JP2019001357A - Resin metal composite member for tire and tire - Google Patents
Resin metal composite member for tire and tire Download PDFInfo
- Publication number
- JP2019001357A JP2019001357A JP2017118900A JP2017118900A JP2019001357A JP 2019001357 A JP2019001357 A JP 2019001357A JP 2017118900 A JP2017118900 A JP 2017118900A JP 2017118900 A JP2017118900 A JP 2017118900A JP 2019001357 A JP2019001357 A JP 2019001357A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- tire
- group
- thermoplastic elastomer
- metal composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Tires In General (AREA)
- Ropes Or Cables (AREA)
Abstract
Description
本発明は、タイヤ用樹脂金属複合部材、及びタイヤに関する。 The present invention relates to a resin-metal composite member for a tire and a tire.
従来から、タイヤの耐久性(耐応力、耐内圧及び剛性)を高める試みのひとつとして、タイヤ本体(以下、タイヤ骨格体ともいう)に、金属部材である補強コードを螺旋状に巻回した補強ベルト部材を設けることが行なわれている。
また、通常、タイヤにはリムへの固定の役割を担うビードが設けられており、ビードワイヤーとして金属製のワイヤーが用いられている。
Conventionally, as one of the attempts to increase the durability (stress resistance, internal pressure resistance and rigidity) of a tire, reinforcement by spirally winding a reinforcing cord as a metal member around a tire body (hereinafter also referred to as a tire frame body) A belt member is provided.
In general, the tire is provided with a bead that plays a role of fixing to the rim, and a metal wire is used as the bead wire.
なお、こうした補強コードやビードワイヤー等の金属部材を樹脂材料で被覆することにより、タイヤに設けられる金属部材とタイヤ骨格体との接着耐久性を向上させる方法が提案されている。 In addition, a method for improving the adhesion durability between the metal member provided on the tire and the tire skeleton by coating a metal member such as a reinforcement cord or a bead wire with a resin material has been proposed.
例えば、少なくとも熱可塑性樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、前記タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材を有し、前記熱可塑性樹脂材料が少なくともポリエステル系熱可塑性エラストマーを含むタイヤが提案されている(例えば、特許文献1参照)。 For example, a tire that is formed of at least a thermoplastic resin material and has an annular tire frame, and has a reinforcing cord member that is wound in the circumferential direction on the outer periphery of the tire frame to form a reinforcing cord layer A tire in which the thermoplastic resin material includes at least a polyester-based thermoplastic elastomer has been proposed (for example, see Patent Document 1).
また、1つ以上の補強用スレッド;前記スレッド又は各スレッドを個別的に、又はいくつかのスレッドを集団的に被覆する、ガラス転移温度がプラスである少なくとも1つの熱可塑性ポリマー、ポリ(p−フェニレンエーテル)及びガラス転移温度がマイナスである官能基化不飽和熱可塑性スチレン(TPS)エラストマーを含み、前記TPSエラストマーがエポキシド基、カルボキシル基及び酸無水物基又はエステル基より選ばれた官能基を持っている熱可塑性ポリマー組成物の層を含む複合補強材が提案されている(例えば、特許文献2参照)。 One or more reinforcing threads; at least one thermoplastic polymer having a positive glass transition temperature, poly (p- Phenylene ether) and a functionalized unsaturated thermoplastic styrene (TPS) elastomer having a negative glass transition temperature, wherein the TPS elastomer has a functional group selected from an epoxide group, a carboxyl group and an acid anhydride group or an ester group. A composite reinforcing material including a layer of a thermoplastic polymer composition is proposed (see, for example, Patent Document 2).
上記のように、補強コードやビードワイヤー等の金属部材を樹脂材料で被覆することで、タイヤ骨格体との接着性を向上させる技術が知られているが、タイヤの耐久性向上の観点からは、さらなる接着耐久性の向上が求められている。 As described above, a technique for improving the adhesion to the tire skeleton by coating a metal member such as a reinforcement cord or a bead wire with a resin material is known, but from the viewpoint of improving the durability of the tire. There is a need for further improvement in adhesion durability.
本発明は、上記事情に鑑み、タイヤに設けられる金属部材を含む部材であって、接着耐久性及び湿熱耐久性に優れたタイヤ用樹脂金属複合部材を提供することを課題とする。 This invention makes it a subject to provide the resin-metal composite member for tires which was the member containing the metal member provided in a tire in view of the said situation, and was excellent in adhesion durability and wet heat durability.
前記課題は、以下の本発明により解決される。
<1> 金属部材と接着層と被覆樹脂層とをこの順に有するタイヤ用樹脂金属複合部材であって、前記接着層が、極性官能基を有する熱可塑性樹脂及び極性官能基を有する熱可塑性エラストマーからなる群から選択される少なくとも一種の極性官能基含有樹脂を含み、前記金属部材は、銅めっき、亜鉛めっき、及び銅−亜鉛めっきのうちの何れかのめっきにより表面が形成されており、前記めっきにおける銅の含有率が0%又は55%以上100%以下である、タイヤ用樹脂金属複合部材。
<2> 前記めっきにおける銅の含有率が80%以上100%以下である請求項1に記載のタイヤ用樹脂金属複合部材。
<3> 前記金属部材が、単線又は撚線である<1>又は<2>に記載のタイヤ用樹脂金属複合部材。
<4> 前記極性官能基含有樹脂は、前記極性官能基としてエポキシ基、カルボキシ基及びその無水物、並びにアミノ基からなる群から選択される少なくとも一種の基を有する<1>〜<3>のいずれか1に記載のタイヤ用樹脂金属複合部材。
<5> 前記接着層は、前記極性官能基含有樹脂として、エステル系樹脂、オレフィン系樹脂、スチレン系樹脂、ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、及びポリスチレン系熱可塑性エラストマーからなる群から選択される少なくとも一種を含有する<1>〜<4>のいずれか1に記載のタイヤ用樹脂金属複合部材。
<6> 前記極性官能基含有樹脂を前記接着層全体に対して50質量%以上含む<1>〜<5>のいずれか1に記載のタイヤ用樹脂金属複合部材。
<7> 弾性材料を含む環状のタイヤ骨格体と、<1>〜<6>のいずれか1に記載のタイヤ用樹脂金属複合部材と、を有するタイヤ。
<8> 前記タイヤ用樹脂金属複合部材が、前記タイヤ骨格体の外周部に周方向に巻回される補強ベルト部材を構成する<7>に記載のタイヤ。
<9> 前記タイヤ用樹脂金属複合部材が、ビード部材を構成する<7>に記載のタイヤ。
The above problems are solved by the present invention described below.
<1> A resin-metal composite member for a tire having a metal member, an adhesive layer, and a coating resin layer in this order, wherein the adhesive layer includes a thermoplastic resin having a polar functional group and a thermoplastic elastomer having a polar functional group. Including at least one polar functional group-containing resin selected from the group consisting of: the metal member having a surface formed by any one of copper plating, zinc plating, and copper-zinc plating; The resin-metal composite member for tires whose copper content in is 0% or 55% to 100%.
<2> The resin-metal composite member for tire according to claim 1, wherein the copper content in the plating is 80% or more and 100% or less.
<3> The resin-metal composite member for a tire according to <1> or <2>, wherein the metal member is a single wire or a stranded wire.
<4> The polar functional group-containing resin has at least one group selected from the group consisting of an epoxy group, a carboxy group and its anhydride, and an amino group as the polar functional group. The resin-metal composite member for tire according to any one of the above.
<5> The adhesive layer includes, as the polar functional group-containing resin, an ester resin, an olefin resin, a styrene resin, a polyester thermoplastic elastomer, a polyolefin thermoplastic elastomer, and a polystyrene thermoplastic elastomer. The resin-metal composite member for tire according to any one of <1> to <4>, containing at least one selected.
<6> The resin-metal composite member for a tire according to any one of <1> to <5>, including the polar functional group-containing resin in an amount of 50% by mass or more based on the entire adhesive layer.
<7> A tire having an annular tire skeleton including an elastic material and the resin-metal composite member for tire according to any one of <1> to <6>.
<8> The tire according to <7>, wherein the tire resin-metal composite member constitutes a reinforcing belt member wound in a circumferential direction on an outer peripheral portion of the tire skeleton.
<9> The tire according to <7>, wherein the resin-metal composite member for a tire constitutes a bead member.
本発明によれば、タイヤに設けられる金属部材を含む部材であって、接着耐久性に優れたタイヤ用樹脂金属複合部材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is a member containing the metal member provided in a tire, Comprising: The resin metal composite member for tires excellent in adhesion durability can be provided.
以下、本発明の具体的な実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. be able to.
本明細書において「樹脂」とは、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。また、以下の樹脂の説明において「同種」とは、エステル系同士、スチレン系同士等、樹脂の主鎖を構成する骨格と共通する骨格を備えたものを意味する。
本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その目的が達成されるものであれば、当該工程も本用語に含まれる。
In this specification, “resin” is a concept including a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, and does not include vulcanized rubber. In the following description of the resin, “same species” means those having a skeleton that is common to the skeleton constituting the main chain of the resin, such as esters and styrenes.
In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, the term “process” includes not only an independent process but also a process that can be clearly distinguished from other processes as long as the purpose is achieved. include.
また、本明細書において「熱可塑性樹脂」とは、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になるが、ゴム状弾性を有しない高分子化合物を意味する。
本明細書において「熱可塑性エラストマー」とは、ハードセグメント及びソフトセグメントを有する共重合体を意味する。熱可塑性エラストマーとして具体的には、例えば、結晶性で融点の高いハードセグメント又は高い凝集力のハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーと、を有する共重合体が挙げられる。また、熱可塑性エラストマーとしては、例えば、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有するものが挙げられる。
なお、上記ハードセグメントは、例えば、主骨格に芳香族基若しくは脂環式基等の剛直な基を有する構造、又は分子間水素結合若しくはπ−π相互作用による分子間パッキングを可能にする構造等のセグメントが挙げられる。また、ソフトセグメントは、例えば、主鎖に長鎖の基(例えば長鎖のアルキレン基等)を有し、分子回転の自由度が高く、伸縮性を有する構造のセグメントが挙げられる。
In the present specification, the term “thermoplastic resin” means a polymer compound that softens and flows as the temperature rises and becomes relatively hard and strong when cooled, but does not have rubbery elasticity.
In the present specification, the “thermoplastic elastomer” means a copolymer having a hard segment and a soft segment. Specific examples of the thermoplastic elastomer include, for example, a polymer constituting a hard segment having a crystalline high melting point or a hard segment having a high cohesion force, and a polymer constituting a soft segment having an amorphous low glass transition temperature. The copolymer which has is mentioned. Examples of the thermoplastic elastomer include those that soften and flow as the temperature rises, become relatively hard and strong when cooled, and have rubbery elasticity.
The hard segment has, for example, a structure having a rigid group such as an aromatic group or an alicyclic group in the main skeleton, or a structure enabling intermolecular packing by intermolecular hydrogen bonding or π-π interaction, Can be mentioned. The soft segment includes, for example, a segment having a long chain group (for example, a long chain alkylene group) in the main chain, a high degree of molecular rotation freedom, and a stretchable structure.
<タイヤ用樹脂金属複合部材>
本発明のタイヤ用樹脂金属複合部材(以下単に「樹脂金属複合部材」とも称す)は、金属部材と、接着層と、被覆樹脂層と、をこの順に有する。そして、接着層が、極性官能基を有する熱可塑性樹脂及び極性官能基を有する熱可塑性エラストマーからなる群から選択される少なくとも一種の極性官能基含有樹脂を含み、金属部材は、銅めっき、亜鉛めっき、及び銅−亜鉛めっきのうちの何れかのめっきにより表面が形成されており、めっきにおける銅の含有率が0%又は55%以上100%以下である。
<Resin metal composite material for tire>
The resin-metal composite member for tires of the present invention (hereinafter also simply referred to as “resin-metal composite member”) includes a metal member, an adhesive layer, and a covering resin layer in this order. The adhesive layer includes at least one polar functional group-containing resin selected from the group consisting of a thermoplastic resin having a polar functional group and a thermoplastic elastomer having a polar functional group, and the metal member includes copper plating, zinc plating And the surface is formed by any one of copper-zinc plating, and the copper content in the plating is 0% or 55% to 100%.
上記のように、タイヤ骨格体の外周部に巻回して設けられる補強ベルト部材の補強コードや、タイヤのリムへの固定の役割を担うビードにおけるビードワイヤー等として、金属部材が用いられている。なお、通常のタイヤ骨格体はゴムや樹脂等の弾性材料で構成されているが、上記のようにタイヤに設けられる金属部材には、タイヤの耐久性向上の観点から、タイヤ骨格体等の弾性材料との接着性の向上が、強く求められている。そのため、金属部材の表面に接着層及び被覆樹脂層をこの順に設けて弾性材料との間に介在させることで接着性の向上が図られている。 As described above, metal members are used as reinforcing cords for reinforcing belt members wound around the outer periphery of the tire frame body, bead wires in beads that play a role of fixing to the tire rim, and the like. The normal tire frame is made of an elastic material such as rubber or resin. However, the metal member provided in the tire as described above has an elastic property such as a tire frame from the viewpoint of improving the durability of the tire. There is a strong demand for improved adhesion to materials. Therefore, adhesion is improved by providing an adhesive layer and a covering resin layer in this order on the surface of the metal member and interposing them between the elastic material.
ここで、従来から、前記金属部材として耐腐食性等の観点から銅−亜鉛めっきが表面に形成された金属部材が用いられている。また、前記接着層における接着剤として、ゴム系の接着剤が用いられている。しかし、表面が銅−亜鉛めっきで構成される金属部材の表面にゴム系の接着剤を付与した場合、その接着性の発現には銅の含有割合が大きく寄与する。そのため、極めて狭い範囲となる銅含有率の銅−亜鉛めっきしか選択することができず、つまりめっき選択の自由度が狭かった。
また、銅含有率を適切に調整した銅−亜鉛めっきを選択した場合でも、接着性が未だ十分ではなく、この金属部材と接着層とのさらなる接着性(接着耐久性)の向上が求められている。
Here, conventionally, a metal member having copper-zinc plating formed on the surface thereof from the viewpoint of corrosion resistance or the like has been used as the metal member. A rubber adhesive is used as an adhesive in the adhesive layer. However, when a rubber-based adhesive is applied to the surface of a metal member whose surface is made of copper-zinc plating, the copper content greatly contributes to the development of the adhesiveness. Therefore, only copper-zinc plating with a copper content in an extremely narrow range can be selected, that is, the degree of freedom in plating selection is narrow.
In addition, even when copper-zinc plating with appropriately adjusted copper content is selected, the adhesiveness is still not sufficient, and further improvement in the adhesiveness (adhesion durability) between this metal member and the adhesive layer is required. Yes.
そこで、本発明者らは、金属部材の表面に、接着層と被覆樹脂層とをこの順に設けた樹脂金属複合部材とし、接着層が、極性官能基含有樹脂を含み、金属部材が、銅めっき、亜鉛めっき、及び銅−亜鉛めっきのうちの何れかのめっきにより表面が形成されており、かつめっきにおける銅の含有率を0%又は55%以上100%以下とすることで、優れた接着耐久性が得られることを見出した。
その理由は、以下のように推察される。
Therefore, the present inventors made a resin-metal composite member in which an adhesive layer and a coating resin layer are provided in this order on the surface of the metal member, the adhesive layer contains a polar functional group-containing resin, and the metal member is copper-plated The surface is formed by any one of zinc plating and copper-zinc plating, and the copper content in the plating is 0% or 55% or more and 100% or less. It was found that sex can be obtained.
The reason is guessed as follows.
まず、「極性官能基」とは、化学的な反応性(官能性)を示す基であって分子内に電荷の偏り(極性)をもたらす基を表す。
本発明では、接着層に、極性官能基含有樹脂を含む。そのため、極性官能基による電荷の偏りによって、銅めっき、亜鉛めっき、及び銅−亜鉛めっきがその表面に有する水和した水酸基との間で相互作用が生じ、両者の間に引力をもたらしたり、錯体を形成することでめっきと接着層との高い接着性が得られるものと考えられる。つまり、ゴム系接着剤のようにめっきにおける銅の含有割合によらずとも、接着性が発現される。そして、極性官能基含有樹脂が有する粘着性による接着性に加えて、上記の水和した水酸基との相互作用に起因する接着性が発現されるため、優れた接着耐久性が得られるものと考えられる。
First, the “polar functional group” refers to a group that exhibits chemical reactivity (functionality) and causes a charge bias (polarity) in the molecule.
In the present invention, the adhesive layer contains a polar functional group-containing resin. Therefore, due to the bias of charge due to the polar functional group, an interaction occurs between the copper plating, galvanization, and the hydrated hydroxyl group on the surface of the copper-zinc plating, resulting in an attractive force between them, It is considered that high adhesion between the plating and the adhesive layer can be obtained by forming. That is, the adhesiveness is expressed regardless of the copper content in the plating as in the case of the rubber adhesive. And, in addition to the adhesiveness due to the tackiness of the polar functional group-containing resin, the adhesiveness due to the interaction with the hydrated hydroxyl group is expressed, so it is considered that excellent adhesion durability can be obtained. It is done.
そして、接着層を介して被覆樹脂層を設けることで、金属部材とタイヤ骨格体等の弾性材料との間の剛性の差を緩和することができるため、タイヤに設ける金属部材を備えた樹脂金属複合部材として、優れた接着耐久性を実現し得るものと推察される。 And by providing the covering resin layer via the adhesive layer, the difference in rigidity between the metal member and the elastic material such as the tire frame can be alleviated, so the resin metal provided with the metal member provided on the tire It is presumed that the composite member can realize excellent adhesion durability.
また、上記の通りめっきにおける銅の含有割合によらずとも接着性が得られるため、めっき選択の自由度も高められる。 Moreover, since adhesiveness is obtained irrespective of the copper content in plating as described above, the degree of freedom in plating selection is also increased.
以下、樹脂金属複合部材の各構成部材について詳細に説明する。 Hereinafter, each constituent member of the resin-metal composite member will be described in detail.
樹脂金属複合部材は、金属部材と、接着層と、被覆樹脂層と、がこの順に配置された構造を有し、その形状は特に制限されない。樹脂金属複合部材の形状としては、例えば、コード状、シート状等が挙げられる。 The resin-metal composite member has a structure in which a metal member, an adhesive layer, and a coating resin layer are arranged in this order, and the shape is not particularly limited. Examples of the shape of the resin-metal composite member include a cord shape and a sheet shape.
樹脂金属複合部材の用途としては、タイヤに含まれるタイヤ骨格体のクラウン部(外周部)に配置される補強ベルト部材、タイヤのリムへの固定の役割を担うビード部材等が挙げられる。
例えば、樹脂金属複合部材を補強ベルト部材として用いる態様としては、一本又は複数本のコード状の樹脂金属複合部材がタイヤ骨格体の外周部に、タイヤの周方向に沿って配置されて形成されたベルト層、複数のコード状の樹脂金属複合部材がタイヤの周方向に対して角度を有し、互いに交錯するように配置された交錯ベルト層等として用いることができる。
Applications of the resin-metal composite member include a reinforcing belt member disposed at the crown portion (outer peripheral portion) of the tire frame included in the tire, a bead member that plays a role of fixing to the tire rim, and the like.
For example, as an aspect in which the resin-metal composite member is used as the reinforcing belt member, one or a plurality of cord-like resin-metal composite members are formed on the outer peripheral portion of the tire frame body along the circumferential direction of the tire. The belt layer, a plurality of cord-shaped resin-metal composite members having an angle with respect to the circumferential direction of the tire, and can be used as a cross belt layer arranged so as to cross each other.
樹脂金属複合部材において「金属部材と接着層と被覆樹脂層とをこの順に有する」構造には、例えば、金属部材の表面の全部が接着層を介して被覆樹脂層で被覆された状態と、金属部材の表面の一部が接着層を介して被覆樹脂層で被覆された状態と、が含まれる。なお、少なくとも樹脂金属複合部材とタイヤ骨格体等の弾性部材とが接する領域において、金属部材と、被覆樹脂層よりも相対的に引張弾性率の大きな接着層と、被覆樹脂層と、がこの順に配置された構造となっていることが好ましい。また、樹脂金属複合部材は、金属部材、接着層、及び被覆樹脂層のほかにその他の層を有してもよいが、金属部材と被覆樹脂層との接着性の観点から、金属部材と接着層とが少なくとも一部で直接接触しており、また接着層と被覆樹脂層とが少なくとも一部で直接接触する。 In the resin-metal composite member, the structure “having the metal member, the adhesive layer, and the coating resin layer in this order” includes, for example, a state in which the entire surface of the metal member is covered with the coating resin layer via the adhesive layer, And a state in which a part of the surface of the member is coated with a coating resin layer via an adhesive layer. At least in the region where the resin-metal composite member and the elastic member such as the tire frame body are in contact with each other, the metal member, the adhesive layer having a relatively larger tensile elastic modulus than the covering resin layer, and the covering resin layer are in this order. It is preferable to have an arranged structure. In addition to the metal member, the adhesive layer, and the coating resin layer, the resin-metal composite member may have other layers. However, from the viewpoint of adhesion between the metal member and the coating resin layer, the resin-metal composite member is bonded to the metal member. The layer is in direct contact with at least a portion, and the adhesive layer and the coating resin layer are in direct contact with at least a portion.
[金属部材]
金属部材は特に制限されず、例えば、従来のゴム製タイヤに用いられる金属製のコード等を適宜用いることができる。金属製のコードとしては、例えば、一本の金属コードからなるモノフィラメント(単線)、複数本の金属コードを撚ったマルチフィラメント(撚線)等が挙げられる。また、金属部材の形状は線状(コード状)に限られるものではなく、例えば板状の金属部材であってもよい。
本発明における金属部材としては、タイヤの耐久性をより向上させる観点からは、モノフィラメント(単線)又はマルチフィラメント(撚線)が好ましく、マルチフィラメントがより好ましい。金属部材の断面形状、サイズ(直径)等は、特に限定されるものではなく、所望のタイヤに適したものを適宜選定して用いることができる。
金属部材が複数本のコードの撚り線である場合、複数本のコードの数としては、例えば2本〜10本が挙げられ、5本〜9本が好ましい。
[Metal members]
The metal member is not particularly limited, and for example, a metal cord used for a conventional rubber tire can be used as appropriate. Examples of the metal cord include a monofilament (single wire) made of one metal cord, a multifilament (twisted wire) obtained by twisting a plurality of metal cords, and the like. The shape of the metal member is not limited to a linear shape (code shape), and may be a plate-like metal member, for example.
The metal member in the present invention is preferably monofilament (single wire) or multifilament (twisted wire), and more preferably multifilament from the viewpoint of further improving the durability of the tire. The cross-sectional shape, size (diameter), etc. of the metal member are not particularly limited, and those suitable for the desired tire can be appropriately selected and used.
When the metal member is a stranded wire of a plurality of cords, the number of the plurality of cords is, for example, 2 to 10 and preferably 5 to 9.
タイヤの耐内圧性と軽量化とを両立する観点からは、金属部材の太さは、0.2mm〜2mmであることが好ましく、0.8mm〜1.6mmであることがより好ましい。金属部材の太さは、任意に選択した5箇所において測定した太さの数平均値とする。 The thickness of the metal member is preferably 0.2 mm to 2 mm, more preferably 0.8 mm to 1.6 mm, from the viewpoint of achieving both the internal pressure resistance and weight reduction of the tire. Let the thickness of a metal member be the number average value of the thickness measured in five places chosen arbitrarily.
金属部材自体の引張弾性率(以下、特定しない限り、本明細書で「弾性率」とは引張弾性率を意味する。)は、通常、100000MPa〜300000MPa程度であり、120000MPa〜270000MPaであることが好ましく、150000MPa〜250000MPaであることが更に好ましい。なお、金属部材の引張弾性率は、引張試験機にてZWICK型チャックを用いて応力-歪曲線を描き、その傾きから算出する。 The tensile elastic modulus of the metal member itself (hereinafter, unless otherwise specified, “elastic modulus” means a tensile elastic modulus in the present specification) is usually about 100,000 MPa to 300,000 MPa, and 120,000 MPa to 270000 MPa. Preferably, it is 150,000 MPa-250,000 MPa. The tensile modulus of the metal member is calculated from the slope of a stress-strain curve drawn on a tensile tester using a ZWICK type chuck.
金属部材自体の破断伸び(引張破断伸び)は、通常、0.1%〜15%程度であり、1%〜15%が好ましく、1%〜10%が更に好ましい。金属部材の引張破断伸びは、引張試験機にてZWICK型チャックを用いて応力−歪曲線を描き、歪から求めることができる。 The breaking elongation (tensile breaking elongation) of the metal member itself is usually about 0.1% to 15%, preferably 1% to 15%, and more preferably 1% to 10%. The tensile elongation at break of the metal member can be obtained from the strain by drawing a stress-strain curve using a ZWICK chuck with a tensile tester.
・めっき
金属部材は、その表面に銅めっき、亜鉛めっき、及び銅−亜鉛めっきのうちの何れかのめっきが形成される。
めっきにおける銅の含有率は0%又は55%以上100%以下である。銅含有率が0%であることは亜鉛めっきであることを指し、一方銅含有率が100%であることは銅めっきであることを指す。つまり、言い換えると、本発明では銅めっき、亜鉛めっき、又は銅含有率が55%以上である銅−亜鉛めっきを有する。
銅−亜鉛めっきである場合に銅含有率が55%未満であると、めっき自体の脆性が高くなり耐久性に劣る。
-Plating A metal member is formed with any one of copper plating, zinc plating, and copper-zinc plating on the surface thereof.
The copper content in the plating is 0% or 55% to 100%. A copper content of 0% indicates galvanization, while a copper content of 100% indicates copper plating. That is, in other words, the present invention includes copper plating, zinc plating, or copper-zinc plating having a copper content of 55% or more.
In the case of copper-zinc plating, if the copper content is less than 55%, the brittleness of the plating itself becomes high and the durability is poor.
好ましくは銅めっき(銅含有率100%のめっき)又は銅含有率57%以上の銅−亜鉛めっきであり、より好ましくは銅めっき(銅含有率100%のめっき)又は銅含有率62%以上の銅−亜鉛めっきであり、さらに好ましくは銅めっき(銅含有率100%のめっき)又は銅含有率80%以上の銅−亜鉛めっきである。 Preferably copper plating (plating with a copper content of 100%) or copper-zinc plating with a copper content of 57% or more, more preferably copper plating (plating with a copper content of 100%) or copper content of 62% or more. Copper-zinc plating, more preferably copper plating (plating with a copper content of 100%) or copper-zinc plating with a copper content of 80% or more.
なお、めっきにおける銅の含有率は、エネルギー分散型X線分光(EDX)により定量を行う。日立ハイテクノロジーズ製TM3030Plusの分析機器を用いて、加速電圧15kV、倍率1000倍の条件で分析を行い、得られたEDX散乱X線スペクトルにおける銅(Cu)あるいは亜鉛(Zn)等のピーク値から含有率を算出することができる。 The copper content in the plating is quantified by energy dispersive X-ray spectroscopy (EDX). Contained from the peak value of copper (Cu) or zinc (Zn), etc. in the obtained EDX scattered X-ray spectrum by analyzing under the conditions of acceleration voltage 15 kV and magnification 1000 times using TM3030Plus analyzer manufactured by Hitachi High-Technologies The rate can be calculated.
金属部材の表面における上記めっきの付着量の指標として、例えばめっき厚さとしては、0.1μm以上10μm以下の範囲が好ましく、0.2μm以上8.0μm以下の範囲がより好ましい。
なお、めっき厚さは、走査型電子顕微鏡(SEM)による観察により測定することができる。
For example, the plating thickness is preferably in the range of 0.1 μm or more and 10 μm or less, and more preferably in the range of 0.2 μm or more and 8.0 μm or less.
The plating thickness can be measured by observation with a scanning electron microscope (SEM).
金属部材表面へのめっきの形成方法は、特に限定されず、公知の方法により行うことができる。例えば、めっき素線の芯線となる金属部材を、例えば銅めっき浴及び亜鉛めっき浴にそれぞれ通過浸漬してめっき処理が行われる。銅めっきの場合、シアン化銅浴、ホウフッ化銅浴、硫酸銅浴等により処理され、亜鉛めっきの場合、シアン化亜鉛浴、塩化亜鉛浴、ジンケート浴等により処理される。
次にめっき浴を通過浸漬させた金属部材に熱拡散処理を施すことにより、銅及び亜鉛がめっき層全体にわたって均一拡散される。熱拡散処理では、例えば500℃〜650℃かつ1分以内程度(例えば5秒〜25秒)の条件で加熱処理され、銅−亜鉛めっき化される。
次に熱拡散処理された金属部材を伸線加工することにより、所定のめっき厚さのめっきを有しかつ所定の線径を有する金属部材が形成される。
なお、めっきの形成方法は、上述のような工程の順に限定されるものではない。
The method for forming the plating on the surface of the metal member is not particularly limited, and can be performed by a known method. For example, the metal member that becomes the core wire of the plating element wire is immersed in, for example, a copper plating bath and a galvanizing bath, respectively, and plating is performed. In the case of copper plating, it is treated with a copper cyanide bath, a copper borofluoride bath, a copper sulfate bath or the like, and in the case of zinc plating, it is treated with a zinc cyanide bath, a zinc chloride bath, a zincate bath or the like.
Next, the metal member immersed through the plating bath is subjected to a thermal diffusion treatment, whereby copper and zinc are uniformly diffused over the entire plating layer. In the thermal diffusion treatment, for example, heat treatment is performed under conditions of 500 ° C. to 650 ° C. and within about 1 minute (for example, 5 seconds to 25 seconds), and copper-zinc plating is performed.
Next, the metal member subjected to the thermal diffusion treatment is drawn to form a metal member having a predetermined plating thickness and a predetermined wire diameter.
In addition, the formation method of plating is not limited to the order of the above processes.
[接着層]
(極性官能基含有樹脂)
接着層は、金属部材と被覆樹脂層との間に配置され、極性官能基を有する熱可塑性樹脂及び極性官能基を有する熱可塑性エラストマーからなる群から選択される少なくとも一種の極性官能基含有樹脂と、を含む。
[Adhesive layer]
(Polar functional group-containing resin)
The adhesive layer is disposed between the metal member and the coating resin layer, and at least one polar functional group-containing resin selected from the group consisting of a thermoplastic resin having a polar functional group and a thermoplastic elastomer having a polar functional group; ,including.
極性官能基を有する熱可塑性樹脂としては、例えば、極性官能基を有するポリエステル系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。
極性官能基を有する熱可塑性エラストマーとしては、例えば、極性官能基を有するポリエステル系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー等が挙げられる。
これらは単独で又は2種以上を組み合わせて用いてもよい。
Examples of the thermoplastic resin having a polar functional group include polyester-based thermoplastic resins, olefin-based thermoplastic resins, and polystyrene-based thermoplastic resins having a polar functional group.
Examples of the thermoplastic elastomer having a polar functional group include polyester-based thermoplastic elastomers having polar functional groups, olefin-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, and the like.
You may use these individually or in combination of 2 or more types.
極性官能基含有樹脂が有する極性官能基としては、エポキシ基(下記(1)に示す基、なおR11、R12及びR13はそれぞれ独立に水素原子又は有機基(例えばアルキル基)を表す)、カルボキシ基(−COOH)及びその無水物基、アミノ基(−NH2)、イソシアネート基(−NCO)、ヒドロキシ基(−OH)、イミノ基(=NH)、シラノール基(−SiOH)等が挙げられる。
なお、上記「無水物基」とは、2つのカルボキシ基からH2Oが取れた無水物状の基(下記(2-1)に示す無水物状の基、なおR21は単結合又は置換基を有していてもよいアルキレン基を表し、R22及びR23はそれぞれ独立に水素原子又は有機基(例えばアルキル基)を表す。)を指す。下記(2-1)に示す無水物基は、H2Oが与えられることで下記(2-2)に示す状態、つまり2つのカルボキシ基を有する状態となる。
これらの中でも、金属部材との接着性の観点から、エポキシ基、カルボキシ基及びその無水物基、ヒドロキシ基、並びにアミノ基が好ましく、エポキシ基、カルボキシ基及びその無水物基、並びにアミノ基がより好ましい。
The polar functional group possessed by the polar functional group-containing resin is an epoxy group (the group shown in (1) below, wherein R 11 , R 12 and R 13 each independently represents a hydrogen atom or an organic group (eg, an alkyl group)). Carboxy group (—COOH) and its anhydride group, amino group (—NH 2 ), isocyanate group (—NCO), hydroxy group (—OH), imino group (═NH), silanol group (—SiOH), etc. Can be mentioned.
The “anhydride group” means an anhydride group in which H 2 O is removed from two carboxy groups (an anhydride group shown in (2-1) below, where R 21 is a single bond or a substituted group). Represents an alkylene group which may have a group, and R 22 and R 23 each independently represent a hydrogen atom or an organic group (for example, an alkyl group). The anhydride group shown in the following (2-1) becomes a state shown in the following (2-2), that is, a state having two carboxy groups, when H 2 O is given.
Among these, from the viewpoint of adhesion to a metal member, an epoxy group, a carboxy group and its anhydride group, a hydroxy group, and an amino group are preferable, and an epoxy group, a carboxy group and its anhydride group, and an amino group are more preferable. preferable.
極性官能基含有樹脂は、極性官能基となる基を有する化合物(誘導体)で熱可塑性樹脂又は熱可塑性エラストマーを変性することで得られる。例えば、熱可塑性樹脂又は熱可塑性エラストマーに極性官能基となる基を有しかつそれとは別に反応性基(例えば不飽和基(エチレン性の炭素−炭素二重結合等))を有する化合物を化学的に結合(付加反応、グラフト反応等)させることで得られる。 The polar functional group-containing resin can be obtained by modifying a thermoplastic resin or a thermoplastic elastomer with a compound (derivative) having a group that becomes a polar functional group. For example, a compound having a group that becomes a polar functional group in a thermoplastic resin or a thermoplastic elastomer and a reactive group (for example, an unsaturated group (such as an ethylenic carbon-carbon double bond)) is chemically generated. It can be obtained by bonding to (addition reaction, graft reaction, etc.).
熱可塑性樹脂又は熱可塑性エラストマーを変性する誘導体(極性官能基となる基を有する化合物)としては、例えば、反応性基を有するエポキシ化合物、不飽和カルボン酸(メタクリル酸、マレイン酸、フマル酸、イタコン酸等)、不飽和カルボン酸無水物(無水マレイン酸、無水シトラコン酸、無水イタコン酸、無水グルタコン酸等)、その他反応性基を有するカルボン酸及びその無水物、反応性基を有するアミン化合物、反応性基を有するイソシアネート化合物、反応性基を有するアルコール、反応性基を有するシラン化合物、又はその誘導体等が挙げられる。 Examples of derivatives (compounds having a polar functional group) that modify thermoplastic resins or thermoplastic elastomers include, for example, epoxy compounds having reactive groups, unsaturated carboxylic acids (methacrylic acid, maleic acid, fumaric acid, itacon). Acid), unsaturated carboxylic anhydrides (maleic anhydride, citraconic anhydride, itaconic anhydride, glutaconic anhydride, etc.), carboxylic acids having other reactive groups and anhydrides thereof, amine compounds having reactive groups, Examples include an isocyanate compound having a reactive group, an alcohol having a reactive group, a silane compound having a reactive group, or a derivative thereof.
ポリエステル系熱可塑性樹脂としては、例えば、脂肪族ポリエステル系熱可塑性樹脂、芳香族ポリエステル系熱可塑性樹脂等が挙げられる。極性官能基となる基を有する化合物(誘導体)で変性される前のポリエステル系熱可塑性樹脂としては、後述の被覆樹脂層に用いられるポリエステル系熱可塑性樹脂と同様である。 Examples of the polyester-based thermoplastic resin include aliphatic polyester-based thermoplastic resins and aromatic polyester-based thermoplastic resins. The polyester-based thermoplastic resin before being modified with a compound (derivative) having a group that becomes a polar functional group is the same as the polyester-based thermoplastic resin used in the coating resin layer described later.
オレフィン系熱可塑性樹脂としては、例えば、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂等が挙げられる。極性官能基となる基を有する化合物(誘導体)で変性される前のオレフィン系熱可塑性樹脂としては、後述の被覆樹脂層に用いられるオレフィン系熱可塑性樹脂と同様である。 Examples of the olefin-based thermoplastic resin include a polyethylene-based thermoplastic resin, a polypropylene-based thermoplastic resin, and a polybutadiene-based thermoplastic resin. The olefinic thermoplastic resin before being modified with the compound (derivative) having a group that becomes a polar functional group is the same as the olefinic thermoplastic resin used in the coating resin layer described later.
極性官能基となる基を有する化合物(誘導体)で変性される前のポリエステル系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、及びポリスチレン系熱可塑性エラストマーとしては、後述のタイヤ骨格体に用いられるポリエステル系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、及びポリスチレン系熱可塑性エラストマーと同様である。 The polyester-based thermoplastic elastomer, the olefin-based thermoplastic elastomer, and the polystyrene-based thermoplastic elastomer before being modified with a compound (derivative) having a group that becomes a polar functional group include polyester-based heat used for a tire skeleton described later. This is the same as the plastic elastomer, the olefin thermoplastic elastomer, and the polystyrene thermoplastic elastomer.
接着層には、極性官能基含有樹脂を、接着層全体に対して50質量%以上含ませることが好ましく、60質量%以上がより好ましく、75質量%以上がさらに好ましい。 The adhesive layer preferably contains 50% by mass or more of the polar functional group-containing resin with respect to the entire adhesive layer, more preferably 60% by mass or more, and further preferably 75% by mass or more.
(合成方法)
ここで、極性官能基含有樹脂の合成方法について、具体的に説明する。
例えば、極性官能基を有するスチレン系エラストマーであれば、未変性のスチレン系エラストマーに極性官能基を導入することで得られる。具体的には、極性官能基としてエポキシ基を有するスチレン系エラストマーの場合、未変性のスチレン系エラストマーと、エポキシ化剤と、を必要に応じて溶媒及び触媒の存在下で反応させることで得られる。上記エポキシ化剤としては、例えば、過酸化水素、ターシャリブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等のハイドロパーオキサイド類;過ギ酸、過酢酸、過安息香酸、トリフルオロ過酢酸等の過酸類;等が挙げられる。
(Synthesis method)
Here, a method for synthesizing the polar functional group-containing resin will be specifically described.
For example, a styrene elastomer having a polar functional group can be obtained by introducing a polar functional group into an unmodified styrene elastomer. Specifically, in the case of a styrene elastomer having an epoxy group as a polar functional group, it can be obtained by reacting an unmodified styrene elastomer with an epoxidizing agent in the presence of a solvent and a catalyst as necessary. . Examples of the epoxidizing agent include hydroperoxides such as hydrogen peroxide, tertiary butyl hydroperoxide, and cumene hydroperoxide; peracids such as performic acid, peracetic acid, perbenzoic acid, and trifluoroperacetic acid; Etc.
また、合成方法の一例として、ポリエステル系熱可塑性エラストマー(TPC)を不飽和カルボン酸又はその無水物で変性する方法について、以下に詳細に説明する。 As an example of the synthesis method, a method for modifying a polyester thermoplastic elastomer (TPC) with an unsaturated carboxylic acid or an anhydride thereof will be described in detail below.
極性官能基を有するポリエステル系熱可塑性エラストマー(以下単に「極性基含有TPC」とも称す)は、例えば、ポリアルキレンエーテルグリコールセグメントを含有する飽和ポリエステル系熱可塑性エラストマーの溶融物を、不飽和カルボン酸又はその誘導体により変性処理して得られる The polyester-based thermoplastic elastomer having a polar functional group (hereinafter also simply referred to as “polar group-containing TPC”) is obtained by, for example, melting a saturated polyester-based thermoplastic elastomer containing a polyalkylene ether glycol segment with an unsaturated carboxylic acid or Obtained by modification with its derivatives
変性とは、ポリアルキレンエーテルグリコールセグメントを含有する飽和ポリエステル系熱可塑性エラストマーの不飽和カルボン酸又はその誘導体によるグラフト変性、末端変性及びエステル交換反応による変性、分解反応による変性等をいう。具体的に、不飽和カルボン酸又はその誘導体が結合している部位としては、末端官能基やアルキル鎖部分が考えられ、特に末端カルボン酸、末端水酸基及びポリアルキレンエーテルグリコールセグメントのエーテル結合に対してα位やβ位の炭素が挙げられる。特に、ポリアルキレンエーテルグリコールセグメントのエーテル結合に対してα位に多く結合しているものと推定される。 Modification means graft modification of a saturated polyester thermoplastic elastomer containing a polyalkylene ether glycol segment with an unsaturated carboxylic acid or a derivative thereof, terminal modification and modification by transesterification, modification by decomposition reaction, and the like. Specifically, as the site to which the unsaturated carboxylic acid or derivative thereof is bonded, a terminal functional group or an alkyl chain moiety is conceivable, particularly for the ether bond of the terminal carboxylic acid, terminal hydroxyl group and polyalkylene ether glycol segment. Examples include α-position and β-position carbon. In particular, it is presumed that the polyalkylene ether glycol segment has many bonds at the α-position with respect to the ether bond.
(1)配合材料
(A)飽和ポリエステル系熱可塑性エラストマー
飽和ポリエステル系熱可塑性エラストマーは、通常、ポリアルキレンエーテルグリコールセグメントを含有するソフトセグメントとポリエステルを含有するハードセグメントとからなる、ブロック共重合体である。
(1) Compounding material (A) Saturated polyester-based thermoplastic elastomer A saturated polyester-based thermoplastic elastomer is usually a block copolymer composed of a soft segment containing a polyalkylene ether glycol segment and a hard segment containing a polyester. is there.
また、飽和ポリエステル系熱可塑性エラストマー中のポリアルキレンエーテルグリコールセグメントの含有量は、該ポリエステル系エラストマー中の58〜73質量%であることが好ましく、より好ましくは60〜70質量%である。 Moreover, it is preferable that content of the polyalkylene ether glycol segment in a saturated polyester-type thermoplastic elastomer is 58-73 mass% in this polyester-type elastomer, More preferably, it is 60-70 mass%.
このソフトセグメントを構成するポリアルキレンエーテルグリコールとしては、例えば、ポリエチレングリコール、ポリ(1,2及び1,3−プロピレンエーテル)グリコール、ポリ(テトラメチレンエーテル)グリコール、ポリ(ヘキサメチレンエーテル)グリコール等が挙げられる。特に好ましいものは、ポリ(テトラメチレンエーテル)グリコールである。本発明において、ポリアルキレンエーテルグリコールとしては、数平均分子量が400〜6,000のものが好ましく、600〜4,000のものがより好ましく、特に1,000〜3,000のものが好適である。なお、ここでいう「数平均分子量」とは、ゲル浸透クロマトグラフィー(GPC)で測定されたものである。GPCのキャリブレーションには、英国POLYMERLABORATORIES社のPOLYTETRAHYDROFURANキャリブレーションキットを使用すればよい。 Examples of the polyalkylene ether glycol constituting the soft segment include polyethylene glycol, poly (1,2 and 1,3-propylene ether) glycol, poly (tetramethylene ether) glycol, poly (hexamethylene ether) glycol, and the like. Can be mentioned. Particularly preferred is poly (tetramethylene ether) glycol. In the present invention, the polyalkylene ether glycol preferably has a number average molecular weight of 400 to 6,000, more preferably 600 to 4,000, and particularly preferably 1,000 to 3,000. . The “number average molecular weight” here is measured by gel permeation chromatography (GPC). For calibration of GPC, a POLYTETRAHYDROFURAN calibration kit manufactured by POLYMERLABORATORIES, UK may be used.
飽和ポリエステル系熱可塑性エラストマーは、例えば、i)炭素原子数2〜12の脂肪族及び/又は脂環式ジオールと、ii)芳香族ジカルボン酸及び/又は脂環式ジカルボン酸又はそれらのアルキルエステル、及びiii)数平均分子量が400〜6,000のポリアルキレンエーテルグリコールとを原料とし、エステル化反応又はエステル交換反応により得られたオリゴマーを重縮合させて得ることができる。 The saturated polyester-based thermoplastic elastomer includes, for example, i) an aliphatic and / or alicyclic diol having 2 to 12 carbon atoms, and ii) an aromatic dicarboxylic acid and / or an alicyclic dicarboxylic acid or an alkyl ester thereof, And iii) A polyalkylene ether glycol having a number average molecular weight of 400 to 6,000 is used as a raw material, and an oligomer obtained by an esterification reaction or a transesterification reaction can be polycondensed.
炭素原子数2〜12の脂肪族及び/又は脂環式ジオールとしては、ポリエステルの原料、特にポリエステル系熱可塑性エラストマーの原料として通常用いられるものが使用できる。例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール等が挙げられ、中でも1,4−ブタンジオール、エチレングリコールが好ましく、特に1,4−ブタンジオールが好ましい。これらのジオールは、一種又は二種以上の混合物を使用することができる。 As the aliphatic and / or alicyclic diol having 2 to 12 carbon atoms, those usually used as a raw material for polyester, particularly as a raw material for a polyester-based thermoplastic elastomer, can be used. For example, ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like are mentioned, among which 1,4-butanediol and ethylene glycol are preferable. In particular, 1,4-butanediol is preferred. These diols can be used singly or as a mixture of two or more.
芳香族ジカルボン酸及び/又は脂環式ジカルボン酸としては、ポリエステルの原料、特にポリエステル系熱可塑性エラストマーの原料として一般的に用いられているものが使用でき、例えばテレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、シクロヘキサンジカルボン酸等が挙げられる。これらの中では、テレフタル酸、2,6−ナフタレンジカルボン酸が好ましく、特にテレフタル酸が好適である。また、これらのジカルボン酸は2種以上を併用してもよい。芳香族ジカルボン酸及び/又は脂環式ジカルボン酸のアルキルエステルを用いる場合は、上記のジカルボン酸のジメチルエステルやジエチルエステル等が用いられる。好ましいものは、ジメチルテレフタレート及び2,6−ジメチルナフタレートである。 As the aromatic dicarboxylic acid and / or alicyclic dicarboxylic acid, those generally used as raw materials for polyesters, particularly polyester-based thermoplastic elastomers, can be used, such as terephthalic acid, isophthalic acid, phthalic acid, Examples include 2,6-naphthalenedicarboxylic acid and cyclohexanedicarboxylic acid. Among these, terephthalic acid and 2,6-naphthalenedicarboxylic acid are preferable, and terephthalic acid is particularly preferable. Two or more of these dicarboxylic acids may be used in combination. When using an aromatic dicarboxylic acid and / or an alkyl ester of an alicyclic dicarboxylic acid, the dimethyl ester or diethyl ester of the above-mentioned dicarboxylic acid is used. Preference is given to dimethyl terephthalate and 2,6-dimethyl naphthalate.
また、上記の成分以外に3官能性のトリオールやトリカルボン酸又はそれらのエステルを少量共重合させてもよく、さらにアジピン酸等の脂肪族ジカルボン酸又はそのジアルキルエステルも共重合成分として使用できる。
このようなポリエステル系熱可塑性エラストマーの市販品としては、三菱化学株式会社製「プリマロイ」、東洋紡績株式会社製「ペルプレン」、東レ・デュポン株式会社製「ハイトレル」等が挙げられる。
In addition to the above components, trifunctional triols, tricarboxylic acids or esters thereof may be copolymerized in a small amount, and aliphatic dicarboxylic acids such as adipic acid or dialkyl esters thereof can also be used as a copolymerization component.
Examples of commercially available polyester thermoplastic elastomers include “Primalloy” manufactured by Mitsubishi Chemical Corporation, “Perprene” manufactured by Toyobo Co., Ltd., “Hytrel” manufactured by Toray DuPont Co., Ltd., and the like.
(B)不飽和カルボン酸又はその誘導体
不飽和カルボン酸又はその誘導体としては、例えば、アクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸等の不飽和カルボン酸;例えば、コハク酸2−オクテン−1−イル無水物、コハク酸2−ドデセン−1−イル無水物、コハク酸2−オクタデセン−1−イル無水物、マレイン酸無水物、2,3−ジメチルマレイン酸無水物、ブロモマレイン酸無水物、ジクロロマレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、1−ブテン−3,4−ジカルボン酸無水物、1−シクロペンテン−1,2−ジカルボン酸無水物、1,2,3,6−テトラヒドロフタル酸無水物、3,4,5,6−テトラヒドロフタル酸無水物、exo−3,6−エポキシ−1,2,3,6−テトラヒドロフタル酸無水物、5−ノルボルネン−2,3−ジカルボン酸無水物、メチル−5−ノルボルネン−2,3−ジカルボン酸無水物、endo−ビシクロ[2.2.2]オクト−5−エン−2,3−ジカルボン酸無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸無水物等の不飽和カルボン酸無水物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルへキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、グリシジルメタクリレート、マレイン酸ジメチル、マレイン酸(2−エチルへキシル)、2−ヒドロキシエチルメタクリレート等の不飽和カルボン酸エステル等が挙げられる。この中では、不飽和カルボン酸無水物が好適である。これらの不飽和結合を有する化合物は、変性すべきポリアルキレンエーテルグリコールセグメントを含有する共重合体や、変性条件に応じて適宜選択すればよく、また二種以上を併用してもよい。この不飽和結合を有する化合物は有機溶剤等に溶解して加えることもできる。
(B) Unsaturated carboxylic acid or derivative thereof As unsaturated carboxylic acid or derivative thereof, for example, unsaturated acids such as acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, and isocrotonic acid Carboxylic acid; for example, 2-octen-1-yl succinic anhydride, 2-dodecen-1-yl succinic anhydride, 2-octadecene-1-yl succinic anhydride, maleic anhydride, 2,3- Dimethylmaleic anhydride, bromomaleic anhydride, dichloromaleic anhydride, citraconic anhydride, itaconic anhydride, 1-butene-3,4-dicarboxylic anhydride, 1-cyclopentene-1,2-dicarboxylic acid Acid anhydride, 1,2,3,6-tetrahydrophthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, exo-3 , 6-epoxy-1,2,3,6-tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, methyl-5-norbornene-2,3-dicarboxylic anhydride, endo-bicyclo [2.2.2] Oct-5-ene-2,3-dicarboxylic acid anhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic acid anhydride, etc. Unsaturated carboxylic anhydrides; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, (Meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid lauryl, (meth) acrylic acid stearyl, glycidyl methacrylate, maleic acid dimethyl, maleic acid Hexyl Le), and unsaturated carboxylic acid esters such as 2-hydroxyethyl methacrylate. Of these, unsaturated carboxylic acid anhydrides are preferred. These compounds having an unsaturated bond may be appropriately selected according to the copolymer containing the polyalkylene ether glycol segment to be modified and the modification conditions, or two or more of them may be used in combination. The compound having an unsaturated bond can be added after being dissolved in an organic solvent or the like.
(C)ラジカル発生剤
変性処理に際し、ラジカル反応を行うために用いられるラジカル発生剤としては、例えばt−ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、2,5−ジメチルへキサン−2,5−ジヒドロパーオキサイド、2,5−ジメチル−2,5−ビス(ターシャリーブチルオキシ)ヘキサン、3,5,5−トリメチルへキサノイルパーオキサイド、t−ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、ジクミルパーオキサイド、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、ジブチルパーオキサイド、メチルエチルケトンパーオキサイド、過酸化カリウム、過酸化水素等の有機及び無機過酸化物、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(イソブチルアミド)ジハライド、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]、アゾジ−t−ブタン等のアゾ化合物、及びジクミル等の炭素ラジカル発生剤等が例示できる。これらのラジカル発生剤は、変性処理に用いるポリアルキレンエーテルグリコールセグメントを含有する飽和ポリエステル系熱可塑性エラストマーの種類や、不飽和カルボン酸又はその誘導体の種類や、変性条件に応じて適宜選択すればよく、また二種以上を併用してもよい。このラジカル発生剤は有機溶剤等に溶解して加えることもできる。また、接着性をさらに向上させるために、ラジカル発生剤だけでなく、変性助剤として、不飽和結合を有する化合物(下記(D))を併用することもできる。
(C) Radical generator As the radical generator used for carrying out the radical reaction in the modification treatment, for example, t-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydro Peroxide, 2,5-dimethyl-2,5-bis (tertiarybutyloxy) hexane, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxybenzoate, benzoyl peroxide, dicumyl peroxide 1,3-bis (t-butylperoxyisopropyl) benzene, dibutyl peroxide, methyl ethyl ketone peroxide, potassium peroxide, hydrogen peroxide and other organic and inorganic peroxides, 2,2′-azobisisobutyro Nitrile, 2,2'-azobis (isobutyramide) diha Id, 2,2'-azobis [2-methyl-N-(2-hydroxyethyl) propionamide], azo compounds such as azodi -t- butane, and carbon radical generators such as dicumyl can be exemplified. These radical generators may be appropriately selected according to the type of the saturated polyester thermoplastic elastomer containing the polyalkylene ether glycol segment used for the modification treatment, the type of the unsaturated carboxylic acid or its derivative, and the modification conditions. Moreover, you may use 2 or more types together. The radical generator can also be added after being dissolved in an organic solvent or the like. In order to further improve the adhesion, not only a radical generator but also a compound having an unsaturated bond (the following (D)) can be used in combination as a modification aid.
(D)不飽和結合を有する化合物
不飽和結合を有する化合物とは、前記(B)ラジカル発生剤以外の炭素−炭素多重結合を有する化合物のことをいい、具体的には、スチレン、メチルスチレン、エチルスチレン、イソプロピルスチレン、フェニルスチレン、o−メチルスチレン、2,4−ジメチルスチレン、o−クロロスチレン、o−クロロメチルスチレン等のビニル芳香族単量体等が挙げられる。これらの配合により、変性効率の向上が期待できる。
(D) Compound having an unsaturated bond The compound having an unsaturated bond refers to a compound having a carbon-carbon multiple bond other than the (B) radical generator, specifically, styrene, methylstyrene, And vinyl aromatic monomers such as ethyl styrene, isopropyl styrene, phenyl styrene, o-methyl styrene, 2,4-dimethyl styrene, o-chloro styrene, o-chloromethyl styrene, and the like. With these blends, improvement in modification efficiency can be expected.
(2)付加的配合材料(任意成分)
接着層を形成するための接着剤には、極性基含有TPC以外にも、任意の成分を配合することができる。具体的には、樹脂成分、ゴム成分、タルク、炭酸カルシウム、マイカ、ガラス繊維等のフィラー、パラフィンオイル等の可塑剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、滑剤、防曇剤、アンチブロッキング剤、スリップ剤、架橋剤、架橋助剤、着色剤、難燃剤、分散剤、帯電防止剤、防菌剤、蛍光増白剤等の各種添加物を添加することができる。中でも、フェノール系、ホスファイト系、チオエーテル系、芳香族アミン系等の各種酸化防止剤の少なくとも一種を添加することが好ましい。
(2) Additional compounding materials (optional components)
Arbitrary components can be mix | blended with the adhesive agent for forming a contact bonding layer other than polar group containing TPC. Specifically, resin component, rubber component, talc, calcium carbonate, mica, glass fiber filler, plasticizer such as paraffin oil, antioxidant, heat stabilizer, light stabilizer, ultraviolet absorber, neutralizer Add various additives such as lubricants, anti-fogging agents, anti-blocking agents, slip agents, cross-linking agents, cross-linking aids, colorants, flame retardants, dispersants, antistatic agents, antibacterial agents, fluorescent whitening agents, etc. be able to. Among them, it is preferable to add at least one of various antioxidants such as phenol, phosphite, thioether, and aromatic amine.
(3)配合比
極性基含有TPCを構成する各成分の配合割合は、(A)飽和ポリエステル系熱可塑性エラストマー100質量部に対して、(B)不飽和カルボン酸又はその誘導体が、好ましくは0.01〜30質量部、より好ましくは0.05〜5質量部、更に好ましくは0.1〜2質量部、特に好ましくは0.1〜1質量部の配合比となるものであり、また(C)ラジカル発生剤が、好ましくは0.001〜3質量部、より好ましくは0.005〜0.5質量部、更に好ましくは0.01〜0.2質量部、特に好ましくは0.01〜0.1質量部の配合比となるものである。
(3) Blending ratio The blending ratio of each component constituting the polar group-containing TPC is preferably (B) an unsaturated carboxylic acid or its derivative with respect to 100 parts by weight of the (A) saturated polyester-based thermoplastic elastomer. 0.01 to 30 parts by mass, more preferably 0.05 to 5 parts by mass, still more preferably 0.1 to 2 parts by mass, particularly preferably 0.1 to 1 part by mass, C) The radical generator is preferably 0.001 to 3 parts by mass, more preferably 0.005 to 0.5 parts by mass, still more preferably 0.01 to 0.2 parts by mass, and particularly preferably 0.01 to The blending ratio is 0.1 parts by mass.
極性基含有TPCの赤外吸収スペクトル法による変性量は、下記式A1786/(Ast×r)の値で0.01〜15であることが望ましく、好ましくは、0.03〜2.5であり、より好ましくは、0.1〜2.0であり、特に好ましくは、0.2〜1.8である。
[但し、A1786は、極性基含有TPCの厚さ20μmのフィルムについて測定された、1786cm−1のピーク強度であり、Astは、標準試料(ポリアルキレンエーテルグリコールセグメントの含有量が65質量%である飽和ポリエステル系エラストマー)の厚さ20μmのフィルムについて測定された、規準波数のピーク強度であり、rは、極性基含有TPC中のポリエステルセグメントのモル分率を、上記標準試料中のポリエステルセグメントのモル分率で除した値である。]
The amount of modification of the polar group-containing TPC by the infrared absorption spectrum method is desirably 0.01 to 15 in terms of the following formula A 1786 / (Ast × r), preferably 0.03 to 2.5. Yes, more preferably from 0.1 to 2.0, and particularly preferably from 0.2 to 1.8.
[However, A 1786 is a peak intensity of 1786 cm −1 measured on a 20 μm thick film of polar group-containing TPC, and Ast is a standard sample (the content of polyalkylene ether glycol segment is 65% by mass). It is the peak intensity of the standard wave number measured for a film having a thickness of 20 μm of a certain saturated polyester elastomer, and r is the molar fraction of the polyester segment in the polar group-containing TPC and the polyester segment in the standard sample. It is the value divided by the mole fraction. ]
極性基含有TPCの赤外吸収スペクトル法による変性量の値を求める方法は、次の通りである。すなわち、厚さ20μmのフィルム状の試料を100℃で15時間減圧乾燥し未反応物を除去し、赤外吸収スペクトルを測定する。得られたスペクトラムから、1786cm−1に現れる酸無水物由来のカルボニル基の伸縮振動による吸収ピーク(1750〜1820cm−1の範囲にある該吸収帯の両側の山裾を結んだ接線をベースラインとする)のピーク高さを算出して「ピーク強度A1786」とする。一方、標準試料(ポリアルキレンエーテルグリコールセグメントの含有量が65質量%である飽和ポリエステル系エラストマー)の厚さ20μmのフィルムについて、同様に赤外吸収スペクトルを測定する。得られたスペクトラムから、規準波数のピーク、例えばベンゼン環を含む芳香族ポリエステル系エラストマーの場合は、872cm−1に現れるベンゼン環のC−Hの面外変角による吸収ピーク(850〜900cm−1の範囲にある該吸収帯の両側の山裾を結んだ接線をベースラインとする)のピーク高さを算出して「ピーク強度Ast」とする。なお、この規準波数のピークについては、ハードセグメント由来のピークであって、変性による影響を受けず、かつ、その近傍に重なり合うような吸収ピークのないものから選択すればよい。これら両ピーク強度から、前記式に従って赤外吸収スペクトル法による変性量を算出する。その際、rとしては、変性量を求める極性基含有TPC中のポリエステルセグメントのモル分率を、上記標準試料中のポリエステルセグメントのモル分率で除した値を使用する。また、各試料のポリエステルセグメントのモル分率mrは、ポリエステルセグメント及びポリアルキレンエーテルグリコールセグメントの質量分率(w1及びw2)と両セグメントを構成する単量体単位の分子量(e1及びe2)とから、次式によって求める。
mr=(w1/e1)/[(w1/e1)+(w2/e2)]
A method for determining the value of the modification amount of the polar group-containing TPC by the infrared absorption spectrum method is as follows. That is, a film sample having a thickness of 20 μm is dried under reduced pressure at 100 ° C. for 15 hours to remove unreacted substances, and an infrared absorption spectrum is measured. From the obtained spectrum, the tangent line connecting the both sides of the foot of the mountain of the absorption band the baseline in the range of the absorption peak (1750~1820cm -1 by stretching vibration of the carbonyl group derived from an acid anhydride appears at 1786 cm -1 ) Is calculated as “peak intensity A 1786 ”. On the other hand, the infrared absorption spectrum of a standard sample (saturated polyester elastomer having a polyalkylene ether glycol segment content of 65% by mass) with a thickness of 20 μm is measured in the same manner. From the obtained spectrum, the peak of the reference wave number, for example in the case of an aromatic polyester elastomer having a benzene ring, the absorption peak due to out-of-plane deformation of the C-H in benzene ring appearing at 872cm -1 (850~900cm -1 The peak height of the tangent line connecting the mountain hems on both sides of the absorption band in the range of (the base line is used) is calculated as “peak intensity As”. The peak of the reference wave number may be selected from those derived from hard segments that are not affected by denaturation and do not have an absorption peak overlapping in the vicinity thereof. From these two peak intensities, the amount of modification by the infrared absorption spectrum method is calculated according to the above formula. In that case, as r, the value which remove | divided the molar fraction of the polyester segment in the polar group containing TPC which calculates | requires modification | denaturation amount by the molar fraction of the polyester segment in the said standard sample is used. Moreover, the molar fraction mr of the polyester segment of each sample is the mass fraction (w 1 and w 2 ) of the polyester segment and the polyalkylene ether glycol segment, and the molecular weight of the monomer unit constituting both segments (e 1 and e 2 ) and is obtained by the following equation.
mr = (w 1 / e 1 ) / [(w 1 / e 1 ) + (w 2 / e 2 )]
(4)配合方法
極性基含有TPCの合成は、例えば、(A)飽和ポリエステル系熱可塑性エラストマーを、(C)ラジカル発生剤の存在下、(B)不飽和カルボン酸又はその誘導体で変性することで行われる。この際、成分(A)を溶融物とすると、成分(B)との反応がより効率的に可能となり、十分な変性が実現されるので好ましい。例えば、予備的に、非溶融状態の成分(A)に成分(B)を混合した上で、成分(A)を溶融して成分(B)と反応させる方法も好ましく用いることができる。
また、成分(A)に成分(B)を混合するには、十分な剪断応力を与えることのできる混練機を使用した、いわゆる溶融混練法を選択することが好ましい。溶融混練法に使用する混練機としては、ミキシングロール、シグマ型回転羽根付混練機、バンバリーミキサー、高速二軸連続ミキサー、一軸、二軸、多軸押出機型混練機等の通常の混練機から、任意のものを選ぶことができる。中でも、反応効率が高いことや製造コストが低いことから、二軸押出機が好ましい。溶融混練は、粉状又は粒状の成分(A)、成分(B)及び成分(C)、並びに、必要であれば、成分(D)、前記付加的配合材料(任意成分)として挙げた、その他の配合剤を、所定の配合割合にて、ヘンシェルミキサー、リボンブレンダー、V型ブレンダー等を用いて均一に混合した後、行うこともできる。各成分の混練の温度は、成分(A)の熱劣化分解や成分(C)の半減期温度を考慮し、100℃〜300℃の範囲が好ましく、より好ましくは120℃〜280℃の範囲、特に好ましくは150℃〜250℃の範囲である。実用上、最適な混練温度は、成分(A)の融点より20℃高い温度から融点までの温度範囲である。さらに、各成分の混練順序及び方法は、特に限定されるものではなく、成分(A)、成分(B)及び成分(C)と、成分(D)等の付加的配合材料とを一括して混練する方法、成分(A)〜成分(D)の内の一部を混練した後、付加的な配合材料を含めた残りの成分を混練する方法でもよい。ただし、成分(C)を配合する場合は、これを成分(B)及び成分(D)と、同時に添加することが接着性向上の点から好ましい。
(4) Blending method Synthesis of polar group-containing TPC is, for example, modifying (A) a saturated polyester thermoplastic elastomer with (B) an unsaturated carboxylic acid or a derivative thereof in the presence of (C) a radical generator. Done in At this time, it is preferable to use the component (A) as a melt because the reaction with the component (B) becomes more efficient and sufficient modification is realized. For example, a method of preliminarily mixing the component (B) with the non-molten component (A) and then melting the component (A) to react with the component (B) can be preferably used.
Moreover, in order to mix a component (B) with a component (A), it is preferable to select what is called a melt kneading method using the kneader which can give sufficient shearing stress. As a kneading machine used for the melt kneading method, from a conventional kneading machine such as a mixing roll, a sigma type kneading machine with rotary blades, a Banbury mixer, a high-speed biaxial continuous mixer, a uniaxial, biaxial, multi-screw extruder type kneader, etc. You can choose any one. Among these, a twin screw extruder is preferable because of high reaction efficiency and low manufacturing cost. Melt-kneading is a powdery or granular component (A), component (B) and component (C), and, if necessary, component (D), the above-mentioned additional compounding material (optional component), etc. It is also possible to carry out the compounding agent after uniformly mixing with a Henschel mixer, a ribbon blender, a V-type blender or the like at a prescribed blending ratio. The kneading temperature of each component is preferably in the range of 100 ° C. to 300 ° C., more preferably in the range of 120 ° C. to 280 ° C., taking into account the thermal degradation of the component (A) and the half-life temperature of the component (C). Especially preferably, it is the range of 150 to 250 degreeC. In practice, the optimum kneading temperature is a temperature range from a temperature 20 ° C. higher than the melting point of the component (A) to the melting point. Furthermore, the kneading order and method of each component are not particularly limited, and the component (A), the component (B) and the component (C), and additional compounding materials such as the component (D) are collectively included. A method of kneading, or a method of kneading a part of components (A) to (D) and then kneading the remaining components including additional compounding materials may be used. However, when mix | blending a component (C), it is preferable from the point of an adhesive improvement to add this simultaneously with a component (B) and a component (D).
(物性)
・引張弾性率
接着層は被覆樹脂層よりも引張弾性率が小さい層であることが好ましい。接着層の引張弾性率は、例えば、接着層の形成に用いる接着剤の種類、接着層の形成条件や熱履歴(例えば、加熱温度、加熱時間等)等によって制御することができる。
接着層の引張弾性率は、例えば下限値は、1MPa以上が好ましく、20MPa以上がより好ましく、50MPa以上がさらに好ましい。引張弾性率が上記下限値以上であることで、金属部材との接着性能及びタイヤ耐久性に優れる。
また、接着層の引張弾性率の上限値は、乗り心地の観点から、1500MPa以下が好ましく、600MPa以下がより好ましく、400MPa以下がさらに好ましい。
なお、接着層の引張弾性率の測定は、前記被覆樹脂層の引張弾性率と同様の方法で行うことができる。
また、接着層の引張弾性率をE1とし、被覆樹脂層の引張弾性率をE2としたとき、E1/E2の値としては、例えば0.05以上0.5以下が挙げられ、0.05以上0.3以下が好ましく、0.05以上0.2以下がより好ましい。E1/E2の値が前記範囲であることにより、前記範囲よりも小さい場合に比べてタイヤの耐久性に優れ、前記範囲よりも大きい場合に比べて走行時の乗り心地に優れる。
(Physical properties)
-Tensile elastic modulus It is preferable that an adhesive layer is a layer whose tensile elastic modulus is smaller than a coating resin layer. The tensile elastic modulus of the adhesive layer can be controlled by, for example, the type of adhesive used for forming the adhesive layer, the formation conditions of the adhesive layer, the thermal history (for example, heating temperature, heating time, etc.), and the like.
For example, the lower limit of the tensile elastic modulus of the adhesive layer is preferably 1 MPa or more, more preferably 20 MPa or more, and even more preferably 50 MPa or more. When the tensile modulus is equal to or higher than the lower limit, the adhesion performance with the metal member and the tire durability are excellent.
Further, the upper limit value of the tensile elastic modulus of the adhesive layer is preferably 1500 MPa or less, more preferably 600 MPa or less, and further preferably 400 MPa or less from the viewpoint of ride comfort.
The tensile modulus of the adhesive layer can be measured by the same method as the tensile modulus of the coating resin layer.
Further, the tensile modulus of the adhesive layer and E 1, when the tensile modulus of the coating resin layer was E 2, as the value of E 1 / E 2, for example, an 0.05 or more and 0.5 or less, 0.05 or more and 0.3 or less are preferable, and 0.05 or more and 0.2 or less are more preferable. When the value of E 1 / E 2 is in the above range, the durability of the tire is excellent as compared with the case where the value is smaller than the above range, and the riding comfort during traveling is excellent as compared with the case where the value is larger than the above range.
・融点
極性官能基含有樹脂の融点は、160℃以上230℃以下が好ましく、180℃以上227℃以下がより好ましく、190℃以上225℃以下がさらに好ましい。
融点が160℃以上であることで、タイヤ製造時の加熱(例えば加硫)に対する耐熱性に優れる。また、融点が上記範囲であることで、被覆樹脂層に含まれるポリエステル系熱可塑性エラストマーとの間で近い融点とすることが容易となり、近い融点とすることでより優れた接着性が得られる。
なお、極性官能基含有樹脂の融点は、示差走査熱量測定(Differential scanning calorimetry;DSC)により得られる曲線(DSC曲線)において、吸熱ピークが得られる温度をいう。融点の測定は、示差走査熱量計DSCを用いて、JIS K 7121:2012に準拠して行なう。測定は、例えば、TAインスツルメント(株)の「DSC Q100」を用いて、掃引速度10℃/minで行うことができる。
-Melting | fusing point As for melting | fusing point of polar functional group containing resin, 160 to 230 degreeC is preferable, 180 to 227 degreeC is more preferable, 190 to 225 degreeC is more preferable.
When the melting point is 160 ° C. or higher, the heat resistance against heating (for example, vulcanization) during tire manufacture is excellent. Moreover, it becomes easy to make it near melting | fusing point with the polyester-type thermoplastic elastomer contained in a coating resin layer because melting | fusing point is the said range, and more excellent adhesiveness is acquired by setting it as near melting | fusing point.
The melting point of the polar functional group-containing resin refers to the temperature at which an endothermic peak is obtained in a curve (DSC curve) obtained by differential scanning calorimetry (DSC). The melting point is measured using a differential scanning calorimeter DSC according to JIS K 7121: 2012. The measurement can be performed, for example, using “DSC Q100” of TA Instruments Co., Ltd. at a sweep rate of 10 ° C./min.
・厚み
接着層の平均厚みは、特に制限されないが、走行時の乗り心地及びタイヤの耐久性の観点で、5μm〜500μmであることが好ましく、20μm〜150μmであることがより好ましく、20μm〜100μmであることが更に好ましい。
-Thickness The average thickness of the adhesive layer is not particularly limited, but is preferably 5 μm to 500 μm, more preferably 20 μm to 150 μm, and more preferably 20 μm to 100 μm from the viewpoint of riding comfort during running and durability of the tire. More preferably.
接着層の平均厚みは、金属部材、接着層及び被覆樹脂層の積層方向に沿って樹脂金属複合部材を切断して得られる断面のSEM画像を任意の5箇所から取得し、得られたSEM画像から測定される接着層の厚みの数平均値とする。各SEM画像における接着層の厚みは、最も厚みの小さい部分(金属部材と接着層との間の界面と、接着層と被覆樹脂層との間の界面との距離が最小となる部分)で測定される値とする。 The average thickness of the adhesive layer is obtained by obtaining SEM images of cross sections obtained by cutting the resin-metal composite member along the stacking direction of the metal member, the adhesive layer, and the coating resin layer from arbitrary five locations. The number average value of the thickness of the adhesive layer measured from The thickness of the adhesive layer in each SEM image is measured at the thinnest part (the part where the distance between the interface between the metal member and the adhesive layer and the interface between the adhesive layer and the coating resin layer is minimum). Value.
また、接着層の平均厚みをT1とし、被覆樹脂層の平均厚みをT2としたとき、T1/T2の値としては、例えば0.1以上0.5以下が挙げられ、0.1以上0.4以下が好ましく、0.1以上0.35以下がより好ましい。T1/T2の値が前記範囲であることにより、前記範囲よりも小さい場合に比べて走行時の乗り心地に優れ、前記範囲よりも大きい場合に比べてタイヤの耐久性に優れる。 Further, the average thickness of the adhesive layer and T 1, when the average thickness of the resin coating layer was T 2, as the value of T 1 / T 2, for example, an 0.1 to 0.5, 0. 1 or more and 0.4 or less are preferred, and 0.1 or more and 0.35 or less are more preferred. When the value of T 1 / T 2 is in the above range, the ride comfort during running is superior to that in the case where the value is smaller than the above range, and the durability of the tire is excellent in comparison with the case where the value is larger than the above range.
[被覆樹脂層]
被覆樹脂層の材質は特に制限されず、例えば、熱可塑性樹脂及び熱可塑性エラストマーからなる群より選ばれる少なくとも1種の熱可塑性材料を用いることができる。
被覆樹脂層は、成形容易性の観点及び接着層に対する接着性の観点から、熱可塑性エラストマーを含むことが望ましい。
[Coating resin layer]
The material of the coating resin layer is not particularly limited, and for example, at least one thermoplastic material selected from the group consisting of a thermoplastic resin and a thermoplastic elastomer can be used.
The coating resin layer desirably contains a thermoplastic elastomer from the viewpoint of ease of molding and adhesiveness to the adhesive layer.
また、被覆樹脂層は、熱可塑性エラストマーの中でも特に、ポリエステル系熱可塑性エラストマーを含むことが望ましい。前記接着層が極性官能基を有するポリエステル系熱可塑性エラストマーを含有する場合であれば、被覆樹脂層ポリエステル系熱可塑性エラストマーを含むことで、接着層用の材料(接着剤)と被覆樹脂層用の材料(樹脂)との相溶性に優れる。それにより、接着層表面に樹脂を被覆する際のなじみに優れ、これによって接着層と被覆樹脂層との高い接着性が得られるものと考えられる。 Moreover, it is desirable that the coating resin layer contains a polyester-based thermoplastic elastomer, among other thermoplastic elastomers. If the adhesive layer contains a polyester-based thermoplastic elastomer having a polar functional group, the material for the adhesive layer (adhesive) and the coating resin layer are included by including the coating resin layer polyester-based thermoplastic elastomer. Excellent compatibility with materials (resins). Thereby, it is considered that the adhesion at the surface of the adhesive layer is excellent and the high adhesion between the adhesive layer and the coating resin layer can be obtained.
(ポリエステル系熱可塑性エラストマー)
ポリエステル系熱可塑性エラストマーとしては、極性官能基を有さないポリエステル系熱可塑性エラストマーを含むことが好ましく、中でも未変性のポリエステル系熱可塑性エラストマーを含むことがより好ましい。
被覆樹脂層がポリエステル系熱可塑性エラストマー(好ましくは極性官能基を有さないポリエステル系熱可塑性エラストマー)を含む場合、被覆樹脂層全体に対して50質量%以上含ませることが好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましい。
ポリエステル系熱可塑性エラストマーとしては、後述のタイヤ骨格体に用いられるポリエステル系熱可塑性エラストマーと同様であり、好ましい態様も同様である。したがって、ここでは、詳細な説明を省略する。
(Polyester thermoplastic elastomer)
The polyester-based thermoplastic elastomer preferably includes a polyester-based thermoplastic elastomer having no polar functional group, and more preferably includes an unmodified polyester-based thermoplastic elastomer.
When the coating resin layer includes a polyester-based thermoplastic elastomer (preferably a polyester-based thermoplastic elastomer having no polar functional group), it is preferably included in an amount of 50% by mass or more with respect to the entire coating resin layer, and 60% by mass or more. Is more preferable, and 70 mass% or more is still more preferable.
The polyester-based thermoplastic elastomer is the same as the polyester-based thermoplastic elastomer used in the tire skeleton described later, and the preferred embodiment is also the same. Therefore, detailed description is omitted here.
被覆樹脂層がポリエステル系熱可塑性エラストマーを含む場合、ポリエステル系熱可塑性エラストマーの融点は、160℃以上230℃以下が好ましく、180℃以上227℃以下がより好ましく、190℃以上225℃以下がさらに好ましい。
融点が160℃以上であることで、タイヤ製造時の加熱(例えば加硫)に対する耐熱性に優れる。また、融点が上記範囲であることで、接着層に極性官能基を有するポリエステル系熱可塑性エラストマーを含む場合に近い融点とすることが容易となり、近い融点とすることでより優れた接着性が得られる。
なお、被覆樹脂層に含まれるポリエステル系熱可塑性エラストマーの融点の測定は、前述の極性官能基含有樹脂と同様の方法で行われる。
When the coating resin layer contains a polyester-based thermoplastic elastomer, the melting point of the polyester-based thermoplastic elastomer is preferably 160 ° C or higher and 230 ° C or lower, more preferably 180 ° C or higher and 227 ° C or lower, and further preferably 190 ° C or higher and 225 ° C or lower. .
When the melting point is 160 ° C. or higher, the heat resistance against heating (for example, vulcanization) during tire manufacture is excellent. In addition, when the melting point is in the above range, it becomes easy to obtain a melting point close to that when the adhesive layer contains a polyester-based thermoplastic elastomer having a polar functional group. It is done.
In addition, the measurement of melting | fusing point of the polyester-type thermoplastic elastomer contained in a coating resin layer is performed by the method similar to the above-mentioned polar functional group containing resin.
(その他の熱可塑性エラストマー)
その他の熱可塑性エラストマーとしては、例えば、ポリアミド系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー等が挙げられる。これらは単独で又は2種以上を組み合わせて用いてもよい。
上記ポリアミド系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、及びオレフィン系熱可塑性エラストマーは、後述のタイヤ骨格体に用いられる熱可塑性エラストマーと同様であり、好ましい態様も同様である。したがって、ここでは、詳細な説明を省略する。
(Other thermoplastic elastomers)
Examples of the other thermoplastic elastomers include polyamide-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, and olefin-based thermoplastic elastomers. You may use these individually or in combination of 2 or more types.
The above-mentioned polyamide-based thermoplastic elastomer, polystyrene-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, and olefin-based thermoplastic elastomer are the same as the thermoplastic elastomer used for the tire frame described later, and the preferred embodiments are also the same. Therefore, detailed description is omitted here.
(熱可塑性樹脂)
熱可塑性樹脂としては、例えば、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。これらは単独で又は2種以上を組み合わせて用いてもよい。
(Thermoplastic resin)
Examples of the thermoplastic resin include polyamide-based thermoplastic resins, polyester-based thermoplastic resins, olefin-based thermoplastic resins, polyurethane-based thermoplastic resins, vinyl chloride-based thermoplastic resins, and polystyrene-based thermoplastic resins. it can. You may use these individually or in combination of 2 or more types.
−ポリアミド系熱可塑性樹脂−
ポリアミド系熱可塑性樹脂としては、後述のタイヤ骨格体に用いられるポリアミド系熱可塑性エラストマーのハードセグメントを形成するポリアミドを挙げることができる。ポリアミド系熱可塑性樹脂としては、具体的には、ε−カプロラクタムを開環重縮合したポリアミド(アミド6)、ウンデカンラクタムを開環重縮合したポリアミド(アミド11)、ラウリルラクタムを開環重縮合したポリアミド(アミド12)、ジアミンと二塩基酸とを重縮合したポリアミド(アミド66)、メタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を例示することができる。
-Polyamide thermoplastic resin-
Examples of the polyamide-based thermoplastic resin include a polyamide that forms a hard segment of a polyamide-based thermoplastic elastomer used in a tire skeleton, which will be described later. Specifically, as the polyamide-based thermoplastic resin, polyamide (amide 6) obtained by ring-opening polycondensation of ε-caprolactam, polyamide (amide 11) obtained by ring-opening polycondensation of undecane lactam, and ring-opening polycondensation of lauryl lactam. Examples thereof include polyamide (amide 12), polyamide (amide 66) obtained by polycondensation of diamine and dibasic acid, and polyamide (amide MX) having metaxylenediamine as a structural unit.
アミド6は、例えば、{CO−(CH2)5−NH}nで表すことができる。アミド11は、例えば、{CO−(CH2)10−NH}nで表すことができる。アミド12は、例えば、{CO−(CH2)11−NH}nで表すことができる。アミド66は、例えば、{CO(CH2)4CONH(CH2)6NH}nで表すことができる。アミドMXは、例えば、下記構造式(A−1)で表すことができる。ここで、nは繰り返し単位数を表す。
アミド6の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、1022B、1011FB等)を用いることができる。アミド11の市販品としては、例えば、アルケマ(株)製の「Rilsan B」シリーズを用いることができる。アミド12の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、3024U、3020U、3014U等)を用いることができる。アミド66の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、2020B、2015B等)を用いることができる。アミドMXの市販品としては、例えば、三菱ガス化学(株)製の「MXナイロン」シリーズ(例えば、S6001、S6021、S6011等)を用いることができる。
The amide 6 can be represented by, for example, {CO— (CH 2 ) 5 —NH} n . The amide 11 can be represented by, for example, {CO— (CH 2 ) 10 —NH} n . The amide 12 can be represented by, for example, {CO— (CH 2 ) 11 —NH} n . The amide 66 can be represented by {CO (CH 2 ) 4 CONH (CH 2 ) 6 NH} n , for example. Amide MX can be represented by the following structural formula (A-1), for example. Here, n represents the number of repeating units.
As a commercially available product of amide 6, for example, “UBE nylon” series (for example, 1022B, 1011FB, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available product of amide 11, for example, “Rilsan B” series manufactured by Arkema Co., Ltd. can be used. As a commercially available product of amide 12, for example, “UBE nylon” series (for example, 3024U, 3020U, 3014U, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available product of amide 66, for example, “UBE nylon” series (for example, 2020B, 2015B, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available product of amide MX, for example, “MX nylon” series (for example, S6001, S6021, S6011, etc.) manufactured by Mitsubishi Gas Chemical Co., Ltd. can be used.
ポリアミド系熱可塑性樹脂は、上記の構成単位のみで形成されるホモポリマーであってもよく、上記の構成単位と他のモノマーとのコポリマーであってもよい。コポリマーの場合、各ポリアミド系熱可塑性樹脂における上記構成単位の含有率は、40質量%以上であることが好ましい。 The polyamide-based thermoplastic resin may be a homopolymer formed only from the above structural unit, or may be a copolymer of the above structural unit and another monomer. In the case of a copolymer, it is preferable that the content rate of the said structural unit in each polyamide-type thermoplastic resin is 40 mass% or more.
−ポリエステル系熱可塑性樹脂−
ポリエステル系熱可塑性樹脂としては、後述のタイヤ骨格体に用いられるポリエステル系熱可塑性エラストマーのハードセグメントを形成するポリエステルを挙げることができる。
ポリエステル系熱可塑性樹脂としては、具体的には、ポリ乳酸、ポリヒドロキシ−3−ブチル酪酸、ポリヒドロキシ−3−ヘキシル酪酸、ポリ(ε−カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等の芳香族ポリエステルなどを例示することができる。これらの中でも、耐熱性及び加工性の観点から、ポリエステル系熱可塑性樹脂としては、ポリブチレンテレフタレートが好ましい。
-Polyester thermoplastic resin-
Examples of the polyester-based thermoplastic resin include a polyester that forms a hard segment of a polyester-based thermoplastic elastomer used in a tire skeleton described below.
Specific examples of the polyester-based thermoplastic resin include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly (ε-caprolactone), polyenantlactone, polycaprylolactone, and polybutylene. Examples include aliphatic polyesters such as adipate and polyethylene adipate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate. Among these, from the viewpoint of heat resistance and processability, polybutylene terephthalate is preferable as the polyester-based thermoplastic resin.
ポリエステル系熱可塑性樹脂の市販品としては、例えば、ポリプラスチック(株)製の「ジュラネックス」シリーズ(例えば、2000、2002等)、三菱エンジニアリングsプラスチック(株)製の「ノバデュラン」シリーズ(例えば、5010R5、5010R3−2等)、東レ(株)製の「トレコン」シリーズ(例えば、1401X06、1401X31等)等を用いることができる。 Examples of commercially available polyester-based thermoplastic resins include “Duranex” series (for example, 2000, 2002, etc.) manufactured by Polyplastics Co., Ltd., and “Novaduran” series (for example, manufactured by Mitsubishi Engineering s Plastics Co., Ltd.) 5010R5, 5010R3-2, etc.), “Toraycon” series (for example, 1401X06, 1401X31, etc.) manufactured by Toray Industries, Inc. can be used.
−オレフィン系熱可塑性樹脂−
オレフィン系熱可塑性樹脂としては、後述のタイヤ骨格体に用いられるオレフィン系熱可塑性エラストマーのハードセグメントを形成するポリオレフィンを挙げることができる。
オレフィン系熱可塑性樹脂としては、具体的には、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂等を例示することができる。これらの中でも、耐熱性及び加工性の点から、オレフィン系熱可塑性樹脂としては、ポリプロピレン系熱可塑性樹脂が好ましい。
ポリプロピレン系熱可塑性樹脂の具体例としては、プロピレンホモ重合体、プロピレン−α−オレフィンランダム共重合体、プロピレン−α−オレフィンブロック共重合体等が挙げられる。α−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−ヘプテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン等の炭素数3〜20程度のα−オレフィン等が挙げられる。
-Olefin-based thermoplastic resin-
Examples of the olefinic thermoplastic resin include polyolefin that forms a hard segment of an olefinic thermoplastic elastomer used in a tire skeleton described later.
Specific examples of the olefin-based thermoplastic resin include a polyethylene-based thermoplastic resin, a polypropylene-based thermoplastic resin, a polybutadiene-based thermoplastic resin, and the like. Among these, from the viewpoints of heat resistance and processability, the olefin thermoplastic resin is preferably a polypropylene thermoplastic resin.
Specific examples of the polypropylene-based thermoplastic resin include a propylene homopolymer, a propylene-α-olefin random copolymer, a propylene-α-olefin block copolymer, and the like. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, Examples include α-olefins having about 3 to 20 carbon atoms such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicocene.
被覆樹脂層は、熱可塑性樹脂及び熱可塑性エラストマー以外の他の成分を含んでもよい。他の成分としては、ゴム、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。 The coating resin layer may contain components other than the thermoplastic resin and the thermoplastic elastomer. Examples of other components include rubbers, thermoplastic resins, various fillers (for example, silica, calcium carbonate, clay, etc.), anti-aging agents, oils, plasticizers, color formers, weathering agents, and the like.
(物性)
・厚み
被覆樹脂層の平均厚みは、特に限定されない。耐久性に優れる点や溶着性の観点から、10μm以上1000μm以下であることが好ましく、50μm以上700μm以下であることがより好ましい。
(Physical properties)
-Thickness The average thickness of the coating resin layer is not particularly limited. From the viewpoint of excellent durability and weldability, it is preferably 10 μm or more and 1000 μm or less, and more preferably 50 μm or more and 700 μm or less.
被覆樹脂層の平均厚みは、金属部材、接着層及び被覆樹脂層の積層方向に沿って樹脂金属複合部材を切断して得られる断面のSEM画像を任意の5箇所から取得し、得られたSEM画像から測定される被覆樹脂層の厚みの数平均値とする。各SEM画像における被覆樹脂層の厚みは、最も厚みの小さい部分(接着層と被覆樹脂層との間の界面と、樹脂金属複合部材の外縁との距離が最小となる部分)で測定される値とする。 The average thickness of the coating resin layer was obtained by acquiring SEM images of cross sections obtained by cutting the resin-metal composite member along the lamination direction of the metal member, the adhesive layer, and the coating resin layer from arbitrary five locations. It is set as the number average value of the thickness of the coating resin layer measured from the image. The thickness of the coating resin layer in each SEM image is a value measured at the thinnest part (the part where the distance between the interface between the adhesive layer and the coating resin layer and the outer edge of the resin-metal composite member is minimum). And
・引張弾性率
被覆樹脂層の引張弾性率は、接着層の引張弾性率よりも大きいことが好ましく、例えば50MPa以上1000MPa以下が挙げられ、乗り心地、走行性能の観点から50MPa以上800MPa以下が好ましく、50MPa以上700MPa以下がより好ましい。
被覆樹脂層の引張弾性率は、例えば、被覆樹脂層に含まれる樹脂の種類等によって制御することができる。
なお、引張弾性率の測定は、JIS K7113:1995に準拠して行う。
具体的には、例えば、島津製作所社製、島津オートグラフAGS−J(5KN)を用い、引張速度を100mm/minに設定し、引張弾性率の測定を行う。なお、樹脂金属複合部材に含まれる被覆樹脂層の引張弾性率を測定する場合、例えば、上記被覆樹脂層と同じ材料の測定試料を別途準備して弾性率測定してもよい。
-Tensile elastic modulus The tensile elastic modulus of the coating resin layer is preferably larger than the tensile elastic modulus of the adhesive layer, for example, 50 MPa or more and 1000 MPa or less. 50 MPa or more and 700 MPa or less are more preferable.
The tensile elastic modulus of the coating resin layer can be controlled by, for example, the type of resin contained in the coating resin layer.
The tensile modulus is measured according to JIS K7113: 1995.
Specifically, for example, Shimadzu Corporation, Shimadzu Autograph AGS-J (5KN) is used, the tensile velocity is set to 100 mm / min, and the tensile elastic modulus is measured. In addition, when measuring the tensile elasticity modulus of the coating resin layer contained in the resin metal composite member, for example, a measurement sample made of the same material as the coating resin layer may be separately prepared and the elasticity modulus may be measured.
<タイヤ>
本発明のタイヤは、弾性材料を含む環状のタイヤ骨格体と、前述の本発明に係るタイヤ用樹脂金属複合部材と、を有する。
なお、タイヤ用樹脂金属複合部材は、例えばタイヤ骨格体の外周部に周方向に巻回される補強ベルト部材、ビード部材等として用いられる。
ここで、本発明のタイヤを構成するタイヤ骨格体について説明する。
<Tire>
The tire of the present invention includes an annular tire skeleton including an elastic material and the above-described resin-metal composite member for tire according to the present invention.
The resin-metal composite member for tire is used as a reinforcing belt member, a bead member, or the like that is wound around the outer peripheral portion of the tire frame body in the circumferential direction, for example.
Here, the tire skeleton constituting the tire of the present invention will be described.
〔タイヤ骨格体〕
タイヤ骨格体は、弾性材料で形成される。つまり、タイヤ骨格体としては、弾性材料としてのゴム材料で形成される態様(いわゆるゴムタイヤ用のタイヤ骨格体)、弾性材料として樹脂材料で形成される態様(いわゆる樹脂タイヤ用のタイヤ骨格体)等が挙げられる。
[Tire skeleton body]
The tire skeleton is formed of an elastic material. That is, as a tire skeleton body, an aspect formed with a rubber material as an elastic material (a so-called tire skeleton body for a rubber tire), an aspect formed with a resin material as an elastic material (a so-called tire skeleton body for a resin tire), etc. Is mentioned.
(弾性材料:ゴム材料)
ゴム材料は、ゴム(ゴム成分)を少なくとも含んでいればよく、本発明の効果を損なわない範囲で、添加剤等の他の成分を含んでもよい。ただし、前記ゴム材料中におけるゴム(ゴム成分)の含有量は、ゴム材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。タイヤ骨格体は、例えばゴム材料を用いて形成することができる。
(Elastic material: rubber material)
The rubber material should just contain rubber | gum (rubber component) at least, and may contain other components, such as an additive, in the range which does not impair the effect of this invention. However, the content of rubber (rubber component) in the rubber material is preferably 50% by mass or more, and more preferably 90% by mass or more based on the total amount of the rubber material. The tire frame body can be formed using, for example, a rubber material.
タイヤ骨格体に用いるゴム成分としては、特に限定はなく、従来より公知のゴム配合に使用される天然ゴム及び各種合成ゴムを、単独もしくは2種以上混合して用いることができる。例えば、下記に示す様なゴム、もしくはこれらの2種以上のゴムブレンドを使用することができる。
上記天然ゴムとしては、シートゴムでもブロックゴムでもよく、RSS#1〜#5の総てを用いることができる。
上記合成ゴムとしては、各種ジエン系合成ゴムやジエン系共重合体ゴム及び特殊ゴムや変性ゴム等を使用できる。具体的には、例えば、ポリブタジエン(BR)、ブタジエンと芳香族ビニル化合物との共重合体(例えばSBR、NBRなど)、ブタジエンと他のジエン系化合物との共重合体等のブタジエン系重合体;ポリイソプレン(IR)、イソプレンと芳香族ビニル化合物との共重合体、イソプレンと他のジエン系化合物との共重合体等のイソプレン系重合体;クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR);エチレン−プロピレン系共重合体ゴム(EPM)、エチレン−プロピレン−ジエン系共重合体ゴム(EPDM)及びこれらの任意のブレンド物等が挙げられる。
The rubber component used in the tire frame is not particularly limited, and natural rubber and various synthetic rubbers that are conventionally used for rubber blending can be used alone or in combination of two or more. For example, a rubber as shown below or a blend of two or more of these can be used.
The natural rubber may be a sheet rubber or a block rubber, and all of RSS # 1 to # 5 can be used.
As the synthetic rubber, various diene synthetic rubbers, diene copolymer rubbers, special rubbers, modified rubbers, and the like can be used. Specifically, for example, a butadiene polymer such as polybutadiene (BR), a copolymer of butadiene and an aromatic vinyl compound (eg, SBR, NBR, etc.), a copolymer of butadiene and another diene compound, and the like; Isoprene polymers such as polyisoprene (IR), copolymers of isoprene and aromatic vinyl compounds, copolymers of isoprene and other diene compounds; chloroprene rubber (CR), butyl rubber (IIR), halogenated Examples include butyl rubber (X-IIR); ethylene-propylene copolymer rubber (EPM), ethylene-propylene-diene copolymer rubber (EPDM), and any blend thereof.
また、タイヤ骨格体に用いるゴム材料は、目的に応じてゴムに添加物等の他の成分を加えてもよい。
添加物としては、例えば、カーボンブラック等の補強材、充填剤、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等が挙げられ、これらを適宜配合することができる。
Further, the rubber material used for the tire frame may be added with other components such as additives depending on the purpose.
Examples of additives include reinforcing materials such as carbon black, fillers, vulcanizing agents, vulcanization accelerators, fatty acids or salts thereof, metal oxides, process oils, anti-aging agents, and the like. can do.
ゴム材料で形成されるタイヤ骨格体は、含まれるゴムが未加硫の状態である未加硫のゴム材料をタイヤ骨格体の形状に成形し、加熱によってゴムを加硫することで得られる。 A tire skeleton formed of a rubber material is obtained by molding an unvulcanized rubber material in which the contained rubber is in an unvulcanized state into the shape of a tire skeleton and vulcanizing the rubber by heating.
(弾性材料:樹脂材料)
樹脂材料は、樹脂(樹脂成分)を少なくとも含んでいればよく、本発明の効果を損なわない範囲で、添加剤等の他の成分を含んでもよい。ただし、前記樹脂材料中における樹脂(樹脂成分)の含有量は、樹脂材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。タイヤ骨格体は、例えば樹脂材料を用いて形成することができる。
(Elastic material: resin material)
The resin material should just contain resin (resin component) at least, and may contain other components, such as an additive, in the range which does not impair the effect of this invention. However, the content of the resin (resin component) in the resin material is preferably 50% by mass or more, and more preferably 90% by mass or more based on the total amount of the resin material. The tire skeleton can be formed using, for example, a resin material.
タイヤ骨格体に含まれる樹脂としては、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂が挙げられる。走行時の乗り心地の観点から、樹脂材料は、熱可塑性エラストマーを含むことが好ましく、ポリアミド系熱可塑性エラストマーを含むことがより好ましい。 Examples of the resin contained in the tire skeleton include thermoplastic resins, thermoplastic elastomers, and thermosetting resins. From the viewpoint of ride comfort during traveling, the resin material preferably includes a thermoplastic elastomer, and more preferably includes a polyamide-based thermoplastic elastomer.
熱硬化性樹脂としては、例えば、フェノール系熱硬化性樹脂、ユリア系熱硬化性樹脂、メラミン系熱硬化性樹脂、エポキシ系熱硬化性樹脂等が挙げられる。
熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。これらは単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、及びオレフィン系熱可塑性樹脂から選ばれる少なくとも1種が好ましく、ポリアミド系熱可塑性樹脂及びオレフィン系熱可塑性樹脂から選ばれる少なくとも1種が更に好ましい。
Examples of the thermosetting resin include phenol-based thermosetting resins, urea-based thermosetting resins, melamine-based thermosetting resins, and epoxy-based thermosetting resins.
Examples of the thermoplastic resin include polyamide-based thermoplastic resins, polyester-based thermoplastic resins, olefin-based thermoplastic resins, polyurethane-based thermoplastic resins, vinyl chloride-based thermoplastic resins, polystyrene-based thermoplastic resins, and the like. You may use these individually or in combination of 2 or more types. Among these, the thermoplastic resin is preferably at least one selected from polyamide-based thermoplastic resins, polyester-based thermoplastic resins, and olefin-based thermoplastic resins, and is selected from polyamide-based thermoplastic resins and olefin-based thermoplastic resins. More preferably, at least one selected from the group consisting of
熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるポリアミド系熱可塑性エラストマー(TPA)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリウレタン系熱可塑性エラストマー(TPU)、オレフィン系熱可塑性エラストマー(TPO)、ポリエステル系熱可塑性エラストマー(TPEE)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。なお、走行時に必要とされる弾性、製造時の成形性等を考慮すると、タイヤ骨格体を形成する樹脂材料としては、熱可塑性樹脂を用いることが好ましく、熱可塑性エラストマーを用いることが更に好ましい。
なお、本発明では、樹脂金属複合部材に含まれる被覆樹脂層と同種の樹脂を用いること(例えば被覆樹脂層にポリエステル系の熱可塑性樹脂や熱可塑性エラストマーを含む場合、タイヤ骨格体にもポリエステル系の熱可塑性樹脂や熱可塑性エラストマーを用いること、被覆樹脂層にポリアミド系の熱可塑性樹脂や熱可塑性エラストマーを含む場合、タイヤ骨格体にもポリアミド系の熱可塑性樹脂や熱可塑性エラストマーを用いること)が、接着性の観点で好ましい。
Examples of the thermoplastic elastomer include a polyamide-based thermoplastic elastomer (TPA), a polystyrene-based thermoplastic elastomer (TPS), a polyurethane-based thermoplastic elastomer (TPU), an olefin-based thermoplastic elastomer (TPO) defined in JIS K6418, Examples thereof include polyester-based thermoplastic elastomer (TPEE), crosslinked thermoplastic rubber (TPV), and other thermoplastic elastomers (TPZ). In consideration of elasticity required during traveling, moldability during production, and the like, it is preferable to use a thermoplastic resin as the resin material forming the tire frame, and it is more preferable to use a thermoplastic elastomer.
In the present invention, the same type of resin as the coating resin layer contained in the resin-metal composite member is used (for example, when the coating resin layer contains a polyester-based thermoplastic resin or thermoplastic elastomer, the tire frame body also has a polyester-based resin. Use a thermoplastic resin or thermoplastic elastomer, and if the coating resin layer contains a polyamide-based thermoplastic resin or thermoplastic elastomer, use a polyamide-based thermoplastic resin or thermoplastic elastomer for the tire frame as well) From the viewpoint of adhesiveness.
−ポリアミド系熱可塑性エラストマー−
ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを形成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性の樹脂材料であって、ハードセグメントを形成するポリマーの主鎖にアミド結合(−CONH−)を有するものを意味する。
ポリアミド系熱可塑性エラストマーとしては、例えば、少なくともポリアミドが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル、ポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いて形成されてもよい。
ポリアミド系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004−346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
-Polyamide thermoplastic elastomer-
The polyamide-based thermoplastic elastomer is a thermoplastic resin material made of a copolymer having a crystalline polymer having a high melting point and a non-crystalline polymer having a low glass transition temperature. It means that having an amide bond (—CONH—) in the main chain of the polymer forming the hard segment.
As the polyamide-based thermoplastic elastomer, for example, at least a polyamide is a crystalline hard crystalline segment with a high melting point, and other polymers (for example, polyester, polyether, etc.) are amorphous and have a soft glass transition temperature low soft segment. The material which forms is mentioned. The polyamide-based thermoplastic elastomer may be formed using a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment.
Specific examples of the polyamide-based thermoplastic elastomer include an amide-based thermoplastic elastomer (TPA) defined in JIS K6418: 2007, a polyamide-based elastomer described in JP-A-2004-346273, and the like. it can.
ポリアミド系熱可塑性エラストマーにおいて、ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。 In the polyamide-based thermoplastic elastomer, examples of the polyamide that forms the hard segment include polyamides produced from monomers represented by the following general formula (1) or general formula (2).
一般式(1)
[一般式(1)中、R1は、炭素数2〜20の炭化水素の分子鎖(例えば炭素数2〜20のアルキレン基)を表す。]
General formula (1)
[In General Formula (1), R 1 represents a molecular chain of a hydrocarbon having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms). ]
一般式(2)
[一般式(2)中、R2は、炭素数3〜20の炭化水素の分子鎖(例えば炭素数3〜20のアルキレン基)を表す。]
General formula (2)
[In General Formula (2), R 2 represents a molecular chain of a hydrocarbon having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms). ]
一般式(1)中、R1としては、炭素数3〜18の炭化水素の分子鎖、例えば炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖、例えば炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖、例えば炭素数10〜15のアルキレン基が特に好ましい。
また、一般式(2)中、R2としては、炭素数3〜18の炭化水素の分子鎖、例えば炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖、例えば炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖、例えば炭素数10〜15のアルキレン基が特に好ましい。
一般式(1)又は一般式(2)で表されるモノマーとしては、ω−アミノカルボン酸又はラクタムが挙げられる。また、ハードセグメントを形成するポリアミドとしては、これらω−アミノカルボン酸又はラクタムの重縮合体、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
In general formula (1), R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms, such as an alkylene group having 3 to 18 carbon atoms, and a hydrocarbon molecular chain having 4 to 15 carbon atoms, such as carbon. An alkylene group having 4 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
In general formula (2), R 2 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms, such as an alkylene group having 3 to 18 carbon atoms, and a hydrocarbon molecular chain having 4 to 15 carbon atoms, For example, an alkylene group having 4 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
Examples of the monomer represented by the general formula (1) or the general formula (2) include ω-aminocarboxylic acid or lactam. Examples of the polyamide forming the hard segment include polycondensates of these ω-aminocarboxylic acids or lactams, and co-condensation polymers of diamines and dicarboxylic acids.
ω−アミノカルボン酸としては、6−アミノカプロン酸、7−アミノヘプタン酸、8−アミノオクタン酸、10−アミノカプリン酸、11−アミノウンデカン酸、12−アミノドデカン酸等の炭素数5〜20の脂肪族ω−アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε−カプロラクタム、ウデカンラクタム、ω−エナントラクタム、2−ピロリドン等の炭素数5〜20の脂肪族ラクタム等を挙げることができる。
ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、3−メチルペンタメチレンジアミン、メタキシレンジアミン等の炭素数2〜20の脂肪族ジアミン等のジアミン化合物を挙げることができる。
また、ジカルボン酸は、HOOC−(R3)m−COOH(R3:炭素数3〜20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2〜20の脂肪族ジカルボン酸を挙げることができる。
ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε−カプロラクタム、又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
The ω-aminocarboxylic acid has 6 to 20 carbon atoms such as 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like. Aliphatic omega-aminocarboxylic acid etc. can be mentioned. Moreover, as a lactam, C5-C20 aliphatic lactams, such as lauryl lactam, (epsilon) -caprolactam, udecan lactam, (omega) -enantolactam, 2-pyrrolidone, etc. can be mentioned.
Examples of the diamine include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, 2, 4 Examples include diamine compounds such as aliphatic diamines having 2 to 20 carbon atoms such as trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, and metaxylenediamine.
Further, dicarboxylic acids, HOOC- (R 3) m -COOH (R 3: the molecular chain of a hydrocarbon of 3 to 20 carbon atoms, m: 0 or 1) can be represented by, for example, oxalic acid, succinic acid And aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid.
As the polyamide that forms the hard segment, polyamide obtained by ring-opening polycondensation of lauryl lactam, ε-caprolactam, or udecan lactam can be preferably used.
また、ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテル等が挙げられ、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。また、ポリエーテルの末端にアンモニア等を反応させることによって得られるポリエーテルジアミン等も用いることができる。
ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
Moreover, as a polymer which forms a soft segment, polyester, polyether, etc. are mentioned, for example, Polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, ABA type | mold triblock polyether etc. are mentioned specifically ,. These can be used alone or in combination of two or more. Moreover, polyether diamine etc. which are obtained by making ammonia etc. react with the terminal of polyether can also be used.
Here, the “ABA type triblock polyether” means a polyether represented by the following general formula (3).
一般式(3)
[一般式(3)中、x及びzは、1〜20の整数を表す。yは、4〜50の整数を表す。]
General formula (3)
[In general formula (3), x and z represent the integer of 1-20. y represents an integer of 4 to 50. ]
一般式(3)において、x及びzは、それぞれ、1〜18の整数が好ましく、1〜16の整数がより好ましく、1〜14の整数が更に好ましく、1〜12の整数が特に好ましい。また、一般式(3)において、yは、5〜45の整数が好ましく、6〜40の整数がより好ましく、7〜35の整数が更に好ましく、8〜30の整数が特に好ましい。 In the general formula (3), each of x and z is preferably an integer of 1 to 18, more preferably an integer of 1 to 16, still more preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12. In general formula (3), y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, still more preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、又はラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せがより好ましい。 As a combination of a hard segment and a soft segment, each combination of the hard segment and the soft segment mentioned above can be mentioned. Among these, combinations of hard segment and soft segment include lauryl lactam ring-opening polycondensate / polyethylene glycol combination, lauryl lactam ring-opening polycondensate / polypropylene glycol combination, and lauryl lactam ring-opening polycondensation. Preferred is a combination of isomers / polytetramethylene ether glycol, or a ring-opening polycondensate of lauryl lactam / ABA type triblock polyether, and a combination of ring-opening polycondensate of lauryl lactam / ABA type triblock polyether is more preferable. preferable.
ハードセグメントを形成するポリマー(ポリアミド)の数平均分子量は、溶融成形性の観点から、300〜15000が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200〜6000が好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50〜90:10が好ましく、50:50〜80:20がより好ましい。 The number average molecular weight of the polymer (polyamide) forming the hard segment is preferably 300 to 15000 from the viewpoint of melt moldability. Moreover, as a number average molecular weight of the polymer which forms a soft segment, 200-6000 are preferable from a viewpoint of toughness and low temperature flexibility. Furthermore, the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 50:50 to 90:10, more preferably 50:50 to 80:20, from the viewpoint of moldability. .
ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。 The polyamide-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
ポリアミド系熱可塑性エラストマーの市販品としては、例えば、宇部興産(株)の「UBESTA XPA」シリーズ(例えば、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2XPA9044等)、ダイセル・エポニック(株)の「ベスタミド」シリーズ(例えば、E40−S3、E47−S1、E47−S3、E55−S1、E55−S3、EX9200、E50−R2等)等を用いることができる。 Examples of commercially available products of polyamide-based thermoplastic elastomer include UBE Kosan's “UBESTA XPA” series (for example, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044, etc.) and “Vestamide” of Daicel Eponic Corporation. ”Series (for example, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) and the like can be used.
ポリアミド系熱可塑性エラストマーは、弾性率(柔軟性)、強度等の観点からタイヤ骨格体として要求される性能を満たすため、樹脂材料として好適である。また、ポリアミド系熱可塑性エラストマーは、熱可塑性樹脂や熱可塑性エラストマーとの接着性も良好であることが多い。 The polyamide-based thermoplastic elastomer is suitable as a resin material because it satisfies the performance required as a tire frame from the viewpoint of elastic modulus (flexibility), strength, and the like. In addition, polyamide-based thermoplastic elastomers often have good adhesion to thermoplastic resins and thermoplastic elastomers.
−ポリスチレン系熱可塑性エラストマー
ポリスチレン系熱可塑性エラストマーとしては、例えば、少なくともポリスチレンがハードセグメントを形成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法等で得られるものが好ましく用いられ、具体的には、アニオンリビング重合を持つポリスチレンが挙げられる。また、ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3−ジメチル−ブタジエン)等が挙げられる。
-Polystyrene thermoplastic elastomer As the polystyrene thermoplastic elastomer, for example, at least polystyrene forms a hard segment, and other polymers (for example, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, etc.) are not. Examples thereof include materials that form a soft segment having a crystallinity and a low glass transition temperature. As the polystyrene forming the hard segment, for example, those obtained by a known radical polymerization method, ionic polymerization method and the like are preferably used, and specifically, polystyrene having anion living polymerization can be mentioned. Examples of the polymer that forms the soft segment include polybutadiene, polyisoprene, and poly (2,3-dimethyl-butadiene).
ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ポリスチレン/ポリブタジエンの組合せ、又はポリスチレン/ポリイソプレンの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。 As a combination of a hard segment and a soft segment, each combination of the hard segment and the soft segment mentioned above can be mentioned. Among these, the combination of the hard segment and the soft segment is preferably a combination of polystyrene / polybutadiene or a combination of polystyrene / polyisoprene. Moreover, in order to suppress the unintended cross-linking reaction of the thermoplastic elastomer, the soft segment is preferably hydrogenated.
ハードセグメントを形成するポリマー(ポリスチレン)の数平均分子量は、5000〜500000が好ましく、10000〜200000がより好ましい。
また、ソフトセグメントを形成するポリマーの数平均分子量としては、5000〜1000000が好ましく、10000〜800000がより好ましく、30000〜500000が更に好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との体積比(x:y)は、成形性の観点から、5:95〜80:20が好ましく、10:90〜70:30がより好ましい。
The number average molecular weight of the polymer (polystyrene) forming the hard segment is preferably 5,000 to 500,000, and more preferably 10,000 to 200,000.
Moreover, as a number average molecular weight of the polymer which forms a soft segment, 5000-1 million are preferable, 10000-800000 are more preferable, and 30000-500000 are still more preferable. Furthermore, the volume ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 5:95 to 80:20 and more preferably 10:90 to 70:30 from the viewpoint of moldability. .
ポリスチレン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
ポリスチレン系熱可塑性エラストマーとしては、例えば、スチレン−ブタジエン系共重合体[SBS(ポリスチレン−ポリ(ブチレン)ブロック−ポリスチレン)、SEBS(ポリスチレン−ポリ(エチレン/ブチレン)ブロック−ポリスチレン)]、スチレン−イソプレン共重合体(ポリスチレン−ポリイソプレンブロック−ポリスチレン)、スチレン−プロピレン系共重合体[SEP(ポリスチレン−(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン−ポリ(エチレン/プロピレン)ブロック−ポリスチレン)、SEEPS(ポリスチレン−ポリ(エチレン−エチレン/プロピレン)ブロック−ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)]等が挙げられる。
The polystyrene-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
Examples of the polystyrene-based thermoplastic elastomer include styrene-butadiene copolymer [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene-isoprene. Copolymer (polystyrene-polyisoprene block-polystyrene), styrene-propylene copolymer [SEP (polystyrene- (ethylene / propylene) block), SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), SEPS ( Polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene), SEB (polystyrene (ethylene / butylene) block)] and the like.
ポリスチレン系熱可塑性エラストマーの市販品としては、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、H1062、H1082、H1141、H1221、H1272等)、(株)クラレ製の「SEBS」シリーズ(8007、8076等)、「SEPS」シリーズ(2002、2063等)等を用いることができる。 As a commercially available product of polystyrene-based thermoplastic elastomer, for example, “Tough Tech” series (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.) manufactured by Asahi Kasei Corporation, “SEBS” series (8007, 8076, etc.) and “SEPS” series (2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.
−ポリウレタン系熱可塑性エラストマー−
ポリウレタン系熱可塑性エラストマーとしては、例えば、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを形成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
ポリウレタン系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるポリウレタン系熱可塑性エラストマー(TPU)が挙げられる。ポリウレタン系熱可塑性エラストマーは、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
-Polyurethane thermoplastic elastomer-
As polyurethane-based thermoplastic elastomers, for example, at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical aggregation, and other polymers form a soft segment with a low glass transition temperature that is amorphous. Material.
Specific examples of the polyurethane-based thermoplastic elastomer include a polyurethane-based thermoplastic elastomer (TPU) defined in JIS K6418: 2007. The polyurethane-based thermoplastic elastomer can be represented as a copolymer including a soft segment including a unit structure represented by the following formula A and a hard segment including a unit structure represented by the following formula B.
[式中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。]
[Wherein P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester. R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon. P ′ represents a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon. ]
式A中、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルとしては、例えば、分子量500〜5000のものを使用することができる。Pは、Pで表される長鎖脂肪族ポリエーテル及び長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジベート)ジオール、ポリ−ε−カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、ABA型トリブロックポリエーテル等が挙げられる。
これらは、単独で又は2種以上を組み合わせて用いることができる。
In the formula A, as the long-chain aliphatic polyether or long-chain aliphatic polyester represented by P, for example, those having a molecular weight of 500 to 5000 can be used. P is derived from a diol compound containing a long-chain aliphatic polyether represented by P and a long-chain aliphatic polyester. Examples of such a diol compound include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene abido) diol, poly-ε-caprolactone diol, poly (hexamethylene carbonate) having a molecular weight within the above range. ) Diol, ABA type triblock polyether and the like.
These can be used alone or in combination of two or more.
式A及び式B中、Rは、Rで表される脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジイソシアネート化合物を用いて導入された部分構造である。Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2−エチレンジイソシアネート、1,3−プロピレンジイソシアネート、1,4−ブタンジイソシアネート、1,6−ヘキサメチレンジイソシアネート等が挙げられる。
また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4−シクロヘキサンジイソシアネート、4,4−シクロヘキサンジイソシアネート等が挙げられる。さらに、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては、例えば、4,4’−ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。
これらは、単独で又は2種以上を組み合わせて用いることができる。
In Formula A and Formula B, R is a partial structure introduced using a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R. Examples of the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate, 1,6-hexamethylene diisocyanate, and the like. Can be mentioned.
Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate. Furthermore, examples of the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate.
These can be used alone or in combination of two or more.
式B中、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、P’は、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジオール化合物に由来する。P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、例えば、グリコール及びポリアルキレングリコールが挙げられ、具体的には、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール等が挙げられる。
また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,3−ジオール、シクロヘキサン−1,4−ジオール、シクロヘキサン−1,4−ジメタノール等が挙げられる。
さらに、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルサルファイド、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシベンゾフェノン、4,4’−ジヒドロキシジフェニルメタン、ビスフェノールA、1,1−ジ(4−ヒドロキシフェニル)シクロヘキサン、1,2−ビス(4−ヒドロキシフェノキシ)エタン、1,4−ジヒドロキシナフタリン、2,6−ジヒドロキシナフタリン等が挙げられる。
これらは、単独で又は2種以上を組み合わせて用いることができる。
In the formula B, as the short chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′, for example, those having a molecular weight of less than 500 can be used. P ′ is derived from a diol compound containing a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′. Examples of the aliphatic diol compound containing a short-chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol. Specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1, 4 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10- A decanediol etc. are mentioned.
Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Examples include cyclohexane-1,4-diol and cyclohexane-1,4-dimethanol.
Furthermore, examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxybenzophenone, 4,4′-dihydroxydiphenylmethane, bisphenol A, 1, Examples include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene, 2,6-dihydroxynaphthalene and the like.
These can be used alone or in combination of two or more.
ハードセグメントを形成するポリマー(ポリウレタン)の数平均分子量は、溶融成形性の観点から、300〜1500が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500〜20000が好ましく、500〜5000が更に好ましく、500〜3000が特に好ましい。また、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、15:85〜90:10が好ましく、30:70〜90:10が更に好ましい。 The number average molecular weight of the polymer (polyurethane) forming the hard segment is preferably 300 to 1500 from the viewpoint of melt moldability. Further, the number average molecular weight of the polymer forming the soft segment is preferably 500 to 20000, more preferably 500 to 5000, and particularly preferably 500 to 3000 from the viewpoints of flexibility and thermal stability of the polyurethane-based thermoplastic elastomer. . Further, the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 15:85 to 90:10, more preferably 30:70 to 90:10, from the viewpoint of moldability. .
ポリウレタン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5−331256号公報に記載の熱可塑性ポリウレタンを用いることができる。
ポリウレタン系熱可塑性エラストマーとしては、具体的には、芳香族ジオールと芳香族ジイソシアネートとからなるハードセグメントと、ポリ炭酸エステルからなるソフトセグメントとの組合せが好ましく、より具体的には、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’−ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体から選ばれる少なくとも1種が好ましく、TDI/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、MDI/ポリエステルポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体から選ばれる少なくとも1種が更に好ましい。
The polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method. As the polyurethane-based thermoplastic elastomer, for example, thermoplastic polyurethane described in JP-A-5-331256 can be used.
As the polyurethane-based thermoplastic elastomer, specifically, a combination of a hard segment composed of an aromatic diol and an aromatic diisocyanate and a soft segment composed of a polycarbonate is preferable. More specifically, tolylene diisocyanate ( TDI) / polyester-based polyol copolymer, TDI / polyether-based polyol copolymer, TDI / caprolactone-based polyol copolymer, TDI / polycarbonate-based polyol copolymer, 4,4′-diphenylmethane diisocyanate (MDI) / polyester -Based polyol copolymer, MDI / polyether-based polyol copolymer, MDI / caprolactone-based polyol copolymer, MDI / polycarbonate-based polyol copolymer, and MDI + hydroquinone / polyhexamethylene At least one selected from carbonate copolymers is preferable, TDI / polyester polyol copolymer, TDI / polyether polyol copolymer, MDI / polyester polyol copolymer, MDI / polyether polyol copolymer, And at least one selected from MDI + hydroquinone / polyhexamethylene carbonate copolymer is more preferable.
また、ポリウレタン系熱可塑性エラストマーの市販品としては、例えば、BASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、(株)クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台等)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN−2001、XN−2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890等)等を用いることができる。 Examples of commercially available polyurethane-based thermoplastic elastomers include, for example, “Elastollan” series (for example, ET680, ET880, ET690, ET890, etc.) manufactured by BASF, and “Clamiron U” series (for example, Kuraray Co., Ltd.) 2000 series, 3000 series, 8000 series, 9000 series, etc.) "Milactolan" series (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890, etc.) manufactured by Japan Miraclan Co., Ltd. Etc. can be used.
−オレフィン系熱可塑性エラストマー−
オレフィン系熱可塑性エラストマーとしては、例えば、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリオレフィン、他のポリオレフィン、ポリビニル化合物等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
オレフィン系熱可塑性エラストマーとしては、例えば、オレフィン−α−オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられ、具体的には、プロピレンブロック共重合体、エチレン−プロピレン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−4−メチル−1ペンテン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−ペンテン共重合体、エチレン−1−ブテン共重合体、1−ブテン−1−ヘキセン共重合体、1−ブテン−4−メチル−ペンテン、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、プロピレン−メタクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−メタクリル酸エチル共重合体、プロピレン−メタクリル酸ブチル共重合体、プロピレン−メチルアクリレート共重合体、プロピレン−エチルアクリレート共重合体、プロピレン−ブチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、プロピレン−酢酸ビニル共重合体等が挙げられる。
-Olefin thermoplastic elastomer-
As the olefin-based thermoplastic elastomer, for example, at least a polyolefin forms a hard segment with a crystalline and high melting point, and other polymers (for example, polyolefin, other polyolefins, polyvinyl compounds, etc.) are amorphous and have a glass transition temperature. Examples include materials that form low soft segments. Examples of the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, polybutene, and the like.
Examples of the olefinic thermoplastic elastomer include olefin-α-olefin random copolymers, olefin block copolymers, and the like. Specifically, propylene block copolymers, ethylene-propylene copolymers, propylene- 1-hexene copolymer, propylene-4-methyl-1-pentene copolymer, propylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene- 1-butene copolymer, 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate Copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer Ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer, propylene-methyl methacrylate copolymer, propylene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer , Propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer, ethylene-vinyl acetate copolymer, propylene-vinyl acetate copolymer, and the like.
これらの中でも、オレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン−プロピレン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−4−メチル−1ペンテン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−ペンテン共重合体、エチレン−1−ブテン共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、プロピレン−メタクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−メタクリル酸エチル共重合体、プロピレン−メタクリル酸ブチル共重合体、プロピレン−メチルアクリレート共重合体、プロピレン−エチルアクリレート共重合体、プロピレン−ブチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、及びプロピレン−酢酸ビニル共重合体から選ばれる少なくとも1種が好ましく、エチレン−プロピレン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ブテン共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、及びエチレン−ブチルアクリレート共重合体から選ばれる少なくとも1種が更に好ましい。
また、エチレンとプロピレンといったように2種以上のオレフィン樹脂を組み合わせて用いてもよい。また、オレフィン系熱可塑性エラストマー中のオレフィン樹脂含有率は、50質量%以上100質量%以下が好ましい。
Among these, as the olefinic thermoplastic elastomer, propylene block copolymer, ethylene-propylene copolymer, propylene-1-hexene copolymer, propylene-4-methyl-1-pentene copolymer, propylene-1- Butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer , Propylene-methyl methacrylate copolymer, pro Lene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer, propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer, ethylene-vinyl acetate copolymer, And at least one selected from propylene-vinyl acetate copolymer, ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-methyl methacrylate copolymer More preferred is at least one selected from ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-butyl acrylate copolymer.
Further, two or more olefin resins such as ethylene and propylene may be used in combination. Moreover, 50 mass% or more and 100 mass% or less of the olefin resin content rate in an olefin type thermoplastic elastomer are preferable.
オレフィン系熱可塑性エラストマーの数平均分子量は、5000〜10000000であることが好ましい。オレフィン系熱可塑性エラストマーの数平均分子量が5000〜10000000であると、熱可塑性樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、オレフィン系熱可塑性エラストマーの数平均分子量は、7000〜1000000であることが更に好ましく、10000〜1000000が特に好ましい。これにより、熱可塑性樹脂材料の機械的物性及び加工性を更に向上させることができる。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200〜6000が好ましい。更に、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50〜95:15が好ましく、50:50〜90:10が更に好ましい。
オレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。
The number average molecular weight of the olefinic thermoplastic elastomer is preferably 5,000 to 10,000,000. When the number average molecular weight of the olefinic thermoplastic elastomer is 5,000 to 10,000,000, the mechanical properties of the thermoplastic resin material are sufficient and the processability is also excellent. From the same viewpoint, the number average molecular weight of the olefinic thermoplastic elastomer is more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 1,000,000. Thereby, the mechanical properties and processability of the thermoplastic resin material can be further improved. Moreover, as a number average molecular weight of the polymer which forms a soft segment, 200-6000 are preferable from a viewpoint of toughness and low temperature flexibility. Furthermore, the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 50:50 to 95:15, and more preferably 50:50 to 90:10, from the viewpoint of moldability. .
The olefinic thermoplastic elastomer can be synthesized by copolymerization by a known method.
また、オレフィン系熱可塑性エラストマーとしては、熱可塑性エラストマーを酸変性してなるものを用いてもよい。
「オレフィン系熱可塑性エラストマーを酸変性してなるもの」とは、オレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることをいう。
オレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることとしては、例えば、オレフィン系熱可塑性エラストマーに、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
酸性基を有する不飽和化合物としては、オレフィン系熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する不飽和化合物が好ましく、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
Further, as the olefinic thermoplastic elastomer, one obtained by acid-modifying a thermoplastic elastomer may be used.
“A product obtained by acid-modifying an olefinic thermoplastic elastomer” means that an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group is bonded to the olefinic thermoplastic elastomer.
Examples of bonding an unsaturated compound having an acidic group such as a carboxylic acid group, sulfuric acid group or phosphoric acid group to an olefinic thermoplastic elastomer include, for example, an unsaturated compound having an acidic group to an olefinic thermoplastic elastomer, Examples include bonding (for example, graft polymerization) an unsaturated bond site of an unsaturated carboxylic acid (generally maleic anhydride).
The unsaturated compound having an acidic group is preferably an unsaturated compound having a carboxylic acid group which is a weak acid group from the viewpoint of suppressing deterioration of the olefin-based thermoplastic elastomer. For example, acrylic acid, methacrylic acid, itaconic acid, croton Examples include acids, isocrotonic acid, maleic acid and the like.
オレフィン系熱可塑性エラストマーの市販品としては、例えば、三井化学(株)製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S、A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM−7070、XM−7080、BL4000、BL2481、BL3110、BL3450、P−0275、P−0375、P−0775、P−0180、P−0280、P−0480、P−0680等)、三井・デュポンポリケミカル(株)製の「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1050H、N1108C、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C)等、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC等)、住友化学(株)の「アクリフト」シリーズ、「エバテート」シリーズ等、東ソー(株)製の「ウルトラセン」シリーズ等、プライムポリマー製の「プライムTPO」シリーズ(例えば、E−2900H、F−3900H、E−2900、F−3900、J−5900、E−2910、F−3910、J−5910、E−2710、F−3710、J−5910、E−2740、F−3740、R110MP、R110E、T310E、M142E等)等も用いることができる。 Examples of commercially available olefin-based thermoplastic elastomers include “Tuffmer” series (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010, manufactured by Mitsui Chemicals, Inc. XM-7070, XM-7080, BL4000, BL2481, BL3110, BL3450, P-0275, P-0375, P-0775, P-0180, P-0280, P-0480, P-0680, etc.), Mitsui DuPont “Nucleel” series (for example, AN4214C, AN4225C, AN42115C, N0903HC, N0908C, AN42012C, N410, N1050H, N1108C manufactured by Polychemical Co., Ltd. N1110H, N1207C, N1214, AN4221C, N1525, N1560, N0200H, AN4228C, AN4213C, N035C, etc. "Elvalloy AC" series (for example, 1125AC, 1209AC, 1218AC, 1609AC, 1820AC, 1913AC, 2112AC, 2116AC, 2615AC, 2715AC, etc. 3117AC, 3427AC, 3717AC, etc.), Sumitomo Chemical Co., Ltd.'s "Acryt" series, "Evaate" series, etc., Tosoh Corporation's "Ultrasen" series, etc., "Prime TPO" series made by prime polymers (for example, E-2900H, F-3900H, E-2900, F-3900, J-5900, E-2910, F-3910, J-5910, E-2710, F- 710, J-5910, E-2740, F-3740, R110MP, R110E, can be used T310E, also M142E, etc.) and the like.
−ポリエステル系熱可塑性エラストマー−
ポリエステル系熱可塑性エラストマーとしては、例えば、少なくともポリエステルが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
-Polyester thermoplastic elastomer-
As the polyester-based thermoplastic elastomer, for example, at least a polyester is crystalline and a hard segment having a high melting point is formed, and another polymer (eg, polyester or polyether) is amorphous and has a low glass transition temperature. The material which forms is mentioned.
ハードセグメントを形成するポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。芳香族ポリエステルは、好ましくは、テレフタル酸及びジメチルテレフタレートの少なくとも1種と、1,4−ブタンジオールと、から誘導されるポリブチレンテレフタレートである。また、芳香族ポリエステルは、例えば、イソフタル酸、フタル酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、ジフェニル−4,4’−ジカルボン酸、ジフェノキシエタンジカルボン酸、5−スルホイソフタル酸、若しくはこれらのエステル形成性誘導体等のジカルボン酸成分と、分子量300以下のジオール(例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコール等の脂肪族ジオール;1,4−シクロヘキサンジメタノール、トリシクロデカンジメチロール等の脂環式ジオール;キシリレングリコール、ビス(p−ヒドロキシ)ジフェニル、ビス(p−ヒドロキシフェニル)プロパン、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン、ビス[4−(2−ヒドロキシ)フェニル]スルホン、1,1−ビス[4−(2−ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’−ジヒドロキシ−p−ターフェニル、4,4’−ジヒドロキシ−p−クオーターフェニル等の芳香族ジオール;等)と、から誘導されるポリエステル、又はこれらのジカルボン酸成分及びジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分、多官能ヒドロキシ成分等を5モル%以下の範囲で共重合することも可能である。
ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
An aromatic polyester can be used as the polyester forming the hard segment. The aromatic polyester can be formed, for example, from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol. The aromatic polyester is preferably polybutylene terephthalate derived from at least one of terephthalic acid and dimethyl terephthalate and 1,4-butanediol. The aromatic polyester may be, for example, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5 -Dicarboxylic acid components such as sulfoisophthalic acid or their ester-forming derivatives and diols having a molecular weight of 300 or less (for example, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc. Aliphatic diols such as 1,4-cyclohexanedimethanol, tricyclodecane dimethylol and the like; xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2- Bi [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4′- Aromatic diols such as dihydroxy-p-terphenyl and 4,4′-dihydroxy-p-quarterphenyl; etc.) and polyesters derived from these, or a co-combination of two or more of these dicarboxylic acid components and diol components Polymerized polyester may also be used. It is also possible to copolymerize a trifunctional or higher polyfunctional carboxylic acid component, polyfunctional oxyacid component, polyfunctional hydroxy component and the like in a range of 5 mol% or less.
Examples of the polyester forming the hard segment include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like, and polybutylene terephthalate is preferable.
また、ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル、脂肪族ポリエーテル等が挙げられる。
脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランとの共重合体等が挙げられる。
脂肪族ポリエステルとしては、ポリ(ε−カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。
これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られるポリエステルブロック共重合体の弾性特性の観点から、ソフトセグメントを形成するポリマーとしては、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε−カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペート等が好ましい。
Moreover, as a polymer which forms a soft segment, aliphatic polyester, aliphatic polyether, etc. are mentioned, for example.
Aliphatic polyethers include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, copolymers of ethylene oxide and propylene oxide, poly (propylene oxide) And ethylene oxide addition polymer of glycol, and a copolymer of ethylene oxide and tetrahydrofuran.
Examples of the aliphatic polyester include poly (ε-caprolactone), polyenantlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate.
Among these aliphatic polyethers and aliphatic polyesters, poly (tetramethylene oxide) glycol, poly (propylene oxide) glycol are polymers that form soft segments from the viewpoint of the elastic properties of the resulting polyester block copolymer. Preferred are ethylene oxide adducts, poly (ε-caprolactone), polybutylene adipate, polyethylene adipate, and the like.
また、ソフトセグメントを形成するポリマーの数平均分子量は、強靱性及び低温柔軟性の観点から、300〜6000が好ましい。さらに、ハードセグメント(x)とソフトセグメント(y)との質量比(x:y)は、成形性の観点から、99:1〜20:80が好ましく、98:2〜30:70が更に好ましい。 The number average molecular weight of the polymer forming the soft segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility. Furthermore, the mass ratio (x: y) between the hard segment (x) and the soft segment (y) is preferably 99: 1 to 20:80, more preferably 98: 2 to 30:70, from the viewpoint of moldability. .
上述のハードセグメントとソフトセグメントとの組合せとしては、例えば、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、上述のハードセグメントとソフトセグメントとの組合せとしては、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントが脂肪族ポリエーテルである組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントがポリ(エチレンオキシド)グリコールである組み合わせが更に好ましい。 As a combination of the above-mentioned hard segment and a soft segment, each combination of the above-mentioned hard segment and a soft segment can be mentioned, for example. Among these, the combination of the hard segment and the soft segment described above is preferably a combination in which the hard segment is polybutylene terephthalate, the soft segment is an aliphatic polyether, and the hard segment is polybutylene terephthalate. More preferred is a combination wherein is poly (ethylene oxide) glycol.
ポリエステル系熱可塑性エラストマーの市販品としては、例えば、東レ・デュポン(株)製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047、4767等)、東洋紡(株)製の「ペルプレン」シリーズ(例えば、P30B、P40B、P40H、P55B、P70B、P150B、P280B、P450B、P150M、S1001、S2001、S5001、S6001、S9001等)等を用いることができる。 Examples of commercially available polyester-based thermoplastic elastomers include “Hytrel” series (for example, 3046, 5557, 6347, 4047, 4767, etc.) manufactured by Toray DuPont Co., Ltd., and “Perprene” series manufactured by Toyobo Co., Ltd. (For example, P30B, P40B, P40H, P55B, P70B, P150B, P280B, P450B, P150M, S1001, S2001, S5001, S6001, S9001, etc.) can be used.
ポリエステル系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。 The polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
−他の成分−
弾性材料(ゴム材料又は樹脂材料)は、所望に応じて、ゴム又は樹脂以外の他の成分を含んでもよい。他の成分としては、例えば、樹脂、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等が挙げられる。
-Other ingredients-
The elastic material (rubber material or resin material) may contain other components than rubber or resin as desired. Examples of other components include resins, rubbers, various fillers (for example, silica, calcium carbonate, clay), anti-aging agents, oils, plasticizers, colorants, weathering agents, reinforcing materials, and the like.
−弾性材料の物性−
弾性材料として樹脂材料を用いる場合(つまり樹脂タイヤ用のタイヤ骨格体の場合)、樹脂材料に含まれる樹脂の融点は、例えば100℃〜350℃程度が挙げられ、タイヤの耐久性及び生産性の観点から、100℃〜250℃程度が好ましく、120℃〜250℃が更に好ましい。
-Physical properties of elastic materials-
When a resin material is used as the elastic material (that is, in the case of a tire skeleton for a resin tire), the melting point of the resin contained in the resin material is, for example, about 100 ° C. to 350 ° C., and the durability and productivity of the tire are increased. From the viewpoint, about 100 ° C to 250 ° C is preferable, and 120 ° C to 250 ° C is more preferable.
弾性材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張弾性率は、50MPa〜1000MPaが好ましく、50MPa〜800MPaが更に好ましく、50MPa〜700MPaが特に好ましい。弾性材料の引張弾性率が、50MPa〜1000MPaであると、タイヤ骨格の形状を保持しつつ、リム組みを効率的に行なうことができる。 The tensile modulus of elasticity defined in JIS K7113: 1995 of the elastic material (tire frame) itself is preferably 50 MPa to 1000 MPa, more preferably 50 MPa to 800 MPa, and particularly preferably 50 MPa to 700 MPa. When the elastic modulus of the elastic material is 50 MPa to 1000 MPa, the rim can be assembled efficiently while maintaining the shape of the tire frame.
弾性材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張強さは、通常、15MPa〜70MPa程度であり、17MPa〜60MPaが好ましく、20MPa〜55MPaが更に好ましい。 The tensile strength defined in JIS K7113 (1995) of the elastic material (tire frame) itself is usually about 15 MPa to 70 MPa, preferably 17 MPa to 60 MPa, and more preferably 20 MPa to 55 MPa.
弾性材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張降伏強さは、5MPa以上が好ましく、5MPa〜20MPaが更に好ましく、5MPa〜17MPaが特に好ましい。弾性材料の引張降伏強さが、5MPa以上であると、走行時等にタイヤにかかる荷重に対する変形に耐えることができる。 The tensile yield strength specified in JIS K7113 (1995) of the elastic material (tire frame) itself is preferably 5 MPa or more, more preferably 5 MPa to 20 MPa, and particularly preferably 5 MPa to 17 MPa. When the tensile yield strength of the elastic material is 5 MPa or more, the elastic material can withstand deformation against a load applied to the tire during traveling.
弾性材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張降伏伸びは、10%以上が好ましく、10%〜70%が更に好ましく、15%〜60%が特に好ましい。弾性材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性を良好にすることができる。 The tensile yield elongation of the elastic material (tire frame) itself as defined in JIS K7113 (1995) is preferably 10% or more, more preferably 10% to 70%, and particularly preferably 15% to 60%. When the tensile yield elongation of the elastic material is 10% or more, the elastic region is large and the rim assembly property can be improved.
弾性材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張破断伸びは、50%以上が好ましく、100%以上が更に好ましく、150%以上が特に好ましく、200%以上が最も好ましい。弾性材料の引張破断伸びが、50%以上であると、リム組み性が良好であり、衝突に対して破壊し難くすることができる。 The tensile elongation at break specified by JIS K7113 (1995) of the elastic material (tire frame) itself is preferably 50% or more, more preferably 100% or more, particularly preferably 150% or more, and most preferably 200% or more. When the tensile breaking elongation of the elastic material is 50% or more, the rim assembly property is good, and it is possible to make it difficult to break against a collision.
弾性材料(タイヤ骨格体)自体のISO 75−2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)は、50℃以上が好ましく、50℃〜150℃が更に好ましく、50℃〜130℃が特に好ましい。弾性材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制するこができる。 The deflection temperature under load (0.45 MPa load) specified in ISO 75-2 or ASTM D648 of the elastic material (tire frame) itself is preferably 50 ° C or higher, more preferably 50 ° C to 150 ° C, and more preferably 50 ° C to 50 ° C. 130 ° C. is particularly preferred. If the deflection temperature under load of the elastic material is 50 ° C. or higher, deformation of the tire frame can be suppressed even when vulcanization is performed in the manufacture of the tire.
<タイヤの構造>
以下、図面に従って、本発明の実施形態に係るタイヤについて説明する。
<Tire structure>
Hereinafter, tires according to embodiments of the present invention will be described with reference to the drawings.
なお、以下に示す各図(図1A、図1B、図2、及び図3)は、模式的に示した図であり、各部の大きさ及び形状は、理解を容易にするために、適宜誇張して示している。また、以下の実施形態では樹脂金属複合部材をベルト部に適用しているが、ベルト部に加えてビード部等のその他の部位に樹脂金属複合部材を適用してもよい。 In addition, each figure (FIG. 1A, FIG. 1B, FIG. 2, and FIG. 3) shown below is the figure shown typically, and the magnitude | size and shape of each part are exaggerated suitably for easy understanding. As shown. In the following embodiments, the resin-metal composite member is applied to the belt portion, but the resin-metal composite member may be applied to other parts such as a bead portion in addition to the belt portion.
(第一の実施形態)
まず、図1A及び図1Bを参照しながら、本発明の第一の実施形態に係るタイヤ10について説明する。
図1Aは、第一の実施形態に係るタイヤの一部の断面を示す斜視図である。図1Bは、リムに装着したビード部の断面図である。図1Aに示すように、第一の実施形態に係るタイヤ10は、従来の一般的なゴム製の空気入りタイヤと略同様の断面形状を呈している。
(First embodiment)
First, a tire 10 according to a first embodiment of the present invention will be described with reference to FIGS. 1A and 1B.
FIG. 1A is a perspective view showing a cross section of a part of the tire according to the first embodiment. FIG. 1B is a cross-sectional view of a bead portion attached to a rim. As shown in FIG. 1A, a tire 10 according to the first embodiment has a cross-sectional shape substantially similar to that of a conventional general rubber pneumatic tire.
タイヤ10は、リム20のビードシート21とリムフランジ22とに接触する1対のビード部12と、ビード部12からタイヤ径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部(外周部)16と、からなるタイヤ骨格体17を備えている。タイヤ骨格体17は、樹脂材料(例えば、ポリアミド系熱可塑性エラストマー)を用いて形成されている。ただし、ゴム材料を用いて形成することもできる。 The tire 10 includes a pair of bead portions 12 that contact the bead seat 21 and the rim flange 22 of the rim 20, a side portion 14 that extends outward in the tire radial direction from the bead portion 12, and a tire radial direction of one side portion 14. A tire frame body 17 including a crown portion (outer peripheral portion) 16 that connects an outer end and an outer end in the tire radial direction of the other side portion 14 is provided. The tire skeleton 17 is formed using a resin material (for example, a polyamide-based thermoplastic elastomer). However, it can also be formed using a rubber material.
タイヤ骨格体17は、一つのビード部12と一つのサイド部14と半幅のクラウン部16とを一体として射出成形された同一形状の円環状のタイヤ骨格体半体(タイヤ骨格片)17Aを互いに向かい合わせ、タイヤ赤道面部分で接合することにより形成されている。 The tire frame body 17 includes an annular tire frame half body (tire frame piece) 17A having the same shape, which is injection-molded by integrating one bead portion 12, one side portion 14, and a half-width crown portion 16 together. It is formed by facing each other and joining at the tire equatorial plane.
ビード部12には、従来の一般的な空気入りタイヤと同様に、スチールコードからなる円環状のビードコア18が埋設されている。また、ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分には、タイヤ骨格体17を構成する樹脂材料よりもシール性に優れた材料であるゴムからなる円環状のシール層24が形成されている。 An annular bead core 18 made of a steel cord is embedded in the bead portion 12 in the same manner as a conventional general pneumatic tire. Further, the portion of the bead portion 12 that comes into contact with the rim 20 and at least the portion that comes into contact with the rim flange 22 of the rim 20 are made of rubber, which is a material having better sealing properties than the resin material constituting the tire frame body 17. An annular seal layer 24 is formed.
クラウン部16には、補強コードである樹脂金属複合部材26が、タイヤ骨格体17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で、タイヤ骨格体17の周方向に螺旋状に巻回されている。また、樹脂金属複合部材26のタイヤ径方向外周側には、タイヤ骨格体17を構成する樹脂材料よりも耐摩耗性に優れた材料であるゴムからなるトレッド30が配置されている。なお、樹脂金属複合部材26の詳細については、後述する。 In the crown portion 16, the resin-metal composite member 26, which is a reinforcing cord, is embedded in the crown portion 16 in a cross-sectional view along the axial direction of the tire frame body 17. It is spirally wound in the circumferential direction. A tread 30 made of rubber, which is a material superior in wear resistance to the resin material constituting the tire skeleton 17, is disposed on the outer peripheral side of the resin metal composite member 26 in the tire radial direction. Details of the resin-metal composite member 26 will be described later.
本発明の第一の実施形態に係るタイヤ10では、タイヤ骨格体17が樹脂材料で形成されているが、ゴム材料を用いて形成することもできる。タイヤ骨格体半体17Aは左右対称形状、即ち、一方のタイヤ骨格体半体17Aと他方のタイヤ骨格体Aとが同一形状であるので、タイヤ骨格体半体17Aを成形する金型が1種類で済むというメリットがある。 In the tire 10 according to the first embodiment of the present invention, the tire skeleton 17 is formed of a resin material, but may be formed of a rubber material. The tire frame half body 17A has a bilaterally symmetric shape, that is, one tire frame half body 17A and the other tire frame body A have the same shape, and therefore one type of mold for molding the tire frame half body 17A is used. There is a merit that it is sufficient.
なお、本発明の第一の実施形態に係るタイヤ10では、タイヤ骨格体17は、単一の樹脂材料で形成されているが、このような態様に限定されず、従来の一般的なゴム製の空気入りタイヤと同様に、タイヤ骨格体17の各部位(例えば、サイド部14、クラウン部16、ビード部12等)毎に異なる特徴を有する樹脂材料を用いてもよい。なお、タイヤ骨格体17を単一のゴム材料で形成することも、またタイヤ骨格体17の各部位(例えば、サイド部14、クラウン部16、ビード部12等)毎に異なる特徴を有するゴム材料を用いて形成することもできる。また、タイヤ骨格体17の各部位(例えば、サイド部14、クラウン部16、ビード部12等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、該補強材でタイヤ骨格体17を補強してもよい。 In the tire 10 according to the first embodiment of the present invention, the tire skeleton 17 is formed of a single resin material, but is not limited to such an embodiment, and is made of a conventional general rubber. Similarly to the pneumatic tire, a resin material having different characteristics for each portion (for example, the side portion 14, the crown portion 16, the bead portion 12, etc.) of the tire skeleton 17 may be used. The tire frame 17 may be formed of a single rubber material, and the rubber material having different characteristics for each portion of the tire frame 17 (for example, the side portion 14, the crown portion 16, and the bead portion 12). It can also be formed using. Further, reinforcing materials (polymer materials, metal fibers, cords, non-woven fabrics, woven fabrics, etc.) are embedded in each part of the tire skeleton body 17 (for example, the side portion 14, the crown portion 16, the bead portion 12, etc.). The tire frame body 17 may be reinforced with the reinforcing material.
本発明の第一の実施形態に係るタイヤ10では、タイヤ骨格体半体17Aが射出成形により成形されているが、これに限定されず、例えば、真空成形、圧空成形、メルトキャスティング等により成形されていてもよい。また、第一の実施形態に係るタイヤ10では、タイヤ骨格体17は、2つの部材(タイヤ骨格体半体17A)を接合して形成されているが、これに限定されず、低融点金属を用いた溶融中子方式、割り中子方式、又はブロー成形によってタイヤ骨格体を1つの部材としてもよく、3つ以上の部材を接合して形成されていてもよい。 In the tire 10 according to the first embodiment of the present invention, the tire frame half body 17A is molded by injection molding, but is not limited thereto, and is molded by, for example, vacuum molding, pressure molding, melt casting, or the like. It may be. Further, in the tire 10 according to the first embodiment, the tire skeleton 17 is formed by joining two members (tire skeleton half 17A), but is not limited thereto, and a low melting point metal is used. The tire skeleton body may be formed as one member by the melting core method, the split core method, or the blow molding used, or may be formed by joining three or more members.
タイヤ10のビード部12には、スチールコード等の金属製のコードからなる円環状のビードコア18が埋設されている。なお、ビードコア18を含む部材として、前述の本発明に係る樹脂金属複合部材を用いることができ、例えばビード部12を樹脂金属複合部材で構成することができる。
また、ビードコア18は、スチールコード以外に、有機繊維コード、樹脂被覆した有機繊維コード、又は硬質樹脂で形成されていてもよい。なお、ビードコア18は、ビード部12の剛性が確保され、リム20との嵌合に問題がないのであれば、省略してもよい。
ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分には、ゴムからなる円環状のシール層24が形成されている。シール層24は、タイヤ骨格体17(ビード部12)とビードシート21とが接触する部分にも形成されていてもよい。シール層24の形成材料としてゴムを用いる場合には、従来の一般的なゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。なお、タイヤ骨格体17を樹脂材料で形成する場合、ゴムのシール層24は、タイヤ骨格体17を形成する樹脂材料のみでリム20との間のシール性が確保できるのであれば、省略してもよい。
An annular bead core 18 made of a metal cord such as a steel cord is embedded in the bead portion 12 of the tire 10. In addition, as the member including the bead core 18, the resin-metal composite member according to the present invention described above can be used. For example, the bead portion 12 can be formed of a resin-metal composite member.
The bead core 18 may be formed of an organic fiber cord, a resin-coated organic fiber cord, or a hard resin, in addition to the steel cord. The bead core 18 may be omitted if the rigidity of the bead portion 12 is ensured and there is no problem in fitting with the rim 20.
An annular seal layer 24 made of rubber is formed on a portion of the bead portion 12 that contacts the rim 20 and at least a portion of the rim 20 that contacts the rim flange 22. The seal layer 24 may also be formed in a portion where the tire skeleton 17 (bead portion 12) and the bead sheet 21 are in contact with each other. When rubber is used as the material for forming the seal layer 24, it is preferable to use the same type of rubber as that used on the outer surface of the bead portion of a conventional general rubber pneumatic tire. In the case where the tire frame 17 is formed of a resin material, the rubber seal layer 24 is omitted if only the resin material forming the tire frame 17 can secure a sealing property with the rim 20. Also good.
シール層24は、タイヤ骨格体17を形成する樹脂材料よりもシール性に優れる他の熱可塑性樹脂又は熱可塑性エラストマーを用いて形成されてもよい。このような他の熱可塑性樹脂としては、ポリウレタン系樹脂、オレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等の樹脂や、これら樹脂とゴム若しくはエラストマーとのブレンド物等が挙げられる。また、熱可塑性エラストマーを用いることもでき、例えば、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、又はこれらエラストマー同士の組み合わせや、ゴムとのブレンド物等が挙げられる。 The seal layer 24 may be formed using another thermoplastic resin or a thermoplastic elastomer that is more excellent in sealability than the resin material forming the tire frame body 17. Examples of such other thermoplastic resins include resins such as polyurethane resins, olefin resins, polystyrene resins, and polyester resins, and blends of these resins with rubbers or elastomers. Thermoplastic elastomers can also be used, and examples thereof include polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, olefin-based thermoplastic elastomers, combinations of these elastomers, and blends with rubber.
次に、図2を参照しながら、樹脂コード部材26で形成される補強ベルト部材ついて説明する。なお、この樹脂コード部材26に、前述の本発明に係る樹脂金属複合部材を用いることができる。
図2は、第一の実施形態に係るタイヤ10のタイヤ回転軸に沿った断面図であり、樹脂コード部材26がタイヤ骨格体17のクラウン部に埋設された状態を示す。
図2に示すように、樹脂コード部材26は、タイヤ骨格体17の軸方向に沿った断面視で、その少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されている。そして、樹脂コード部材26のクラウン部16に埋設された部分は、クラウン部16(タイヤ骨格体17)を構成する弾性材料(ゴム材料又は樹脂材料)と密着した状態となっている。図2におけるLは、クラウン部16(タイヤ骨格体17)に対する樹脂コード部材26のタイヤ回転軸方向への埋設深さを示す。ある実施態様では、樹脂コード部材26のクラウン部16に対する埋設深さLは、樹脂コード部材26の直径Dの1/2である。
Next, the reinforcing belt member formed of the resin cord member 26 will be described with reference to FIG. Note that the resin-metal composite member according to the present invention described above can be used for the resin cord member 26.
FIG. 2 is a cross-sectional view along the tire rotation axis of the tire 10 according to the first embodiment, and shows a state in which the resin cord member 26 is embedded in the crown portion of the tire frame body 17.
As shown in FIG. 2, the resin cord member 26 is spirally wound in a state in which at least a part thereof is embedded in the crown portion 16 in a cross-sectional view along the axial direction of the tire frame body 17. And the part embed | buried under the crown part 16 of the resin cord member 26 is in the state closely_contact | adhered with the elastic material (rubber material or resin material) which comprises the crown part 16 (tire frame 17). L in FIG. 2 indicates the embedding depth in the tire rotation axis direction of the resin cord member 26 with respect to the crown portion 16 (tire frame body 17). In an embodiment, the embedding depth L of the resin cord member 26 with respect to the crown portion 16 is ½ of the diameter D of the resin cord member 26.
樹脂コード部材26は、金属部材27(例えば、スチール繊維を撚ったスチールコード)を芯として、金属部材27の外周が、接着層25を介して、被覆樹脂層28で被覆された構造を有している。
樹脂コード部材26のタイヤ径方向外周側には、ゴム製のトレッド30が配置されている。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターンが形成されている。
The resin cord member 26 has a structure in which a metal member 27 (for example, a steel cord twisted with steel fibers) is used as a core and the outer periphery of the metal member 27 is covered with a coating resin layer 28 via an adhesive layer 25. doing.
A rubber tread 30 is disposed on the outer peripheral side of the resin cord member 26 in the tire radial direction. Further, the tread 30 is formed with a tread pattern including a plurality of grooves on the ground contact surface with the road surface in the same manner as a conventional rubber pneumatic tire.
ある実施態様では、タイヤ10では、熱可塑性エラストマーを含む被覆樹脂層28で被覆した樹脂コード部材26が、同種の熱可塑性エラストマーを含む樹脂材料で形成されているタイヤ骨格体17に密着した状態で埋設されている。そのため、金属部材27を被覆する被覆樹脂層28とタイヤ骨格体17との接触面積が大きくなり、樹脂コード部材26とタイヤ骨格体17との接着耐久性が向上し、その結果、タイヤの耐久性が優れたものとなる。 In one embodiment, in the tire 10, the resin cord member 26 coated with the coating resin layer 28 including a thermoplastic elastomer is in close contact with the tire skeleton 17 formed of a resin material including the same type of thermoplastic elastomer. Buried. Therefore, the contact area between the coating resin layer 28 covering the metal member 27 and the tire frame body 17 is increased, and the adhesion durability between the resin cord member 26 and the tire frame body 17 is improved. As a result, the durability of the tire is increased. Will be excellent.
樹脂コード部材26のクラウン部16に対する埋設深さLは、樹脂コード部材26の直径Dの1/5以上であれば好ましく、1/2を超えることがより好ましい。そして、樹脂コード部材26の全体がクラウン部16に埋設されることが更に好ましい。樹脂コード部材26の埋設深さLが、樹脂コード部材26の直径Dの1/2を超えると、樹脂コード部材26の寸法上、埋設部から飛び出し難くなる。そして、樹脂コード部材26の全体がクラウン部16に埋設されると、表面(外周面)がフラットになり、樹脂コード部材26が埋設されたクラウン部16上に部材が載置された場合であっても、樹脂コード部材26の周辺部に空気が入るのを抑制することができる。 The embedding depth L of the resin cord member 26 with respect to the crown portion 16 is preferably not less than 1/5 of the diameter D of the resin cord member 26, and more preferably more than 1/2. Further, it is more preferable that the entire resin cord member 26 is embedded in the crown portion 16. If the embedding depth L of the resin cord member 26 exceeds 1/2 of the diameter D of the resin cord member 26, it is difficult to jump out of the buried portion due to the dimension of the resin cord member 26. When the entire resin cord member 26 is embedded in the crown portion 16, the surface (outer peripheral surface) becomes flat, and the member is placed on the crown portion 16 in which the resin cord member 26 is embedded. However, air can be prevented from entering the peripheral portion of the resin cord member 26.
本発明の第一の実施形態に係るタイヤ10では、トレッド30がゴムで形成されているが、ゴムの代わりに、耐摩耗性に優れる熱可塑性樹脂材料で形成したトレッドを用いてもよい。 In the tire 10 according to the first embodiment of the present invention, the tread 30 is formed of rubber, but a tread formed of a thermoplastic resin material having excellent wear resistance may be used instead of rubber.
・樹脂コード部材26
ここで、本発明の樹脂金属複合部材を、樹脂コード部材26として用いる態様について説明する。
例えば、一本又は複数本のコード状の樹脂金属複合部材がタイヤ骨格体の外周部に、タイヤの周方向に沿って配置されて形成されたベルト層、複数のコード状の樹脂金属複合部材がタイヤの周方向に対して角度を有し、互いに交錯するように配置された交錯ベルト層等として用いることができる。
・ Resin cord member 26
Here, the aspect which uses the resin metal composite member of this invention as the resin cord member 26 is demonstrated.
For example, a belt layer formed by arranging one or a plurality of cord-like resin-metal composite members on the outer periphery of a tire frame body along the circumferential direction of the tire, It can be used as a crossing belt layer or the like that has an angle with respect to the circumferential direction of the tire and is arranged so as to cross each other.
樹脂金属複合部材は、樹脂金属複合部材において、隣り合う金属部材間の平均距離が400μm〜3200μmであるように配置されることが好ましく、600μm〜2200μmであるように配置されることがより好ましく、800μm〜1500μmであるように配置されることが更に好ましい。隣り合う樹脂金属複合部材の金属部材間の平均距離が400μm以上であると、タイヤの重量増加が抑制されて走行時の燃費性に優れる傾向にある。隣接する樹脂金属複合部材の金属部材間の平均距離が3200μm以下であると、充分なタイヤ補強効果が得られる傾向にある。 In the resin-metal composite member, the resin-metal composite member is preferably arranged so that the average distance between adjacent metal members is 400 μm to 3200 μm, more preferably 600 μm to 2200 μm, More preferably, it is arranged to be 800 μm to 1500 μm. When the average distance between the metal members of adjacent resin-metal composite members is 400 μm or more, an increase in the weight of the tire is suppressed and the fuel efficiency during running tends to be excellent. When the average distance between the metal members of adjacent resin-metal composite members is 3200 μm or less, a sufficient tire reinforcing effect tends to be obtained.
本明細書において「隣り合う樹脂金属複合部材」とは、ある樹脂金属複合部材と、当該樹脂金属複合部材に最も近い位置にある他の樹脂金属複合部材とのことをいい、互いに異なる樹脂金属複合部材が隣り合っている場合と、同じ樹脂金属複合部材の異なる部位が隣り合っている場合(例えば、一本の樹脂金属複合部材をタイヤ骨格体の外周に複数回巻きつけた場合)の双方が含まれる。 In this specification, “adjacent resin-metal composite members” means a certain resin-metal composite member and another resin-metal composite member located closest to the resin-metal composite member, and are different from each other. Both when the members are adjacent to each other and when different parts of the same resin-metal composite member are adjacent (for example, when a single resin-metal composite member is wound around the outer periphery of the tire frame body multiple times) included.
本明細書において「金属部材間の平均距離」は、以下の式により求められる値とする。
式:金属部材間の平均距離={ベルト部の幅−(金属部材の太さ×n)}/(n−1)
上記「ベルト部」とは、タイヤ骨格体の外周部に樹脂金属複合部材が配置されている部分を意味する。
上記式において「n」は、樹脂金属複合部材が配置されたタイヤ骨格体をタイヤの径方向に垂直な方向に切断して得られる断面において観察される樹脂金属複合部材の数である。
上記式において「ベルト部の幅」は、上記断面において観察される樹脂金属複合部材のうち、ベルト部の両端部(タイヤ骨格体のセンターラインから左右方向にそれぞれ最も離れた位置)にある樹脂金属複合部材の間の長さであって、タイヤ骨格体の外周面に沿った長さを意味する。
上記式において「金属部材の太さ」は、任意に選択した5箇所における太さの測定値の数平均値とする。太さの測定値は、金属部材が1本の金属コードからなる場合は、金属部材の断面の最大径(金属部材の断面の輪郭線上で任意に選択される2点間の距離が最大となるときの当該2点間の距離)とする。金属部材が複数の金属コードからなる場合は、金属部材の断面に観察される複数の金属コードの断面が全て含まれる円のうち最も小さい円の直径とする。
なお、太さの異なる金属部材がベルト部に含まれている場合は、最も太い金属部材の太さを「金属部材の太さ」とする。
In this specification, the “average distance between metal members” is a value determined by the following equation.
Formula: Average distance between metal members = {width of belt portion− (thickness of metal member × n)} / (n−1)
The “belt portion” means a portion where the resin-metal composite member is disposed on the outer peripheral portion of the tire frame body.
In the above formula, “n” is the number of resin-metal composite members observed in a cross section obtained by cutting the tire frame body on which the resin-metal composite members are arranged in a direction perpendicular to the radial direction of the tire.
In the above formula, “the width of the belt portion” means the resin metal at the both ends of the resin-metal composite member observed in the cross section (positions farthest from the center line of the tire frame body in the left-right direction). The length between the composite members means the length along the outer peripheral surface of the tire frame.
In the above formula, “the thickness of the metal member” is the number average value of the measured thickness values at five arbitrarily selected locations. When the metal member is composed of one metal cord, the measured thickness value is the maximum diameter of the cross section of the metal member (the distance between two points arbitrarily selected on the contour line of the cross section of the metal member is the maximum). The distance between the two points). When the metal member is composed of a plurality of metal cords, the diameter of the smallest circle among circles including all the cross-sections of the plurality of metal cords observed in the cross-section of the metal member is set.
When metal members having different thicknesses are included in the belt portion, the thickness of the thickest metal member is defined as “the thickness of the metal member”.
ついで、本発明の第一の実施形態に係るタイヤの製造方法について説明する。
[タイヤ骨格体成形工程]
まず、薄い金属の支持リングに支持されたタイヤ骨格体半体同士を互いに向かい合わせる。次に、タイヤ骨格体半体の突き当て部分の外周面と接するように、接合金型を設置する。ここで、上記接合金型は、タイヤ骨格体半体の接合部(突き当て部分)周辺を所定の圧力で押圧するように構成されている(図示せず)。次に、タイヤ骨格体半体の接合部周辺を、タイヤ骨格体を形成する熱可塑性樹脂材料(本実施形態では、ポリアミド系熱可塑性エラストマー)の融点(又は軟化点)以上で押圧する。タイヤ骨格体半体の接合部が接合金型によって加熱・加圧されると、上記接合部が溶融し、タイヤ骨格体半体同士が融着し、これら部材が一体となってタイヤ骨格体17が形成される。
Next, a method for manufacturing a tire according to the first embodiment of the present invention will be described.
[Tire skeleton molding process]
First, the tire skeleton halves supported by a thin metal support ring face each other. Next, a joining mold is installed so as to contact the outer peripheral surface of the abutting portion of the tire skeleton half. Here, the said joining metal mold | die is comprised so that the periphery of the junction part (butting part) of a tire frame half body may be pressed with a predetermined pressure (not shown). Next, the periphery of the joint portion of the tire frame half body is pressed at a temperature equal to or higher than the melting point (or softening point) of the thermoplastic resin material (in this embodiment, a polyamide-based thermoplastic elastomer) that forms the tire frame body. When the joint portion of the tire frame half body is heated and pressurized by the bonding mold, the joint portion is melted, the tire frame half halves are fused together, and these members are integrated into the tire frame body 17. Is formed.
[樹脂コード部材成形工程]
次に、樹脂コード部材を本発明に係る樹脂金属複合部材で形成する、樹脂コード部材成形工程について説明する。
まず、例えば、リールから金属部材27を巻出し、その表面を洗浄する。次に、金属部材27の外周を、押出機から押し出した接着剤(例えば極性官能基含有樹脂を含む接着剤)で被覆して、接着層25となる層を形成する。さらにその上を、押出機から押し出した樹脂(ポリエステル系熱可塑性エラストマー)で被覆することで、金属部材27の外周が接着層25を介して被覆樹脂層28で被覆された樹脂コード部材26を形成する。そして、得られた樹脂コード部材26をリール58に巻き取る。
[Resin cord member molding process]
Next, a resin cord member molding process in which the resin cord member is formed of the resin metal composite member according to the present invention will be described.
First, for example, the metal member 27 is unwound from a reel and the surface thereof is cleaned. Next, the outer periphery of the metal member 27 is covered with an adhesive extruded from an extruder (for example, an adhesive containing a polar functional group-containing resin) to form a layer that becomes the adhesive layer 25. Further, the resin cord member 26 in which the outer periphery of the metal member 27 is covered with the covering resin layer 28 via the adhesive layer 25 is formed by covering the upper surface with a resin (polyester thermoplastic elastomer) extruded from the extruder. To do. Then, the obtained resin cord member 26 is wound around a reel 58.
[樹脂コード部材巻回工程]
次に、図3を参照しながら、樹脂コード部材巻回工程について説明する。図3は、樹脂コード部材加熱装置及びローラ類を用いてタイヤ骨格体のクラウン部に樹脂コード部材を設置する動作を説明するための説明図である。図3において、樹脂コード部材供給装置56は、樹脂コード部材26を巻き付けたリール58と、リール58のコード搬送方向下流側に配置された、樹脂コード部材加熱装置59と、樹脂コード部材26の搬送方向下流側に配置された第1のローラ60と、第1のローラ60をタイヤ外周面に対して接離する方向に移動する第1のシリンダ装置62と、第1のローラ60の樹脂コード部材26の搬送方向下流側に配置される第2のローラ64と、第2のローラ64をタイヤ外周面に対して接離する方向に移動する第2のシリンダ装置66と、を備えている。第2のローラ64は、金属製の冷却用ローラとして利用することができる。また、第1のローラ60又は第2のローラ64の表面は、溶融又は軟化した樹脂材料の付着を抑制するために、フッ素樹脂(本実施形態では、テフロン(登録商標))でコーティングされている。以上により、加熱された樹脂コード部材は、タイヤ骨格体のケース樹脂に強固に一体化される。
[Resin cord member winding process]
Next, the resin cord member winding step will be described with reference to FIG. FIG. 3 is an explanatory diagram for explaining an operation of installing the resin cord member on the crown portion of the tire frame body using the resin cord member heating device and the rollers. In FIG. 3, the resin cord member supply device 56 includes a reel 58 around which the resin cord member 26 is wound, a resin cord member heating device 59 disposed downstream of the reel 58 in the cord conveyance direction, and conveyance of the resin cord member 26. A first roller 60 disposed on the downstream side in the direction, a first cylinder device 62 that moves the first roller 60 in a direction of moving toward and away from the tire outer peripheral surface, and a resin cord member of the first roller 60 26, a second roller 64 disposed on the downstream side in the conveying direction, and a second cylinder device 66 that moves the second roller 64 in a direction in which the second roller 64 comes in contact with and separates from the tire outer peripheral surface. The second roller 64 can be used as a metal cooling roller. Further, the surface of the first roller 60 or the second roller 64 is coated with a fluororesin (in this embodiment, Teflon (registered trademark)) in order to suppress adhesion of a molten or softened resin material. . As described above, the heated resin cord member is firmly integrated with the case resin of the tire frame.
樹脂コード部材加熱装置59は、熱風を生じさせるヒーター70及びファン72を備えている。また、樹脂コード部材加熱装置59は、内部に熱風が供給される、内部空間を樹脂コード部材26が通過する加熱ボックス74と、加熱された樹脂コード部材26を排出する排出口76とを備えている。 The resin cord member heating device 59 includes a heater 70 and a fan 72 that generate hot air. The resin cord member heating device 59 includes a heating box 74 through which the hot air is supplied and the resin cord member 26 passes through the internal space, and a discharge port 76 that discharges the heated resin cord member 26. Yes.
本工程では、まず、樹脂コード部材加熱装置59のヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風によって加熱ボックス74へ送る。次に、リール58から巻き出した樹脂コード部材26を、熱風で内部空間が加熱された加熱ボックス74内へ送り、加熱(例えば、樹脂コード部材26の温度を100℃〜250℃程度に加熱)する。加熱された樹脂コード部材26は、排出口76を通り、図3の矢印R方向に回転するタイヤ骨格体17のクラウン部16の外周面に、一定のテンションをもって螺旋状に巻きつけられる。ここで、加熱された樹脂コード部材26の被覆樹脂層がクラウン部16の外周面に接触すると、接触部分の樹脂材料が溶融又は軟化し、タイヤ骨格体の樹脂と溶融接合してクラウン部16の外周面に一体化される。このとき、樹脂コード部材は隣接する樹脂コード部材とも溶融接合される為、隙間のない状態で巻回される。これにより、樹脂コード部材26を埋設した部分へのエア入りが抑制される。 In this step, first, the temperature of the heater 70 of the resin cord member heating device 59 is raised, and the ambient air heated by the heater 70 is sent to the heating box 74 by the wind generated by the rotation of the fan 72. Next, the resin cord member 26 unwound from the reel 58 is sent into a heating box 74 in which the internal space is heated with hot air, and heated (for example, the temperature of the resin cord member 26 is heated to about 100 ° C. to 250 ° C.). To do. The heated resin cord member 26 is spirally wound around the outer peripheral surface of the crown portion 16 of the tire frame body 17 rotating in the direction of arrow R in FIG. Here, when the coated resin layer of the heated resin cord member 26 comes into contact with the outer peripheral surface of the crown portion 16, the resin material at the contact portion melts or softens and melts and joins with the resin of the tire skeleton to bond the crown portion 16. It is integrated with the outer peripheral surface. At this time, since the resin cord member is melt-bonded to the adjacent resin cord member, the resin cord member is wound without a gap. Thereby, the air entering to the portion where the resin cord member 26 is embedded is suppressed.
樹脂コード部材26の埋設深さLは、樹脂コード部材26の加熱温度、樹脂コード部材26に作用させるテンション、及び第1のローラ60による押圧力等によって調整することができる。ある実施態様では、樹脂コード部材26の埋設深さLが、樹脂コード部材26の直径Dの1/5以上となるように設定される。 The embedding depth L of the resin cord member 26 can be adjusted by the heating temperature of the resin cord member 26, the tension applied to the resin cord member 26, the pressing force by the first roller 60, and the like. In an embodiment, the embedding depth L of the resin cord member 26 is set to be 1/5 or more of the diameter D of the resin cord member 26.
次に、樹脂コード部材26が埋設されたタイヤ骨格体17の外周面に帯状のトレッド30を巻き付け、これを加硫缶やモールドに収容して加熱(加硫)する。トレッド30は、未加硫ゴムであっても、加硫ゴムであってもよい。 Next, a belt-like tread 30 is wound around the outer peripheral surface of the tire frame body 17 in which the resin cord member 26 is embedded, and this is accommodated in a vulcanizing can or a mold and heated (vulcanized). The tread 30 may be unvulcanized rubber or vulcanized rubber.
そして、タイヤ骨格体17のビード部12に、加硫済みのゴムからなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。 And if the sealing layer 24 which consists of vulcanized rubber is adhere | attached on the bead part 12 of the tire frame | skeleton body 17 using an adhesive agent etc., the tire 10 will be completed.
本発明の第一の実施形態に係るタイヤの製造方法では、接合金型を用いてタイヤ骨格体半体17Aの接合部を加熱したが、本発明はこれに限定されず、例えば、別に設けた高周波加熱機等によって上記接合部を加熱したり、予め熱風や赤外線の照射等によって軟化又は溶融させ、接合金型によって加圧したりして、タイヤ骨格体半体17Aを接合させてもよい。 In the method for manufacturing a tire according to the first embodiment of the present invention, the bonding portion of the tire frame half body 17A is heated using a bonding mold, but the present invention is not limited to this, and for example, provided separately. The tire frame half body 17A may be joined by heating the joining portion with a high-frequency heater or the like, softening or melting in advance by hot air or infrared irradiation, and pressurizing with a joining mold.
本発明の第一の実施形態に係るタイヤの製造方法では、樹脂コード部材供給装置56は、第1のローラ60及び第2のローラ64の2つのローラを有しているが、本発明はこれに限定されず、何れか一方のローラのみ(即ち、ローラ1個)を有していてもよい。 In the tire manufacturing method according to the first embodiment of the present invention, the resin cord member supply device 56 has two rollers, a first roller 60 and a second roller 64, but the present invention is not limited to this. The present invention is not limited to this, and only one of the rollers (that is, one roller) may be provided.
本発明の第一の実施形態に係るタイヤの製造方法では、樹脂コード部材26を加熱し、加熱した樹脂コード部材26が接触する部分のタイヤ骨格体17の表面を溶融又は軟化させる態様としたが、本発明はこの態様に限定されず、樹脂コード部材26を加熱せずに熱風生成装置を用い、樹脂コード部材26が埋設されるクラウン部16の外周面を加熱した後、樹脂コード部材26をクラウン部16に埋設するようにしてもよい。
また、本発明の第一の実施形態に係るタイヤの製造方法では、樹脂コード部材加熱装置59の熱源をヒーター及びファンとする態様としたが、本発明はこの態様に限定されず、樹脂コード部材26を輻射熱(例えば、赤外線等)で直接加熱する態様としてもよい。
In the method for manufacturing a tire according to the first embodiment of the present invention, the resin cord member 26 is heated, and the surface of the tire skeleton body 17 at the portion where the heated resin cord member 26 contacts is melted or softened. The present invention is not limited to this embodiment, and the resin cord member 26 is heated after the outer peripheral surface of the crown portion 16 in which the resin cord member 26 is embedded using a hot air generator without heating the resin cord member 26. It may be embedded in the crown portion 16.
In the tire manufacturing method according to the first embodiment of the present invention, the heat source of the resin cord member heating device 59 is a heater and a fan. However, the present invention is not limited to this embodiment, and the resin cord member It is good also as an aspect which heats 26 directly with radiant heat (for example, infrared rays etc.).
さらに、本発明の第一の実施形態に係るタイヤの製造方法では、樹脂コード部材26を埋設した熱可塑性の樹脂材料が溶融又は軟化した部分を、金属製の第2のローラ64で強制的に冷却する態様としたが、本発明はこの態様に限定されず、熱可塑性の樹脂材料が溶融又は軟化した部分に冷風を直接吹きかけて、熱可塑性の樹脂材料の溶融又は軟化した部分を強制的に冷却固化する態様としてもよい。
樹脂コード部材26は、螺旋巻きすることが製造上は容易であるが、幅方向で樹脂コード部材26を不連続に配置する方法等も考えられる。
Furthermore, in the tire manufacturing method according to the first embodiment of the present invention, the portion where the thermoplastic resin material in which the resin cord member 26 is embedded is melted or softened is forcibly forced by the second metal roller 64. However, the present invention is not limited to this embodiment, and cold air is blown directly onto a portion where the thermoplastic resin material is melted or softened to forcibly apply the melted or softened portion of the thermoplastic resin material. It is good also as an aspect which cools and solidifies.
Although it is easy to manufacture the resin cord member 26 spirally, a method of disposing the resin cord member 26 discontinuously in the width direction is also conceivable.
本発明の第一の実施形態に係るタイヤの製造方法では、樹脂コード部材26が埋設されたタイヤ骨格体17の外周面に帯状のトレッド30を巻き付け、その後に加熱(加硫)する態様としたが、本発明はこの態様に限定されず、加硫済みの帯状のトレッドをタイヤ骨格体17の外周面に接着剤等により接着する態様としてもよい。加硫済みの帯状のトレッドとしては、例えば、更生タイヤに用いられるプレキュアトレッドが挙げられる。 In the tire manufacturing method according to the first embodiment of the present invention, the belt-shaped tread 30 is wound around the outer peripheral surface of the tire frame body 17 in which the resin cord member 26 is embedded, and then heated (vulcanized). However, the present invention is not limited to this embodiment, and a vulcanized belt-like tread may be bonded to the outer peripheral surface of the tire skeleton 17 with an adhesive or the like. Examples of the vulcanized belt-like tread include precure treads used for retreaded tires.
本発明の第一の実施形態に係るタイヤ10は、ビード部12をリム20に装着することでタイヤ10とリム20との間で空気室を形成する、いわゆるチューブレスタイヤであるが、本発明はこの態様に限定されず、完全なチューブ形状であってもよい。 The tire 10 according to the first embodiment of the present invention is a so-called tubeless tire in which an air chamber is formed between the tire 10 and the rim 20 by attaching the bead portion 12 to the rim 20. It is not limited to this aspect, A perfect tube shape may be sufficient.
以上、実施形態を挙げて本発明を説明したが、これらの実施形態は一例であり、本発明は、その要旨を逸脱しない範囲内において、種々変更を加えて実施することができる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。 The present invention has been described with reference to the embodiments. However, these embodiments are merely examples, and the present invention can be implemented with various modifications without departing from the scope of the present invention. It goes without saying that the scope of rights of the present invention is not limited to these embodiments.
以下、実施例により本発明を具体的に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。なお、特に断りのない限り「部」は質量基準を表す。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these descriptions. Unless otherwise specified, “part” represents a mass standard.
[実施例、比較例]
<めっき処理>
まず、表1〜表6に示す金属コードに対して、表1〜表6に示す金属組成となるめっきを施した。
まず、めっき素線の芯線となる金属コードを、表1〜表6に示す金属組成となるよう、銅めっき浴及び亜鉛めっき浴にそれぞれ通過浸漬させた。次に、熱拡散処理(500℃〜650℃かつ5秒〜25秒の条件に設定)を施すことにより、銅及び亜鉛をめっき層全体にわたって均一拡散させた。次に、熱拡散処理された金属コードに伸線加工を施すことにより、所定の線径及びめっき厚さを有する、めっき処理金属コードを形成した。
なお、めっき厚さは0.1〜0.5μmであった。
[Examples and Comparative Examples]
<Plating treatment>
First, the metal cords shown in Tables 1 to 6 were plated with the metal compositions shown in Tables 1 to 6.
First, the metal cord used as the core wire of a plating strand was each immersed in the copper plating bath and the zinc plating bath so that it might become a metal composition shown in Tables 1-6. Next, copper and zinc were uniformly diffused over the entire plating layer by applying a thermal diffusion treatment (set to conditions of 500 ° C. to 650 ° C. and 5 seconds to 25 seconds). Next, the metal cord subjected to thermal diffusion treatment was subjected to wire drawing to form a plated metal cord having a predetermined wire diameter and plating thickness.
The plating thickness was 0.1 to 0.5 μm.
<樹脂金属複合部材の作製>
上述の第一の実施形態のタイヤの製造方法における樹脂コード部材成形工程に従い、めっき処理された上記金属コードに、加熱溶融した表1〜表6に示す接着剤を付着させて接着層となる層を形成した。
<Production of resin-metal composite member>
In accordance with the resin cord member molding step in the tire manufacturing method of the first embodiment described above, the adhesive layer shown in Tables 1 to 6 is attached to the metal cord that has been subjected to the plating treatment to form an adhesive layer. Formed.
次いで、接着層となる層の外周に、押出機にて押し出した表1〜表6に示す被覆樹脂(ポリエステル系熱可塑性エラストマー(東レ・デュポン社製、「ハイトレル5557」、融点207℃)又はポリアミド系熱可塑性エラストマー(宇部興産社製、「UBESTA XPA9055X1」、融点165℃)を付着させて被覆し、冷却した。なお、押出条件は、金属部材の温度を200℃、被覆樹脂の温度を240℃、押出速度を30m/分とした。以上のようにして、金属コードの外周が、接着層を介して被覆樹脂層で被覆された構造を有する樹脂金属複合部材を作製した。樹脂金属複合部材における接着層の平均厚み及び被覆樹脂層の平均厚みを表1〜表6に示す。 Next, the coating resin (polyester-based thermoplastic elastomer (manufactured by Toray DuPont, “Hytrel 5557”, melting point 207 ° C.) or polyamide extruded on the outer periphery of the layer serving as an adhesive layer by an extruder) A thermoplastic elastomer (“UBESTA XPA9055X1”, melting point 165 ° C., manufactured by Ube Industries, Ltd.) was attached, coated, and cooled.The extrusion conditions were a metal member temperature of 200 ° C. and a coating resin temperature of 240 ° C. As described above, a resin-metal composite member having a structure in which the outer periphery of the metal cord was coated with the coating resin layer via the adhesive layer was produced. Tables 1 to 6 show the average thickness of the adhesive layer and the average thickness of the coating resin layer.
<樹脂金属複合部材を補強ベルト部材として有するタイヤの作製>
上述の第一の実施形態におけるタイヤの製造方法に従って、ポリエステル系熱可塑性エラストマー(東レ・デュポン社製、「ハイトレル5557」、融点207℃)又はポリアミド系熱可塑性エラストマー(宇部興産社製、「UBESTA XPA9055X1」、融点165℃)(被覆樹脂層に用いた熱可塑性エラストマーと同じ材料を使用)からなる樹脂材料で形成されたタイヤ骨格体を作製した。
続いて、得られた樹脂金属複合部材及びタイヤ骨格体を用い、樹脂金属複合部材がタイヤ骨格体のクラウン部に巻き回して配置され、その上に未加硫のトレッドゴムが配置された生タイヤを作製した。樹脂金属複合部材のタイヤ骨格体への配置は、隣り合う樹脂金属複合部材の金属部材間の平均距離が1000μmとなるように行った。タイヤサイズは245/35 R18とした。トレッドゴムの厚みは、10mmとした。
作製した生タイヤについて、170℃、18分の条件で加熱(トレッドゴムの加硫)を行った。
<Production of tire having resin-metal composite member as reinforcing belt member>
According to the tire manufacturing method in the first embodiment described above, a polyester-based thermoplastic elastomer (manufactured by Toray DuPont, “Hytrel 5557”, melting point 207 ° C.) or a polyamide-based thermoplastic elastomer (manufactured by Ube Industries, “UBESTA XPA9055X1” A melting point of 165 ° C.) was used to prepare a tire skeleton formed of a resin material (using the same material as the thermoplastic elastomer used for the coating resin layer).
Subsequently, using the obtained resin-metal composite member and tire skeleton, a raw tire in which the resin-metal composite member is wound around the crown portion of the tire skeleton and disposed on the unvulcanized tread rubber Was made. The resin-metal composite member was placed on the tire frame so that the average distance between the metal members of adjacent resin-metal composite members was 1000 μm. The tire size was 245/35 R18. The thickness of the tread rubber was 10 mm.
The produced raw tire was heated (vulcanized tread rubber) at 170 ° C. for 18 minutes.
<初期接着性試験>
前記<めっき処理>と同様の形成条件で、幅20mmのスチール製板上にめっきを形成した。さらに、前記<樹脂金属複合部材の作製>に記載の接着層の形成と同様の形成条件で、めっきが形成された上記スチール製板上に接着層を形成し、金属板−接着剤貼り合わせ試験片を準備した。
この試験片を使用し、(株)エー・アンド・デイ製の「TENSIRON RTF−1210」を用いて、室温環境(25℃)で引張速度100mm/minで180°剥離試験を行って、剥離力(単位:N/20mm)を測定し、以下の評価基準に従って接着性を評価した。
(評価基準)
A:剥離力が30N/20mm以上である。
B:剥離力が20N/20mm以上30N/20mm未満である。
C:剥離力が20N/20mm未満である。
<Initial adhesion test>
Plating was formed on a steel plate having a width of 20 mm under the same formation conditions as in the above <Plating treatment>. Further, an adhesive layer is formed on the steel plate on which the plating has been formed under the same formation conditions as the formation of the adhesive layer described in <Preparation of resin-metal composite member>, and a metal plate-adhesive bonding test A piece was prepared.
Using this specimen, a 180 ° peel test was performed at a tensile speed of 100 mm / min in a room temperature environment (25 ° C.) using “TENSIRON RTF-1210” manufactured by A & D Co., Ltd. (Unit: N / 20 mm) was measured, and adhesion was evaluated according to the following evaluation criteria.
(Evaluation criteria)
A: The peeling force is 30 N / 20 mm or more.
B: Peeling force is 20 N / 20 mm or more and less than 30 N / 20 mm.
C: The peeling force is less than 20 N / 20 mm.
<湿熱劣化後剥離力試験>
前記金属板−接着剤貼り合わせ試験片を、温度70℃、95%RHの条件下で、24時間の湿熱劣化処理を行った。
湿熱劣化処理後の試験片に対し、上記初期接着性試験と同様にして剥離試験を行って、剥離力(単位:N/20mm)を測定し、同様の評価基準に従って接着性を評価した。
<Peeling strength test after wet heat degradation>
The metal plate-adhesive bonded test piece was subjected to a wet heat deterioration treatment for 24 hours under the conditions of a temperature of 70 ° C. and 95% RH.
A peel test was performed on the test piece after the wet heat deterioration treatment in the same manner as in the initial adhesion test, the peel force (unit: N / 20 mm) was measured, and the adhesion was evaluated according to the same evaluation criteria.
<ベルト屈曲疲労試験>
まず、ベルト屈曲疲労試験機の試験サンプルを準備した。サンプルはコード(SC)1本分に接着層および被覆樹脂層を被覆し、厚さ2.1mm、幅2.5mm、長さ500mm被覆したものを準備した。
この試験サンプルを用い、測定装置として高千穂精機株式会社製のベルト屈曲疲労試験機を用い、シャフトに試験サンプル(樹脂被覆したSC)をU字に掛け、試験サンプルの両端に荷重を加えた状態で上下に4万回屈曲させた。なお、試験条件としては、シャフト62mm、屈曲速度125cpm(cycle per minute、2Hz)、荷重55.5Nとし、SC破断の有無、及び試験前後での剥離力(前記初期接着性試験で測定される剥離力)の測定によって、以下の評価基準に従い評価した。
(評価基準)
A:SC破断せず、剥離力低下20%未満
B:SC破断せず、剥離力低下20%以上50%未満
C:SC破断、剥離力初期より50%以上低下
(SC破断とは、少なくともモノフィラメント1本がキンクやせん断入力によって破断した状態を指す)
<Belt bending fatigue test>
First, a test sample of a belt bending fatigue tester was prepared. A sample was prepared by coating one cord (SC) with an adhesive layer and a coating resin layer, and coating with a thickness of 2.1 mm, a width of 2.5 mm, and a length of 500 mm.
Using this test sample, using a belt bending fatigue tester manufactured by Takachiho Seiki Co., Ltd. as a measuring device, hanging the test sample (resin-coated SC) on the shaft in a U-shape and applying a load to both ends of the test sample It was bent up and down 40,000 times. Test conditions include a shaft of 62 mm, a bending speed of 125 cpm (cycle per minute, 2 Hz), a load of 55.5 N, presence or absence of SC fracture, and peeling force before and after the test (peeling measured in the initial adhesion test). Force) was evaluated according to the following evaluation criteria.
(Evaluation criteria)
A: SC does not break and peel strength decreases less than 20% B: SC does not break and peel force decreases from 20% to less than 50% C: SC fracture, peel force decreases by 50% or more from the beginning (SC break is at least a monofilament (One of them is broken by kink or shear input)
<タイヤ走行性(JISドラム試験)>
実施例及び比較例で作製したタイヤを25±2℃の室内で内圧3.0kg/cm2に調整した後、24時間放置した。その後、空気圧の再調整を行い、JIS荷重の2倍荷重をタイヤに負荷して、直径約3mのドラム上で、速度60km/hにて最大2万km走行させた。
そして、タイヤが故障するまでに走行した距離を計測し、下記の評価基準に従って評価を行った。走行距離が長いほどタイヤの耐久性が優れていることを示し、[A]又は[B]に分類されるものであれば実用上好ましいと言える。結果を表1〜表6に示す。
(評価基準)
A:2万km完走した。
B:故障発生までの走行距離が1万km以上2万km未満であった。
C:故障発生までの走行距離が1万km未満であった。
<Tire running (JIS drum test)>
The tires produced in the examples and comparative examples were adjusted to an internal pressure of 3.0 kg / cm 2 in a room at 25 ± 2 ° C. and then left for 24 hours. Thereafter, the air pressure was readjusted, a load twice as large as the JIS load was applied to the tire, and a maximum of 20,000 km was run on a drum having a diameter of about 3 m at a speed of 60 km / h.
Then, the distance traveled until the tire broke down was measured and evaluated according to the following evaluation criteria. The longer the travel distance, the better the durability of the tire, and it can be said that it is practically preferable if it is classified as [A] or [B]. The results are shown in Tables 1-6.
(Evaluation criteria)
A: Completed 20,000 km.
B: The travel distance until the failure occurred was 10,000 km or more and less than 20,000 km.
C: The travel distance until the failure occurred was less than 10,000 km.
表中に示す組成の単位は、特に示さない限り「部」である。
表中の成分は、次のとおりである。
(金属コード)
・「1+5 SC」:平均直径φ1.15mmのマルチフィラメント(φ0.35mmのモノフィラメント(スチール製、強力:280N、伸度:3%)7本を撚った撚り線
・「3+8 SC」:平均直径φ0.90mmのマルチフィラメント(φ0.20mmのモノフィラメント(スチール製、強力:120N、伸度:3%)11本を撚った撚り線
・「1+0 SC(モノフィラメント)」:平均直径φ1.25mmのモノフィラメント(スチール製、強力:2700N、伸度:7%)
The unit of the composition shown in the table is “part” unless otherwise specified.
The components in the table are as follows.
(Metal cord)
・ "1 + 5 SC": Twisted strands of 7 multifilaments with an average diameter of φ1.15 mm (φ0.35 mm monofilament (steel, strength: 280 N, elongation: 3%) ・ “3 + 8 SC”: average diameter φ0.90mm multifilament (φ0.20mm monofilament (steel, strength: 120N, elongation: 3%), stranded wire twisted 11 strands; “1 + 0 SC (monofilament)”: monofilament with average diameter φ1.25mm (Steel, strong: 2700N, elongation: 7%)
(接着層)
・オレフィン系熱可塑性エラストマー:三井化学社製、無水マレイン酸変性オレフィン系熱可塑性エラストマー、「アドマーQE060」、融点140℃
・ポリエステル系熱可塑性エラストマー:三菱化学社製、無水マレイン酸変性ポリエステル系熱可塑性エラストマー、「プリマロイ−AP GQ730」、融点204℃
・PP:プライムポリマー社製、未変性のポリプロピレン樹脂、「J−700GP」、融点163℃
・TPC:東レ・デュポン社製、ポリエステル系熱可塑性エラストマー、「ハイトレル5557」、融点207℃
・ゴム接着剤:天然ゴム100部に対し、カーボンブラック〔東海カーボン(株)製、N330〕60部、酸化亜鉛8部、加硫促進剤N,N’−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド〔大内新興化学工業(株)製、商品名:ノクセラーDZ〕1部、老化防止剤N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン〔大内新興化学工業(株)製、商品名:ノクラック6C〕2部、及び硫黄5部を配合し、145℃で180分間加硫することにより調製したゴム接着剤
(Adhesive layer)
Olefin-based thermoplastic elastomer: manufactured by Mitsui Chemicals, maleic anhydride-modified olefin-based thermoplastic elastomer, “Admer QE060”, melting point 140 ° C.
Polyester thermoplastic elastomer: manufactured by Mitsubishi Chemical Corporation, maleic anhydride modified polyester thermoplastic elastomer, “Primalloy-AP GQ730”, melting point 204 ° C.
PP: manufactured by Prime Polymer, unmodified polypropylene resin, “J-700GP”, melting point: 163 ° C.
-TPC: manufactured by Toray DuPont, polyester thermoplastic elastomer, "Hytrel 5557", melting point 207 ° C
Rubber adhesive: 100 parts of natural rubber, 60 parts of carbon black [manufactured by Tokai Carbon Co., Ltd., N330], 8 parts of zinc oxide, vulcanization accelerator N, N′-dicyclohexyl-2-benzothiazolylsulfene Amide [manufactured by Ouchi Shinsei Chemical Co., Ltd., trade name: Noxeller DZ] 1 part, anti-aging agent N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine [Ouchi Shinsei Chemical Industry Co., Ltd., trade name: NOCRACK 6C] rubber adhesive prepared by blending 2 parts and 5 parts sulfur and vulcanizing at 145 ° C. for 180 minutes
(被覆樹脂層)
・ポリエステル系熱可塑性エラストマー:東レ・デュポン社製、「ハイトレル5557」、融点207℃
・ポリアミド系熱可塑性エラストマー:宇部興産社製、「UBESTA XPA9055X1」、融点165℃
(Coating resin layer)
・ Polyester thermoplastic elastomer: "Hytrel 5557" manufactured by Toray DuPont, melting point 207 ° C
Polyamide thermoplastic elastomer: “UBESTA XPA9055X1” manufactured by Ube Industries, melting point 165 ° C.
上記表1〜表6に示した評価結果から分かるように、接着層が、極性官能基含有樹脂を含み、金属部材が、銅めっき、亜鉛めっき、及び銅−亜鉛めっきのうちの何れかのめっきにより表面が形成されており、めっきにおける銅の含有率が0%又は55%以上100%以下である樹脂金属複合部材を用いた本実施例では、比較例に比べ、接着耐久性及び湿熱耐久性の両方に優れることが分かった。 As can be seen from the evaluation results shown in Tables 1 to 6, the adhesive layer includes a polar functional group-containing resin, and the metal member is any one of copper plating, zinc plating, and copper-zinc plating. In this example using a resin-metal composite member in which the surface is formed by plating and the copper content in plating is 0% or 55% or more and 100% or less, compared to the comparative example, adhesion durability and wet heat durability It turns out that both are excellent.
10 タイヤ、12 ビード部、16 クラウン部(外周部)、17 タイヤ骨格体、18 ビードコア、20 リム、21 ビードシート、22 リムフランジ、24 シール層、25 接着層、26 樹脂コード部材、27 金属部材、28 被覆樹脂層、30 トレッド、D 金属部材の直径、L 金属部材の埋設深さ 10 tires, 12 bead parts, 16 crown parts (peripheral parts), 17 tire frame bodies, 18 bead cores, 20 rims, 21 bead sheets, 22 rim flanges, 24 seal layers, 25 adhesive layers, 26 resin cord members, 27 metal members , 28 Coating resin layer, 30 tread, D metal member diameter, L metal member embedment depth
Claims (9)
前記接着層が、極性官能基を有する熱可塑性樹脂及び極性官能基を有する熱可塑性エラストマーからなる群から選択される少なくとも一種の極性官能基含有樹脂を含み、
前記金属部材は、銅めっき、亜鉛めっき、及び銅−亜鉛めっきのうちの何れかのめっきにより表面が形成されており、前記めっきにおける銅の含有率が0%又は55%以上100%以下である、
タイヤ用樹脂金属複合部材。 A resin-metal composite member for a tire having a metal member, an adhesive layer, and a covering resin layer in this order,
The adhesive layer includes at least one polar functional group-containing resin selected from the group consisting of a thermoplastic resin having a polar functional group and a thermoplastic elastomer having a polar functional group;
The metal member has a surface formed by any one of copper plating, zinc plating, and copper-zinc plating, and the copper content in the plating is 0% or 55% to 100%. ,
Resin metal composite member for tires.
請求項1〜請求項6のいずれか1項に記載のタイヤ用樹脂金属複合部材と、
を有するタイヤ。 An annular tire skeleton containing an elastic material;
The resin-metal composite member for tire according to any one of claims 1 to 6,
Tire with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017118900A JP2019001357A (en) | 2017-06-16 | 2017-06-16 | Resin metal composite member for tire and tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017118900A JP2019001357A (en) | 2017-06-16 | 2017-06-16 | Resin metal composite member for tire and tire |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019001357A true JP2019001357A (en) | 2019-01-10 |
Family
ID=65005640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017118900A Pending JP2019001357A (en) | 2017-06-16 | 2017-06-16 | Resin metal composite member for tire and tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019001357A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61181843A (en) * | 1985-01-31 | 1986-08-14 | ザ・フアイヤーストーン・タイヤ・アンド・ラバー・カンパニー | Rubber composition improved in adhesiveness to metal |
JPH092015A (en) * | 1995-06-26 | 1997-01-07 | Yokohama Rubber Co Ltd:The | Pneumatic radial tire |
JP2012528252A (en) * | 2009-05-25 | 2012-11-12 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | Self-adhesive composite reinforcement and associated manufacturing method, particularly for tires |
JP2014510800A (en) * | 2011-02-03 | 2014-05-01 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | Composite reinforcement seeded with a polymer layer that is self-adhesive to rubber |
WO2014192811A1 (en) * | 2013-05-30 | 2014-12-04 | 株式会社ブリヂストン | Metal cord and rubber composite-body |
WO2015156406A1 (en) * | 2014-04-11 | 2015-10-15 | 株式会社ブリヂストン | Resin-metal composite material and tire using same |
JP2016097944A (en) * | 2014-11-26 | 2016-05-30 | 株式会社ブリヂストン | tire |
JP2016097945A (en) * | 2014-11-26 | 2016-05-30 | 株式会社ブリヂストン | tire |
-
2017
- 2017-06-16 JP JP2017118900A patent/JP2019001357A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61181843A (en) * | 1985-01-31 | 1986-08-14 | ザ・フアイヤーストーン・タイヤ・アンド・ラバー・カンパニー | Rubber composition improved in adhesiveness to metal |
JPH092015A (en) * | 1995-06-26 | 1997-01-07 | Yokohama Rubber Co Ltd:The | Pneumatic radial tire |
JP2012528252A (en) * | 2009-05-25 | 2012-11-12 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | Self-adhesive composite reinforcement and associated manufacturing method, particularly for tires |
JP2014510800A (en) * | 2011-02-03 | 2014-05-01 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | Composite reinforcement seeded with a polymer layer that is self-adhesive to rubber |
WO2014192811A1 (en) * | 2013-05-30 | 2014-12-04 | 株式会社ブリヂストン | Metal cord and rubber composite-body |
WO2015156406A1 (en) * | 2014-04-11 | 2015-10-15 | 株式会社ブリヂストン | Resin-metal composite material and tire using same |
JP2016097944A (en) * | 2014-11-26 | 2016-05-30 | 株式会社ブリヂストン | tire |
JP2016097945A (en) * | 2014-11-26 | 2016-05-30 | 株式会社ブリヂストン | tire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6356664B2 (en) | tire | |
US20200115599A1 (en) | Resin-metal composite member for tire, and tire | |
JPWO2013129524A1 (en) | tire | |
JP2013082311A (en) | Tire | |
JP6604840B2 (en) | tire | |
JP6587923B2 (en) | tire | |
WO2017104663A1 (en) | Tire | |
WO2018230273A1 (en) | Resin-metal composite member for tire, and tire | |
US11135875B2 (en) | Resin-metal composite member for tire, and tire | |
WO2018230249A1 (en) | Resin-metal composite member for tire, and tire | |
JP5905298B2 (en) | tire | |
JP5840534B2 (en) | tire | |
WO2017104214A1 (en) | Tire | |
JP6114498B2 (en) | tire | |
JP6745284B2 (en) | tire | |
JP2019001357A (en) | Resin metal composite member for tire and tire | |
WO2018230272A1 (en) | Resin-metal composite member for tire, and tire | |
WO2021117419A1 (en) | Resin composition, resin/metal composite member, and tire | |
JP6590679B2 (en) | tire | |
JP6014714B2 (en) | Tire and manufacturing method thereof | |
JP2020062935A (en) | Wire-resin composite member for tire, and tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201215 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210803 |