WO2019208800A1 - Resin-rubber composite, tire, and production method for resin-rubber composite - Google Patents

Resin-rubber composite, tire, and production method for resin-rubber composite Download PDF

Info

Publication number
WO2019208800A1
WO2019208800A1 PCT/JP2019/018015 JP2019018015W WO2019208800A1 WO 2019208800 A1 WO2019208800 A1 WO 2019208800A1 JP 2019018015 W JP2019018015 W JP 2019018015W WO 2019208800 A1 WO2019208800 A1 WO 2019208800A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
rubber
tire
based thermoplastic
bead
Prior art date
Application number
PCT/JP2019/018015
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 筆本
福島 敦
正洋 本間
雄司 大久保
和也 山村
Original Assignee
株式会社ブリヂストン
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン, 国立大学法人大阪大学 filed Critical 株式会社ブリヂストン
Priority to JP2020515618A priority Critical patent/JP7269573B2/en
Publication of WO2019208800A1 publication Critical patent/WO2019208800A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/01Inflatable pneumatic tyres or inner tubes without substantial cord reinforcement, e.g. cordless tyres, cast tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers

Definitions

  • the present disclosure relates to a resin rubber composite, a tire, and a method for manufacturing the resin rubber composite.
  • Patent Document 1 discloses a tire that is formed of at least a thermoplastic resin material and has an annular tire frame, and is wound around the outer periphery of the tire frame to form a reinforcing cord layer.
  • a tire including a reinforcing cord member that includes the thermoplastic resin material including at least a polyamide-based thermoplastic elastomer.
  • an adhesive for example, an organic solvent-based adhesive
  • Patent Document 2 the surface temperature of a molded body containing an organic polymer compound is set to a melting point of the organic polymer compound of ⁇ 120 ° C. or higher, and atmospheric pressure plasma treatment is performed on the surface of the molded body to perform peroxidation.
  • a method for producing a surface-modified molded body in which a product radical is introduced is disclosed.
  • Patent Document 1 JP 2012-46030
  • Patent Document 2 JP 2016-56363
  • Patent Document 2 a surface-modified molded body with improved adhesion to other members such as a rubber member by performing atmospheric pressure plasma treatment on the surface of the molded body that is a resin material. Even so, there is still room for improvement in adhesion, and further excellent adhesion is required.
  • the present disclosure provides a resin rubber composite excellent in adhesiveness between a resin member and a rubber member in direct contact with the resin member, a tire having the resin rubber composite, and manufacture of the resin rubber composite. It is an object to provide a method.
  • the gist of the present disclosure is as follows. ⁇ 1> A resin member having a treated surface subjected to a surface treatment by plasma treatment; A rubber member in contact with the treated surface of the resin member and containing a filler having a silanol group; A resin rubber composite having:
  • a resin rubber composite excellent in adhesiveness between a resin member and a rubber member in direct contact with the resin member, a tire having the resin rubber composite, and a method for manufacturing the resin rubber composite are provided. can do.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the resin rubber composite according to the present embodiment includes a resin member and a rubber member in contact with the resin member.
  • the resin member has a treated surface that has been subjected to a surface treatment by plasma treatment.
  • the rubber member includes a filler that contacts the treated surface of the resin member and has a silanol group.
  • the present inventors perform a surface treatment by plasma treatment on the resin member and contain a filler having a silanol group in the rubber member, and the rubber member is treated with the treated surface of the resin member. It has been found that the adhesiveness between the resin member and the rubber member is improved by disposing it in contact with the resin member. This is presumed that the adhesion is improved by the interaction between the surface of the resin member activated by the surface treatment and the silanol group of the filler contained in the rubber member.
  • the resin rubber composite according to the present embodiment includes a resin member and a rubber member in contact with the resin member.
  • the aspect which has the 2nd rubber member which touches this rubber member may be sufficient.
  • the method for producing the resin rubber composite according to the present embodiment is not particularly limited, for example, a surface treatment step of performing a surface treatment by plasma treatment on at least a part of the surface of the resin member; Manufactured by a production method having a bonding step in which a rubber member containing a filler having a silanol group is in contact with a surface subjected to a surface treatment in a resin member, and the resin member and the rubber member are bonded by heating. can do.
  • the term “process” includes not only an independent process but also a process that can be clearly distinguished from other processes as long as the purpose is achieved. Included in this term.
  • the resin rubber composite according to the present embodiment is applied to various fields in which a resin member and a rubber member are used. , Seismic isolation rubber, sealing materials, caulking materials, bicycles and other fields.
  • examples of the combination of the resin member and the rubber member include the following combinations.
  • the layer is a resin rubber composite).
  • a combination of a bead wire as a resin member, a wire coating layer covering the bead wire as a rubber member, and at least one member selected from a rubber sheet bonded to the surface of the bead wire (that is, a bead core) Is a resin rubber composite).
  • tire frame as a rubber member is a member constituting a tire frame such as a carcass corresponding to a rubber member (for example, a carcass made only of a carcass ply in which a plurality of wires are covered with rubber). It may be replaced.
  • the resin rubber composite has a resin member, a rubber member in contact with the resin member, and a second rubber member in contact with the rubber member
  • the following combinations may be mentioned.
  • a combination of a belt cord as a resin member, a rubber sheet as a rubber member, and a cord covering layer as a second rubber member that is, the belt layer is a resin rubber composite.
  • a combination of a bead wire as a resin member, a rubber sheet as a rubber member, and a wire coating layer as a second rubber member is a resin rubber composite).
  • the “tire frame as the second rubber member” is a tire frame such as a carcass corresponding to the second rubber member (for example, a carcass made only of a carcass ply in which a plurality of wires are covered with rubber). You may replace with the member which comprises.
  • the resin member has a treated surface that has been subjected to a surface treatment by plasma treatment.
  • the treated surface of the resin member is activated by being subjected to the above-described surface treatment, whereby adhesion to a rubber member containing a filler having a silanol group is improved.
  • active groups introduced by surface treatment by plasma treatment include peroxy radicals (—O—O.), Hydroperoxide groups (—O—OH), carbonyl groups (—C ( ⁇ O) —), aldehyde groups Examples thereof include an oxidizing group such as (—C ( ⁇ O) —H), a carboxy group (—C ( ⁇ O) —OH), and a hydroxyl group (—OH).
  • the treated surface of the resin member subjected to the surface treatment preferably has a contact angle of water of 20 ° or more and 98 ° or less, and 50 ° or more and 96 from the viewpoint of improving adhesiveness. More preferably, it is 60 ° or less and more preferably 60 ° or more and 95 ° or less.
  • the contact angle of water on the treated surface of the resin member is such that pure water is dropped at 25 ° C. on the treated surface of the resin member after the surface treatment, and automatic minimum contact made by Kyowa Interface Science Co., Ltd. It is measured by observing the shape of the droplet using a goniometer (MCA-3).
  • the conditions for performing the plasma treatment as the surface treatment on the surface of the resin member are not particularly limited as long as the surface after the treatment is activated, and can be performed by a known method. In other words, conditions capable of generating plasma can be appropriately employed.
  • the temperature of the environment in plasma processing is preferably 0 ° C. or higher and 240 ° C. or lower from the viewpoint of improving adhesiveness and simplifying the plasma processing. More preferably, the temperature is from 150 ° C. to 220 ° C., more preferably from 15 ° C. to 200 ° C. Further, the atmospheric pressure in the plasma treatment is preferably 5 hPa or more and 2000 hPa or less, more preferably 10 hPa or more and 1500 hPa or less, and further preferably 10 hPa or more and 1300 hPa or less, from the viewpoint of improving adhesiveness and simplifying the plasma treatment.
  • a high-frequency power source having an applied voltage frequency of 50 Hz to 2.45 GHz.
  • the output power per unit area (that is, the irradiation density) is, for example, 1 W / cm 2 or more, preferably 3 W / cm 2 or more, more preferably 5 W / cm 2 or more, while the upper limit is not particularly limited. However, it is good to set it as 50 W / cm ⁇ 2 > or less, for example.
  • a pulse modulation frequency of 1 kHz to 50 kHz (preferably 5 kHz to 30 kHz), a pulse duty of 5% to 99% (preferably 15% to 80%, more preferably 25). % To 70%).
  • the counter electrode is preferably made of a cylindrical or flat metal whose one side is coated with a dielectric.
  • the distance between the counter electrode and the resin member is not particularly limited, but is preferably 10 mm or less, more preferably 3 mm or less, still more preferably 1.2 mm or less, and particularly preferably 1 mm or less. Although the minimum of distance is not specifically limited, For example, it is 0.5 mm or more.
  • the time during which the plasma treatment is performed (that is, the irradiation time) is preferably 2 seconds or longer and 30 minutes or shorter, more preferably 30 seconds or longer and 20 minutes or shorter, from the viewpoint of improving adhesiveness and simplifying the plasma processing, and more preferably 1 minute More preferably, it is 10 minutes or less.
  • a rare gas such as helium, argon, or neon
  • a reactive gas such as oxygen, nitrogen, hydrogen, or ammonia
  • these gases may use only 1 type, or 2 or more types of noble gases, or use the mixed gas of 1 type, or 2 types or more of noble gases, and 1 type, or 2 or more types of reactive gas of appropriate amount. Also good.
  • the generation of the plasma may be performed under the above-described conditions in which the gas atmosphere is controlled using a chamber, or may be performed under a completely open atmosphere condition in which, for example, a rare gas is flowed to the electrode portion.
  • the resin member preferably contains a resin as a main component.
  • the resin content is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 75% by mass or more with respect to the total amount of the resin members.
  • thermoplastic resin means a polymer compound that softens and flows as the temperature rises and becomes relatively hard and strong when cooled, but does not have rubbery elasticity.
  • Thermoplastic elastomer means a copolymer having a hard segment and a soft segment.
  • the hard segment refers to a component that is relatively harder than the soft segment, and is preferably a molecular constraining component that serves as a crosslinking point of the crosslinked rubber that prevents plastic deformation.
  • the soft segment refers to a component that is relatively softer than the hard segment, and is preferably a flexible component that exhibits rubber elasticity.
  • the thermoplastic elastomer for example, a crystalline polymer having a high melting point hard segment or a polymer constituting a hard segment having a high cohesive force, and a polymer constituting an amorphous soft segment having a low glass transition temperature, And a copolymer having.
  • the thermoplastic elastomer includes, for example, a polymer compound that softens and flows as the temperature rises, becomes relatively hard and strong when cooled, and has rubbery elasticity.
  • the hard segment is, for example, a structure having a rigid group such as an aromatic group or an alicyclic group in the main skeleton, or a structure enabling intermolecular packing by intermolecular hydrogen bonding or ⁇ - ⁇ interaction, etc. Can be mentioned.
  • the soft segment includes, for example, a segment having a long chain group (for example, a long chain alkylene group) in the main chain, a high degree of molecular rotation freedom, and a stretchable structure.
  • thermoplastic resin contained in the resin material examples include polyester-based thermoplastic resins, polyamide-based thermoplastic resins, polystyrene-based thermoplastic resins, polyurethane-based thermoplastic resins, polyolefin-based thermoplastic resins, and vinyl chloride-based thermoplastic resins. Can be illustrated.
  • thermoplastic elastomer contained in the resin material examples include polyester-based thermoplastic elastomer (TPEE), polyamide-based thermoplastic elastomer (TPA), polystyrene-based thermoplastic elastomer (TPS), and polyurethane-based thermoplastic as defined in JIS K6418.
  • TPEE polyester-based thermoplastic elastomer
  • TPA polyamide-based thermoplastic elastomer
  • TPS polystyrene-based thermoplastic elastomer
  • polyurethane-based thermoplastic as defined in JIS K6418.
  • examples include elastomers (TPU), polyolefin-based thermoplastic elastomers (TPO), crosslinked thermoplastic rubber (TPV), and other thermoplastic elastomers (TPZ).
  • thermosetting resin contained in the resin material examples include phenol-based thermosetting resins, urea-based thermosetting resins, melamine-based thermosetting resins, and epoxy-based thermosetting resins.
  • the resin contained in the resin material includes polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, polyamide-based thermoplastic elastomer, polyamide-based thermoplastic resin, polystyrene-based thermoplastic elastomer, polystyrene-based thermoplastic resin, polyurethane.
  • a thermoplastic thermoplastic elastomer, a polyurethane thermoplastic resin, a polyolefin thermoplastic elastomer, or a polyolefin thermoplastic resin is preferable, and a polyester thermoplastic elastomer or a polyester thermoplastic resin is more preferable.
  • thermoplastic elastomer Poly(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol dimethacrylate), poly(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol)-(ethylene glycol
  • aromatic polyester can be used, for example.
  • the aromatic polyester can be formed, for example, from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol.
  • the aromatic polyester is preferably polybutylene terephthalate derived from at least one of terephthalic acid and dimethyl terephthalate and 1,4-butanediol.
  • the aromatic polyester includes, for example, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5
  • a dicarboxylic acid component such as sulfoisophthalic acid or an ester-forming derivative thereof and a diol having a molecular weight of 300 or less (for example, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc.
  • Aliphatic diols such as: 1,4-cyclohexanedimethanol, tricyclodecane dimethylol and other alicyclic diols; xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2- Bi [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4′- And diol components such as aromatic diols such as dihydroxy-p-terphenyl and 4,4′-dihydroxy-p-quarterphenyl; and the like.
  • polyester forming the hard segment examples include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like, and polybutylene terephthalate is preferable.
  • Aliphatic polyethers include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, copolymers of ethylene oxide and propylene oxide, poly (propylene oxide) And ethylene oxide addition polymer of glycol, and a copolymer of ethylene oxide and tetrahydrofuran.
  • the aliphatic polyester include poly ( ⁇ -caprolactone), polyenantlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate.
  • poly (tetramethylene oxide) glycol poly (propylene oxide) glycol are polymers that form soft segments from the viewpoint of the elastic properties of the resulting polyester block copolymer.
  • Preferred are ethylene oxide adducts, poly ( ⁇ -caprolactone), polybutylene adipate, polyethylene adipate and the like.
  • the number average molecular weight of the polymer forming the soft segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility. Furthermore, the mass ratio (x: y) between the hard segment (x) and the soft segment (y) is preferably 99: 1 to 20:80, more preferably 98: 2 to 30:70, from the viewpoint of moldability. .
  • the combination of the hard segment and the soft segment described above examples include, for example, combinations of the hard segment and the soft segment mentioned above.
  • the combination of the hard segment and the soft segment described above is preferably a combination in which the hard segment is polybutylene terephthalate, the soft segment is an aliphatic polyether, and the hard segment is polybutylene terephthalate. More preferred is a combination wherein is poly (ethylene oxide) glycol.
  • polyester-based thermoplastic elastomers examples include “Hytrel” series (for example, 3046, 5557, 6347, 4047N, 4767N, etc.) manufactured by Toray DuPont Co., Ltd., and “Perprene” series manufactured by Toyobo Co., Ltd. (For example, P30B, P40B, P40H, P55B, P70B, P150B, P280B, P450B, P150M, S1001, S2001, S5001, S6001, S9001, etc.) can be used.
  • Hytrel for example, 3046, 5557, 6347, 4047N, 4767N, etc.
  • Perprene manufactured by Toyobo Co., Ltd.
  • the polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer that forms a hard segment and a polymer that forms a soft segment by a known method.
  • the polyamide-based thermoplastic elastomer is a thermoplastic polymer composed only of a copolymer having a crystalline polymer having a high melting point and a non-crystalline polymer having a low glass transition temperature. It means a resin material having an amide bond (—CONH—) in the main chain of the polymer forming the hard segment.
  • the polyamide-based thermoplastic elastomer for example, at least a polyamide is a crystalline hard crystalline segment with a high melting point, and other polymers (for example, polyester, polyether, etc.) are amorphous and have a soft glass transition temperature low soft segment. The material which forms is mentioned.
  • the polyamide-based thermoplastic elastomer may be formed using a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment.
  • a chain extender such as dicarboxylic acid
  • Specific examples of polyamide-based thermoplastic elastomers include amide-based thermoplastic elastomers (TPA) defined in JIS K6418: 2007, polyamide-based elastomers described in JP-A No. 2004-346273, and the like. it can.
  • examples of the polyamide forming the hard segment include polyamides produced by monomers represented by the following general formula (1) or general formula (2).
  • R 1 represents a molecular chain of a hydrocarbon having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms). ]
  • R 2 represents a hydrocarbon molecular chain having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms). ]
  • R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms (for example, an alkylene group having 3 to 18 carbon atoms), and a hydrocarbon molecular chain having 4 to 15 carbon atoms (for example, (Alkylene group having 4 to 15 carbon atoms) is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms (for example, an alkylene group having 10 to 15 carbon atoms) is particularly preferable.
  • R 2 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms (eg, an alkylene group having 3 to 18 carbon atoms), and a hydrocarbon molecular chain having 4 to 15 carbon atoms.
  • an alkylene group having 4 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms (for example, an alkylene group having 10 to 15 carbon atoms) is particularly preferable.
  • the monomer represented by the general formula (1) or the general formula (2) include ⁇ -aminocarboxylic acid or lactam.
  • the polyamide forming the hard segment include polycondensates of these ⁇ -aminocarboxylic acids or lactams, and co-condensation polymers of diamines and dicarboxylic acids.
  • Examples of the ⁇ -aminocarboxylic acid include those having 5 to 20 carbon atoms such as 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like. Examples thereof include aliphatic ⁇ -aminocarboxylic acids.
  • Examples of the lactam include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ⁇ -caprolactam, udecan lactam, ⁇ -enantolactam, and 2-pyrrolidone.
  • diamine examples include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, 2, 4
  • diamine compounds such as aliphatic diamines having 2 to 20 carbon atoms such as trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, and metaxylenediamine.
  • the dicarboxylic acid can be represented by HOOC- (R 3 ) m —COOH (R 3 : a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1).
  • R 3 a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1.
  • oxalic acid, succinic acid And aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid.
  • a polyamide obtained by ring-opening polycondensation of lauryl lactam, ⁇ -caprolactam, or udecan lactam can be preferably used.
  • polyester, polyether, etc. are mentioned, for example.
  • Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and ABA type triblock polyether. These can be used alone or in combination of two or more.
  • polyether diamine etc. which are obtained by making ammonia etc. react with the terminal of polyether can also be used.
  • the “ABA type triblock polyether” means a polyether represented by the following general formula (3).
  • each of x and z is preferably an integer of 1 to 18, more preferably an integer of 1 to 16, still more preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12.
  • y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, still more preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
  • combinations of the hard segment and the soft segment include a combination of a ring-opening polycondensate of lauryl lactam and polyethylene glycol, a combination of a ring-opening polycondensate of lauryl lactam and polypropylene glycol, and a ring opening of lauryl lactam.
  • a combination of a polycondensate and a polytetramethylene ether glycol, or a ring-opening polycondensate of lauryl lactam and an ABA type triblock polyether is preferred, and a ring opening polycondensate of lauryl lactam and an ABA type triblock polyether The combination with is more preferable.
  • the number average molecular weight of the polymer forming the hard segment is preferably 300 to 15000 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 90:10, and more preferably 50:50 to 80:20, from the viewpoint of moldability.
  • the polyamide-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • polyamide-based thermoplastic elastomers examples include UBE Kosan's “UBESTA XPA” series (for example, XPA9068X1, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044), Daicel Eponic Co., Ltd. “Vestamide” series (for example, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) can be used.
  • polystyrene-based thermoplastic elastomer for example, at least polystyrene forms a hard segment, and other polymers (for example, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, etc.) are not. Examples thereof include materials that form a soft segment having a crystallinity and a low glass transition temperature.
  • the polystyrene forming the hard segment for example, those obtained by a known radical polymerization method, ionic polymerization method and the like are preferably used, and specifically, polystyrene having anion living polymerization can be mentioned.
  • the polymer that forms the soft segment include polybutadiene, polyisoprene, poly (2,3-dimethyl-butadiene), and the like.
  • the combination of the hard segment and the soft segment mentioned above can be mentioned.
  • the combination of the hard segment and the soft segment is preferably a combination of polystyrene and polybutadiene or a combination of polystyrene and polyisoprene.
  • the soft segment is preferably hydrogenated.
  • the number average molecular weight of the polymer forming the hard segment is preferably from 5,000 to 500,000, more preferably from 10,000 to 200,000. Further, the number average molecular weight of the polymer forming the soft segment is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 800,000, and even more preferably from 30,000 to 500,000. Furthermore, the volume ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, from the viewpoint of moldability.
  • the polystyrene-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • the polystyrene-based thermoplastic elastomer include styrene-butadiene copolymers [eg, SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene- Isoprene copolymer (polystyrene-polyisoprene block-polystyrene), styrene-propylene copolymer [eg SEP (polystyrene- (ethylene / propylene) block), SEPS (polystyrene-poly (ethylene / propylene)
  • thermoplastic elastomer As a commercially available product of polystyrene-based thermoplastic elastomer, for example, “Tough Tech” series (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.) manufactured by Asahi Kasei Corporation, “SEBS” series (8007, 8076, etc.) and “SEPS” series (2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.
  • “Tough Tech” series for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.
  • SEBS 8007, 8076, etc.
  • SEPS 2002, 2063, etc.
  • thermoplastic elastomer As polyurethane-based thermoplastic elastomers, for example, at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical aggregation, and other polymers form a soft segment with a low glass transition temperature that is amorphous. Material.
  • Specific examples of the polyurethane-based thermoplastic elastomer include a polyurethane-based thermoplastic elastomer (TPU) defined in JIS K6418: 2007.
  • TPU polyurethane-based thermoplastic elastomer
  • the polyurethane-based thermoplastic elastomer can be represented as a copolymer including a soft segment including a unit structure represented by the following formula A and a hard segment including a unit structure represented by the following formula B.
  • P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester.
  • R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P ′ represents a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon.
  • the long-chain aliphatic polyether or long-chain aliphatic polyester represented by P for example, those having a molecular weight of 500 to 5000 can be used.
  • P is derived from a diol compound containing a long-chain aliphatic polyether represented by P or a long-chain aliphatic polyester.
  • diol compounds include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene adipate) diol, poly- ⁇ -caprolactone diol, poly (hexamethylene carbonate) having a molecular weight within the above range.
  • Diol, ABA type triblock polyether, etc. are mentioned. These can be used alone or in combination of two or more.
  • R is a partial structure introduced using a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R.
  • the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate, 1,6-hexamethylene diisocyanate, and the like.
  • Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate.
  • examples of the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate. These can be used alone or in combination of two or more.
  • P ′ is derived from a diol compound containing a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′.
  • Examples of the aliphatic diol compound containing a short-chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol.
  • ethylene glycol, propylene glycol, trimethylene glycol, 1, 4 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10- A decanediol etc. are mentioned.
  • Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Examples include cyclohexane-1,4-diol and cyclohexane-1,4-dimethanol.
  • examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxybenzophenone, 4,4′-dihydroxydiphenylmethane, bisphenol A, 1, Examples thereof include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene, 2,6-dihydroxynaphthalene and the like. These can be used alone or in combination of two or more.
  • the number average molecular weight of the polymer forming the hard segment is preferably 300 to 1500 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably 500 to 20000, more preferably 500 to 5000, and particularly preferably 500 to 3000, from the viewpoints of flexibility and thermal stability of the polyurethane-based thermoplastic elastomer.
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 15:85 to 90:10, and more preferably 30:70 to 90:10, from the viewpoint of moldability.
  • the polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • thermoplastic polyurethane described in JP-A-5-331256 can be used.
  • thermoplastic elastomer specifically, a combination of a hard segment consisting only of an aromatic diol and an aromatic diisocyanate and a soft segment consisting only of a polycarbonate ester is preferable, and more specifically, tolylene Isocyanate (TDI) / polyester polyol copolymer, TDI / polyether polyol copolymer, TDI / caprolactone polyol copolymer, TDI / polycarbonate polyol copolymer, 4,4′-diphenylmethane diisocyanate (MDI) / Polyester polyol copolymer, MDI / polyether polyol copolymer, MDI / caprolactone polyol copolymer, MDI / polycarbonate polyol copolymer, and MDI + hydroquinone / polyhe At least one selected from Sa methylene carbonate copolymer.
  • TDI tolylene Isocyanate
  • MDI polyester polyol
  • TDI / polyester polyol copolymer TDI / polyether polyol copolymer
  • MDI / polyester polyol copolymer MDI / polyether polyol copolymer
  • MDI + hydroquinone / polyhexamethylene carbonate copolymer At least one selected from is more preferable.
  • thermoplastic elastomers examples include, for example, “Elastolan” series (for example, ET680, ET880, ET690, ET890, etc.) manufactured by BASF, and “Clamiron U” series (manufactured by Kuraray Co., Ltd.). For example, 2000 series, 3000 series, 8000 series, 9000 series, etc., “Milactolan” series (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890, etc.) manufactured by Japan Miraclan ) Etc. can be used.
  • “Elastolan” series for example, ET680, ET880, ET690, ET890, etc.
  • Clamiron U” series manufactured by Kuraray Co., Ltd.
  • “Milactolan” series for example, XN-2001, XN-
  • thermoplastic elastomer examples include, for example, a hard segment in which at least polyolefin is crystalline and having a high melting point, and other polymers (for example, other polyolefins, polyvinyl compounds, etc.) are amorphous and have a low glass transition temperature. The material which forms the segment is mentioned.
  • polyolefin forming the hard segment examples include polyethylene, polypropylene, isotactic polypropylene, polybutene, and the like.
  • polyolefin-based thermoplastic elastomers include olefin- ⁇ -olefin random copolymers and olefin block copolymers.
  • propylene block copolymer ethylene-propylene copolymer, propylene-1-hexene copolymer, propylene-4-methyl-1-pentene copolymer, propylene-1-butene copolymer, ethylene- 1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene- Methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl
  • polyolefin-based thermoplastic elastomers include propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1-pentene copolymers, propylene-1- Butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer , Propylene-methyl methacrylate copolymer, Lopylene
  • olefin resins such as ethylene and propylene may be used in combination.
  • 50 mass% or more and 100 mass% or less of the olefin resin content rate in polyolefin-type thermoplastic elastomer are preferable.
  • the number average molecular weight of the polyolefin-based thermoplastic elastomer is preferably 5,000 to 10,000,000.
  • the number average molecular weight of the polyolefin-based thermoplastic elastomer is 5,000 to 10,000,000, the mechanical properties of the thermoplastic resin material are sufficient, and the processability is also excellent.
  • the number average molecular weight of the polyolefin-based thermoplastic elastomer is more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 1,000,000. Thereby, the mechanical properties and processability of the thermoplastic resin material can be further improved.
  • the number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 95:15, and more preferably 50:50 to 90:10, from the viewpoint of moldability.
  • the polyolefin-based thermoplastic elastomer can be synthesized by copolymerization by a known method.
  • polyolefin-based thermoplastic elastomer those obtained by acid-modifying a polyolefin-based thermoplastic elastomer may be used.
  • a product obtained by acid-modifying a polyolefin-based thermoplastic elastomer refers to a product obtained by bonding an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group to a polyolefin-based thermoplastic elastomer.
  • Examples of bonding an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group to a polyolefin-based thermoplastic elastomer include, for example, an unsaturated compound having an acidic group as a polyolefin-based thermoplastic elastomer, Examples include bonding (for example, graft polymerization) an unsaturated bonding site of an unsaturated carboxylic acid (for example, generally maleic anhydride).
  • an unsaturated compound having an acidic group an unsaturated compound having a carboxylic acid group which is a weak acid group is preferable from the viewpoint of suppressing deterioration of the polyolefin-based thermoplastic elastomer.
  • the unsaturated compound having an acidic group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, and the like.
  • thermoplastic elastomers Commercially available products of polyolefin-based thermoplastic elastomers include, for example, “Tuffmer” series (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010, manufactured by Mitsui Chemicals, Inc.
  • “Tuffmer” series for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010, manufactured by Mitsui Chemicals, Inc.
  • E-2900H, F-3900H, E-2900, F-3900, J-5900, E-2910, F-3910, J-5910, E-2710 F-3710, J-5910, E-2740, F-3740, R110MP, R110E, can be used T310E, also M142E, etc.) and the like.
  • polyester-based thermoplastic resin examples include polyester that forms the hard segment of the above-described polyester-based thermoplastic elastomer.
  • Specific examples of the polyester-based thermoplastic resin include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly ( ⁇ -caprolactone), polyenantlactone, polycaprylolactone, and polybutylene.
  • Examples include aliphatic polyesters such as adipate and polyethylene adipate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate.
  • polybutylene terephthalate is preferable as the polyester-based thermoplastic resin.
  • polyester thermoplastic resins examples include “Duranex” series (for example, 2000, 2002, etc.) manufactured by Polyplastics Co., Ltd., and “Novaduran” series (for example, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) 5010R5, 5010R3-2, etc.), “Toraycon” series (for example, 1401X06, 1401X31, etc.) manufactured by Toray Industries, Inc. can be used.
  • polyamide-based thermoplastic resin examples include polyamides that form the hard segments of the aforementioned polyamide-based thermoplastic elastomer.
  • polyamide-based thermoplastic resins include polyamide (amide 6) obtained by ring-opening polycondensation of ⁇ -caprolactam, polyamide (amide 11) obtained by ring-opening polycondensation of undecane lactam, and ring-opening polycondensation of lauryl lactam.
  • the amide 6 can be represented by, for example, ⁇ CO— (CH 2 ) 5 —NH ⁇ n .
  • the amide 11 can be represented by ⁇ CO— (CH 2 ) 10 —NH ⁇ n , for example.
  • the amide 12 can be represented by, for example, ⁇ CO— (CH 2 ) 11 —NH ⁇ n .
  • the amide 66 can be represented by ⁇ CO (CH 2 ) 4 CONH (CH 2 ) 6 NH ⁇ n , for example.
  • Amide MX can be represented, for example, by the following structural formula (A-1). Here, n represents the number of repeating units.
  • amide 6 As a commercially available product of amide 6, for example, “UBE nylon” series (for example, 1022B, 1011FB, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available product of amide 11, for example, “Rilsan B” series manufactured by Arkema Co., Ltd. can be used. As a commercially available product of amide 12, for example, “UBE nylon” series (for example, 3024U, 3020U, 3014U, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available product of amide 66, for example, “Leona” series (for example, 1300S, 1700S, etc.) manufactured by Asahi Kasei Corporation can be used. As a commercially available product of amide MX, for example, “MX nylon” series (for example, S6001, S6021, S6011, etc.) manufactured by Mitsubishi Gas Chemical Co., Ltd. can be used.
  • MX nylon for example, S6001, S
  • the polyamide-based thermoplastic resin may be a homopolymer consisting only of the above structural unit, or may be a copolymer of the above structural unit and another monomer. In the case of a copolymer, it is preferable that the content rate of the said structural unit in each polyamide-type thermoplastic resin is 40 mass% or more.
  • polyolefin-based thermoplastic resin examples include polyolefins that form the hard segment of the aforementioned polyolefin-based thermoplastic elastomer.
  • polyolefin-based thermoplastic resin examples include a polyethylene-based thermoplastic resin, a polypropylene-based thermoplastic resin, and a polybutadiene-based thermoplastic resin.
  • a polypropylene-based thermoplastic resin is preferable as the polyolefin-based thermoplastic resin.
  • polypropylene-based thermoplastic resin examples include a propylene homopolymer, a propylene- ⁇ -olefin random copolymer, a propylene- ⁇ -olefin block copolymer, and the like.
  • Examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, Examples thereof include ⁇ -olefins having about 3 to 20 carbon atoms such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicocene.
  • the resin member may contain other components such as an additive in addition to the resin as long as the effect is not impaired.
  • other components include rubber, various fillers (for example, silica, calcium carbonate, clay, etc.), anti-aging agents, oils, plasticizers, color formers, weathering agents, and the like.
  • the rubber member includes a filler having a silanol group.
  • the rubber member containing this filler is in contact with the treated surface of the resin member, thereby improving the adhesion between them.
  • a filler which has a silanol group contained in a rubber member particles, such as silica and glass (for example, glass fiber, glass bead, etc.), are mentioned, for example.
  • a silica particle is preferable from a viewpoint of adhesive improvement.
  • Silica includes not only silicon dioxide (SiO 2 ) in a narrow sense but also silicate compounds, and silicates such as hydrous silicate, calcium silicate, and aluminum silicate in addition to anhydrous silicate.
  • silicates such as hydrous silicate, calcium silicate, and aluminum silicate in addition to anhydrous silicate.
  • hydrous silicate such as hydrous silicate, calcium silicate, and aluminum silicate in addition to anhydrous silicate.
  • hydrous silicate such as hydrous silicate, calcium silicate, and aluminum silicate in addition to anhydrous silicate.
  • hydrous silicate such as hydrous silicate, calcium silicate, and aluminum silicate in addition to anhydrous silicate.
  • the aggregation state of the silica is not particularly limited, and includes precipitated silica, gel silica, dry silica, colloidal silica, and the like.
  • hydrophilic silica from the viewpoint of the number of silanol groups on the surface.
  • silica is “hydrophilic” means that the moisture content (that is, loss on drying) specified in JIS-K1150 (1994) is 10% by mass or less.
  • the content of the filler having a silanol group in the rubber member is preferably 20 phr or more and 100 phr or less, and more preferably 30 phr or more and 90 phr or less, with respect to the total amount of rubber contained, from the viewpoint of improving adhesiveness. .
  • the rubber member may further contain a silane coupling agent from the viewpoint of dispersibility of the filler having a silanol group.
  • silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyltrimethoxysilane.
  • 3-aminopropyltriethoxysilane 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2- Aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, tris- (trimethoxysilylpropyl) isocyanurate, 3-isocyanatopropyltriethoxysilane, trimethoxysilylpropyl succinic anhydride, triethoxysilylpropyl succinic anhydride Etc.
  • silane coupling agent it is preferable to use the polysulfide type
  • polysulfide silane coupling agents having two or more sulfur include bis- (3- (triethoxysilyl) propyl) -disulfide, bis- (3- (triethoxysilyl) propyl) -tetrasulfide, bis Bis- (trialkoxysilylalkyl) -polysulfides such as-(triethoxysilylpropyl) -polysulfides. These silane coupling agents may be used alone or in combination of two or more.
  • the rubber member may contain triazine dithiol from a viewpoint of an adhesive improvement, and a viewpoint of accelerating the vulcanization speed of a rubber member.
  • the triazine thiol include alkylaminotriazine dithiol (for example, 2-dimethylamino-4,6-dimercapto-s-triazine, 2-diethylamino-4,6-dimercapto-s-triazine, 2-dipropylamino-4, 6-dimercapto-s-triazine, 2-diisopropylamino-4,6-dimercapto-s-triazine, 2-dibutylamino-4,6-dimercapto-s-triazine, 2-diisobutylamino-4,6-dimercapto-s -Triazine, 2-di-tert-butylamino-4,6-dimercapto-s, Triazine, 2-di
  • the content of triazine dithiol in the rubber member is preferably 0.01 phr or more and 10 phr or less with respect to the total amount of rubber, from the viewpoint of improving adhesiveness and increasing the vulcanization speed of the rubber member. It is more preferably 05 phr or more and 5 phr or less, and further preferably 0.1 phr or more and 3 phr or less.
  • the rubber member in the present embodiment includes rubber.
  • the content of the rubber relative to the total amount of the rubber member is not particularly limited, but is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. On the other hand, as an upper limit, 90 mass% or less is preferable, 80 mass% or less is more preferable, and 70 mass% or less is further more preferable.
  • the rubber contained in the rubber member is not particularly limited, and natural rubber and various synthetic rubbers conventionally used for blending rubber can be used alone or in combination of two or more.
  • a rubber as shown below or a blend of two or more of these can be used.
  • the natural rubber may be a sheet rubber or a block rubber, and all of RSS # 1 to # 5 can be used.
  • synthetic rubber various diene synthetic rubbers, diene copolymer rubbers, special rubbers, modified rubbers, and the like can be used.
  • a butadiene polymer such as polybutadiene (BR), a copolymer of butadiene and an aromatic vinyl compound (eg, SBR, NBR, etc.), a copolymer of butadiene and another diene compound, and the like;
  • Isoprene polymers such as polyisoprene (IR), copolymers of isoprene and aromatic vinyl compounds, copolymers of isoprene and other diene compounds; chloroprene rubber (CR), butyl rubber (IIR), halogenated Examples thereof include butyl rubber (X-IIR); ethylene-propylene copolymer rubber (EPM), ethylene-propylene-diene copolymer rubber (EPDM), and any blend thereof.
  • additives include reinforcing materials such as carbon black, fillers, vulcanizing agents, vulcanization accelerators, fatty acids or salts thereof, metal oxides, process oils, anti-aging agents, and the like. can do.
  • the rubber member is in an unvulcanized state, and is preferably a vulcanized rubber that is molded into a required shape and crosslinked by heating.
  • the resin rubber composite according to the present embodiment may have a second rubber member in contact with the rubber member.
  • the second rubber member includes rubber. Examples of the rubber used include those listed as the rubber contained in the rubber member.
  • other components such as additives may be added to the second rubber member depending on the purpose. Examples of this additive include those listed as the additives contained in the rubber member described above. It is mentioned in.
  • the tire according to this embodiment has the resin rubber composite according to the above-described embodiment.
  • a resin rubber composite when used for a tire, the following combinations are mentioned as a combination of a resin member and a rubber member.
  • the resin member is a “belt layer”
  • examples of the rubber member include at least one member selected from “tread, tire frame, and rubber sheet bonded to the surface of the belt layer”.
  • examples of the rubber member include at least one member selected from “a tire frame body and a rubber sheet bonded to the surface of the bead member”.
  • the rubber member includes at least one member selected from “tread, belt layer, bead member, and rubber sheet bonded to the surface of the tire frame”. It is done.
  • the rubber member When the resin member is a “belt cord”, the rubber member includes at least one member selected from “a cord covering layer covering the belt cord and a rubber sheet bonded to the surface of the belt cord”. .
  • the resin member When the resin member is “bead wire”, the rubber member includes at least one member selected from “a wire coating layer covering the bead wire and a rubber sheet bonded to the surface of the bead wire”.
  • the “tire frame” as the rubber member is a member that forms a tire frame such as a carcass corresponding to the rubber member (for example, a carcass made of only a carcass ply in which a plurality of wires are covered with rubber). It may be replaced.
  • the resin rubber composite is an aspect having a resin member, a rubber member in contact with the resin member, and a second rubber member in contact with the rubber member.
  • the resin member is a “belt layer”
  • the rubber member includes “rubber sheet”
  • the second rubber member includes at least one member selected from “tread, tire frame body, and side rubber”.
  • the resin member is a “bead member”
  • the rubber member includes “rubber sheet”
  • the second rubber member includes at least one member selected from “tire frame and side rubber”.
  • the resin member is a “tire frame”
  • the rubber member includes “rubber sheet”
  • the second rubber member is at least one selected from “tread, belt layer, bead member, and side rubber”
  • the “tire skeleton body” as the second rubber member is a skeleton of a tire such as a carcass (for example, a carcass made only of a carcass ply in which a plurality of wires are covered with rubber) corresponding to the second rubber member. You may replace with the member which comprises.
  • a tire skeleton body and a belt layer will be described by taking a tire corresponding to a resin member as an example.
  • FIG. 1 is a cross-sectional view along the tire width direction of the tire of the first embodiment.
  • the tire case 17 (an example of a tire skeleton) corresponds to a resin member.
  • the tire 200 includes a belt layer in which a belt in which a belt cord 26 ⁇ / b> A is covered with a coating resin 26 ⁇ / b> B is wound in the circumferential direction on the outer peripheral surface of a crown portion 16 of a tire case 17. 26 is formed, and this belt layer 26 also corresponds to a resin member.
  • the belt layer 26 constitutes the outer peripheral portion of the tire case 17 and reinforces the circumferential rigidity of the crown portion 16.
  • the tire case 17 and the belt layer 26 corresponding to the resin member are treated surfaces in which at least the surface in contact with the cushion rubber 28 is treated by the above-described surface treatment.
  • the melting point of the resin is, for example, about 100 ° C. to 350 ° C., and from the viewpoint of tire durability and productivity, about 100 ° C. to 250 ° C. is preferable, and 120 ° C. to 250 ° C. is more preferable.
  • the tensile modulus of elasticity defined in JIS K7113: 1995 of the tire frame body (for example, the tire case 17) itself is preferably 50 MPa to 1000 MPa, more preferably 50 MPa to 800 MPa, and particularly preferably 50 MPa to 700 MPa.
  • the tensile modulus is 50 MPa to 1000 MPa, the rim can be assembled efficiently while maintaining the shape of the tire frame.
  • the tensile strength specified in JIS K7113 (1995) of the tire frame body is usually about 15 MPa to 70 MPa, preferably 17 MPa to 60 MPa, and more preferably 20 MPa to 55 MPa.
  • the tensile yield strength defined in JIS K7113 (1995) of the tire frame body (for example, the tire case 17) itself is preferably 5 MPa or more, more preferably 5 MPa to 20 MPa, and particularly preferably 5 MPa to 17 MPa.
  • the tensile yield strength is 5 MPa or more, it is possible to withstand deformation against a load applied to the tire during traveling or the like.
  • the tensile yield elongation defined by JIS K7113 (1995) of the tire frame body (for example, the tire case 17) itself is preferably 10% or more, more preferably 10% to 70%, and particularly preferably 15% to 60%.
  • the tensile yield elongation is 10% or more, the elastic region is large, and the rim assembly property can be improved.
  • the tensile elongation at break stipulated in JIS K7113 (1995) of the tire frame (for example, the tire case 17) itself is preferably 50% or more, more preferably 100% or more, particularly preferably 150% or more, most preferably 200% or more. preferable.
  • the tensile elongation at break is 50% or more, the rim assemblability is good and it is difficult to break against collision.
  • the load deflection temperature (at 0.45 MPa load) specified in ISO 75-2 or ASTM D648 of the tire frame body (for example, the tire case 17) itself is preferably 50 ° C. or more, more preferably 50 ° C. to 150 ° C., 50 C. to 130.degree. C. is particularly preferable.
  • the deflection temperature under load is 50 ° C. or higher, deformation of the tire skeleton can be suppressed even when vulcanization is performed in the manufacture of the tire.
  • the belt layer 26 is formed by coating a belt cord 26A having higher rigidity than the resin forming the tire case 17 with a coating resin 26B separate from the resin forming the tire case 17.
  • the belt layer 26 is joined to the belt layer 26 and the tire case 17 at the contact portion with the crown portion 16 (for example, bonded by welding or an adhesive).
  • a cushion rubber 28 is joined so as to contact a region of the outer peripheral surface of the belt layer 26 and the outer peripheral surface of the tire case 17 that is not covered with the belt layer 26, and rubber is further applied on the outer peripheral surface of the cushion rubber 28.
  • the tread layer 30 including it is joined.
  • the cushion rubber 28 and the tread layer 30 form a rubber tread, and the cushion rubber 28 corresponds to a rubber member.
  • the tread layer 30 is formed with a tread pattern (not shown) including a plurality of grooves on the ground contact surface with the road surface.
  • a tire case half body (namely, one half of the tire case which has the shape where the tire case was cut
  • the tire case halves are joined to each other by a method such that the tire case halves face each other and are pressed at a melting point or higher of the resin material constituting the tire case.
  • Belt layer winding step As a method of forming the belt layer 26 on the crown portion 16 of the tire case 17, for example, a belt wound around a reel while rotating the tire case 17 (that is, the belt cord 26A is applied to the coating resin 26B).
  • the belt member 26 is unwound and this belt is wound around the crown portion 16 a predetermined number of times to form the belt layer 26.
  • the coating resin 26B may be welded to the tire case 17 by heating and pressurizing.
  • the timing for performing the surface treatment is not particularly limited.
  • the tire case 17 and the belt layer 26 may be collectively treated after the belt layer 26 is formed.
  • the tire case 17 may be first processed before the belt layer 26 is formed, and then the belt layer 26 may be processed again after the belt layer 26 is formed.
  • the cushion rubber 28 in an unvulcanized state is provided for one round so as to come into contact with the outer peripheral surface of the belt layer 26 and the outer peripheral surface of the tire case 17 not covered with the belt layer 26. Wrap.
  • the cushion rubber 28 corresponding to the rubber member contains a filler having a silanol group.
  • the vulcanized, semi-vulcanized or unvulcanized tread layer 30 is wound on the cushion rubber 28 for one turn.
  • the tire of the first embodiment is obtained by vulcanization.
  • the bead portion 12 of the tire case 17 may be provided with a seal layer 24 that is softer than the resin material used for the tire case 17 using an adhesive or the like.
  • the cushion rubber 28 corresponding to the rubber member contains a filler having a silanol group
  • the tire case 17 corresponding to the resin member and the region in contact with the cushion rubber 28 of the belt layer 26 are described above.
  • Surface treatment by the method of is performed. Therefore, the tire case 17 and the belt layer 26 and the cushion rubber 28 constituting the tread are excellent without using an adhesive between the tire case 17 and the cushion rubber 28 and between the belt layer 26 and the cushion rubber 28. Adhesiveness can be obtained.
  • the tread is formed on the outer peripheral surface of the tire case 17 by laminating the cushion rubber 28 and the tread layer 30, but the present invention is not limited thereto, and the cushion rubber 28 is not disposed. It is good also as a structure.
  • the tread layer 30 constituting the tread corresponds to a rubber member, and the tread layer 30 contains a filler having a silanol group.
  • the cushion rubber 28 is in direct contact with the tire case 17 and the belt layer 26.
  • the present invention is not limited thereto, and the cushion rubber 28, the tire case 17, and the belt are not limited thereto.
  • a rubber sheet corresponding to a rubber member may be interposed between the layer 26 and the layer 26.
  • the rubber sheet corresponds to a rubber member, and the rubber sheet contains a filler having a silanol group.
  • the cushion rubber 28 corresponds to the second rubber member, and the cushion rubber 28 may not contain a filler having a silanol group.
  • the thickness of the rubber sheet is as follows. Is preferably 0.1 ⁇ m or more and 100 mm or less, and more preferably 1 ⁇ m or more and 2 mm or less.
  • a bead member a belt cord, and a bead wire will be described as an example of a tire corresponding to a resin member.
  • FIG. 2 is a tire half sectional view showing one side of a cut surface cut along the tire width direction of the tire 110 of the second embodiment.
  • an arrow TW indicates the width direction of the tire 110 (tire width direction)
  • an arrow TR indicates the radial direction of the tire 110 (tire radial direction).
  • the tire 110 includes a pair of left and right bead portions 112 (only one bead portion 112 is shown in FIG. 2), and a pair of tires extending from the pair of bead portions 112 outward in the tire radial direction.
  • a side portion 114 and a tread portion 116 extending from one tire side portion 114 to the other tire side portion 114 are provided.
  • a tire 110 shown in FIG. 2 includes a tire case 140 corresponding to a tire skeleton.
  • the tire case 140 corresponds to a rubber member, and is formed using rubber and contains a filler having a silanol group.
  • the tire case 140 includes a bead portion 112, a tire side portion 114, and a tread portion 116.
  • a tire case 140 corresponding to a rubber member is a member constituting a tire skeleton such as a carcass corresponding to a rubber member (for example, a carcass made only of a carcass ply in which a plurality of wires are covered with rubber). It may be replaced.
  • a protective layer 122 is provided on the tire side portion 114 and the bead portion 112 in the tire width direction outer side, the bead portion 112 in the tire radial direction inner side, and the bead portion 112 on the tire width direction inner side.
  • the bead portion 112, the tire side portion 114, and the tread portion 116 may be integrally formed in the same process, or may be a combination of members formed in different processes. However, it is preferably formed integrally from the viewpoint of production efficiency.
  • a bead filler 120 extending along the protective layer 122 from the bead core 118 to the outer side in the tire radial direction is embedded in the bead portion 112.
  • the bead filler 120 corresponds to a resin member, and the surface in contact with the tire case 140 is a treated surface treated by the surface treatment described above.
  • the bead portion 112 is a part that contacts a rim (not shown), and an annular bead core 118 extending along the tire circumferential direction is embedded.
  • the forms that the bead core 118 can take will be described later.
  • the protective layer 122 is provided for the purpose of increasing the airtightness between the tire case 140 and the rim, and is made of a material such as rubber that is softer and weatherproof than the tire case 140. , May be omitted.
  • the tread portion 116 is a portion corresponding to the ground contact surface of the tire 110, and is provided with a belt layer 124A. Further, a tread layer 130 is provided on the belt layer 124A via a cushion rubber 124B. The forms that the belt layer 124A can take will be described later.
  • the manufacturing method of the tire case 140 is not particularly limited.
  • the tire case halves in a state where the tire case 140 is divided by the equator plane are respectively produced by an extrusion molding method (for example, an injection molding method) or the like, You may produce by joining in an equatorial plane.
  • a carcass produced by a conventionally known method may be used.
  • a method of forming the belt layer 124A on the tread portion 116 of the tire case 140 for example, a belt wound around a reel while the tire case 140 is rotated (the belt cord 1 shown in FIG.
  • the cord covering layer 3A is coated on the cord covering layer 3).
  • the belt layer 124A is formed by winding the belt around the crown portion 16 a predetermined number of times.
  • the cord covering layer 3 may be welded to the tire case 140 by heating and pressurizing.
  • a preformed bead filler 120 and an annular member for the bead core 118 are embedded in the bead portion 112 by a known method. May be formed.
  • a tire case 140 corresponding to a rubber member contains a filler having a silanol group, and a bead filler 120 (an example of a bead member) corresponding to a resin member is in contact with the tire case 140.
  • a bead filler 120 an example of a bead member
  • the tire case 140 is shown in a form in which the tire case 140 is in direct contact with the bead filler 120.
  • the present invention is not limited thereto, and the rubber member is interposed between the tire case 140 and the bead filler 120.
  • a corresponding rubber sheet may be interposed.
  • the rubber sheet corresponds to a rubber member, and the rubber sheet contains a filler having a silanol group.
  • the tire case 140 corresponds to the second rubber member, and the tire case 140 may not contain a filler having a silanol group.
  • the thickness of the rubber sheet is, for example, 0. 1 ⁇ m or more and 100 mm or less is preferable, and 1 ⁇ m or more and 2 mm or less is more preferable.
  • FIG. 3A is a diagram schematically illustrating a cross section when a part of the bead core 118 is cut perpendicularly to the length direction of the bead wire 1.
  • the wire coating layer 3 is provided so as to be in direct contact with the three bead wires 1.
  • the bead wire 1 corresponds to a resin member, and the surface in contact with the wire coating layer 3 is a treated surface treated by the surface treatment described above.
  • the wire coating layer 3 corresponds to a rubber member, and is formed using rubber and contains a filler having a silanol group. Therefore, excellent adhesiveness between the bead wire 1 and the wire coating layer 3 can be obtained without using an adhesive between the bead wire 1 and the wire coating layer 3. In addition, you may produce by carrying out the horizontal and vertical stepping of the one bead wire 1 while heat-welding.
  • the bead core 118 may have the rubber sheet 2 disposed between the bead wire 1 and the wire covering layer 3.
  • a part of the bead core 118 shown in FIG. 3B is provided with the rubber sheet 2 bonded to the surface of each of the three bead wires 1, and the wire coating layer 3 is further provided on the surface.
  • the rubber sheet 2 corresponds to a rubber member, and the rubber sheet 2 contains a filler having a silanol group.
  • the wire coating layer 3 corresponds to a second rubber member, and the wire coating layer 3 may not contain a filler having a silanol group. Thereby, even if it does not interpose an adhesive agent between bead wire 1 and rubber sheet 2, the superior adhesiveness of bead wire 1 and rubber sheet 2 is obtained.
  • the bead core 118 shown in FIG. 2 is formed by laminating three layers of the three bead wires 1 and the wire covering layer 3 shown in any of FIG. 3A and FIG. 3B (and the rubber sheet 2 in FIG. 3B). It has a form.
  • the bead core 118 may be used as a single layer or may be used as a laminate of two or more layers. In that case, it is preferable to weld the wire coating layers.
  • the form which the bead core 118 can take was demonstrated referring FIG. 3A and FIG. 3B, it is not limited to this structure.
  • the method for producing the bead core 118 is not particularly limited.
  • the rubber material for forming the rubber sheet 2 after the above-described surface treatment is performed on the bead wire 1 which is a resin member (the rubber material is silanol) Containing a filler having a group) and a rubber material for forming the wire coating layer 3 can be produced by an extrusion molding method.
  • the belt layer 124A shown in FIG. 2 can take will be described.
  • a configuration similar to that of the bead core 118 illustrated in FIG. 3A can be given, that is, a configuration in which a cord covering layer is provided so as to be in direct contact with three belt cords.
  • the belt cord corresponds to a resin member, and the surface in contact with the cord covering layer is the treated surface treated by the surface treatment described above.
  • the cord covering layer corresponds to a rubber member, and contains a filler that is formed using rubber and has a silanol group. Therefore, excellent adhesiveness between the belt cord and the cord covering layer can be obtained without using an adhesive between the belt cord and the cord covering layer.
  • the belt layer 124A may have a rubber sheet disposed between the belt cord and the cord covering layer.
  • the same configuration as the bead core 118 shown in FIG. 3B can be mentioned, that is, a rubber sheet is adhered to each surface of the three belt cords, and a cord covering layer is further provided on the surface.
  • a configuration is mentioned.
  • the rubber sheet corresponds to a rubber member, and the rubber sheet contains a filler having a silanol group.
  • the cord coating layer corresponds to the second rubber member, and the cord coating layer may not contain a filler having a silanol group. As a result, excellent adhesion between the belt cord and the rubber sheet can be obtained without using an adhesive between the belt cord and the rubber sheet.
  • the number of belt cords may be two or less, or four or more, as well as a mode in which three belt cords are arranged in parallel.
  • the belt layer 124A shown in FIG. 2 has a configuration in which three belt cords and a cord covering layer (and, if necessary, a rubber sheet) are laminated.
  • the belt layer 124A may be used by stacking two or more layers. In this case, it is preferable to weld the cord coating layers.
  • the form which 124A can take was demonstrated as mentioned above, it is not limited to this structure.
  • the following resin rubber composite, tire, and method for producing the resin rubber composite are provided.
  • the treated surface of the resin member is treated with a peroxy radical (—O—O.), A hydroperoxide group (—O—OH), a carbonyl group (—C ( ⁇ O) —), an aldehyde group (—
  • the resin rubber according to the first aspect which is a surface into which at least one selected from C ( ⁇ O) —H), a carboxy group (—C ( ⁇ O) —OH), and a hydroxyl group (—OH) is introduced.
  • a complex is provided.
  • the resin rubber composite according to the first or second aspect in which a contact angle of water on the treated surface of the resin member is 20 ° or more and 98 ° or less, is provided.
  • a resin rubber composite according to any one of the first to third aspects wherein the filler having a silanol group is silica.
  • the silica is hydrophilic silica, is provided.
  • the resin rubber composite according to any one of the first to fifth aspects is provided, wherein the rubber member further contains a polysulfide-based silane coupling agent having two or more sulfur.
  • the resin rubber composite according to any one of the first to sixth aspects is provided, which has a second rubber member in contact with the rubber member.
  • the rubber member further contains triazinedithiol.
  • the rubber member includes the resin rubber composite according to the eighth aspect, in which the triazinedithiol is contained in an amount of 0.01 phr to 10 phr with respect to the rubber contained therein.
  • the resin member is polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, polyamide-based thermoplastic elastomer, polyamide-based thermoplastic resin, polystyrene-based thermoplastic elastomer, polystyrene-based thermoplastic resin, polyurethane-based thermoplastic elastomer, polyurethane-based heat
  • a resin rubber composite according to any one of the first to ninth aspects is provided, which contains at least one resin selected from a plastic resin, a polyolefin-based thermoplastic elastomer, and a polyolefin-based thermoplastic resin.
  • the resin rubber composite according to the tenth aspect is provided, wherein the resin member contains at least one resin selected from a polyester-based thermoplastic elastomer and a polyester-based thermoplastic resin.
  • the resin member contains at least one resin selected from a polyester-based thermoplastic elastomer and a polyester-based thermoplastic resin.
  • a tire having a resin rubber composite according to any one of the first to eleventh aspects is provided.
  • a tire according to the aspect is provided.
  • ⁇ 14> According to the fourteenth aspect of the present disclosure, including a bead member as the resin member, a tire skeleton as the rubber member, and at least one member selected from a rubber sheet bonded to a surface of the bead member. Tires are provided. ⁇ 15> According to the fifteenth aspect of the present disclosure, A tire skeleton as the resin member, and at least one member selected from a tread, a belt layer, a bead member, and a rubber sheet bonded to the surface of the tire skeleton as the rubber member. A tire according to the twelfth aspect is provided.
  • the resin rubber composite is at least one selected from a belt cord as the resin member, a cord covering layer covering the belt cord as the rubber member, and a rubber sheet bonded to the surface of the belt cord.
  • the tire according to the twelfth aspect is provided.
  • the resin rubber composite is at least one selected from a bead wire as the resin member, a wire coating layer covering the bead wire as the rubber member, and a rubber sheet bonded to the surface of the bead wire.
  • a method for producing a resin rubber composite having the following is provided.
  • Example 1 ⁇ Preparation of test piece> 1.
  • Resin member As a resin composition, Hytrel 4767N manufactured by Toray DuPont was used as a commercially available polyester-based thermoplastic elastomer to obtain a resin square plate having a thickness of 0.6 mm.
  • Rubber member As the rubber member, the rubber and various compounding agents shown in Table 1 were mixed and stirred at 110 ° C. for 3 minutes with a lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.), and a rubber sheet having a thickness of 2.5 mm was obtained with a roll It was.
  • a plasma generator (product name: K2X02L023, manufactured by Myeongchang Kiko Co., Ltd.) was used as the plasma irradiation apparatus for performing the surface treatment on the resin member.
  • a high frequency power source for the plasma generator an applied voltage having a frequency of 13.56 MHz is used.
  • an electrode a copper tube having an inner diameter of 1.8 mm, an outer diameter of 3 mm, and a length of 165 mm is outer diameter of 5 mm, thickness of 1 mm, and length.
  • a resin member was placed on the upper surface of the sample holder, and the distance between the resin member surface and the electrode was set to 1.0 mm.
  • the chamber was sealed, and the pressure was reduced to 10 Pa or less with a rotary pump, and then helium gas was introduced until atmospheric pressure (that is, 1013 hPa). Thereafter, the high frequency power source was set so that the output power density (that is, the irradiation density) was 5.7 W / cm 2, and the moving speed of the scanning stage was set to 2 mm / second. Thereafter, the surface of the resin member (that is, the square plate) was irradiated with plasma in a helium atmosphere while moving the scanning stage, and the scanning stage was reciprocated twice to perform surface treatment.
  • Table 1 The contact angle of water on the treated surface that has been subjected to the surface treatment is shown in Table 1 below. However, the contact angle of water shown in Table 1 is based on the simulation based on the contact angle of water of the resin member obtained by surface treatment using a plasma generator having a specification different from that of the above plasma generator. This is the predicted value obtained.
  • Adhesion A rubber member that is, a sheet
  • a resin member that is, a square plate
  • Example 2 to 10 Comparative Examples 1 to 4
  • a test piece was prepared in the same manner as in Example 1 except that a rubber member (that is, a sheet) was prepared according to the formulation shown in Table 1, and a peel test was performed.
  • the vulcanization temperature was 145 ° C.

Abstract

Provided is a resin-rubber composite provided with: a resin member that has a treated surface to which surface treatment using plasma treatment has been applied; and a rubber member that is in contact with the treated surface of the resin member and includes a filler having a silanol group.

Description

樹脂ゴム複合体、タイヤ、及び樹脂ゴム複合体の製造方法Resin rubber composite, tire, and method for producing resin rubber composite
 本開示は、樹脂ゴム複合体、タイヤ、及び樹脂ゴム複合体の製造方法に関する。 The present disclosure relates to a resin rubber composite, a tire, and a method for manufacturing the resin rubber composite.
 従来から、種々の分野において樹脂部材とゴム部材とが接着された樹脂ゴム複合体が用いられている。例えば、タイヤの分野においては、軽量化、成形容易性、リサイクル等の観点から、樹脂部材を用いることが検討されており、かつゴム製のタイヤ骨格体、トレッド、ベルト部材等のゴム部材とこの樹脂部材とを接着させて用いることが試されている。
 例えば、特許文献1には、少なくとも、熱可塑性樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、前記タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材を有し、前記熱可塑性樹脂材料が、少なくともポリアミド系熱可塑性エラストマーを含むタイヤが開示されている。
Conventionally, resin rubber composites in which a resin member and a rubber member are bonded are used in various fields. For example, in the field of tires, from the viewpoint of weight reduction, ease of molding, recycling, etc., the use of resin members has been studied, and rubber members such as rubber tire frames, treads, belt members, and the like are used. Attempts have been made to bond a resin member to the resin member.
For example, Patent Document 1 discloses a tire that is formed of at least a thermoplastic resin material and has an annular tire frame, and is wound around the outer periphery of the tire frame to form a reinforcing cord layer. There is disclosed a tire including a reinforcing cord member that includes the thermoplastic resin material including at least a polyamide-based thermoplastic elastomer.
 ただし、樹脂部材とゴム部材とでは、材料の違いから接着性を高めることが容易でなく、そのため両者の間に接着剤(たとえば有機溶剤系の接着剤)を設けて接着性を高めることが行なわれている。 However, it is not easy to improve the adhesiveness between the resin member and the rubber member due to the difference in material. For this reason, an adhesive (for example, an organic solvent-based adhesive) is provided between the two to enhance the adhesiveness. It is.
 また、その他にも接着剤を用いずに接着性を向上させる方法が試されている。
 例えば、特許文献2には、有機高分子化合物を含む成型体の表面温度を、前記有機高分子化合物の融点-120℃以上にして、該成型体の表面に大気圧プラズマ処理を行い、過酸化物ラジカルを導入する表面改質成型体の製造方法が開示されている。
In addition, other methods for improving adhesiveness without using an adhesive have been tried.
For example, in Patent Document 2, the surface temperature of a molded body containing an organic polymer compound is set to a melting point of the organic polymer compound of −120 ° C. or higher, and atmospheric pressure plasma treatment is performed on the surface of the molded body to perform peroxidation. A method for producing a surface-modified molded body in which a product radical is introduced is disclosed.
  〔特許文献1〕特開2012-46030号公報
  〔特許文献2〕特開2016-56363号公報
[Patent Document 1] JP 2012-46030 [Patent Document 2] JP 2016-56363
 上記のように、有機溶剤系の接着剤を使うと塗膜形成後に溶剤を揮発させる必要があり、乾燥工程に時間を要する。また、作業環境面から排気設備等の設置が求められることもあり、製造面の簡易化、コストの低減等の観点で改良の余地がある。
 そのため、樹脂部材とゴム部材とが接するように配置された樹脂ゴム複合体において、接着剤を介さずに両者が直に接した状態であっても、両者間での優れた接着性を得ることが望まれている。
As described above, when an organic solvent-based adhesive is used, it is necessary to volatilize the solvent after forming the coating film, and the drying process takes time. In addition, installation of exhaust facilities and the like may be required from the viewpoint of the work environment, and there is room for improvement in terms of simplification of manufacturing and cost reduction.
Therefore, in the resin rubber composite disposed so that the resin member and the rubber member are in contact with each other, excellent adhesion between the two can be obtained even if both are in direct contact without using an adhesive. Is desired.
 一方で、特許文献2に示されるように、樹脂材料である成型体の表面に大気圧プラズマ処理を行うことで、ゴム部材等の他の部材との接着性を高めた表面改質成型体であっても、未だ接着性向上の余地があり、さらに優れた接着性が求められている。 On the other hand, as shown in Patent Document 2, a surface-modified molded body with improved adhesion to other members such as a rubber member by performing atmospheric pressure plasma treatment on the surface of the molded body that is a resin material. Even so, there is still room for improvement in adhesion, and further excellent adhesion is required.
 本開示は、上記事情に鑑み、樹脂部材と該樹脂部材に直に接するゴム部材との接着性に優れた樹脂ゴム複合体、前記樹脂ゴム複合体を有するタイヤ、及び前記樹脂ゴム複合体の製造方法を提供することを課題とする。 In view of the above circumstances, the present disclosure provides a resin rubber composite excellent in adhesiveness between a resin member and a rubber member in direct contact with the resin member, a tire having the resin rubber composite, and manufacture of the resin rubber composite. It is an object to provide a method.
 本開示の要旨は以下の通りである。
<1>
 プラズマ処理による表面処理が施された処理済表面を有する樹脂部材と、
 前記樹脂部材における前記処理済表面に接し、シラノール基を有する充填剤を含むゴム部材と、
 を有する樹脂ゴム複合体。
The gist of the present disclosure is as follows.
<1>
A resin member having a treated surface subjected to a surface treatment by plasma treatment;
A rubber member in contact with the treated surface of the resin member and containing a filler having a silanol group;
A resin rubber composite having:
 本開示によれば、樹脂部材と該樹脂部材に直に接するゴム部材との接着性に優れた樹脂ゴム複合体、前記樹脂ゴム複合体を有するタイヤ、及び前記樹脂ゴム複合体の製造方法を提供することができる。 According to the present disclosure, a resin rubber composite excellent in adhesiveness between a resin member and a rubber member in direct contact with the resin member, a tire having the resin rubber composite, and a method for manufacturing the resin rubber composite are provided. can do.
本実施形態に係るタイヤを示すタイヤ断面図である。It is a tire sectional view showing the tire concerning this embodiment. 本実施形態に係る別の態様のタイヤをタイヤ幅方向に沿って切断した切断面の片側を示すタイヤ半断面図である。It is a tire half sectional view showing one side of a cut surface which cut a tire of another mode concerning this embodiment along a tire width direction. 本実施形態におけるビードコアの一形態を示す、ビードワイヤーの長さ方向に対する垂直切断面の模式図であるIt is a schematic diagram of the perpendicular | vertical cut surface with respect to the length direction of a bead wire which shows one form of the bead core in this embodiment. 本実施形態におけるビードコアの他の形態を示す、ビードワイヤーの長さ方向に対する垂直切断面の模式図であるIt is a schematic diagram of the perpendicular | vertical cut surface with respect to the length direction of a bead wire which shows the other form of the bead core in this embodiment.
 以下、本開示の具体的な実施形態について詳細に説明する。ただし、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, specific embodiments of the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present disclosure.
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
<樹脂ゴム複合体>
 本実施形態に係る樹脂ゴム複合体は、樹脂部材と、樹脂部材に接するゴム部材と、を有する。
 樹脂部材は、プラズマ処理による表面処理が施された処理済表面を有する。
 ゴム部材は、前記樹脂部材における前記処理済表面に接し、かつシラノール基を有する充填剤を含む。
<Resin rubber composite>
The resin rubber composite according to the present embodiment includes a resin member and a rubber member in contact with the resin member.
The resin member has a treated surface that has been subjected to a surface treatment by plasma treatment.
The rubber member includes a filler that contacts the treated surface of the resin member and has a silanol group.
 近年、軽量化、成形容易性、リサイクル等の観点から、タイヤ等の分野において樹脂部材を用いることが検討されている。なお、こうした樹脂部材はゴム部材と接触する位置に配置されることがあるが、樹脂部材とゴム部材とでは、材料の違いから間に接着剤(たとえば有機溶剤系の接着剤)を設けて接着性を高めることで、界面剥離等の回避が図られている。
 しかし、有機溶剤系の接着剤を使うと塗膜形成後に溶剤を揮発させる必要があり、乾燥工程に時間を要する。また、作業環境面から排気設備等の設置が求められることもあり、製造面の簡易化、コストの低減等の観点で改良の余地がある。
 そのため、樹脂部材とゴム部材とが接するように配置された樹脂ゴム複合体において、接着剤を介さずに両者が直に接した状態であっても、両者間での優れた接着性を得ることが望まれている。
In recent years, the use of resin members in the fields of tires and the like has been studied from the viewpoints of weight reduction, ease of molding, recycling, and the like. Such a resin member may be disposed at a position in contact with the rubber member. However, an adhesive (for example, an organic solvent-based adhesive) is provided between the resin member and the rubber member due to the difference in material. By improving the property, avoidance of interfacial peeling or the like is achieved.
However, when an organic solvent-based adhesive is used, it is necessary to volatilize the solvent after forming the coating film, and the drying process takes time. In addition, installation of exhaust facilities and the like may be required from the viewpoint of the work environment, and there is room for improvement in terms of simplification of manufacturing and cost reduction.
Therefore, in the resin rubber composite disposed so that the resin member and the rubber member are in contact with each other, excellent adhesion between the two can be obtained even if both are in direct contact without using an adhesive. Is desired.
 これに対し、本発明者らは、樹脂部材に対してプラズマ処理による表面処理を施すと共に、ゴム部材に対してシラノール基を有する充填剤を含有させ、このゴム部材を樹脂部材における処理済みの表面に接するよう配置することで、樹脂部材とゴム部材との接着性が良好になることを見出した。これは、表面処理により活性化された樹脂部材の表面と、ゴム部材に含まれる充填剤のシラノール基との相互作用により、接着性が向上したものと推察される。 On the other hand, the present inventors perform a surface treatment by plasma treatment on the resin member and contain a filler having a silanol group in the rubber member, and the rubber member is treated with the treated surface of the resin member. It has been found that the adhesiveness between the resin member and the rubber member is improved by disposing it in contact with the resin member. This is presumed that the adhesion is improved by the interaction between the surface of the resin member activated by the surface treatment and the silanol group of the filler contained in the rubber member.
 以上により、前記の構成を備える本実施形態に係る樹脂ゴム複合体によれば、接着剤を介さずとも、樹脂部材とゴム部材との間での優れた接着性が得られる。 As described above, according to the resin rubber composite according to the present embodiment having the above-described configuration, excellent adhesiveness between the resin member and the rubber member can be obtained without using an adhesive.
 次いで、本実施形態に係る樹脂ゴム複合体の構成について詳述する。 Next, the configuration of the resin rubber composite according to this embodiment will be described in detail.
 本実施形態に係る樹脂ゴム複合体は、樹脂部材と、この樹脂部材に接するゴム部材と、を有する。なお、さらにこのゴム部材と接する第2ゴム部材を有する態様であってもよい。 The resin rubber composite according to the present embodiment includes a resin member and a rubber member in contact with the resin member. In addition, the aspect which has the 2nd rubber member which touches this rubber member may be sufficient.
 ここで、本実施形態に係る樹脂ゴム複合体を製造する方法は、特に限定されるものではないが、例えば、プラズマ処理による表面処理を樹脂部材における表面の少なくとも一部に施す表面処理工程と、樹脂部材における表面処理が施された表面に、シラノール基を有する充填剤を含むゴム部材が接するよう配置し、加熱して樹脂部材とゴム部材とを接着する接着工程と、を有する製造方法により製造することができる。
 なお、本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その目的が達成されるものであれば、当該工程も本用語に含まれる。
Here, the method for producing the resin rubber composite according to the present embodiment is not particularly limited, for example, a surface treatment step of performing a surface treatment by plasma treatment on at least a part of the surface of the resin member; Manufactured by a production method having a bonding step in which a rubber member containing a filler having a silanol group is in contact with a surface subjected to a surface treatment in a resin member, and the resin member and the rubber member are bonded by heating. can do.
Note that in this specification, the term “process” includes not only an independent process but also a process that can be clearly distinguished from other processes as long as the purpose is achieved. Included in this term.
 (用途)
 本実施形態に係る樹脂ゴム複合体は、樹脂部材及びゴム部材が用いられる種々の分野に適用され、例えばタイヤ、防振ゴム、ゴムホース、ゴム樹脂複合型ホース、ベルト、ゴムクローラ、ゴルフボール、ベローズ、免震ゴム、シーリング材、コーキング材、自転車等の分野が挙げられる。
(Use)
The resin rubber composite according to the present embodiment is applied to various fields in which a resin member and a rubber member are used. , Seismic isolation rubber, sealing materials, caulking materials, bicycles and other fields.
 なお、樹脂ゴム複合体がタイヤに用いられる場合、樹脂部材及びゴム部材の組合せとしては、例えば以下の組合せが挙げられる。
 ・樹脂部材としてのベルト層と、ゴム部材としてのトレッド、タイヤ骨格体、及びベルト層の表面に接着されたゴムシートから選択される少なくとも1種の部材と、の組合せ。
 ・樹脂部材としてのビード部材と、ゴム部材としてのタイヤ骨格体、及びビード部材の表面に接着されたゴムシートから選択される少なくとも1種の部材と、の組合せ。
 ・樹脂部材としてのタイヤ骨格体と、ゴム部材としてのトレッド、ベルト層、ビード部材、及びタイヤ骨格体の表面に接着されたゴムシートから選択される少なくとも1種の部材と、の組合せ。
 ・樹脂部材としてのベルトコードと、ゴム部材としてのベルトコードを被覆するコード被覆層、及び前記ベルトコードの表面に接着されたゴムシートから選択される少なくとも1種の部材と、の組合せ(つまりベルト層が樹脂ゴム複合体である)。
 ・樹脂部材としてのビードワイヤーと、ゴム部材としてのビードワイヤーを被覆するワイヤー被覆層、及び前記ビードワイヤーの表面に接着されたゴムシートから選択される少なくとも1種の部材と、の組合せ(つまりビードコアが樹脂ゴム複合体である)。
 なお、上記の「ゴム部材としてのタイヤ骨格体」は、ゴム部材に相当するカーカス(例えば複数のワイヤーの周囲がゴムで被覆されたカーカスプライのみからなるカーカス)等のタイヤの骨格を成す部材に置き替えてもよい。
In addition, when the resin rubber composite is used for a tire, examples of the combination of the resin member and the rubber member include the following combinations.
A combination of a belt layer as a resin member and at least one member selected from a tread as a rubber member, a tire skeleton, and a rubber sheet bonded to the surface of the belt layer.
A combination of a bead member as a resin member, a tire skeleton as a rubber member, and at least one member selected from a rubber sheet bonded to the surface of the bead member.
A combination of a tire skeleton as a resin member and at least one member selected from a tread as a rubber member, a belt layer, a bead member, and a rubber sheet bonded to the surface of the tire skeleton.
A combination of a belt cord as a resin member, a cord covering layer covering the belt cord as a rubber member, and at least one member selected from a rubber sheet bonded to the surface of the belt cord (that is, a belt) The layer is a resin rubber composite).
A combination of a bead wire as a resin member, a wire coating layer covering the bead wire as a rubber member, and at least one member selected from a rubber sheet bonded to the surface of the bead wire (that is, a bead core) Is a resin rubber composite).
The above-mentioned “tire frame as a rubber member” is a member constituting a tire frame such as a carcass corresponding to a rubber member (for example, a carcass made only of a carcass ply in which a plurality of wires are covered with rubber). It may be replaced.
 特に、樹脂ゴム複合体が樹脂部材、樹脂部材と接するゴム部材、及びこのゴム部材と接する第2ゴム部材を有する態様としては、例えば以下の組合せが挙げられる。
 ・樹脂部材としてのベルト層と、ゴム部材としてのゴムシートと、第2ゴム部材としてのトレッド、タイヤ骨格体、及びサイドゴムから選択される少なくとも1種の部材と、の組合せ。
 ・樹脂部材としてのビード部材と、ゴム部材としてのゴムシートと、第2ゴム部材としてのタイヤ骨格体、及びサイドゴムから選択される少なくとも1種の部材と、の組合せ。
 ・樹脂部材としてのタイヤ骨格体と、ゴム部材としてのゴムシートと、第2ゴム部材としてのトレッド、ベルト層、ビード部材、及びサイドゴムから選択される少なくとも1種の部材と、の組合せ。
 ・樹脂部材としてのベルトコードと、ゴム部材としてのゴムシートと、第2ゴム部材としてのコード被覆層と、の組合せ(つまりベルト層が樹脂ゴム複合体である)。
 ・樹脂部材としてのビードワイヤーと、ゴム部材としてのゴムシートと、第2ゴム部材としてのワイヤー被覆層と、の組合せ(つまりビードコアが樹脂ゴム複合体である)。
 なお、上記の「第2ゴム部材としてのタイヤ骨格体」は、第2ゴム部材に相当するカーカス(例えば複数のワイヤーの周囲がゴムで被覆されたカーカスプライのみからなるカーカス)等のタイヤの骨格を成す部材に置き替えてもよい。
In particular, as an aspect in which the resin rubber composite has a resin member, a rubber member in contact with the resin member, and a second rubber member in contact with the rubber member, for example, the following combinations may be mentioned.
A combination of a belt layer as a resin member, a rubber sheet as a rubber member, and at least one member selected from a tread as a second rubber member, a tire skeleton, and a side rubber.
A combination of a bead member as a resin member, a rubber sheet as a rubber member, a tire skeleton as a second rubber member, and at least one member selected from side rubber.
A combination of a tire skeleton as a resin member, a rubber sheet as a rubber member, and at least one member selected from a tread, a belt layer, a bead member, and a side rubber as a second rubber member.
A combination of a belt cord as a resin member, a rubber sheet as a rubber member, and a cord covering layer as a second rubber member (that is, the belt layer is a resin rubber composite).
A combination of a bead wire as a resin member, a rubber sheet as a rubber member, and a wire coating layer as a second rubber member (that is, the bead core is a resin rubber composite).
The “tire frame as the second rubber member” is a tire frame such as a carcass corresponding to the second rubber member (for example, a carcass made only of a carcass ply in which a plurality of wires are covered with rubber). You may replace with the member which comprises.
 樹脂部材、ゴム部材、さらに備える場合には第2ゴム部材を有するタイヤの構成については、後述する。 The structure of the tire having the resin member, the rubber member, and the second rubber member when further provided will be described later.
 ここで、本実施形態に係る樹脂ゴム複合体を構成する、樹脂部材、ゴム部材、及び第2ゴム部材について、それぞれ詳しく説明する。 Here, the resin member, the rubber member, and the second rubber member constituting the resin rubber composite according to the present embodiment will be described in detail.
(樹脂部材)
 樹脂部材は、プラズマ処理による表面処理が施された処理済表面を有する。樹脂部材における処理済表面は上記表面処理が施されることで活性化され、これによってシラノール基を有する充填剤を含むゴム部材との接着性が向上する。
(Resin member)
The resin member has a treated surface that has been subjected to a surface treatment by plasma treatment. The treated surface of the resin member is activated by being subjected to the above-described surface treatment, whereby adhesion to a rubber member containing a filler having a silanol group is improved.
 ・導入される基
 なお、樹脂部材における処理済表面は、上記の表面処理によってシラノール基との相互作用を生じる活性基が導入されることが好ましい。
 例えば、プラズマ処理による表面処理によって導入される活性基としては、ペルオキシラジカル(-O-O・)、ヒドロペルオキシド基(-O-OH)、カルボニル基(-C(=O)-)、アルデヒド基(-C(=O)-H)、カルボキシ基(-C(=O)-OH)、水酸基(-OH)等の酸化基等が挙げられる。
 これらの中でも、接着性向上の観点から、ペルオキシラジカル(-O-O・)、ヒドロペルオキシド基(-O-OH)、カルボニル基(-C(=O)-)、アルデヒド基(-C(=O)-H)、カルボキシ基(-C(=O)-OH)、及び水酸基(-OH)から選択される少なくとも一種が導入されることがより好ましい。
-Group to be introduced In addition, it is preferable that the treated surface in a resin member introduce | transduces the active group which produces interaction with a silanol group by said surface treatment.
For example, active groups introduced by surface treatment by plasma treatment include peroxy radicals (—O—O.), Hydroperoxide groups (—O—OH), carbonyl groups (—C (═O) —), aldehyde groups Examples thereof include an oxidizing group such as (—C (═O) —H), a carboxy group (—C (═O) —OH), and a hydroxyl group (—OH).
Among these, from the viewpoint of improving adhesion, a peroxy radical (—O—O.), A hydroperoxide group (—O—OH), a carbonyl group (—C (═O) —), an aldehyde group (—C (= More preferably, at least one selected from O) —H), a carboxy group (—C (═O) —OH), and a hydroxyl group (—OH) is introduced.
 ・水の接触角
 なお、表面処理が施された樹脂部材の処理済表面は、接着性向上の観点から、その水の接触角が20°以上98°以下であることが好ましく、50°以上96°以下であることがより好ましく、60°以上95°以下であることがさらに好ましい。
-Contact angle of water The treated surface of the resin member subjected to the surface treatment preferably has a contact angle of water of 20 ° or more and 98 ° or less, and 50 ° or more and 96 from the viewpoint of improving adhesiveness. More preferably, it is 60 ° or less and more preferably 60 ° or more and 95 ° or less.
 樹脂部材の処理済表面における水の接触角は、表面処理が施された後の樹脂部材の処理済表面に対し、25℃において純水を滴下し、協和界面科学(株)製の自動極小接触角計(MCA-3)を用いて液滴の形状を観察することにより測定する。 The contact angle of water on the treated surface of the resin member is such that pure water is dropped at 25 ° C. on the treated surface of the resin member after the surface treatment, and automatic minimum contact made by Kyowa Interface Science Co., Ltd. It is measured by observing the shape of the droplet using a goniometer (MCA-3).
 ・表面処理方法(プラズマ処理方法)
 次いで、樹脂部材の表面に施される表面処理方法について説明する。
・ Surface treatment method (plasma treatment method)
Next, a surface treatment method applied to the surface of the resin member will be described.
 樹脂部材の表面に表面処理としてプラズマ処理を施す際の条件は、処理後の表面が活性される条件であれば特に制限はなく、公知の方法によって行い得る。つまり、プラズマを発生させることが可能な条件を適宜採用することができる。 The conditions for performing the plasma treatment as the surface treatment on the surface of the resin member are not particularly limited as long as the surface after the treatment is activated, and can be performed by a known method. In other words, conditions capable of generating plasma can be appropriately employed.
 なお、プラズマ処理における環境(つまり樹脂部材が設置されかつプラズマが発生される環境)の温度は、接着性向上の観点及びプラズマ処理の簡易化の観点から、0℃以上240℃以下が好ましく、10℃以上220℃以下がより好ましく、15℃以上200℃以下がさらに好ましい。
 また、プラズマ処理における環境の気圧は、接着性向上の観点及びプラズマ処理の簡易化の観点から、5hPa以上2000hPa以下が好ましく、10hPa以上1500hPa以下がより好ましく、10hPa以上1300hPa以下がさらに好ましい。
The temperature of the environment in plasma processing (that is, the environment in which the resin member is installed and plasma is generated) is preferably 0 ° C. or higher and 240 ° C. or lower from the viewpoint of improving adhesiveness and simplifying the plasma processing. More preferably, the temperature is from 150 ° C. to 220 ° C., more preferably from 15 ° C. to 200 ° C.
Further, the atmospheric pressure in the plasma treatment is preferably 5 hPa or more and 2000 hPa or less, more preferably 10 hPa or more and 1500 hPa or less, and further preferably 10 hPa or more and 1300 hPa or less, from the viewpoint of improving adhesiveness and simplifying the plasma treatment.
 プラズマの発生には、例えば、印加電圧の周波数が50Hz以上2.45GHz以下の高周波電源を用いることが好ましい。
 また、単位面積当たりの出力電力(つまり照射密度)は、例えば1W/cm以上、好ましくは3W/cm以上、より好ましくは5W/cm以上とすることがよく、一方上限は特に限定されないが、例えば50W/cm以下でとすることがよい。
 また、パルス出力を使用する場合は、1kHz以上50kHz以下のパルス変調周波数(好ましくは5kHz以上30kHz以下)、5%以上99%以下のパルスデューティ(好ましくは15%以上80%以下、より好ましくは25%以上70%以下)とするとよい。
 対向電極には、片側が誘電体で被覆された円筒状又は平板状の金属を用いることが好ましい。対向電極と樹脂部材との距離は、特に限定されないが、10mm以下が好ましく、より好ましくは3mm以下、更に好ましくは1.2mm以下、特に好ましくは1mm以下である。距離の下限は特に限定されないが、例えば0.5mm以上である。
For the generation of plasma, for example, it is preferable to use a high-frequency power source having an applied voltage frequency of 50 Hz to 2.45 GHz.
The output power per unit area (that is, the irradiation density) is, for example, 1 W / cm 2 or more, preferably 3 W / cm 2 or more, more preferably 5 W / cm 2 or more, while the upper limit is not particularly limited. However, it is good to set it as 50 W / cm < 2 > or less, for example.
When pulse output is used, a pulse modulation frequency of 1 kHz to 50 kHz (preferably 5 kHz to 30 kHz), a pulse duty of 5% to 99% (preferably 15% to 80%, more preferably 25). % To 70%).
The counter electrode is preferably made of a cylindrical or flat metal whose one side is coated with a dielectric. The distance between the counter electrode and the resin member is not particularly limited, but is preferably 10 mm or less, more preferably 3 mm or less, still more preferably 1.2 mm or less, and particularly preferably 1 mm or less. Although the minimum of distance is not specifically limited, For example, it is 0.5 mm or more.
 プラズマ処理が施される時間(つまり照射時間)は、接着性向上の観点及びプラズマ処理の簡易化の観点から、2秒以上30分以下が好ましく、30秒以上20分以下がより好ましく、1分以上10分以下がさらに好ましい。 The time during which the plasma treatment is performed (that is, the irradiation time) is preferably 2 seconds or longer and 30 minutes or shorter, more preferably 30 seconds or longer and 20 minutes or shorter, from the viewpoint of improving adhesiveness and simplifying the plasma processing, and more preferably 1 minute More preferably, it is 10 minutes or less.
 プラズマを発生させるために用いるガスとしては、例えば、ヘリウム、アルゴン、ネオンなどの希ガス、酸素、窒素、水素、アンモニアなどの反応性ガスを用いることができる。即ち、本実施形態で用いるガスとしては、非重合性ガスのみを用いるのが好ましい。これらのガスは、1種又は2種以上の希ガスのみを用いてもよいし、1種又は2種以上の希ガスと適量の1種又は2種以上の反応性ガスの混合ガスを用いてもよい。
 プラズマの発生は、チャンバーを用いて上述のガス雰囲気を制御した条件で行ってもよいし、例えば希ガスを電極部にフローさせる形態をとる完全大気開放条件で行ってもよい。
As a gas used for generating plasma, for example, a rare gas such as helium, argon, or neon, or a reactive gas such as oxygen, nitrogen, hydrogen, or ammonia can be used. That is, it is preferable to use only non-polymerizable gas as the gas used in the present embodiment. These gases may use only 1 type, or 2 or more types of noble gases, or use the mixed gas of 1 type, or 2 types or more of noble gases, and 1 type, or 2 or more types of reactive gas of appropriate amount. Also good.
The generation of the plasma may be performed under the above-described conditions in which the gas atmosphere is controlled using a chamber, or may be performed under a completely open atmosphere condition in which, for example, a rare gas is flowed to the electrode portion.
 ・樹脂
 本実施形態における樹脂部材には樹脂が含まれる。
-Resin Resin is contained in the resin member in this embodiment.
 樹脂部材は、樹脂を主成分として含むことが好ましい。具体的には、樹脂部材の総量に対して樹脂の含有率が、50質量%以上が好ましく、60質量%以上がより好ましく、75質量%以上がさらに好ましい。 The resin member preferably contains a resin as a main component. Specifically, the resin content is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 75% by mass or more with respect to the total amount of the resin members.
 なお、本明細書において「樹脂」とは、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。
 「熱可塑性樹脂」とは、温度上昇とともに材料が軟化して流動し、冷却すると比較的硬く強度のある状態になるが、ゴム状弾性を有しない高分子化合物を意味する。
 「熱可塑性エラストマー」とは、ハードセグメント及びソフトセグメントを有する共重合体を意味する。なお、ハードセグメントとは相対的にソフトセグメントよりも硬い成分を指し、塑性変形を防止する架橋ゴムの架橋点の役目を果たす分子拘束成分であることが好ましい。一方、ソフトセグメントとは相対的にハードセグメントよりも柔らかい成分を指し、ゴム弾性を示す柔軟性成分であることが好ましい。
 熱可塑性エラストマーとして具体的には、例えば、結晶性で融点の高いハードセグメント、又は高い凝集力のハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーと、を有する共重合体が挙げられる。また、熱可塑性エラストマーとしては、例えば、温度上昇とともに材料が軟化して流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する高分子化合物が挙げられる。なお、上記ハードセグメントは、例えば、主骨格に芳香族基若しくは脂環式基等の剛直な基を有する構造、又は分子間水素結合若しくはπ-π相互作用による分子間パッキングを可能にする構造等のセグメントが挙げられる。また、ソフトセグメントは、例えば、主鎖に長鎖の基(例えば長鎖のアルキレン基等)を有し、分子回転の自由度が高く、伸縮性を有する構造のセグメントが挙げられる。
In the present specification, “resin” is a concept including a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, and does not include vulcanized rubber.
The term “thermoplastic resin” means a polymer compound that softens and flows as the temperature rises and becomes relatively hard and strong when cooled, but does not have rubbery elasticity.
“Thermoplastic elastomer” means a copolymer having a hard segment and a soft segment. The hard segment refers to a component that is relatively harder than the soft segment, and is preferably a molecular constraining component that serves as a crosslinking point of the crosslinked rubber that prevents plastic deformation. On the other hand, the soft segment refers to a component that is relatively softer than the hard segment, and is preferably a flexible component that exhibits rubber elasticity.
Specifically, as the thermoplastic elastomer, for example, a crystalline polymer having a high melting point hard segment or a polymer constituting a hard segment having a high cohesive force, and a polymer constituting an amorphous soft segment having a low glass transition temperature, And a copolymer having. The thermoplastic elastomer includes, for example, a polymer compound that softens and flows as the temperature rises, becomes relatively hard and strong when cooled, and has rubbery elasticity. The hard segment is, for example, a structure having a rigid group such as an aromatic group or an alicyclic group in the main skeleton, or a structure enabling intermolecular packing by intermolecular hydrogen bonding or π-π interaction, etc. Can be mentioned. The soft segment includes, for example, a segment having a long chain group (for example, a long chain alkylene group) in the main chain, a high degree of molecular rotation freedom, and a stretchable structure.
 樹脂材料に含まれる熱可塑性樹脂としては、例えば、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、ポリオレフィン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂等を例示することができる。 Examples of the thermoplastic resin contained in the resin material include polyester-based thermoplastic resins, polyamide-based thermoplastic resins, polystyrene-based thermoplastic resins, polyurethane-based thermoplastic resins, polyolefin-based thermoplastic resins, and vinyl chloride-based thermoplastic resins. Can be illustrated.
 樹脂材料に含まれる熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるポリエステル系熱可塑性エラストマー(TPEE)、ポリアミド系熱可塑性エラストマー(TPA)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリオレフィン系熱可塑性エラストマー(TPO)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。 Examples of the thermoplastic elastomer contained in the resin material include polyester-based thermoplastic elastomer (TPEE), polyamide-based thermoplastic elastomer (TPA), polystyrene-based thermoplastic elastomer (TPS), and polyurethane-based thermoplastic as defined in JIS K6418. Examples include elastomers (TPU), polyolefin-based thermoplastic elastomers (TPO), crosslinked thermoplastic rubber (TPV), and other thermoplastic elastomers (TPZ).
 樹脂材料に含まれる熱硬化性樹脂としては、例えば、フェノール系熱硬化性樹脂、ユリア系熱硬化性樹脂、メラミン系熱硬化性樹脂、エポキシ系熱硬化性樹脂等が挙げられる。 Examples of the thermosetting resin contained in the resin material include phenol-based thermosetting resins, urea-based thermosetting resins, melamine-based thermosetting resins, and epoxy-based thermosetting resins.
 樹脂部材において、これらは単独で又は2種以上を組み合わせて用いてもよい。
 これらの中でも、樹脂材料に含まれる樹脂としては、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、ポリアミド系熱可塑性樹脂、ポリスチレン系熱可塑性エラストマー、ポリスチレン系熱可塑性樹脂、ポリウレタン系熱可塑性エラストマー、ポリウレタン系熱可塑性樹脂、ポリオレフィン系熱可塑性エラストマー、又はポリオレフィン系熱可塑性樹脂が好ましく、さらにはポリエステル系熱可塑性エラストマー、又はポリエステル系熱可塑性樹脂がより好ましい。
In a resin member, you may use these individually or in combination of 2 or more types.
Among these, the resin contained in the resin material includes polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, polyamide-based thermoplastic elastomer, polyamide-based thermoplastic resin, polystyrene-based thermoplastic elastomer, polystyrene-based thermoplastic resin, polyurethane. A thermoplastic thermoplastic elastomer, a polyurethane thermoplastic resin, a polyolefin thermoplastic elastomer, or a polyolefin thermoplastic resin is preferable, and a polyester thermoplastic elastomer or a polyester thermoplastic resin is more preferable.
 [熱可塑性エラストマー]
 -ポリエステル系熱可塑性エラストマー-
 ポリエステル系熱可塑性エラストマーとしては、例えば、少なくともポリエステルが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
[Thermoplastic elastomer]
-Polyester thermoplastic elastomer-
As the polyester-based thermoplastic elastomer, for example, at least a polyester is crystalline and a hard segment having a high melting point is formed, and another polymer (eg, polyester or polyether) is amorphous and has a low glass transition temperature. The material which forms is mentioned.
 ハードセグメントを形成するポリエステルとしては、例えば芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。芳香族ポリエステルは、好ましくは、テレフタル酸及びジメチルテレフタレートの少なくとも1種と、1,4-ブタンジオールと、から誘導されるポリブチレンテレフタレートである。また、芳香族ポリエステルは、例えば、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸、5-スルホイソフタル酸、若しくはこれらのエステル形成性誘導体等のジカルボン酸成分と、分子量300以下のジオール(例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコール等の脂肪族ジオール;1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロール等の脂環式ジオール;キシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシフェニル)プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’-ジヒドロキシ-p-ターフェニル、4,4’-ジヒドロキシ-p-クオーターフェニル等の芳香族ジオール;等)のジオール成分と、から誘導されるポリエステルであってもよい。又は、これらのジカルボン酸成分及びジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分、多官能ヒドロキシ成分等を5モル%以下の範囲で共重合することも可能である。
 ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
As polyester which forms a hard segment, aromatic polyester can be used, for example. The aromatic polyester can be formed, for example, from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol. The aromatic polyester is preferably polybutylene terephthalate derived from at least one of terephthalic acid and dimethyl terephthalate and 1,4-butanediol. The aromatic polyester includes, for example, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5 A dicarboxylic acid component such as sulfoisophthalic acid or an ester-forming derivative thereof and a diol having a molecular weight of 300 or less (for example, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc. Aliphatic diols such as: 1,4-cyclohexanedimethanol, tricyclodecane dimethylol and other alicyclic diols; xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2- Bi [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4′- And diol components such as aromatic diols such as dihydroxy-p-terphenyl and 4,4′-dihydroxy-p-quarterphenyl; and the like. Alternatively, it may be a copolyester in which two or more of these dicarboxylic acid components and diol components are used in combination. It is also possible to copolymerize a trifunctional or higher polyfunctional carboxylic acid component, polyfunctional oxyacid component, polyfunctional hydroxy component and the like in a range of 5 mol% or less.
Examples of the polyester forming the hard segment include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like, and polybutylene terephthalate is preferable.
 また、ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル、脂肪族ポリエーテル等が挙げられる。
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランとの共重合体等が挙げられる。
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。
 これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られるポリエステルブロック共重合体の弾性特性の観点から、ソフトセグメントを形成するポリマーとしては、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペート等が好ましい。
Moreover, as a polymer which forms a soft segment, aliphatic polyester, aliphatic polyether, etc. are mentioned, for example.
Aliphatic polyethers include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, copolymers of ethylene oxide and propylene oxide, poly (propylene oxide) And ethylene oxide addition polymer of glycol, and a copolymer of ethylene oxide and tetrahydrofuran.
Examples of the aliphatic polyester include poly (ε-caprolactone), polyenantlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate.
Among these aliphatic polyethers and aliphatic polyesters, poly (tetramethylene oxide) glycol, poly (propylene oxide) glycol are polymers that form soft segments from the viewpoint of the elastic properties of the resulting polyester block copolymer. Preferred are ethylene oxide adducts, poly (ε-caprolactone), polybutylene adipate, polyethylene adipate and the like.
 また、ソフトセグメントを形成するポリマーの数平均分子量は、強靱性及び低温柔軟性の観点から、300~6000が好ましい。さらに、ハードセグメント(x)とソフトセグメント(y)との質量比(x:y)は、成形性の観点から、99:1~20:80が好ましく、98:2~30:70が更に好ましい。 The number average molecular weight of the polymer forming the soft segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility. Furthermore, the mass ratio (x: y) between the hard segment (x) and the soft segment (y) is preferably 99: 1 to 20:80, more preferably 98: 2 to 30:70, from the viewpoint of moldability. .
 上述のハードセグメントとソフトセグメントとの組合せとしては、例えば、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、上述のハードセグメントとソフトセグメントとの組合せとしては、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントが脂肪族ポリエーテルである組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントがポリ(エチレンオキシド)グリコールである組み合わせが更に好ましい。 Examples of the combination of the hard segment and the soft segment described above include, for example, combinations of the hard segment and the soft segment mentioned above. Among these, the combination of the hard segment and the soft segment described above is preferably a combination in which the hard segment is polybutylene terephthalate, the soft segment is an aliphatic polyether, and the hard segment is polybutylene terephthalate. More preferred is a combination wherein is poly (ethylene oxide) glycol.
 ポリエステル系熱可塑性エラストマーの市販品としては、例えば、東レ・デュポン(株)製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047N、4767N等)、東洋紡(株)製の「ペルプレン」シリーズ(例えば、P30B、P40B、P40H、P55B、P70B、P150B、P280B、P450B、P150M、S1001、S2001、S5001、S6001、S9001等)等を用いることができる。 Examples of commercially available polyester-based thermoplastic elastomers include “Hytrel” series (for example, 3046, 5557, 6347, 4047N, 4767N, etc.) manufactured by Toray DuPont Co., Ltd., and “Perprene” series manufactured by Toyobo Co., Ltd. (For example, P30B, P40B, P40H, P55B, P70B, P150B, P280B, P450B, P150M, S1001, S2001, S5001, S6001, S9001, etc.) can be used.
 ポリエステル系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。 The polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer that forms a hard segment and a polymer that forms a soft segment by a known method.
 -ポリアミド系熱可塑性エラストマー-
 ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを形成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーと、を有する共重合体のみからなる熱可塑性の樹脂材料であって、前記ハードセグメントを形成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。
 ポリアミド系熱可塑性エラストマーとしては、例えば、少なくともポリアミドが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル、ポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いて形成されてもよい。
 ポリアミド系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004-346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
-Polyamide thermoplastic elastomer-
The polyamide-based thermoplastic elastomer is a thermoplastic polymer composed only of a copolymer having a crystalline polymer having a high melting point and a non-crystalline polymer having a low glass transition temperature. It means a resin material having an amide bond (—CONH—) in the main chain of the polymer forming the hard segment.
As the polyamide-based thermoplastic elastomer, for example, at least a polyamide is a crystalline hard crystalline segment with a high melting point, and other polymers (for example, polyester, polyether, etc.) are amorphous and have a soft glass transition temperature low soft segment. The material which forms is mentioned. The polyamide-based thermoplastic elastomer may be formed using a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment.
Specific examples of polyamide-based thermoplastic elastomers include amide-based thermoplastic elastomers (TPA) defined in JIS K6418: 2007, polyamide-based elastomers described in JP-A No. 2004-346273, and the like. it can.
 ポリアミド系熱可塑性エラストマーにおいて、ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。 In the polyamide-based thermoplastic elastomer, examples of the polyamide forming the hard segment include polyamides produced by monomers represented by the following general formula (1) or general formula (2).
Figure JPOXMLDOC01-appb-C000001

 
 一般式(1)
[一般式(1)中、Rは、炭素数2~20の炭化水素の分子鎖(例えば炭素数2~20のアルキレン基)を表す。]
Figure JPOXMLDOC01-appb-C000001


General formula (1)
[In General Formula (1), R 1 represents a molecular chain of a hydrocarbon having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms). ]
Figure JPOXMLDOC01-appb-C000002

 
 一般式(2)
[一般式(2)中、Rは、炭素数3~20の炭化水素の分子鎖(例えば炭素数3~20のアルキレン基)を表す。]
Figure JPOXMLDOC01-appb-C000002


General formula (2)
[In the general formula (2), R 2 represents a hydrocarbon molecular chain having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms). ]
 一般式(1)中、Rとしては、炭素数3~18の炭化水素の分子鎖(例えば炭素数3~18のアルキレン基)が好ましく、炭素数4~15の炭化水素の分子鎖(例えば炭素数4~15のアルキレン基)が更に好ましく、炭素数10~15の炭化水素の分子鎖(例えば炭素数10~15のアルキレン基)が特に好ましい。
 また、一般式(2)中、Rとしては、炭素数3~18の炭化水素の分子鎖(例えば炭素数3~18のアルキレン基)が好ましく、炭素数4~15の炭化水素の分子鎖(例えば炭素数4~15のアルキレン基)が更に好ましく、炭素数10~15の炭化水素の分子鎖(例えば炭素数10~15のアルキレン基)が特に好ましい。
 一般式(1)又は一般式(2)で表されるモノマーとしては、ω-アミノカルボン酸又はラクタムが挙げられる。また、ハードセグメントを形成するポリアミドとしては、これらω-アミノカルボン酸又はラクタムの重縮合体、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
In general formula (1), R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms (for example, an alkylene group having 3 to 18 carbon atoms), and a hydrocarbon molecular chain having 4 to 15 carbon atoms (for example, (Alkylene group having 4 to 15 carbon atoms) is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms (for example, an alkylene group having 10 to 15 carbon atoms) is particularly preferable.
In the general formula (2), R 2 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms (eg, an alkylene group having 3 to 18 carbon atoms), and a hydrocarbon molecular chain having 4 to 15 carbon atoms. (For example, an alkylene group having 4 to 15 carbon atoms) is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms (for example, an alkylene group having 10 to 15 carbon atoms) is particularly preferable.
Examples of the monomer represented by the general formula (1) or the general formula (2) include ω-aminocarboxylic acid or lactam. Examples of the polyamide forming the hard segment include polycondensates of these ω-aminocarboxylic acids or lactams, and co-condensation polymers of diamines and dicarboxylic acids.
 ω-アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の炭素数5~20の脂肪族ω-アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε-カプロラクタム、ウデカンラクタム、ω-エナントラクタム、2-ピロリドン等の炭素数5~20の脂肪族ラクタム等を挙げることができる。
 ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、メタキシレンジアミン等の炭素数2~20の脂肪族ジアミン等のジアミン化合物を挙げることができる。
 また、ジカルボン酸は、HOOC-(R-COOH(R:炭素数3~20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2~20の脂肪族ジカルボン酸を挙げることができる。
 ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε-カプロラクタム、又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
Examples of the ω-aminocarboxylic acid include those having 5 to 20 carbon atoms such as 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like. Examples thereof include aliphatic ω-aminocarboxylic acids. Examples of the lactam include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ε-caprolactam, udecan lactam, ω-enantolactam, and 2-pyrrolidone.
Examples of the diamine include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, 2, 4 Examples thereof include diamine compounds such as aliphatic diamines having 2 to 20 carbon atoms such as trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, and metaxylenediamine.
The dicarboxylic acid can be represented by HOOC- (R 3 ) m —COOH (R 3 : a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1). For example, oxalic acid, succinic acid And aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid.
As the polyamide forming the hard segment, a polyamide obtained by ring-opening polycondensation of lauryl lactam, ε-caprolactam, or udecan lactam can be preferably used.
 また、ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテル等が挙げられる。具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。また、ポリエーテルの末端にアンモニア等を反応させることによって得られるポリエーテルジアミン等も用いることができる。
 ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
Moreover, as a polymer which forms a soft segment, polyester, polyether, etc. are mentioned, for example. Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and ABA type triblock polyether. These can be used alone or in combination of two or more. Moreover, polyether diamine etc. which are obtained by making ammonia etc. react with the terminal of polyether can also be used.
Here, the “ABA type triblock polyether” means a polyether represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003

 
 一般式(3)
[一般式(3)中、x及びzは、1~20の整数を表す。yは、4~50の整数を表す。]
Figure JPOXMLDOC01-appb-C000003


General formula (3)
[In general formula (3), x and z represent an integer of 1 to 20. y represents an integer of 4 to 50. ]
 一般式(3)において、x及びzは、それぞれ、1~18の整数が好ましく、1~16の整数がより好ましく、1~14の整数が更に好ましく、1~12の整数が特に好ましい。また、一般式(3)において、yは、5~45の整数が好ましく、6~40の整数がより好ましく、7~35の整数が更に好ましく、8~30の整数が特に好ましい。 In general formula (3), each of x and z is preferably an integer of 1 to 18, more preferably an integer of 1 to 16, still more preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12. In general formula (3), y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, still more preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ラウリルラクタムの開環重縮合体とポリエチレングリコールとの組合せ、ラウリルラクタムの開環重縮合体とポリプロピレングリコールとの組合せ、ラウリルラクタムの開環重縮合体とポリテトラメチレンエーテルグリコールとの組合せ、又はラウリルラクタムの開環重縮合体とABA型トリブロックポリエーテルとの組合せが好ましく、ラウリルラクタムの開環重縮合体とABA型トリブロックポリエーテルとの組合せがより好ましい。 As a combination of a hard segment and a soft segment, the combination of the hard segment and the soft segment mentioned above can be mentioned. Among these, combinations of the hard segment and the soft segment include a combination of a ring-opening polycondensate of lauryl lactam and polyethylene glycol, a combination of a ring-opening polycondensate of lauryl lactam and polypropylene glycol, and a ring opening of lauryl lactam. A combination of a polycondensate and a polytetramethylene ether glycol, or a ring-opening polycondensate of lauryl lactam and an ABA type triblock polyether is preferred, and a ring opening polycondensate of lauryl lactam and an ABA type triblock polyether The combination with is more preferable.
 ハードセグメントを形成するポリマー(つまりポリアミド)の数平均分子量は、溶融成形性の観点から、300~15000が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)の質量比(x:y)は、成形性の観点から、50:50~90:10が好ましく、50:50~80:20がより好ましい。 The number average molecular weight of the polymer forming the hard segment (that is, polyamide) is preferably 300 to 15000 from the viewpoint of melt moldability. The number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility. Furthermore, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 90:10, and more preferably 50:50 to 80:20, from the viewpoint of moldability.
 ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。 The polyamide-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
 ポリアミド系熱可塑性エラストマーの市販品としては、例えば、宇部興産(株)の「UBESTA XPA」シリーズ(例えば、XPA9068X1、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2XPA9044等)、ダイセル・エポニック(株)の「ベスタミド」シリーズ(例えば、E40-S3、E47-S1、E47-S3、E55-S1、E55-S3、EX9200、E50-R2等)等を用いることができる。 Examples of commercially available polyamide-based thermoplastic elastomers include UBE Kosan's “UBESTA XPA” series (for example, XPA9068X1, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044), Daicel Eponic Co., Ltd. “Vestamide” series (for example, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) can be used.
 -ポリスチレン系熱可塑性エラストマー
 ポリスチレン系熱可塑性エラストマーとしては、例えば、少なくともポリスチレンがハードセグメントを形成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法等で得られるものが好ましく用いられ、具体的には、アニオンリビング重合を持つポリスチレンが挙げられる。また、ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3-ジメチル-ブタジエン)等が挙げられる。
-Polystyrene-based thermoplastic elastomer As the polystyrene-based thermoplastic elastomer, for example, at least polystyrene forms a hard segment, and other polymers (for example, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, etc.) are not. Examples thereof include materials that form a soft segment having a crystallinity and a low glass transition temperature. As the polystyrene forming the hard segment, for example, those obtained by a known radical polymerization method, ionic polymerization method and the like are preferably used, and specifically, polystyrene having anion living polymerization can be mentioned. Examples of the polymer that forms the soft segment include polybutadiene, polyisoprene, poly (2,3-dimethyl-butadiene), and the like.
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ポリスチレンとポリブタジエンとの組合せ、又はポリスチレンとポリイソプレンとの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。 As a combination of a hard segment and a soft segment, the combination of the hard segment and the soft segment mentioned above can be mentioned. Among these, the combination of the hard segment and the soft segment is preferably a combination of polystyrene and polybutadiene or a combination of polystyrene and polyisoprene. Moreover, in order to suppress the unintended cross-linking reaction of the thermoplastic elastomer, the soft segment is preferably hydrogenated.
 ハードセグメントを形成するポリマー(つまりポリスチレン)の数平均分子量は、5000~500000が好ましく、10000~200000がより好ましい。
 また、ソフトセグメントを形成するポリマーの数平均分子量としては、5000~1000000が好ましく、10000~800000がより好ましく、30000~500000が更に好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)の体積比(x:y)は、成形性の観点から、5:95~80:20が好ましく、10:90~70:30がより好ましい。
The number average molecular weight of the polymer forming the hard segment (that is, polystyrene) is preferably from 5,000 to 500,000, more preferably from 10,000 to 200,000.
Further, the number average molecular weight of the polymer forming the soft segment is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 800,000, and even more preferably from 30,000 to 500,000. Furthermore, the volume ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, from the viewpoint of moldability.
 ポリスチレン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリスチレン系熱可塑性エラストマーとしては、例えば、スチレン-ブタジエン系共重合体[例えばSBS(ポリスチレン-ポリ(ブチレン)ブロック-ポリスチレン)、SEBS(ポリスチレン-ポリ(エチレン/ブチレン)ブロック-ポリスチレン)]、スチレン-イソプレン共重合体(ポリスチレン-ポリイソプレンブロック-ポリスチレン)、スチレン-プロピレン系共重合体[例えばSEP(ポリスチレン-(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン-ポリ(エチレン/プロピレン)ブロック-ポリスチレン)、SEEPS(ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)]等が挙げられる。
The polystyrene-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
Examples of the polystyrene-based thermoplastic elastomer include styrene-butadiene copolymers [eg, SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene- Isoprene copolymer (polystyrene-polyisoprene block-polystyrene), styrene-propylene copolymer [eg SEP (polystyrene- (ethylene / propylene) block), SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), SEEPS (polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene), SEB (polystyrene (ethylene / butylene) block)] and the like.
 ポリスチレン系熱可塑性エラストマーの市販品としては、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、H1062、H1082、H1141、H1221、H1272等)、(株)クラレ製の「SEBS」シリーズ(8007、8076等)、「SEPS」シリーズ(2002、2063等)等を用いることができる。 As a commercially available product of polystyrene-based thermoplastic elastomer, for example, “Tough Tech” series (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.) manufactured by Asahi Kasei Corporation, “SEBS” series (8007, 8076, etc.) and “SEPS” series (2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.
 -ポリウレタン系熱可塑性エラストマー-
 ポリウレタン系熱可塑性エラストマーとしては、例えば、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを形成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるポリウレタン系熱可塑性エラストマー(TPU)が挙げられる。ポリウレタン系熱可塑性エラストマーは、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
-Polyurethane thermoplastic elastomer-
As polyurethane-based thermoplastic elastomers, for example, at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical aggregation, and other polymers form a soft segment with a low glass transition temperature that is amorphous. Material.
Specific examples of the polyurethane-based thermoplastic elastomer include a polyurethane-based thermoplastic elastomer (TPU) defined in JIS K6418: 2007. The polyurethane-based thermoplastic elastomer can be represented as a copolymer including a soft segment including a unit structure represented by the following formula A and a hard segment including a unit structure represented by the following formula B.
Figure JPOXMLDOC01-appb-C000004

 
 [式中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。]
Figure JPOXMLDOC01-appb-C000004


[Wherein P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester. R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon. P ′ represents a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon. ]
 式A中、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルとしては、例えば、分子量500~5000のものを使用することができる。Pは、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジペート)ジオール、ポリ-ε-カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、ABA型トリブロックポリエーテル等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
In the formula A, as the long-chain aliphatic polyether or long-chain aliphatic polyester represented by P, for example, those having a molecular weight of 500 to 5000 can be used. P is derived from a diol compound containing a long-chain aliphatic polyether represented by P or a long-chain aliphatic polyester. Examples of such diol compounds include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene adipate) diol, poly-ε-caprolactone diol, poly (hexamethylene carbonate) having a molecular weight within the above range. Diol, ABA type triblock polyether, etc. are mentioned.
These can be used alone or in combination of two or more.
 式A及び式B中、Rは、Rで表される脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジイソシアネート化合物を用いて導入された部分構造である。Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2-エチレンジイソシアネート、1,3-プロピレンジイソシアネート、1,4-ブタンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等が挙げられる。
 また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4-シクロヘキサンジイソシアネート、4,4-シクロヘキサンジイソシアネート等が挙げられる。さらに、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
In Formula A and Formula B, R is a partial structure introduced using a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R. Examples of the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate, 1,6-hexamethylene diisocyanate, and the like. Can be mentioned.
Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate. Furthermore, examples of the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate.
These can be used alone or in combination of two or more.
 式B中、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、P’は、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジオール化合物に由来する。P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、例えば、グリコール及びポリアルキレングリコールが挙げられ、具体的には、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等が挙げられる。
 また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,3-ジオール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール等が挙げられる。
 さらに、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルサルファイド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシジフェニルメタン、ビスフェノールA、1,1-ジ(4-ヒドロキシフェニル)シクロヘキサン、1,2-ビス(4-ヒドロキシフェノキシ)エタン、1,4-ジヒドロキシナフタリン、2,6-ジヒドロキシナフタリン等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
In the formula B, as the short chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′, for example, those having a molecular weight of less than 500 can be used. P ′ is derived from a diol compound containing a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′. Examples of the aliphatic diol compound containing a short-chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol. Specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1, 4 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10- A decanediol etc. are mentioned.
Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Examples include cyclohexane-1,4-diol and cyclohexane-1,4-dimethanol.
Furthermore, examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxybenzophenone, 4,4′-dihydroxydiphenylmethane, bisphenol A, 1, Examples thereof include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene, 2,6-dihydroxynaphthalene and the like.
These can be used alone or in combination of two or more.
 ハードセグメントを形成するポリマー(つまりポリウレタン)の数平均分子量は、溶融成形性の観点から、300~1500が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500~20000が好ましく、500~5000が更に好ましく、500~3000が特に好ましい。また、ハードセグメント(x)及びソフトセグメント(y)の質量比(x:y)は、成形性の観点から、15:85~90:10が好ましく、30:70~90:10が更に好ましい。 The number average molecular weight of the polymer forming the hard segment (that is, polyurethane) is preferably 300 to 1500 from the viewpoint of melt moldability. The number average molecular weight of the polymer forming the soft segment is preferably 500 to 20000, more preferably 500 to 5000, and particularly preferably 500 to 3000, from the viewpoints of flexibility and thermal stability of the polyurethane-based thermoplastic elastomer. . The mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 15:85 to 90:10, and more preferably 30:70 to 90:10, from the viewpoint of moldability.
 ポリウレタン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5-331256号公報に記載の熱可塑性ポリウレタンを用いることができる。 The polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method. As the polyurethane-based thermoplastic elastomer, for example, thermoplastic polyurethane described in JP-A-5-331256 can be used.
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、芳香族ジオールと芳香族ジイソシアネートとのみからなるハードセグメントと、ポリ炭酸エステルのみからなるソフトセグメントとの組合せが好ましく、より具体的には、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’-ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体から選ばれる少なくとも1種が好ましい。中でも、TDI/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、MDI/ポリエステルポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体から選ばれる少なくとも1種が更に好ましい。 As the polyurethane-based thermoplastic elastomer, specifically, a combination of a hard segment consisting only of an aromatic diol and an aromatic diisocyanate and a soft segment consisting only of a polycarbonate ester is preferable, and more specifically, tolylene Isocyanate (TDI) / polyester polyol copolymer, TDI / polyether polyol copolymer, TDI / caprolactone polyol copolymer, TDI / polycarbonate polyol copolymer, 4,4′-diphenylmethane diisocyanate (MDI) / Polyester polyol copolymer, MDI / polyether polyol copolymer, MDI / caprolactone polyol copolymer, MDI / polycarbonate polyol copolymer, and MDI + hydroquinone / polyhe At least one selected from Sa methylene carbonate copolymer. Among them, TDI / polyester polyol copolymer, TDI / polyether polyol copolymer, MDI / polyester polyol copolymer, MDI / polyether polyol copolymer, and MDI + hydroquinone / polyhexamethylene carbonate copolymer At least one selected from is more preferable.
 また、ポリウレタン系熱可塑性エラストマーの市販品としては、例えば、BASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、(株)クラレ社製の「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台等)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN-2001、XN-2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890等)等を用いることができる。 Examples of commercially available polyurethane-based thermoplastic elastomers include, for example, “Elastolan” series (for example, ET680, ET880, ET690, ET890, etc.) manufactured by BASF, and “Clamiron U” series (manufactured by Kuraray Co., Ltd.). For example, 2000 series, 3000 series, 8000 series, 9000 series, etc., “Milactolan” series (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890, etc.) manufactured by Japan Miraclan ) Etc. can be used.
 -ポリオレフィン系熱可塑性エラストマー-
 ポリオレフィン系熱可塑性エラストマーとしては、例えば、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、他のポリオレフィン、ポリビニル化合物等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
-Polyolefin thermoplastic elastomer-
Examples of the polyolefin-based thermoplastic elastomer include, for example, a hard segment in which at least polyolefin is crystalline and having a high melting point, and other polymers (for example, other polyolefins, polyvinyl compounds, etc.) are amorphous and have a low glass transition temperature. The material which forms the segment is mentioned. Examples of the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, polybutene, and the like.
 ポリオレフィン系熱可塑性エラストマーとしては、例えば、オレフィン-α-オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられる。具体的には、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、1-ブテン-1-ヘキセン共重合体、1-ブテン-4-メチル-ペンテン、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、プロピレン-酢酸ビニル共重合体等が挙げられる。 Examples of polyolefin-based thermoplastic elastomers include olefin-α-olefin random copolymers and olefin block copolymers. Specifically, propylene block copolymer, ethylene-propylene copolymer, propylene-1-hexene copolymer, propylene-4-methyl-1-pentene copolymer, propylene-1-butene copolymer, ethylene- 1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene- Methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene -Butyl acrylate copolymer, propylene-methacrylic acid copolymer, propylene-methacrylic Methyl copolymer, propylene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer, propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer, ethylene-acetic acid Examples thereof include vinyl copolymers and propylene-vinyl acetate copolymers.
 これらの中でも、ポリオレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、及びプロピレン-酢酸ビニル共重合体から選ばれる少なくとも1種が好ましく、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、及びエチレン-ブチルアクリレート共重合体から選ばれる少なくとも1種が更に好ましい。
 また、エチレンとプロピレンといったように2種以上のオレフィン樹脂を組み合わせて用いてもよい。また、ポリオレフィン系熱可塑性エラストマー中のオレフィン樹脂含有率は、50質量%以上100質量%以下が好ましい。
Among these, polyolefin-based thermoplastic elastomers include propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1-pentene copolymers, propylene-1- Butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer , Propylene-methyl methacrylate copolymer, Lopylene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer, propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer, ethylene-vinyl acetate copolymer, And at least one selected from propylene-vinyl acetate copolymer, ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-methyl methacrylate copolymer More preferred is at least one selected from ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-butyl acrylate copolymer.
Further, two or more olefin resins such as ethylene and propylene may be used in combination. Moreover, 50 mass% or more and 100 mass% or less of the olefin resin content rate in polyolefin-type thermoplastic elastomer are preferable.
 ポリオレフィン系熱可塑性エラストマーの数平均分子量は、5000~10000000であることが好ましい。ポリオレフィン系熱可塑性エラストマーの数平均分子量が5000~10000000であると、熱可塑性樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、ポリオレフィン系熱可塑性エラストマーの数平均分子量は、7000~1000000であることが更に好ましく、10000~1000000が特に好ましい。これにより、熱可塑性樹脂材料の機械的物性及び加工性を更に向上させることができる。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。更に、ハードセグメント(x)及びソフトセグメント(y)の質量比(x:y)は、成形性の観点から、50:50~95:15が好ましく、50:50~90:10が更に好ましい。
 ポリオレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。
The number average molecular weight of the polyolefin-based thermoplastic elastomer is preferably 5,000 to 10,000,000. When the number average molecular weight of the polyolefin-based thermoplastic elastomer is 5,000 to 10,000,000, the mechanical properties of the thermoplastic resin material are sufficient, and the processability is also excellent. From the same viewpoint, the number average molecular weight of the polyolefin-based thermoplastic elastomer is more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 1,000,000. Thereby, the mechanical properties and processability of the thermoplastic resin material can be further improved. The number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility. Further, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 95:15, and more preferably 50:50 to 90:10, from the viewpoint of moldability.
The polyolefin-based thermoplastic elastomer can be synthesized by copolymerization by a known method.
 また、ポリオレフィン系熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマーを酸変性してなるものを用いてもよい。
 「ポリオレフィン系熱可塑性エラストマーを酸変性してなるもの」とは、ポリオレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させたものをいう。
 ポリオレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることとしては、例えば、ポリオレフィン系熱可塑性エラストマーに、酸性基を有する不飽和化合物として、不飽和カルボン酸(例えば、一般的には、無水マレイン酸)の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
 酸性基を有する不飽和化合物としては、ポリオレフィン系熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する不飽和化合物が好ましい。酸性基を有する不飽和化合物としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
In addition, as the polyolefin-based thermoplastic elastomer, those obtained by acid-modifying a polyolefin-based thermoplastic elastomer may be used.
“A product obtained by acid-modifying a polyolefin-based thermoplastic elastomer” refers to a product obtained by bonding an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group to a polyolefin-based thermoplastic elastomer.
Examples of bonding an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group to a polyolefin-based thermoplastic elastomer include, for example, an unsaturated compound having an acidic group as a polyolefin-based thermoplastic elastomer, Examples include bonding (for example, graft polymerization) an unsaturated bonding site of an unsaturated carboxylic acid (for example, generally maleic anhydride).
As the unsaturated compound having an acidic group, an unsaturated compound having a carboxylic acid group which is a weak acid group is preferable from the viewpoint of suppressing deterioration of the polyolefin-based thermoplastic elastomer. Examples of the unsaturated compound having an acidic group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, and the like.
 ポリオレフィン系熱可塑性エラストマーの市販品としては、例えば、三井化学(株)製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S、A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM-7070、XM-7080、BL4000、BL2481、BL3110、BL3450、P-0275、P-0375、P-0775、P-0180、P-0280、P-0480、P-0680等)、三井・デュポンポリケミカル(株)製の「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1050H、N1108C、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C)等、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC等)、住友化学(株)の「アクリフト」シリーズ、「エバテート」シリーズ等、東ソー(株)製の「ウルトラセン」シリーズ等、プライムポリマー製の「プライムTPO」シリーズ(例えば、E-2900H、F-3900H、E-2900、F-3900、J-5900、E-2910、F-3910、J-5910、E-2710、F-3710、J-5910、E-2740、F-3740、R110MP、R110E、T310E、M142E等)等も用いることができる。 Commercially available products of polyolefin-based thermoplastic elastomers include, for example, “Tuffmer” series (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010, manufactured by Mitsui Chemicals, Inc. XM-7070, XM-7080, BL4000, BL2481, BL3110, BL3450, P-0275, P-0375, P-0775, P-0180, P-0280, P-0480, P-0680, etc.), Mitsui DuPont “Nucleel” series (for example, AN4214C, AN4225C, AN42115C, N0903HC, N0908C, AN42012C, N410, N1050H, N11 manufactured by Polychemical Co., Ltd. 8C, N1110H, N1207C, N1214, AN4221C, N1525, N1560, N0200H, AN4228C, AN4213C, N035C), etc. "Elvalloy AC" series (for example, 1125AC, 1209AC, 1218AC, 1609AC, 1820AC, 1913AC, 2112AC, 2116AC, 2615AC, etc. 2715AC, 3117AC, 3427AC, 3717AC, etc.), Sumitomo Chemical's "Acryt" series, "Evertate" series, etc., Tosoh Corporation's "Ultrasen" series, etc., "Prime TPO" series (Prime polymer) For example, E-2900H, F-3900H, E-2900, F-3900, J-5900, E-2910, F-3910, J-5910, E-2710 F-3710, J-5910, E-2740, F-3740, R110MP, R110E, can be used T310E, also M142E, etc.) and the like.
 [熱可塑性樹脂]
 -ポリエステル系熱可塑性樹脂-
 ポリエステル系熱可塑性樹脂としては、前述のポリエステル系熱可塑性エラストマーのハードセグメントを形成するポリエステルを挙げることができる。
 ポリエステル系熱可塑性樹脂としては、具体的には、ポリ乳酸、ポリヒドロキシ-3-ブチル酪酸、ポリヒドロキシ-3-ヘキシル酪酸、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等の芳香族ポリエステルなどを例示することができる。これらの中でも、耐熱性及び加工性の観点から、ポリエステル系熱可塑性樹脂としては、ポリブチレンテレフタレートが好ましい。
[Thermoplastic resin]
-Polyester thermoplastic resin-
Examples of the polyester-based thermoplastic resin include polyester that forms the hard segment of the above-described polyester-based thermoplastic elastomer.
Specific examples of the polyester-based thermoplastic resin include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly (ε-caprolactone), polyenantlactone, polycaprylolactone, and polybutylene. Examples include aliphatic polyesters such as adipate and polyethylene adipate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate. Among these, from the viewpoint of heat resistance and processability, polybutylene terephthalate is preferable as the polyester-based thermoplastic resin.
 ポリエステル系熱可塑性樹脂の市販品としては、例えば、ポリプラスチック(株)製の「ジュラネックス」シリーズ(例えば、2000、2002等)、三菱エンジニアリングプラスチックス(株)製の「ノバデュラン」シリーズ(例えば、5010R5、5010R3-2等)、東レ(株)製の「トレコン」シリーズ(例えば、1401X06、1401X31等)等を用いることができる。 Examples of commercially available polyester thermoplastic resins include “Duranex” series (for example, 2000, 2002, etc.) manufactured by Polyplastics Co., Ltd., and “Novaduran” series (for example, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) 5010R5, 5010R3-2, etc.), “Toraycon” series (for example, 1401X06, 1401X31, etc.) manufactured by Toray Industries, Inc. can be used.
 -ポリアミド系熱可塑性樹脂-
 ポリアミド系熱可塑性樹脂としては、前述のポリアミド系熱可塑性エラストマーのハードセグメントを形成するポリアミドを挙げることができる。
 ポリアミド系熱可塑性樹脂としては、具体的には、ε-カプロラクタムを開環重縮合したポリアミド(アミド6)、ウンデカンラクタムを開環重縮合したポリアミド(アミド11)、ラウリルラクタムを開環重縮合したポリアミド(アミド12)、ジアミンと二塩基酸とを重縮合したポリアミド(アミド66)、メタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を例示することができる。
-Polyamide thermoplastic resin-
Examples of the polyamide-based thermoplastic resin include polyamides that form the hard segments of the aforementioned polyamide-based thermoplastic elastomer.
Specifically, polyamide-based thermoplastic resins include polyamide (amide 6) obtained by ring-opening polycondensation of ε-caprolactam, polyamide (amide 11) obtained by ring-opening polycondensation of undecane lactam, and ring-opening polycondensation of lauryl lactam. Examples thereof include polyamide (amide 12), polyamide (amide 66) obtained by polycondensation of diamine and dibasic acid, and polyamide (amide MX) having metaxylenediamine as a structural unit.
 アミド6は、例えば、{CO-(CH-NH}で表すことができる。アミド11は、例えば、{CO-(CH10-NH}で表すことができる。アミド12は、例えば、{CO-(CH11-NH}で表すことができる。アミド66は、例えば、{CO(CHCONH(CHNH}で表すことができる。アミドMXは、例えば、下記構造式(A-1)で表すことができる。ここで、nは繰り返し単位数を表す。 The amide 6 can be represented by, for example, {CO— (CH 2 ) 5 —NH} n . The amide 11 can be represented by {CO— (CH 2 ) 10 —NH} n , for example. The amide 12 can be represented by, for example, {CO— (CH 2 ) 11 —NH} n . The amide 66 can be represented by {CO (CH 2 ) 4 CONH (CH 2 ) 6 NH} n , for example. Amide MX can be represented, for example, by the following structural formula (A-1). Here, n represents the number of repeating units.
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
 アミド6の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、1022B、1011FB等)を用いることができる。アミド11の市販品としては、例えば、アルケマ(株)製の「Rilsan B」シリーズを用いることができる。アミド12の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、3024U、3020U、3014U等)を用いることができる。アミド66の市販品としては、例えば、旭化成(株)製の「レオナ」シリーズ(例えば、1300S、1700S等)を用いることができる。アミドMXの市販品としては、例えば、三菱ガス化学(株)製の「MXナイロン」シリーズ(例えば、S6001、S6021、S6011等)を用いることができる。 As a commercially available product of amide 6, for example, “UBE nylon” series (for example, 1022B, 1011FB, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available product of amide 11, for example, “Rilsan B” series manufactured by Arkema Co., Ltd. can be used. As a commercially available product of amide 12, for example, “UBE nylon” series (for example, 3024U, 3020U, 3014U, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available product of amide 66, for example, “Leona” series (for example, 1300S, 1700S, etc.) manufactured by Asahi Kasei Corporation can be used. As a commercially available product of amide MX, for example, “MX nylon” series (for example, S6001, S6021, S6011, etc.) manufactured by Mitsubishi Gas Chemical Co., Ltd. can be used.
 ポリアミド系熱可塑性樹脂は、上記の構成単位のみからなるホモポリマーであってもよく、上記の構成単位と他のモノマーとのコポリマーであってもよい。コポリマーの場合、各ポリアミド系熱可塑性樹脂における上記構成単位の含有率は、40質量%以上であることが好ましい。 The polyamide-based thermoplastic resin may be a homopolymer consisting only of the above structural unit, or may be a copolymer of the above structural unit and another monomer. In the case of a copolymer, it is preferable that the content rate of the said structural unit in each polyamide-type thermoplastic resin is 40 mass% or more.
 -ポリオレフィン系熱可塑性樹脂-
 ポリオレフィン系熱可塑性樹脂としては、前述のポリオレフィン系熱可塑性エラストマーのハードセグメントを形成するポリオレフィンを挙げることができる。
 ポリオレフィン系熱可塑性樹脂としては、具体的には、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂等を例示することができる。これらの中でも、耐熱性及び加工性の点から、ポリオレフィン系熱可塑性樹脂としては、ポリプロピレン系熱可塑性樹脂が好ましい。
 ポリプロピレン系熱可塑性樹脂の具体例としては、プロピレンホモ重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-α-オレフィンブロック共重合体等が挙げられる。α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数3~20程度のα-オレフィン等が挙げられる。
-Polyolefin thermoplastic resin-
Examples of the polyolefin-based thermoplastic resin include polyolefins that form the hard segment of the aforementioned polyolefin-based thermoplastic elastomer.
Specific examples of the polyolefin-based thermoplastic resin include a polyethylene-based thermoplastic resin, a polypropylene-based thermoplastic resin, and a polybutadiene-based thermoplastic resin. Among these, from the viewpoints of heat resistance and processability, a polypropylene-based thermoplastic resin is preferable as the polyolefin-based thermoplastic resin.
Specific examples of the polypropylene-based thermoplastic resin include a propylene homopolymer, a propylene-α-olefin random copolymer, a propylene-α-olefin block copolymer, and the like. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, Examples thereof include α-olefins having about 3 to 20 carbon atoms such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicocene.
 [他の成分]
 樹脂部材は、樹脂以外にも、効果を損なわない範囲で添加剤等の他の成分を含んでもよい。他の成分としては、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。
[Other ingredients]
The resin member may contain other components such as an additive in addition to the resin as long as the effect is not impaired. Examples of other components include rubber, various fillers (for example, silica, calcium carbonate, clay, etc.), anti-aging agents, oils, plasticizers, color formers, weathering agents, and the like.
(ゴム部材)
 ゴム部材は、シラノール基を有する充填剤を含む。この充填剤を含むゴム部材が樹脂部材における処理済表面に接することで、両者の接着性が向上する。
(Rubber member)
The rubber member includes a filler having a silanol group. The rubber member containing this filler is in contact with the treated surface of the resin member, thereby improving the adhesion between them.
 ・シラノール基を有する充填剤
 ゴム部材に含まれるシラノール基を有する充填剤としては、例えば、シリカ、ガラス(例えばガラスファイバー、ガラスビーズ等)等の粒子が挙げられる。
 中でも、シラノール基を有する充填剤としては、接着性向上の観点から、シリカ粒子が好ましい。
-Filler which has a silanol group As a filler which has a silanol group contained in a rubber member, particles, such as silica and glass (for example, glass fiber, glass bead, etc.), are mentioned, for example.
Especially, as a filler which has a silanol group, a silica particle is preferable from a viewpoint of adhesive improvement.
 シリカは、狭義の二酸化ケイ素(SiO)のみではなく、ケイ酸系化合物を含み、無水ケイ酸の他に、含水ケイ酸、ケイ酸カルシウム、ケイ酸アルミニウム等のケイ酸塩を含む。前記シリカとしては、特に制限はなく、市販のゴム組成物等に使用されているものを使用することができる。前記シリカの凝集状態は特に限定はなく、沈殿法シリカ、ゲル法シリカ、乾式シリカ、コロイダルシリカなども含まれる。 Silica includes not only silicon dioxide (SiO 2 ) in a narrow sense but also silicate compounds, and silicates such as hydrous silicate, calcium silicate, and aluminum silicate in addition to anhydrous silicate. There is no restriction | limiting in particular as said silica, What is used for a commercially available rubber composition etc. can be used. The aggregation state of the silica is not particularly limited, and includes precipitated silica, gel silica, dry silica, colloidal silica, and the like.
 なお、本実施形態においては、表面のシラノール基の数の観点から、親水性シリカを用いることが好ましい。
 ここで、シリカが「親水性」であるとは、JIS-K1150(1994年)に規定される含水率(つまり乾燥減量)が10質量%以下であることを意味する。
In the present embodiment, it is preferable to use hydrophilic silica from the viewpoint of the number of silanol groups on the surface.
Here, that the silica is “hydrophilic” means that the moisture content (that is, loss on drying) specified in JIS-K1150 (1994) is 10% by mass or less.
 ゴム部材におけるシラノール基を有する充填剤の含有率は、接着性向上の観点から、含まれるゴムの総量に対して、20phr以上100phr以下であることが好ましく、30phr以上90phr以下であることがより好ましい。 The content of the filler having a silanol group in the rubber member is preferably 20 phr or more and 100 phr or less, and more preferably 30 phr or more and 90 phr or less, with respect to the total amount of rubber contained, from the viewpoint of improving adhesiveness. .
 なお、ゴム部材は、シラノール基を有する充填剤の分散性の観点から、さらにシランカップリング剤を含んでもよい。シランカップリング剤としては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-イソシアネートプロピルトリエトキシシラン、トリメトキシシリルプロピルコハク酸無水物、トリエトキシシリルプロピルコハク酸無水物等が挙げられる。
 また、シランカップリング剤としては、シラノール基を有する充填剤の分散性の観点から、2個以上の硫黄を有するポリスルフィド系シランカップリング剤を用いることが好ましい。2個以上の硫黄を有するポリスルフィド系シランカップリング剤としては、例えば、ビス-(3-(トリエトキシシリル)プロピル)-ジスルフィド、ビス-(3-(トリエトキシシリル)プロピル)-テトラスルフィド、ビス-(トリエトキシシリルプロピル)-ポリスルフィド等の、ビス-(トリアルコキシシリルアルキル)-ポリスルフィドが挙げられる。
 これらシランカップリング剤は1種単独で用いてもよく、2種以上を併用してもよい。
The rubber member may further contain a silane coupling agent from the viewpoint of dispersibility of the filler having a silanol group. Examples of silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyltrimethoxysilane. 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2- Aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, tris- (trimethoxysilylpropyl) isocyanurate, 3-isocyanatopropyltriethoxysilane, trimethoxysilylpropyl succinic anhydride, triethoxysilylpropyl succinic anhydride Etc.
Moreover, as a silane coupling agent, it is preferable to use the polysulfide type | system | group silane coupling agent which has 2 or more sulfur from a dispersible viewpoint of the filler which has a silanol group. Examples of polysulfide silane coupling agents having two or more sulfur include bis- (3- (triethoxysilyl) propyl) -disulfide, bis- (3- (triethoxysilyl) propyl) -tetrasulfide, bis Bis- (trialkoxysilylalkyl) -polysulfides such as-(triethoxysilylpropyl) -polysulfides.
These silane coupling agents may be used alone or in combination of two or more.
 ・トリアジンジチオール
 ゴム部材は、接着性向上の観点及びゴム部材の加硫速度を速める観点から、トリアジンジチオールを含んでもよい。
 トリアジンチオールとしては、例えば、アルキルアミノトリアジンジチオール(例えば2-ジメチルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジエチルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジプロピルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジイソプロピルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジブチルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジイソブチルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジ-tert-ブチルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジオクチルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジドデシルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジプロペニルアミノ-4,6-ジメルカプト-s-トリアジン、2-オクタデケニルアミノ-4,6-ジメルカプト-s-トリアジン等)、2,4,6-トリメルカプト-s-トリアジン、2-フェニルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジフェニルアミノ-4,6-ジメルカプト-s-トリアジン、2-シクロヘキシルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジシクロヘキシルアミノ-4,6-ジメルカプト-s-トリアジン等が挙げられる。
 これらの中でも、アルキルアミノトリアジンジチオールが好ましい。
-Triazine dithiol The rubber member may contain triazine dithiol from a viewpoint of an adhesive improvement, and a viewpoint of accelerating the vulcanization speed of a rubber member.
Examples of the triazine thiol include alkylaminotriazine dithiol (for example, 2-dimethylamino-4,6-dimercapto-s-triazine, 2-diethylamino-4,6-dimercapto-s-triazine, 2-dipropylamino-4, 6-dimercapto-s-triazine, 2-diisopropylamino-4,6-dimercapto-s-triazine, 2-dibutylamino-4,6-dimercapto-s-triazine, 2-diisobutylamino-4,6-dimercapto-s -Triazine, 2-di-tert-butylamino-4,6-dimercapto-s-triazine, 2-dioctylamino-4,6-dimercapto-s-triazine, 2-didodecylamino-4,6-dimercapto-s -Triazine, 2-dipropenylamino-4,6-dimer P-s-triazine, 2-octadecenylamino-4,6-dimercapto-s-triazine, etc.), 2,4,6-trimercapto-s-triazine, 2-phenylamino-4,6-dimercapto-s -Triazine, 2-diphenylamino-4,6-dimercapto-s-triazine, 2-cyclohexylamino-4,6-dimercapto-s-triazine, 2-dicyclohexylamino-4,6-dimercapto-s-triazine, etc. It is done.
Among these, alkylaminotriazine dithiol is preferable.
 ゴム部材におけるトリアジンジチオールの含有率は、接着性向上の観点及びゴム部材の加硫速度を速める観点から、含まれるゴムの総量に対して、0.01phr以上10phr以下であることが好ましく、0.05phr以上5phr以下であることがより好ましく、0.1phr以上3phr以下であることがさらに好ましい。 The content of triazine dithiol in the rubber member is preferably 0.01 phr or more and 10 phr or less with respect to the total amount of rubber, from the viewpoint of improving adhesiveness and increasing the vulcanization speed of the rubber member. It is more preferably 05 phr or more and 5 phr or less, and further preferably 0.1 phr or more and 3 phr or less.
 ・ゴム
 本実施形態におけるゴム部材にはゴムが含まれる。
-Rubber The rubber member in the present embodiment includes rubber.
 ゴム部材の総量に対するゴムの含有率としては、特に限定されるものではないが30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましい。一方、上限値としては、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。 The content of the rubber relative to the total amount of the rubber member is not particularly limited, but is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. On the other hand, as an upper limit, 90 mass% or less is preferable, 80 mass% or less is more preferable, and 70 mass% or less is further more preferable.
 ゴム部材に含まれるゴムとしては、特に限定はなく、従来より公知のゴム配合に使用される天然ゴム及び各種合成ゴムを、単独もしくは2種以上混合して用いることができる。例えば、下記に示すようなゴム、もしくはこれらの2種以上のゴムブレンドを使用することができる。
 天然ゴムとしては、シートゴムでもブロックゴムでもよく、RSS#1~#5の総てを用いることができる。
 合成ゴムとしては、各種ジエン系合成ゴムやジエン系共重合体ゴム及び特殊ゴムや変性ゴム等を使用できる。具体的には、例えば、ポリブタジエン(BR)、ブタジエンと芳香族ビニル化合物との共重合体(例えばSBR、NBRなど)、ブタジエンと他のジエン系化合物との共重合体等のブタジエン系重合体;ポリイソプレン(IR)、イソプレンと芳香族ビニル化合物との共重合体、イソプレンと他のジエン系化合物との共重合体等のイソプレン系重合体;クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X-IIR);エチレン-プロピレン系共重合体ゴム(EPM)、エチレン-プロピレン-ジエン系共重合体ゴム(EPDM)及びこれらの任意のブレンド物等が挙げられる。
The rubber contained in the rubber member is not particularly limited, and natural rubber and various synthetic rubbers conventionally used for blending rubber can be used alone or in combination of two or more. For example, a rubber as shown below or a blend of two or more of these can be used.
The natural rubber may be a sheet rubber or a block rubber, and all of RSS # 1 to # 5 can be used.
As the synthetic rubber, various diene synthetic rubbers, diene copolymer rubbers, special rubbers, modified rubbers, and the like can be used. Specifically, for example, a butadiene polymer such as polybutadiene (BR), a copolymer of butadiene and an aromatic vinyl compound (eg, SBR, NBR, etc.), a copolymer of butadiene and another diene compound, and the like; Isoprene polymers such as polyisoprene (IR), copolymers of isoprene and aromatic vinyl compounds, copolymers of isoprene and other diene compounds; chloroprene rubber (CR), butyl rubber (IIR), halogenated Examples thereof include butyl rubber (X-IIR); ethylene-propylene copolymer rubber (EPM), ethylene-propylene-diene copolymer rubber (EPDM), and any blend thereof.
 また、ゴム部材においては、目的に応じて添加物等の他の成分を加えてもよい。
 添加物としては、例えば、カーボンブラック等の補強材、充填剤、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等が挙げられ、これらを適宜配合することができる。
Moreover, in a rubber member, you may add other components, such as an additive, according to the objective.
Examples of additives include reinforcing materials such as carbon black, fillers, vulcanizing agents, vulcanization accelerators, fatty acids or salts thereof, metal oxides, process oils, anti-aging agents, and the like. can do.
 なお、ゴム部材は未加硫の状態であり、未加硫ゴムを求められる形状に成形し、加熱によって架橋する加硫ゴムであることが好ましい。 It should be noted that the rubber member is in an unvulcanized state, and is preferably a vulcanized rubber that is molded into a required shape and crosslinked by heating.
(第2ゴム部材)
 本実施形態に係る樹脂ゴム複合体は、ゴム部材に接する第2ゴム部材を有していてもよい。
 第2ゴム部材にはゴムが含まれる。用いられるゴムの例としては、前述のゴム部材に含まれるゴムとして列挙されたものが、同様に挙げられる。
 また、第2ゴム部材には目的に応じて添加物等の他の成分を加えてもよく、この添加物の例としては、前述のゴム部材に含まれる添加物として列挙されたものが、同様に挙げられる。
(Second rubber member)
The resin rubber composite according to the present embodiment may have a second rubber member in contact with the rubber member.
The second rubber member includes rubber. Examples of the rubber used include those listed as the rubber contained in the rubber member.
In addition, other components such as additives may be added to the second rubber member depending on the purpose. Examples of this additive include those listed as the additives contained in the rubber member described above. It is mentioned in.
<タイヤ>
 本実施形態に係るタイヤは、前述の本実施形態に係る樹脂ゴム複合体を有する。
<Tire>
The tire according to this embodiment has the resin rubber composite according to the above-described embodiment.
 なお、樹脂ゴム複合体がタイヤに用いられる場合、樹脂部材及びゴム部材の組合せとしては以下の組合せが挙げられる。
 ・樹脂部材が「ベルト層」である場合、ゴム部材としては「トレッド、タイヤ骨格体、及びベルト層の表面に接着されたゴムシート」から選択される少なくとも1種の部材が挙げられる。
 ・樹脂部材が「ビード部材」である場合、ゴム部材としては「タイヤ骨格体、及びビード部材の表面に接着されたゴムシート」から選択される少なくとも1種の部材が挙げられる。
 ・樹脂部材が「タイヤ骨格体」である場合、ゴム部材としては「トレッド、ベルト層、ビード部材、及びタイヤ骨格体の表面に接着されたゴムシート」から選択される少なくとも1種の部材が挙げられる。
 ・樹脂部材が「ベルトコード」である場合、ゴム部材としては「ベルトコードを被覆するコード被覆層、及びベルトコードの表面に接着されたゴムシート」から選択される少なくとも1種の部材が挙げられる。
 ・樹脂部材が「ビードワイヤー」である場合、ゴム部材としては「ビードワイヤーを被覆するワイヤー被覆層、及びビードワイヤーの表面に接着されたゴムシート」から選択される少なくとも1種の部材が挙げられる。
 なお、上記のゴム部材としての「タイヤ骨格体」は、ゴム部材に相当するカーカス(例えば複数のワイヤーの周囲がゴムで被覆されたカーカスプライのみからなるカーカス)等のタイヤの骨格を成す部材に置き替えてもよい。
In addition, when a resin rubber composite is used for a tire, the following combinations are mentioned as a combination of a resin member and a rubber member.
When the resin member is a “belt layer”, examples of the rubber member include at least one member selected from “tread, tire frame, and rubber sheet bonded to the surface of the belt layer”.
When the resin member is a “bead member”, examples of the rubber member include at least one member selected from “a tire frame body and a rubber sheet bonded to the surface of the bead member”.
When the resin member is a “tire frame”, the rubber member includes at least one member selected from “tread, belt layer, bead member, and rubber sheet bonded to the surface of the tire frame”. It is done.
When the resin member is a “belt cord”, the rubber member includes at least one member selected from “a cord covering layer covering the belt cord and a rubber sheet bonded to the surface of the belt cord”. .
When the resin member is “bead wire”, the rubber member includes at least one member selected from “a wire coating layer covering the bead wire and a rubber sheet bonded to the surface of the bead wire”. .
The “tire frame” as the rubber member is a member that forms a tire frame such as a carcass corresponding to the rubber member (for example, a carcass made of only a carcass ply in which a plurality of wires are covered with rubber). It may be replaced.
 また、樹脂ゴム複合体が、樹脂部材、樹脂部材と接するゴム部材、及びこのゴム部材と接する第2ゴム部材を有する態様である場合、以下の組合せが挙げられる。
 ・樹脂部材が「ベルト層」である場合、ゴム部材としては「ゴムシート」が挙げられ、第2ゴム部材としては「トレッド、タイヤ骨格体、及びサイドゴム」から選択される少なくとも1種の部材が挙げられる。
 ・樹脂部材が「ビード部材」である場合、ゴム部材としては「ゴムシート」が挙げられ、第2ゴム部材としては「タイヤ骨格体、及びサイドゴム」から選択される少なくとも1種の部材が挙げられる。
 ・樹脂部材が「タイヤ骨格体」である場合、ゴム部材としては「ゴムシート」が挙げられ、第2ゴム部材としては「トレッド、ベルト層、ビード部材、及びサイドゴム」から選択される少なくとも1種の部材が挙げられる。
 ・樹脂部材が「ベルトコード」である場合、ゴム部材としては「ゴムシート」が挙げられ、第2ゴム部材としては「コード被覆層」が挙げられる。
 ・樹脂部材が「ビードワイヤー」である場合、ゴム部材としては「ゴムシート」が挙げられ、第2ゴム部材としては「ワイヤー被覆層」が挙げられる。
 なお、上記の第2ゴム部材としての「タイヤ骨格体」は、第2ゴム部材に相当するカーカス(例えば複数のワイヤーの周囲がゴムで被覆されたカーカスプライのみからなるカーカス)等のタイヤの骨格を成す部材に置き替えてもよい。
Moreover, the following combinations are mentioned when the resin rubber composite is an aspect having a resin member, a rubber member in contact with the resin member, and a second rubber member in contact with the rubber member.
When the resin member is a “belt layer”, the rubber member includes “rubber sheet”, and the second rubber member includes at least one member selected from “tread, tire frame body, and side rubber”. Can be mentioned.
When the resin member is a “bead member”, the rubber member includes “rubber sheet”, and the second rubber member includes at least one member selected from “tire frame and side rubber”. .
When the resin member is a “tire frame”, the rubber member includes “rubber sheet”, and the second rubber member is at least one selected from “tread, belt layer, bead member, and side rubber” These members are mentioned.
When the resin member is “belt cord”, the rubber member includes “rubber sheet”, and the second rubber member includes “cord coating layer”.
When the resin member is “bead wire”, the rubber member includes “rubber sheet”, and the second rubber member includes “wire coating layer”.
The “tire skeleton body” as the second rubber member is a skeleton of a tire such as a carcass (for example, a carcass made only of a carcass ply in which a plurality of wires are covered with rubber) corresponding to the second rubber member. You may replace with the member which comprises.
 ここで、本実施形態に係るタイヤの構成について、具体例を挙げかつ図面を用いて説明する。なお、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、実質的に同一の機能を有する部材には全図面を通じて同じ符号を付し、重複する説明は省略する場合がある。 Here, the configuration of the tire according to the present embodiment will be described using specific examples and drawings. In addition, the magnitude | size of the member in each figure is notional, The relative relationship of the magnitude | size between members is not limited to this. Moreover, the same code | symbol is attached | subjected to the member which has the substantially same function through all the drawings, and the overlapping description may be abbreviate | omitted.
 まず、第1実施形態として、タイヤ骨格体及びベルト層が樹脂部材に相当するタイヤを例に挙げて説明する。 First, as a first embodiment, a tire skeleton body and a belt layer will be described by taking a tire corresponding to a resin member as an example.
 [第1実施形態]
 図1は、第1実施形態のタイヤのタイヤ幅方向に沿った断面図である。
 第1実施形態のタイヤは、タイヤケース17(タイヤ骨格体の一例)が樹脂部材に相当する。第1実施形態においてタイヤ200は、図1に示すように、タイヤケース17のクラウン部16の外周面に、ベルトコード26Aが被覆樹脂26Bによって被覆されたベルトが周方向に巻回されてベルト層26が形成されており、このベルト層26も樹脂部材に相当する。このベルト層26は、タイヤケース17の外周部を構成し、クラウン部16の周方向剛性を補強している。
 なお、樹脂部材に相当するタイヤケース17及びベルト層26は、少なくともクッションゴム28と接する面が前述の表面処理によって処理された処理済表面である。
[First Embodiment]
FIG. 1 is a cross-sectional view along the tire width direction of the tire of the first embodiment.
In the tire of the first embodiment, the tire case 17 (an example of a tire skeleton) corresponds to a resin member. In the first embodiment, as illustrated in FIG. 1, the tire 200 includes a belt layer in which a belt in which a belt cord 26 </ b> A is covered with a coating resin 26 </ b> B is wound in the circumferential direction on the outer peripheral surface of a crown portion 16 of a tire case 17. 26 is formed, and this belt layer 26 also corresponds to a resin member. The belt layer 26 constitutes the outer peripheral portion of the tire case 17 and reinforces the circumferential rigidity of the crown portion 16.
Note that the tire case 17 and the belt layer 26 corresponding to the resin member are treated surfaces in which at least the surface in contact with the cushion rubber 28 is treated by the above-described surface treatment.
 なお、樹脂部材であるタイヤケース17では、樹脂の融点は、例えば100℃~350℃程度が挙げられ、タイヤの耐久性及び生産性の観点から、100℃~250℃程度が好ましく、120℃~250℃が更に好ましい。 In the tire case 17 which is a resin member, the melting point of the resin is, for example, about 100 ° C. to 350 ° C., and from the viewpoint of tire durability and productivity, about 100 ° C. to 250 ° C. is preferable, and 120 ° C. to 250 ° C. is more preferable.
 タイヤ骨格体(例えばタイヤケース17)自体のJIS K7113:1995に規定される引張弾性率は、50MPa~1000MPaが好ましく、50MPa~800MPaが更に好ましく、50MPa~700MPaが特に好ましい。引張弾性率が、50MPa~1000MPaであると、タイヤ骨格体の形状を保持しつつ、リム組みを効率的に行なうことができる。 The tensile modulus of elasticity defined in JIS K7113: 1995 of the tire frame body (for example, the tire case 17) itself is preferably 50 MPa to 1000 MPa, more preferably 50 MPa to 800 MPa, and particularly preferably 50 MPa to 700 MPa. When the tensile modulus is 50 MPa to 1000 MPa, the rim can be assembled efficiently while maintaining the shape of the tire frame.
 タイヤ骨格体(例えばタイヤケース17)自体のJIS K7113(1995)に規定される引張強さは、通常、15MPa~70MPa程度であり、17MPa~60MPaが好ましく、20MPa~55MPaが更に好ましい。 The tensile strength specified in JIS K7113 (1995) of the tire frame body (for example, the tire case 17) is usually about 15 MPa to 70 MPa, preferably 17 MPa to 60 MPa, and more preferably 20 MPa to 55 MPa.
 タイヤ骨格体(例えばタイヤケース17)自体のJIS K7113(1995)に規定される引張降伏強さは、5MPa以上が好ましく、5MPa~20MPaが更に好ましく、5MPa~17MPaが特に好ましい。引張降伏強さが、5MPa以上であると、走行時等にタイヤにかかる荷重に対する変形に耐えることができる。 The tensile yield strength defined in JIS K7113 (1995) of the tire frame body (for example, the tire case 17) itself is preferably 5 MPa or more, more preferably 5 MPa to 20 MPa, and particularly preferably 5 MPa to 17 MPa. When the tensile yield strength is 5 MPa or more, it is possible to withstand deformation against a load applied to the tire during traveling or the like.
 タイヤ骨格体(例えばタイヤケース17)自体のJIS K7113(1995)に規定される引張降伏伸びは、10%以上が好ましく、10%~70%が更に好ましく、15%~60%が特に好ましい。引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性を良好にすることができる。 The tensile yield elongation defined by JIS K7113 (1995) of the tire frame body (for example, the tire case 17) itself is preferably 10% or more, more preferably 10% to 70%, and particularly preferably 15% to 60%. When the tensile yield elongation is 10% or more, the elastic region is large, and the rim assembly property can be improved.
 タイヤ骨格体(例えばタイヤケース17)自体のJIS K7113(1995)に規定される引張破断伸びは、50%以上が好ましく、100%以上が更に好ましく、150%以上が特に好ましく、200%以上が最も好ましい。引張破断伸びが、50%以上であると、リム組み性が良好であり、衝突に対して破壊し難くすることができる。 The tensile elongation at break stipulated in JIS K7113 (1995) of the tire frame (for example, the tire case 17) itself is preferably 50% or more, more preferably 100% or more, particularly preferably 150% or more, most preferably 200% or more. preferable. When the tensile elongation at break is 50% or more, the rim assemblability is good and it is difficult to break against collision.
 タイヤ骨格体(例えばタイヤケース17)自体のISO 75-2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)は、50℃以上が好ましく、50℃~150℃が更に好ましく、50℃~130℃が特に好ましい。荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制するこができる。 The load deflection temperature (at 0.45 MPa load) specified in ISO 75-2 or ASTM D648 of the tire frame body (for example, the tire case 17) itself is preferably 50 ° C. or more, more preferably 50 ° C. to 150 ° C., 50 C. to 130.degree. C. is particularly preferable. When the deflection temperature under load is 50 ° C. or higher, deformation of the tire skeleton can be suppressed even when vulcanization is performed in the manufacture of the tire.
 このベルト層26は、タイヤケース17を形成する樹脂よりも剛性が高いベルトコード26Aに、タイヤケース17を形成する樹脂とは別体の被覆樹脂26Bが被覆されて形成されている。また、ベルト層26はクラウン部16との接触部分において、ベルト層26とタイヤケース17とが接合(例えば、溶接または接着剤で接着)されている。 The belt layer 26 is formed by coating a belt cord 26A having higher rigidity than the resin forming the tire case 17 with a coating resin 26B separate from the resin forming the tire case 17. In addition, the belt layer 26 is joined to the belt layer 26 and the tire case 17 at the contact portion with the crown portion 16 (for example, bonded by welding or an adhesive).
 また、ベルト層26の外周面及びタイヤケース17の外周面のうちベルト層26に覆われていない領域に接するよう、クッションゴム28が接合され、かつこのクッションゴム28の外周面上にさらにゴムを含むトレッド層30が接合されている。なお、このクッションゴム28及びトレッド層30によりゴム製のトレッドが形成されており、クッションゴム28がゴム部材に相当する。トレッド層30には、路面との接地面に複数の溝からなるトレッドパターン(図示省略)が形成されている。 Further, a cushion rubber 28 is joined so as to contact a region of the outer peripheral surface of the belt layer 26 and the outer peripheral surface of the tire case 17 that is not covered with the belt layer 26, and rubber is further applied on the outer peripheral surface of the cushion rubber 28. The tread layer 30 including it is joined. The cushion rubber 28 and the tread layer 30 form a rubber tread, and the cushion rubber 28 corresponds to a rubber member. The tread layer 30 is formed with a tread pattern (not shown) including a plurality of grooves on the ground contact surface with the road surface.
 次に樹脂部材に相当するタイヤケース17及びベルト層26を備える第1実施形態のタイヤの製造方法について説明する。 Next, a method for manufacturing a tire according to the first embodiment including a tire case 17 and a belt layer 26 corresponding to a resin member will be described.
 ・タイヤケース成形工程
 まず、タイヤケース半体(つまりタイヤケースがタイヤ幅方向の中央部で切断された形状を有するタイヤケースの片側半分)を、例えば樹脂材料を押出成型等の方法によって形成する。次いで、タイヤケース半体同士を互いに向かい合わせ、タイヤケースを構成する樹脂材料の融点以上で押圧する等の方法によって、タイヤケース半体同士を接合することで、タイヤケース17が形成される。
-Tire case shaping | molding process First, a tire case half body (namely, one half of the tire case which has the shape where the tire case was cut | disconnected by the center part of the tire width direction) is formed by methods, such as extrusion molding, for example. Next, the tire case halves are joined to each other by a method such that the tire case halves face each other and are pressed at a melting point or higher of the resin material constituting the tire case.
 ・ベルト層巻回工程
 タイヤケース17のクラウン部16にベルト層26を形成する方法としては、例えば、タイヤケース17を回転させながら、リールに巻き取ったベルト(つまりベルトコード26Aが被覆樹脂26Bに被覆された部材)を巻き出し、このベルトをクラウン部16に所定の回数巻き付けてベルト層26が形成される。なお、加熱及び加圧を行って被覆樹脂26Bをタイヤケース17に溶着させてもよい。
Belt layer winding step As a method of forming the belt layer 26 on the crown portion 16 of the tire case 17, for example, a belt wound around a reel while rotating the tire case 17 (that is, the belt cord 26A is applied to the coating resin 26B). The belt member 26 is unwound and this belt is wound around the crown portion 16 a predetermined number of times to form the belt layer 26. The coating resin 26B may be welded to the tire case 17 by heating and pressurizing.
 ・表面処理工程
 なお、ベルト層26におけるクッションゴム28と接する外周面、及びタイヤケース17の外周面のうちベルト層26に覆われておらずかつクッションゴム28と接する領域には、少なくとも前述の方法により表面処理を施す。ただし、表面処理を施すタイミングは特に限定されず、例えばベルト層26を形成した後にタイヤケース17及びベルト層26に対して一括で処理してもよい。また、ベルト層26を形成する前にまずタイヤケース17に対して処理し、その後ベルト層26を形成した後に改めてベルト層26に対して処理してもよい。
Surface treatment step It should be noted that at least the above-described method is applied to the outer peripheral surface of the belt layer 26 in contact with the cushion rubber 28 and the region of the outer peripheral surface of the tire case 17 that is not covered with the belt layer 26 and in contact with the cushion rubber 28 Surface treatment is performed by However, the timing for performing the surface treatment is not particularly limited. For example, the tire case 17 and the belt layer 26 may be collectively treated after the belt layer 26 is formed. Further, the tire case 17 may be first processed before the belt layer 26 is formed, and then the belt layer 26 may be processed again after the belt layer 26 is formed.
 ・積層工程及び加硫工程
 次に、ベルト層26の外周面及びタイヤケース17の外周面のうちベルト層26に覆われていない領域に接するよう、未加硫状態のクッションゴム28を1周分巻き付ける。なお、ゴム部材に相当するクッションゴム28にはシラノール基を有する充填剤が含有されている。その後、このクッションゴム28の上に、加硫済み、半加硫状態、または未加硫状態のトレッド層30を1周分巻き付ける。その後、加硫することで、第1実施形態のタイヤが得られる。
-Lamination process and vulcanization process Next, the cushion rubber 28 in an unvulcanized state is provided for one round so as to come into contact with the outer peripheral surface of the belt layer 26 and the outer peripheral surface of the tire case 17 not covered with the belt layer 26. Wrap. The cushion rubber 28 corresponding to the rubber member contains a filler having a silanol group. Thereafter, the vulcanized, semi-vulcanized or unvulcanized tread layer 30 is wound on the cushion rubber 28 for one turn. Thereafter, the tire of the first embodiment is obtained by vulcanization.
 なお、タイヤケース17のビード部12には、タイヤケース17に用いた樹脂材料よりも軟質であるシール層24を、接着剤等を用いて設けてもよい。 The bead portion 12 of the tire case 17 may be provided with a seal layer 24 that is softer than the resin material used for the tire case 17 using an adhesive or the like.
 第1実施形態のタイヤ200では、ゴム部材に相当するクッションゴム28にシラノール基を有する充填剤が含有され、かつ樹脂部材に相当するタイヤケース17及びベルト層26のクッションゴム28と接する領域に前述の方法による表面処理が施されている。そのため、タイヤケース17とクッションゴム28との間、及びベルト層26とクッションゴム28との間に接着剤を介さずとも、タイヤケース17及びベルト層26とトレッドを構成するクッションゴム28との優れた接着性が得られる。 In the tire 200 of the first embodiment, the cushion rubber 28 corresponding to the rubber member contains a filler having a silanol group, and the tire case 17 corresponding to the resin member and the region in contact with the cushion rubber 28 of the belt layer 26 are described above. Surface treatment by the method of is performed. Therefore, the tire case 17 and the belt layer 26 and the cushion rubber 28 constituting the tread are excellent without using an adhesive between the tire case 17 and the cushion rubber 28 and between the belt layer 26 and the cushion rubber 28. Adhesiveness can be obtained.
 (変形例)
 図1に示す第1実施形態のタイヤ200では、クッションゴム28及びトレッド層30を積層することでタイヤケース17の外周面上にトレッドを形成したが、これに限らず、クッションゴム28を配置しない構成としてもよい。なお、その場合、トレッドを構成するトレッド層30がゴム部材に相当し、このトレッド層30にシラノール基を有する充填剤が含有される。
(Modification)
In the tire 200 of the first embodiment shown in FIG. 1, the tread is formed on the outer peripheral surface of the tire case 17 by laminating the cushion rubber 28 and the tread layer 30, but the present invention is not limited thereto, and the cushion rubber 28 is not disposed. It is good also as a structure. In this case, the tread layer 30 constituting the tread corresponds to a rubber member, and the tread layer 30 contains a filler having a silanol group.
 また、図1に示す第1実施形態のタイヤ200では、クッションゴム28がタイヤケース17及びベルト層26に直に接する態様を示したが、これに限らず、クッションゴム28とタイヤケース17及びベルト層26との間に、ゴム部材に相当するゴムシートを介在させてもよい。この場合、ゴムシートがゴム部材に相当し、このゴムシートにシラノール基を有する充填剤が含有される。また、クッションゴム28が第2ゴム部材に相当し、このクッションゴム28にはシラノール基を有する充填剤を含有させずともよい。 In the tire 200 according to the first embodiment shown in FIG. 1, the cushion rubber 28 is in direct contact with the tire case 17 and the belt layer 26. However, the present invention is not limited thereto, and the cushion rubber 28, the tire case 17, and the belt are not limited thereto. A rubber sheet corresponding to a rubber member may be interposed between the layer 26 and the layer 26. In this case, the rubber sheet corresponds to a rubber member, and the rubber sheet contains a filler having a silanol group. The cushion rubber 28 corresponds to the second rubber member, and the cushion rubber 28 may not contain a filler having a silanol group.
 なお、樹脂部材に相当するタイヤケース17及びベルト層26と、第2ゴム部材に相当するクッションゴム28との間に、ゴム部材に相当するゴムシートを介在させる場合、このゴムシートの厚さとしては、例えば0.1μm以上100mm以下が好ましく、1μm以上2mm以下がより好ましい。 When a rubber sheet corresponding to the rubber member is interposed between the tire case 17 and belt layer 26 corresponding to the resin member and the cushion rubber 28 corresponding to the second rubber member, the thickness of the rubber sheet is as follows. Is preferably 0.1 μm or more and 100 mm or less, and more preferably 1 μm or more and 2 mm or less.
 次いで、第2実施形態として、ビード部材、ベルトコード、及びビードワイヤーが樹脂部材に相当するタイヤを例に挙げて説明する。 Next, as a second embodiment, a bead member, a belt cord, and a bead wire will be described as an example of a tire corresponding to a resin member.
 [第2実施形態]
 図2は、第2実施形態のタイヤ110のタイヤ幅方向に沿って切断した切断面の片側を示すタイヤ半断面図である。なお、図中矢印TWはタイヤ110の幅方向(タイヤ幅方向)を示し、矢印TRはタイヤ110の径方向(タイヤ径方向)を示す。
[Second Embodiment]
FIG. 2 is a tire half sectional view showing one side of a cut surface cut along the tire width direction of the tire 110 of the second embodiment. In the figure, an arrow TW indicates the width direction of the tire 110 (tire width direction), and an arrow TR indicates the radial direction of the tire 110 (tire radial direction).
 図2に示されるように、タイヤ110は、左右一対のビード部112(なお図2では、片側のビード部112のみ図示)と、一対のビード部112からタイヤ径方向外側へそれぞれ延びる一対のタイヤサイド部114と、一方のタイヤサイド部114から他方のタイヤサイド部114へ延びるトレッド部116と、を有している。 As shown in FIG. 2, the tire 110 includes a pair of left and right bead portions 112 (only one bead portion 112 is shown in FIG. 2), and a pair of tires extending from the pair of bead portions 112 outward in the tire radial direction. A side portion 114 and a tread portion 116 extending from one tire side portion 114 to the other tire side portion 114 are provided.
 図2に示すタイヤ110は、タイヤ骨格体に相当するタイヤケース140を備えている。タイヤケース140はゴム部材に相当し、ゴムを用いて形成されかつシラノール基を有する充填剤が含有される。タイヤケース140は、ビード部112と、タイヤサイド部114と、トレッド部116と、を含んで構成されている。
 なお、図2においてゴム部材に相当するタイヤケース140は、ゴム部材に相当するカーカス(例えば複数のワイヤーの周囲がゴムで被覆されたカーカスプライのみからなるカーカス)等のタイヤの骨格を成す部材に置き替えてもよい。
A tire 110 shown in FIG. 2 includes a tire case 140 corresponding to a tire skeleton. The tire case 140 corresponds to a rubber member, and is formed using rubber and contains a filler having a silanol group. The tire case 140 includes a bead portion 112, a tire side portion 114, and a tread portion 116.
In FIG. 2, a tire case 140 corresponding to a rubber member is a member constituting a tire skeleton such as a carcass corresponding to a rubber member (for example, a carcass made only of a carcass ply in which a plurality of wires are covered with rubber). It may be replaced.
 また、タイヤサイド部114及びビード部112のタイヤ幅方向外側、ビード部112のタイヤ径方向内側、及びビード部112のタイヤ幅方向内側の一部には保護層122が設けられている。タイヤケース140は、ビード部112、タイヤサイド部114及びトレッド部116が同じ工程で一体的に形成されたものであっても、それぞれ異なる工程で形成された部材を組み合わせたものであってもよいが、生産効率の観点からは一体的に形成されたものであることが好ましい。 A protective layer 122 is provided on the tire side portion 114 and the bead portion 112 in the tire width direction outer side, the bead portion 112 in the tire radial direction inner side, and the bead portion 112 on the tire width direction inner side. In the tire case 140, the bead portion 112, the tire side portion 114, and the tread portion 116 may be integrally formed in the same process, or may be a combination of members formed in different processes. However, it is preferably formed integrally from the viewpoint of production efficiency.
 また、ビード部112には、ビードコア118からタイヤ径方向外側へ保護層122に沿って延びるビードフィラー120が埋設されている。ビードフィラー120は樹脂部材に相当し、タイヤケース140と接する面が前述の表面処理によって処理された処理済表面である。 Further, a bead filler 120 extending along the protective layer 122 from the bead core 118 to the outer side in the tire radial direction is embedded in the bead portion 112. The bead filler 120 corresponds to a resin member, and the surface in contact with the tire case 140 is a treated surface treated by the surface treatment described above.
 ビード部112は、リム(図示せず)に接触する部位であり、タイヤ周方向に沿って延びる円環状のビードコア118が埋設されている。ビードコア118が取り得る形態については後述する。 The bead portion 112 is a part that contacts a rim (not shown), and an annular bead core 118 extending along the tire circumferential direction is embedded. The forms that the bead core 118 can take will be described later.
 保護層122は、タイヤケース140とリムとの間の気密性を高める等の目的で設けられるものであり、タイヤケース140よりも軟質で且つ耐候性が高いゴム等の材料で構成されているが、省略してもよい。 The protective layer 122 is provided for the purpose of increasing the airtightness between the tire case 140 and the rim, and is made of a material such as rubber that is softer and weatherproof than the tire case 140. , May be omitted.
 トレッド部116は、タイヤ110の接地面に相当する部位であり、ベルト層124Aが設けられている。さらに、ベルト層124Aの上にはクッションゴム124Bを介してトレッド層130が設けられている。ベルト層124Aが取り得る形態については後述する。 The tread portion 116 is a portion corresponding to the ground contact surface of the tire 110, and is provided with a belt layer 124A. Further, a tread layer 130 is provided on the belt layer 124A via a cushion rubber 124B. The forms that the belt layer 124A can take will be described later.
 ・タイヤの製造
 タイヤケース140の作製方法は、特に制限されない。例えば、タイヤケース140を赤道面(図2中のCLで示される面)で分割した状態のタイヤケース半体をそれぞれ押出成形法(例えば射出成形法)等により作製し、タイヤケース半体同士を赤道面で接合することで作製してもよい。また、ゴム部材に相当するタイヤケース140をカーカスに置き替えてた場合、従来公知の方法により作製されたカーカスを用いてもよい。
 タイヤケース140のトレッド部116にベルト層124Aを形成する方法としては、例えば、タイヤケース140を回転させながら、リールに巻き取ったベルト(図3Aに示すベルトコード1がコード被覆層3に被覆された部材)を巻き出し、このベルトをクラウン部16に所定の回数巻き付けてベルト層124Aが形成される。なお、加熱及び加圧を行ってコード被覆層3をタイヤケース140に溶着させてもよい。
 タイヤケース140のビード部112にビードフィラー120及びビードコア118を形成する方法としては、例えば、予め形成したビードフィラー120及びビードコア118用の円環状の部材を、公知の方法でビード部112に埋め込むことで形成してもよい。
-Manufacture of tire The manufacturing method of the tire case 140 is not particularly limited. For example, the tire case halves in a state where the tire case 140 is divided by the equator plane (the surface indicated by CL in FIG. 2) are respectively produced by an extrusion molding method (for example, an injection molding method) or the like, You may produce by joining in an equatorial plane. Further, when the tire case 140 corresponding to the rubber member is replaced with a carcass, a carcass produced by a conventionally known method may be used.
As a method of forming the belt layer 124A on the tread portion 116 of the tire case 140, for example, a belt wound around a reel while the tire case 140 is rotated (the belt cord 1 shown in FIG. 3A is coated on the cord covering layer 3). The belt layer 124A is formed by winding the belt around the crown portion 16 a predetermined number of times. The cord covering layer 3 may be welded to the tire case 140 by heating and pressurizing.
As a method for forming the bead filler 120 and the bead core 118 in the bead portion 112 of the tire case 140, for example, a preformed bead filler 120 and an annular member for the bead core 118 are embedded in the bead portion 112 by a known method. May be formed.
 第2実施形態のタイヤ110では、ゴム部材に相当するタイヤケース140にシラノール基を有する充填剤が含有され、かつ樹脂部材に相当するビードフィラー120(ビード部材の一例)のタイヤケース140と接する領域に前述の方法による表面処理が施されている。そのため、タイヤケース140とビードフィラー120との間に接着剤を介さずとも、タイヤケース140とビードフィラー120(ビード部材の一例)との優れた接着性が得られる。 In the tire 110 of the second embodiment, a tire case 140 corresponding to a rubber member contains a filler having a silanol group, and a bead filler 120 (an example of a bead member) corresponding to a resin member is in contact with the tire case 140. Is subjected to surface treatment by the above-described method. Therefore, excellent adhesion between the tire case 140 and the bead filler 120 (an example of a bead member) can be obtained without using an adhesive between the tire case 140 and the bead filler 120.
 (変形例)
 図2に示す第2実施形態のタイヤ110では、タイヤケース140がビードフィラー120に直に接する態様を示したが、これに限らず、タイヤケース140とビードフィラー120との間に、ゴム部材に相当するゴムシートを介在させてもよい。この場合、ゴムシートがゴム部材に相当し、このゴムシートにシラノール基を有する充填剤が含有される。また、タイヤケース140が第2ゴム部材に相当し、このタイヤケース140にはシラノール基を有する充填剤を含有させずともよい。
(Modification)
In the tire 110 according to the second embodiment illustrated in FIG. 2, the tire case 140 is shown in a form in which the tire case 140 is in direct contact with the bead filler 120. However, the present invention is not limited thereto, and the rubber member is interposed between the tire case 140 and the bead filler 120. A corresponding rubber sheet may be interposed. In this case, the rubber sheet corresponds to a rubber member, and the rubber sheet contains a filler having a silanol group. The tire case 140 corresponds to the second rubber member, and the tire case 140 may not contain a filler having a silanol group.
 なお、樹脂部材に相当するビードフィラー120と、第2ゴム部材に相当するタイヤケース140との間に、ゴム部材に相当するゴムシートを介在させる場合、このゴムシートの厚さとしては、例えば0.1μm以上100mm以下が好ましく、1μm以上2mm以下がより好ましい。 When a rubber sheet corresponding to the rubber member is interposed between the bead filler 120 corresponding to the resin member and the tire case 140 corresponding to the second rubber member, the thickness of the rubber sheet is, for example, 0. 1 μm or more and 100 mm or less is preferable, and 1 μm or more and 2 mm or less is more preferable.
 (ビードコアの形態)
 次いで、図2に示されるビードコア118が取り得る形態について、複数の例を挙げて説明する。
 図3Aは、ビードコア118の一部をビードワイヤー1の長さ方向に対して垂直に切断したときの断面を模式的に表す図である。図3Aでは、3本のビードワイヤー1に直に接するようワイヤー被覆層3が設けられている。図3Aに示す態様では、ビードワイヤー1は樹脂部材に相当し、ワイヤー被覆層3と接する面が前述の表面処理によって処理された処理済表面である。また、ワイヤー被覆層3はゴム部材に相当し、ゴムを用いて形成されかつシラノール基を有する充填剤が含有される。そのため、ビードワイヤー1とワイヤー被覆層3との間に接着剤を介さずとも、ビードワイヤー1とワイヤー被覆層3との優れた接着性が得られる。
 なお、1本のビードワイヤー1を熱溶着しながら、横、縦に段済みすることで、作製してもよい。
(Bead core form)
Next, the forms that the bead core 118 shown in FIG. 2 can take will be described with a plurality of examples.
FIG. 3A is a diagram schematically illustrating a cross section when a part of the bead core 118 is cut perpendicularly to the length direction of the bead wire 1. In FIG. 3A, the wire coating layer 3 is provided so as to be in direct contact with the three bead wires 1. In the embodiment shown in FIG. 3A, the bead wire 1 corresponds to a resin member, and the surface in contact with the wire coating layer 3 is a treated surface treated by the surface treatment described above. Moreover, the wire coating layer 3 corresponds to a rubber member, and is formed using rubber and contains a filler having a silanol group. Therefore, excellent adhesiveness between the bead wire 1 and the wire coating layer 3 can be obtained without using an adhesive between the bead wire 1 and the wire coating layer 3.
In addition, you may produce by carrying out the horizontal and vertical stepping of the one bead wire 1 while heat-welding.
 また、ビードコア118が、ビードワイヤー1とワイヤー被覆層3との間に配置されるゴムシート2を有していてもよい。図3Bに示すビードコア118の一部は、3本のビードワイヤー1のそれぞれの表面にゴムシート2が接着して設けられ、さらにその表面にワイヤー被覆層3が設けられている。なお、このゴムシート2がゴム部材に相当し、このゴムシート2にシラノール基を有する充填剤が含有される。また、ワイヤー被覆層3が第2ゴム部材に相当し、このワイヤー被覆層3にはシラノール基を有する充填剤を含有させずともよい。これにより、ビードワイヤー1とゴムシート2との間に接着剤を介さずとも、ビードワイヤー1とゴムシート2との優れた接着性が得られる。 Further, the bead core 118 may have the rubber sheet 2 disposed between the bead wire 1 and the wire covering layer 3. A part of the bead core 118 shown in FIG. 3B is provided with the rubber sheet 2 bonded to the surface of each of the three bead wires 1, and the wire coating layer 3 is further provided on the surface. The rubber sheet 2 corresponds to a rubber member, and the rubber sheet 2 contains a filler having a silanol group. Moreover, the wire coating layer 3 corresponds to a second rubber member, and the wire coating layer 3 may not contain a filler having a silanol group. Thereby, even if it does not interpose an adhesive agent between bead wire 1 and rubber sheet 2, the superior adhesiveness of bead wire 1 and rubber sheet 2 is obtained.
 なお、図3A及び図3Bではビードワイヤー1が並列に3本並べられた態様を示しているが、その本数は2本以下であっても、4本以上であってもよい。
 また、図2に示されるビードコア118は、図3A及び図3Bのいずれかに示される3本のビードワイヤー1とワイヤー被覆層3と(図3Bではさらにゴムシート2と)が3層積層された形態となっている。ただし、ビードコア118は、1層で使用しても、2層以上を積層して使用してもよい。その場合、ワイヤー被覆層間を溶着することが好ましい。
 なお、ビードコア118が取り得る形態について図3A及び図3Bを挙げて説明したが、この構成に限定されない。
3A and 3B show an embodiment in which three bead wires 1 are arranged in parallel, the number may be two or less, or four or more.
Further, the bead core 118 shown in FIG. 2 is formed by laminating three layers of the three bead wires 1 and the wire covering layer 3 shown in any of FIG. 3A and FIG. 3B (and the rubber sheet 2 in FIG. 3B). It has a form. However, the bead core 118 may be used as a single layer or may be used as a laminate of two or more layers. In that case, it is preferable to weld the wire coating layers.
In addition, although the form which the bead core 118 can take was demonstrated referring FIG. 3A and FIG. 3B, it is not limited to this structure.
 ビードコア118を作製する方法は、特に制限されない。例えば、図3Bに示すビードコア118を作製する場合であれば、樹脂部材であるビードワイヤー1に前述の表面処理を施し、その後ゴムシート2を形成するためのゴム材料(なお、該ゴム材料はシラノール基を有する充填剤を含有する)と、ワイヤー被覆層3を形成するためのゴム材料と、を用いて押出成形法により作製することができる。 The method for producing the bead core 118 is not particularly limited. For example, in the case of producing the bead core 118 shown in FIG. 3B, the rubber material for forming the rubber sheet 2 after the above-described surface treatment is performed on the bead wire 1 which is a resin member (the rubber material is silanol) Containing a filler having a group) and a rubber material for forming the wire coating layer 3 can be produced by an extrusion molding method.
 (ベルト層の形態)
 次いで、図2に示されるベルト層124Aが取り得る形態について説明する。
 例えば、図3Aに示したビードコア118と同様の構成が挙げられ、つまり3本のベルトコードに直に接するようコード被覆層が設けられた構成が挙げられる。この場合、ベルトコードは樹脂部材に相当し、コード被覆層と接する面が前述の表面処理によって処理された処理済表面である。また、コード被覆層はゴム部材に相当し、ゴムを用いて形成されかつシラノール基を有する充填剤が含有される。そのため、ベルトコードとコード被覆層との間に接着剤を介さずとも、ベルトコードとコード被覆層との優れた接着性が得られる。
(Belt layer form)
Next, modes that the belt layer 124A shown in FIG. 2 can take will be described.
For example, a configuration similar to that of the bead core 118 illustrated in FIG. 3A can be given, that is, a configuration in which a cord covering layer is provided so as to be in direct contact with three belt cords. In this case, the belt cord corresponds to a resin member, and the surface in contact with the cord covering layer is the treated surface treated by the surface treatment described above. The cord covering layer corresponds to a rubber member, and contains a filler that is formed using rubber and has a silanol group. Therefore, excellent adhesiveness between the belt cord and the cord covering layer can be obtained without using an adhesive between the belt cord and the cord covering layer.
 また、ベルト層124Aが、ベルトコードとコード被覆層との間に配置されるゴムシートを有していてもよい。この形態としては、図3Bに示したビードコア118と同様の構成が挙げられ、つまり3本のベルトコードのそれぞれ表面にゴムシートが接着して設けられ、さらにその表面にコード被覆層が設けられた構成が挙げられる。この場合、ゴムシートがゴム部材に相当し、このゴムシートにシラノール基を有する充填剤が含有される。また、コード被覆層が第2ゴム部材に相当し、このコード被覆層にはシラノール基を有する充填剤を含有させずともよい。これにより、ベルトコードとゴムシートとの間に接着剤を介さずとも、ベルトコードとゴムシートとの優れた接着性が得られる。 Further, the belt layer 124A may have a rubber sheet disposed between the belt cord and the cord covering layer. As this form, the same configuration as the bead core 118 shown in FIG. 3B can be mentioned, that is, a rubber sheet is adhered to each surface of the three belt cords, and a cord covering layer is further provided on the surface. A configuration is mentioned. In this case, the rubber sheet corresponds to a rubber member, and the rubber sheet contains a filler having a silanol group. The cord coating layer corresponds to the second rubber member, and the cord coating layer may not contain a filler having a silanol group. As a result, excellent adhesion between the belt cord and the rubber sheet can be obtained without using an adhesive between the belt cord and the rubber sheet.
 なお、ベルトコードが並列に3本並べられた態様のみならず、その本数は2本以下であっても、4本以上であってもよい。
 また、図2に示されるベルト層124Aは、3本のベルトコードとコード被覆層と(さらに必要によりゴムシートと)が1層積層された形態となっている。ただし、ベルト層124Aは、2層以上を積層して使用してもよい。その場合、コード被覆層間を溶着することが好ましい。
 なお、ベルト層124Aが取り得る形態について上記の通り説明したが、この構成に限定されない。
The number of belt cords may be two or less, or four or more, as well as a mode in which three belt cords are arranged in parallel.
Further, the belt layer 124A shown in FIG. 2 has a configuration in which three belt cords and a cord covering layer (and, if necessary, a rubber sheet) are laminated. However, the belt layer 124A may be used by stacking two or more layers. In this case, it is preferable to weld the cord coating layers.
In addition, although the form which 124A can take was demonstrated as mentioned above, it is not limited to this structure.
 以上、第1及び第2実施形態を挙げて本実施形態に係るタイヤの構成を説明したが、これらの実施形態は一例であり、本実施形態では、その要旨を逸脱しない範囲内において、種々変更を加えて実施することができる。また、本開示の権利範囲がこれらの実施形態に限定されないことは言うまでもない。 As mentioned above, although the structure of the tire which concerns on this embodiment was demonstrated giving 1st and 2nd embodiment, these embodiment is an example, In this embodiment, in the range which does not deviate from the summary, various changes are carried out. Can be added. It goes without saying that the scope of rights of the present disclosure is not limited to these embodiments.
 上記の通り、本開示によれば以下の樹脂ゴム複合体、タイヤ、及び樹脂ゴム複合体の製造方法が提供される。
<1> 本開示の第1の観点によれば、
 プラズマ処理による表面処理が施された処理済表面を有する樹脂部材と、
 前記樹脂部材における前記処理済表面に接し、シラノール基を有する充填剤を含むゴム部材と、
 を有する樹脂ゴム複合体が提供される。
<2> 本開示の第2の観点によれば、
 前記樹脂部材における前記処理済表面は、前記表面処理によってペルオキシラジカル(-O-O・)、ヒドロペルオキシド基(-O-OH)、カルボニル基(-C(=O)-)、アルデヒド基(-C(=O)-H)、カルボキシ基(-C(=O)-OH)、及び水酸基(-OH)から選択される少なくとも一種が導入された表面である、前記第1の観点による樹脂ゴム複合体が提供される。
<3> 本開示の第3の観点によれば、
 前記樹脂部材における前記処理済表面の水の接触角が20°以上98°以下である、前記第1又は第2の観点による樹脂ゴム複合体が提供される。
<4> 本開示の第4の観点によれば、
 前記シラノール基を有する充填剤がシリカである、前記第1~第3のいずれか1の観点による樹脂ゴム複合体が提供される。
<5> 本開示の第5の観点によれば、
 前記シリカが親水性シリカである、前記第4の観点による樹脂ゴム複合体が提供される。
<6> 本開示の第6の観点によれば、
 前記ゴム部材が、さらに2個以上の硫黄を有するポリスルフィド系シランカップリング剤を含む、前記第1~第5のいずれか1の観点による樹脂ゴム複合体が提供される。
<7> 本開示の第7の観点によれば、
 さらに、前記ゴム部材と接する第2ゴム部材を有する、前記第1~第6のいずれか1の観点による樹脂ゴム複合体が提供される。
<8> 本開示の第8の観点によれば、
 前記ゴム部材が、さらにトリアジンジチオールを含む、前記第1~第7のいずれか1の観点による樹脂ゴム複合体が提供される。
<9> 本開示の第9の観点によれば、
 前記ゴム部材は、含まれるゴムに対して、前記トリアジンジチオールを0.01phr以上10phr以下含む、前記第8の観点による樹脂ゴム複合体が提供される。
<10> 本開示の第10の観点によれば、
 前記樹脂部材が、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、ポリアミド系熱可塑性樹脂、ポリスチレン系熱可塑性エラストマー、ポリスチレン系熱可塑性樹脂、ポリウレタン系熱可塑性エラストマー、ポリウレタン系熱可塑性樹脂、ポリオレフィン系熱可塑性エラストマー、及びポリオレフィン系熱可塑性樹脂から選択される少なくとも一種の樹脂を含有する、前記第1~第9のいずれか1の観点による樹脂ゴム複合体が提供される。
<11> 本開示の第11の観点によれば、
 前記樹脂部材が、ポリエステル系熱可塑性エラストマー、及びポリエステル系熱可塑性樹脂から選択される少なくとも一種の樹脂を含有する、前記第10の観点による樹脂ゴム複合体が提供される。
<12> 本開示の第12の観点によれば、
 、前記第1~第11のいずれか1の観点による樹脂ゴム複合体を有するタイヤが提供される。
<13> 本開示の第13の観点によれば、
 前記樹脂部材としてのベルト層と、前記ゴム部材としてのトレッド、タイヤ骨格体、及び前記ベルト層の表面に接着されたゴムシートから選択される少なくとも1種の部材と、を有する、前記第12の観点によるタイヤが提供される。
<14> 本開示の第14の観点によれば、
 前記樹脂部材としてのビード部材と、前記ゴム部材としてのタイヤ骨格体、及び前記ビード部材の表面に接着されたゴムシートから選択される少なくとも1種の部材と、を有する、前記第12の観点によるタイヤが提供される。
<15> 本開示の第15の観点によれば、
 前記樹脂部材としてのタイヤ骨格体と、前記ゴム部材としてのトレッド、ベルト層、ビード部材、及び前記タイヤ骨格体の表面に接着されたゴムシートから選択される少なくとも1種の部材と、を有する、前記第12の観点によるタイヤが提供される。
<16> 本開示の第16の観点によれば、
 前記樹脂ゴム複合体が、前記樹脂部材としてのベルトコードと、前記ゴム部材としての前記ベルトコードを被覆するコード被覆層、及び前記ベルトコードの表面に接着されたゴムシートから選択される少なくとも1種の部材と、を有するベルト層である、前記第12の観点によるタイヤが提供される。
<17> 本開示の第17の観点によれば、
 前記樹脂ゴム複合体が、前記樹脂部材としてのビードワイヤーと、前記ゴム部材としての前記ビードワイヤーを被覆するワイヤー被覆層、及び前記ビードワイヤーの表面に接着されたゴムシートから選択される少なくとも1種の部材と、を有するビードコアである、前記第12の観点によるタイヤが提供される。
<18> 本開示の第18の観点によれば、
 プラズマ処理による表面処理を樹脂部材における表面の少なくとも一部に施す表面処理工程と、
 前記樹脂部材における前記表面処理が施された表面に、シラノール基を有する充填剤を含むゴム部材が接するよう配置し、加熱して前記樹脂部材と前記ゴム部材とを接着する接着工程と、
 を有する樹脂ゴム複合体の製造方法が提供される。
As described above, according to the present disclosure, the following resin rubber composite, tire, and method for producing the resin rubber composite are provided.
<1> According to the first aspect of the present disclosure,
A resin member having a treated surface subjected to a surface treatment by plasma treatment;
A rubber member in contact with the treated surface of the resin member and containing a filler having a silanol group;
There is provided a resin rubber composite having
<2> According to the second aspect of the present disclosure,
The treated surface of the resin member is treated with a peroxy radical (—O—O.), A hydroperoxide group (—O—OH), a carbonyl group (—C (═O) —), an aldehyde group (— The resin rubber according to the first aspect, which is a surface into which at least one selected from C (═O) —H), a carboxy group (—C (═O) —OH), and a hydroxyl group (—OH) is introduced. A complex is provided.
<3> According to the third aspect of the present disclosure,
The resin rubber composite according to the first or second aspect, in which a contact angle of water on the treated surface of the resin member is 20 ° or more and 98 ° or less, is provided.
<4> According to the fourth aspect of the present disclosure,
There is provided a resin rubber composite according to any one of the first to third aspects, wherein the filler having a silanol group is silica.
<5> According to the fifth aspect of the present disclosure,
The resin rubber composite according to the fourth aspect, in which the silica is hydrophilic silica, is provided.
<6> According to the sixth aspect of the present disclosure,
The resin rubber composite according to any one of the first to fifth aspects is provided, wherein the rubber member further contains a polysulfide-based silane coupling agent having two or more sulfur.
<7> According to the seventh aspect of the present disclosure,
Furthermore, the resin rubber composite according to any one of the first to sixth aspects is provided, which has a second rubber member in contact with the rubber member.
<8> According to the eighth aspect of the present disclosure,
The resin rubber composite according to any one of the first to seventh aspects is provided, wherein the rubber member further contains triazinedithiol.
<9> According to the ninth aspect of the present disclosure,
The rubber member includes the resin rubber composite according to the eighth aspect, in which the triazinedithiol is contained in an amount of 0.01 phr to 10 phr with respect to the rubber contained therein.
<10> According to the tenth aspect of the present disclosure,
The resin member is polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, polyamide-based thermoplastic elastomer, polyamide-based thermoplastic resin, polystyrene-based thermoplastic elastomer, polystyrene-based thermoplastic resin, polyurethane-based thermoplastic elastomer, polyurethane-based heat A resin rubber composite according to any one of the first to ninth aspects is provided, which contains at least one resin selected from a plastic resin, a polyolefin-based thermoplastic elastomer, and a polyolefin-based thermoplastic resin.
<11> According to the eleventh aspect of the present disclosure,
The resin rubber composite according to the tenth aspect is provided, wherein the resin member contains at least one resin selected from a polyester-based thermoplastic elastomer and a polyester-based thermoplastic resin.
<12> According to the twelfth aspect of the present disclosure,
A tire having a resin rubber composite according to any one of the first to eleventh aspects is provided.
<13> According to the thirteenth aspect of the present disclosure,
A belt layer as the resin member; and at least one member selected from a tread as the rubber member, a tire skeleton, and a rubber sheet bonded to the surface of the belt layer. A tire according to the aspect is provided.
<14> According to the fourteenth aspect of the present disclosure,
According to the twelfth aspect, including a bead member as the resin member, a tire skeleton as the rubber member, and at least one member selected from a rubber sheet bonded to a surface of the bead member. Tires are provided.
<15> According to the fifteenth aspect of the present disclosure,
A tire skeleton as the resin member, and at least one member selected from a tread, a belt layer, a bead member, and a rubber sheet bonded to the surface of the tire skeleton as the rubber member. A tire according to the twelfth aspect is provided.
<16> According to the sixteenth aspect of the present disclosure,
The resin rubber composite is at least one selected from a belt cord as the resin member, a cord covering layer covering the belt cord as the rubber member, and a rubber sheet bonded to the surface of the belt cord. The tire according to the twelfth aspect is provided.
<17> According to the seventeenth aspect of the present disclosure,
The resin rubber composite is at least one selected from a bead wire as the resin member, a wire coating layer covering the bead wire as the rubber member, and a rubber sheet bonded to the surface of the bead wire. There is provided a tire according to the twelfth aspect of the present invention.
<18> According to the eighteenth aspect of the present disclosure,
A surface treatment step of applying a surface treatment by plasma treatment to at least a part of the surface of the resin member;
A bonding step of placing the rubber member containing a filler having a silanol group in contact with the surface of the resin member that has been subjected to the surface treatment, and heating and bonding the resin member and the rubber member;
A method for producing a resin rubber composite having the following is provided.
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの記載に何ら制限を受けるものではない。 Hereinafter, the present disclosure will be specifically described by way of examples. However, the present disclosure is not limited to these descriptions.
〔実施例1〕
<試験片の作製>
1.樹脂部材
 樹脂組成物として、市販のポリエステル系熱可塑性エラストマーとしてハイトレル4767N、東レ・デュポン社製を用い、厚さ0.6mmの樹脂角板を得た。
[Example 1]
<Preparation of test piece>
1. Resin member As a resin composition, Hytrel 4767N manufactured by Toray DuPont was used as a commercially available polyester-based thermoplastic elastomer to obtain a resin square plate having a thickness of 0.6 mm.
2.ゴム部材
 ゴム部材として、表1に示すゴム及び各種配合剤をラボプラストミル((株)東洋精機製作所製)で110℃3分間混合撹拌した後、ロールで厚さ2.5mmのゴムシートを得た。
2. Rubber member As the rubber member, the rubber and various compounding agents shown in Table 1 were mixed and stirred at 110 ° C. for 3 minutes with a lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.), and a rubber sheet having a thickness of 2.5 mm was obtained with a roll It was.
3.表面処理
 樹脂部材に表面処理を施すプラズマ照射装置は、プラズマ発生装置(明昌機工社製、製品名K2X02L023)を用いた。プラズマ発生装置の高周波電源として、印加電圧の周波数が13.56MHzのものを用い、電極としては、内径1.8mm、外径3mm、長さ165mmの銅管を外径5mm、厚さ1mm、長さ100mmのアルミナ管で被覆した構造のものを用いた。試料ホルダーの上面に、樹脂部材を載せ、樹脂部材表面と電極との距離が1.0mmになるように設定した。
 チャンバーを密閉し、ロータリーポンプにより10Pa以下になるまで減圧した後、大気圧(つまり1013hPa)になるまでヘリウムガスを導入した。その後、出力電力密度(つまり照射密度)5.7W/cmになるように高周波電源を設定するとともに、走査ステージの移動速度が2mm/秒に設定した。
 その後、走査ステージを移動させながら樹脂部材(つまり角板)の表面に、ヘリウム雰囲気下でプラズマ照射を行ない、走査ステージを2往復させて、表面処理を施した。
 表面処理が施された処理済表面の水の接触角を下記表1に示す。ただし、表1に示す水の接触角については、上記のプラズマ発生装置とは異なる仕様のプラズマ発生装置を用いて表面処理を施して得られる樹脂部材の水の接触角を元にして、シミュレーションから得た予測値である。
3. Surface treatment A plasma generator (product name: K2X02L023, manufactured by Myeongchang Kiko Co., Ltd.) was used as the plasma irradiation apparatus for performing the surface treatment on the resin member. As a high frequency power source for the plasma generator, an applied voltage having a frequency of 13.56 MHz is used. As an electrode, a copper tube having an inner diameter of 1.8 mm, an outer diameter of 3 mm, and a length of 165 mm is outer diameter of 5 mm, thickness of 1 mm, and length. The thing of the structure coat | covered with the 100 mm-thick alumina tube was used. A resin member was placed on the upper surface of the sample holder, and the distance between the resin member surface and the electrode was set to 1.0 mm.
The chamber was sealed, and the pressure was reduced to 10 Pa or less with a rotary pump, and then helium gas was introduced until atmospheric pressure (that is, 1013 hPa). Thereafter, the high frequency power source was set so that the output power density (that is, the irradiation density) was 5.7 W / cm 2, and the moving speed of the scanning stage was set to 2 mm / second.
Thereafter, the surface of the resin member (that is, the square plate) was irradiated with plasma in a helium atmosphere while moving the scanning stage, and the scanning stage was reciprocated twice to perform surface treatment.
The contact angle of water on the treated surface that has been subjected to the surface treatment is shown in Table 1 below. However, the contact angle of water shown in Table 1 is based on the simulation based on the contact angle of water of the resin member obtained by surface treatment using a plasma generator having a specification different from that of the above plasma generator. This is the predicted value obtained.
4.接着
 プラズマ処理を施した樹脂部材(つまり角板)にゴム部材(つまりシート)を貼り合せ、加硫温度150℃、圧力2MPaで30分加硫して、試験片を得た。
 加硫後、試験片に対して下記の剥離試験を行った。結果を表1に示す。
4). Adhesion A rubber member (that is, a sheet) was bonded to a resin member (that is, a square plate) subjected to plasma treatment, and vulcanized at a vulcanization temperature of 150 ° C. and a pressure of 2 MPa for 30 minutes to obtain a test piece.
After vulcanization, the following peel test was performed on the test piece. The results are shown in Table 1.
〔実施例2~10、比較例1~4〕
 表1に示した配合でゴム部材(つまりシート)を作製した以外は、実施例1と同様にして試験片を作製し、剥離試験を行った。ただし、実施例10では、加硫温度を145℃とした。
[Examples 2 to 10, Comparative Examples 1 to 4]
A test piece was prepared in the same manner as in Example 1 except that a rubber member (that is, a sheet) was prepared according to the formulation shown in Table 1, and a peel test was performed. However, in Example 10, the vulcanization temperature was 145 ° C.
<接着力の測定>
 各例で得られた試験片を用いて、引張試験機(RTF-1210、エーアンドデー社製)により、室温下(つまり25℃)、引張速度100mm/分でゴム部材と樹脂部材との剥離試験を行い、最大強度から接着力[N/10mm]を求めた。
<Measurement of adhesive strength>
Using the test piece obtained in each example, the rubber member and the resin member were peeled off at room temperature (that is, 25 ° C.) at a tensile rate of 100 mm / min with a tensile tester (RTF-1210, manufactured by A & D). A test was conducted, and the adhesive strength [N / 10 mm] was determined from the maximum strength.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示す各成分の詳細は以下の通りである。
・ゴム(SBR)/スチレンブタジエンゴム、JSR(株)、JSR1502
・ゴム(NR)/天然ゴム、RSS#3
・カーボンブラック/旭カーボン(株)、旭#51
・シリカ/東ソー・シリカ(株)製、製品名:ニップシールAQ
・シランカップリング剤/信越化学工業(株)製、製品名:ビス-(トリエトキシシリルプロピル)-ポリスルフィド
・促進剤(DPG)/ジフェニルグアニジン、大内新興化学工業製、ノクセラーD
・促進剤(CZ)/N-シクロヘキシルベンゾチアジルスルフェンアミド、大内新興化学工業製、ノクセラーCZ
・促進剤(DM)/ジ-2-ベンゾチアゾリルジスルフィド、大内新興化学工業製、ノクセラーDM
・促進剤(NS)/N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学工業製、ノクセラーNS-P
・TADT/2-ジブチルアミノ-4,6-ジメルカプト-s-トリアジン、東京化成工業(株)製
Details of each component shown in Table 1 are as follows.
・ Rubber (SBR) / styrene butadiene rubber, JSR Corporation, JSR1502
・ Rubber (NR) / Natural rubber, RSS # 3
・ Carbon Black / Asahi Carbon Co., Ltd., Asahi # 51
・ Silica / Tosoh ・ Silica Co., Ltd., Product name: Nip seal
・ Silane coupling agent / manufactured by Shin-Etsu Chemical Co., Ltd., product name: bis- (triethoxysilylpropyl) -polysulfide ・ accelerator (DPG) / diphenylguanidine, manufactured by Ouchi Shinsei Chemical Industry, Noxeller D
・ Accelerator (CZ) / N-cyclohexylbenzothiazylsulfenamide, manufactured by Ouchi Shinsei Chemical Industry, Noxeller CZ
・ Accelerator (DM) / di-2-benzothiazolyl disulfide, manufactured by Ouchi Shinsei Chemical Industry, Noxeller DM
Accelerator (NS) / Nt-butyl-2-benzothiazolylsulfenamide, manufactured by Ouchi Shinsei Chemical Industry, Noxeller NS-P
・ TADT / 2-dibutylamino-4,6-dimercapto-s-triazine, manufactured by Tokyo Chemical Industry Co., Ltd.
1 ビードワイヤー
2 ゴムシート
3 ワイヤー被覆層
12 ビード部
16 クラウン部
17 タイヤケース(タイヤ骨格体の一例)
18 ビードコア
26 ベルト層
26A ベルトコード
26B 被覆樹脂
28 クッションゴム
30 トレッド層
110 タイヤ
112 ビード部
114 タイヤサイド部
116 トレッド部
118 ビードコア
122 保護層
124A ベルト層
124B クッションゴム
130 トレッド層
140 タイヤケース(タイヤ骨格体の一例)
200 タイヤ
CL タイヤ赤道面
Q 中点
DESCRIPTION OF SYMBOLS 1 Bead wire 2 Rubber sheet 3 Wire coating layer 12 Bead part 16 Crown part 17 Tire case (an example of a tire frame)
18 Bead core 26 Belt layer 26A Belt cord 26B Coating resin 28 Cushion rubber 30 Tread layer 110 Tire 112 Bead portion 114 Tire side portion 116 Tread portion 118 Bead core 122 Protective layer 124A Belt layer 124B Cushion rubber 130 Tread layer 140 Tire case (tire frame) Example)
200 Tire CL Tire Equatorial Plane Q Midpoint

Claims (18)

  1.  プラズマ処理による表面処理が施された処理済表面を有する樹脂部材と、
     前記樹脂部材における前記処理済表面に接し、シラノール基を有する充填剤を含むゴム部材と、
     を有する樹脂ゴム複合体。
    A resin member having a treated surface subjected to a surface treatment by plasma treatment;
    A rubber member in contact with the treated surface of the resin member and containing a filler having a silanol group;
    A resin rubber composite having:
  2.  前記樹脂部材における前記処理済表面は、前記表面処理によってペルオキシラジカル(-O-O・)、ヒドロペルオキシド基(-O-OH)、カルボニル基(-C(=O)-)、アルデヒド基(-C(=O)-H)、カルボキシ基(-C(=O)-OH)、及び水酸基(-OH)から選択される少なくとも一種が導入された表面である請求項1に記載の樹脂ゴム複合体。 The treated surface of the resin member is treated with a peroxy radical (—O—O.), A hydroperoxide group (—O—OH), a carbonyl group (—C (═O) —), an aldehyde group (— 2. The resin rubber composite according to claim 1, which is a surface into which at least one selected from C (═O) —H), a carboxy group (—C (═O) —OH), and a hydroxyl group (—OH) is introduced. body.
  3.  前記樹脂部材における前記処理済表面の水の接触角が20°以上98°以下である請求項1又は請求項2に記載の樹脂ゴム複合体。 The resin rubber composite according to claim 1 or 2, wherein a contact angle of water on the treated surface of the resin member is 20 ° or more and 98 ° or less.
  4.  前記シラノール基を有する充填剤がシリカである請求項1~請求項3のいずれか1項に記載の樹脂ゴム複合体。 The resin rubber composite according to any one of claims 1 to 3, wherein the filler having a silanol group is silica.
  5.  前記シリカが親水性シリカである請求項4に記載の樹脂ゴム複合体。 The resin rubber composite according to claim 4, wherein the silica is hydrophilic silica.
  6.  前記ゴム部材が、さらに2個以上の硫黄を有するポリスルフィド系シランカップリング剤を含む請求項1~請求項5のいずれか1項に記載の樹脂ゴム複合体。 The resin rubber composite according to any one of claims 1 to 5, wherein the rubber member further contains a polysulfide-based silane coupling agent having two or more sulfur.
  7.  さらに、前記ゴム部材と接する第2ゴム部材を有する請求項1~請求項6のいずれか1項に記載の樹脂ゴム複合体。 The resin rubber composite according to any one of claims 1 to 6, further comprising a second rubber member in contact with the rubber member.
  8.  前記ゴム部材が、さらにトリアジンジチオールを含む請求項1~請求項7のいずれか1項に記載の樹脂ゴム複合体。 The resin rubber composite according to any one of claims 1 to 7, wherein the rubber member further contains triazine dithiol.
  9.  前記ゴム部材は、含まれるゴムに対して、前記トリアジンジチオールを0.01phr以上10phr以下含む請求項8に記載の樹脂ゴム複合体。 The resin rubber composite according to claim 8, wherein the rubber member contains 0.01 phr or more and 10 phr or less of the triazine dithiol with respect to the contained rubber.
  10.  前記樹脂部材が、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、ポリアミド系熱可塑性樹脂、ポリスチレン系熱可塑性エラストマー、ポリスチレン系熱可塑性樹脂、ポリウレタン系熱可塑性エラストマー、ポリウレタン系熱可塑性樹脂、ポリオレフィン系熱可塑性エラストマー、及びポリオレフィン系熱可塑性樹脂から選択される少なくとも一種の樹脂を含有する請求項1~請求項9のいずれか1項に記載の樹脂ゴム複合体。 The resin member is polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, polyamide-based thermoplastic elastomer, polyamide-based thermoplastic resin, polystyrene-based thermoplastic elastomer, polystyrene-based thermoplastic resin, polyurethane-based thermoplastic elastomer, polyurethane-based heat The resin rubber composite according to any one of claims 1 to 9, comprising at least one resin selected from a plastic resin, a polyolefin-based thermoplastic elastomer, and a polyolefin-based thermoplastic resin.
  11.  前記樹脂部材が、ポリエステル系熱可塑性エラストマー、及びポリエステル系熱可塑性樹脂から選択される少なくとも一種の樹脂を含有する請求項10に記載の樹脂ゴム複合体。 The resin rubber composite according to claim 10, wherein the resin member contains at least one resin selected from a polyester-based thermoplastic elastomer and a polyester-based thermoplastic resin.
  12.  請求項1~請求項11のいずれか1項に記載の樹脂ゴム複合体を有するタイヤ。 A tire having the resin rubber composite according to any one of claims 1 to 11.
  13.  前記樹脂部材としてのベルト層と、前記ゴム部材としてのトレッド、タイヤ骨格体、及び前記ベルト層の表面に接着されたゴムシートから選択される少なくとも1種の部材と、を有する請求項12に記載のタイヤ。 The belt layer as the resin member, and at least one member selected from a tread as the rubber member, a tire skeleton, and a rubber sheet bonded to the surface of the belt layer. Tires.
  14.  前記樹脂部材としてのビード部材と、前記ゴム部材としてのタイヤ骨格体、及び前記ビード部材の表面に接着されたゴムシートから選択される少なくとも1種の部材と、を有する請求項12に記載のタイヤ。 The tire according to claim 12, comprising a bead member as the resin member, a tire skeleton as the rubber member, and at least one member selected from a rubber sheet bonded to a surface of the bead member. .
  15.  前記樹脂部材としてのタイヤ骨格体と、前記ゴム部材としてのトレッド、ベルト層、ビード部材、及び前記タイヤ骨格体の表面に接着されたゴムシートから選択される少なくとも1種の部材と、を有する請求項12に記載のタイヤ。 A tire skeleton as the resin member, and at least one member selected from a tread, a belt layer, a bead member, and a rubber sheet bonded to the surface of the tire skeleton as the rubber member. Item 13. The tire according to Item 12.
  16.  前記樹脂ゴム複合体が、前記樹脂部材としてのベルトコードと、前記ゴム部材としての前記ベルトコードを被覆するコード被覆層、及び前記ベルトコードの表面に接着されたゴムシートから選択される少なくとも1種の部材と、を有するベルト層である請求項12に記載のタイヤ。 The resin rubber composite is at least one selected from a belt cord as the resin member, a cord covering layer covering the belt cord as the rubber member, and a rubber sheet bonded to the surface of the belt cord. The tire according to claim 12, wherein the tire layer is a belt layer.
  17.  前記樹脂ゴム複合体が、前記樹脂部材としてのビードワイヤーと、前記ゴム部材としての前記ビードワイヤーを被覆するワイヤー被覆層、及び前記ビードワイヤーの表面に接着されたゴムシートから選択される少なくとも1種の部材と、を有するビードコアである請求項12に記載のタイヤ。 The resin rubber composite is at least one selected from a bead wire as the resin member, a wire coating layer covering the bead wire as the rubber member, and a rubber sheet bonded to the surface of the bead wire. The tire according to claim 12, wherein the tire is a bead core.
  18.  プラズマ処理による表面処理を樹脂部材における表面の少なくとも一部に施す表面処理工程と、
     前記樹脂部材における前記表面処理が施された表面に、シラノール基を有する充填剤を含むゴム部材が接するよう配置し、加熱して前記樹脂部材と前記ゴム部材とを接着する接着工程と、
     を有する樹脂ゴム複合体の製造方法。
    A surface treatment step of applying a surface treatment by plasma treatment to at least a part of the surface of the resin member;
    A bonding step of placing the rubber member containing a filler having a silanol group in contact with the surface of the resin member that has been subjected to the surface treatment, and heating and bonding the resin member and the rubber member;
    The manufacturing method of the resin rubber composite which has this.
PCT/JP2019/018015 2018-04-26 2019-04-26 Resin-rubber composite, tire, and production method for resin-rubber composite WO2019208800A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515618A JP7269573B2 (en) 2018-04-26 2019-04-26 RESIN-RUBBER COMPOSITE, TIRE, AND METHOD FOR MANUFACTURING RESIN-RUBBER COMPOSITE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-085708 2018-04-26
JP2018085708 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019208800A1 true WO2019208800A1 (en) 2019-10-31

Family

ID=68294172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018015 WO2019208800A1 (en) 2018-04-26 2019-04-26 Resin-rubber composite, tire, and production method for resin-rubber composite

Country Status (2)

Country Link
JP (1) JP7269573B2 (en)
WO (1) WO2019208800A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119343A (en) * 1984-07-05 1986-01-28 Shin Etsu Chem Co Ltd Low-temperature plasma treatment of plain weave state fabric of tire cord
JPH06143914A (en) * 1992-11-02 1994-05-24 Bridgestone Corp Pneumatic radial tire
JPH09300924A (en) * 1996-05-13 1997-11-25 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007254496A (en) * 2006-03-20 2007-10-04 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
WO2008044884A1 (en) * 2006-10-13 2008-04-17 Sunwoo Amc Co., Ltd. Laminating film of plastic/teflon-silicon and method for preparing the same
JP2011224954A (en) * 2010-03-30 2011-11-10 Bridgestone Corp Method for manufacturing tire, and the tire
JP2011242279A (en) * 2010-05-19 2011-12-01 Yokohama Rubber Co Ltd:The Strain measuring structure and strain measuring method
JP2012035435A (en) * 2010-08-04 2012-02-23 Bridgestone Corp Method of manufacturing tire and tire
JP2014047327A (en) * 2012-09-03 2014-03-17 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649248A (en) * 1987-07-01 1989-01-12 Bridgestone Corp Rubber composition for tire
JP5186202B2 (en) * 2007-12-26 2013-04-17 東海ゴム工業株式会社 Refrigerant transport hose
JP5505484B2 (en) * 2012-10-22 2014-05-28 Nok株式会社 Resin rubber composite
JP6715461B2 (en) * 2014-09-05 2020-07-01 国立大学法人大阪大学 Method for producing surface-modified molded body, and method for producing composite using the surface-modified molded body
JP6787730B2 (en) * 2016-09-14 2020-11-25 株式会社ブリヂストン tire
JP6846781B2 (en) * 2017-05-31 2021-03-24 国立大学法人大阪大学 Laminated body and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119343A (en) * 1984-07-05 1986-01-28 Shin Etsu Chem Co Ltd Low-temperature plasma treatment of plain weave state fabric of tire cord
JPH06143914A (en) * 1992-11-02 1994-05-24 Bridgestone Corp Pneumatic radial tire
JPH09300924A (en) * 1996-05-13 1997-11-25 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007254496A (en) * 2006-03-20 2007-10-04 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
WO2008044884A1 (en) * 2006-10-13 2008-04-17 Sunwoo Amc Co., Ltd. Laminating film of plastic/teflon-silicon and method for preparing the same
JP2011224954A (en) * 2010-03-30 2011-11-10 Bridgestone Corp Method for manufacturing tire, and the tire
JP2011242279A (en) * 2010-05-19 2011-12-01 Yokohama Rubber Co Ltd:The Strain measuring structure and strain measuring method
JP2012035435A (en) * 2010-08-04 2012-02-23 Bridgestone Corp Method of manufacturing tire and tire
JP2014047327A (en) * 2012-09-03 2014-03-17 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire

Also Published As

Publication number Publication date
JP7269573B2 (en) 2023-05-09
JPWO2019208800A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP6041859B2 (en) tire
WO2013129631A1 (en) Tire
WO2013129524A1 (en) Tire
WO2013129627A1 (en) Tire
US20200115599A1 (en) Resin-metal composite member for tire, and tire
US11135875B2 (en) Resin-metal composite member for tire, and tire
EP3640049B1 (en) Resin-metal composite member for tire, and tire
WO2019208800A1 (en) Resin-rubber composite, tire, and production method for resin-rubber composite
WO2018230249A1 (en) Resin-metal composite member for tire, and tire
WO2019208799A1 (en) Resin-rubber composite, tire, and production method for resin-rubber composite
WO2019208798A1 (en) Resin-rubber composite, tire, and production method for resin-rubber composite
JP7331316B2 (en) tire
WO2019230821A1 (en) Resin metal composite member for tires, method for producing same, and tire
WO2018230272A1 (en) Resin-metal composite member for tire, and tire
JP2019001357A (en) Resin metal composite member for tire and tire
JP2013166429A (en) Tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19794062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515618

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19794062

Country of ref document: EP

Kind code of ref document: A1