last NPDSCH ends.
  • the terminal may be configured to monitor the legacy DCI again from the next search space located.
  • FIG. 18A illustrates a case in which an SC-MCCH is received and an enhanced UE successfully discovers a DCI located first. Therefore, the enhanced terminal may not receive or receive a total of three legacy DCIs after successfully searching for the corresponding legacy DCIs.
  • the enhanced UE shows a case in which the SC-MCCH is received and the enhanced UE fails to receive the most advanced legacy DCI. Since the UE has not received the DCI, the enhanced UE monitors the legacy DCI again in the next discovery space. At this time, if the discovery of the corresponding DCI succeeds, the UE may receive the NPDSCH without receiving a total of 2 legacy DCIs.
  • the ninth embodiment may be set by the base station to N times the search space period of the legacy DCI, the base station based on the SFN or HSFN, or a specific timing
  • the present invention may be applied to a situation indicated by a window, and may also be applied to a situation indicated in a form related to a period of a search space in which a DCI scheduling an SC-MCCH is transmitted.
  • the method of Example 9 may be as follows when the method is defined based on absolute time, such as SFN or HSFN.
  • the base station is configured to always monitor the search space to which the legacy DCI present after a radio frame greater than or equal to a specific SFN to the terminal, and the search spaces after the terminal decodes the legacy DCI, even if skipped Can be set to.
  • 192, ⁇ may be given as a combination of a predetermined formula and a similar set by the base station, or the base station may directly set a specific SFN set to the terminal.
  • a specific timing window may be expressed as an SFN or an HSFN based on absolute time, or may be expressed as a multiple of a search space period in which a corresponding legacy DCI may be searched.
  • the base station can indicate K SFNs as a 'specific timing window' starting from SFN 0. If the base station indicates K as 64, From 0 to 35 ⁇ 63 and from 3 64 to SFN 127, Each timing window is set up and you can do the same thing as the previous example.
  • an operation for skipping DCI may be turned off according to the following rule.
  • the base station can explicitly instruct the UE to turn off the skip operation of the DCI by giving a separate indicator (eg, DCI skipping off indicator) for turning off the skip operation of the DCI in the SC-MTCH payload.
  • a separate indicator eg, DCI skipping off indicator
  • the NPDSCH carrying the SC-MTCH has a specific resource type (for example, when the number of times the NPDSCH repetition is specified by the base station or is greater than or less than a predetermined threshold value) is used to skip the DCI. It can be set after the operation is turned OFF.
  • the operation for skipping the DCI is turned off when the period of the search space in which the DCI scheduling the SC-MTCH found through the SC-MCCH can be searched is set by the base station or larger than a predetermined threshold value. Can be set.
  • the operation for skipping the DCI is OFF means that the UE is legacy DCI
  • DCI scheduling SC-MTCH can be equivalent to monitoring the search space to which it can be delivered.
  • the NPDSCHs transmitted afterward through the SC-MCCH payload or SC-MTCH payload and the legacy DCI are multi-TB scheduling.
  • the base station uses NPDSCH (for example, NPDSCDH carrying SC-MTCH) that is scheduled as multiple TBs through the SC-MCCH payload or the SC-MTCH payload.
  • NPDSCH for example, NPDSCDH carrying SC-MTCH
  • the minimum number of times to repeat the transmission (for example, 1 1 ratio can be informed to the terminal.
  • the base station uses the legacy 13 (1) Although the number of repetitions can be set variably, since the enhanced UE can skip the legacy 1x1, the actual number of repetitions of the NPDSCH can be received based on the value found in 1) 0: 1 that is successful in the initial search.
  • the enhanced UE transmits the NPDSCH in an area not transmitted by the base station. It will recognize and decode unnecessary values at invalid positions. Therefore, when the base station informs the terminal of the defined 1: ä in advance, the terminal can know the minimum number of times of repetitive transmission of the units that are multi-scheduled.
  • the terminal may be configured to receive and decode as many units as 1 ä.
  • the NPDSCH repetition number included in the legacy 1 ratio1 that successfully succeeds further is greater than 1 11 ⁇
  • the corresponding repetition number is 1) (1 scheduling The number of repetitions may be set not to apply.
  • Payload and legacy 1) 1 eg, 3 (: 001 scheduling: -1 03 ⁇ 4)
  • 2019/209082 84 1 »(: 1 ⁇ 1 ⁇ 2019/005106 1 1 for scheduling) can inform the enhanced terminal of the number of unused repetitions or the number of repetitions that can be used.
  • the number of NPDCCH candidates for performing blind decoding may be reduced.
  • the corresponding search space passed through The UE corresponds to one NPDCCH candidate corresponding to the repetition number 16 and 8 corresponding repetitions in the NPDCCH candidates in the corresponding search space. 2 candidates, corresponding to 4 iterations
  • the enhanced terminal can reduce power consumption of the terminal because only 7 NPDCCH candidates except 8 among the 15 existing NPDCCH candidates are blind-decoded. This can have advantages in terms of buffer management.
  • the enhanced UE needs to perform the BLANAD decoding only on the two NPDCCH candidates having 8 repetition counts among the existing 15 NPDCCH candidates.
  • each legacy 1x1 scheduling NPDSCHs that are bound by multi-TB scheduling is the same, then the UE informs the corresponding information in a subsequent search space.
  • the UE may receive configuration information related to the NPDCCH, NPDSCH and / or NPUSCH procedure from the reporter station through higher layer signaling or the like (S19010).
  • step S19010 may be omitted when the setting related to the NPDCCH, NPDSCH, and / or NPUSCH procedure is pre-defined (eg, fixed).
  • the terminal may receive (or monitor) the first NPDCCH in the search space configured based on the configuration information. In this case, the terminal through the first NPDCCH
  • the DL grant for scheduling the NPDSCH or the UL grant for scheduling the NPUSCH may be received (ie, received) from the base station (S19020).
  • the UE may receive the NPDSCH or transmit the: NPUSCH according to the information indicated by the DL grant or the UL grant allocated from the base station. (S19030).
  • the base station may transmit configuration information related to the procedure of NPDCCH, NPDSCH and / or NPUSCH to the terminal through higher layer signaling or the like (S20010).
  • step S20010 may be omitted when the setting related to the NPDCCH, NPDSCH, and / or NPUSCH procedure is pre-defined (eg, fixed).
  • the base station may transmit the first NPDCCH in the search space configured based on the configuration information.
  • the base station may transmit (ie, transmit) the DL grant for scheduling the NPDSCH or the UL grant for scheduling the NPUSCH to the terminal through the first NPDCCH (S20020).
  • the base station may transmit the NPDSCH or receive the NPUSCH according to the information indicated by the DL grant or the UL grant (S20030).
  • the multi-TB scheduling proposed in the present invention may be used or applied for transmission / reception of NPDSCH / NPUSCH.
  • the NPDSCHs (or NPUSCHs) for scheduling multiple TBs may be configured to share a common value for HARQ H process number, resource allocation, MCS, scheduling delay, and the like.
  • the following parameters can be flexibly set for efficient multi-TB scheduling.
  • the maximum number of scheduled TBs taking into account two HARQ processes can be two. If it is 2, since the UE knows in advance that the multi-TB (for example, 2 TBs) is delivered through the enhanced DCI, there is no need to inform the information separately through the DCI.
  • the maximum number of TBs scheduled is 3 or more (for example, when the UE receives 3 or more NPDSCHs based on the improved DCI).
  • the maximum number of TBs to be scheduled is 'T' (T is a positive integer greater than 2)
  • the base station and the terminal use the HARQ process number indicated by the DCI to the first NPDSCH and the second NPDSCH. You can proceed with the process.
  • the third NPDSCH is the HARQ process number used by the first NPDSCH since the end of all HARQ processes of the first NPDSCH, past the scheduling delay indicated by the DCI (or the scheduling delay previously promised by RRC or SIB). Can be received via.
  • the fourth NPDSCH is also equal to the scheduling delay indicated by the DCI from the end of all HARQ processes of the second NPDSCH (or RRC or SIB in advance). It may be received via the HARQ process number used by the second NPDSCH after the scheduled scheduling delay).
  • the HARQ process number of the third NPDSCH may be transmitted using the HARQ process number in which the HARQ process is completed first of the first NPDSCH or the second NPDSCH.
  • This method improves the data rate of the system by improving resource utilization.
  • multiple TBs may have similar code rates and repetition levels, since it is desirable that at least the target MCL of those multiple TBs should be the same or similar.
  • one MCS value and N SF e.g., Repetition
  • a method for indicating a scheduling delay with the enhanced DCI can be largely classified as follows.
  • the base station can deliver the actual scheduling delay value to the terminal through the improved DCI.
  • the scheduling delay value transmits only one value to the UE, and the transmitted scheduling delay value is between all TBs (for example, the NPDSCH delivering the next TB from the last subframe in which the NPDSCH transmitting the previous TB is transmitted). It can be used as a scheduling delay of the interval up to the first subframe transmitted.
  • the base station may independently transmit a scheduling delay value to the terminal as many as the number of TBs actually scheduled. In this case, if all of the scheduling delay values are independently transmitted through the improved DCI, the corresponding field may become larger as the number of TBs scheduled is increased.
  • these values may be set to be determined on a general subframe basis, or may be set to be determined on a valid subframe basis.
  • a method of independently transmitting each TB may transmit a scheduling delay to the UE in a completely flexible manner.
  • Method 2 Through the improved DCI, the actual scheduling delay value and the scheduling delay offset may be transmitted together. In this case, up to the NPDSCH delivering the first TB, the position of the NPDSCH may be determined according to the indicated scheduling delay value.
  • the UE can determine the starting subframe of the NPDSCH according to a value calculated using the scheduling delay value and the scheduling delay offset value at the same time.
  • the scheduling delay is called 'X' and the scheduling delay offset is called 'P'
  • the starting subframe of the NPDSCH scheduling the Nth TB may be expressed as n + X + (N ⁇ 1) * P.
  • n may indicate the last subframe in which the NPDCCH for scheduling multiple TBs is delivered or the last subframe in which the immediately transmitted NPDSCH is transmitted. These values can be set to be determined on a regular subframe basis, or set to valid si ⁇ > frame criteria. Such a method can make the length of the improved DCI small, and can have some dynamic scheduling delay.
  • the HARQ process number, resource allocation, MCS, scheduling delay, etc. may be configured to share a common value between NPDSCH and NPUSCH scheduling multiple TBs.
  • the retransmission grat of the NPUSCH transmitted by the UE may be transmitted through the NPDSCH.
  • the base station may include the retransmission UL grant for the NPUSCH transmitted first by the terminal in the scheduled NPDSCH data.
  • the UE should transmit the NPUSCH corresponding to the corresponding retransmission UL grant, and may be configured to transmit ACK / RACK corresponding to the scheduled NPDSCH data together.
  • a search space that does not need to be monitored by the terminal may be generated, thereby reducing power consumption of the terminal.
  • the UE may transmit and receive the next NPUSCH or NPDSCH.
  • Examples 11-2 receive DL grant over legacy DCI and then
  • the terminal receives such a UL grant or DL grant, the UE passes through a subframe after the scheduling delay included in the UL / DL grant from the end point of the NPDSCH previously received (or from the end of the corresponding HARQ process).
  • the NPUSCH can be transmitted or the NPDSCH can be received.
  • This UL / DL grant may include all scheduling information included in the legacy DCI.
  • multi-TB scheduling can be performed without an improved DCI, and when a corresponding UL / DL grant is received through the NPDSCH, a search space does not need to be monitored by the terminal, thereby reducing power consumption of the terminal.
  • a terminal receiving a DL grant through the first NPDCCH may
  • the NPDSCH contains actual data but may also include a UL grant or a DL grant.
  • the UE can transmit the NPUSCH in the resources scheduled by the corresponding UL grant, and can also transmit ACK / NACK for the previously received NPDSCH data.
  • the UE may transmit the ACK / NACK for the previously received NPDSCH data while receiving the NPDSCH corresponding to the corresponding DL grant to the base station through the NPUSCH which is already scheduled.
  • DCI for scheduling of a single TB and DCI for scheduling of multiple TBs If payload sizes are different, multiple TB scheduling can be enabled / disabled through DCI without setting up additional search space.
  • 21 is a flowchart illustrating an example of a terminal operation for multi-TB scheduling to which the method of limiting may be applied in the present invention.
  • the terminal receives configuration information for single TB scheduling and / or configuration information for multi-TB scheduling from the base station through higher layer signaling and the like, and the terminal is previously defined for single TB scheduling in a search space.
  • the first DCI eg, single-TB scheduling DCI
  • S21010 single-TB scheduling DCI
  • the terminal When the terminal receives configuration information related to multiple TB scheduling from the base station, the terminal has a specific field indicating whether the multiple scheduling is activated in the first DCI in the search space.
  • the included second DCI eg, single-TB scheduling DCI with an activation field added
  • a third predefined DCI (eg, multiple TB scheduling DCI) for multi TB scheduling may be monitored (S21040, S21060).
  • the terminal may monitor the third DCI in a subsequent search space. However, if the specific field does not indicate the activation of the multi-TB scheduling, the terminal determines whether the release of the multi-TB scheduling from the base station (S21050). If receiving the cancellation of the multi-scheduling, the terminal returns to step S21010 again to receive the configuration information for the single TB scheduling and / or configuration information for the multi-TB scheduling from the base station from the base station through the higher layer signaling, etc. In the search space, it is possible to monitor a first predefined DCI (eg, single-TB scheduling DCI) for single TB scheduling.
  • a first predefined DCI eg, single-TB scheduling DCI
  • the terminal may return to step S21030 to monitor the second DCP in the search space.
  • the third DCI may include a 1 bit field indicating whether deactivation of multi-TB scheduling is performed.
  • the UE may monitor the third DCI when the value of the 1-bit field has a value of 0 that does not indicate deactivation of multiple scheduling in a search space subsequent to the received search space by the third DCI, and the 1 bit If the value of the field is 1, the value indicating the deactivation of the multi-TB scheduling, the second DCI may be monitored (S21070).
  • 22 is a flowchart illustrating an example of an operation of a base station for multi-TB scheduling to which a method of limiting may be applied in the present invention.
  • the base station may transmit configuration information for single TB scheduling and / or configuration information for multiple TB scheduling to the terminal (S22010).
  • the base station is a predefined first for single TB scheduling in the search space.
  • DCI for example, single-TB scheduling DCI
  • S22020 may be transmitted to the UE (S22020).
  • the base station When the base station delivers configuration information related to multi-TB scheduling to the terminal, the base station includes a second DCI (eg, a stock price in which an activation field has a specific field indicating whether to activate multi-TB scheduling in the first DCI in a search space).
  • a second DCI eg, a stock price in which an activation field has a specific field indicating whether to activate multi-TB scheduling in the first DCI in a search space.
  • Single-TB scheduling DCI can be transmitted (S22020).
  • the base station may transmit a second DCI or a third DCI predefined for multi-TB scheduling (eg, multi-TB scheduling DCI) in a subsequent search space.
  • a second DCI or a third DCI predefined for multi-TB scheduling eg, multi-TB scheduling DCI
  • the third DCI may include a 1-bit field indicating whether to disable multi-TB scheduling.
  • the base station may transmit a third DCI when the value of the 1-bit field is '0', which indicates a deactivation of multi-TB scheduling, in the search space following the received search space by the third DCI, and the 1-bit field. If the value of 1 is 1 indicating deactivation of the multi-TB scheduling, the second DCI may be transmitted (S22030).
  • a 1 ⁇ 11 size mismatch may occur between the UE and the base station.
  • the terminal continuously fails to monitor the search space and system performance is degraded. Therefore, in this case, the problem can be solved through the following method.
  • the terminal and the base station may transmit and receive 01 and the like and did not omit 1 1 through the corresponding transmit and receive process.
  • the invention is to be Can be performed.
  • the base station may indicate the corresponding HARQ process ID to the terminal through a new single TB scheduling DCI as a new data purpose.
  • the terminal may monitor the multi-TB scheduling DCr in the search space existing thereafter.
  • the NACK is transmitted, and after that, the NDI (for example, a new data indicator) indicating the new data for the same HARQ process ID is non-toggle. If the NDI for the same HARQ process ID is toggled after the ACK transmission after receiving the NPDSCH for the corresponding DL grant, the UE then A / N corresponding to the DCI transmitted with the corresponding NDI DCI for multi-TB scheduling can be monitored in the search space existing after transmission.
  • the NDI for example, a new data indicator
  • the DCI indicated that the corresponding HARQ process ID is new data together with the DCI indicated by the activation field for activating the multi-TB scheduling may also be omitted. Accordingly, since the base station can also confirm after transmitting the response and searching for DTX with at least HARQ feedback DM-RS, the UE monitors the discovery space after the A / N transmission for the DCI transmitted with the corresponding NDI. can do.
  • the exact DCI monitoring for the actual multi-TB scheduling is applied.
  • the starting point can be as much gap as the processing delay.
  • the value of the activation field for the DCI activation of the multi-TB scheduling is 1 in the DCI for the single TB scheduling (for example, the base station instructs the UE to start monitoring for the scheduling of the multi-TB).
  • the method will be described below using a specific example for the case where the corresponding single TB scheduling DCI indicates the UL grant.
  • the UE may monitor the multi-TB scheduling DCI in the search space.
  • the UE transmits the NPUSCH scheduled with the new single TB scheduling DCI.
  • the UE may monitor the multi-TB scheduling DCI.
  • the exact time point at which DCI monitoring for the actual multi-TB scheduling is applied may add a gap as much as the processing delay.
  • Certain candidates in a particular UE specific search space may always be set for use for single TB scheduling. That is, at least US NPDCCH candidates (k is a positive integer greater than or equal to 1) may be used for single TB scheduling in a USS existing after receiving configuration information related to multi-TB scheduling through RRC signaling from a base station. .
  • the remaining NPDCCH candidates minus k from the total number of NPDCCH candidates may be configured for multi-TB scheduling.
  • the fallback operation can be performed without increasing the blind decoding operation of the terminal, thereby solving the above-described problem.
  • Embodiment 13-1 proposes a method of maintaining the reception performance of the terminal.
  • a specific terminal specific search space (eg, USS) may be defined for the purpose of single TB scheduling and the remaining USS may be used for the purpose of multi-TB scheduling.
  • the existing USS starts a hyper frame By counting from that point of time, the corresponding USS can be divided into USS for single TB scheduling and USS for multiple TB scheduling according to whether the USS is even or odd.
  • this setting even though it is missing the terminal a DCI transmitted from the base station all the time to perform the fallback operation without increasing the blind decoding operation of the terminal.
  • the UE may omit NPDCCH / MPDCCH monitoring in subsequent USSs, and the skipped section may include a section in which the scheduled multi-table ACK / NACK is completely completed. Can be.
  • the terminal may omit NPDCCH / MPDCCH monitoring, and the omitted section may include a section in which ACK / NACK of a single scheduled TB is completely completed.
  • existing CSS may be used instead of transmitting both DCI for multiple TB scheduling and DCI for single TB scheduling in a single search space. That is, the search space for the DCI fall back operation can be specified in CSS. That is, after the UE receives the configuration information related to the multi-TB scheduling from the base station through the RRC signaling, the USS existing after the multi-TB scheduling DCI It can be used as a search space for transmitting and CSS can be used as a search space for transmitting a single TB scheduling DCI.
  • the CSS to be used for the fall back operation can be either type-1 CSS or type-2 CSS (type-0 CSS can also be considered for CE mode A of eMTC). type-2 If CSS is used as the search space for the fall back operation, the base station is used because the search space is similar in structure to the USS and NPDCCH candidates, and the DCI format also uses the unicast and the payload size. This DCI format NO or can be used to indicate single TB scheduling.
  • DCI format is mentioned in the type-2 CSS.
  • DCI format N2 a DCI format that is not used for unicast transmission.
  • the base station may instruct the terminal to receive.
  • the base station may instruct the fallback operation to the terminal through the corresponding field.
  • the DCI payload size is matched to the DCI payload size through zero padding to minimize the impact on legacy operation, so that it can be distinguished from DCI indicating other things without increasing the blind decoding operation. have.
  • DCI format N2 of the aforementioned method may be applied to DCI format 6-2.
  • Embodiments 1 to 14 have described a method for scheduling multiple TBs that can be applied to an NB-IoT system.
  • the method proposed in the present invention is mainly DL / DL oriented, but the nature of the invention does not change even if it is changed to UL / UL or DL / UL or UL / DL.
  • NPUSCH may be applied instead of NPDSCH when changed to
  • NPDSCH reception may be applied to NPUSCH transmission
  • DCI format may be applied to DCI format NO.
  • Embodiments 1 to 14 may be applied to eMTC.
  • the DCI format N0 / N1 may be applied to the DCI formats 6 -OA, B / 6-1A, B, and the NPDSCH / NPUSCH may be applied to the PDSCH / PUSCH.
  • names of other search spaces may be changed and applied according to names defined in eMTC.
  • the number of HARQ processes of the eMTC can be supported up to 8 or more, even when the scheduling direction changes irregularly, such as DL / UL / UL / DL / UL, without ending in DL / UL or UL / DL. 1 to The method described in 14 may be applied.
  • the UE may change the payload size of the DCI monitored according to the indication of the base station.
  • FIG. 23 is a flowchart illustrating an example of an operation of a terminal for receiving downlink data through multi-TB scheduling to which a method proposed by the present invention can be applied.
  • the terminal may receive the NPDSCH without monitoring the DCI transmitted thereafter.
  • the terminal receives a first downlink control channel (PDCCH) including first downlink control information (DCI) from the base station (S23010).
  • the PDCCH may be an NPDCCH for the SC-MCCH or an NPDCCH for the SC-MTCH described in Embodiments 1 to 14.
  • the first DCI of the PDCCH may include scheduling information for scheduling of the first PDSCH, and the scheduling information may include parameters described in Embodiments 1 to 14.
  • the first DCI of the PDCCH may include scheduling information for multi-TB scheduling, and the scheduling information may include parameters described in Embodiments 1 to 14.
  • the terminal may receive the first PDSCH based on the first DCI.
  • the first PiDSek may include indication information indicating whether to schedule a multi transport block.
  • the terminal may recognize whether multiple TBs are scheduled according to the value of the indication information.
  • the terminal may receive a plurality of models (S23030). At this time,
  • At least one PDSCH of the PDSCHs may be received without separate DCI reception according to the indication information.
  • the terminal may receive at least one PDSCH without searching for the DCI in a separate search space based on the scheduling information of the multiple TBs included in the first DCI. have.
  • the above-described operation of the terminal may be specifically implemented by the terminal devices 2520 and 2620 shown in FIGS. 25 and 26 of the present specification.
  • the above-described operation of the terminal may be performed by the processors 2521 and 2621 and / or the RF unit (or module) 2523 and 2625.
  • the first downlink control information (Downlink Control) from the base station through the processor (2521, 2621) RF unit (or module) (1723, 1825)
  • It may be controlled to receive a first downlink control channel (PDCCH) including a DCI.
  • PDCCH downlink control channel
  • the PDCCH may be an NPDCCH for the SC-MCCH or an NPDCCH for the SC-MTCH described in Embodiments 1 to 14.
  • the first DCI of the PDCCH may include scheduling information for scheduling of the first PDSCH, and the scheduling information may be The parameters described in Embodiments 1 to 14 may be included.
  • the first DCI of the PDCCH may include scheduling information for multi-TB scheduling, and the scheduling information may include parameters described in Embodiments 1 to 14.
  • the processor 2521, 2621 may control to receive the first PDSCH based on the first DCI through the RF unit (or module) 2523, 2625.
  • the first PDSCH may include indication information indicating whether a multi transport block is scheduled.
  • the terminal may recognize whether multiple TBs are scheduled according to the value of the indication information.
  • the processor 2521, 2621 may control to receive the plurality of PDSCHs through the RF unit (or module) 2523, 2625.
  • At least one PDSCH of the plurality of PDSCHs may be received without receiving a separate DCI according to the indication information.
  • the terminal can be configured as a first.
  • At least one PDSCH may be received without searching for a DCI in a separate search space based on scheduling information of multiple TBs included in one DCI.
  • 24 is a flowchart illustrating an example of an operation of a base station for transmitting downlink data through multi-TB scheduling to which a method proposed by the present invention can be applied.
  • a plurality of teeth transmitted from the base station may be scheduled through one a (1).
  • the base station transmits a first downlink control channel (PDCCH) including first downlink control information (DCI) to the terminal (S24010).
  • the PDCCH may be an NPDCCH for the SC-MCCH or an NPDCCH for the SC-MTCH described in Embodiments 1 to 14.
  • the first DCI of the PDCCH may include scheduling information for scheduling of the first PDSCH, and the scheduling information may include parameters described in Embodiments 1 to 14.
  • the first DCI of the PDCCH may include scheduling information for multi-TB scheduling, and the scheduling information may include parameters described in Embodiments 1 to 14.
  • the base station transmits the first PDSCH based on the first DCI (S24020).
  • the first PDSCH may include indication information indicating whether a multi transport block is scheduled.
  • the base station may inform the terminal whether to schedule the multiple transport block by transmitting the indication information to the terminal.
  • the base station repeatedly transmits a plurality of PDSCHs to the terminal according to the indication information (S24030).
  • a plurality of PDSCHs that are repeatedly transmitted may be scheduled through one DCI.
  • the above-described operation of the base station may be specifically implemented by the base station apparatus 2510, 2610 shown in FIGS. 25 and 26.
  • the operation of the base station described above may be performed by the processor 2511, 2611 and / or the RF unit (or module) 2513, 2615.
  • the processor 2511, 2611 may include an RF unit (or module) 1713,
  • the UE may control to transmit a first downlink control channel (PDCCH) including first downlink control information (DCI).
  • PDCCH downlink control channel
  • DCI downlink control information
  • the PDCCH may be an NPDCCH for the SC-MCCH or an NPDCCH for the SC-MTCH described in Embodiments 1 to 14.
  • the low 1 DCI of the PDCCH may include scheduling information for scheduling of the first PDSCH, and the scheduling information may include parameters described in Embodiments 1 to 14.
  • the first DCI of the PDCCH may include scheduling information for multi-TB scheduling, and the scheduling information may include parameters described in Embodiments 1 to 14.
  • the processors 2511 and 2611 may control to transmit the first language based on the first DCI through the RF units (or modules) 2513 and 2615.
  • the first PDSCH may include indication information indicating whether a multi transport block is scheduled.
  • the base station can inform the terminal whether to schedule the multiple transport block by transmitting the indication information to the terminal.
  • the processors 2511 and 2611 may control to repeatedly transmit the plurality of PDSCHs to the terminal according to the information through the RF units (or modules) 2513 and 2615. If multiple transport blocks are scheduled, a plurality of bands repeatedly transmitted can be scheduled through one DCl ⁇ .
  • FIG. 25 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • a wireless communication system includes a base station 2510 and a number of terminals 2520 located within a base station area.
  • the base station and the terminal may each be represented by a wireless device.
  • Base station 2510 includes a processor 2511 and a memory 2512. And an RF module 2513.
  • the processor 2511 implements the functions, processes, and / or methods proposed in the first to fourteenth embodiments. Layers of the air interface protocol may be implemented by a processor.
  • the memory is connected to the processor and stores various information for driving the processor.
  • the RF module is coupled to the processor to transmit and / or receive radio signals.
  • the terminal includes a processor 2521, a memory 2522, and an RF module 2523.
  • the processor implements the functions, processes, and / or methods proposed in the first to fourteenth embodiments.
  • the layers of the air interface protocol Can be implemented.
  • the memory is connected to the processor and stores various information for driving the processor.
  • the RF module 2523 is connected to a processor to transmit and / or receive a radio signal.
  • the memories 2512 and 2522 may be internal or external to the processors 2511 and 2521 and may be connected to the processor by a variety of well known means.
  • the base station and / or the terminal may have a single antenna or multiple antennas.
  • 26 is another example of a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • a wireless communication system includes a base station 2610 and a plurality of terminals 2620 located in a base station area.
  • the base station may be represented by a transmitting device, the terminal may be represented by a receiving device, and vice versa.
  • the base station and the terminal are a processor (processors 2611, 2621), memory (memory, 2614, 2624), one or more Tx / Rx RF modules (radio frequency module, 2615, 2625), Tx processors (2612, 2622), Rx processors ( 2613, 2623), and antennas 2616, 2626.
  • the processor implements the salping functions, processes and / or methods above.
  • upper layer packets from the core network are provided to the processor 2611.
  • the processor implements the functionality of the L2 layer.
  • the processor provides the terminal 2620 with multiplexing, radio resource allocation between logical channels and transport channels, and is responsible for signaling to the terminal.
  • the transmission (TX) processor 2612 is in the L1 engraved (ie physical engraved) Implement various signal processing functions.
  • the signal processing function facilitates forward error correction (FEC) in the terminal and includes coding and interleaving.
  • FEC forward error correction
  • the encoded and modulated symbols are divided into parallel streams, each stream mapped to an OFDM subcarrier, multiplexed with a reference signal (Reference Signal, RS) in the time and / or frequency domain, and using an Inverse Fast Fourier Transform (IFFT).
  • RS Reference Signal
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Each spatial stream may be provided to a different antenna 2616 via a separate Tx / Rx module (or transceiver 2615).
  • Each Tx / Rx module can modulate an RF carrier with each spatial stream for transmission.
  • each Tx / Rx module receives a signal through each antenna 2626 of each Tx / Rx module.
  • Each Tx / Rx module recovers information modulated onto an RF carrier and provides it to a receive (RX) processor 2623.
  • the RX processor implements the various signal processing functions of layer 1.
  • the RX processor may perform spatial processing on the information to recover any spatial stream destined for the terminal. If multiple spatial streams are directed to the terminal, it may be combined into a single OFDMA symbol stream by multiple RX processors.
  • the RX processor uses fast Fourier transform (FFT) to convert the OFDMA symbol stream from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the frequency domain signal includes a separate OFDMA symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier and the reference signal indicate the most likely signal placement points transmitted by the branch station.
  • the decision is then restored and demodulated. Such soft decisions may be based on channel estimate values. Soft decisions are decoded and deinterleaved to recover the data and control signals originally transmitted by the base station on the physical channel. The corresponding data and control signals are provided to a processor 2621.
  • the UL (communication from terminal to base station) is processed at base station 2610 in a manner similar to that described with respect to receiver functionality at terminal 2620.
  • Each Tx / Rx module 2625 receives a signal via a respective antenna 2626.
  • Each Tx / Rx module provides an RF carrier and information to the RX processor 2623.
  • the processor 2621 can be associated with a memory 2624 that stores program code and data.
  • the memory may be referred to as a computer readable medium.
  • the wireless device includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a drone (Unmanned Aerial Vehicle, UAV), an AI (Artificial Intelligence) module, Robots, Augmented Reality (AR) devices, VR (Virtual Reality) devices, MTC devices, IoT devices, medical devices, fintech devices (or financial devices), security devices, climate / environmental devices, or other areas of the fourth industrial revolution, or It may be a device related to the 5G service.
  • a drone may be a vehicle in which humans fly by radio control signals.
  • the MTC device and the IOT device may be a smart meter, a bending machine, a thermometer, a smart light bulb, a door lock, various sensors, or the like, which do not require direct human intervention or manipulation.
  • a medical device is a device used for the purpose of diagnosing, treating, alleviating, treating or preventing a disease.
  • a device used for the purpose of inspecting, replacing, or modifying a structure or function it may be a medical device, a surgical device, an (in vitro) diagnostic device, a hearing aid, a surgical device, or the like.
  • the security device is a device installed to prevent a risk that may occur and maintain safety, and may be a camera, a CCTV, a black box, or the like.
  • the fintech device is a device that can provide financial services such as mobile payment, and may be a payment device, a point of sales (POS), or the like.
  • POS point of sales
  • a climate / environment device may mean a device that monitors and predicts the climate / environment.
  • the terminal is a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, a slate PC, a tablet PC.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • the HMD is a display device of a type worn on the head, and may be used to implement VR or AR.
  • the HMD is a display device of a type worn on the head, and may be used to implement VR or AR.
  • the embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some components and / or It is also possible to combine the features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention is 30 ?? 1 / large / 1/1 £ : -yo / It is mainly focused on the example applied to the system. However, it is possible to apply to various wireless communication systems in addition to the 30 Mohm 1 ⁇ £ / 1/1 : yo / 11 system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 협대역 사물 인터넷 (Narrow Band-Internet of Things, NB-IoT)을 지원하는 무선 통신 시스템에서 단말이 하향링크 공유 채널(Physical Downlink Shared channel : PDSCH)을 수신하는 방법을 제공한다. 구체적으로, 단말은 기지국으로부터 제 1 하향링크 제어 정보 (Downlink Control Information: DCI)를 포함하는 제 1 하향링크 제어 채널(Physical Downlink Control Channel: PDCCH)를 수신하고, 상기 제 1 DCI에 기초하여 제 1 PDSCH를 수신한다. 이때, 제 1 PDSCH는 다중 전송 블록(Multi Transport Block)의 스케줄링 여부를 나타내는 지시 정보를 포함할 수 있다. 단말은 기지국으로부터 복수의 PDSCH를 수신하되, 상기 복수의 PDSCH 중 적어도 하나의 PDSCH는 상기 지시 정보에 따라 별도의 DCI 수신 없이 수신될 수 있다.

Description

【명세서】
【발명의 명칭】
무선 통신 시스템에서 데이터를송수신하기 위한 방법 및 이를 위한장치 【기술분야】
본 발명은 무선 통신 시스템에서 데이터를 송수신하는 방법에 관한 것으로서 , 보다 상세하게 협대역 사물 인터넷 (NarrowB日·nd-Internet of Things, NB-IoT)을 지원하는 무선 통신 시스템에서 다중 전송 블록 (Multi Transport Block: TB)의 스케줄링을 통한 데이터를 송수신하기 위한 방법 및 이를지원하는 장치에 관한 것이다.
【배경기술】
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 딜레이 (End-to-End Latency) , 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성 (Dual Connectivity) , 대규모 다중 입출력 (Massive MIMO: Massive Multiple Input Multiple Output) , 전이중 (In-band Full Duplex) , 비직교 다중접속 (NOMA: Non- Orthogonal Multiple Access) , 초광대역 (Super wideband) 지원, 단말 네트워킹 (Device Networking) 등 다양한기술들이 연구되고 있다.
【발명의 상세한설명】
【기술적 과제】
본 명세서는, 협대역 사물 인터넷 (NarrowBand-Internet of Things , NB-IoT)을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법을 제안한다.
또한, 본 명세서는 NB-IoT를 지원하는 무선 통신 시스템에서 다중 전송 블록의 스케줄링을통해서 데이터를송수신하는 방법을 제안한다.
또한, 본 명세서는 다중 전송 블록의 스케줄링 여부와 관련된 스케줄링 정보를 전송함으로써 하나의 DCI를 통해서 복수의 데이터를 송수신하는 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】
본 명세서는 협대역 사물 인터넷 (Narrow Band- Internet of Things, NB-IoT)을 지원하는 무선 통신 시스템에서 단말이 하향링크 공유 채널 (Physical Downlink Shared channel : PDSCH)을 수신하는 방법에 있어서, 단말에 의해 수행되는 방법은, 기지국으로부터 제 1 하향링크 제어 정보 (Downlink Control Information: DCI)를 포함하는 제 1 하향링크 제어 채널 (Physical Downlink Control Channel : PDCCH)를수신하는 단겨'! ; 상기 제 1 DCI에 기초하여 제 1 PDSCH를 수신하는 단계, 상기 제 1 PDSCH는 다중 전송 블록 (Multi Transport Block)의 스케줄링 여부를 나타내는 지시 정보를 포함하고; 및 복수의 PDSCH를 수신하는 단계를 포함하되, 상기 복수의 PDSCH 중 적어도 하나의 PDSCH는 상기 지시 정보에 따라 별도의 DCI 수신 없이 수신된다.
또한, 본 발명에서, 상기 제 1 DCI는상기 복수의 PDSCH의 수신과관련된 스케줄링 정보를포함한다.
또한, 본 발명에서, 상기 지시 정보가 상기 다중 전송 블록의 스케줄링을 나타내는 경우, 상기 적어도 하나의 PDSCH는 상기 별도의 DCI 수신 없이 수신된다.
또한, 본 발명은, 상기 지시 정보가 상기 다중 전송 블록의 스케줄링을 나타내지 않는 경우, 상기 별도의 DCI를 수신하는 단계를 더 포함하되, 상기 별도의 DCI는상기 적어도하나의 PDSCH중 하나의 스케줄링 정보를포함한다. 또한, 본 발명에서, 상기 제 1 PDCCH는 단일 셀 멀티 캐스트 제어 채널 (Single cell-multicast control channel : SC-MCCH)어] 대한 제어 채널이고, 상기 제 1 PDSCH는상기 SC-MCCH에 대한공유 채널이다.
또한, 본 발명은, 단일 셀 멀티 캐스트 트래픽 채널 (Single cell- traffic channel: SC-MTCH)에 대한 제 2 PDCCH를 수신하는 단계를 더 포함하되, 상기 복수의 PDSCH는상기 SC-MTCH에 대한공유 채널이다.
또한, 본 발명에서, 상기 제 2 PDCCH는 상기 복수의 PDSCH의 스케줄링을 위한 제 2 DCI를포함하고,
상기 복수의 PDSCH는 상기 제 2 DCI 및 상기 제 1 PDSCH에 기초하여 수신된다.
또한, 본 발명에서, 상기 제 1 PDCCH가 단일 셀 멀티 캐스트 트래픽 채널 (Single cell-traffic channel : SC-MTCH)에 대한 제어 채널이고, 상기 제 1 PDSCH가상기 SC-MTCH에 대한공유채널이다.
또한, 본 발명은, 단일 셀 멀티 캐스트 제어 채널 (Single cell- multicast control channel : SC-MCCH)에 대한 제 2 PDCCH를 수신하는 단계, 상기 제 2 PDCCH는 상기 SC-MCCH에 대한 제 2 PDSCH의 스케줄링을 위한 제 2 DCI를 포함하고; 및 상기 제 2 DCI에 기초하여 상기 SC-MCCH에 대한 상기 제 2 PDSCH를 수신하는 단계를 더 포함하되, 상기 복수의 PDSCH는 상기 제 1 DCI 및 상기 제 1 PDSCH에 기초하여 수신된다.
또한, 본 발명에서, 상기 제 1 PDCCH는 상기 SC-MCCH에 기초하여 수신된다.
또한, 본 발명에서 , 상기 복수의 PDSCH는 하나의 레가시 (legacy) PDSCH 및 적어도 하나의 향상된(enhanced) PDSCH를 포함하고, 상기 적어도 하나의 향상된 PDSCH는 상기 다중 전송 블록을 스케줄링 받을 수 있는 단말을 위한 PDSCH이다.
또한, 본 발명에서, 상기 제 1 DCI는 상기 레가시 PDSCH 및 상기 적어도 하나의 향상된 PDSCH를 위한스케줄링 정보를포함한다.
또한, 본 발명에서, 상기 스케줄링 정보는상기 레가시 PDSCH의 전송종료 시점부터 상기 레가시 PDSCH의 전송 뒤에 전송되는 상기 적어도 하나의 향상된 PDSCH의 전송 시점까지의 서브 프레임 갭을 나타내는 갭 정보 또는 상기 적어도 향상된 PDSCH의 스케줄링 지연을 나타내는 지연 정보 중 적어도 하나를 2019/209082 5 1»(:1/10公019/005106 포함한다.
또한, 본 발명에서, 상기 제 1 DCI는상기 적어도 하나의 PDSCH의 개수를 나타내는 개수 정보를 더 포함한다.
또한, 본 발명은 , 단말로 제 1 하향링크 제어 정보 (Downlink Control Information: DCI)를 포함하는 제 1 하향링크 제어 채널 (Physical
Downlink Control Channel : PDCCH ñ를 전송하는 단계 ; 상기 제 1 DCI에 기초하여 제 1 PDSCH를 전송하는 단계, 상기 제 1 대는 다중 전송 블록 (Multi Transport Block)의 스케줄링 여부를 나타내는 지시 정보를 포함하고; 및 상기 지시 정보에 따라복수의 PDSCH를 단말로 반복해서 전송하는 단계를 포함하되, 상기 반복 전송되는 복수의 PDSCH는 하나의 DCI를 통해서 스케줄링되는 것을특징으로 하는 방법을 제공한다.
또한, 본 발명은, 무선 신호를 송수신하기 위한 RF 모듈 (radio frequency module); 및
상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하되, 상기 프로세서는, 기지국으로부터 제 1 하향링크 제어 정보 (Downlink Control Information: DCI)를 포함하는 제 1 하향링크 제어 채널 (Physical
Downlink Control Channel : PDCCH)를 수신하고, 상기 제 1 DCI에 기초하여 제 1 PDSCH를 수신하되 , 상기 제 1 PDSCH는 다중 전송 블록 (Multi Transport Block)의 스케줄링 여부를 나타내는 지시 정보를 포함하고, 복수의 PDSCH를 수신하되, 상기 복수의 PDSCH 중 적어도 하나의 PDSCH는 상기 지시 정보에 따라 별도의 DCI 수신 없이 수신되는 것을 특징으로 하는 단말을 제공한다. 【유리한 효과】
본 발명의 실시 예에 따르면, 다중 전송 블록의 스케줄링 여부와 관련된 정보 및 스케줄링 정보를 전송함으로써 하나의 DCI를 통해서 복수의 하향링크 공유 채널 (Physical Downlink shared channel : PDSCH) 또는 복수의 상향링크 공유 채널 (Physical Uplink shared channel : PUSCH)를 송수신할 수 있는 효과가 있다.
또한, 본 발명의 실시 예에 따르면, 다중 전송 블록와 스케줄링을 위한 하향링크 제어 정보 (Downlink Control Information: DCI)를 수신하지 못한 경우, 이후 전송되는 DCI를 통해서 복수의 하향링크 공유 채널 또는 복수의 상향링크 공유 채널을 송수신할 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한가원 그리드 (resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및깨리어 병합의 일례를 나타낸다.
도 6은 캐리어 병합을지원하는시스템의 셀의 구분을 예시한도면이다. 도 7 및 도 8은 본 발명에서 제안하는 방법이 적용될 수 있는 하나 이상의 물리채널/신호의 다중 TB 스케줄링을 하는 단말 동작의 일 예를 나타내는 순서도이다 .
도 9 및 도 10은 본 발명에서 제안하는 방법이 적용될 수 있는 하나 이상의 물리채널/신호의 다중 TB 스케줄링을 하는 기지국 동작의 일 예를 나타내는순서도이다.
도 11은 본 발명에서 제안하는 방법이 적용될 수 있는 하나 이상의 물리채널/신호의 다중 TB 스케줄링을 수행하는 기지국과 단말간의 시그널링의 일 예를 나타내는흐름도이다 .
도 12는 본 발명에서 제안하는 방법이 적용될 수 있는 SC-PTM(Sing Cell Point to Multipoint)과 관련된 단말 동작의 일 예를 나타내는 순서도이다.
도 13은 본 발명에서 제안하는 방법이 적용될 수 있는 SC-PTM(Sing Cell Point to Multipoint)과 관련된 기지국 동작의 일 예를 나타내는 순서도이다.
도 14는 본 발명에서 제안하는 SC-MCCH (Single Cell Multicast Control Channel)에 대한다중 TB 스케줄링의 일 예를 나타내는도이다. 도 15는 본 발명에서 제안하는 SC-MCCH (Single Cell Multicast Control Channel)에 대한 다중 TB 스케줄링의 또 다른 일 예를 나타내는 도이다.
도 16은 본 발명에서 제안하는 SC-MCCH (Single Cell Multicast Control Channel)에 대한 다중 TB 스케줄링의 또 다른 일 예를 나타내는 도이다.
도 17은 본 발명에서 제안하는 SC-MCCH (Single Cell Multicast Control Channel)에 대한 다중 TB 스케줄링의 또 다른 일 예를 나타내는 도이다.
도 18은 본 발명에서 제안하는 SC-MCCH (Single Cell Multicast Control Channel)에 대한 다중 TB 스케줄링의 또 다른 일 예를 나타내는 도이다.
도 19는 본 발명에서 제안하는 방법이 적용될 수 있는 유니캐스트 (Unicast)와관련된 단말동작의 일 예를 나타내는순서도이다. 도 20은 본 발명에서 제안하는 방법이 적용될 수 있는 유니캐스트 (Unicast)와관련된 기지국 동작의 일 예를 나타내는순서도이다. 도 21은 본 발명에서 제한하는 방법이 적용될 수 있는 다중 TB 스케줄링에 대한단말동작의 일 예를 나타내는순서도이다.
도 22는 본 발명에서 제한하는 방법이 적용될 수 있는 다중 TB 스케줄링에 대한기지국동작의 일 예를 나타내는 순서도이다.
도 23은 본 발명에서 제안하는 방법이 적용될 수 있는 다중 TB 스케줄링을 통해서 하향링크 데이터를 수신하기 위한 단말 동작의 일 예를 나타내는 순서도이다 .
도 24는 본 발명에서 제안하는 방법이 적용될 수
Figure imgf000011_0001
스케줄링을 통해서 하향링크 데이터를 전송하기 위한 기지국 동작의 일 예를 나타내는 순서도이다 .
도 25는 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록구성도를 예시한다.
도 26은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도의 또 다른 예시이다.
【발명의 실시를 위한 형태】
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며 , 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다 . 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 통상의 기술자는본발명이 이러한구체적 세부사항 없이도실시될 수 있음을 안다. 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드 (terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 0 2019/209082 10 1»(:1/10公019/005106 수행되는 것으로 설명된 특정 동착은 경우에 따라서는 기지국의 상위 노드 (upper node)에 의해 수행될 수도 있다 . 즉, 기지국을 포함하는 다수의 네트워크 노드들 (network nodes) £. 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 1기지국 (BS: Base Station),은 고정국 (fixed station) , Node B, eNB (evolved-NodeB) , BTS (base transceiver system) , 액세스 포인트 (AP: Access Point) , gNB (next generation NB, general NB, gNodeB) 등의 용어에 의해 대체될 수 있다. 또한, '단말 (Terminal) '은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS (Mobile Station), UT (user terminal) , MSS (Mobile Subscriber Station) , SS (Subscriber Station) , AMS (Advanced Mobile Station), WT (Wireless terminal) , MTC (Machine-Type Communication) 장치 , M2M (Mach丄ne- to-Machine) 장치 , D2D (Device- to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서 , 하향링크 (DL·: downlink)는 기지국에서 단말로의 통신을 의미하며 , 상향링크 (UL: uplink)는 단말에서 기지국으로의 통신을 의미한다 . 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의. 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA (code division multiple access) , 2019/209082 11 1»(:1/10公019/005106
FDMA( frequency division multiple access) , TDMA(time division multiple access) , OFDMA (orthogonal frequency division multiple access), SC-FDMA (single carrier frequency division multiple access) , NOMA (non-orthogonal mult丄pie access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA (universal terrestrial radio access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSM (global system for mobile communications) /GPRS (general packet radio service) /EDGE (enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802-20, E-UTRA (evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS (universal mobile telecommunications system)의 일부이다. 3GPP (3rd generation partnership project) LTE (long term evolution)은 E-UTRA를 사용하는 E-UMTS (evolved UMTS)의 일부로써 , 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A (advanced)는 3GPP LTE의 진화이다 .
또한, 5G NR (new radio)은 usage scenario에 따라 eMBB (enhanced Mobile Broadband) , mMTC (massive Machine Type Communications) , URLLC (Ultra Reliable and Low Latency Communications) , V2X (vehicle-to-everything)을 정의한다 .
그리고, 5G NR 규격 (standard)는 NR 시스템과 LTE 시스템 사이의 공존 (co-existence)에 따라 standalone (SA)와 non- standalone (NSA)으로 구분한다.
그리고, 5G NR은 다양한 서브캐리어 간격 (subcarrier spacing)을 지원하며, 하향링크에서 CP-OFDM을, 상향링크에서 CP-OFDM 및 DFT-S- OFDM(SC-OFDM)을지원한다 .
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802 , 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들또는부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본문서에서 개시하고 있는 모든 용어들은상기 표준문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해 , 3GPP LTE/LTE-A/NR (New RAT)를 위주로 기술하지만본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 용어 정와
eLTE eNB: eLTE 는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화 (evolution)이다.
gNB: NGC와의 연결뿐만아니라 NR을지원하는 노드 .
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스 (network slice) : 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능 (network function) : 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동착을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트 (reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트 ( reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형 (Non-standalone) NR: 당 가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성 .
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB룰 요구하는 배치 구성 .
사용자 평면 게이트웨이 : NG-U 인터페이스의 종단점 .
뉴머로러지 (numerology) : 주파수 영역에서 하나의 subcarrier spacing에 대응한다. Reference subcarrier spacing을 정수 으로 scaling함으로써, 상아한 numerology가 정의될 수 있다.
NR: NR Radio Access 또는 New Radio 시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD (Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDD (Time Division Duplex)에 적용가능한타입 2의 무선 프레임 구조를 지원한다.
도 1에서 무선 프레임의 시간 영역에서의 크기는 T_s =l/ ( 15000*2048 )의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s = 10ms의 구간을가지는무선 프레임으로구성된다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다 . 타입 1 무선 프레임은 전이중 (full duplex) 및 반이중 (half duplex) FDD에 모두 적용될 수 있다.
무선 프레임 (radio frame)은 10개의 서브프레임 (subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360 *T_s = 0 . 5ms 길이의 20개의 슬롯으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역 (time domain)에서 연속적인 2개의 슬롯 (slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i +l로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI (transmission time interval)이라 한다. 예를 들어 , 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0 . 5ms일 수 있다.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면 , 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을할수 없다.
하나의 슬롯은 시간 영역에서 복수의 OFDM (orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간 (symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록 (resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파 (subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조 (frame structure type 2)를 나타낸다.
타입 2 무선 프레임은 각 153600*T_s = 5ms의 길이의 2개의 하프 프레임 (half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=lms 길이의 5개의 서브프레임으로 구성된다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성 (uplink - downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당 (또는 예약)되는지 나타내는 규칙이다.
표 1은 상향링크-하향링크 구성을 나타낸다.
【표 1】
Figure imgf000017_0001
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, ,: 0’는 하향링크 전송을 위한 서브프레임을 나타내고, ,U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S,는 DwPTS (Downlink Pilot Time Slot) , 보호구간 (GP: Guard Period) , UpPTS (Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임 (special subframe)을 나타낸다.
DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다.
UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 딜레이로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 서브프레임 오는 각 T_slot=15360 *T_s = 0 . 5ms 길이의 슬롯 2i 및 슬롯 2i+l로 구성된다.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임 , 스페셜 서브프레임 , 상향링크 서브프레임의 위치 및 /또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점 (switching point)이라 한다. 전환 시점의 주기성 (Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임 (S)은 하프-프레임 마다 존재하고, 5ms 하향링크- 상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다. 모든 구성에 있어서 , 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 2019/209082 17 1>(:1/1(兒2019/005106 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH (Physical Downlink Control Channel)를 통해 전송될 수 있으며 , 방송 정보로서 브로드캐스트 채널 (broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 2는 스페셜 서브프레임의
Figure imgf000019_0001
길이 )을 나타낸다.
【표 2】
Figure imgf000019_0003
Figure imgf000019_0002
도 1의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 0?0 심볼의 수는 다양하게 변경될 수 있다. 도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드 (resource grid)를 예시한 도면이다 .
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 70FDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소 (element)를 자원 요소 (resource element)하고, 하나의 자원 블록 (RB: resource block)은 12 X 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 iTDL은 하향링크 전송 대역폭 (bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다. 도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역 (control region)이고, 나머지 OFDM 심볼들은 PDSCH (Physical Downlink Shared Channel)이 할당되는 데이터 영역 (data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH (Physical Control Format Indicator Channel) , PDCCH (Physical Downlink Control Channel) , PHICH (Physical Hybrid-ARQ Indicator Channel) 등이 있다. PCFICH는 서브 프레임의 첫변째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM심볼들의 수 (즉, 제어 영역의 크기 )에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ (Hybrid Automatic Repeat Request)에 대한 ACK (Acknowledgement) /NACK (Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보 (DCI: downlink control information)
Figure imgf000021_0001
한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송 (Tx) 파워 제어 명령을포함한다.
PDCCH는 DL-SCH (Downlink Shared Channel)의 자원 할당 및 전송 포맷 (이를 하향링크 그랜트라고도 한다. ) , UL-SCH (Uplink Shared
Channel)의 자원 할당 정보 (이를 상향링크 그랜트라고도 한다. ) ,
PCH (Paging Channel)에서의 페이징 (paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답 (random access response)과 같은 상위 레이어 (upper- layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP (Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE (control channel elements)의 집합으로 구성된다 . CCE는 무선 채널의 상태에 따른 부호화율 (coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹 (resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC (Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자 (owner)나 용도에 따라 고유한 식별자 (이를 RNTI (Radio Network Temporary Identifier)라고 한다. )가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI (Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI (Paging-RNTI) 7} CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록 (SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI (system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여 , RA-RNTI (random access- RNTI)가 CRC에 마스킹될 수 있다 .
EPDCCH (enhanced PDCCH)는 단말 특정 (UE-specific) 시그널링을 나른다. EPDCCH는 단말 특정하게 설정된 물리 자원 블록 (PRB: physical resource block)에 위치한다. 다시 말해 , 상술한 바와 같이 PDCCH는 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들에서 전송될 수 있으나, EPDCCH는 PDCCH 이외의 자원 영역에서 전송될 수 있다. 서브프레임 내 EPDCCH가 시작되는 시점 (즉, 심볼)은 상위 계층 시그널링 (예를 들어 , RRC 시그널링 등)을통해 단말에 설정될 수 있다.
EPDCCH는 DL-SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, UL- SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, SL-SCH(Sidelink Shared Channel) 및 PSCCH (Physical Sidelink Control Channel)과 관련된 자원 할당 정보 등을 나를 수 있다. 다중의 EPDCCH가 지원될 수 있으며, 단말은 EPCCH의 세트를모니터링할수 있다.
EPDCCH는 하나 또는 그 이상의 연속된 진보된 CCE (ECCE: enhanced
CCE)를 이용하여 전송될 수 있으며 , 각 EPDCCH 포맷 별로 단일의 EPDCCH 당 ECCE의 개수가정해질 수 있다.
각 ECCE는 복수의 자원 요소 그룹 (EREG: enhanced resource element group)으로 구성될 수 ¾다. EREG는 ECCE의 RE로의 매핑을 정의하기 위하여 사용된다. PRB 쌍 별로 16개의 EREG가 존재한다. 각 PRB 쌍 내에서 DMRS를 나르는 RE를 제외하고, 모든 RE는 주파수가 증가하는 순서대로 그 다음 시간이 증가하는순서대로 0 내지 15까지의 번호가부여된다.
단말은 복수의 EPDCCH를 모니터링할 수 있다 . 예를 들어 , 단말이 EPDCCH 전송을 모니터링하는 하나의 PRB 쌍 내 하나 또는 두 개의 EPDCCH 세트가 설정될 수 있다.
서로 다른 개수의 ECCE가 병합됨으로써 EPCCH를 위한 서로 다른 부호화율 (coding rate)이 실현될 수 있다. EPCCH는 지역적 전송 (localized transmission) 또는 분산적 전송 (distributed transmission)을 사용할 수 있으며, 이에 따라 PRB 내 RE에 ECCE의 매핑이 달라질 수 있다. 도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다. 2019/209082 22 1»(:1^1{2019/005106 도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH (Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH (Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록 (RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 요묘들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB쌍은 슬롯 경계 (slot boundary)에서 주파수 도약 (frequency hopping)된다고 한다. 캐리어 병합 일반
본 발명의 실시 예들에서 고려하는 통신 환경은 멀티 캐리어 (Multi- carrier) 지원 환경을 모두 포함한다. 즉, 본 발명에서 사용되는 멀티 캐리어 시스템 또는 캐리어 병합 (CA: Carrier Aggregation) 시스템이라 함은 광대역을 지원하기 위해서, 목표로 하는 광대역을 구성할 때 목표 대역보다 작은 대역폭 (bandwidth)을 가지는 1개 이상의 컴포넌트 캐리어 (CC: Component Carrier)를 병합 (aggregation)하여 사용하는 시스템을 말한다 . 본 발명에서 멀티 캐리어는 캐리어의 병합 (또는, 반송파 집성 )을 의미하며 , 이때 캐리어의 병합은 인접한 (0011 91101 ) 캐리어 간의 병합뿐 아니라 비 인접한 (non-contiguous) 캐리어 간의 병합을 모두 의미한다. 또한, 하향링크와 상향링크 간에 집성되는 컴포넌트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포넌트 캐리어 (이하, 'DL CC,라 한다. ) 수와 상향링크 컴포넌트 캐리어 (이하, 'UL CC'라 한다. ñ 수가 동일한 경우를 대칭적 (symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적 (asymmetric) 집성이라고 한다. 이와 같은 캐리어 병합은 반송파 집성 , 대역폭 집성 (bandwidth aggregation) , 스펙트럼 집성 (spectrum aggregation) 등과 같은 용어와혼용되어 사용될 수 있다.
두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성 (backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다. 예를 들어서 기존의 3GPP LTE 시스템에서는 { 1 . 4 , 3 , 5 , 10 , 15 , 20}MHz 대역폭을 지원하며 , 3GPP LTE-advanced 시스템 (즉, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할 수도 있다. LTE-A시스템은무선 자원을 관리하기 위해 셀 (cell)의 개념을사용한다. 상술한 캐리어 병합 환경은 다중 셀《multiple cells) 환경으로 일컬을 수 있다. 셀은 하향링크 자원 (DL CC)과 상향링크 자원 (UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 특정 단말이 단 하나의 설정된 서빙 셀 (configured serving cell)을 가지는 경우 1개의 DL CC와 1개의 UL CC를 가질 수 있으나, 특정 단말이 2개 이상의 설정된 서빙 셀을 가지는 경우에는 셀의 수만큼의 DL 이를 가지며 UL CC의 수는그와 같거나그보다 작을수 있다.
또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 셀을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합 환경도 지원될 수 있다. 즉, 캐리어 병합 (carrier aggregation)은 각각 캐리어 주파수 (셀의 중심 주파수)가서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 여기서 , 말하는 1셀 (Cell)’은 일반적으로 사용되는 기지국이 커버하는 영역으로서의 '셀1과는 구분되어야 한다.
LTE-A시스템에서 사용되는 셀은 프라이머리 셀 (PCell: Primary Cell) 및 세컨더리 셀 (SCell: Secondary Cell)을 포함한다. P셀과 S셀은 서빙 셀 (Serving Cell)로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, I3셀로만 구성된 서빙 셀이 단 하나 존재한다 . 반면 , RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과하나 이상의 S셀이 포함된다.
서빙 셀(P셀과 S셀)은 RRC 파라미터를 통해 설정될 수 있다 . PhysCellM는 셀의 물리 계층 식별자로 0부터 503까지의 정수값을 가진다. SCelllndex는 S셀을 식별하기 위하여 사용되는 간략한(short) 식별자로 1부터 7까지의 정수값을 가진다. ServCelllndex는 서빙 셀(P셀 또는 S셀)을 식별하기 위하여 사용되는 간략한(short) 식별자로 0부터 7까지의 정수값을 가진다. 0값은 P셀에 적용되며, SCelllndex는 S셀에 적용하기 위하여 미리 부여된다. 즉, ServCelllndex에서 가장 작은 셀 ID (또는 셀 인덱스)을 가지는 셀이 P셀이 된다.
P셀은 프라이머리 주파수(또는, primary CC) 상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정(initial connection establishment) 과정을수행하거나 연결 재-설정 과정을수행하는데 사용될 수 있으며 , 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P셀은 캐리어 병합 환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 셀을 의미한다. 즉, 단말은 자신의 P셀에서만 PUCCH를 할당 받아 전송할 수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P셀만을 이용할 수 있다. E-
UTRAN (Evolved Universal Terrestrial Radio Access)은 캐리어 병합 환경을 지원하는 단말에게 이홍성 제어 정보 (mobilityControlInfo)를 포함하는 상위 계증의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용하여 핸드오버 절차를 위해 P셀만을 변경할수도 있다.
S셀은 세컨더리 주파수 (또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다. S셀은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 캐리어 병합 환경에서 설정된 서빙 셀 중에서 P셀을 제외한 나머지 셀들, 즉 S셀에는 PUCCH가 존재하지 않는다. E- UTRAN은 S셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC_CONNECTED 상태에 있는 관련된 셀의 동작과 관련된 모든 시스템 정보를 특정 시그널 (dedicated signal)을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용할 수 있다. E-UTRAN은 관련된 S셀 안에서 브로드캐스트하기 보다는 단말 별로 상이한파라미터를 가지는특정 시그널링 (dedicated signaling) 할수 있다. 초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 캐리어 병합 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 이하의 실시 예에서는 프라이머리 컴포넌트 캐리어 (PCC)는 2019/209082 27 1»(:1^1{2019/005106
£>셀과 동일한 의미로 사용될 수 있으며 , 세컨더리 컴포넌트 캐리어 0:0는 3셀과동일한 의미로사용될 수 있다. 도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를나타낸다.
도 5의 (크)는 1/대 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 1 0:와 ^ 007} 있다. 하나의 컴포넌트 캐리어는 2 ^의 주파수 범위를 가질 수 있다.
도 5의 (미는 1 £:_요 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 5의 (이의 경우에 20 의 주파수 크기를 갖는 3개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. ]고 (:(:와
Figure imgf000029_0002
007} 각각 3 개씩 있으나, 1 (:(:와
Figure imgf000029_0001
0:의 개수에 제한이 있는것은 아니다. 캐리어 병합의 경우 단말은 3개의 (:(:를 동시에 모니터링할 수 있고, 하향링크 신호/데이타를 수신할 수 있고 상향링크 신호/데이터를송신할수 있다.
만약, 특정 셀에서 개의 1)] 007> 관리되는 경우에는, 네트워크는 단말에 ( <비개의 (: 를 할당할 수 있다. 이때 , 단말은 개의 제한된 1 00 만을 모니터링하고
Figure imgf000029_0003
신호를 수신할 수 있다. 또한, 네트워크는 ᄄ£ £비개의 1 02에 우선순위를 주어 주된 1 00를 단말에 할당할 수 있으며, 이러한
Figure imgf000029_0004
0:는 반드시 모니터링해야 한다. 이러한 방식은상향링크 전송에도똑같이 적용될 수 있다. 하향링크 자원의 반송파 주피·쑤 (生는 DL CC)와 상향링크 자원의 반송파 주파수 (또는, UL CC) 사이의 링키지 (linkage)는 RRC 메시지와 같은상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어 , SIB2 (System Information Block Type2 )에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL 그랜트를 나르는
PDCCH가 전송되는 DL CC와상기 UL그랜트를사용하는 UL CC간의 맵정 관계를 의미할 수 있으며 , HARQ를 위한 데이터가 전송되는 DL CC (또는 UL CC)와 HARQ ACK/NACK신호가 전송되는 UL CC (또는 DL CC)간의 맵핑 관계를 의미할 수도 있다.
도 6은 캐리어 병합을지원하는시스템의 셀의 구분을 예시한도면이다 . 도 6을 참조하면, 설정된 셀 (configured cell)은 도 5에서와 같이 기지국의 셀 중에서 측정 보고를 근거로 캐리어 병합할 수 있도록 한 셀로서 단말별로 설정될 수 있다. 설정된 셀은 PDSCH 전송에 대한 ack/nack 전송을 위한 자원을 미리 예약해 놓을 수 있다. 활성화된 셀 (activated cell)은 설정된 셀 중에서 실제로 PDSCH/PUSCH를 전송하도록 설정된 셀로서
PDSCH/PUSCH 전송을 위한 CSI (Channel State Information) 보고와 SRS (Sounding Reference Signal) 전송을 수행하게 된다. 비활성화된 셀 (de-activated cell)은 기지국의 명령 또는 타이머 동작에 의해서
PDSCH/PUSCH 전송을 하지 않도록 하는 셀로서 CSI 보고 및 SRS 전송도중단할 수 있다. NB-IoT에서의 하향링크 제어 채널 관련 절차
NB-IoT에서 이용되는 NPDCCH (Narrowband Physical Downlink
Control Channel)과 관련된 절차에 대해 살펴본다.
단말은 제어 정보에 대한 상위 계층 시그널링에 의해 설정된 바에 따라 NPDCCH 후보들 (NPDCCH candidates) (즉, NPDCCH 후보들 집합 (set of NPDCCH candidates) )을 모니터링 (monitoring)할 필요가 있다. 여기에서 , 상기 모니터링은, 모니터링되는 모든 DCI 포맷에 따라 상기 집합에 있는 각각의 NPDCCH들의 디코딩을 시도하는 것을 의미할 수 있다. 모니터링하기 위한 상기 NPDCCH 후보들 집합은 NPDCCH 탐색 공간 (NPDCCH search space)로 정의될 수 있다. 이 경우, 단말은 해당 NPDCCH 탐색 공간에 대응하는 식별자 (예 : C- RNTI, P-RNTI, SC-RNTI, G-RNTI)를 이용하여 모니터링을 수행할 수 있다.
이 경우, 단말은 a) Type1 -NPDCCH 공통 탐색 공간 (Typel -NPDCCH common search space) , b) TypelA-NPDCCH 공통 탐색 공간 (TypelA- NPDCCH common search space) , c) Type2 -NPDCCH 공통 탐색 공간 (Type2 -NPDCCH common search space) , d) Type2A-NPDCCH 공통 탐색 공간 (Type2 -NPDCCH common search space) 및 e) NPDCCH 단말-특정 탐색 공간 (NPDCCH UE- specific search space) 중 하나 이상을 모니터링할 필요가 있다.
이 때, 단말은 NPDCCH 단말-특정 탐색 공간과 Type1 -NPDCCH 공통 탐색 공간을 동시에 모니터링할 필요가 없다. 또한, 단말은 NPDCCH 단말-특정 탐색 공간과 Type2 -NPDCCH 공통 탐색 공간을 동시에 모니터링할 필요가 없다. 또한, 단말은 Type1 -NPDCCH 공통 탐색 공간과 Type2 -NPDCCH 공통 탐색 공간을 동시에 모니터링할필요가 없다.
단말은 단말이 모니터링하는 Type 1-NPDCCH 공통 탐색 공간의 서브 프레임 또는 P-RNTI에 의해서 스크램블링되는 DCI CRC에 대한 NPDCCH에 의해 할당되는 NPDSCH를 수신하는 서브프레임의 Type 1A-NPDCCH 공통 탐색 공간 또는 Type2A-NPDCCH공통 탐색 공간을모니터링할필요가 없다.
또한, 단말은 단말이 모니터링하는 Type 2-NPDCCH 공통 탐색 공간의 서브 프레임 또는 C-RNTI (또는 임시 C-RNTI)에 의해서 스크램블링되는 DCI CRC에 대한 NPDCCH에 의해 할당되는 NPDSCH를 수신하는 서브프레임의 Type 1A-NPDCCH공통 탐색 공간또는 Type2A-NPDCCH공통 탐색 공간을모니터링할 필요가 없다.
또한, 단말은 Type 1A-NPDCCH 공통 탐색 공간을 모니터링하는 동일한 서브프레임에서 Type2A-NPDCCH공통 탐색 공간을모니터링 할필요가 없다. 또한, 단말은 SC-RNTI에 의해 스크램블링된 DCI CRC에 대한 NPDCCH에 의해 할당된 NPDSCH를 UE7> 수신하는 서브 프레임에서 TypelA-NPDCCH 공통 검색 공간을모니터링 할필요가 없다.
또한, 단말은 G-RNTI 또는 SC-RNTI에 의해 스크램블링된 DCI CRC에 대한 NPDCCH에 의해 할당된 NPDSCH를 UE가 수신하는 서브 프레임에서 Type2A-NPDCCH공통 검색 공간을모니터링 할필요가 없다.
집성 러!벨 (aggregation level) 및 반복 레벨 (repetition level)에서의 NPDCCH탐색 공간은 NPDCCH후보들 집합에 의해 정의된다.
NPDCCH 단말-특정 탐색 공간의 경우, 해당 탐색 공간을 정의하는 집성 및 반복 레벨과 해당 모니터링되는 NPDCCH 후보들은, 상위 계층에 의해 설정된 2019/209082 31 1»(:1/10公019/005106 파라미터 npdcch-NumRepetitions로 요, 값을 대체(31쇼3七;11:11七6)함에 따라표 3과 같이 나열될 수 있다.
[표 3 ]
Figure imgf000033_0003
Figure imgf000033_0005
5
Figure imgf000033_0002
공간을위한파라미터 npdcch-NumRepetitions-SC-
'
Figure imgf000033_0001
표 4와같이 나열된다.
[표 4 ]
Figure imgf000033_0004
2019/209082 32
1*(:1/10公019/005106
Figure imgf000034_0004
Figure imgf000034_0001
공통 탐색 공간의 경우, 해당 탐색 공간을 정의하는 집성 및 반복 레벨과 해당 모니터링되는 ]^] :01후보들은, 상위 계층에 의해 설정된
Figure imgf000034_0002
2 -1 (:(〕11공통 탐색 공간을 공간을
Figure imgf000034_0003
표 5와 같이 나열된다.
[표 5]
Figure imgf000034_0005
2019/209082 33 1»(:1/10公019/005106
Figure imgf000035_0005
이 때, 상기 시작서브프레임 (starting subframe) k의 위치는 k = kb 에 의해 주어진다. 여기에서, kb는 SI 메시지 전송에 사용되는 서브 프레임을 제외한 서브프레임 k0 부터 b 번째 연속적인 NB-IoT 하향링크 서브프레임을 의미하고, 상기 b는 u x R이며, 상기 u는 0 , 1 , (R_/R) -l을 의미한다. 또한, 상기 서브프레임 k0는수학식 1을 만족하는서브프레임을 의미한다.
[수학식 1]
(l0«f+[«a/2j)modr
Figure imgf000035_0001
NPDCCH 단말-특정 탐색 공간의 경우, 수학식 1에 나타난 G는 상위 계층 파라미터 nPDCCH-startSF-UESS에 의해 주어지고,
Figure imgf000035_0002
계층 파라미터 nPDCCH-startSFoffset-UESS에 의해 주어진다. 또한, NPDCCH Type2 - NPDCCH 공통 탐색 공간의 경우, 수학식 1에 나타난 G는 상위 계층 파라미터 npdcch-StartSF-CSS-RA에 의해 주어지고,
Figure imgf000035_0003
계층 파라미터 npdcch-Offset- 에 의해 주어진다.
NPDCCH Type2-NPDCCH 공통 탐색 공간의 경우, 수학식 1에 나타난 G는 상위 계층 파라미터 npdcch-startSF-SC-MTCm] 의해 주어지고,
Figure imgf000035_0004
계층 파라미터 npdcch_Offset-SC-MTCH에 의해 주어진다.
Typel-NPDCCH 공통 탐색 공간의 경우, k 는 k0 이고, NB-IoT 페이징 기회 서브프레임 (NB-IoT paging opportunity subframe)의 위치로부터 결정된다.
TypelA-NPDCCH공통 탐색 공간의 경우, k는 k0 이고, k0는 아래 수학식
2의 조건을만족하는서브 프레임이다. [수학식 2]
(10«f + /2」)mod T = [aoffset -T where T = Rmsx .G,
수학식 2에서 G는 상위 계층 파라미터 npdcch-StartSF-SC-MCCH6]] 의해 주어지고, CX·는상위 계층 파라미터 npdcch-Offset-SC-MCCH예 의해 주어진다. 단말이 NPDCCH 단말-특정 담색 영역의 모니터링을 위한 PRB로 상위 계층에 의해 설정되는 경우, 단말은 상위 계층에 의해 설정된 NB-IOT carrier에서 NPDCCH 단말-특정 탐색 공간을 모니터링해야 한다. 이 경우, 단말은 해당 NB-IoT carrier에서 NPSS, NSSS, 및 NPBCH를 수신할 것을 기대하지 않는다. 반면, 상기 PRB가 상위 계층에 의해 설정되지 않는 경우, 단말은 NPSS/NSSS/NPBCH가 검출된 것과 동일한 NB-IoT carrier on에서 NPDCCH 단말-특정 탐색 공간을모니터링해야한다 .
만약, NB-IoT 단말이 상위 계증 파라미터 twoHARQ-ProcessesConfig6]] 의해서 구성되면, NB-IoT 단말이 서브프레임 n에서 끝나는 DCI 포맷 N0을 갖는 NPDCCH를 검출하고, 해당 NPUSCH 포맷 1 전송이 서브프레임 n+k에서 시작하는 경우, 단말은 서브프레임 n+1부터 서브프레임 n+k- 1까지의 범위 내에서 시작하는 임의의 서브프레임의 NPDCCH를모니터링할 필요가 없다.
만약, NB-IoT 단말이 상위 계층 파라미터 twoHARQ-ProcessesConfig0]} 의해서 구성되지 않으면, NB-IoT 단말이 서브프레임 n에서 끝나는 DCI 포맷 N0을 갖는 NPDCCH를 검출하거나 서브프레임 n에서 끝나는 임의 접속 응답 그랜트 (random access response grant)를 운반하는 NPDSCH를 수신하며 , 해당 NPUSCH 포맷 1 전송이 서브프레암 n+k에서 시작하는 경우, 단말은 서브프레임 n+1부터 서브프레임 n+k-1까지의 범위 내에서 시작하는 임의의 2019/209082 35 1»(:1^1{2019/005106 서브프레임의 이를 모니터링할 필요가 없다.
탐색 공간에서, NB-IoT 단말이 상위 계층 파라미터
Figure imgf000037_0001
대해 구성되면, -101 단말이 서브프레임 ]1에서 끝나는 001 포맷 1犯 또는 2를 갖는 NPDCCH를 검출하고, NPDSCH 전송이 서브프레임 아뇨에서 시작하는 경우, 단말은 서브프레임 11내-2부터 서브프레임 11+뇨-1까지의 범위 내에서 시작하는 임의의 서브프레임의 대를 모니터링할 필요가 없다.
탐색 공간에서, NB-IoT 단말이 상위 계층 파라미터
Figure imgf000037_0002
대해 구성되지 않으면, 101 단말이 서브프레임 11에서 끝나는 001 포맷 또는 를
Figure imgf000037_0003
검출하고,
Figure imgf000037_0004
전송이 서브프레임 11내에서 시작하는 경우, 단말은 서브프레임 11+1부터 서브프레임 ]1+ -1까지의 범위 내에서 시작하는 임의의 서브프레임의 NPDCCH를 모니터링할 필요가 없다.
배-1(穴 단말이 서브프레임 II에서 끝나는 001 포맷 1을 갖는 ] 1 :01를 검출하고, 해당 NPDSCH 전송이 서브프레임 ]!+>:에서 시작하는 경우, 및 해당 매01 포맷 2의 전송이 서브프레임 11_ 에서 시작하는 경우, 단말은 서브프레임 뇨부터 서브프레임 11+뇨-1까지의 범위 내에서 시작하는 임의의 서브프레임의 : ^1 01를 모니터링할 필요가 없다.
NB-IoT 단말이 서브프레임 에서 끝나는
Figure imgf000037_0005
伯]:),,에 대한 001 포맷 을 갖는 ^1X101를 검출하는 경우, 및 해당 !의 전송이 서브프레임 11 에서 시작하는 경우, 단말은 서브프레임 11+1부터 서브프레임 11+]<;-1까지의 범위 내에서 시작하는 임의의 서브프레임의 1犯 1를 모니터링할 2019/209082 36 1»(:1^1{2019/005106 필요가 없다.
만약, NB- IoT 단말이 상위계증 파라미터 twoHARQ-ProcessesConfig6\] 대해 구성되고, 만약 단말이 서브프레임 II에서 끝나는 ! 전송을 갖고 있는 경우, 단말은 서브프레임 11+1에서 어떠한 전송도 수신할 필요가 없다.
만약, NB- IoT 단말이 상위계증
Figure imgf000038_0001
대해 구성되지 않고, 만약 단말이 서브프레임 II에서 끝나는 대 전송을 갖고 있는 경우, 단말은 서브프레임 11+1 부터 서브프레임 11+3까지의 범위 내에서 시작하는 어떠한서브프레임의 ^ 이를 모니터링할 필요가 없다.
만약, NB- IoT 단말이 서브 프레임 11에서 끝나는 이를 수신하고, 해당하는 대 포맷 2를 모니터링할 필요가 없는 경우, 단말은 서브프레임 11+1 부터 서브프레임 11+12까지의 범위 내에서 시작하는 어떠한 서브프레임의 모니터링할 필요가 없다.
만약, NB- IoT 단말이 상위 계증 파라미터 twoHARQ-ProcessesConfig6\} 대해 구성되는 경우, 단말은 서브 프레임 XI에서 후보가 끝나고, 단말이 서브 프레임 끄+5 이전에 시작 서브프레임 0을 갖는 다른 NPDCCH 탐색 공간의
Figure imgf000038_0002
후보를 모니터링하도록 구성되면, NPDCCH 탐색 공간의
Figure imgf000038_0003
후보를 모니터링 할 필요가 없다.
만약, NB- IoT 단말이 상위 계증 파라미터 twoHARQ-ProcessesConfigc;\} 대해 구성되지 않는 경우, 단말은 서브프레임 II에서 NPDCCH 탐색 공간의 1 >13(: ¾ 후보가 끝나고, 단말이 서브프레임 11+5 전에 시작 서브프레임 노0를 갖는 또 다른 NPDCCH 탐색 공간의 NPDCCH 후보들의 모니터링을 위해 구성되면, NPDCCH 탐색 공간의
Figure imgf000038_0004
후보를 모니터링 할 필요가 없다. 2019/209082 37 1»(:1/10公019/005106 단말은 NPUSCH UL gap 동안 NPDCCH 탐색 공간의 NPDCCH 후보들을 모니터링하지 않아도 된다 .
NPDCCH 시작 위치 (NPDCCH starting position)과 관련하여 , NPDCCH에 대한 시작 OFDM 심볼은, 서브프레임 k의 첫 번째 슬롯에서, 인덱스 l^PDCCHStart에 의해 주어진다.
만약, 상위계증 파라미터 eutraControlRegionSize7\ 존재하는 경우 , 상기 인덱스 l_ccHstait는 상위 계층 파라미터 eutaControlRegionSize에 의해 주어진다. 이와 달리 , 상위계증 파라미터 eutraControlRegionSize7\ 존재하지 않는 경우, 상기 인덱스 l PDCCHStart는 0 이다·
단말은 일관된 제어 정보 (consistent control information)가 탐색되지 않으면, NPDCCH를 폐기 (discard)한다. 하향링크 제어 정보포맷 (PCI format)
Format OB
DCI 포맷 OB는 LLA ( Licensed-Assisted Access ) SCel l의 다중 서브프레임들 각각에서 PUSCH의 스케줄링을 위해서 사용될 수 있으며, 아래와 같은정보를 전송할수 있다.
- 캐리어 지시자 (Carrier Indicator) (예 : 0또는 3비트)
- PUSCH 트리거 A: 값 0은 non- triggered 스케줄링을 지시하고, 값 1은 triggered스케줄링을지시함 (예 : 1비트 ñ .
- 타이밍 오프셋 (예 : 4비트) : PUSCH 트리거 A가 0이면, 타이밍 오프셋 필드는 PUSCH 전송에 대한 절대적인 타이밍 오프셋을 지시하고, 그렇지 않으면, 이 필드의 첫 번째 두 비트는 UL 오프셋 1에 대한 타이밍 오프셋을 지시하고, 마지막 두 비트는 트리거된 스케줄링을 통한 PUSCH의 스케줄링이 유효나 타임 윈도우를지시한다.
- 스케줄된 서브프레임들의 개수 (Number of scheduled subframes) (예 : 1 또는 2 비트) : maxNumberOfSchedSubframes -
Fomat0B-rl4가 상위 계층에 의해서 두 개로 구성된 경우 1 비트 필드가 적용되고, 그렇지 않으면 2 비트 필드가적용된다.
아래 표 6은 스케줄된 서브프레임들의 개수 필드의 비트 값이 결정되는 일 예를 나타낸다.
[표 6]
Figure imgf000040_0001
- 자원 블록 할당 (Resource block assignment) : 5 또는 6 비트는 UL 서브 프레임에서 자원 할당을 제공한다.
변조 및 코딩 방식 (Modulation and coding scheme) (예 : 5비트) - HARQ 프로세스 넘버 (HARQ process number) (예 : 4비트) : 4 비트는 첫 번째 스케줄링 된 서브프레임에 적용된다.
아래 표 7은 HARQ프로세스 넘버의 일 예를 나타낸다.
[표 7]
Figure imgf000040_0002
새로운 데이터 지시자 (New data indicator) : maxNumberOfSchedSubframes FormatOB rl4 비트. 각각의 스케줄된 PUSCH는
1비트에 대응한다.
- 리던던시 버전 (Redundancy version) : maxNumberOJSchedSubframes
FormatOB rl4 비트. 각각의 스케줄된 PUSCH는 1비트에 대응한다.
아래 표 8은 리던던시 버전의 일 예를 나타낸다.
[표 8]
Figure imgf000041_0004
스케줄된 모떠대에
Figure imgf000041_0001
커맨드 (예 : 2비트)
- DM RS 및 OCC 인덱스에 대한 Cyclic shift (예 : 3비트)
- 031 요청: 1 , 2 , 또는 3비트. 2비트 필드는 5 개 이하의
Figure imgf000041_0002
셀들로 구성된 단말들, 하나 이상의 I)]」 셀들에 대해 구성되고, 대응하는 001 포맷이 01^11에 의해서 주어진 단말 특정 탐색 공간에 매핑되는 단말들, 하나 이상의 031 프로세스를 갖는 상위 계층들에 의해 구성되고 대응하는 1犯1 포맷이 0- 1 1에 의해 주어진 단말 특정 탐색 공간에 매핑되는 단말들, 및 파라미터 081 섟 戶· 切를 갖는 상위 계층에 의해 2개의 031 측정 셋들로 구성되고, 대응되는 001 포맷이
Figure imgf000041_0003
의해서 주어진 단말 특정 탐색 공간에 매핑되는 단말들에게 적용된다.
3비트 필드는 5개 이상의 셀들에 대해 구성되고, 이에 대한 001 포맷이 C-RNTI에 의해서 주어진 단설: 특정 탐색 공간에 매핑되는 단말들에게 적용된다.
그렇지 않으면, 1비트 필드가 적용된다.
- SRS 요청(예 : 2비트)
- PUSCH 시작 위치(예 : 2비트)
- PUSCH 종료 심볼(예 : 1비트) : 값 0은 마지막 스케줄된 서브 프레임의 마지막 심볼을 지시하고, 값 1은 마지막으로 스케줄된 서브 프레임의 마지막 두 번째 심볼을 지시한다.
- 채널 접속 타입(Channel Access type)(예 : 1비트)
- 채널 접속 우선순위 클래스(Channel Access Priority Class)(예 :
2비트)
포맷 0B의 정보 비트 수가 동일 서빙 셀에서 구성된 DL 전송 모드와 연관된 DCI 포맷 1 , 2 , 2A, 2B, 2C 또는 2D의 페이로드 크기와 같으면 하나의 0비트가포맷 ( 에 추가된다.
RNTI 값들
표 9는 RNTI 값들의 일 예를 나타내고, 표 10은 RNTI 값들의 사용 및 관련된 전송 채널 및 논리 채널의 일 예를 나타낸다.
[표 9]
Figure imgf000043_0001
[S. io]
Figure imgf000043_0002
2019/209082 42 1»(:1/10公019/005106 앞서 살핀 것처럼, ¾;1:;1:0 ¾]1(1 (射묘 ) -!/!£!는 1/1된 면 의 1
PRB (Physical Resource Block)에 해당하는 시스템 대역폭 (system BW)를 갖는 낮은 복잡도 (complexity) , 낮은 전력 소비 (power consumption)을 지원하기 위한시스템을 말한다.
즉, NB-LTE 乂스템은 주로 machine- type comirmn丄cation (MTC)와 같은 장치 (device) (또는 단말)를 셀룰러 시스템 (cellular system)에서 지원하여 IoT를 구현하기 위한 통신 방식으로 이용될 수도 있다. 즉, NB-LTE 시스템은 NB-IoT로지칭될 수도 있다.
,또한, NB-IoT 시스템은 기존의 LTE 시스템에서 사용하는 서브캐리어 간격 (subcarrier spacing) 등의 OFDM parameter들을 LTE 시스템과 같은 것을 사용함으로써 NB-IoT 시스템을 위해 추가적인 band를 할당하지 않아도 된다. 이 경우, legacy LTE 시스템 band의 1 PRB를 NB-IoT 용으로 할당함으로써 , 주파수를 효율적으로사용할수 있는 장점이 있다.
NB-IoT 시스템의 물리 채널은, 하향링크의 경우, N-PSS (N- Primary Synchronization Signal) /N-SSS (N-Secondary Synchronization Signal) , N-PBCH (N- Physical Broadcast Channel) , N-PDCCH/N- EPDCCH, N-PDSCH 등으로 정의될 수도 있다. 여기에서, 레거시 LTE와 구별하기 위해 'N-'이 이용될 수도 있다.
또한, (e)MTC에서 사용하는 제어채널은 MPDCCH등으로 정의될 수 있다. 본 발명에서 레가시 단말 (legacy UE)와 향상된 단말 (enhanced UE)는 아래와같이 정의될 수 있다.
레가시 단말: 하나의 DCI로 하나의 전송 블록 (Transport Block: TB)를 스케줄링 받을 수 있다. 다중 천송 블록 (Multi -TB) 스케줄링을 위한 DCI 포맷을 인식할수 없다.
향상된 단말: 하나의 DCI를 통해서 다중 전송 블록을 스케줄링 받을 수 있고, 다중 전송블록 스케줄링을위한 DCI 포맷도 인식할수 있다.
본 명세서에서 탐색 공간 (search space)을 모니터링한다는 것은, 해당 탐색 공간을 통해 수신하고자 하는 DCI 포맷 (DCI format)에 따라 특정 영역만큼의 N-PDCCH를 디코딩 (decoding)한 후 해당 CRC를 미리 약속된 특정 RNTI 값으로 스크램블링하여 원하는 값과 맞는지 (즉, 일치하는지) 여부를 확인하는 과정을 의미할수도 있다.
또한, NB-IoT 시스템의 경우 각 단말은 단일 PRB (single PRB)를 각각의 반송파 (carrier)로 인식하므로, 본 명세서에서 언급되는 PRB는 반송파와동일한의미로 해석될 수도 있다.
또한, 본 명세서에서 언급되는 DCI 포맷 NO, DCI 포맷 N1, 및 DCI 포맷 N2는 앞서 설명된 (예 : 3GPP 표준에 정의된) DCI 포맷 NO, DCI 포맷 N1, 및 DCI 포맷 N2를 의미할수도 있다.
또한, 본 명세서에서 제안하는 실시 예들은 무선 프레임 (radio frame)과 서브프레임 (subfrmae)의 관계에 기반하여 설명되나, 이는 차세대 무선 통신 시스템 (예 : NR 시스템)에서의 프레임 (frame)과 서브프레임 (subframe)의 관계에도 동일하게 적용될 수 있음은 물론이다. 즉, 본 명세서의 무선 프레임은 프레임을 의미할수도 있다.
또한, 본 명세서에서 제안하는 실시 예들에서, 데이터 및/또는 정보의 자원으로의 매핑 (mapping) (또는 데이터 및/또는 정보를 위한 자원 할당 (resource allocation)은, 서브프레임 단위뿐만 아니라, 서브프레임을 구성하는 슬롯 (slot)단위로 설정될 수도 있다. 일례로, SIB1-NB는서브프레임 내에서 슬롯 단위로 매핑될 수도 있다. 여기에서, 슬롯을 구성하는 OFDM심볼의 수, 프레임 및/또는 서브프레임 당 슬롯의 수는, 뉴머롤로지 (numerology) 및/또는 CP길이 (Cyclic Prefix length)에 따라다르게 설정될 수 있다. 기존의 NB-IoT 시스템 (여!: Release 14의 NB-IoT 시스템)의 LTE LAA에서는 PUSCH 전송을 위한 다중 서브프레임 스케줄링만이 도입되었다. DCI format 0B를 참조하면, 기지국은 해당 DCI를 통해서 스케줄링할 총 서브 프레임을 수를 지시할 수 있으며, 이는 RRC 시그널링을 통해 전송된 파라미터 maxNumberO;fSchedSubframes-FormatOB-r 14空 \ 값에 기초하여 결정될 수 있다.
또한, HARQ 프로세스 넘버 필드를 통해서 HARQ 프로세스 넘버 1개를 알려줄 수 있으며, 총 스케줄링할 서브 프레임의 수에 따라 오름차순으로 HARQ 프로세스 넘버가결정될 수 있다.
새로운 데이터 지시자와 리던던시 버전은 각 서브프레임당 1 비트를 사용해서 전달될 수 있으며, 이 외의 MCS/자원 할당/타이밍 오프셋 등은 공통적으로 적용될 수 있다.
기존의 NB-IOT 시스템은 처음에 단일 HARQ 프로세스만을 이용하였지만, 이후, two HARQ 프로세스가 도입되었다. 이때, HARQ 프로세스 넘버는 단말이 초기 송수신부터 재 송수신이 완료될 때까지 단말의 버퍼 (buffer)에 몇 개의 서로 다른 정보를 저장할수 있는지 여부를 나타낼 수 있다.
즉, 단일 HARQ 프로세스 단말은 한번 DCI를 수신하여 DL 그랜트 또는 UL 2019/209082 45 1»(:1^1{2019/005106 그랜트를 수신하게 되면, 해당 1技1均 프로세스 II)에 대한 모든 재전송이 완료될 때까지 다음 1311그랜트또는 ^그랜트에 대한동작을수행할수 없게된다.
따라서, 단말은 해당 1 1均 프로세스 113에 대한 모든 재 전송이 완료될 때까지 단말 특정 탐색 공간 모니터링 동작을 수행하지 않는다. 하지만, ¾70 프로세스 단말은 서로 다른 두 개의 1凡 그랜트 또는 1凡 그랜트를 처리할 수 있다.
이하, 본 발명은 단일
Figure imgf000047_0001
나눠서 설명하고,
Figure imgf000047_0002
에 도입된 다중서브프레임 스케줄링을 기본으로설명한다.
기존의 -고 에서는 단일 ?묘를 다중 서브프레임에 반복 전송하도록 설계되어 있으므로, 본 발명에서 설명하는 방법은 다중
Figure imgf000047_0003
스케줄링이란표현을 사용한다.
- 도 7 및 도 8은 본 발명에서 제안하는 방법이 적용될 수 있는 하나 이상의 물리채널/신호의 다중 TB 스케줄링을 하는 단말 동작의 일 예를 나타내는 순서도이다 .
도 7은 단말의 상향링크 전송의 일 예를 나타내고, 도 8은 단말의 하향링크수신의 일 예를 나타낸다.
도 7을 참조하면, 단말은 기지국으로 상향링크 데이터를 전송하기 위해 스케줄링에 대한설정 정보를 수신하고 (37010 ) , 설정 정보에 기초하여 다중 TB스케줄링을 위한 1X1를수신할수 있다 ( 37020 ) .
이해, :0〔:1는 단말이 기지국으로 상향링크 데이터를 전송하기 위한 스케줄링 정보를포함할수 있다.
이후, 단말은 수신된
Figure imgf000047_0004
기초하여 기지국으로 스케줄링된 기초한 상향링크 데이터를 전송할수 있다 (3 030) .
이때, 단말은 스케줄링된 TB가 모두 전송될 때까지 상향링크 데이터를 계속해서 기지국으로 전송할수 있다.
도 8은 단말의 하향링크수신의 일 예를 나타낸다.
단말은 기지국으로부터 하향링크 데이터를 수신하기 위해 다중 TB 스케줄링에 대한 설정 정보를 수신하고 (S8010 ) , 설정 정보에 기초하여 다중 TB 스케줄링을위한 DCI를수신할수 있다 (S8020 ñ .
이후 , 단말은 수신된 DCI에 기초하여 기지국으로부터 스케줄링된 TB에 기초한하향링크 데이터를수신할수 있다 (S8030 ) .
이때, 단말은 스케줄링된 TB가 모두 수신될 때까지 하향링크 데이터를 계속해서 기지국으로부터 수신할수 있다.
만약, 스케줄링된 TB가 모두 수신된 경우, 단말은 수신된 TB에 대한 피드백 (Feedback)이 필요한지 여부에 따라 기지국으로 HARQ-Ack 피드백을 전송할수 있다 (S8040 ) .
도 9 및 도 10은 본 발명에서 제안하는 방법이 적용될 수 있는 하나 이상의 물리채널/신호의 다중 TB 스케줄링을 하는 기지국 동작의 일 예를 나타내는순서도이다.
기지국은 단말로 하향링크 데이터를 수신하기 위해 다중 TB 스케줄링에 대한설정 정보를 전송하고 (S9010 ) , 설정 정보에 기초하여 다중 TB 스케줄링을 위한 DCI를수신할수 있다 (S9020 ) .
이해, DCI는 단말이 기지국으로 상향링크 데이터를 전송하기 위한 스케줄링 정보를 포함할수 있다. 2019/209082 47 1»(:1^1{2019/005106 이후, 기지국은 전송한 å)  에 기초하여 단말로부터 스케줄링된
Figure imgf000049_0001
기초한상향링크 데이터를수신할수 있다 (39030) .
이때, 기지국은 스케줄링된
Figure imgf000049_0002
수신될 때까지 상향링크 데이터를 계속해서 단말로부터 수신할수 있다.
도 10은 기지국의 하향링크 전송의 일 예를 나타낸다.
기지국은 단말로 하향링크 데이터를 전송하기 위해 다중 TB 스케줄링에 대한 설정 정보를 전송하고 ^10010 ) , 설정 정보에 기초하여 다중 1:6 스케줄링을위한:幻1를 전송할수 있다 (310020 ) .
이후, 기지국은 수신된 1)(:1에 기초하여 단말로 스케줄링된
Figure imgf000049_0003
기초한 하향링크 데이터를 전송할수 있다 ( 310030 ) .
이때, 기지국은 스케줄링된 TB가 모두 전송될 때까지 하향링크 데이터를 계속해서 단말로 전송할수 있다.
만약, 스케줄링된 :8가 모두 전송된 경우, 기지국은 수신된 묘에 대한 피드백의 수신이 필요한지 여부에 따라 단말로부터
Figure imgf000049_0004
피드백을 수신할 수 있다 (310040 ) .
도 11은 본 발명에서 제안하는 방법이 적용될 수 있는 하나 이상의 물리채널/신호의 다중
Figure imgf000049_0005
스케줄링을 수행하는 기지국과 단말간의 시그널링의 일 예를나타내는흐름도이다 .
도 11은 도 7 내지 도 10에서 설명한 단말과 기지국간의 상향링크 데이터 및 하향링크 데이터의 송수신 방법을 위한시그널링의 일 예를 나타낸다.
도 11의 (이는 다중
Figure imgf000049_0006
스케줄링을 통한 기지국과 단말간의 상향링크 데이터의 송수신 방법의 일 예를 나타내고, 도 11의
Figure imgf000049_0007
스케줄링을 통한 기지국과 단말간의 하향링크 데이터의 송수신 방법의 일 예를 나타낸다. 구체적인 방법은 도 7 내지 도 10에서 설명한바 생략하도록 한다.
이하, 본 발명에서 제안하는 단일 HARQ 프로세스에 대한 NB-IoT에서의 다중 TB 스케줄링에 대해서 살펴보도록 한다.
단일 HARQ프로세스에 대한 NB-IoT의 다중 TB스케줄링
먼저, 재 전송이 필요없는 하향링크 또는 상향링크에 대한 다중 TB 스케줄링에 대해 설명하도록 한다.
예를 들면 , SC-PTM (single cell point to multipoint (예를 들면 , SC-MCCH (single cell-multicast control channel) , SC-MTCH (single cell -multicast traffic channel) 전송이 재 전송 필요 없는 하향링크 데이터 전송에 해당될 수 있다.
이하, 본 발명에서는 설명의 편의를 위하여 SC-PTM 전송을 기준으로 설명하자만, 본 발명은 이에 한정되지 않고 재 전송이 필요 없는 다른 전송 방식에도 적용될 수 있음은 자명하다.
SC-PTM에 다중 TB 스케줄링이 적용되는 경우, 다중 TB 스케줄링은 SC-
MTCH 전송을 위해 사용될 수 있으며, 이는 단말이 SC-MCCH를 통해서 SC- MTCH를 전달하는 NPDSCH 를 스케줄링하는 NPDCCH가 전송되는 캐리어 및 사용된 G-RNTI 정보를 획득하여 모니터링 할 수 있다. 또한, SC-MCCM이 SC- MCCH의 전송을 위해서 사용될 수 있다.
도 12는 본 발명에서 제안하는 방법이 적용될 수 있는 SC-PTM (Sing
Cell Point to Multipoint)과 관련된 단말 동작의 일 예를 나타내는 순서도이다. 도 12를 참조하면 , 단말은 다중 TB가 스케줄링된 경우, TB와 관련된 스케줄링 정보는 DCI를통해 전송될 수 있다.
구체적으로, 단말은 기지국으로부터 SC-PTM 절차와 관련된 설정정보(예를 들면 , higher layer signaling)를수신할수 있다(S12010) .
만약, SC-PTM 절차와 관련된 구성이 기 설정된 경우, S12010 단계는 생략될 수 있다.
이후, 단말은 기지국으로부터 전송된 설정 정보에 기초하여 설정된 탐색 공간에서 제 1 NPDCCH를 수신(또는 모니터링 ñ할 수 있다. 이 경우, 해당 제 1 NPDCCH를 통해 SC-MCCH가 전달되는 제 1 NPDSCH에 대한 스케줄링을 위한 DCI가전달(즉, 전송)될 수 있다(S12020) .
이 후, 단말은 제 1 NPDCCH에 의해 스케줄링되는 제 1 NPDSCH를 통해 SC-MCCH를 기지국으로부터 전달받을(즉, 수신할) 수 있다(S12030) .
단말은 전달받은 SC-MCCH에 기반하여(설정된 search space에서) 제 2 NPDCCH를수신(또는모니터링)할수 있다(S12040) .
이 경우, 해당 제 2 NPDCCH를 통해 SC-MTCH가 전달되는 제 2 NPDSCH에 대한 스케줄링을 위한 DCI가 전달(즉, 전송)될 수 있다. 이때 , legacy 단말을 위한 DCI를 이용하여 다중 TB에 대한 스케줄링 정보가 전송되거나, 별도의 DCI가설정하여 다중 TB에 대한스케줄링 정보가전송될 수 있다.
이 후, 단말은 제 2 NPDCCH에 의해 스케줄링되는 제 2 NPDSCH를 통해 SC- MTCH를 기지국으로부터 전달 받을(즉, 수신할) 수 있다(S12050) .
도 13은 본 발명에서 제안하는 방법이 적용될 수 있는 SC-PTM(Sing Cell Point to Multipoint)과 관련된 기지국 동작의 일 예를 나타내는 순서도이다 .
구체적으로, 기지국은 단말로 SC-PTM절차와 관련된 설정정보(예를 들면, higher layer signaling)를 전송할수 있다(S13010) .
만약, SC-PTM 절차와 관련된 구성이 기 설정된 경우, S13010 단계는 생략될 수 있다.
이후, 기지국은 제 1 NPDCCH를 통해 SC-MCCH가 전달되는 제 1 NPDSCH에 대한스케줄링을 위한 DCI를 단말에게 전달(즉, 전송)할수 있다(S13020) . 이 후, 기지국은 제 1 NPDCCH에 의해 스케줄링되는 제 1 NPDSCH를 통해 SC-MCCH를 단말로 전달할(즉, 전송할) 수 있다( L3030) .
기지국은 SC-MCCH에 기반하여(설정된 search space에서) 제 2
NPDCCH를 전송할수 있다(S13040) .
이 경우, 해당 제 2 NPDCCH를 통해 SC-MTCH가 전달되는 제 2 NPDSCH에 대한 스케줄링을 위한 DCI가 전달(즉, 전송)될 수 있다. 이 후, 기지국은 제 2 NPDCCH에 의해 스케줄링되는 제 2 NPDSCH를 통해 SC-MTCH를 단말에게 전송할 수 있다(S13050) .
이하, 본 발명에서 제안하는 다중 TB스케줄링은 SC-MCCH의 전송 및/또는 ST-MTCH의 전송에 대해 이용될 수 있다.
<실시 예 l_legacy DCI 및 SC-MCCH 페이로드를 이용하여 다중 TB 스케줄링 정보를 지시>
도 14는 본 발명에서 제안하는 SC-MCCH(Single Cell Multicast
Control Channel)에 대한다중 TB스케줄링의 일 예를 나타내는 도이다. 도 14를 참조하면, 기지국은 새로운 DCI 설정 없이 기존의 legacy DCI 2019/209082 51 1»(그1'/쬬¾2019/005106 및 - 이의 전송을 위한 NPDSGH를 통해서 단말에게 다중 의 스케줄링 및 스케줄링과 관련된 정보를 전송할 수 있다.
구체적으로, 기지국은 도 14에 도시된 바와 같이
Figure imgf000053_0001
위한
NPDCCH(제 1 13(:0¾)를 단말로 전송할 수 있다. 이때, 기지국은 3<2-å 과 관련된 설정 정보를 1 ] :01 전송 전에 단말로 전송할 수 있다.
이후, 기지국은 제 1 NPDCCH에 의해서 스케줄링되는 01(제 1 01)를 통해서 - 대를 전송할 수 있다. 이때, 기지국은 제 1 NPDSCH에 다중
Figure imgf000053_0002
스케줄링 여부를 나타내는 지시 정보를 포함시킬 수 있다. 지시 정보를 통해서 향상된 단말은 다중
Figure imgf000053_0003
스케줄링되었다는 것을 인식할 수 있으며 , 이후 전송되는 3(:- 10¾를
Figure imgf000053_0004
2 1犯1)(:<3 를 통해 제 2 1)(:1를 수신할 수 있다.
기지국은 제 1 모 므!:!!에 기초하여 제 2 NPDCCH를 전송할 수 있으며, 제 2
Figure imgf000053_0005
단말에게 전송할 수 있다.
이때, 제 2 1)(:1는 NPDSCH(제 2
Figure imgf000053_0006
통해 - 대를 수신하기 위한 스케줄링 정보를 포함할 수 있으며, 제
Figure imgf000053_0007
및 제 2 NPDSCH는 스케줄
Figure imgf000053_0008
전송될 때까지 일정한 주기를 가지고 반복 전송될 수 있다.
이때, 레가시 단말은 기지국으로부터 전송되는 다중
Figure imgf000053_0009
스케줄링 여부를 나타내는 지시 정보 및 제 2 이를 통해 전송되는 제 2 å)〔:1에서
Figure imgf000053_0010
스케줄링과 관련된 스케줄링 정보는 인식할 수 없다.
따라서, 레가시 단말은 기지국이 전송하는 모든 ?0031 및 2019/209082 52
1»(그1^1{2019/005106 수신하여야한다.
하지만, 향상된 단말은 기지국으로부터 전송되는 제 1 NPDSCH에 포함된 다중 1:6의 스케줄링 여부를 나타내는 지시 정보를 통해서
Figure imgf000054_0001
스케줄링 여부를 인식할수 있다.
다중 737}스케줄링 된 경우, 단말은 제 2 대를 통해서 전송되는 제
2 13(:1를 수신할 수 있으며, 제 2 1犯1에 포함된 다중
Figure imgf000054_0002
스케줄링 정보를 통해서 이후 전송되는 제 2 대를수신할수 있다.
이때, 스케줄링 정보는 실제 스케줄링된
Figure imgf000054_0003
개수, 다중 1:6를 위한 스케줄링 딜레이, 및/또는 다중 1므를 위한 반복 횟수 중 적어도 하나를 포함할 수 있다.
제 2
Figure imgf000054_0004
스케줄링된 다중
Figure imgf000054_0005
모두 전송될 때까지 반복되어 전송될 수 있으며 , 제 2 대의 ·전송과 관련된 스케줄링 정보는 동일할 수 있다.
향상된 애는 제
Figure imgf000054_0006
수신하기 전에 항상 제 2 1)0^를 수신할 필요가 없다. 따라서, 향상된 는 제 1 이를 통해 다중 묘의 스케줄링 여부를 인식하고, 제 2 대를 통해 다중
Figure imgf000054_0007
전송과 관련된 스케줄링 정보를 수신하면, 이후 전송되는 제 2 이를 수신하지 않고 반복 전송되는
Figure imgf000054_0008
, 스케줄링 여부 및 스케줄링 정보를 알 수 있기 때문에, 이후 전송되는 제 2 ^å (¾를 모니터링 하지 않아도 반복 전송되는 제 2 애대를수신할수 있다.
즉, 실시 예 1은 30 ( 페이로드에
Figure imgf000054_0009
(예를 들면 , (3- 2019/209082 53 1»(:1^1{2019/005106 값 별로) 다중 TB의 스케줄링 정보가 포함되도록 설정될 수 있다. 이때, 다중 스케줄링 여부는 1 비트의 플래그를 통해서 명시적으로 0 /0££를 지시해줄 수 있으며 , 특정 파라미터 값(예를 들면 , :^!1::)이 기 설정된 값 들중 하나로 설정되는 것을 통해서 암시적으로 지시해줄 수 있다.
예를 들면, ( 묘 고 값의 특정 범위(예를 들면, ?묘00 묘묘?3)는 다중 의 스케줄링을 지시하는 (3-1 1로 설정될 수 있으며, 이와 관련된
Figure imgf000055_0001
스케줄링 정보를 추가적으로 3〔:- 0;(:11에 전송하고, 실제 - 이를 스케줄링하는
Figure imgf000055_0002
기존과 같이 전송될 수 있다.
이 경우, 레가시 단말은 해당 (3-1¾押1 값이 다중
Figure imgf000055_0003
스케줄링을 지시하는지 인식할 수 없기 때문에 기존의 동작에 따라 - 대를 스케줄링하는 제 1 NPDCCH를 모니터링하고, 또 해당 모0031가 스케줄링을 하는 3(그-1>仲01를 수신할 수 있다.
반면, 향상된 단말은 해당 (3-1 1'1 값이 다중
Figure imgf000055_0004
스케줄링 여부를 지시하는 것을 인식할 수 있기 때문에, - 대를 통해서 수신한
Figure imgf000055_0005
스케줄링 정보 및 레가시 å)(〕1를 통해 수신한 나머지 정보(예를 들면 , 3, 자원 할당, 반복 횟수 등)들을 조합하여 다중
Figure imgf000055_0007
스케줄링된
Figure imgf000055_0006
수신할 수 있다.
Figure imgf000055_0008
또한, 다중 1묘를 위한 스케줄링 딜레이는 하나의 값만 단말에게 알려주고 , 2019/209082 54
1»(그1^1{2019/005106 단말에게 전송된 스케줄링 딜레아는 모든 사이(예를 들면, 이전 1묘를 전달하는 0¾가 전송되는 마지막 서브프레임부터 다음 ?묘를 전달하는 이가 전송되는 가장 처음 서브프레임까지의 간격)의 스케줄링 딜레이로 사용될 수 있다고설정될 수 있다.
또한, 기지국의 유동적 스케줄링을 위해 실체 스케줄링된 묘의 개수 만큼 스케줄링 딜레이 값이 독립적으로설정되어 단말에게 전송될 수 있다.
또한, 다중 1묘를 위한 반복 횟수도 하나의 값만 단말에게 전송하고, 모든 들의 반복 횟수로 사용되도록 설정될 수 있으며, 기지국의 유동적인 스케줄링을 위해 실제 스케줄링된 ?:6의 개수만큼 반복 횟수가 독립적으로 설정되어 단말에게 전송될 수 있다.
이 경우, 도 14에 도시된 바와 같이 기지국은 레가시 단말들에게 01를 위한 새로운 1幻1를 생성하여 전송하지만, 각각의 1幻1에 포함되는 3(:, 자원 할당, 반복 횟수 등의 스케줄링 정보는 이전에 전송된 1 :1에 포함된 정보와동일하게 스케줄링 될 수 있다.
향상된 단말은 30 ^0^ 페이로드를 통해서 다중 묘의 스케줄링 여부를 지시하는 지시 정보를 획득할 수 있으며, - 이를 위한 이를 통해 전송되는 스케줄링 정보를 수신하여, 다중
Figure imgf000056_0001
스케줄링 여부 및 다중 므의 전송을 위한스케줄링 정보를 인식할수 있다.
향상된 단말은 이후 전송되는 3<그-1 01를 위한 대는 이전에 전송된 - 를 위한 1)(:(:11와 동일한 스케줄링 정보를 포함하고 있다고 인식할 수 있다.
따라서, 향상된 단말은 이후 전송되는
Figure imgf000056_0002
모니터링하지 않아도 스케줄링된 다중 TB의 전송을 위한 NPDSCH들을 수신할 수 있다.
이와 같은 방법은 기지국의 브로드캐스팅 로드를 감소시킬 수 있다. 즉, 기지국이 레가시 단말을 위해 SC-MTCH를 단일 TB로 스케줄링 하는 경우에도, SC-MCCH에 향상된 단말을 위한 추가 정보를 포함시켜 전송함으로써 향상된 단말은 다중 TB 스케줄링처럼 인식하여 수신할수 있다.
또란, 다중 TB 스케줄링을 위해 별도로 추가적인 DCI 포맷을 만들어간 DCI 필드를 수신하지 않아도 된다.
<실시 예 l-l_legacy DCI 및 SC-MTCH 페이로드를 이용하여 다중 TB 스케줄링 정보를 지시>
도 15는 본 발명에서 제안하는 SC-MCCH (Single Cell Multicast Control Channel)에 대한 다중 TB 스케줄링의 또 다른 일 예를 나타내는 도이다.
도 15를 참조하면 도 14와는 다르게 다중 TB의 스케줄링 여부를 지시하는 지시 정보는 SC-MCCH의 페이로드가 아닌 SC-MTCH의 페이로드에 포함되어 전송될 수 있다. ᄀ
구체적으로, 도 15에 도시된 바와 같이 도 14와는 다르게 다중 TB의 스케줄링 여부를 나타내는 지시 정보는 SC-MCCH 페이로드가 아닌 SC-MTCH 페이로드를 통해서 전송될 수 있다.
실시 예 1 - 1은 SC-MTCH를 전달하기 위한 제 2 NPDSCH를 단말이 수신하는 동작까지는 레가시 단말과 같지만, 향상된 단말은 SC-MTCH 페이로드에 포함된 지시 정보를 통해서 다중 TB가 스케줄링 되었는지 여부를 2019/209082 56
1>(그1'/1 조2019/005106 인식할수 있다.
이후, 단말은 - 대를 위한 제 2 1犯1犯(:11에 포함된 다중 므의 전송을 위한 스케줄링 정보 및 제 2 요0301에 포함된 지시 정보에 기초하여 이후에 전송되는 - 대를 스케줄링 하는 제 2
Figure imgf000058_0001
않을 수 있다 . 이때, 스케줄링 정보는 이후에 연속으로 전송될 TB가 존재하는지 여부, 이어지는 까지의 스케줄링 딜레이, 이에지는
Figure imgf000058_0002
반복 횟수등을포함할수 있다.
Figure imgf000058_0003
스케줄링을 위한 스케줄링 정보들은 다음과 같이 설정될 수 있다. 지시 정보를 포함하는 제 2 0¾의 전송 이후에 전송되는
Figure imgf000058_0004
있는지에 대한 정보는 1 비트 필드로 표현될 수 있으며, 최대 스케줄링
Figure imgf000058_0005
개수는 요를
Figure imgf000058_0006
스케줄링된 경우, 단말은 가장 마지막 1:6에는 더 이상 이어지는 ?:8를 위한 정보가 전송되지 않는다고 기대할수 있다.
또한, 이어지는
Figure imgf000058_0007
(예를 들면, 이전 1:6를 전달하는 NPDSCH가 전송되는 마지막 서브프레임부터 다음 1모를 전달하는 1 0301가 전송되는 가장 처음 서브 프레임까지)의 스케줄링 딜레이는 최초 얻은 스케줄링 딜레이 값의 오프셋으로주어지거나새로운 값으로주어질 수 있다.
이때, 해당하는 정보가 없으면 앞에서 전송된 스케줄링 딜레이 값과동일한 값이 사용될 수 있으며, 이어지는 ?:6의 반복 횟수는 최초에 얻은 반복 횟수 값의 오프셋으로주어지거나, 새로운 값으로주어질 수 있다.
즉, 도 15에 도시된 바와 같이 기지국은 레가시 단말들에게 매번 새로운 DCI를 전송하지만 해당 DCI에 포힘될 MCS, 자원 할당, 반복 횟수 등은 이전에 전송된 DCI에 포함된 정보와 동일하게 스케줄링 정보에 포함되어 전송될 수 있다.
도 15에 나타난 것과 같이 , 향상된 단말은 SC-MTCH 페이로드를 통해 다중 TB가 스케줄링 되었는지 여부 및 스케줄링 정보를 수신함에 따라, 이 후에 전송되는 SC-MTCH에 대한 NPDCCH를 모니터링 하지 않을 수 있다.
이와 같은 방법은 기지국의 브로드캐스팅 로드를 감소시킬 수 있다. 즉, 기지국이 레가시 단말을 위해 SC-MTCH를 단일 TB로 스케줄링 하는 경우에도, SC-MCCH에 향상된 단말을 위한 추가 정보를 포함시켜 전송함으로써 향상된 단말은 다중 TB스케줄링처럼 인식하여 수신할 수 있다.
<실시 예 2_컴팩트 DCI/WUS (Wake Up signal)을 통해서 다중 TB 스케줄링 정보 지시>
실시 예 2는 다중 TB의 스케줄링을 위한 향상된 DCI 대신 컴팩트 DCI (또는, Wake-up Signal)을 통해 다중 TB를 스케줄링하는 방법의 일 예이다. 이때, 컴팩트 DCI란 레가시 DCI format (예를 들면, DCI format NO,
Nl, N2)과 비교하여 적은 페이로드를 사용하는 DCI를 의미한다 .
컴팩트 DCI를 사용하면 기지국은 DCI 페이로드가 작기 때문에 탐색영역을 크게 할당하지 않아도 되기 때문에 자원 관리 차원에서 이득이 있고, 단말 입장에서는 더 짧은 시간만 탐색 공간을 모니터링 하면 되기 때문에 단말의 배터리 절약 측면에서 장점이 있다.
또한 wake-up signal이란 NB-IoT/eMTC에 도입된 signal로 단말 측면에서 페이징 탐색 공간 (paging search .space)을 모니터링 하면서 소모되는 에너지를줄이기 위한목적으로도입되었다.
기본적으로 SC-MCCH 또는 SC-MTCH payload를 사용하여 다중 TB 스케줄링 정보를 전달하는 것은 상기 방법 1 , 1-1과 유사하나 레거시 DCI를 통해 전달 받은 MCS, 자원할당, 반복 횟수등을 상기 제안한 방법들 보다 더 유동적으로 설정될 수 있도록 컴팩트 DCI 혹은 wake-up signal을 사용하여 스케줄링된 다중 TB사이에 전송된다고설정될 수 있다.
이때, 컴팩트 DCI는 레가시 DCI format에서 필요 없는 것 만 제거하면 쉽게 만들수 있다.
또한, 컴팩트 DCI를 위한 탐색 공간이 새로 설정될 수 있으며, 해당 정보는 SIB를 통해, 혹은 SC-MCCH payload를 통해 TMGI별로 서로 다르게 설정될 수 있다.
이때 사용되는 RNTI값은 해당 TMGI에 해당하는 G-RNTI값을 사용한다고 설정될 수 있다. 이 방법을사용하면 다중 TB스케줄링을 하면서 독립적인 MCS, 자원 할당, 반복 횟수등을 제공할 수 있기 때문에 기지국 측면에서 효율적으로 자원을관리할수 있다.
<실시 예 3_다중 TB스케줄링을 위한새로운 DCI 도입>
다중 TB의 스케줄링을 위해서 별도의 DCI 포맷이 설정될 수 있다. 이하, 본발명에서 다중 TB의 스케줄링을 위한새로운 DCI포맷을 향상된 DCI
(enhanced DCI)라고 한다.
즉, 기존에 설정된 DCI 포맷 외에 다중 TB의 스케줄링을 위한 별도의 DCI 포맷이 설정될 수 있으며, 기지국은 향상된 DCI 포맷의 DCI를 단말에게 전송함으로써 다중 1묘를 스케줄링할수 있다 . 2019/209082 59 1»(그1^1{2019/005106 구체적으로, 기지국은 다충 !¾의 스케줄링을 위한 별도의 001 포맷을 설정하고, 다중 1묘를 스케줄링 하는 경우, 향상된 1犯1를 ^1犯대를 통해서 단말에게 전송한다.
향상된 단말은 탐색 공간에서 1犯1를 모니터링하다가 기지국으로부터 향상된 1X1가 전송되면, 이를 수신하여 다중
Figure imgf000061_0001
스케줄링과 관련된 스케줄링 정보를 획득할 수 있으며, 수신된 스케줄링 정보를 통해서 다중 므를 송수신할 수 있다.
다시 말해, 30^0^ 페이로드에 레가시 단말과 향상된 단말이 모두 인식하여 디코딩할 수 있는
Figure imgf000061_0002
정보는 기본적으로 포함되어 전송되고, 향상된 단말만이 인식하여 디코딩이 가능한 30^ä 정보가 추가적으로 포함되어 전송될 수 있다.
즉, 레가시 단말은 80^000 페이로드를 수신하여도 향상된 단말을 위한 301^101 정보는 디코딩하여 인식할 수 없다 .
이때, 향상된 단말만 인식하여 디코딩할ᄀ수
Figure imgf000061_0003
정보는 레가시 30^^ 정보에 포함되어 전송되는 정보(예를 들면, 스케줄링 캐리어 인덱스, - , - 대를 위한 탐색 공간 정보 등)들이 독립적인 값으로 설정되어 전달될 수 있으며, 이를 수신하기 위한 향상된 단말들은 - 대를 스케줄링하는 ] :1가 향상된 1犯1임을 인식하고 해당 0(:1를 모니터링 하도록 설정될 수 있다.
이와 같은 방법을 이용하는 경우, 단말은 서로 다른 001 크기를 블라인드 디코딩하지 않아도 된다 .
향상된 ! 1를 통해서 전송될 수 있는 스케줄링 정보(예를 들면 , 스케줄링된 TB의 개수, 스케줄링 덜레아 등)은 아래와 같은 방법을 통해서 설정될 수 있다.
이하, 설명하는 방법들은 설명의 편의를 위해서 구분되는 것일 뿐, 구성의 일부가치환되거나, 상호 간에 결합되어 적용될 수 있다.
(1) 스케줄링되는 TB의 개수(The number of scheduling TB)
(방법 1) : 시스템 정보 블록(System Information Block : SIB)(예를 들면 , SIB 20)을 통해 각 SC-MTCH의 다중 TB 스케줄링에 사용될 다중 TB의 최대 개수를 단말에게 알려주고, SC-MTCH를 스케줄링하는 향상된 DCI를 통해서 실제로스케줄링된 TB의 개수를 단말에게 전송할수 있다 .
즉, SIB는 스케줄링되는 TB의 최대 개수를 포함하고, 향상된 DCI는 실제로스케줄링되는 TB의 개수를포함할수 있다.
각 SC-MTCH는 향상된 DCI의 필드 개수가 많이 증가하는 것을 방지하기 위해 하나의 공통된 다중 묘의 최대 개수를 따르도록 설정되거나, 각 SC-MTCH 별로독립적인 다중 TB의 최대 개수를포함하도록 설정될 수 있다.
(방법 2) : SC-MCCG의 페이로드에 각 SC-MTCH 별로 다중 TB 스케줄링에 사용될 다중 TB의 최대 개수가 포함되도록 설정되고, SC-MTCH를 실제적으로 스케줄링하는 향상된 DCI를 통해서 실제로 스케줄링된 TB의 개수를 단말에게 지시할수 있다.
이 경우, 각 SC-MTCH는 향상된 DCI의 필드 개수가 많이 증가하는 것을 방지하기 위해 하나의 공통된 다중 TB의 최대 개수 또는 각 SC-MTCH 별로 독립적인 다중 TB의 최대 개수를포함하도록 설정될 수 있다.
이 경우, SIB를 통해서 스케줄링되는 TB의 최대 개수를 지시하는 것과 \¥02019/209082 61 1»(:171 12019/005106 비교하여 스케줄링 유연성(: £ 1 1占1:1;!上;7)가높다.
(방법 3) : 향상된 1幻1를 통해서 실제로 스케줄링되는
Figure imgf000063_0001
개수를 단말에게 알려줄 수 있다. 이 경우, 스케줄링되는
Figure imgf000063_0002
개수를 포함하기 위해 001 필드의 크기가 커질 수 있기 때문에 최대로 스케줄링 가능한 다중
Figure imgf000063_0003
개수가제한될 수 있다.
이와 같은 방법을 이용하면 기지국이 스케줄링 되는 TB의 개수를 유동적으로설정할수 있다.
(방법 4) : 다중
Figure imgf000063_0004
스케줄링을 위한 스케줄링 정보는 향상된 !犯1가 아닌 30^0^ 페이로드에 명시적 필드를 이용하거나 특정 파라미터를 이용하여 단말에게 전달될 수 있다 . 이 때 , 실제 - 대를 스케줄
Figure imgf000063_0005
개수를 명시적 필드를 이용하여 각 30^^별로지시해줄수 있다.
이 경우, 스케줄링되는
Figure imgf000063_0006
최대 개수는 묘 또는 301  ¾에 미리 정해져있거나, 표준에만 정의될 수 있다. 또한, 특정 파라미터 값(예를 들면, ( :^1!1:!)이 사전에 약속된 값들 중 하나로 설정되는 것을 통해 실제 스케줄링 되는특정 묘의 개수를 기지국이 단말에게 암시적으로지시해줄 수 있다.
예를 들면,
Figure imgf000063_0008
적어도 하나의 특정 값은 특정
Figure imgf000063_0007
개수를 지시할 수 있다(예를 들면 ,
Figure imgf000063_0009
묘 는 2 므, ?? 2는 民 프므3은 요를 지시할수 있다) .
단말은 기지국으로부터 스케줄링되는
Figure imgf000063_0010
개수에 대응되는 (5-111 1을 수신하면 ;^1]:;:의 값을 통해서 다중
Figure imgf000063_0011
스케줄링되었으며 , 실제적으로 스케줄
Figure imgf000063_0012
개수를 인식할수 있다 .
이와 같은 방법은 향상된 001 필드에 별도로 스케줄링되는 개수를 0 2019/209082 62 나타내는 필드를추가하지 않아보 뢰기 때문에 DCI의 크기를줄일 수 있다.
(2) 스케줄링 딜레이(Scheduling Delay)
(방법 1) : 향상된 DCI를 통해서 실제 스케줄링 딜레이 값이 단말에게 전송될 수 있다. 이 경우, 스케줄링 딜레이 값은 하나의 값만단말에게 전송되고, 전송된 스케줄링 딜레이 값은 모든 TB 사이(예를 들면, 이전 TB를 전달하는 NPDSCH가 전송되는 마지막 서브프레임부터 다음 TB를 전달하는 NPDSCH가 전송되는 가장 처음 서브프레임 까지의 간격)의 스케줄링 딜레이 값으로 사용될 수 있다.
또, 기지국의 유동적인 스케줄링을 위해서 실제로 스케줄링된 TB의 개수만큼스케줄링 딜레이 값이 독립적으로 단말에게 전달될 수 있다.
이 경우, 스케줄링 딜레이 값은 일반 서브프레임 기준으로 설정되거나, 유효한서브프레임을 기준으로설정될 수 있다.
독립적으로 스케줄링 딜레이 값을 전송하는 경우 완전 유동적(fully dynamic)으로 스케줄링 딜레이를 기지국은 단말에게 지시할수 있다.
(방법 2) : 향상된 DCI는 TB 전송을 위한 실제 스케줄링 딜레이 값과 각각의 스케줄링 딜레이 값에 대한 오프 셋 값(스케줄링 딜레이 오프셋 값)을 모두 포함할 수 있다. 이 경우, 가장 처음 전송되는 TB를 전달하는 NPDSCH 까지는 DCI를 통해서 전송된 스케줄링 딜레이 값으로 딜레이를 판단하고, 두 번째 TB를 전달하는 NPDSCH부터는 스케줄랑 딜레0ᅵ 및 스케줄링 딜레이 오프셋을 모두 사용하여 획득된 값을 이용하여 NPDSCH의 시작 서브프레임이 판단될 수 있다.
예를 들면, 스케줄링 딜레이를 ‘X’ 라하고, 스케줄링 딜레이 오프셋을 \¥02019/209082 63
1*(:1/10之2019/005106
‘모’ 라고 하면 , 11번째 1묘를 스케줄링하는
Figure imgf000065_0001
시작 서브프레임은
11+ +(1^-1) * å>와 같이 표현될 수 있다.
이때, 11은 - 이를 스케줄링하는 NPDCCH가 전송되는 마지막 서브프레임을 지시하거나, 바로 직전에 전송된 - 대를 전송하는 대가 전송되는 마지막서브프레임을 지시할 수 있다.
이러한 값들은 일반 서브프레임을 기준으로 설정되거나, 유효한 서브프레임을 기준으로 설정될 수 있다.
방법 2는 향상된 1 1의 길이를 작게 만들 수 있으며, 유동적인 스케줄링 딜레이의 지시가 가능하다.
(방법 3) : 스케줄링 딜레이 값이 향상된 1 :1를 통해 전송되지 않고 30- 페이로드의 명시적인 필드를 통해서 또는 특정 파라미터를 이용하여 전달되도록 설정될 수 있다.
이 때, 설정 가능한 스케줄링 딜레이 값들은 레가시 값을 따를 수 있으며, 새로운 값을 이용하여
Figure imgf000065_0002
스케줄링 딜레이 값을 지시해줄 수 있다. 또한, 특정 파라미터 값(예를 들면 , )이 사전에 약속된 값들 중 하나로 설정되는 것을 통해 실제 애이의 스케줄링 딜레이를 기지국이 단말에게 암시적으로 지시해줄 수 있다.
예를 들면, 요 ;:의 적어도 하나의 특정 값은 특정 스케줄링 딜레이를 지시할 수 있다(예를 들면 , 묘 은 12 3?3, ?묘묘1는 14 3표 묘 2는 16 으프
Figure imgf000065_0003
지시할 수 있다) .
단말은 기지국으로부터 스케줄링 딜레이 값에 대응되는 (3-1간奸1을 수신하면 요 !·::의 값을 통해서 실제적인 스케줄링 딜레이를 인식할 수 있다. 이와 같은 방법은 향상된 DCI 필드에 별도로 스케줄링 딜레이를 나타내는 필드를추가하지 않아도 되기 때문에 DCI의 크기를줄일 수 있다.
LTE LAA와 유사하게 MCS나 자원 할당등의 정보는 공통으로 사용될 수 있다.
또한, 재 전송이 있는 경우, 하향링크 또는 상향 링크에 대한 방법이 추가적으로 고려될 수 있다.
<실시 예 4_향상된 DCI를 통해 다중 TB의 스케줄링 정보를 전송하고, 재 전송이 완료되면 그 다음 TB의 송/수신을시작하는 방법. >
NB-IoT 특성상 지연을 감내할 수 있는 경우, 하나의 향상된 DCI를 통해 다중 TB의 스케줄링과 관련된 스케줄링 정보가 전송되고, 앞선 TB에 해당하는 HARQ process의 모든 재전송이 완료되면 그 다음 TB에 해당하는 초기 송/수 신을시작할수 있다.
이때, 단말이 다음 TB의 초기 송/수신을 할 때 기지국과 모호성 (ambiguity)이 발생하지 않도록 하기 위하여 향상된 DCI를 통해 다중 TB 스케줄링이 된 애는 하나의 TB에 관련된 송/수신이 종료된 상황으로부터 컴팩트 DCI 혹은 wake up signal을 모니터링 및 디코딩 하여 해당 컴팩트 DCI 또는 wake up signal을 통해 이어지는 TB에 대한 송/수신 시점 (예를 들면, 스케줄링 딜레이) 혹은 resource allocation, 혹은 MCS 등을 지시 받을수 있다.
방법 4에서 단말은 향상된 å)(:1를 모니터링 하도록 RRC signaling을 사전에 수신하거나 향상된 DCI를 위한 탐색 공간이 SIB를 통해 독립적으로 구성될 수 있다. <실시 예 5_다중 TB를 위한별空의 NPDSCH설정>
도 16은 본 발명에서 제안하는 SC-MCCH(Single Cell Multicast Control Channel)에 대한 다중 TB 스케줄링의 또 다른 일 예를 나타내는 도이다.
도 16을 참조하면, SC-MTCH를 위한 레가시 NPDSCH에 SC-MTCH를 위한 적어도 하나의 새로운 NPDSCH가 생성될 수 있으며 , 향상된 DCI(예를 들면 , 다중 TB의 스케줄링을 위한 DCI)의 설정 없이 레가시 DCI와 SC-MCCH 페이로드를 이용하여 향상된 단말이 레가시 NPDSCH와 적어도 하나의 새로운 NPDSCH를 다중 TB스케줄링 NPDSCH로 인식할수 있다.
구체적으로, 일반적인 레가시 NPDSCH와는 다르게 다중 TB가 스케줄링 되는 경우, 기지국은 레가시 NPDSCH외에 다중 TB의 스케줄링을 위한 적어도 하나의 새로운 NPDSCH를 생성하여 단말에게 SC-MTCH를 전송할수 있다.
적어도 하나의 새로운 NPDSCH는 다중 TB 스케줄링을 위해 생성된 NPDSCH로 레거시 단말은 생성된 적어도 하나의 새로운 NPDSCH를 인식하여 디코딩할 수 없으며, 향상된 단말만이 생성된 적어도 하나의 새로운 NPDSCH를 인식하여 디코딩할수 있다.
즉, SC-MTCH NPDCCH 탐색 공간에서는 레가시 DCI만 전송되고, 레거시 SC-MTCH NPDSCH(예를 들면 , 레거시 NPDSCH) 뿐만 아니라 향상된 단말을 위한 새로운 SC-MTCH NPDSCH(예를 들면 , 새로운 NPDSCH)가 추가적으로 설정되어 전송될 수 있다.
기지국은 향상된 단말이 SC-MTCH NPDCCH 탐색 공간에서 전송되는 DCI의 페이로드에 포함되어있는 정보와 함께 인식할 수 있도록 30^0^ 페이로드에 2019/209082 66 1»(:1^1{2019/005106 새롭게 설정된 30 1〔¾ 의 스케줄링 정보를 포함시켜 함께 전송할 수 있다.
이 경우, 다중
Figure imgf000068_0001
스케줄링 여부를 나타내는 지시 정보는 3(그- (:대를 위한 NPDSCH에 포함되어 전송될 수 있다.
단말은 레거시 NPDSCH 및 새로운 이를 수신할 수 있도록 설정될 수 있으며, 새로운 01는 하나 이상 생성되어 전송될 수 있다.
이 경우, 레거시 NPDSCH와 새로운 대의 전송 시점에
Figure imgf000068_0002
스케줄링을 위한 스케줄링 정보는 아래와 같이 설정될 수 있다.
첫 번째로, 새로운 대가 레거시 이보다 늦은 시점에 전송되는 경우, 기지국은 레거시
Figure imgf000068_0003
대의 전송 종료 시점으로부터 새로운 시 다! 대 시작지점까지의 서브프레임 간격인 드? 단 을 단말에게 전송해줄 수 있고, 두 NPSCH의 , 으, 163 차이 등을 추가적으로 단말에게 전송해줄 수 있다.
두 번째로, 새로운 대가 레거시 대 보다 이른 시점에 전송되는 경우, 기지국은 새로운
Figure imgf000068_0004
幻!의 스케줄링 딜레이 값을 단말에게 전송해줄 수 있으며, 추가적으로 두 이간의 ,
Figure imgf000068_0005
및 1묘3 차이 등을 단말에게 전송해줄 수 있다.
첫 번째의 경우, 레거시 단말은 새로운 대가 레거시 단말을 위한 탐색 공간(예를 들면 , 타입 2 - 033)에서 전송될 수도 있기 때문에 , 전송되지 않는 1幻1를 찾기위해 므으를 모니터링 하게 되어 전력 소모가 증가할 수 있다 .
따라서, 레거시 단말의 전력 소모를 감소시키기 위해 새로운 NPDSCH는 레거시 0{보다 더 앞선 시점에서 전송될 수 있다. 2019/209082 67 1»(그1^1{2019/005106 세 번째로, 레거시 始의 특정 파라미터(예를 들면, 스케줄링 딜레이 등)과 같은 값과 새로운
Figure imgf000069_0001
특정 파라미터(예를 들면 , , 반복 횟수 등)에 따라 새로운 대의 전송위치가 결정될 수 있다.
즉, 새로운 이가 전송될 정도로 충분한 스케줄링 딜레이가 레거시
Figure imgf000069_0002
보다 앞선 시점에서 전송될 수 있다.
그렇지 않다면 새로운 1^3301는 레거시 1犯0301 보다 늦은 시점에 전송될 수 있다.
다시 말해, 레거시 이의 스케줄링 딜레이가 새로운 대의 전송 시간보다 긴 경우, 새로운 대는 레거시 01보다 앞선 시점에 전송되어도 충돌이 발생하지 않는다.
하지만, 그렇지 않은 경우에는 새로운 이의 전송이 완료되기도 전에 레거시 대의 전송 시점이 돌아오게 되므로, 이 경우에는 레거시 이가 새로운
Figure imgf000069_0003
전송될 수 있다.
페이로드를 통해 새로운 1犯03(¾를 레거시 NPDSCH 보다 먼저 전송하도록 기지국에 의해 구성되더라도 레거시 대의 스케줄링 딜레이가 새로운
Figure imgf000069_0004
전송되기에 충분하지 않다면(예를 들면, 3? 개수와 반복 횟수 레벨을 고려하여) , 새로운 1 ¾301 전송이 레거시 NPDSCH 전송 이후로 설정할 수 있다.
이 때, 향상된 단말은 레거시
Figure imgf000069_0005
NPDSCH와 새로운 므 ?。!! 이를 묶어서 다중
Figure imgf000069_0006
스케줄링된 대로 인식하고, 둘다 수신할 수 있다. 하나의 서비스에 대해 별도의 캐리어 혹은 별도의 탐색 공간을 정의할 필요가 없기 때문에 기지국이 같은 서비스 정보를 서로 다른 곳에 두 번 보내지 않을수 있으며, 기존의 DCI를통해서 스케줄링 정보를 전송할수 있다.
하지만, 레거시 SC-MTCH NPDSCH 이전 혹은 이후에 추가적으로새로운 ew SC-MTCH NPDSCH가 전송되어야 하기 때문에 레거시 단말들의 수신 딜레이가 증가할수 있다.
예를 들면, 도 16에 도시된 바와 같이, 새로운 NPDSCH는 레거시 NPDSCH 뒤에 2개씩 추가되어 있고, 레거시 NPDSCH는 전체 SC-MTCH 정보를 3개로 쪼개서 전송될 수 있다.
즉, 레거시 단말은 레거시 DCI를 모두 수신하고 각각의 레거시 NPDSCH를 수신해야 전체 SC-MTCH정보를 수신할 수 있다. 하지만, 향상된 단말은 레거시 NPDSCH에 이어 전송되는 새로운 NPDSCH들을 수신함으로써 전체 SC-MTCH 정보를수신할수 있다.
다시 말해, 레거시 단말에 비해 지연에 더 이득이 있고, 만약 디코딩이 성공적으로 완료되어 이후 NPDSCH들을 수신하지 않아도 된다면 전력 소모가 감소될 수 있다. 한편, 디코딩이 성공적으로 완료되지 않은 경우에는 이후에 전송되는 레거시 DCI를 한번 더 수신하고 이후 레거시 NPDSCH와 새로운 NPDSCH를수신할수 있다.
<실시 예 5 - 1>
도 17은 본 발명에서 제안하는 SC-MCCH (Single Cell Multicast
Control Channel)에 대한 다중 TB 스케줄링의 또 다른 일 예를 나타내는 도이다. 2019/209082 69 1»(:1^1{2019/005106 도 17을 참조하면, 도 16과는 다르게 단말은 레거시 대와 새로운 스케줄링을 위한 1犯1를 탐색 공간에서 모니터링 하면 이후에는 별도의 001 탐색 없이 레거시 이와새로운 이를수신할수 있다.
구체적으로, 도 15에서 설명한실시 예 5에 도 14 또는 도 15에서 설명한 방법이 적용될 수 있다.
즉, 실시 예 5는 3(:-^ (用 페이로드와 하나의 레거시 1 :1를 이용하여 레거시 NPDSCH와 적어도 하나의 새로운 NPDSCH를 다중
Figure imgf000071_0001
인식하는 방법이다. 여기에 추가적으로 도 14 또는 도 15에서 설명한 방법과 같이 30- MCCH 페이로드와 하나의 레거시 1 :1를 이용하여 복수 개의 레거시 NPDSCH와 복수 개의 새로운
Figure imgf000071_0002
인식할수 있다.
다시 말해, 기지국은 다중
Figure imgf000071_0003
스케줄링 되었는지 여부와 관련된 지시 정보를 - 이를 위한 모 대에 포함시켜 전송하고, 다중
Figure imgf000071_0004
스케줄링을 위한스케줄링 정보를 03-1 (¾를 위한 NPDCCH의 1幻1에 포함시켜 전송한다. 이때, 스케줄링 정보는 앞에서 설명한바와 같은 정보를포함할수 있다. 이후, 기지국은 1X^1를 통해서 스케줄링된 레가시 NPDSCH 및 적어도 하나의 새로운 이를 단말로 전송할 수 있으며, 이와 같은 동작을 주기적으로 반복하여 수행할수 있다.
예를 들면, 도 17에 도시된 바와 같이 기지국은 - 어를 위한 이를 통해서
Figure imgf000071_0007
새로운
Figure imgf000071_0006
스케줄
Figure imgf000071_0005
단말에게 전송한 뒤, 하나의 레거시 이와 두 개의 새로운 어를 단말에게 전송할수 있다.
이후, 기지국은 스케줄링된 다중 모두 전송될 때까지 다시 - \¥02019/209082 70 1*(그1/10{2019/005106
1^(¾를 위한 NPDCCH를 통해서 레거시 NPDSCH및 새로운 NPDSCH의 스케줄링을 위한 ] :1를 단말에게 전송한 뒤, 하나의 레거시
Figure imgf000072_0001
두 개의 새로운 이를 단말에게 반복해서 전송할수 있다.
이때, 기지국으로부터 전송되는 - 대를 위한 1 1)(:(:11에 포함되는 ! 1는 동일 또는 유사한 스케줄링 정보를 포함할 수 있다. 즉, 반복 전송되는 하나의 1)(:1를통해서 스케줄링 될 수 있다.
이 경우, 단말은 :301 01를 위한 (대를 통해서 다중
Figure imgf000072_0002
스케줄링 되었는지 여부를 인식한 뒤, 레거시 대 및 새로운 0¾의 스케줄링을 위한 1犯1룰 수신하면 이후에 전송되는 1犯1를 수신하지 않고(또는 , 스킵하고) 복수의 레거시 모0301 및 복수의 새로운 NPDSCH를수신할수 있다.
이와 같은 방법을 이용하는 경우, 향상된 단말이 모니터링해야 하는 탐색 공간이 줄어들기 때문에 향상된 단말의 전력 소모를 감소시킬 수 있다,
예를 들면, 도 17에 도시된 바와 같이 향상된 단말은
Figure imgf000072_0003
1 1犯(:11를 통해서 3〔:- (: ¾를 위한 NPDSCH의 스케줄링을 위한 1八:1(제 1 1X11)를 수신할 수 있다. 이후, 단말은 제 1 1 :1에 기초하여 - 이를 위한 대를 수신할 수 있으며, 도 14에서 설명한 방법이 이용되는 경우
Figure imgf000072_0004
포함된 지시 정보를 통해서 다중 TB7} 스케줄링되었는지 여부를 인식할수 있다.
하지만, 도 15에서 설명한 방법이 이용될 경우, 지시 정보는
Figure imgf000072_0005
포함되지 않는다.
이후, 향상된 단말은 - 대를 위한 레거시 모 대 및 새로운 대의 스케줄링을 위한
Figure imgf000072_0006
2 001) 1- - 대를 위한 대를 2019/209082 71 1»(그1'/10{2019/005106 통해서 수신할 수 있다.
이때, 제 2 ]〕(:1는 - 대를 위한 레거시 NPDSCH 및 새로운 대의 스케줄링을 위한 스케줄링 정보를 포함할 수 있다.
향상된 단말은 제 2 1X)1를 통해서 이후 존재할 레거시 이들과 새로운 NPDSCH들에 대한 정보를 다 알고 있기 때문에, 이후에 전송되는 레거시 1)0:1를 수신할 필요 없이 바로 다음 레거시 01와 새로운 이들을 수신할 수 있다.
이때, 도 15에서 설명한 방법이 사용되는 경우, 처음 전송되는 3(〕-1 01를 위한 레거시 NPDSCH에 다중
Figure imgf000073_0001
스케줄링 여부를 나타내는 지시 정보가 포함될 수 있으며, 향상된 단말은 이를 통해서 다중
Figure imgf000073_0002
스케줄링되었는지 여부를 인식할 수 있다.
이와 같은 방법일 이용하는 경우, 단말은 특정 탐색 공간에서 å)(:1를 모니터링하지 않아도 되기 때문에 단말의 전력 소모를 줄일 수 있는 효과가 있다. 도 16 및 도 17에서 설명한 실시 예 5 및 실시 예 5-1에서 #1, #2, #3 들은 전송 위치와 관계 없이 동일한 정보를 포함할 수 있다. 단, 본 제안 방법이 항상 이와 같이 동일한 정보를 반복하여 전송하는 방식에만 국한되는 것은 아니며,
Figure imgf000073_0003
한정되는 것도 아니다.
이와 같이 레거시 NPDSCH와 새로운 NPDSCH들의 관계 및 정보는 30- 대의 페이로드에 의해서 지시될 수 있다, 더 나아가 새로운 대들이 레거시 대와 엮이지 않은 구조도 고려할 수 있다.
예를 들면, 도 16 및 도 17에서 레거시 NPDSCH가 각각 #1, #2, #3이라면 새로운
Figure imgf000073_0004
각기 다른 정보를 담은 NPDSCH 가 될 수도 있다.
이와 같은 방법은 레거시 NPDSCH에는 동일 정보 중 적은 bits로 표현된 정보를 전달하고(예를 들면, 저화질 방송) 향상된 NPDSCH에는 동일 정보 중 더 많은 bits로 표현된 정보를 전달하는 경우에(예를 들면, 고화질 방송) 사용될 수 있다.
<실시 예 6_새로운 NPDSCH가독립적으로 구성되는 방법>
SC-MTCH를 위한 레거시 NPDSCH와는 독립적으로 SC-MTCH를 위한 새로운 NPDSCH가 존재하고, 향상된 DCI(예를 들면, 다중 TB의 스케줄링을 위한 DCI) 없이 레가시 DCI와 SC-MCCH 페이로드를 이용하여 향상된 단말은 다중 TB 스케줄링 NPDSCH를 인식할수 있다.
구체적으로, SC-MTCH NPDCCH 탐색 공간에서는 레거시 DCI만 전송되고, 향상된 단말을 위한 새로운 SC-MTCH의 NPDSCH는 실시 예 5와는 다르게 레거시 SC-MTCH NPDSCH와상관 없이 독립적으로 구성될 수 있다.
기지국은 향상된 단말이 SC-MTCH NPDCCH 탐색 공간에 전송될 레거시 DCI의 페이로드에 포함되어 있는 정보와함께 디코딩하여 인식할수 있도록 SC- MCCH 페이로드에 새로운 SC-MTCH NPDSCH의 스케줄링 정보를 추가적으로 포함하여 전송할수 있다.
추가적으로, 기지국은 특정 방법을 통해(예를 들면, SC-MCCH 페이로드 또는 SC-MTCH NPDSCH를 스케줄링 해주는 레거시 DCI의 특정 필드 또는 reserved상태 등)에 레거시 SC-MTCH NPDSCH가다중 TB 스케줄링 NPDSCH에 포함되는지 여부를지시할수 있다.
만약, 레거시 SC-MTCH NPDSCH가 다중 TB 스케줄링 NPDSCH에 포함되는 2019/209082 73 1»(:1^1{2019/005106 경우, 실시 예 5와 같이 향상된 단말은
Figure imgf000075_0001
새로운 30- 인식하여 수신할수 있다.
Figure imgf000075_0002
스케줄
Figure imgf000075_0003
포함되는 경우, 실시 예 5와 같이 레거시 이와 새로운 모으이의 전송시점은 특정 규칙에 따라설정될 수 있다.
실시 예 6은 하나의 서비스에 대해 별도의 캐리어 또는 별도의 탐색 공간을 정의할 필요가 없고 향상된 1 1가 필요하지 않다. 다만, 기지국은 동일한 서비스 정보를 한번 이상(예를 들면 , 레거시 단말을 위한 것과 향상된 단말을 위한 것 각각 전송해야된다) 보내야할 필요가발생한다.
또한, 레거시 - 어 NPDSCH 이전 또는 이후에 추가적으로 새로운 30-
Figure imgf000075_0004
전송되어야 한다.
<실시 예 7_향상된 이를 위한별도의 향상된 1犯1를 전송하는 방법>
3(:-1仲(¾를 위한 레거시 모 대 및 - 대를 위한 새로운 ^犯애 !가 존재하고, 레거시 DCI 및 향상된 £)(:1(예를 들면, 다중
Figure imgf000075_0005
스케줄링을 위한 001) 및 페이로드를 이용하여 향상된 단말은 다중
Figure imgf000075_0006
스케줄링 대를 인식할수 있다.
구체적으로,
Figure imgf000075_0007
NPDCCH 탐색 공간에서 레거시 001 뿐만 아니라 다중 스케줄링을 위한 향상된 1犯1도 전송될 수 있다. 이 경우, 향상된 1)(:1는 레거시 1)(:1를 통해서 전송되지 않은 다중
Figure imgf000075_0008
스케줄링과 관련된 스케줄링 정보가 포함될 수 있기 때문에 향상된 1幻1의 페이로드 크기는 레거시 13(:1의 페이로드 크기보다작거나 같을수 있다.
또한, 레거시
Figure imgf000075_0009
향상된 단말을 위한 새로운 3 -1^]:( [ 2019/209082 74 1»(:1^1{2019/005106
1^03(31가 설정될 수 있으며, 기지국은 향상된 단말이 - 대 NPDCCH 탐색 공간에서 전송될 레거시 1犯1의 페이로드에 들어있는 정보와 함께 디코딩되어 인식될 수 있도록
Figure imgf000076_0001
페이로드와 향상된 1 :1의 페이로드에 새로운 50-
1 01 이의 스케줄링 정보를 추가적으로 전송할 수 있다.
시 대 페이로드에 특정 서비스에 대한 레거시 1)(:1를 위한 (3-111^1값에 더하여 향상된 ] :1를 위한 요 값이 추가적으로 지시될 수 있으며, 향상된 1犯1를 위한 (3-1갰111 값이 설정되는 경우에 한해 향상된 단말이 향상된 1:(:1를 모니터링 하도록 설정될 수 있다.
이 경우, 향상된 단말은 레거시
Figure imgf000076_0002
향상된 1 1를 동일한 탐색 공간에서 동시에 모니터링하여 수신할 수 있으며 , 향상된 å)(:1를 위한 (3-1 0:1의 값이 설정되지 않은 경우, 기지국이
Figure imgf000076_0003
스케줄링을 하지 않은 것으로 간주하고 향상된 단말도 레거시 1犯1를 수신하여
Figure imgf000076_0004
스케줄링 동작을 수행할 수 있다. 또는, 명시적으로 각 서비스별로 향상된 1 :1가 전송되는지 여부(예를 들면 , 다중 스케줄링 지원 여부와 관련된 지시 정보)를 기지국이 지시해줄 수 있으며, 향상된 단말은 완전한 다중 TB 스케줄링 정보를 알기 위해서 레거시 ] !1에 전달되는 정보와 향상된 1 !1에 전달되는 정보를 모두 수신해야 할 수 있다.
만약, 향상된 단말은 레거시 1犯1가 검출되지 않는 경우, 향상된 1)(:1의 검출 여부와 관계없이 해당 탐색 공간에서 어떠한 1^1도 검출되지 않았다고 판단할 수 있으며, 레거시 å犯1와 향상된 1犯1를 모두 검출한 경우, 향상된 단말은 두개의 1)(:1에 포함되어 있는 정보를 이용하여 다중 13 스케줄링된 모 0«를 수신할 수 있다 . \¥0 2019/209082 75 위의 방법과는 다르게 향상된 단말은 항상 두 개의 DCI를 모니터링 하지 않고, 레거시 DCI만 모니터링 하다가 레거시 DCI가 검출되면 향상된 DCI의 모니터링을 시작할 수 있다.
이 경우, 향상된 DCI는 앞에서 설명한 컴팩트 DCI 또는 WUS like signal로 적용될 수 있으며, 추가적으로 컴팩트 가 전송되는 새로운 탐색 공간이 생성되는 경우, 향상된 단말만 해당 탐색 공간을 모니터링하여 다중 TB 스케줄링 정보를 수신할 수 있다.
이때, 컴팩트 DCI가 전송되는 탐색 공간과 관련된 정보는 SC-MCCG 페이로드를 통해서 전달될 수 있으며 실시 예 5에서 설명한 바와 같이 레거시 NPDSCH 및 새로운 NPDSCH의 전송 시점이 특정 규칙에 따라 설정될 수 있다. 실시 예 7의 방법을 이용하는 경우, 하나의 서비스에 대해 별도의 캐리어를 정의할 필요가 없기 때문에 기지국이 같은 서비스 정보를 서로 다른 곳에 두번 보내지 않을 수 있다.
다만, 다중 스케줄링 정보를 유동적으로 전달하기 위해서 향상된 DCI(또는 WUS like signal 등)이 설정되어야 하며 레거시 SC-MTCH NPDSCH 이전 또는 이후에 추가적으로 새로운 SC-MTCH NPDSCH가 전송되어야 한다.
<실시 예 8_ 새로운 NPDSCH가 독립적으로 구성되고, 새로운 NPDSCH를 위한 향상된 DCrl· 설정하는 방법>
SC-MTCH에 대한 레가시 NPDSCH와는 독립적으로 SC_MTCH에 대한 새로운 NPDSCH가 존재하고, 테가시 DCI 뿐만 아니라 향상된 DCI(예를 들면 , 다중 TB 스케줄링을 위한 DCI) 및 SC-MCCH 페이로드를 이용하여 향상된 단말은 다중 TB 스케줄링 NPDSCH를 인식할 수 있다. 구체적으로, SC-MTCH NPDCCH 탐색 공간을 통해서 레가시 DCI 뿐만 아니라 다중 TB의 스케줄링을 위한 향상된 DCI가 전송될 수 있다. 이 경우, 향상된 DCI는 레가시 DCI에 전송되지 않는 다중 TB의 스케줄링과 관련된 4케줄링 정보(예를 들면 , 다중 NPDSCH간 스케줄링 딜레이 , TB들의 개수, 다중 TB 전용 MCS 인덱스등)를포함할수 있다.
따라서, 향상된 DCI의 페이로드 크기는 레가시 DCI의 페리오드 크기보다 작거나 같을 수 있다. 또한, 향상된 단말을 위한 새로운 SC-MTCH NPDSCH가 레가시 SC-MTCH NPDSCH와상관없이 독립적으로구성될 수 있다.
기지국은 향상된 단말이 SC-MTCH NPDSCH 탐색 공간에서 전송될 레거시 DCI의 페이로드에 포함되어 있는 정보와 함께 디코딩하여 인식할수 있도록 SC- MCCH 페이로드와 향상된 DCI의 페이로드에 새로운 SC-MTCH NPDSCH의 스케줄링 정보를추가하여 전송할수 있다.
실시 예 7과는 기지국 측면에서 레가시 SC-MTCH NPDSCH와 향상된 SC- MTCH NPDSCH를 독립적으로 설정할수 있는 점에서 차이점이 존재한다.
추가적으로, 기지국은 특정 방법을 통해(예를 들면 , SC-MCCH 페이로드 또는 SC-MTCH NPDSCH를 스케줄랑하는 레가시(또는 향상된) DCI의 특정 필드 또는 reserved상태) 레가시 SC-MTCH NPDSCH가 다중 TB 스케줄링 NPDSCH에 포함되는지 여부를 단말에게 지시할수 있다.
만약, 레가시 SC-MTCH NPDSCH가 다중 TB 스케줄링 NPDSCH에 포함되는 경우, 실시 예 7에서 설명한 바와 같이 향상된 단말은 레가시 SC_MTCH NPDSCH와 새로운 SC-MTCH NPDSCH를 함께 다중 TB 스케줄링 NPDSCH로 인식하고수신할수 있다. 만약, 레가시 SC-MTCH NPDSCH가 다중 TB 스케줄링 NPDSCH에 포함되는 경우, 실시 예 5에서 설명한 바와 같이 레가시 NPDSCH와 새로운 NPDSCH의 전송 시점은 특정한 규칙에 따라 설정될 수 있다.
이와 같은 방법은 하나의 서비스에 대해 별도의 캐리어를 정의할 필요가 없기 때문에 기지국은 같은 서비스 정보를 서로 다른 곳에 두번 전송하지 않아도 된다. 하지만, 다중 스케줄링 정보를 유동적으로 전달하기 위한 향상된 DCI(또는 WUS like signal 등)이 필요할 수 있다.
또한, 레가시 SC-MTCH NPDSCH 이전 또는 이후에 추가적으로 새로운 SC- MTCH NPDSCH가 전송되어야 한다.
본 발명에 대한 또 다른 실시 예로 실시 예 5 내지 8은 아래와 같은 충돌 처리(collision handling)이 주가적으로 적용될 수 있다. 즉, SC-MTCH NPDCCH 탐색 공간 및 새로운 NPDSCH간에 충돌(예를 들면 , 일부 또는 전부, 프로세싱 타임도 포함 ñ이 발생하는 경우, 단말이 어떤 동작을 먼저 수행할지 우선 순위가 결정되어야 한다.
첫 번째로, 기지국이 새로운 NPDSCH를 SC-MTCH NPDCCH 탐색 공간과 충돌하도록설정한 경우, 단말은 새로운 NPDSCH 전송이 되지 않는다고 간주하고 SC-MTCH NPDCCH 탐색 공간을 모니터링 할 수 있다 .
즉, 새로운 NPDSCH의 수신보다 SC-MTCH NPDCCH 탐색 공간의 모니터링이 더 높은 우선 순위를 갖을 수 있다.
이 경우, 항상 SC-MTCH NPDCCH 탐색 공간을 모니터링 할 수 있으며, 기지국이 유동적으로 SC-MTCH NPDSCH를 스케줄링 하는 것을 놓치지 않을 수 있다. 두 번째로, 기지국이 새로운 NPDSCH를 SC-MTCH NPDCCH 탐색 공간과 충돌하도록 설정한 경우, 단말은 SC_MTCH NPDCCH 탐색 공간을 모니터링하지 않고새로운 NPDSCH를수신할수 있다.
즉, 새로운 NPDSCH의 수신이 SC-MTCH NPDCCH 탐색 공간의 모니터링보다 더 높은우선 순위를 갖을수 있다.
이 경우, 기지국이 향상된 단말로 다중 TB 스케줄링을 지시하면 단말은 새로운 NPDSCH를 전송하기 위함이라고 판단할 수 있기 때문에 향상된 단말은 새로운 NPDSCH를 수신하는 것이 바람직할 수 있다. 한편, 해당 새로운 NPDSCH가 전송되는 정보를 알지 못하는 단말은 탐색 공간을 모니터링해도 DCI를 검출하지 못하기 때문에 다음탐색 공간을모니터링해야한다 .
<실시 예 9_DCI의 탐색을누락한경우, DCI를 재 탐색하기 위한방법> 도 18은 본 발명에서 제안하는 SC-MCCH (Single Cell Multicast Control Channel)에 대한 다중 TB 스케줄링의 또 다른 일 예를 나타내는 도이다.
실시 예 1 내지 8에서 설명한 방법에서 향상된 단말이 SC-MCCH 페이로드 또는 SC-MTCH 페이로드와 레거시 DCI (예를 들면, SC-MTCH를 스케줄링 하기 위한 DCI)를 통해 이후 전송되는 NPDSCH들이 다중 TB스케줄링임을 알수 있는 실시 예 들에서, 단말은 다중 TB의 전송을 위한 NPDSCH를 스케줄링하기 위한 DCI를 누락하여 수신하지 못하는 경우가발생할수 있다.
이 경우, 도 18에 도시된 바와 같이 단말은 누락한 DCI 이후의 탐색 공간에서 전송되는 DCI를 다시 수신하여 다중 TB 스케줄링을 위한 스케줄링 정보를 인식할 수 있다. 이때, 단말이 한번의 DCI 수신 이후에 DCI 모니터링 없이 수신할 수 있는 SC-OTCH를 위한 NPDSCH의 개수를 나타내는 주기 정보 (또는 개수 정보)는 DCI에 포함되어 단말에게 전송될 수 있다.
예를 들면, 주기 정보가 도 18에 도시된 바와 같이 탐색 공간 주기에 최초 DCI 수신 이후 수신 가능한 NPDSCH의 개수를 곱 한 값으로 설정되는 경우, 단말은 주기 정보가 나타내는 시간 이후의 탐색 공간에서 TB 스케줄링을 위한 DCI를 다시 탐색할 수 있다.
이 경우, 만약 단말이 도 18의 (이에 도시된 바와 같이 첫 번째 DCI를 누락하여 탐색하지 못하면 , 단말은 이후의 탐색 공간에서 DCI를 모니터링하여 수신할 수 있으며, 주기 정보가 나타내는 시간 까지는 DCI를 탐색하지 않아도 다중 TB의 전송을 위한 NPDSCH를 수신할 수 있다.
구체적으로, 향상된 단말은 SC-MCCH 페이로드 또는 SC-MTCH 페이로드와 레가시 DCI를 통해 이후 전송되는 레가시 DCI를 스킵해도 된다고 판단할 수 있다.
이때, 단말은 기지국이 설정한 주기 정보인 다중 TB 스케줄링 리프레시 (Multi TB Scheduling refresh) 주기마다 필수로 레가시 DCI를 모니터링 하도록 설정될 수 있다.
해당 레가시 DCI가 전송될 수 있는 탐색 공간의 주기를 T라고 가정하면 T*N배 마다 존재하는 탐색 공간에서는 단말은 필수로 레가시 DCI를 모니터링 해야 한다.
이때, ‘특정 시점’ 을 기준으로 가장 첫 번째로 존재하는 탐색 공간을 첫 번째 탐색 공간이라고 표현하면 N*n+1 번째 (n=0 , 1 , 2 , ) 탐색' 공간에서 레가시 DCI가 항상 모니터링 되도록 설정될 수 있다. 이때, ‘특정 시점’ 은 的 혹은 HSFN 일 수 있고, 010산;1:£;1。 ;1011 period, SC-MCCH를 스케줄링하는 DCI가 전달되는 탐색 공간의 주기 일 수 있다. 만약, 해당 탐색 공간에서 레가시 DCI를 누락하면 그 다음 탐색 공간의 위치에서 단말은 레가시 DCI를모니터링할수 있다.
이 방식은 특정 탐색 공간에서 레가시 DCI 탐색을 성공하게 되면 이후 몇 개의 다중 TB가 스케줄링 되는지 암시적으로 단말은 알 수 91고, 단말은 가장 마지막 NPDSCH는 어디에서 끝나는지 미리 알수 있게 된다.
이후, 단말은 다음에 위치한 탐색 공간부터 다시 레가시 DCI를 모니터링 해야한다고 설정될 수 있다.
도 18에 도시된 바와 같이, 기지국이 N을 4로 설정한 경우, 향상된 단말은
SC-MCCH수신후 4n+l번째 (n=0 , 1 , 2 , ) 탐색 공간에서 레가시 DCI를 항상 모니터링 해야한다.
도 18의 (a)는 SC-MCCH를 수신하고 향상된 단말이 가장 처음 위치한 DCI를 탐색에 성공한 경우를 나타낸다. 따라서, 향상된 단말은 해당 레가시 DCI를 탐색에 성공한 이후총 3번의 레가시 DCI를수신하지,않을수 있다.
18의 (b)는 SC-MCCH를 수신하고 향상된 단말이 가장 앞선 레가시 DCI를 누락하여 수신하지 못한 경우를 나타낸다. DCI를 수신하지 못했기 때문에 향상된 단말은 다음 탐색 공간에서 다시 레가시 DCI를 모니터링 하게 되고, 이때 해당 DCI의 탐색에 성공하게 되면, 단말은 이후 총 2번의 레가시 DCI를 수신하지 않아도 NPDSCH를 수신할수 있다.
추가적으로, 실시 예 9는 레가시 DCI의 탐색 공간 주기의 N배로 기지국이 설정해 줄 수 도 있으나, 기지국이 SFN또는 HSFN을 기준, 또는 특정 timing window로 지시하는 상황에도 적용될 수 있으며, SC-MCCH를 스케줄링하는 DCI가 전송되는 탐색 공간의 주기에 관계된 형태로 지시되는 상황에도 적용될 수 있다.
실시 예 9의 방법이 SFN나 HSFN과 같이 절대적인 시간을 기준으로 정의되는 경우의 아래와 같을수 있다.
기지국은 단말에게 특정 SFN보다크거나 같은무선 프레임 (radio frame) 이후에 존재하는 레가시 DCI가 전달될 수 있는 탐색 공간은 항상 모니터링 하도록 설정하고 , 단말이 레가시 DCI를 디코딩한 이후의 탐색 공간들은 스킵해도 되도록 설정할수 있다 .
이때, 특정 SFN은 SFN mod K = 0 (예를들면, K=64이면, SFN = 0 , 64 ,
128 , 192 , ñ와 같이 미리 약속된 수식과 기지국이 설정해주는 슷자의 조합으로 주어질 수 있거나, 기지국이 직접 특정 SFN set을 단말에게 설정해줄 수도 있다.
또는, ‘특정 timing window’ 동안에는 시간 순서대로 search space-1- 모니터링 하다가 한번이라도 레가시 DCI를 디코딩에 성공 하게 되면 해당 timing window내의 다른 탐색 공간을모니터링 하는 것을 스킵할수 있다
‘특정 timing window' 는 절대적인 시간을 기준으로 하는 SFN이나 HSFN으로 표현될 수도 있고, 해당 레가시 DCI가 탐색될 수 있는 탐색 공간 주기의 배수로 표현될 수 있다.
예를 들어, 기지국은 SFN 0부터 시작하여 K개의 SFN들을 ‘특정 timing window’ 로 지시해줄 수 있는데, 만약 기지국이 K를 64로 지시한다면, 앞서 제시한
Figure imgf000083_0001
0부터 35明 63까지, 그리고 3 64부터 SFN 127까지, 등등 각각의 timing window가 설정되고, 앞서 언급한 예시와 동일한 동작을 할수 있게 된다.
추가로, 단말에 DCI 스킵이 적용된 이후 다음과 같은 규칙에 다라 DCI 를 스킵하기 위한동작이 off 될 수 있다.
첫 번째로, SC-MTCH 페이로드에 DCI의 스킵 동작의 OFF를 위한 별도의 지시자(예를 들면, DCI skipping off indicator)를 주가하여 기지국이 명시적으로 단말에게 DCI의 스킵 동작의 오프를지시할수 있다.
또한, SC-MTCH를 전달하는 NPDSCH가 특정 자원 형태를 지니는 경우 (예를 들면, NPDSCH 반복 횟수가 기지국이 지정해준, 혹은 미리 약속된 임계 값 보다 큰 경우, 또는 작은 경우)에 DCI를 스킵하기 위한 동작이 OFF 된디고 설정될 수 있다.
또는 , SC-MCCH를 통해 알아낸 SC-MTCH를 스케줄링하는 DCI가 탐색될 수 있는 탐색 공간의 주기가, 기지국에 의해서 설정되거나 미리 약속된 임계 값 보다큰 경우에 DCI를스킵하기 위한동작이 OFF된다고 설정될 수 있다 .
이때, DCI를 스킵하기 위한 동작이 OFF 된다는 것은 단말이 레가시 DCI
(예를 들면 , SC-MTCH를 스케줄링 하는 DCI)가 전달될 수 있는 탐색 공간을 모니터링 해야 한다는 의미와 같을수 있다.
또한, 상기 실시 예들 중, 향상된 단말이 SC-MCCH 페이로드 또는 SC- MTCH 페이로드와 레가시 DCI(예를 들면 , SC-MTCH를 스케줄링하는 DCI)를 통해 이후 전송되는 NPDSCH들이 다중 TB 스케줄링임을 알 수 있는 방법에서 기지국은 SC-MCCH 페이로드 또는 SC-MTCH 페이로드를 통해 다중 TB로 스케줄링 되는 NPDSCH(예를 들면 , SC-MTCH를 전달하는 NPDSCDH)를 2019/209082 83 1»(:1^1{2019/005106 최소한으로 반복전송 시켜줄 횟수(예를 들면, 1 1비를 단말에게 알려줄 수 있다.
이 경우, 기지국은 레가시 13(그1를 사용하여
Figure imgf000085_0001
반복 횟수를 가변적으로 설정할 수 있지만, 향상된 단말은 해당 레가시 1幻1를 스킵할 수 있기 때문에 실제 NPDSCH의 반복 횟수는 최초 탐색에 성공한 1)0:1에서 알아낸 값을 기반으로 수신될 수 있다.
하지만, 최초 탐색에 성공한 1 1에서 알아낸 반복 횟수가 굉장히 큰 값이고, 다른 NPDSCH들에 대해서는 해당 반복 횟수보다 작은 값으로 반복 전송 하게 된다면, 향상된 단말은 기지국이 전송하지도 않은 영역에서 NPDSCH가 전송된다고 인식하고 유효하지 않은 위치에서 불필요한 값들을 디코딩하게 된다 . 따라서, 기지국이 상기 정의된 1 :ä을 미리 단말에게 알려주게 되면, 단말은 다중 스케줄링 되어 있는 대들의 최소 반복 전송 횟수를 알 수 있다.
따라서, 단말은 해당 1에ä만큼의 대들을 수신하고 디코딩하도록 설정될 수 있으며, 이때, 추가로 탐색에 성공한 레가시 1比1에 포함된 NPDSCH 반복 횟수가 1 11^보다 큰 경우, 해당 반복 횟수는 해당 1)(:1가 스케줄링 하는
Figure imgf000085_0002
반복 횟수로는 적용하지 않도록 설정될 수 있다.
추가적으로, 향상된 단말이 므(:- (:〔:11 페이로드 또는
Figure imgf000085_0003
페이로드와 레가시 1) 1(예를 들면, 3(:-1 0¾를 스케줄링 하는 001)1- 통해 이후 전송되는 들이 다중
Figure imgf000085_0004
스케줄링임을 알 수 있는 방법에서, 기지국은 - 대 페이로드 또는
Figure imgf000085_0005
페이로드를 통해 레가시 1幻1(예를 들면, - 대를 2019/209082 84 1»(:1^1{2019/005106 스케줄링하는 1 1)가 사용하지 않은 반복 횟수, 또는 사용할 수 있는 반복 횟수를 향상된 단말에게 알려줄 수 있다.
이 경우, 향상된 단말들이 레가시 1 1가 전달되는 탐색 공간을 모니터링 하는 경우, 블라인드 디코딩을 수행해야 하는 NPDCCH 후보 수가 감소될 수 있다. 예를 들면, 므 를 통해 전달된 해당 탐색 공간의
Figure imgf000086_0001
단말은 해당 탐색 공간에서 NPDCCH 후보들을 반복 횟수 16에 해당하는 NPDCCH 후보 1개, 반복 횟수 8에 해당하는
Figure imgf000086_0002
후보 2개, 반복 횟수 4에 해당하는
NPDCCH 후보 4개, 반복 횟수 2에 해당하는
Figure imgf000086_0003
8개까지 총 I5개의 1)(:(31후보들을 블라인드 디코딩하여 1犯1를 검출해야 한다.
이러한 상황에서 3 -1\1( ¾ 페이로드 또는 30-:炯:(光[ 페이 로드를 통해 해당
NPDCCH 반복 횟수들 중 1 ; /8 .당. , 16/ 8 = 2)은 사용하지 않는다고 기지국이 단말에게 알려주면, 향상된 단말은 기존 15개의 NPDCCH 후보들 중에서 8개를 제외한 7개의 NPDCCH 후보들만 블라인드 디코딩을 해보면 되기 때문에 단말의 전력 소모를 줄일 수 있으며, 버퍼의 관리 측면에서 장점을 가질 수 있다.
만약, 니水:대 페이로드 또는
Figure imgf000086_0005
페이로드를 통해
Figure imgf000086_0004
반복 횟수들 중 1¾^å/2 ( 요. , 16/2 = 8) 만 사용한다고 알려준다면 향상된 단말은 기존 15개의 NPDCCH 후보들 중에서 반복 횟수가 8인 2개의 NPDCCH 후보들에서만 블라안드 디코딩을 수행하면 된다.
또한, 기지국이 1)(:1의 스킵이 허용되는 향상된 떠에게, 다중 TB 스케줄링으로 묶여있는 NPDSCH들을 스케줄링 하는 각각의 레가시 1犯1가 똑같다고 알려주는 경우, 단말은 해당 정보를 통해 이후 탐색 공간에서 001 블라인드 디코딩을 수행하지 않고 이미 알고 있는 신호를 탐색하듯이 레가시 DCI를 탐색할수 있다. 이 경우단말의 배터리 수명이 증가될 수 있다.
two HARQ프로세스에 대한 NB-IoT의 다중 TB스케줄링
이하, two HARQ 프로세서를 지원하는 경우 다중 TB를 스케줄링하는 방법에 대해서 살펴본다. Two HARQ 프로세스의 경우 다중 TB 스케줄링이 동일한 방향(예를 들면 , 상향링크 또는 하향링크)의 그랜트만 할당해 주는 경우와 서로 다른 방향의 그랜트를 함께 할당해 주는 경우가 존재할 수 있기 때문에 두 개의 경우로 나눠서 설명하도록 한다.
먼저, two HARQ 프로세스와 관련된 단말 및 기지국의 동작에 대해서 살펴보도록 한다.
도 19는 본 발명에서 제안하는 방법이 적용될 수 있는 유니캐스트(Unicast)와관련된 단말동작의 일 예를 나타내는 순서도이다. 먼저, 단말은 기자국으로부터 NPDCCH, NPDSCH 및/또는 NPUSCH의 절차와 관련된 설정 정보를 상위 계층 시그널링 등을 통해서 수신할 수 있다(S19010) . 이때, 단계 S19010은 NPDCCH, NPDSCH, 및/또는 NPUSCH 절차와 관련된 설정이 pre-defined (예를들면, fix)된 경우 생략될 수도 있다.
단말은 설정 정보에 기반하여 설정된 search space에서 제 1 NPDCCH를 수신(또는 모니터링)할 수 있다. 이 경우, 해당 제 1 NPDCCH를 통해 단말은
NPDSCH를 스케줄링하는 DL grant , 또는 NPUSCH를 스케줄링하는 UL grant를 기지국으로부터 전달 받을(즉, 수신할) 수 있다(S19020) .
단말은 기지국으로부터 할당 받은 DL 그랜트 또는 혹은 UL 그랜트가 지시하는 정보에 따라 NPDSCH를 수신하거나 :NPUSCH를 전송할 수 있다 (S19030 ) .
도 20은 본 발명에서 제안하는 방법이 적용될 수 있는 유니캐스트 (Unicast)와관련된 기지국동작의 일 예를 나타내는순서도이다 . 먼저, 기지국은 단말에게 NPDCCH, NPDSCH 및/또는 NPUSCH의 절차와 관련된 설정 정보를 상위 계층 시그널링 등을 통해서 전송할 수 있다 (S20010 ) . 이때, 단계 S20010은 NPDCCH, NPDSCH, 및/또는 NPUSCH 절차와 관련된 설정이 pre-defined (예를들면, fix)된 경우 생략될 수도 있다.
기지국은 설정 정보에 기반하여 설정된 search space에서 제 1 NPDCCH를 전송할 수 있다. 이 경우, 해당 제 1 NPDCCH를 통해 기지국은 NPDSCH를 스케줄링하는 DL 그랜트 , 또는 NPUSCH를 스케줄링하는 UL 그랜트를 단말에게 전달 (즉, 전송)할수 있다 (S20020 ) .
기지국은 DL 그랜트 또는 UL 그랜트가 지시하는 정보에 따라 NPDSCH를 전송하거나 NPUSCH를 수신할수 있다 (S20030 ) .
상술한도 19 및 도 20에서 설명한 같은 절차들을 참고할 때, 본 발명에서 제안하는 다중 TB 스케줄링은 NPDSCH/NPUSCH의 송수신에 대해 이용 또는 적용될 수 있다.
이하, 아래의 두 가지 Case에 대한 다중 TB 스케줄링 방법에 대해 살펴보도록 한다.
Case 1 : NPDSCHs , NPUSCHs
Case 2 : NPDSCH + NPUSCH, NPUSCH + NPDSCH,
<실시 예 10_Case 1의 경우 다중 TB스케줄링 방법>
먼저 같은 방향의 데이터를 전달하는 다중 TB를 스케줄링 하는 방법에 대해 살펴보도록 한다. 먼저, HARQ H로세스 넘버, 자원 할당, MCS, 스케줄링 딜레이 등을 다중 TB를 스케줄링 하는 NPDSCH(또는 NPUSCH) 끼리는 공통 값을 공유 하도록 설정될 수 있다.
또한, 효율적인 다중 TB 스케줄링을 위해서 아래와 같은 파라미터들이 유동적으로 설정될 수 있다.
(1) 스케줄링되는 TB의 최대 개수(Maximum number of scheduling TB) two HARQ프로세스를 고려하는 스케줄링되는 TB의 최대 개수는 2가 될 수 있다. 만일 2가 된다면 향상된 DCI를 통해 다중 TB(예를 들면 , 2 TBs)를 전달하는 것을 단말이 미리 알고 있기 때문에 DCI를 통해 따로 정보를 알려줄 필요는 없게 된다.
하지만, 스케줄링되는 TB의 최대 개수가 3 이상인 경우(예를 들면, 향상된 DCI에 기반하여 , 단말이 3개 이상의 NPDSCH들을 수신하는 경우)를 고려해 볼 수 있다. 예를 들어 , 스케줄링되는 TB의 최대 개수가 ‘T’ (T는 2보다 큰 양의 정수)라 하면 기지국과 단말은 가장 첫 번째 NPDSCH와 두 번째 NPDSCH는 DCI를 통해 지시 받은 HARQ process 넘버를 통해 HARQ 프로세스를 진행할 수 있다.
3번 째 NPDSCH는 가장 첫 번째 NPDSCH의 모든 HARQ 프로세스가 끝나는 시점부터 DCI를 통해 지시 받은 스케줄링 딜레이 만큼(또는, RRC나 SIB로 미리 약속된 스케줄링 딜레이 만큼) 지나서 가장 첫 번째 NPDSCH가 사용했던 HARQ 프로세스 넘버를 통해 수신될 수 있다.
4번 째 NPDSCH 또한 두 번째 NPDSCH의 모든 HARQ 프로세스가 끝나는 시점부터 DCI를 통해 지시 받은 스케줄링 딜레이 만큼(또는 RRC나 SIB로 미리 약속된 스케줄링 딜레이 만큼) 지나서 두 번째 NPDSCH가 사용했던 HARQ 프로세스 번호를통해 수신될 수 있다.
이와 같은 방법은 홀 수 번째 NPDSCH의 HARQ프로세스 번호가 같고 짝수 번째 NPDSCH HARQ 프로세스 번호가 같기 때문에, 단말과 기지국 사이의 timing ambiguity 없이 데이터를송수신할수 있다.
위의 방법과는 다르게 3번 째 NPDSCH의 HARQ 프로세스 넘버는 첫 번째 NPDSCH 혹은 두 번째 NPDSCH 중 HARQ 프로세스가 먼저 끝난 HARQ 프로세스 넘버를 이용하여 전송이 시작될 수 있다.
이 방법을사용하면 resource utilizat丄on이 좋아져서 시스템의 데이터 레이트가좋아지게 된다.
(2) MCS
향상된 DCI를 통해서 두 개 이상의 TB를 스케줄링하는 경우, 적어도 해당 다중 TBs의 타겟 MCL이 같거나 비슷해야 하는 것이 바람직하기 때문에, 다중 TBs는 비슷한코드 레이트와 반복 레벨을 갖을수 있다.
따라서, 향상된 DCI로 하나의 MCS 값과 NSF(예를 들면, Repetition
=1의 TB를 위해 필요한 서브프레임의 개수)가 지시되어 첫 번째 TB는 지시된 값으로 해석될 수 있고, 두 번째 TB부터는 만지시함으로써 MCS는 이전 TB에 사용된 MCS와 NSF로 만들어낸 코드 레이트와 같은값을 갖도록선택될 수 있다. 또는, 두 번째 TB부터는 MCS값만 지시함으로써 NSF는 이전 TB에 사용된 MCS와 NSF로 만들어낸 코드 레이트와같은 값을갖도록 선택될 수 있다.
이와 같이 설정되면 첫 번째 TB를 위해 한번만 MCS와 1½를 지시해주면 되고그 다음 TB부터는 MCS혹은 NSF만지시해주면 된다. (3) 스케줄링 딜레이(Scheduling delay)
향상된 DCI로 두 개 이상의 TB를 스케줄링 하는 경우, 향상된 DCI로는 스케줄링 딜레이를 지시해주는 방법은 크게 아래와 같은 방법으로 구별될 수 있다.
(방법 1) : 향상된 DCI를 통해 실제 스케줄링 딜레이 값을 기지국이 단말에게 전달할 수 있다. 이 경우, 스케줄링 딜레이 값은 하나의 값만을 단말에게 전송하고, 전송된 스케줄링 딜레이 값은 모든 TB 사이(예를 들면, 이전 TB를 전달하는 NPDSCH가 전송되는 마지막 서브프레임부터 다음 TB를 전달하는 NPDSCH가 전송되는 가장 처음 서브프레임까지의 간격)의 스케줄링 딜레이로 사용될 수 있다 .
기지국의 유동적인 스케줄링을 위해서 실제 스케줄링된 TB 개수만큼 스케줄링 딜레이 값을 독립적으로 기지국은 단말에게 전달할 수 있다. 이 경우, 향상된 DCI를 통해 모든 스케줄링 딜레이 값을 독립적으로 전달하면 스케줄링 되는 TB의 개수가 많아지면 해당 필드도 함께 커지게될 수 있다.
따라서, 이 값들은 일반 서브프레임 기준으로 결정된다고 설정할 수도 있으며, 유효한 서브프레임 기준으로 결정된다고 설정할 수 있다. 하나의 값을 사용하여 모든 TB사이에 동일하게 사용되는 방법에 비해 각 TB별로 독립적으로 전달하는 방법은 완전히 유동적으로 스케줄링 딜레이를 단말에게 전송할 수 있다. (방법 2) : 향상된 DCI를 통해 실제 스케줄링 딜레이 값과 스케줄링 딜레이 오프셋이 함께 전송될 수 있다. 이 경우, 가장 첫 TB를 전달하는 NPDSCH까지는 지시받은 스케줄링 딜레이 값에 따라 NPDSCH의 위치가 판단될 수 있으며, 두
번째 TB를 전달하는 NPDSCH 부터는 스케줄링 딜레이와 스케줄링 딜레이 오프셋을 함께 전송함으로써, 단말은 스케줄링 딜레이 값과 스케줄링 딜레이 오프셋 값을 동시에 이용하여 계산된 값에 따라 NPDSCH의 시작 서브프레임을 판단할수 있다.
예를 들어, 스케줄링 딜레이를 ‘X’ 라 하고, 스케줄링 딜레이 오프셋을 ‘P’ 라고 한다면, N번째 TB를 스케줄링하는 NPDSCH의 시작 서브프레임은 n+X+ (N-l)*P와같이 표현될 수 있다.
이때 n은 다중 TB를 스케줄링하는 NPDCCH가 전달되는 마지막 서브프레임을 지시하거나 , 바로 직전 전송된 NPDSCH가 전달되는 마지막 서브프레임을 지시할 수도 있다. 이 값들은 일반 subframe기준으로 결정된다고 설정할수도 있으며, valid si±>frame 기준으로 결정된다고설정될 수 있다. 이와 같은 방법은 향상된 DCI의 길이를 작게 만들 수 있으며, 어느 정도의 다이나믹한스케줄링 딜레이가지시 가능할수 있다.
<실시 예 ll_Case 2의 경우 다중 TB스케줄링 방법>
다음으로 반대 방향의 데이터를 전달하는 다중 TB를 스케줄링 하는 방법에 대해 살펴보도록 한다. 먼저, HARQ프로세스 넘버, 자원 할당, MCS, 스케줄링 딜레이 등을 다중 TB를 스케줄링 하는 NPDSCH 와 NPUSCH간 공통 값을 공유 하도록 설정될 수 있다.
효율적인 다중 TB 스케줄링을 위해 실시 예 10의 Case 1에서 언급했던 파라미터들은 실시 예 11에서의 Case 2에서도 유사하게 설정될 수 있다. 추가적으로 TDD 상황에서 NPDSCH 와 NPUSCH가 interlaced 되는 것 또한 고려되고 있으며 , 그랜트 믹싱 (grant mixing) , UCI 피기백 (UCI piggyback)등의 추가적인 동작을 단말과 기지국은수행할수 있다. <실시 예 11 - 1_NPUSCH 송신이 먼저 스케줄링되는 방법>
다중 TB 스케줄링이 NPUSCH 송신이 먼저 진행되는 중에 NPDSCH를 추가적으로 수신하도록 스케줄링되는 경우, 앞서 단말이 전송한 NPUSCH의 재 전송 그래트가 NPDSCH를 통해 전달될 수 있다.
다중 TB 스케줄링을 통해서 NPUSCH 송신이 먼저 진행되는 중에 NPDSCH를 추가적으로 수신하도록 스케줄링되는 경우 , 기지국은 이후에 스케줄링된 NPDSCH 데이터에 단말이 먼저 전송한 NPUSCH에 대한 재 전송 UL 그랜트를 포함시켜서 전송할 수 있다.
이 경우, 단말은 해당 재 전송 UL 그랜트에 해당하는 NPUSCH를 송신해야 하고, 먼저 스케줄링된 NPDSCH 데이터에 해당하는 ACK/RACK을 함께 전달하도록 설정될 수 았다.
이러한 방법을 이용하면 해당 재 전송 UL 그랜트를 NPDSCH를 통해 수신하면 단말이 모니터링 하지 않아도 되는 탐색 공간이 발생하기 때문에 단말의 전력 소모가 감소될 수 있다.
<실시 예 11 - 2_ NPDSCH의 일부에 다음 수행 하도록 지시 된 UL grant 혹은 DL grant 가 포함되어 있는 경우>
다중 TB를 스케줄링하는 향상된 DCI를 이용하지 않고 , NPDSCH에 UL 그랜트 또는 DL 그랜트를 포함시켜 전송하는 경우, 단말은 다음 NPUSCH 또는 NPDSCH를 송수신할 수 있다.
실시 예 11 - 2는 레가시 DCI를 통해 DL 그랜트를 수신한 다음 해당
NPDSCH의 일부에 다음에 수행하도록 지시된 UL 그랜트 또는 DL 그랜트가 포함된 경우도 해당될 수 있다. 단말은 이와 같은 UL 그랜트 또는 DL 그랜트를 수신하게 되면 앞서서 수신하고 있던 NPDSCH의 종료 시점부터 (또는, 해당 HARQ 프로세스가 끝나는 시점부터) UL/DL 그랜트에 포함되어 있는 스케줄링 딜레이 만큼 지난 뒤에 서브프레임을통해서 NPUSCH를송신하거나, NPDSCH를수신할수 있다.
이러한 UL/DL 그랜트는 레가시 DCI가 포함하고 있던 스케줄링 정보들을 모두포함할수 있다.
실시 예 11-2는 향상된 DCI 없이 다중 TB 스케줄링이 가능하며, 해당 UL/DL 그랜트를 NPDSCH를 통해 수신하면 단말이 모니터링 하지 않아도 되는 탐색 공간이 발생하기 때문에 단말의 소모 전력을 감소시킬 수 있다.
예를 들면, 최초 NPDCCH를 통해 DL 그랜트를 수신한 단말은 이에 대한
NPDSCH를 수신하게 된다. 해당 NPDSCH에는 실제 데이터도 포함되어 있지만 UL 그랜트또는 DL그랜트도포함되어 있을수 있다.
만약, UL 그랜트가 포함되어 있는 경우, 해당 UL 그랜트가 스케줄링하는 자원에서 단말은 NPUSCH를 전송할 수 있으며, 앞서 수신한 NPDSCH 데이터에 대한 ACK/NACK을 함께 전달할수 있다.
만약, DL grant가 포함되어 있는 경우, 단말은 해당 DL 그랜트에 해당하는 NPDSCH를 수신하면서 앞서 수신한 NPDSCH 데이터에 대한 ACK/NACK은 이미 스케줄링되어 있던 NPUSCH를 통해 기지국에게 전송할 수 있다. '
서로 다른 DCI 페이로드 크기에 대한 다중 TB 스케줄링 (Multi -TB scheduling with different DCI payload size)
단일 TB의 스케줄링을 위한 DCI와 다중 TB의 스케줄링을 위한 DCI의 페이로드 크기가 서로 다른 경우, 추가적인 탐색 공간을 설정하기 않고, DCI를 통해 다중 TB스케줄링을 활성화/비활성화시킬 수 있다.
즉, 단일 TB의 스케줄링을 위한 DCI와 다중 TB의 스케줄링을 위한 DCI의 페이로드 크기가 서로 다른 경우, 단일 TB의 스케줄링을 위한 DCI에 다중 TB 스케줄링을 위한 DCI의 활성화 지시를 위한 1 비트를 추가하고, 다중 TB 스케줄링을 위한 DCI에 다중 TB 스케줄링의 비 활성화 지시를 위한 1 비트를 추가하여 추가 search space를 도입하지도 않고, 단말의 BD 증가 없이 다중 TB를스케줄링할수 있다.
이하, 단말의 동작에 대해 살펴보도록 한다.
도 21은 본 발명에서 제한하는 방법이 적용될 수 있는 다중 TB 스케줄링에 대한단말동작의 일 예를 나타내는순서도이다 .
단말은 단일 TB 스케줄링을 위한 설정 정보 및/또는 다중 TB 스케줄링을 위한 설정 정보를 상위 계층 시그널링등을 통해 기지국으로부터 수신하고, 단말은 탐색 공간에서 , 단일 TB 스케줄링 (single TB scheduling)을 위해 미리 정의된 제 1 DCI (예를 들면, single-TB scheduling DCI)를 모니터링할수 있다 (S21010 ) .
단말이 기지국으로부터 다중 TB 스케줄링 (multiple TB scheduling)과 관련된 설정 정보를 수신하는 경우, 단말은 상기 탐색 공간에서, 상기 제 1 DCI에 상기 다중 스케줄링의 활성화 (activation) 여부를 나타내는 특정 필드 (field)가 포함된 제 2 DCI (예를 들면, 활성화 필드가 추가된 single-TB scheduling DCI)를모니터링할수 있다 (S21020 , S21030 ) .
특정 필드가나타내는 값에 따라, 단말은후속하는 탐색 공간에서 저] 2 DCI 또는 다중 TB 스케줄링을 위해 미리 정의된 제 3 DCI (예를 들면, 다중 TB 스케줄링 DCI)를모니터링할수 있다 (S21040 , S21060 ) .
예를 들면, 특정 필드가 다중 TB 스케줄링의 활성화를 나타내는 경우, 단말은후속하는 탐색 공간에서 제 3 DCI를모니터링 할수 있다. 하지만, 특정 필드가 다중 TB 스케줄링의 활성화를 나타내지 않은 경우, 단말은 다중 TB 스케줄링의 해제를 기지국으로부터 수신하였는지 여부를 판단한다 (S21050 ) . 만약, 다중 스케줄링의 해제를 수신하면, 단말은 다시 단계 S21010으로 돌아가 기지국으로부터 단일 TB 스케줄링을 위한 설정 정보 및/또는 다중 TB 스케줄링을 위한 설정 정보를 상위 계층 시그널링등을 통해 기지국으로부터 수신하고, 단말은 탐색 공간에서 , 단일 TB 스케줄링 (single TB scheduling)을 위해 미리 정의된 제 1 DCI (예를 들면, single-TB scheduling DCI)를 모니터링할수 있다.
하지만, 단말이 다중 TB 스케줄링의 해제를 수신하지 않으면, 단말은 단계 S21030으로 돌아가탐색 공간에서 제 2 DCP를모니터링할수 있다 .
이 때, 상기 제 3 DCI는 다중 TB 스케줄링의 비활성화 (deactivation) 여부를 나타내는 1 비트 필드 ( 1 bit field)를포함할수 있다.
단말은 제 3 DCI가 수신된 탐색 공간에 후속하는 탐색 공간에서, 상기 1 비트 필드의 값이 다중 스케줄링의 비활성화를 나타내지 않는 0의 값을 갖는 경우 상기 제 3 DCI를 모니터링할 수 있고, 상기 1 비트 필드의 값이 다중 TB 스케줄링의 비 활성화를 나타내는 값인 1인 경우 제 2 DCI를 모니터링할 수 있다 (S21070 ) .
이하, 기지국의 동작에 대해 살펴보도록 한다. 도 22는 본 발명에서 제한하는 방법이 적용될 수 있는 다중 TB 스케줄링에 대한 기지국 동작의 일 예를 나타내는순서도이다.
기지국은 단일 TB 스케줄링을 위한설정 정보 및/또는 다중 TB 스케줄링을 위한설정 정보를 단말에게 전송할수 있다 (S22010 ) .
기지국은 탐색 공간에서 단일 TB 스케줄링을 위해 미리 정의된 제 1
DCI (예를 들면 , single-TB scheduling DCI)를 단말로 전송할 수 있다 (S22020 ) .
기지국이 단말에게 다중 TB 스케줄링과 관련된 설정 정보를 전달한 경우, 기지국은 탐색 공간에서 상기 제 1 DCI에 다중 TB 스케줄링의 활성화 여부를 나타내는 특정 필드가 포함된 제 2 DCI (예를 들면, activation field가 주가된 single-TB scheduling DCI)를 전송할수 있다 (S22020 ) .
특정 필드가 나타내는 값에 따라, 기지국은 후속하는 탐색 공간에서, 제 2 DCI 또는 다중 TB 스케줄링을 위해 미리 정의된 제 3 DCI (예를 들면, multi- TB scheduling DCI)를 전송할수 있다.
이 때, 제 3 DCI는 다중 TB 스케줄링의 비활성화 여부를 나타내는 1 비트 필드를 포함할수 있다. 기지국은 제 3 DCI가수신된 탐색 공간에 후속하는 탐색 공간에서, 상기 1 비트 필드의 값이 다중 TB 스케줄링의 비활성화를 나타내지 않는 값인 ‘0’ 인 경우, 제 3 DCI를 전송할수 있고, 1 비트 필드의 값이 다중 TB 스케줄링의 비활성화를 나타내는 1인 경우 제 2 DCI를 전송할 수 있다 (S22030) .
이와 같은 방법을 이용하여 단일 모의 스케줄링을 위한 DCI의 크기와 다중 TB의 스케줄링을 위한 DCI의 크기가 다른 경우에도 추가적인 탐색 공간이나 2019/209082 96 1»(:1^1{2019/005106 단말의 블라인드 디코딩 없이 다중 ¾¾ 스케줄링을 활성화 또는 비활성화 시킬 수 있다.
하지만, 해당 방법을 사용하는데 있어서 기지국이 전송한 1^1를 단말이 제대로 수신하지 못했다면 단말과 기지국 사이에 1X11 크기 불일치가 발생할 수 있다.
이러한 문제가 발생하는 경우, 단말은 지속적으로 탐색 공간 모니터링을 실패하게 되고 시스템 성능이 열화되게 된다. 따라서, 이러한 경우, 아래의 방법을 통해서 문제점을 해결할 수 있다.
<실시 예 12 >
단일 스케줄링을 위한 1 :1를 통해
Figure imgf000098_0001
스케줄링의 활성화를 지시 받은 뒤, 스케줄링을 위한 1 :1를 모니터링 해야 하는 탐색 공간이 오는 타이밍(반대로 다중 TB 스케줄링을 위한 1)(:1를 통해 다중 16 스케줄링의 비 활성화 지시 받은 뒤
Figure imgf000098_0002
스케줄랑을 위한 1犯1를 모니터링 해야 하는 탐색. 공간이 오는 1:1:1]19도 같은 원리 적용 가능)에 대해 정확하게 정의해 둘 수 있다.
이때, 단말과 기지국 사이에
Figure imgf000098_0003
01 등을 송수신하게 되고 해당 송수신 과정을 통해 1 1를 누락하지 않았다는 것을 단말과 기지국이 확인할 수 있다.
예를 들면, 단일
Figure imgf000098_0004
스케줄링 1 :1에 다중 73 스케줄링의 활성화를 지시하는 활성화 필드의 값이 ‘1’ 이고(예를 들면, 다중
Figure imgf000098_0005
스케줄링을 위한 모니터링을 시작하라고 기지국이 지시한 경우) , 해당 단일
Figure imgf000098_0006
스케줄링을 위한
00171- 1)]」 그랜트를 지시하는 경우, 아래와 같은 방법을 통해서 해당 발명이 수행될 수 있다.
(1) 첫 번째로 해당 DL grant에 지시된 HARQ 프로세스 ID에 대한
ACK/NACK 전송 및 재 전송이 모두 완료 되고, 기지국이 해당 HARQ 프로세스 ID를 새로운 데이터 용도라고 새로운 단일 TB 스케줄링 DCI를 통해 단말에게 지시할수 있다.
이 경우, 단말은 그 이후에 존재하는 탐색 공간에 다중 TB스케줄링 DCr를 모니터링할수 있다.
(2 ) 두 번째로 해당 DL grant에 대한 NPDSCH를 수신한 뒤 NACK 전송했고 이후에 동일 HARQ 프로세스 ID 에 대한 NDI (예를 들면, 새로운 데이터를 지시하는 지시자 (new data indicator) )가 non-toggle 상태로 전송되는 경우, 또는 해당 DL grant에 대한 NPDSCH를 수신한 뒤 ACK 전송 이후에 동일 HARQ 프로세스 ID 에 대한 NDI 가 toggle 상태로 오면, 단말은 그 이후 해당 NDI 와 함께 전송된 DCI 에 대응되는 A/N 전송 이후 존재하는 탐색 공간에서 다중 TB 스케줄링을 위한 DCI를모니터링 할수 있다.
이때, 다중 TB 스케줄링의 활성화를 위한 활성화 필드가 1로 지시된 DCI 와 함께 해당 HARQ 프로세스 ID가 새로운 데이터라고 지시해준 DCI 역시 누락될 수 있다. 따라서, 이에 대한 응답을 보내고 적어도 HARQ feedback의 DM-RS로 DTX 탐색한 이후에야 기지국도 컨펌을 할수 있기 때문에 단말은 해당 NDI와 함께 전송된 DCI에 대한 A/N 전송 이후에 단말이 탐색 공간을 모니터링할수 있다.
(1)과 (2 ) 방식에서 low complexity 단말의 프로세싱 딜레이를 고려하여, 실제 다중 TB 스케줄링을 위한 DCI 모니터링이 적용되는 정확한 시점은프로세싱 딜레이 만큼의 갭이 추가될 수 있다.
본 발명의 또 다른 예로 단일 TB 스케줄링을 위한 DCI에 다중 TB 스케줄링의 DCI 활성화를 위한 활성화 필드의 값이 1이고 (예를 들면, 다중 TB의 스케줄링을 위한 모니터링을 시작하라고 기지국이 단말에게 지시하는 경우) , 해당 단일 TB 스케줄링 DCI가 UL 그랜트를 지시하는 경우에 대해 아래와같이 구체적인 예를들어 해당방법을설명하도록 한다.
(1)첫 번째로 해당 UL 그랜트에 지시된 HARQ 프로세스 ID에 대한 재 전송이 모두 완료 되고 기지국이 해당 HARQ 프로세스 ID를 새로운 데이터의 용도라고 새로운 단일 TB 스케줄링 DCI를 통해 지시해주면, 그 이후에 존재하는 탐색 공간에 다중 TB스케줄링 DCI를 단말은모니터링 할수 있다.
(2 )두 번째로, 해당 UL 그랜트에 대한 NPUSCH를 송신한 뒤 동일 HARQ 프로세스 ID 가 (NDI 가 toggle 되든 되지 않든 상관없이 ) 다시 스케줄링된 이후, 단말이 새로운 단일 TB스케줄링 DCI로 스케줄된 NPUSCH를 전송한 이후 존재하는 탐색 공간에서 단말은 다중 TB스케줄링 DCI를 모니터링할수 있다.
( 1)과 (2 ) 방식에서 low complexity 단말의 프로세싱 딜레이를 고려하여, 실제 다중 TB 스케줄링을 위한 DCI 모니터링이 적용되는 정확한 시점은프로세싱 딜레이 만큼의 갭이 추가될 수 있다.
이와 같이 정확한 timing을 정의해두면 활성화 또는 비활성화를 기지국으로부터 지시 받은 뒤, DCI format을 바꿔서 모니터링 할 때까지 단말과 기지국 사이에 하나 이상의 NPDSCH, NPUSCH 등등을 송수신하게 되고 해당 송수신 과정을 통해 DCI를 누락하지 않았다는 것을 단말과 기지국이 확인할수 있다. <실시 예 13 >
특정 UE 특정 탐색 공간(예를 들면 , US引의 일부 후보들은 항상 단일 TB 스케줄링을 위한 용도로 설정될 수 있다. 즉, 기지국으로부터 RRC 시그널링을 통해 다중 TB스케줄링과 관련된 설정 정보를 전송 받은 뒤 존재하는 USS에서는 최소 k개(k는 1보다 크거나 같은 양의 정수)의 NPDCCH 후보는 단일 TB 스케줄링을 위해 사용될 수 있다.
그리고, 전체 NPDCCH 후보 개수에서 k개를 뺀 나머지 NPDCCH 후보들은 다중 TB스케줄링을 위한 용도로 설정될 수 있다.
이렇게 NPDCCH가 설정되게 되면, 단말이 기지국에서 전송한 DCI를 누락했을 지라도 항상 단말의 블라인드 디코딩 동작의 증가 없이 fallback 동작을 수행할 수 있기 때문에 앞에서 설명한 문제점을 해결할 수 있다.
단, 기존 탐색 공간의 후보를 나눠가져야 한다.
<실시 예 13-1>
실시 예 13은 단일 탐색 공간을 나눴기 때문에 단말의 수신 성능이 저하될 염려가 있었다. 따라서 실시 예 13-1에서는 단말의 수신 성능을 유지시키는 방법을 제안한다.
구체적으로, 특정한 단말 특정 탐색 공간(예를 들면 , USS)는 단일 TB 스케줄링의 용도로 정의되고 나머지 USS는 다중 TB 스케줄링의 용도로 사용될 수 있다.
즉, 기지국으로부터 RRC signaling을 통해 다중 TB 스케줄링과 관련 설정 정보를 단말이 전송 받은 뒤, 존재하는 USS가 hyper frame 시작 시점부터 count하여 해당 USS가 짝수 번째 인지 홀수 번째 인지에 따라 단일 TB스케줄링 용도의 USS와다중 TB스케줄링 용도의 USS로구분될 수 있다. 이렇게 설정하게 되면 단말이 기지국에서 전송한 DCI를 누락했을 지라도 항상 단말의 블라인드 디코딩 동작의 증가 없이 fallback 동작을 수행할 수' 있다.
이와 같이, 단일 TB 스케줄링 용도의 USS와 다중 TB 스케줄링 용도의 USS가 구분되어 있는 상황에서, 앞선 USS에서 지시 받은 스케줄링에 따라 뒤따르는 USS 검출수행 여부가결정될 수 있다.
즉, 다중 TB 스케줄링 DCI가 특정 USS를 통해서 검출된 경우, 단말은 후속하는 USS들에서 NPDCCH/MPDCCH 모니터링을 생략할 수 있으며, 생략되는 구간은 스케줄링 받은 다중 표의 ACK/NACK이 온전히 완료되는 구간까지 포함될 수 있다.
추가적으로 단일 TB 스케줄링 DCI가특정 USS를 통해서 검출된 경우에도, 단말기는 NPDCCH/MPDCCH 모니터링을 생략할 수 있으며, 생략되는 구간은 스케줄링 받은 단일 TB의 ACK/NACK이 온전히 완료되는 구간까지 포함될 수 있다.
<실사예 14 >
기존 단일 탐색 공간에 다중 TB 스케줄링을 위한 DCI와 단일 TB 스케줄링을 위한 DCI를 모두 전송하는 대신, 기존에 존재하는 CSS를 사용할 수 있다. 즉, DCI Fall back동작을위한탐색 공간을 CSS로지정할수 있다. 즉, 단말은 기지국으로부터 RRC signaling을 통해 다중 TB 스케줄링과 관련된 설정 정보를 전송 받은 뒤 존재하는 USS는 다중 TB 스케줄링 DCI를 전송하기 위한 탐색 공간으로 사용될 수 있고, CSS가 단일 TB스케줄링 DCI를 전송하기 위한탐색 공간으로사용될 수 있다.
이때 fall back동작을 위해 사용될 CSS는 type- 1 CSS와 type - 2 CSS 둘 중 하나가 될 수 있다(eMTC의 CE mode A를 위해서라면 type- 0 CSS도 고려될 수 있다) . type - 2 CSS를 fall back 동작을 위한 탐색 공간으로 사용하는 경우, 해당 탐색 공간이 USS와 NPDCCH후보의 구조가 유사하고 DCI format도 unicast와 페이로드 크기를 항상 맞주는 DCI format 을 사용하기 때문에, 기지국이 DCI format NO or 을 그대로사용하여 단일 TB 스케줄링을지시할수 있다.
eMTC의 CE mode B의 경우에는 앞서 언급한 type -2 CSS에 DCI format
6 - 0/ 1B를 사용하여 같은 방식이 적용될 수 있다. 추가적으로 eMTC의 CE mode A의 경우에는 항상 모니터링하고 있는 type- 0 CSS가 존재하기 때문에 해당 CSS를 fall back동작을위해 사용된 수 있다.
type- 0 CSS에 DCI format 6 - 0/1A를 사용한 단일 TB 스케줄링을 사용할수 있고 USS를통해 다중 TB스케줄링을사용할수 있다.
반면 type- 1 CSS를 fall back 동작으로 사용하는 경우 해당 탐색 공간에는 unicast 전송에 사용되지 않는 DCI format(예를 들면, DCI format N2)을사용하기 때문에 다른방법이 적용될 수 있다.
즉, 단말 특정 RNTI(UE Specific-RNTI, 예를들면 , C-RISITI)값으로 스크램블링된 DCI format N2에 L bit DCI field(예를 들면, L=l)를 도입하여 USS에서 단일 TB 스케줄링 DCI를 수신하도록 기지국은 단말에게 지시할수 있다. 기지국은 해당 field를 통해 단말에게 fallback동작을 지시할 수 있다. 이와 같은 방법을 사용할 땐 레거시 동작에 영향을 최소화 하기 위해 DCI 페이로드 크기를 zero padding과 같은 방법을 통해 DCI 페이로드의 크기를 일치시킴으로써, 블라인드 디코딩 동작의 증가 없이 다른 것을 지시하는 DCI와 구별될 수 있다.
eMTC의 경우에도 앞서 언급한 것과 같이 type- 1 CSS를 fall back 동작으로 사용하는 경우 앞서 언급한 방법의 DCI format N2를 DCI format 6 - 2로 변경하여 적용될 수 있다.
실시 예 1 내지 14는 NB-IoT system에 적용될 수 있는 다중 TB를 스케줄링하기 위한방법에 대해 설명하였다.
본 발명에서 제안한방법은 기본적으로 DL/DL위주로 되어 있으나, UL/UL 혹은 DL/UL 혹은 UL/DL로 바뀌어도 발명의 본질은 달라지지 않는다. 또한 로 바뀔 때 NPDSCH 대신 NPUSCH가 적용될 수 있고, NPDSCH 수신은 NPUSCH 송신으로 적용될 수 있고, DCI format 이 DCI format NO로 적용될 수 있다.
또한, 실시 예 1 내지 14에서 설명한 방법은 eMTC에 적용될 수 있다. 이때, DCI format N0/N1은 DCI format 6 -OA, B/6 - 1A, B로 바꿔서 적용될 수 있고, NPDSCH/NPUSCH는 PDSCH/PUSCH로 바꿔서 적용될 수 있다.
다른 탐색 공간의 명칭들도 eMTC에 정의된 명칭에 따라 변경되어 적용될 수 있음은 자명하다. 또한 eMTC의 HARQ프로세스 개수는 8개 또는 그 이상까지 지원될 수 있기 때문에 DL/UL 혹은 UL/DL 에서 끝나지 않고 스케줄링 방향이 DL/UL/UL/DL/UL 등 과 같이 불규칙하게 변하는 경우에도 실시 예 1 내지 14에서 설명한 방법이 적용될 수 있다.
상기 제안 방법들 중 여러 가지 방법이 도입되는 경우 단말은 기지국의 지시에 따라서 모니터링 하는 DCI의 페이로드 크기가 달라질 수 있음은 자명하다.
도 23은 본 발명에서 제안하는 방법이 적용될 수 있는 다중 TB 스케줄링을 통해서 하향링크 데이터를 수신하기 위한 단말 동작의 일 예를 나타내는 순서도이다.
도 23을 참조하면, 단말은 기지국으로부터 다충 TB가 설정되고, NPDSCH의 스케줄링을 위한 DCI를 수신하는 경우, 단말은 이후 전송되는 DCI의 모니터링 없이 NPDSCH를 수신할 수 있다.
구체적으로, 단말은 기지국으로부터 제 1 하향링크 제어 정보 (Downlink Control Information: DCI)를 포함하는 제 1 하향링크 제어 채널 (Physical Downlink Control Channel : PDCCH)를 수신한다 (S23010 ) . 이때, PDCCH는 실시 예 1 내지 14에서 설명한 SC-MCCH를 위한 NPDCCH 또는 SC-MTCH를 위한 NPDCCH일 수 있다.
PDCCH가 SC-MCCH를 위한 NPDCCH인 경우, PDCCH의 제 1 DCI는 제 1 PDSCH의 스케줄링을 위한 스케줄링 정보를 포함할 수 있으며, 스케줄링 정보는 실시 예 1 내지 14에서 설명한 파라미터들이 포함될 수 있다.
PDCCH가 SC-MTCH를 위한 NPDCCH인 경우, PDCCH의 제 1 DCI는 다중 TB 스케줄링을 위한 스케줄링 정보를 포함할 수 있으며, 스케줄링 정보는 실시 예 1 내지 14에서 설명한 파라미터들이 포함될 수 있다.
이후, 단말은 제 1 DCI에 기초하여 제 1 PDSCH를 수신할 수 있다 (S23020) . 이때, 제 1 PiDSek는 다중 전송 블록 (Multi Transport Block)의 스케줄링 여부를 나타내는 지시 정보를 포함할 수 있다.
즉, 단말은 지시 정보의 값에 따라 다중 TB가 스케줄링 되었는지 여부를 인식할 수 있다.
이후, 단말은 복수의 모 대를 수신할 수 있다 (S23030) . 이때 , 복수의
PDSCH 중 적어도 하나의 PDSCH는 지시 정보에 따라 별도의 DCI 수신 없이 수신될 수 있다.
예를 들면, 지시 정보가 다중 TB의 스케줄링을 나타내는 경우, 단말은 제 1 DCI에 포함되어 있는 다중 TB의 스케줄링 정보에 기초하여 별도의 탐색 공간에서 DCI를 탐색하지 않고 적어도 하나의 PDSCH를 수신할 수 있다.
이와 관련하여, 상술한 단말의 동작은 본 명세서의 도 25 및 도 26에 나타난 단말 장치 (2520, 2620)에 의해 구체적으로 구현될 수 있다. 예를 들어 , 상술한 단말의 동작은 프로세서 (2521, 2621) 및/또는 RF 유닛 (또는 모듈) (2523, 2625)에 의해 수행될 수 있다.
구체적으로, 프로세서 (2521, 2621) RF 유닛 (또는 모듈) (1723, 1825)을 통해 기지국으로부터 제 1 하향링크 제어 정보 (Downlink Control
Information: DCI)를 포함하는 제 1 하향링크 제어 채널 (Physical Downlink Control Channel : PDCCH)를 수신하도록 제어할 수 있다.
이때, PDCCH는 실시 예 1 내지 14에서 설명한 SC-MCCH를 위한 NPDCCH 또는 SC-MTCH를 위한 NPDCCH일 수 있다.
PDCCH가 SC-MCCH를 위한 NPDCCH인 경우, PDCCH의 제 1 DCI는 제 1 PDSCH의 스케줄링을 위한 스케줄링 정보를 포함할 수 있으며, 스케줄링 정보는 실시 예 1 내지 14에서 설명한 파 미터들이 포함될 수 있다.
PDCCH가 SC-MTCH를 위한 NPDCCH인 경우, PDCCH의 제 1 DCI는 다중 TB 스케줄링을 위한 스케줄링 정보를 포함할 수 있으며, 스케줄링 정보는 실시 예 1 내지 14에서 설명한 파라미터들이 포함될 수 있다.
이후, 프로세서 ( 2521 , 2621 )는 RF 유닛 (또는 모듈) ( 2523 , 2625 )을 통해 제 1 DCI에 기초하여 제 1 PDSCH를 수신하도록 제어할 수 있다.
이때 , 제 1 PDSCH는 다중 전송 블록 (Multi Transport Block)의 스케줄링 여부를 나타내는 지시 정보를 포함할 수 있다.
즉, 단말은 지시 정보의 값에 따라 다중 TB가 스케줄링 되었는지 여부를 인식할 수 있다.
이후, 프로세서 ( 2521 , 2621 )는 RF 유닛 (또는 모듈) ( 2523 , 2625 )을 통해 복수의 PDSCH를 수신하도록 제어할 수 있다.
이때, 복수의 PDSCH 중 적어도 하나의 PDSCH는 지시 정보에 따라 별도의 DCI 수신 없이 수신될 수 있다.
예를 들면, 지시 정보가 다중 TB의 스케줄링을 나타내는 경우, 단말은 제
1 DCI에 포함되어 있는 다중 TB의 스케줄링 정보에 기초하여 별도의 탐색 공간에서 DCI를 탐색하지 않고 적어도 하나의 PDSCH를 수신할 수 있다.
도 24는 본 발명에서 제안하는 방법이 적용될 수 있는 다중 TB 스케줄링을 통해서 하향링크 데이터를 전송하기 위한 기지국 동작의 일 예를 나타내는 순서도이다 .
도 24을 참조하면, 기지국은 다중 TB가 설정되는 경우, 기지국으로부터 전송되는 복수의 이는 하나의 å)(그1를 통해서 스케줄링될 수 있다 . 구체적으로, 기지국은 단말로 제 1 하향링크 제어 정보 (Downlink Control Information: DCI)를 포함하는 제 1 하향링크 제어 채널 (Physical Downlink Control Channel : PDCCH)를 전송한다 (S24010 ) . 이때, PDCCH는 실시 예 1 내지 14에서 설명한 SC-MCCH를 위한 NPDCCH 또는 SC-MTCH를 위한 NPDCCH일 수 있다.
PDCCH가 SC-MCCH를 위한 NPDCCH인 경우, PDCCH의 제 1 DCI는 제 1 PDSCH의 스케줄링을 위한 스케줄링 정보를 포함할 수 있으며, 스케줄링 정보는 실시 예 1 내지 14에서 설명한 파라미터들이 포함될 수 있다.
PDCCH가 SC-MTCH를 위한 NPDCCH인 경우, PDCCH의 제 1 DCI는 다중 TB 스케줄링을 위한 스케줄링 정보를 포함할 수 있으며, 스케줄링 정보는 실시 예 1 내지 14에서 설명한 파라미터들이 포함될 수 있다.
이후, 기지국은 제 1 DCI에 기초하여 제 1 PDSCH를 전송한다 (S24020 ) . 이때, 제 1 PDSCH는 다중 전송 블록 (Multi Transport Block)의 스케줄링 여부를 나타내는 지시 정보를 포함할 수 있다.
즉, 기지국은 단말로 지시정보를 전송함으로써 , 단말에게 다중 전송 블록의 스케줄링 여부를 알려줄 수 있다.
이후, 기지국은 지시 정보에 따라 복수의 PDSCH를 단말로 반복해서 전송한다 (S24030 ) .
만약, 다중 전송 블록이 스케줄링되는 경우, 반복 전송되는 복수의 PDSCH는 하나의 DCI를 통해서 스케줄링될 수 있다 .
이와 관련하여, 상술한 기지국의 동작은 본 명세서의 도 25 및 도 26에 나타난 기지국 장치 ( 2510 , 2610 )에 의해 구체적으로 구현될 수 있다. 예를 들어 , 상술한 기지국의 동작은 호로세서 (2511, 2611) 및/또는 RF 유닛 (또는 모듈) (2513, 2615)에 의해 수행될 수 있다.
구체적으로, 프로세서 (2511, 2611)는 RF 유닛 (또는 모듈) (1713,
1815)을 통해 단말로 제 1 하향링크 제어 정보 (Downlink Control Information: DCI)를 포함하는 제 1 하향링크 제어 채널 (Physical Downlink Control Channel : PDCCH)를 전송하도록 제어할 수 있다.
이때, PDCCH는 실시 예 1 내지 14에서 설명한 SC-MCCH를 위한 NPDCCH 또는 SC-MTCH를 위한 NPDCCH일 수 있다.
PDCCH7> SC-MCCH를 위한 NPDCCH인 경우, PDCCH의 저 1 1 DCI는 제 1 PDSCH의 스케줄링을 위한 스케줄링 정보를 포함할 수 있으며, 스케줄링 정보는 실시 예 1 내지 14에서 설명한 파라미터들이 포함될 수 있다.
PDCCH가 SC-MTCH를 위한 NPDCCH인 경우, PDCCH의 제 1 DCI는 다중 TB 스케줄링을 위한 스케줄링 정보를 포함할 수 있으며, 스케줄링 정보는 실시 예 1 내지 14에서 설명한 파라미터들이 포함될 수 있다.
이후, 프로세서 (2511, 2611)는 RF 유닛 (또는 모듈) (2513, 2615)을 통해 제 1 DCI에 기초하여 제 1 어를 전송하도록 제어할 수 있다.
이때, 제 1 PDSCH는 다중 전송 블록 (Multi Transport Block)의 스케줄링 여부를 나타내는 지시 정보를 포함할 수 있다.
즉, 기지국은 단말로 지시정보를 전송함으로써, 단말에게 다중 전송 블록의 스케줄링 여부를 알려줄 수 있다.
이후, 프로세서 (2511, 2611)는 RF 유닛 (또는 모듈) (2513, 2615)을 통해 정보에 따라 복수의 PDSCH를 단말로 반복해서 전송하도록 제어할 수 있다. 만약, 다중 전송 블록이 스케줄링되는 경우, 반복 전송되는 복수의 대는 하나의 DCl·를통해서 스케줄링될 수 있다 .
본 발명의 도 7 내지 도 24 및 실시 예 1 내지 14에서는 NB-IOT를 예로 들어 설명하였지만, 본 발명은 이에 한정되지 않고 다른 분야 (예를 들면 , MTC)에도 적용될 수 있음은자명하다. 본발명이 적용될 수 있는장치 일반
도 25은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록구성도를 예시한다.
도 25을 참조하면, 무선 통신 시스템은 기지국 (2510)과 기지국 영역 내에 위치한다수의 단말 (2520)을포함한다.
상기 기지국과단말은 각각무선 장치로표현될 수도 있다.
기지국 (2510)은 프로세서 (processor, 2511) , 메모리 (memory, 2512). 및 RF 모듈 (radio frequency module , 2513)을 포함한다. 프로세서 (2511)는 앞서 실시 예 1 내지 실시 예 14에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리는 프로세서와 연결되어, 프로세서를구동하기 위한 다양한 정보를 저장한다. RF 모듈은 프로세서와 연결되어, 무선 신호를 송신 및/또는수신한다.
단말은프로세서 (2521) , 메모리 (2522) 및 RF모듈 (2523)을포함한다. 프로세서는 앞서 실시 예 1 내지 실시 예 14에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다. RF 모듈 (2523)는 프로세서와 연결되어 , 무선 신호를 송신 및/또는수신한다.
메모리 (2512, 2522 ñ는 프로세서 (2511, 2521) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한수단으로프로세서와 연결될 수 있다.
또한, 기지국 및/또는 단말은 한 개의 안테나 (single antenna) 또는 다중 안테나 (multiple antenna)를 가질 수 있다 . 도 26은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도의 또다른 예시이다.
도 26을 참조하면 , 무선 통신 시스템은 기지국 (2610)과 기지국 영역 내에 위치한 다수의 단말 (2620)을 포함한다. 기지국은 송신 장치로, 단말은 수신 장치로 표현될 수 있으며, 그 반대도 가능하다. 기지국과 단말은 프로세서 (processor, 2611,2621) , 메모리 (memory, 2614,2624) , 하나 이상의 Tx/Rx RF 모듈 (radio frequency module, 2615, 2625) , Tx 프로세서 (2612, 2622) , Rx 프로세서 (2613 , 2623 ) , 안테나 (2616 , 2626)를 포함한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 보다 구체적으로, DL (기지국에서 단말로의 통신 )에서 , 코어 네트워크로부터의 상위 계층 패킷은 프로세서 (2611)에 제공된다. 프로세서는 L2 계층의 기능을 구현한다. DL에서, 프로세서는 논리 채널과 전송 채널 간의 다중화 (multiplexing) , 무선 자원 할당을 단말 (2620)에 제공하며 , 단말로의 시그널링을 담당한다. 전송 (TX) 프로세서 (2612)는 L1 계증 (즉, 물리 계증)에 대한 다양한 신호 처리 기능을 구현한다. 신호 처리 기능은 단말에서 FEC (forward error correction)을 용이하게 하고, 코딩 및 인터리빙 (coding and interleaving)을 포함한다. 부호화 및 변조된 심볼은 병렬 스트림으로 분할되고, 각각의 스트림은 OFDM 부반송파에 매핑되고, 시간 및/또는 주파수 영역에서 기준 신호 (Reference Signal , RS)와 멀티플렉싱되며 , IFFT (Inverse Fast Fourier Transform)를 사용하여 함께 결합되어 시간 영역 OFDMA 심볼 스트림을 운반하는 물리적 채널을 생성한다. OFDM 스트림은 다중 공간 스트림을 생성하기 위해 공간적으로 프리코딩된다. 각각의 공간 스트림은 개별 Tx/Rx모듈 (또는 송수신기, 2615 )를 통해 상이한 안테나 ( 2616 )에 제공될 수 있다. 각각의 Tx/Rx 모듈은 전송을 위해 각각의 공간 스트림으로 RF 반송파를 변조할 수 있다. 단말에서, 각각의 Tx/Rx 모듈 (또는 송수신기, 2625 )는 각 Tx/Rx 모듈의 각 안테나 ( 2626 )을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 캐리어로 변조된 정보를 복원하여 , 수신 (RX) 프로세서 (2623 )에 제공한다. RX 프로세서는 layer 1의 다양한 신호 프로세싱 기능을 구현한다. RX 프로세서는 단말로 향하는 임의의 공간 스트림을 복구하기 위해 정보에 공간 프로세싱을 수행할 수 있다. 만약 다수의 공간 스트림들이 단말로 향하는 경우, 다수의 RX 프로세서들에 의해 단일 OFDMA심볼 스트림으로 결합될 수 있다. RX프로세서는 고속 푸리에 변환 (FFT)을 사용하여 OFDMA 심볼 스트림을 시간 영역에서 주파수 영역으로 변환한다. 주파수 영역 신호는 OFDM 신호의 각각의 서브 캐리어에 대한 개별적인 OFDMA 심볼 스트림을 포함한다. 각각의 서브캐리어 상의 심볼들 및 기준 신호는 가지국에 의해 전송된 가장 가능성 있는 신호 배치 포인트들을 결정함으로써 복원되고 복조된다. 이러한 연 판정 (soft decision)들은 채널 추정 값들에 기초할 수 있다. 연판정들은 물리 채널 상에서 기지국에 의해 원래 전송된 데이터 및 제어 신호를 복원하기 위해 디코딩 및 디인터리빙되다. 해당 데이터 및 제어 신호는프로세서 (2621)에 제공된다.
UL (단말에서 기지국으로의 통신)은 단말 (2620 )에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 기지국 (2610 )에서 처리된다. 각각의 Tx/Rx 모듈 (2625 )는 각각의 안테나 (2626 )을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서 (2623 )에 제공한다. 프로세서 (2621)는 프로그램 코드 및 데이터를 저장하는 메모리 (2624 )와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다. 본 명세서에서 무선 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론 (Unmanned Aerial Vehicle, UAV) , AI (Artificial Intelligence) 모듈, 로봇, AR (Augmented Reality) 장치 , VR (Virtual Reality) 장치 , MTC 장치 , IoT 장치 , 의료 장치 , 핀테크 장치 (또는 금융 장치) , 보안 장치 , 기후/환경 장치 또는 그 이외 4차 산업 혁명 분야 또는 5G 서비스와 관련된 장치 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, MTC 장치 및 IOT 장치는 사람의 직접적인 개입이나 또는 조작이 필요하지 않는 장치로서, 스마트 미터, 벤딩 머신, 온도계, 스마트 전구, 도어락, 각종 센서 등일 수 있다. 예를 들어, 의료 장치는 질병을 진단, 치료, 경감, 처치 또는 예방할 목적으로 사용되는 장치, 구조 또는 기능을 검사, 대체 또는 변형할 목적으로 사용되는 장치로서, 진료용 장비, 수술용 장치, (체외) 진단용 장치, 보청기, 시술용 장치 등일 수 있다. 예를 들어, 보안 장치는 발생할 우려가 있는 위험을 방지하고, 안전을 유지하기 위하여 설치한 장치로서, 카메라, CCTV, 블랙박스 등일 수 있다. 예를 들어, 핀테크 장치는 모바일 결제 등 금융 서비스를 제공할 수 있는 장치로서, 결제 장치 , POS (Point of Sales) 등일 수 있다. 예를 들어 , 기후/환경 장치는 기후/환경을모니터링, 예측하는 장치를 의미할수 있다. 본 명세서에서 단말은 휴대폰, 스마트 폰 (smart phone) , 노트북 컴퓨터 (laptop computer) , 디지털 방송용 단말기, PDA (personal digital assistants) , PMP (portable multimedia player) , 네비게이션, 슬레이트 PC (slate PC) , 태블릿 PC (tablet PC) , 울트라북 (ultrabook) , 웨어러블 디 t}이스 (wearable device, 예를 들어 , 워치형 단말기 (smartwatch) , 글래스형 단말기 (smart glass) , HMD (head mounted display) ) , 폴더블 (foldable) 디바이스 등을 포함할 수 있다. 예를 들어 , HMD는 머리에 착용하는 형태의 디스플레이 장치로서, VR 또는 AR을 구현하기 위해 사용될 수 있다. 이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한선택적인 것으로 고려되어야 한다. 각구성요소 또는 특징은 다른구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (firmware) , 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs (application specific integrated circuits) , DSPs (digital signal processors) , DSPDs (digital signal processing devices) , PLDs (programmable logic devices) , FPGAs (field programmable gate arrays) , 프로세서 , 콘트롤러 , 마이크로 콘트롤러 , 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서 , 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 2019/209082 114 1»(:1^1{2019/005106 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
본 발명은 30?? 1/대/1/1£:-요/ 시스템에 적용되는 예를 중심으로 설명하였으나, 30모모 1江£:/1 £:-요/ 11 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims

【청구의 범위】
【청구항 1】
협대역 사물 인터넷 (Narrow Band- Internet of Things, NB-IoT)을 지원하는 무선 통신 시스템에서 단말이 하향링크 공유 채널 (Physical Downlink Shared channel : PDSCH)을수신하는 방법에 있어서 ,
기지국으로부터 제 1 하향링크 제어 정보 (Downlink Control Information: DCI)를 포함하는 제 1 하향링크 제어 채널 (Physical Downlink Control Channel : PDCCH)를수신하는 단계 ;
상기 제 1 DCI에 기초하여 제 1 PDSCH를수신하는 단계,
상기 제 1 PDSCH는 다중 전송 블록 (Multi Transport Block)의 스케줄링 여부를 나타내는지시 정보를포함하고; 및
복수의 PDSCH를수신하는단계를포함하되 ,
상기 복수의 PDSCH 중 적어도 하나의 PDSCH는 상기 지시 정보에 따라 별도의 DCI수신 없이 수신되는 것을특징으로 하는 방법 .
【청구항 2】
제 1 항에 있어서,
상기 제 1 DCI는 상기 복수의 PDSCH의 수신과 관련된 스케줄링 정보를 포함하는 것을특징으로 하는 방법 .
【청구항 3】
제 1 항에 있어서, 상기 지시 정보가 상기 다충 전총 블록의 스케줄링을 나타내는 경우, 상기 적어도 하나의 대는 상기 별도의 DCI 수신 없이 수신되는 것을 특징으로 하는 방법 .
【청구항 4】
제 1 항에 있어서, 상기 지시 정보가 상기 다중 전송 블록의 스케줄링을 나타내지 않는 경우, 상기 별도의 DCI를 수신하는 단계를 더 포함하되,
상기 별도의 DCI는 상기 적어도 하나의 PDSCH 중 하나의 스케줄링 정보를 포함하는 것을 특징으로 하는 방법 .
【청구항 5】
제 1 항에 있어서,
상기 제 1 PDCCH는 단일 셀 멀티 캐스트 제어 채널 (Single cell- multicast control channel : SC-MCCH)에 대한 제어 채널이고,
상기 제 1 이는 상기 SC-MCCH에 대한 공유 채널인 것을 특징으로 하는 방법 .
【청구항 6]
제 5 항에 있어서 ,
단일 셀 멀티 캐스트 트래픽 채널 (Single cell-traffic channel :
SC-MTCH)에 대한 제 2 PDCCH를 수신하는 단계를 더 포함하되 ,
상기 복수의 모 대는 상기 - 대에 대한 공유 채널인 것을 특징으로 하는 방법 .
【청구항 7 ]
제 6 항에 있어서,
상기 제 2 PDCCH는 상기 복수의 PDSCH의 스케줄링을 위한 제 2 DCI를 포함하고,
상기 복수의 PDSCH는 상기 제 2 DCI 및 상기 제 1 PDSCH에 기초하여 수신되는 것을 특징으로 하는 방법 .
【청구항 8】
제 1 항에 있어서,
상기 제 1 PDCCH가 단일 셀 멀티 캐스트 트래픽 채널 (Single cell- traffic channel : SC-MTCH)에 대한 제어 채널이고,
상기 제 1 PDSCH가 상기 SC-MTCH에 대한 공유채널인 것을 특징으로 하는 방법 .
【청구항 9】
제 8 항에 있어서 ,
단일 셀 멀티 캐스트 제어 채널 (Single cell-multicast control channel: SC-MCCH)에 대한 제 2 PDCCH를 수신하는 단계,
상기 제 2 PDCCH는 상기 SC-MCCH에 대한 제 2 PDSCH의 스케줄링을 위한 제 2 DCP를 포함하고; 및 상기 제 2 DCI에 기초하여 상기 SC-MCCH에 대한 상기 제 2 PDSCH를 수신하는 단계를 더 포함하되 ,
상기 복수의 PDSCH는 상기 제 1 DCI 및 상기 제 1 PDSCH에 기초하여 수신되는 것을 특징으로 하는 방법 .
【청구항 10】
제 9 항에 있어서,
상기 제 1 PDCCH는 상기 SC-MCCH에 기초하여 수신되는 것을 특징으로 하는 방법 .
【청구항 11】
제 1 항에 있어서,
상기 복수의 PDSCH는 하나의 레가시 (legacy) PDSCH 및 적어도 하나의 향상된 (enhanced) PDSCH를 포함하고,
상기 적어도 하나의 향상된 PDSCH는 상기 다중 전송 블록을 스케줄링 받을 수 있는 단말을 위한 PDSCH인 것을 특징으로 하는 방법 .
【청구항 12】
제 1 항에 있어서,
상기 제 1 DCI는 상기 레가시 PDSCH 및 상기 적어도 하나의 향상된
PDSCH를 위한 스케줄링 정보를 포함하는 방법 .
【청구항 13】
제 12 항에 있어서,
상기 스케줄링 정보는 상기 레가시 PDSCH의 전송 종료 시점부터 상기 레가시 PDSCH의 전송 뒤에 전송되는 상기 적어도 하나의 향상된 PDSCH의 전송 시점까지의 서브 프레임 갭을 나타내는 갭 정보 또는 상기 적어도 향상된
PDSCH의 스케줄링 지연을 나타내는 지연 정보 중 적어도 하나를 포함하는 방법 .
【청구항 14】
제 1 항에 있어서,
상기 제 1 DCI는 상기 적어도 하나의 PDSCH의 개수를 나타내는 개수 정보를 더 포함하는 방법 .
【청구항 15】
협대역 사물 인터넷 (Narrow Band- Internet of Things, IS限- IoT)을 지원하는 무선 통신 시스템에서 기지국이 하향링크 공유 채널 (Physical
Downlink Shared channel : PDSCH)을 전송하는 방법에 있어서 ,
단말로 제 1 하향링크 제어 정보 (Downlink Control Information: DCI)를 포함하는 제 1 하향링크 제어 채널 (Physical Downlink Control Channel: PDCCH)를 전송하는 단계 ;
상기 제 1 DCI에 기초하여 제 1 PDSCH를 전송하는 단계,
상기 제 1 PDSCH는 다중 전송 블록 (Multi Transport Block)의 스케줄링 여부를 나타내는 지시 정보를 포함하고; 및 상기 지시 정보에 따라 복수의 이를 단말로 반복해서 전송하는 단계를 포함하되 ,
상기 반복 전송되는 복수의 모 대는 하나의 1)(:1를 통해서 스케줄링되는 것을특징으로 하는 방법 .
【청구항 16】
협대역 사물 인터넷 (Narrow Band-Internet of Things , NB-IoT)을 지원하는 무선 통신 시스템에서 하향링크 공유 채널 (Physical Downlink Shared channel : PDSCH)을수신하는단말에 있어서 ,
무선 신호를송수신하기 위한 RF모듈 (radio frequency module); 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하되, 상기 프로세서는,
기지국으로부터 제 1 하향링크 제어 정보 (Downlink Control Information: DCI)를 포함하는 제 1 하향링크 제어 채널 (Physical Downlink Control Channel : PDCCH)를수신하고,
상기 제 1 DCI에 기초하여 제 1 PDSCH를수신하되,
상기 제 1 PDSCH는 다중 전송 블록 (Multi Transport Block)의 스케줄링 여부를 나타내는지시 정보를포함하고,
복수의 PDSCH를수신하되,
상기 복수의 PDSCH 중 적어도 하나의 PDSCH는 상기 지시 정보에 따라 별도의 DCI수신 없이 수신되는 것을특징으로 하는 단말.
PCT/KR2019/005106 2018-04-26 2019-04-26 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치 WO2019209082A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/050,701 US11503579B2 (en) 2018-04-26 2019-04-26 Method for transmitting and receiving data in wireless communication system and apparatus therefor
EP19793737.8A EP3787362B1 (en) 2018-04-26 2019-04-26 Method for receiving multiple transport blocks and corresponding user equipment
KR1020207031820A KR102453416B1 (ko) 2018-04-26 2019-04-26 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2018-0048716 2018-04-26
KR20180048716 2018-04-26
KR10-2018-0088185 2018-07-27
KR20180088185 2018-07-27
KR10-2018-0114474 2018-09-21
KR20180114474 2018-09-21
KR10-2018-0133979 2018-11-02
KR20180133979 2018-11-02

Publications (1)

Publication Number Publication Date
WO2019209082A1 true WO2019209082A1 (ko) 2019-10-31

Family

ID=68295346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005106 WO2019209082A1 (ko) 2018-04-26 2019-04-26 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US11503579B2 (ko)
EP (1) EP3787362B1 (ko)
KR (1) KR102453416B1 (ko)
WO (1) WO2019209082A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022122163A1 (en) * 2020-12-10 2022-06-16 Nokia Technologies Oy Method, apparatus and computer program

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116094659A (zh) * 2018-08-09 2023-05-09 北京三星通信技术研究有限公司 块传输方法、下行传输方法、nrs接收方法、ue、基站和介质
US11553474B2 (en) * 2019-08-16 2023-01-10 Qualcomm Incorporated Communicating repetitions of multiple transport blocks scheduled by single downlink control information
US11575472B2 (en) * 2020-02-27 2023-02-07 Sierra Wireless, Inc. Methods and apparatuses for supporting multi transport block grant data transmission
US11792799B2 (en) * 2021-04-26 2023-10-17 Qualcomm Incorporated Scheduling transmission with multiple transport blocks
KR20230166083A (ko) * 2021-05-10 2023-12-06 인텔 코포레이션 Dci에 의한 pdsch 및 pusch의 다중 tti 스케줄링
WO2023212645A1 (en) * 2022-04-28 2023-11-02 Apple Inc. Procedure for non-terrestrial network coverage enhancement with ultra compact downlink control information and scheduling physical downlink shared channel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110205988A1 (en) * 2010-02-24 2011-08-25 Samsung Electronics Co., Ltd. Method and system for indicating an enabled transport block
US20160353420A1 (en) * 2013-01-14 2016-12-01 Lg Electronics Inc. Method and user equipment for receiving downlink signal and method and base station for transmitting downlink signal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895170B1 (ko) * 2016-08-11 2018-09-05 주식회사 케이티 멀티캐스트 통신 방법 및 장치
CN107733627B (zh) * 2016-08-12 2020-12-01 株式会社Kt 用于针对NB-IoT终端发送或接收多播控制信道的方法和装置
CN107889063B (zh) * 2016-09-29 2022-02-18 中兴通讯股份有限公司 多播业务的业务信息、业务信息变更通知方法及装置
WO2019160476A1 (en) * 2018-02-15 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling a single cell multicast traffic channel via a single cell multicast control channel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110205988A1 (en) * 2010-02-24 2011-08-25 Samsung Electronics Co., Ltd. Method and system for indicating an enabled transport block
US20160353420A1 (en) * 2013-01-14 2016-12-01 Lg Electronics Inc. Method and user equipment for receiving downlink signal and method and base station for transmitting downlink signal

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATR: "Discussion on the remaining details of time domain allocation", R1-1800763, 3GPP TSG RAN WG1 MEETING AH 1801, 12 January 2018 (2018-01-12), XP051384419 *
HUAWEI: "Remaining issues on resource allocation and TBS", RL-1803709, 3GPP TSG RAN WG1 MEETING #92BIS, 7 April 2018 (2018-04-07), XP051413658 *
NOKIA: "On blind/HARQ-less PDSCH repetition", R1-1804587, 3GPP TSG-RAN WG1 MEETING #92BIS, 6 April 2018 (2018-04-06), XP051413310 *
See also references of EP3787362A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022122163A1 (en) * 2020-12-10 2022-06-16 Nokia Technologies Oy Method, apparatus and computer program

Also Published As

Publication number Publication date
US20210243731A1 (en) 2021-08-05
US11503579B2 (en) 2022-11-15
EP3787362A1 (en) 2021-03-03
EP3787362B1 (en) 2024-06-05
KR20200132994A (ko) 2020-11-25
KR102453416B1 (ko) 2022-10-12
EP3787362A4 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
JP6914366B2 (ja) 無線通信システムにおける物理ダウンリンク共有チャネルを送受信するための方法、及びこれを支援する装置
US11800531B2 (en) Method for transmitting and receiving data in wireless communication system and apparatus therefor
JP6316871B2 (ja) 信号送受信方法及びそのための装置
JP5952457B2 (ja) 制御情報を送信する方法及びそのための装置
EP3166249B1 (en) Method of transmitting and receiving signal through unlicensed bandwidth in wireless communication system, and apparatus for same
JP6370861B2 (ja) 制御情報を伝送する方法及びそのための装置
JP6456471B2 (ja) 非兔許帯域を支援する無線接続システムにおいて伝送機会区間を設定する方法及び装置
KR102453416B1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
JP5745182B2 (ja) 無線通信システムにおいて制御情報伝送/獲得方法及び装置
JP6655464B2 (ja) 無線通信システムにおいて制御情報の送信方法及び装置
KR101253655B1 (ko) 반송파 병합 전송을 위한 제어신호 송수신 방법 및 장치
JP6177991B2 (ja) 同じ周波数帯域を使用する複数のサイトにリソースを割り当てる方法及び装置
KR102062028B1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
CN104081705A (zh) 在无线通信系统中传送控制信息的方法和设备
CA2919899A1 (en) Uplink control information sending method, and user equipment and base station
WO2013069955A1 (ko) 무선통신시스템에서 제어정보 획득 방법 및 장치
US9729297B2 (en) Method and apparatus for performing HARQ in carrier aggregation system
US20230261807A1 (en) Method and user equipment for transmitting harq-ack information, and base station for receiving harq-ack information
CN116076134A (zh) 接收下行链路信道的方法、用户设备、处理装置、存储介质和计算机程序及发送下行链路信道的方法和基站
EP4210261A1 (en) Method, user equipment, and storage medium for transmitting harq-ack information, and method and base station for receiving harq-ack information
WO2012015215A2 (ko) 다중 반송파를 지원하는 무선 통신 시스템에서 기지국이 하향링크 할당 인덱스 정보를 포함하는 하향링크 제어정보를 전송하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207031820

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019793737

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019793737

Country of ref document: EP

Effective date: 20201126