WO2019208725A1 - Pharmaceutical composition, and method for producing pharmaceutical composition - Google Patents

Pharmaceutical composition, and method for producing pharmaceutical composition Download PDF

Info

Publication number
WO2019208725A1
WO2019208725A1 PCT/JP2019/017769 JP2019017769W WO2019208725A1 WO 2019208725 A1 WO2019208725 A1 WO 2019208725A1 JP 2019017769 W JP2019017769 W JP 2019017769W WO 2019208725 A1 WO2019208725 A1 WO 2019208725A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
dispersion
abr
particles
mass
Prior art date
Application number
PCT/JP2019/017769
Other languages
French (fr)
Japanese (ja)
Inventor
史朗 園家
辻畑 茂朝
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020515582A priority Critical patent/JPWO2019208725A1/en
Publication of WO2019208725A1 publication Critical patent/WO2019208725A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/28Antiandrogens

Definitions

  • the present disclosure relates to a pharmaceutical composition and a method for producing the pharmaceutical composition.
  • Abiraterone exhibits irreversible and selective inhibitory action of CYP17 (17 ⁇ -hydroxylase / C17,20-lyase) and has been reported to inhibit androgen synthesis in testis, adrenal gland and prostate tumor tissue.
  • Abiraterone has been reported to be useful as an oral prostate cancer therapeutic agent in the form of abiraterone acetate, a prodrug.
  • Abiraterone acetate is hydrophobic and has low water solubility.
  • a pharmaceutical composition that is administered orally has low solubility in water, so it does not have solubility that can be quickly absorbed in the digestive tract, and is discharged outside the body before it is completely absorbed into the circulating blood. It may become.
  • Various studies have been made for the purpose of formulating abiraterone acetate having good absorbability when orally administered.
  • abiraterone acetate contain additives and surfactants such as hydroxypropylmethyl cellulose, having the following D 50 size 1000 .mu.m, high abiraterone acetate dispersion of dissolution rate has been proposed (WO 2014/009436 Issue).
  • a pharmaceutical composition in which an additive such as abiraterone acetate and hydroxypropylmethylcellulose is heated and dissolved in a solvent to prepare a self-emulsifying preparation, Solplus (a product) And the like (see US Patent Publication No. 2016/0331763) for dispersing abiraterone acetate into fine particles by a solvent precipitation method.
  • a method has been proposed in which abiraterone acetate is dry pulverized in the presence of lactose and an ionic surfactant to obtain a fine particle preparation of 100 nm to 300 nm (see JP-T-2017-528457).
  • 2016/0151392 is refined by adding a solubilizing agent and a surfactant more than 8 times the amount of abiraterone acetate, so that the formulation size increases, There is concern about the burden on the recipient.
  • the dispersion described in U.S. Patent Publication No. 2016/0331763 is obtained by a solvent precipitation method.
  • the powdering method in which the solvent is removed from the organic solvent system has low formulation efficiency and there is a concern about the residual solvent. There are problems such as.
  • the problem to be solved by one embodiment of the present invention is to provide a pharmaceutical composition containing fine particles of abiraterone acetate which is stable even in the digestive tract.
  • the subject of another one Embodiment of this invention is providing the manufacturing method of the pharmaceutical composition containing the fine particle of abiraterone acetate stable also in a digestive tract.
  • Means for solving the above problems include the following embodiments.
  • a pharmaceutical composition comprising abiraterone acetate particles having an average particle diameter of 50 nm to 200 nm, and 10% by mass to 150% by mass of hydroxypropylcellulose with respect to the content of abiraterone acetate particles.
  • ⁇ 3> The pharmaceutical composition according to ⁇ 1> or ⁇ 2>, further comprising a surfactant.
  • the surfactant is selected from the group consisting of polyoxyethylene polyoxypropylene glycol, lauromacrogol, sodium deoxycholate, polyoxyethylene hydrogenated castor oil, polyoxyethylene hydroxystearate, polysorbate 20, and polysorbate 80.
  • the pharmaceutical composition according to ⁇ 3> which is at least one kind.
  • ⁇ 5> The pharmaceutical composition according to ⁇ 3> or ⁇ 4>, wherein the content of the surfactant is 0.1% by mass to 40% by mass with respect to the content of abiraterone acetate.
  • ⁇ 6> The pharmaceutical composition according to any one of ⁇ 3> to ⁇ 5>, wherein the content of the surfactant is more than 0% by mass and 100% by mass or less with respect to the content of hydroxypropylcellulose.
  • ⁇ 7> The pharmaceutical composition according to any one of ⁇ 1> to ⁇ 6>, which is a solid preparation.
  • the pharmaceutical composition according to ⁇ 7> which is a powder formulation.
  • it contains a pharmaceutically acceptable additive for molding a solid preparation containing at least one selected from the group consisting of an excipient, a disintegrant, and a lubricant, and ⁇ 7> is a tablet The pharmaceutical composition as described.
  • ⁇ 10> The pharmaceutical composition according to ⁇ 9>, wherein the total content of the pharmaceutically acceptable additive for solid preparation molding is 10% by mass to 80% by mass with respect to the total mass of the pharmaceutical composition. .
  • ⁇ 11> The pharmaceutical composition according to any one of ⁇ 1> to ⁇ 10>, which is used for oral administration.
  • a dispersion to be dispersed containing 10% by mass to 150% by mass of hydroxypropyl cellulose and a dispersion medium with respect to the content of abiraterone acetate and abiraterone acetate is dispersed by a wet pulverization method to obtain an average.
  • a method for producing a pharmaceutical composition comprising a step of obtaining a dispersion containing particles of abiraterone acetate having a particle diameter of 50 nm to 200 nm.
  • the manufacturing method of the pharmaceutical composition as described in ⁇ 12> or ⁇ 13> including the process of removing a dispersion medium from a dispersion and obtaining a powder formulation.
  • a pharmaceutical composition containing fine particles of abiraterone acetate that are stable even in the digestive tract.
  • the pharmaceutical composition of the present disclosure and the method for producing the pharmaceutical composition will be described in detail.
  • the constituent elements described below may be described based on typical embodiments of the present disclosure, but the present disclosure is not limited to such embodiments.
  • “to” indicating a numerical range is used in a sense including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. means.
  • the term “step” is not limited to an independent step, and is included in the term if the intended purpose of the step is achieved even when it cannot be clearly distinguished from other steps.
  • the pharmaceutical composition of the present disclosure includes abiraterone acetate particles having an average particle diameter of 50 nm to 200 nm, and 10% by mass to 150% by mass of hydroxypropylcellulose with respect to the content of the abiraterone acetate particles.
  • abiraterone acetate may be abbreviated as “ABR” and hydroxypropylcellulose may be abbreviated as “HPC”, respectively.
  • ABR abiraterone acetate
  • HPC hydroxypropylcellulose
  • ABR is rapidly hydrolyzed to abiraterone in vivo and develops an inhibitory effect on CYP17.
  • ABR used in the pharmaceutical composition of the present disclosure is a compound in which the hydroxyl group of abiraterone is converted to acetate, and is also referred to as 17- (pyridin-3-yl) androst-5,16-dien-3 ⁇ -yl acetate.
  • 17- (pyridin-3-yl) androst-5,16-dien-3 ⁇ -yl acetate The There is no restriction
  • ABR is included in the pharmaceutical composition of the present disclosure in the form of particles having an average particle size of 50 nm to 200 nm.
  • the average particle size of the ABR particles is more preferably 50 nm to 180 nm, and further preferably 50 nm to 150 nm.
  • the average particle diameter of the ABR particles is determined by measuring the particle diameter in the dispersion by a dynamic light scattering method, and adopting the median diameter of the obtained scattering intensity distribution as the particle diameter.
  • Examples of commercially available particle size measuring devices using the dynamic light scattering method include Nanotrac UPA (Nikkiso Co., Ltd.), dynamic light scattering type particle size distribution measuring device LB-550 (Horiba Ltd.), A dense particle size analyzer FPAR-1000 (trade name: manufactured by Otsuka Electronics Co., Ltd.) or the like can be used.
  • Nanotrac UPA Nikkiso Co., Ltd.
  • dynamic light scattering type particle size distribution measuring device LB-550 Horiba Ltd.
  • a dense particle size analyzer FPAR-1000 trade name: manufactured by Otsuka Electronics Co., Ltd.
  • the average particle size of the ABR particles can be appropriately adjusted by controlling the type, content, dispersion conditions, and the like of the HPC as a dispersant described later.
  • the average particle size of the ABR particles is the particle size in the pharmaceutical composition.
  • the particle size of the ABR raw material used for preparing the pharmaceutical composition is not necessarily in the above range.
  • the content of ABR in the pharmaceutical composition of the present disclosure can be appropriately selected depending on the purpose of treatment or prevention within a pharmaceutically acceptable range.
  • a single dose of ABR contained in a pharmaceutical composition can be in the range of 5 mg to 1000 mg.
  • HPC ⁇ Hydroxypropyl cellulose: HPC>
  • the pharmaceutical composition of the present disclosure contains at least one of 10% by mass to 150% by mass of HPC with respect to the content of ABR particles.
  • the HPC functions as a dispersant for the ABR particles.
  • ABR particles are in the form of nano-sized particles having an average particle diameter in the range of 50 nm to 200 nm in the pharmaceutical composition. It exists stably.
  • HPC is preferably HPC having a weight average molecular weight of 140,000 or less.
  • the weight average molecular weight of HPC is more preferably 100,000 or less, and further preferably 50,000 or less.
  • the weight average molecular weight of HPC when using a commercially available product, the catalog value of the commercially available product may be adopted. Examples of the method for directly measuring the weight average molecular weight of HPC include a method using gel permeation chromatography (GPC) or size exclusion chromatography (SEC).
  • GPC gel permeation chromatography
  • SEC size exclusion chromatography
  • the weight average molecular weight of HPC that is a water-soluble polymer can be determined as a value of weight average molecular weight in terms of polystyrene (PST) or pullulan using GPC.
  • PST polystyrene
  • GPC pullulan
  • HPC HPC
  • NISSO HPC-SSL trade name, molecular weight: 40,000
  • NISSO HPC-SL trade name, molecular weight: 100,000
  • NISSO HPC-L trade name, molecular weight: 140,000
  • NISSO NISSO
  • HPC-LM (trade name, molecular weight: 180,000, manufactured by Nippon Soda Co., Ltd.), Klucel ELF Pharm (trade name, molecular weight: 40,000), Klucel EF Pharm (trade name, molecular weight: 80,000), Klucel LF Pharm (trade name, molecular weight: 95,000), Klucel JF Pharm (trade name, molecular weight: 140,000, manufactured by Ashland) and the like.
  • the content of HPC is 10% by mass to 150% by mass, preferably 20% by mass to 100% by mass, and preferably 30% by mass to 80% by mass with respect to the total mass of the ABR particles contained in the pharmaceutical composition. More preferably, it is mass%. That is, the HPC content is in the range of 10 to 150 parts by weight, preferably in the range of 20 to 100 parts by weight, with respect to 100 parts by weight of the ABR particles contained in the pharmaceutical composition. More preferably, it is 30 to 80 parts by mass.
  • the HPC content is in the above range, the ABR particles in the obtained pharmaceutical composition are more stably dispersed and the aggregation of the particles is more effectively suppressed.
  • the average particle size of the ABR particles is 50 nm to 200 nm. Easy to be in range.
  • the pharmaceutical composition of the present disclosure may further contain a surfactant in addition to the aforementioned HPC.
  • the surfactant can be used as a dispersion aid or a dispersion stabilizer.
  • the surfactant include polyoxyethylene hydrogenated castor oil (for example, polyoxyethylene hydrogenated castor oil 40, polyoxyethylene hydrogenated castor oil 50, polyoxyethylene hydrogenated castor oil 60, etc.), polysorbate 80, polysorbate 65, polysorbate 40, polysorbate 20, poly Oxyethylene sorbitan monolaurate, polyethylene glycol monostearate, polyoxyethylene lauryl ether (eg Lauromacrogol BL-9, Lauromacrogol BL-25), polyoxyethylene polyoxypropylene glycol (poloxamer, pluronics, eg Poloxamer 188, poloxamer 407), polyoxyethylene hydroxystearate, sodium lauryl sulfate, sodium deoxycholate, etc.
  • polyoxyethylene hydrogenated castor oil for example, polyoxyethylene
  • the surfactant is selected from the group consisting of polyoxyethylene polyoxypropylene glycol, lauromacrogol, sodium deoxycholate, polyoxyethylene hydrogenated castor oil, polyoxyethylene hydroxystearate, polysorbate 20, and polysorbate 80. It is preferable to include at least one, and it is more preferable to include at least one selected from polyoxyethylene polyoxypropylene glycol and polyoxyethylene hydrogenated castor oil.
  • the content of the surfactant is preferably 0.1% by mass to 40% by mass with respect to the content of ABR in the pharmaceutical composition. More preferably, the content is from 30% by mass to 30% by mass. Further, the content of the surfactant when the pharmaceutical composition of the present disclosure contains a surfactant is preferably more than 0% by mass and 100% by mass or less with respect to the content of HPC in the pharmaceutical composition, It is more preferably 5% by mass to 100% by mass, and further preferably 7.5% by mass to 75% by mass. When the content of the surfactant in the pharmaceutical composition is in the above range, the surfactant can sufficiently improve the dispersion stability of the ABR particles in the digestive tract, and the surfactant can be contained. There is no concern that the ABR absorbability decreases when the amount is too large, and that the surfactant has an effect on the living body.
  • a method for producing a pharmaceutical composition there may be mentioned a method in which ABR is added to a solution in which HPC is dissolved and subjected to a dispersion treatment.
  • the manufacturing method is not limited to the above method.
  • the detail of the preferable manufacturing method of a pharmaceutical composition is mentioned later.
  • the dosage form of the pharmaceutical composition of the present disclosure is not particularly limited as long as it can be administered to a living body.
  • the pharmaceutical composition of the present disclosure is preferably provided for oral administration.
  • Examples of the dosage form include tablets, granules, powders, fine granules, capsules, liquids, syrups and the like as oral dosage forms. Tablets include tablets, sugar-coated tablets, etc., chewable tablets, troches, drops, solubilized or disintegrated rapidly in the oral cavity, and so-called oral cavity prepared with granular materials that can be taken without water Includes disintegrating tablets, and further includes redissolved tablets such as effervescent tablets that are used after dissolution.
  • Granules, powders, and fine granules include dry syrups that are dissolved at the time of use, and also include granules that dissolve or disintegrate rapidly in the oral cavity and can be taken without water.
  • the liquid preparation and syrup preparation may further contain various pharmaceutically acceptable dispersion media.
  • the pharmaceutical composition of the present disclosure is preferably a solid preparation. Since the pharmaceutical composition of the present disclosure has good stability of ABR particles in the digestive tract, that is, in the stomach and intestines, the powder formulation, the tablet obtained by compressing the powder formulation, and the powder formulation are encapsulated. It can also be suitably used as a solid preparation such as a capsule.
  • the solid preparation in the present disclosure includes a powder preparation (powder), a granule containing the powder preparation and an excipient, a tablet obtained by tableting the powder preparation, a coated tablet coated with the obtained tablet, It includes forms such as capsules in which powder preparations are encapsulated.
  • the total mass of the formulation administered orally per day is 2400 mg or less from the viewpoint of ease of taking. Is preferable, and 2000 mg or less is more preferable.
  • the mass per tablet is preferably 600 mg or less, more preferably 500 mg or less.
  • the mass per tablet is 1200 mg or less, and it is further more preferable that it is 1000 mg or less.
  • the pharmaceutical composition of the present disclosure may contain various pharmaceutical additives that are generally used and pharmaceutically acceptable as long as the effects are not hindered.
  • the formulation additive include an excipient, a disintegrant, a binder, a lubricant, a colorant, a flavoring agent, a sweetener, a corrigent, and a pH adjuster.
  • the solid formulation molding additive in the present disclosure is an additive used to mold a pharmaceutical composition containing ABR into a solid formulation, for example, a powder formulation, a granule, a capsule, a tablet, or the like. Point to.
  • excipient When the pharmaceutical composition of the present disclosure is a solid preparation including a powder preparation and a tablet, it is preferable to include an excipient for forming a solid preparation in order to maintain a stable dosage form.
  • excipients include sugars (eg, glucose, lactose, sucrose, maltose, trehalose, dextrin, cyclodextrin, etc.), sugar alcohols (eg, mannitol, erythritol, isomalt, lactitol, maltitol, sorbitol, xylitol, inositol, etc.) , Starch (eg, corn starch, potato starch, rice starch, wheat starch, etc.), crystalline cellulose, light anhydrous silicic acid / crystalline cellulose, calcium salt (eg, anhydrous calcium phosphate, light anhydrous calcium silicate, calcium silicate, calcium sulfate) , Calcium carbonate, calcium lactate),
  • Mannitol is an optically active substance, and there are d-form, l-form, racemate, and the like, and naturally-occurring d-mannitol is suitable as an excipient.
  • the excipient saccharides or sugar alcohols are preferable from the viewpoints of disintegration and aggregation suppression of ABR particles.
  • the pharmaceutical composition of the present disclosure is used as a powder formulation, granule, capsule or tablet, light anhydrous silicic acid / crystalline cellulose, d-mannitol, sucrose, lactose, trehalose, erythritol, maltitol, and It is preferable to include at least one excipient selected from the group consisting of maltose.
  • the pharmaceutical composition of the present disclosure may further contain a water-soluble polymer other than HPC (hereinafter sometimes referred to as other water-soluble polymer).
  • a water-soluble polymer other than HPC hereinafter sometimes referred to as other water-soluble polymer.
  • HPC water-soluble polymer
  • the dispersion stability of ABR particles can be improved in combination with HPC.
  • it when used in powder formulations including tablets, it functions as a binder, enhances the stability of solid formulations such as powder formulations, and dissolves rapidly when solid formulations are taken orally.
  • the components contained in the composition can be redispersed.
  • water-soluble polymer examples include cellulose derivatives other than HPC (for example, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose sodium, carboxypropyl methyl cellulose, etc.), hydroxypropyl starch, dextrin, carbomer (cosmetic raw material name: crosslinked) Polyacrylic acid), vinylpyrrolidone polymers (for example, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymer, etc.), polyvinyl alcohol, polyethylene glycol and the like.
  • HPC for example, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose sodium, carboxypropyl methyl cellulose, etc.
  • hydroxypropyl starch dextrin
  • vinylpyrrolidone polymers
  • the pharmaceutical composition may contain a disintegrant.
  • a disintegrant When the pharmaceutical composition is in the form of a tablet, granule or the like, the pharmaceutical composition contains a disintegrating agent, so that the preparation taken orally disintegrates more quickly and improves the solubility in the digestive tract faster. The effect can be expected.
  • disintegrants include carmellose, crospovidone, carmellose calcium, croscarmellose sodium, sodium starch glycolate, partially pregelatinized starch, pregelatinized starch, hydroxypropyl starch, low-substituted hydroxypropylcellulose, and processed corn starch. Crospovidone, sodium starch glycolate, partially pregelatinized starch, croscarmellose sodium, and carmellose calcium are preferred.
  • the pharmaceutical composition can contain a pH adjuster as necessary during production.
  • a pH adjuster any biocompatible acid or alkali agent can be used without particular limitation.
  • Examples of the known pH adjuster include sodium hydroxide (NaOH), hydrochloric acid (HCl) and the like.
  • the pharmaceutical composition may contain a lubricant, a coloring agent, a flavoring agent, a sweetening agent, a corrigent, and the like for the purpose of improving the appearance and feel when ingested orally.
  • a lubricant include magnesium stearate, calcium stearate, talc, and sucrose fatty acid ester.
  • the colorant include edible colorants such as edible yellow No. 5 dye, edible red No. 2 dye, edible blue No. 2 dye, edible lake dye, yellow ferric oxide, and titanium oxide.
  • flavoring agents include orange flavor, lemon flavor, and other various flavors that can be taken orally.
  • sweetening agent examples include aspartame, stevia, thaumatin, sodium saccharin, dipotassium glycyrrhizinate and the like.
  • corrigent examples include L-menthol, camphor, mint, sodium L-glutamate, disodium inosinate, magnesium chloride and the like.
  • the preparation additives described above may be appropriately added at an appropriate step in the production of the pharmaceutical composition.
  • a method for producing a pharmaceutical composition of the present disclosure includes ABR and HPC having a content of 10% to 150% by mass with respect to the content of ABR in the pharmaceutical composition. And a dispersion medium containing a dispersion medium is dispersed by a wet pulverization method to obtain a dispersion containing ABR particles having an average particle diameter of 50 nm to 200 nm (step (I)).
  • the dispersion by the wet pulverization method in the production method of the present disclosure will be described in detail.
  • the average particle diameter of the ABR particles used as the raw material is arbitrary. Commercially available ABR may be used as a raw material as it is.
  • HPC is first dissolved in a solvent.
  • the solvent is selected according to the purpose. Among these, it is preferable to use water as the solvent in view of the better solubility of HPC and the higher degree of freedom of formulation of the resulting pharmaceutical composition.
  • the solvent which dissolves HPC can function as a dispersion medium for the dispersion as it is.
  • the water used for dissolving HPC is preferably ion-exchanged water, pure water, ultrapure water, water for injection, purified water or the like from the viewpoint that there are few impurities.
  • ABR as a raw material is added to the obtained HPC solution to prepare a dispersion.
  • the ABR particles in the obtained dispersion are dispersed by a wet pulverization method. More specifically, the dispersion is subjected to mechanical dispersion using a solid disperser, and solid ABR is pulverized in a dispersion medium to prepare a dispersion containing fine ABR particles.
  • Known solid dispersers used for the preparation of dispersions include a tribological shear force type disperser that applies a shear force directly to dispersed particles using a drive unit and a medium, and a shear force applied to dispersed particles via a liquid medium
  • a rheological shear type disperser includes a roll mill that disperses a slurry containing a solid dispersion through a plurality of rolls, a kneader that applies shear force to the slurry with a stirring blade, and beads in the slurry.
  • the media mill etc. which coexist media, such as these, and give a shearing force through media are mentioned.
  • Examples of the rheological shear force type disperser include various stirring type dispersers, high pressure dispersers, ultrasonic dispersers, and the like.
  • a high-shearing force is directly applied to solid ABR, and a mechanical disperser that pulverizes and disperses ABR forms fine and stable dispersion particles. From the viewpoint that it is easy to do. Therefore, in the step (I), it is more preferable to include a wet pulverization method using a tribological shear force type disperser suitable for the wet pulverization method, including a wet dispersion treatment method using a medium represented by a media mill. More preferably.
  • step (I) includes a wet dispersion treatment method using media, a dispersion in which fine ABR particles are stably dispersed can be obtained.
  • the medium can be appropriately selected from media such as balls and beads according to the particle size of the target dispersed particles. From the viewpoint that finer dispersed particles can be obtained, the beads are used as the media. Is preferably used.
  • Media materials used for dispersion include zirconia, alumina, steatite, silicon carbide, silicon nitride, silica, sand, menor, steel balls, stainless steel, glass and other inorganic compounds, polystyrene, polymethyl methacrylate, polytetrafluoroethylene, Examples thereof include polymer resins such as polyamide, polyethylene, polypropylene, polyetheretherketone (PEEK), and polyimide.
  • zirconia beads are preferable as the media from the viewpoint of dispersion power, durability, and the absence of fear of contamination due to the media.
  • Various media dispersers that add kinetic force to the media are known depending on the agitation method, media separation mechanism, vertical or horizontal type, cooling method, etc.
  • a bead mill equipped with a separation mechanism is preferable.
  • Commercial products of bead mill dispersers having a microbead separation mechanism such as 0.1 mm ⁇ or less, Ultra Apex Mill (trade name: Kotobuki Kogyo), Star Mill (trade name: Ashizawa Finetech), Pearl Mill (trade name: Buhler), OB mill (trade name: Freund Sangyo), dyno mill (trade name: WAB) and the like can be mentioned, and any of them can be used in the method for producing a pharmaceutical composition of the present disclosure.
  • the dispersing device that can be used for the distributed processing is not limited to the above-described example.
  • a dispersion apparatus that does not include a bead separation mechanism can be used in the manufacturing method of the present disclosure by adding a post-bead filtration step after the dispersion treatment.
  • a disperser that does not include a bead separation mechanism that can be used in the manufacturing method of the present disclosure include a ball mill, a sand grinder mill, and a planetary ball mill.
  • the ball mill is a dispersing device that places and rotates a pot formed of a material selected from magnetic, nylon, polymer, stainless steel, and the like in which slurry and beads are placed on a rotating table.
  • the planetary ball mill has a structure in which a vessel containing slurry and balls revolves while rotating, and has better dispersion efficiency than ordinary ball mills.
  • An example of a planetary ball mill is a planetary ball mill (trade name: Fritsch). Rotating / revolving nano-pulverizer NP-100 (trade name: Sinky) and the like.
  • the first stage dispersion process involves a step of pulverizing relatively coarse raw material particles of ABR to a certain size, for example, about 1 ⁇ m to 10 ⁇ m.
  • a method of performing second-stage dispersion to obtain particles is mentioned.
  • the wet pulverization method is not necessarily applied. That is, it is not necessary to use a wet disperser using a medium, and for example, a rheological shear force type disperser such as a high-speed stirring method may be used. However, from the viewpoint of dispersion efficiency, it is preferable to use a relatively large bead of 0.5 mm ⁇ or more and perform coarse dispersion with a media disperser.
  • the second-stage dispersion that is, the main dispersion is performed.
  • the second stage dispersion treatment it is preferable to carry out a pulverization dispersion treatment method using media, to which a media dispersion machine using fine beads of 0.3 mm ⁇ or less is applied as the media.
  • a dispersion is obtained in which the ABR particles are finely dispersed to an average particle size of about 50 nm to 200 nm, which is the target particle size.
  • a pulverization / dispersion method using a medium at any stage, and in the final stage of the dispersion process, a pulverization / dispersion process using a medium may be performed. More preferred.
  • the dispersion machine other than the media dispersion machine that can be used as an auxiliary to the coarse dispersion process, which is the first stage dispersion process is a rheological shear force type dispersion machine.
  • Stirrers such as homomixers, disper mixers, ultramixers, and CLEARMIX (trade name: M Technique), ultrasonic homogenizers, high-pressure homogenizers, and the like can be used.
  • High-pressure homogenizers include microfluidizer (trade name: microfluidics), nanomizer (trade name: Yoshida Kikai Kogyo), starburst (trade name: Sugino Machine), gorin homogenizer (trade name: APV), and Ranie homogenizer (product) Name: Lanier), high-pressure homogenizer (product name: Niro Soabi), homogenizer (product name: Sanwa Machinery), high-pressure homogenizer (product name: Izumi Food Machinery), ultra-high pressure homogenizer (product name: squid), etc. .
  • the mechanical distributed process may be a multistage distributed process having three or more stages.
  • the particles of ABR in the pharmaceutical composition of the present disclosure have HPC on at least a part of the particle surface.
  • the average particle diameter of the obtained ABR particles can be set to 50 nm to 200 nm as described above.
  • the average particle diameter of the dispersed particles is more preferably 50 nm to 180 nm, and further preferably 50 nm to 150 nm.
  • the pharmaceutical composition obtained by the production method of the present disclosure described above is a dispersion in which fine ABR particles are stably dispersed in a dispersion medium containing water.
  • the surfactant may be added after the dispersion treatment by the wet pulverization method, or may be added simultaneously with the HPC added as a dispersant during the dispersion treatment.
  • the ABR particles obtained by the wet pulverization method maintain a particle size of preferably 300 nm or less, more preferably 200 nm or less even in an environment in the digestive tract such as simulated gastric fluid and simulated intestinal fluid, and good absorbability can be expected.
  • the dispersion may be used as it is as a liquid, syrup, or lotion.
  • compositions more suitable for drinking can be obtained.
  • the method for producing the pharmaceutical composition of the present disclosure further comprises removing the dispersion medium from the dispersion containing ABR particles having an average particle diameter of 50 nm to 200 nm obtained in the above-described step (I), to obtain a solid preparation (Step (II)).
  • the method for removing the dispersion medium from the dispersion is not particularly limited, and a known method can be applied. In the present disclosure, “removing the dispersion medium” does not necessarily mean that the dispersion medium is completely removed to make it completely dry, but the dispersion medium is maintained to the extent that the dosage form as a solid preparation can be maintained. Reducing the content of.
  • Step (II) is a step in which the dispersion of ABR particles having an average particle diameter of 50 nm to 200 nm obtained in the above-described step (I) is used as a pharmaceutical composition as a solid preparation.
  • the dispersion medium obtained in the step (I) preferably a mixture of the dispersion and an excipient for solid preparation molding, is removed by a drying means such as spray drying to remove powder.
  • a solid formulation may be used.
  • the powdery solid preparation is also referred to as a powder preparation.
  • the excipient for forming a solid preparation is preferably at least one selected from mannitol, sucrose, lactose, trehalose, erythritol, maltitol, and maltose, and more preferably at least one selected from mannitol, lactose, and trehalose.
  • a powder preparation that hardly aggregates after drying can be obtained by using an excipient.
  • the obtained powder formulation can be directly subjected to a tableting process to produce a tablet, for example. Further, as will be described later, the powder preparation can be further granulated, and the resulting granulated product can be subjected to a tableting process to produce a tablet.
  • a drying means As a means for removing the dispersion medium (hereinafter sometimes referred to as a drying means), a known drying means can be used. For example, natural drying, heat drying, hot air drying, high frequency drying, ultrasonic drying, reduced pressure drying, Examples include vacuum drying, freeze drying, and spray drying. Although a drying means may be used independently, it can also be used in combination of 2 or more types of drying means.
  • freeze-drying in which water is removed by sublimating ice from a frozen material can also be applied.
  • freeze dryers that can be used for freeze drying include freeze dryer VD-800F (trade name: Taitec Co., Ltd.), Flexi Dry MP (trade name: FTS Systems), Duratop Durastop ( Product name: FTS Systems Co., Ltd.), Takara vacuum freeze dryer A type (product name: Takara ATM), desktop freeze dryer FD-1000 (trade name: Tokyo Rika Kikai Co., Ltd.), vacuum freeze dryer FD -550 (trade name: Tokyo Rika Kikai Co., Ltd.), vacuum freeze dryer (trade name: Takara Seisakusho Co., Ltd.), and the like.
  • spray drying is a preferable means from the viewpoint of achieving both production efficiency and quality.
  • a powder preparation as a solid preparation by removing moisture while spraying a mixture containing a liquid composition, which is a dispersion of ABR particles obtained in step (I), and an excipient. May be prepared.
  • Examples of commercially available spray dryers that can be used for spray drying include spray dryer SD-1000 (trade name: Tokyo Rika Kikai Co., Ltd.), spray dryer L-8i (trade name: Okawara Kako Co., Ltd.) ), Closed spray dryer CL-12 (trade name: Okawara Chemical Co., Ltd.), spray dryer ADL310 (trade name: Yamato Kagaku Co., Ltd.), mini spray dryer B-290 (trade name: BUCHI) , PJ-MiniMax (trade name: Powdering Japan Co., Ltd.), PHARMASD (trade name: Niro Co., Ltd.) and the like.
  • the above-described apparatus is used, for example, a treatment using a fluidized bed granulator / dryer MP-01 (trade name: POWREC Co., Ltd.), a fluidized bed built-in spray dryer FSD (trade name: Niro). It is also possible to use a method of simultaneously performing drying and granulation.
  • the obtained powder formulation contains ABR particles having HPC and an average particle diameter of 50 nm to 200 nm, and preferably at least one excipient, on at least a part of the surface.
  • the content of the excipient is preferably 10 parts by weight to 500 parts by weight, more preferably 20 parts by weight to 300 parts by weight, and more preferably 50 parts by weight to 200 parts by weight with respect to 100 parts by weight of the ABR particles contained in the powder preparation. Is more preferable.
  • the content of the excipient is in the above range, a good powder formulation can be obtained.
  • the obtained powder formulation can be directly used as a granular pharmaceutical composition. Further, a granulated product containing ABR particles, a tablet containing ABR particles, and the like can be formed using the powder preparation. That is, the production method of the present disclosure can further include a step (step (III)) of tableting the powder formulation obtained in the above-described step (II) to obtain a tablet as a solid formulation.
  • Step (II-2) is a step of granulating the powder preparation obtained in the above-mentioned step (II). It is preferable to granulate the powder preparation in advance to produce a granulated product, and to tablet the obtained granulated product to obtain a tablet as a solid preparation (step (III)). That is, when producing a tablet by the step (III), the method for producing a pharmaceutical composition of the present disclosure preferably further includes a step (II-2) for preparing a granulated product.
  • Granulation includes dry granulation and wet granulation, both of which can be used, but dry granulation is preferred from the viewpoint of suppressing aggregation of nano-order ABR particles. For wet granulation, known wet granulation methods such as fluidized bed granulation method, high speed stirring granulation method, extrusion granulation method and the like can be applied.
  • step (II-2) of preparing the granulated product at least one pharmaceutically acceptable additive for solid preparation is added to the powder formulation obtained in the step (II), followed by dry granulation. It is preferable to prepare a dry granulated product. Dry granulation refers to forming a dry granulated product (ie, a granular product) from a mixed powder without using a solution.
  • Examples of the dry granulation method include a compacting method and a slagging method, and the compacting method is preferable.
  • Examples of the compacting method include a method of producing a compression-molded product using a roller compactor and crushing it to obtain a dry granulated product.
  • an apparatus such as a roller compactor TF-LABO or TF-MINI (Freund Sangyo Co., Ltd.) can be used.
  • a tableting machine may be used for dry granulation, and a granulated product as a compression molded product is produced using the tableting machine. can do.
  • the granulated product can be produced by the tableting machine as follows. First, at least one pharmaceutically acceptable additive for solid preparation molding is added to the obtained powder preparation to obtain a mixed powder, and then compression molding is performed with a tableting machine to obtain a compression molding. Thereafter, the obtained compression-molded product is crushed in a mortar, and the pulverized product is sized with a test sieve, whereby dry granulation can be performed. By granulating with a test sieve, a granulated product of a desired size can be obtained.
  • Examples of the pharmaceutically acceptable additive for forming a solid preparation used in the step (II-2) for preparing the granulated product include a disintegrant, an excipient, and a lubricant described in the above-mentioned preparation additive.
  • Agents, binders, granulating agents, fluidization accelerators and the like can be mentioned, and one or more of these additives can be selected and used according to the target addition amount.
  • Step (III) is a step in which the powder mixture obtained in step (II) or the granulated product obtained in step (II-2) is compressed and tableted to form tablets. That is, the pharmaceutical composition as a tablet can be prepared by compressing and compressing the powder mixture obtained in the step (II) or the granulated product obtained in the step (II).
  • the powder mixture or the granulated product is added with at least a pharmaceutically acceptable additive for solid pharmaceutical preparation such as a disintegrant, an excipient, a lubricant, and a binder as necessary. Mixing with one type, the mixture obtained may be introduced into a mold of a tableting machine and compressed into tablets to obtain tablets.
  • a generally applied tableting method may be applied as it is, and there is no particular limitation.
  • the apparatus used for tableting include a rotary tablet making machine HT-AP series (Hatabe Laboratories), a tabletop rotary tableting machine PICCOLA (RIVA), a tabletop simple tablet molding machine HANDTAB-jr, HANDTAB-100 (Ichibashi Seiki Co., Ltd.).
  • the tableting pressure, tablet size, and the like are appropriately selected according to the purpose of use of the tablet.
  • process (III) which forms a tablet
  • examples include a step of mixing a pharmaceutically acceptable additive for solid pharmaceutical preparation containing a seed to prepare a powder mixture and tableting the obtained powder mixture.
  • the additive used for the preparation of the powder mixture preferably contains at least an excipient and a lubricant.
  • the solid formulation excipients that can be used during tablet formation include mannitol, corn starch, lactose hydrate, anhydrous lactose, crystalline cellulose, sorbitol, erythritol, light anhydrous silicic acid / crystalline cellulose, light anhydrous silicic acid, water containing Examples include silicon dioxide, calcium silicate, and mixtures thereof.
  • Examples of commercially available excipients for forming solid preparations include Pearitol Flash manufactured by Rocket Japan Co., Ltd.
  • a lubricant which is an additive for forming a solid preparation that can be used during tablet formation, has the function of improving the fluidity of the raw material powder and facilitating filling a fixed amount into the die of a tableting machine. It is a component that prevents capping, sticking, binding, and the like at the time of tableting and gives gloss to the surface of the tablet.
  • examples of the lubricant include magnesium stearate, calcium stearate, sodium stearyl fumarate, glyceryl monostearate, hydrogenated oil, talc, and light anhydrous silicic acid.
  • One type of lubricant may be used alone, or two or more types may be used in combination.
  • a commercially available product may be used as the lubricant. Examples of commercially available products include Partek MST (trade name: magnesium stearate) manufactured by Merck.
  • the mixing method for preparing the powder mixture is not particularly limited as long as each component can be mixed.
  • a mixing method for example, a method of mixing using a known mixer such as a V-type mixer (manufactured by Tsutsui Chemical Co., Ltd.) can be mentioned. Mixing conditions such as the time required for mixing can be appropriately adjusted depending on the amount and type of the powder preparation and the binder.
  • step (III) is a step of tableting the granulated product obtained in the step (II-2) as described above.
  • at least one pharmaceutically acceptable additive for solid preparation molding is mixed in advance to prepare a mixture, and the resulting mixture is compressed and compressed. Can be locked.
  • tableting the granulated product it is possible to mix at least one of the above-mentioned additives for molding a solid preparation with the granulated product as necessary, obtain a mixture, and then compress and compress the tablet. it can.
  • the step (III) is preferably a step of tableting the mixture containing the granulated product obtained in the step (II-2).
  • the pharmaceutical composition of the present disclosure is in the form of a solid preparation such as a granulated product or a tablet, the solid preparation is rapidly redispersed when immersed in water. Maintain a particle size of ⁇ 200 nm. Even when the pharmaceutical composition of the present disclosure is in the form of a powder preparation, good resorbability can be expected because it is redispersed in a state containing ABR particles having a target average particle size.
  • the pharmaceutical composition of the present disclosure in the form of a powder preparation or a tablet obtained by compressing the powder preparation is dissolved in a solvent such as water as needed, and is used for “preparation for use” pharmaceutical composition It can also be used as a product.
  • a powdered or tableted pharmaceutical composition and a solvent such as water or an aqueous solution are mixed, and the pharmaceutical composition, which is a solid preparation, is dissolved or dispersed in the solvent, so that the ABR particles are finely dispersed in the solvent. It can be redispersed into a good shape and good absorption can be expected.
  • the particles of ABR redispersed in water can be 50 nm to 200 nm, preferably 50 nm to 180 nm, and more preferably 50 nm to 150 nm.
  • ⁇ Treatment method> Other embodiments of the present disclosure also encompass a method of treatment comprising orally administering a pharmaceutical composition of the present disclosure comprising ABR particles as an active ingredient to an application subject to be treated.
  • ABR particles abiraterone acetate particles
  • Example 1 [Preparation of particle dispersion] Dissolve 300 mg of hydroxypropylcellulose (NISSO HPC-SSL, molecular weight: 40,000, manufactured by Nippon Soda Co., Ltd.) as a dispersant in 8 g of water, and add a pH adjuster (0.1 mol / L NaOH or HCl). After adjusting the pH to 6.8 to 7.2, an amount of water of a total amount of 9.25 g was added to obtain an HPC solution. 925 mg of the obtained HPC solution was added to 75 mg of abiraterone acetate (ABR) to obtain a dispersion.
  • NISSO HPC-SSL hydroxypropylcellulose
  • ABR abiraterone acetate
  • the obtained dispersion was mixed with 3 g of zirconia beads having a diameter of 0.1 mm as a medium, and the mixture was dispersed by a wet pulverization method using a medium at an external temperature of 5 ° C. for 20 hours, and pulverized ABR particles A dispersion liquid containing was obtained (step (I)).
  • ABR particles immediately after preparation The average particle size of the ABR particles in the obtained dispersion was measured by a dynamic light scattering method using a dense particle size analyzer FPAR-1000 (trade name: manufactured by Otsuka Electronics Co., Ltd.), and D 50 Asked. The results are shown in Table 1 below.
  • the first dissolution test used as a simulated gastric juice is a solution obtained by dissolving 2.0 g of sodium chloride in 7.0 mL (milliliter) of hydrochloric acid and water to make 1000 mL, is colorless and clear, and has a pH of about 1.2. is there.
  • FaSSIF Fested State Simulated Intestinal Fluid
  • FaSSIF Fested State Simulated Intestinal Fluid
  • used as simulated intestinal fluid was 2.18 g of an artificial intestinal fluid preparation reagent (Celeste Co., Ltd.), 6.19 g of sodium chloride and sodium dihydrogen phosphate dihydrate.
  • Examples 2 to 3, Comparative Examples 1 to 16 A dispersion of ABR particles was obtained in the same manner as in Example 1 except that the type of HPC or comparative dispersant was changed as shown in Table 1 below.
  • Table 1 the average particle size was measured immediately after preparation, after mixing with simulated gastric juice, and after mixing with simulated intestinal fluid in the same manner as in Example 1. The results are shown in Table 1 below.
  • HPC Hydroxypropylcellulose
  • NMSSO HPC-SSL Nippon Soda Co., Ltd., molecular weight: 40,000
  • Hydroxypropyl cellulose Nippon Soda Co., Ltd., molecular weight: 100,000
  • Hydroxypropyl cellulose Nippon Soda Co., Ltd., molecular weight: 140,000
  • Methylcellulose (METOLOSE (registered trademark) SM-4, manufactured by Shin-Etsu Chemical Co., Ltd.) Hydroxyethyl cellulose (Natrosol 250 (trade name), manufactured by ASHLAND Co., Ltd.) Polyvinylpyrrolidone (PVP K30, manufactured by BASF Corporation) Polyoxyethylene (196) polyoxypropylene (67) glycol (Kolliphor (registered trademark) P407, manufactured by BASF Corporation) Polyoxyethylene (160) polyoxypropylene (30) glycol (Kolliphor (registered trademark) P188, manufactured by BASF Corporation) Polyoxyethylene castor oil (Kolliphor (registered trademark) EL, manufactured by BASF Corporation) Polyoxyethylene hydroxystearate (Solutol HS15, manufactured by BASF Corporation) Polysorbate 20 (Fujifilm Wako Pure Chemical Industries, Ltd.) Polysorbate 80 (manufactured by NOF Corporation) Lauro Macrogol BL
  • the average particle size immediately after the preparation of the dispersion of ABR particles is 200 nm or less, and it is a dispersion of nano-order ABR particles. It was. Further, even after mixing with the simulated gastric fluid and further with the simulated intestinal fluid and allowing to stand, a significant increase in the average particle size of the ABR particles is suppressed, and after mixing with the simulated gastric fluid, the maximum average particle size is 221 nm. The maximum value of the average particle size after mixing with the simulated intestinal fluid was 265 nm, and it was confirmed that the ABR particles were maintained at an average particle size of nano order.
  • the average particle diameter of the ABR particles immediately after preparation was 200 nm or less in some cases, but the average particle diameter was significantly increased in the simulated gastric fluid.
  • An example was found.
  • Comparative Examples 12 to 13 when an ionic surfactant was used as a comparative dispersant, solidification was caused by gastrointestinal fluid, and generation and precipitation of coarse particles were observed.
  • Comparative Example 16 using hydroxypropyl methylcellulose having a structure similar to HPC as a comparative dispersant, the average particle diameter immediately after preparation exceeds 200 nm, and after mixing with simulated intestinal fluid, the average particle diameter is greatly increased.
  • the average particle size of the ABR particles is maintained not only immediately after the preparation but also in the nano-order by mixing with simulated gastric fluid and further simulated intestinal fluid. As a product, it can be expected that the absorbability of ABR in the body is good.
  • Examples 4 to 8 [Preparation of particle dispersion]
  • the content of ABR, the type of HPC, the content of HPC, and the dispersion treatment time of the dispersion used in Example 1 were changed as shown in Table 2 below.
  • a dispersion of particles was obtained.
  • the average particle diameter of the ABR particles immediately after preparation was measured in the same manner as in Example 1 for the obtained dispersion. The results are shown in Table 2 below.
  • the average particle diameters of the ABR particles in the pharmaceutical compositions of Examples 4 to 8 were all 200 nm or less, and fine particle dispersion was achieved.
  • Example 4 having a weight average molecular weight of 40,000 was slightly good from the viewpoint of particle diameter, but no significant difference was observed.
  • the average particle diameter of the dispersed particles tends to be reduced by increasing the dispersion treatment time, and the weight average molecular weight is 4 It can be seen that ten thousand examples obtain fine particles in a shorter time.
  • Example 9 Comparative Examples 17 to 19
  • HPC-SSL having a weight average molecular weight of 40,000 was used as the HPC, and the ABR content, the HPC content and the dispersion treatment time used in Example 1 were changed as shown in Table 3 below. Except for the above, a dispersion of ABR particles was obtained in the same manner as in Example 1. The average particle diameter of the ABR particles immediately after preparation was measured in the same manner as in Example 1 for the obtained dispersion. The results are shown in Table 3 below.
  • the pharmaceutical compositions of Examples 9 to 15 and Example 4 described in Table 2 containing 10% to 150% of HPC with respect to the content of ABR in the pharmaceutical composition are as follows:
  • the average particle size of the ABR particles contained was 200 nm or less.
  • Comparative Example 17 in which the content of HPC with respect to the content of ABR is 200% the average particle size becomes 200 nm or less by increasing the dispersion treatment time, but coarse particles that can be visually confirmed in the dispersion There was a problem in dispersibility.
  • Comparative Example 18 in which the HPC content is less than 10% relative to the ABR content, the average particle diameter of the obtained ABR particles exceeds 200 nm, and in Comparative Example 19, the amount of HPC as the dispersant is too small. In the dispersion treatment under the same conditions as in Examples 10 to 15, uniform dispersion could not be achieved.
  • Example 16 to Example 30 (Preparation of dispersion) Using HPC-SSL having a weight average molecular weight of 40,000 as HPC, a dispersion of ABR particles was obtained in the same manner as in Example 1. Next, an aqueous solution containing the excipients shown in Table 4 was prepared, and an amount of ABR and HPC contents shown in Table 4 was added to the resulting dispersion to prepare a mixed solution. Further, in Examples 22 to 28, when preparing an aqueous solution containing the excipients shown in Table 4, Kolliphor P407, which is a surfactant, was added and added to the dispersion to obtain a mixed solution. . (Step (I)). The average particle diameter of the ABR particles immediately after preparation was measured in the same manner as in Example 1 for the obtained mixed solution. The results are shown in Table 4 below.
  • step (I) The mixture obtained in the step (I) is spray-dried with a spray dryer (spray dryer, manufactured by BUCHI Co., Ltd.) at an inlet temperature of 100 ° C., an outlet temperature of 50 ° C., and a liquid speed of 3 g / min. Was obtained (step (II)).
  • a spray dryer spray dryer, manufactured by BUCHI Co., Ltd.
  • the average particle size of the ABR particles contained in the dispersion was 150 nm or less. Even when the dispersion is made into a powder preparation and redispersed in purified water, the average particle diameter of the ABR particles is 200 nm or less, indicating that the redispersibility of the powder preparation is excellent. For this reason, all of the pharmaceutical compositions of the Examples are pharmaceutical compositions that have good absorbability because they are rapidly re-dispersed nano-order ABR particles when administered orally even when powdered. Can be expected. From the comparison between Example 20 and Example 22, it can be seen that the average particle diameter of the ABR particles is smaller due to the coexistence of the surfactant, and the surfactant contributes to the redispersibility.
  • Example 31 to Example 40 HPC-SSL having a weight average molecular weight of 40,000 was used as HPC.
  • the content of ABR used and the content of HPC were the amounts shown in Table 5 below.
  • surfactants listed in Table 5 were included as dispersion aids.
  • the surfactant was initially added to the dispersion, and the dispersion containing the surfactant was subjected to the same dispersion treatment as in Example 1. Table 5 It was described as “dispersed substance” in the addition method.
  • a dispersion was obtained, and the obtained dispersion was allowed to contain a surfactant.
  • "After" The average particle diameter of the ABR particles immediately after preparation was measured in the same manner as in Example 1 for the obtained dispersion. The results are shown in Table 5 below.
  • the evaluation results of Example 1 not containing a surfactant are also shown in Table 5.
  • Example 2 Thereafter, in the same manner as in Example 1, the average particle diameter of ABR particles in the simulated gastrointestinal fluid was measured. The results are shown in Table 5 below. As a control, the evaluation results of Example 1 not containing a surfactant are also shown in Table 5.
  • the inclusion of the surfactant keeps the average particle diameter of the ABR particles smaller.
  • the surfactant is added to the material to be dispersed, and then dispersed in a wet pulverization method using a medium, and when added to a dispersion treated by a wet pulverization method.
  • the dispersibility of ABR particles is improved by the addition of the agent, and both the average particle size of the obtained ABR particles and the average particle size of the ABR particles in the simulated gastrointestinal fluid are compared with the case where no surfactant is added. It can be seen that it can be kept smaller and more stable.
  • Examples 41 to 48 A dispersion containing ABR particles was prepared in the same manner as in Example 35 except that at least one of the type and content of the surfactant was changed as shown in Table 6. That is, in each Example described in Table 6, the surfactant was added to a dispersion obtained by dispersing ABR by a wet pulverization method. The average particle size of the ABR particles in the dispersion and the average particle size of the ABR particles after mixing with the simulated gastrointestinal fluid were measured in the same manner as in Example 1. The results are shown in Table 6. In addition, as a control example, the evaluation results of Example 1 not containing a surfactant, Example 35 and Example 36 having different HPC contents are shown in Table 6.
  • Example 49 to Example 53 [Preparation of tablets]
  • a disintegrant for forming a solid formulation light anhydrous silicic acid / crystalline cellulose as an excipient, stearin as a lubricant Magnesium acid was mixed according to the formulation ratio used in the granulated product preparation step shown in Table 7 to obtain a powder mixture.
  • Mixing was carried out using a V-type mixer (VM-2 type Tsutsui Rika Kikai Co., Ltd.).
  • the obtained tablets were evaluated by the following methods. [1. Evaluation of redispersibility of tablets] The obtained tablet is pulverized in a mortar, and a part of the tablet is added to purified water at 25 ° C. in an amount such that the ABR contained in the pulverized product is 0.5 mg / mL, and is slowly gradually until there is no solid content visually. Stir and redisperse in purified water to prepare a redispersion. The average particle size of the ABR particles contained in the obtained redispersed liquid was measured in the same manner as the method for measuring the average particle size of the ABR particles immediately after preparation in Example 1. The results are also shown in Table 7.
  • Example 54 to Example 61 [Preparation of tablets]
  • the content of the powder preparation obtained in Example 29 obtained through the steps (I) and (II), and the contents of the disintegrant, excipient, and lubricant were changed to the ratios shown in Table 8. Except for the above, the same operation as in Example 49 was performed to obtain a mixed powder containing an ABR granulated product. An amount of mixed powder containing 100 mg of ABR was introduced into a mortar and the same operation as in Example 49 was performed to obtain tablets.
  • Example 49 [Tablet evaluation] [1. Evaluation of redispersibility of tablets] The tablet of each Example obtained was subjected to the same operation as Example 49, and the redispersibility of the tablet was evaluated. The evaluation results of Examples 54 to 61 are shown in Table 8. The evaluation results of Example 49 are also shown in Table 8.
  • Example 54 to Example 61 are all excellent in redispersibility and tablet disintegration.
  • the tablets of Example 49 and Examples 56 to 61 in which the content of the additive for solid preparation molding in the tablet is in the range of 28% by mass to 70% by mass have better disintegration, It can be seen that the tablets of Examples 57 to 61, in which the content of the solid formulation-forming additive in the tablet is 37% by mass to 70% by mass, have even better disintegration.
  • Example 62 to Example 71 Except for changing the types and contents of the ABR particle-containing granulated product, the disintegrant for forming a solid preparation to be used together, the excipient, and the lubricant as shown in Table 9, the procedure was the same as in Example 49. Thus, a mixed powder containing the ABR granulated product was obtained. 120 mg of the mixed powder was introduced into a mortar, and the same operation as in Example 49 was performed to obtain tablets of Examples 62 to 71. The redispersibility and disintegration of the tablets were evaluated in the same manner as in Example 49 with respect to the obtained tablets of each Example. The results are also shown in Table 9.
  • Example 62 to 71 in addition to the above evaluation, the stability of the tablet was also evaluated.
  • Tablet stability evaluation The obtained tablet was put in a vial bottle containing silica gel and sealed, and stored at 70 ° C. for 6 days. After storage, the tablet was taken out, and the amount of analog of abiraterone acetate in the tablet was measured using a high performance liquid chromatography method. As an indicator of analogs of abiraterone acetate, the amount of 7-keto-abiraterone (described as “7-keto abiraterone” in the table) was measured. In the high performance liquid chromatography method, an HPLC system (product of Shimadzu Corporation) was used, and the evaluation was performed under the following conditions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Endocrinology (AREA)
  • Diabetes (AREA)
  • Urology & Nephrology (AREA)
  • Inorganic Chemistry (AREA)
  • Reproductive Health (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A pharmaceutical composition comprising abiraterone acetate ester particles having an average particle diameter of 50 to 200 nm and hydroxypropyl cellulose in an amount of 10 to 150% by mass relative to the content of abiraterone acetate ester; and a method for producing the pharmaceutical composition.

Description

医薬組成物及び医薬組成物の製造方法Pharmaceutical composition and method for producing pharmaceutical composition
 本開示は、医薬組成物及び医薬組成物の製造方法に関する。 The present disclosure relates to a pharmaceutical composition and a method for producing the pharmaceutical composition.
 アビラテロンは、CYP17(17α-ヒドロキシラーゼ/C17,20-リアーゼ)の不可逆的かつ選択的な阻害作用を示し、精巣、副腎及び前立腺腫瘍組織内におけるアンドロゲン合成を阻害することが報告されている。
 アビラテロンはプロドラッグであるアビラテロン酢酸エステルの形態で経口用の前立腺がん治療剤として有用であることが報告されている。
 アビラテロン酢酸エステルは疎水性であり、水溶性が低い。経口投与される医薬組成物において、水溶性が低いために、消化管内において速やかに吸収し得る溶解性を有せず、循環血液中に完全に吸収される前に体外に排出されることが問題となることがある。経口投与する際における吸収性が良好なアビラテロン酢酸エステルの製剤化を目的として種々の検討がなされている。
Abiraterone exhibits irreversible and selective inhibitory action of CYP17 (17α-hydroxylase / C17,20-lyase) and has been reported to inhibit androgen synthesis in testis, adrenal gland and prostate tumor tissue.
Abiraterone has been reported to be useful as an oral prostate cancer therapeutic agent in the form of abiraterone acetate, a prodrug.
Abiraterone acetate is hydrophobic and has low water solubility. A pharmaceutical composition that is administered orally has low solubility in water, so it does not have solubility that can be quickly absorbed in the digestive tract, and is discharged outside the body before it is completely absorbed into the circulating blood. It may become. Various studies have been made for the purpose of formulating abiraterone acetate having good absorbability when orally administered.
 例えば、アビラテロン酢酸エステル、ヒドロキシプロピルメチルセルロースなどの添加剤及び界面活性剤を含み、1000μm以下のD50サイズを有する、溶解速度の高いアビラテロン酢酸エステル分散物が提案されている(国際公開第2014/009436号参照)。
 また、アビラテロン酢酸エステル、ヒドロキシプロピルメチルセルロースなどの添加剤を、溶媒に加熱溶解して、自己乳化製剤とする医薬組成物(米国特許公開第2016/0151392号参照)、可溶化剤であるソルプラス(商品名)等を用いて、アビラテロン酢酸エステルを溶媒析出法により微細粒子に分散する技術(米国特許公開第2016/0331763号参照)等が提案されている。
 酢酸アビラテロンを、乳糖とイオン性界面活性剤との存在下、乾式粉砕して100nm~300nmの微粒子製剤を得る方法が提案されている(特表2017-528457号公報参照)。
For example, abiraterone acetate, contain additives and surfactants such as hydroxypropylmethyl cellulose, having the following D 50 size 1000 .mu.m, high abiraterone acetate dispersion of dissolution rate has been proposed (WO 2014/009436 Issue).
In addition, a pharmaceutical composition (see US Patent Publication No. 2016/0151392) in which an additive such as abiraterone acetate and hydroxypropylmethylcellulose is heated and dissolved in a solvent to prepare a self-emulsifying preparation, Solplus (a product) And the like (see US Patent Publication No. 2016/0331763) for dispersing abiraterone acetate into fine particles by a solvent precipitation method.
A method has been proposed in which abiraterone acetate is dry pulverized in the presence of lactose and an ionic surfactant to obtain a fine particle preparation of 100 nm to 300 nm (see JP-T-2017-528457).
 上述の通り、水に難溶なアビラテロン酢酸エステルを医薬組成物に適用する際においては、微細な粒子の分散物とする種々の提案がなされている。
 国際公開第2014/009436号には、種々の分散剤が並列に記載され、なかでも、ヒドロキシプロピルメチルセルロースを用いて、初期の粒径が130nm程度の分散粒子を有する分散物を得たことが記載されてはいるが、消化管内での分散物安定性までは検討されていない。また、ヒドロキシプロピルセルロースは一例として例示されてはいるが、アビラテロン酢酸エステルと併用された具体的な態様は記載されていない。
 米国特許公開第2016/0151392号参照に記載の医薬組成物は、溶解剤、界面活性剤をアビラテロン酢酸エステルの8倍量以上添加して微細化しているため、製剤サイズが大きくなり、服用時の被投与者の負担が懸念される。
 米国特許公開第2016/0331763号に記載の分散物は、溶媒析出法により得られるが、有機溶剤系から溶媒を除去する粉末化方法では、製剤化の効率が低く、且つ、残留溶媒が懸念されるなどの問題点がある。
 特表2017-528457号公報に記載の方法では、分散にイオン性界面活性剤を用いているため、例えば、胃液などの酸性雰囲気下では凝集、沈殿して、吸収性が低下する懸念がある。
 また、既述の各文献では、得られたアビラテロン酢酸エステルを含む分散物、粉末などは、初期粒径は微細ではあるが、例えば、経口摂取した際の吸収性を向上させ得ると考えられるナノオーダーの粒子径を消化管内でも安定に維持することができるか否か、についての詳細な検討はなされていないのが現状である。
As described above, when applying abiraterone acetate, which is sparingly soluble in water, to pharmaceutical compositions, various proposals have been made for a dispersion of fine particles.
In International Publication No. 2014/009436, various dispersants are described in parallel. In particular, it is described that a dispersion having dispersed particles having an initial particle size of about 130 nm is obtained using hydroxypropylmethylcellulose. However, the stability of the dispersion in the digestive tract has not been studied. Moreover, although the hydroxypropyl cellulose is illustrated as an example, the specific aspect combined with abiraterone acetate is not described.
The pharmaceutical composition described in U.S. Patent Publication No. 2016/0151392 is refined by adding a solubilizing agent and a surfactant more than 8 times the amount of abiraterone acetate, so that the formulation size increases, There is concern about the burden on the recipient.
The dispersion described in U.S. Patent Publication No. 2016/0331763 is obtained by a solvent precipitation method. However, the powdering method in which the solvent is removed from the organic solvent system has low formulation efficiency and there is a concern about the residual solvent. There are problems such as.
In the method described in JP-T-2017-528457, since an ionic surfactant is used for dispersion, there is a concern that, for example, aggregation and precipitation may occur in an acidic atmosphere such as gastric juice, resulting in a decrease in absorbability.
Further, in each of the above-mentioned documents, the dispersions, powders, and the like containing the obtained abiraterone acetate are fine in initial particle diameter, but are considered to be able to improve the absorbability when taken orally, for example. At present, no detailed examination has been made as to whether or not the order particle size can be stably maintained even in the digestive tract.
 本発明の一実施形態が解決しようとする課題は、消化管内でも安定なアビラテロン酢酸エステルの微細粒子を含有する医薬組成物を提供することである。
 本発明の別の一実施形態の課題は、消化管内でも安定なアビラテロン酢酸エステルの微細粒子を含有する医薬組成物の製造方法を提供することである。
The problem to be solved by one embodiment of the present invention is to provide a pharmaceutical composition containing fine particles of abiraterone acetate which is stable even in the digestive tract.
The subject of another one Embodiment of this invention is providing the manufacturing method of the pharmaceutical composition containing the fine particle of abiraterone acetate stable also in a digestive tract.
 上記の課題を解決するための手段は、以下の実施形態を含む。
<1> 平均粒子径が50nm~200nmであるアビラテロン酢酸エステルの粒子と、アビラテロン酢酸エステルの粒子の含有量に対し、10質量%~150質量%のヒドロキシプロピルセルロースと、を含む医薬組成物。
<2> ヒドロキシプロピルセルロースの重量平均分子量が14万以下である<1>に記載の医薬組成物。
Means for solving the above problems include the following embodiments.
<1> A pharmaceutical composition comprising abiraterone acetate particles having an average particle diameter of 50 nm to 200 nm, and 10% by mass to 150% by mass of hydroxypropylcellulose with respect to the content of abiraterone acetate particles.
<2> The pharmaceutical composition according to <1>, wherein the hydroxypropylcellulose has a weight average molecular weight of 140,000 or less.
<3> さらに、界面活性剤を含む<1>又は<2>に記載の医薬組成物。
<4> 界面活性剤が、ポリオキシエチレンポリオキシプロピレングリコール、ラウロマクロゴール、デオキシコール酸ナトリウム、ポリオキシエチレン硬化ひまし油、ポリオキシエチレンヒドロキシステアレート、ポリソルベート20、及びポリソルベート80からなる群より選ばれる少なくとも1種である<3>に記載の医薬組成物。
<5> 界面活性剤の含有量が、アビラテロン酢酸エステルの含有量に対し、0.1質量%~40質量%である<3>又は<4>に記載の医薬組成物。
<6> 界面活性剤の含有量が、ヒドロキシプロピルセルロースの含有量に対し、0質量%を超え100質量%以下である<3>~<5>のいずれか1つに記載の医薬組成物。
<3> The pharmaceutical composition according to <1> or <2>, further comprising a surfactant.
<4> The surfactant is selected from the group consisting of polyoxyethylene polyoxypropylene glycol, lauromacrogol, sodium deoxycholate, polyoxyethylene hydrogenated castor oil, polyoxyethylene hydroxystearate, polysorbate 20, and polysorbate 80. The pharmaceutical composition according to <3>, which is at least one kind.
<5> The pharmaceutical composition according to <3> or <4>, wherein the content of the surfactant is 0.1% by mass to 40% by mass with respect to the content of abiraterone acetate.
<6> The pharmaceutical composition according to any one of <3> to <5>, wherein the content of the surfactant is more than 0% by mass and 100% by mass or less with respect to the content of hydroxypropylcellulose.
<7> 固体製剤である<1>~<6>のいずれか1つに記載の医薬組成物。
<8> 粉末製剤である<7>に記載の医薬組成物。
<9> さらに、賦形剤、崩壊剤、及び滑沢剤からなる群より選ばれる少なくとも1種を含む薬学的に許容される固体製剤成形用添加剤を含有し、錠剤である<7>に記載の医薬組成物。
<10> 上記薬学的に許容される固体製剤成形用添加剤の合計含有量が、上記医薬組成物の全質量に対し、10質量%~80質量%である<9>に記載の医薬組成物。
<11> 経口投与に供される<1>~<10>のいずれか1つに記載の医薬組成物。
<7> The pharmaceutical composition according to any one of <1> to <6>, which is a solid preparation.
<8> The pharmaceutical composition according to <7>, which is a powder formulation.
<9> Furthermore, it contains a pharmaceutically acceptable additive for molding a solid preparation containing at least one selected from the group consisting of an excipient, a disintegrant, and a lubricant, and <7> is a tablet The pharmaceutical composition as described.
<10> The pharmaceutical composition according to <9>, wherein the total content of the pharmaceutically acceptable additive for solid preparation molding is 10% by mass to 80% by mass with respect to the total mass of the pharmaceutical composition. .
<11> The pharmaceutical composition according to any one of <1> to <10>, which is used for oral administration.
<12> アビラテロン酢酸エステルと、アビラテロン酢酸エステルの含有量に対し、10質量%~150質量%のヒドロキシプロピルセルロースと、分散媒と、を含む被分散物を、湿式粉砕法により分散して、平均粒子径が50nm~200nmであるアビラテロン酢酸エステルの粒子を含む分散物を得る工程を含む医薬組成物の製造方法。
<13> 湿式粉砕法が、メディアを用いる粉砕分散処理法を含む<12>に記載の医薬組成物の製造方法。
<14> さらに、分散物から分散媒を除去して、粉末製剤を得る工程を含む<12>又は<13>に記載の医薬組成物の製造方法。
<12> A dispersion to be dispersed containing 10% by mass to 150% by mass of hydroxypropyl cellulose and a dispersion medium with respect to the content of abiraterone acetate and abiraterone acetate is dispersed by a wet pulverization method to obtain an average. A method for producing a pharmaceutical composition, comprising a step of obtaining a dispersion containing particles of abiraterone acetate having a particle diameter of 50 nm to 200 nm.
<13> The method for producing a pharmaceutical composition according to <12>, wherein the wet pulverization method includes a pulverization dispersion method using a medium.
<14> Furthermore, the manufacturing method of the pharmaceutical composition as described in <12> or <13> including the process of removing a dispersion medium from a dispersion and obtaining a powder formulation.
 本発明の一実施形態によれば、消化管内でも安定的なアビラテロン酢酸エステルの微細粒子を含有する医薬組成物を提供することができる。
 本発明の別の一実施形態によれば、消化管内でも安定的なアビラテロン酢酸エステルの微細粒子を含有する医薬組成物の製造方法を提供することができる。
According to one embodiment of the present invention, it is possible to provide a pharmaceutical composition containing fine particles of abiraterone acetate that are stable even in the digestive tract.
According to another embodiment of the present invention, it is possible to provide a method for producing a pharmaceutical composition containing fine particles of abiraterone acetate that is stable even in the digestive tract.
 以下、本開示の医薬組成物及び医薬組成物の製造方法について詳細に説明する。
 以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されない。
 なお、本開示において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本開示において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
Hereinafter, the pharmaceutical composition of the present disclosure and the method for producing the pharmaceutical composition will be described in detail.
The constituent elements described below may be described based on typical embodiments of the present disclosure, but the present disclosure is not limited to such embodiments.
In the present disclosure, “to” indicating a numerical range is used in a sense including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. . Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present disclosure, a combination of preferred embodiments is a more preferred embodiment.
In the present disclosure, the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. means.
In the present disclosure, the term “step” is not limited to an independent step, and is included in the term if the intended purpose of the step is achieved even when it cannot be clearly distinguished from other steps.
<医薬組成物>
 本開示の医薬組成物は、平均粒子径が50nm~200nmであるアビラテロン酢酸エステルの粒子と、アビラテロン酢酸エステルの粒子の含有量に対し、10質量%~150質量%のヒドロキシプロピルセルロースと、を含む。
 なお、以下、本開示では、アビラテロン酢酸エステルを「ABR」と、ヒドロキシプロピルセルロースを「HPC」と、それぞれ略称することがある。
 以下、医薬組成物に含まれる各成分について、順次説明する。
<Pharmaceutical composition>
The pharmaceutical composition of the present disclosure includes abiraterone acetate particles having an average particle diameter of 50 nm to 200 nm, and 10% by mass to 150% by mass of hydroxypropylcellulose with respect to the content of the abiraterone acetate particles. .
Hereinafter, in the present disclosure, abiraterone acetate may be abbreviated as “ABR” and hydroxypropylcellulose may be abbreviated as “HPC”, respectively.
Hereinafter, each component contained in the pharmaceutical composition will be sequentially described.
(アビラテロン酢酸エステル:ABR)
 ABRは、生体内で速やかにアビラテロンへ加水分解され、CYP17に対する阻害効果を発現する。
 本開示の医薬組成物に使用されるABRは、アビラテロンの水酸基を酢酸エステル化した化合物であり、酢酸17-(ピリジン-3-イル)アンドロスタ-5,16-ジエン-3β-イルとも称される。
 ABRには特に制限はなく、市販品、合成品などを適宜使用することができる。
(Abiraterone acetate: ABR)
ABR is rapidly hydrolyzed to abiraterone in vivo and develops an inhibitory effect on CYP17.
ABR used in the pharmaceutical composition of the present disclosure is a compound in which the hydroxyl group of abiraterone is converted to acetate, and is also referred to as 17- (pyridin-3-yl) androst-5,16-dien-3β-yl acetate. The
There is no restriction | limiting in particular in ABR, A commercial item, a synthetic product, etc. can be used suitably.
 ABRは、本開示の医薬組成物に平均粒子径50nm~200nmの粒子形状で含まれる。ABRの粒子の平均粒子径は、50nm~180nmがより好ましく、50nm~150nmがさらに好ましい。
 本開示においては、ABRの粒子の平均粒子径は、分散液中の粒子径を動的光散乱法により測定し、得られた散乱強度分布のメジアン径を粒子径として採用している。動的光散乱法を用いた市販の粒子径測定装置としては、例えば、ナノトラックUPA(日機装(株))、動的光散乱式粒径分布測定装置LB-550((株)堀場製作所)、濃厚系粒径アナライザー FPAR-1000(商品名:大塚電子(株)製)等を用いることができる。
 ABRの粒子の平均粒子径が上記範囲において、薬効成分であるABRの消化管内での溶解性が向上し、体内への高い吸収性が期待できる。
ABR is included in the pharmaceutical composition of the present disclosure in the form of particles having an average particle size of 50 nm to 200 nm. The average particle size of the ABR particles is more preferably 50 nm to 180 nm, and further preferably 50 nm to 150 nm.
In the present disclosure, the average particle diameter of the ABR particles is determined by measuring the particle diameter in the dispersion by a dynamic light scattering method, and adopting the median diameter of the obtained scattering intensity distribution as the particle diameter. Examples of commercially available particle size measuring devices using the dynamic light scattering method include Nanotrac UPA (Nikkiso Co., Ltd.), dynamic light scattering type particle size distribution measuring device LB-550 (Horiba Ltd.), A dense particle size analyzer FPAR-1000 (trade name: manufactured by Otsuka Electronics Co., Ltd.) or the like can be used.
When the average particle size of the ABR particles is within the above range, the solubility of ABR, which is a medicinal component, in the digestive tract is improved, and high absorption into the body can be expected.
 ABRの粒子の平均粒子径は、後述する分散剤としてのHPCの種類、含有量及び分散条件などを制御することで、適宜調整することができる。 The average particle size of the ABR particles can be appropriately adjusted by controlling the type, content, dispersion conditions, and the like of the HPC as a dispersant described later.
 なお、上記ABRの粒子の平均粒子径は、医薬組成物における粒子径である。医薬組成物を調製に用いるABR原料の粒子径は必ずしも上記範囲である必要はない。 The average particle size of the ABR particles is the particle size in the pharmaceutical composition. The particle size of the ABR raw material used for preparing the pharmaceutical composition is not necessarily in the above range.
 本開示の医薬組成物におけるABRの含有量は、薬学的に許容される範囲内において、治療又は予防の目的に応じて適宜選択することができる。
 一般的には、医薬組成物に含まれるABRの1回の投与量として5mg~1000mgの範囲とすることができる。
The content of ABR in the pharmaceutical composition of the present disclosure can be appropriately selected depending on the purpose of treatment or prevention within a pharmaceutically acceptable range.
In general, a single dose of ABR contained in a pharmaceutical composition can be in the range of 5 mg to 1000 mg.
<ヒドロキシプロピルセルロース:HPC>
 本開示の医薬組成物は、ABRの粒子の含有量に対し、10質量%~150質量%のHPCの少なくとも1種を含む。医薬組成物において、HPCはABRの粒子の分散剤として機能する。
 ABRの粒子の含有量に対し、10質量%~150質量%のHPCを共存させることで、ABR粒子は、平均粒子径50nm~200nmの範囲のナノサイズの粒子の形態で、医薬組成物中に安定に存在する。
<Hydroxypropyl cellulose: HPC>
The pharmaceutical composition of the present disclosure contains at least one of 10% by mass to 150% by mass of HPC with respect to the content of ABR particles. In the pharmaceutical composition, the HPC functions as a dispersant for the ABR particles.
By coexisting 10% by mass to 150% by mass of HPC with respect to the content of ABR particles, ABR particles are in the form of nano-sized particles having an average particle diameter in the range of 50 nm to 200 nm in the pharmaceutical composition. It exists stably.
 HPCは、重量平均分子量が14万以下のHPCが好ましい。
 HPCの重量平均分子量は、10万以下であることがより好ましく、5万以下であることがさらに好ましい。
 HPCの分子量の下限値には、特に制限はないが、効果の観点からは、1万以上とすることができる。
 HPCの重量平均分子量は、市販品を用いる場合には、市販品のカタログ値を採用すればよい。
 HPCの重量平均分子量を直接測定する方法としては、ゲルパーミエーションクロマトグラフィ(GPC)又はサイズ排除クロマトグラフィー(SEC)を用いる方法が挙げられる。
 例えば、水溶性高分子であるHPCの重量平均分子量は、GPCを用いて、ポリスチレン(PST)あるいはプルラン換算の重量平均分子量の値として求めることができる。
 GPC法を適用して重量平均分子量を測定する際、測定用の溶離液にPSTが溶解する場合には、PST換算で測定し、溶離液にプルランが溶解する場合には、プルラン換算で測定すればよい。
HPC is preferably HPC having a weight average molecular weight of 140,000 or less.
The weight average molecular weight of HPC is more preferably 100,000 or less, and further preferably 50,000 or less.
Although there is no restriction | limiting in particular in the lower limit of the molecular weight of HPC, From the viewpoint of an effect, it can be set to 10,000 or more.
As the weight average molecular weight of HPC, when using a commercially available product, the catalog value of the commercially available product may be adopted.
Examples of the method for directly measuring the weight average molecular weight of HPC include a method using gel permeation chromatography (GPC) or size exclusion chromatography (SEC).
For example, the weight average molecular weight of HPC that is a water-soluble polymer can be determined as a value of weight average molecular weight in terms of polystyrene (PST) or pullulan using GPC.
When measuring the weight average molecular weight by applying the GPC method, if PST is dissolved in the eluent for measurement, measure it in PST conversion. If pullulan is dissolved in the eluent, measure it in pullulan conversion. That's fine.
 HPCは、市販品を用いることができる。
 HPCの市販品としては、NISSO HPC-SSL(商品名、分子量:4万)、NISSO HPC-SL(商品名、分子量:10万)、NISSO HPC-L(商品名、分子量:14万)、NISSO HPC-LM(商品名、分子量:18万、以上、日本曹達(株)製)、Klucel ELF Pharm(商品名、分子量:4万)、Klucel EF Pharm(商品名、分子量:8万)、Klucel LF Pharm(商品名、分子量:9.5万)、Klucel JF Pharm(商品名、分子量:14万、以上、Ashland社製)等が挙げられる。
A commercially available product can be used as the HPC.
Commercially available products of HPC include NISSO HPC-SSL (trade name, molecular weight: 40,000), NISSO HPC-SL (trade name, molecular weight: 100,000), NISSO HPC-L (trade name, molecular weight: 140,000), NISSO. HPC-LM (trade name, molecular weight: 180,000, manufactured by Nippon Soda Co., Ltd.), Klucel ELF Pharm (trade name, molecular weight: 40,000), Klucel EF Pharm (trade name, molecular weight: 80,000), Klucel LF Pharm (trade name, molecular weight: 95,000), Klucel JF Pharm (trade name, molecular weight: 140,000, manufactured by Ashland) and the like.
 HPCの含有量は、医薬組成物に含まれるABRの粒子の全質量に対して、10質量%~150質量%であり、20質量%~100質量%であることが好ましく、30質量%~80質量%であることがより好ましい。
 即ち、HPCの含有量は、医薬組成物に含まれるABRの粒子100質量部に対して、10質量部~150質量部の範囲であり、20質量部~100質量部の範囲であることが好ましく、30質量部~80質量部であることがより好ましい。
 HPCの含有量が上記範囲において、得られる医薬組成物中のABR粒子がより安定に分散され、粒子の凝集がより効果的に抑制される結果、ABRの粒子の平均粒子径が50nm~200nmの範囲となり易い。
The content of HPC is 10% by mass to 150% by mass, preferably 20% by mass to 100% by mass, and preferably 30% by mass to 80% by mass with respect to the total mass of the ABR particles contained in the pharmaceutical composition. More preferably, it is mass%.
That is, the HPC content is in the range of 10 to 150 parts by weight, preferably in the range of 20 to 100 parts by weight, with respect to 100 parts by weight of the ABR particles contained in the pharmaceutical composition. More preferably, it is 30 to 80 parts by mass.
When the HPC content is in the above range, the ABR particles in the obtained pharmaceutical composition are more stably dispersed and the aggregation of the particles is more effectively suppressed. As a result, the average particle size of the ABR particles is 50 nm to 200 nm. Easy to be in range.
(界面活性剤)
 本開示の医薬組成物は、既述のHPCに加え、界面活性剤をさらに含んでいてもよい。
 界面活性剤は、分散助剤あるいは分散安定化剤として使用することができる。
 界面活性剤としては、ポリオキシエチレン硬化ひまし油(例えば、ポリオキシエチレン硬化ひまし油40、ポリオキシエチレン硬化ひまし油50、ポリオキシエチレン硬化ひまし油60等)、ポリソルベート80、ポリソルベート65、ポリソルベート40、ポリソルベート20、ポリオキシエチレンソルビタンモノラウレート、モノステアリン酸ポリエチレングリコール、ポリオキシエチレンラウリルエーテル(例えば、ラウロマクロゴールBL-9、ラウロマクロゴールBL-25)、ポリオキシエチレンポリオキシプロピレングリコール(ポロキサマー、プルロニック類、例えば、ポロキサマー188、ポロキサマー407)、ポリオキシエチレンヒドロキシステアレート、ラウリル硫酸ナトリウム、デオキシコール酸ナトリウム等が挙げられる。
 なかでも、界面活性剤として、ポリオキシエチレンポリオキシプロピレングリコール、ラウロマクロゴール、デオキシコール酸ナトリウム、ポリオキシエチレン硬化ひまし油、ポリオキシエチレンヒドロキシステアレート、ポリソルベート20、及びポリソルベート80からなる群より選ばれる少なくとも1種を含むことが好ましく、ポリオキシエチレンポリオキシプロピレングリコール及びポリオキシエチレン硬化ひまし油から選ばれる少なくとも1種を含むことがより好ましい。
(Surfactant)
The pharmaceutical composition of the present disclosure may further contain a surfactant in addition to the aforementioned HPC.
The surfactant can be used as a dispersion aid or a dispersion stabilizer.
Examples of the surfactant include polyoxyethylene hydrogenated castor oil (for example, polyoxyethylene hydrogenated castor oil 40, polyoxyethylene hydrogenated castor oil 50, polyoxyethylene hydrogenated castor oil 60, etc.), polysorbate 80, polysorbate 65, polysorbate 40, polysorbate 20, poly Oxyethylene sorbitan monolaurate, polyethylene glycol monostearate, polyoxyethylene lauryl ether (eg Lauromacrogol BL-9, Lauromacrogol BL-25), polyoxyethylene polyoxypropylene glycol (poloxamer, pluronics, eg Poloxamer 188, poloxamer 407), polyoxyethylene hydroxystearate, sodium lauryl sulfate, sodium deoxycholate, etc. It is below.
Among them, the surfactant is selected from the group consisting of polyoxyethylene polyoxypropylene glycol, lauromacrogol, sodium deoxycholate, polyoxyethylene hydrogenated castor oil, polyoxyethylene hydroxystearate, polysorbate 20, and polysorbate 80. It is preferable to include at least one, and it is more preferable to include at least one selected from polyoxyethylene polyoxypropylene glycol and polyoxyethylene hydrogenated castor oil.
 本開示の医薬組成物が界面活性剤を含む場合、界面活性剤の含有量としては、医薬組成物におけるABRの含有量に対し、0.1質量%~40質量%であることが好ましく、1質量%~30質量%であることがより好ましい。
 また、本開示の医薬組成物が界面活性剤を含む場合における界面活性剤の含有量は、医薬組成物におけるHPCの含有量に対し、0質量%を超え100質量%以下であることが好ましく、5質量%~100質量%であることがより好ましく、7.5質量%~75質量%であることがさらに好ましい。
 医薬組成物における界面活性剤の含有量が、上記範囲であることで、界面活性剤による、消化管内におけるABRの粒子の分散安定性の向上効果が十分に得られ、また、界面活性剤の含有量が多すぎる場合に生じるABRの吸収性の低下、界面活性剤の生体への影響を生じる懸念がない。
When the pharmaceutical composition of the present disclosure contains a surfactant, the content of the surfactant is preferably 0.1% by mass to 40% by mass with respect to the content of ABR in the pharmaceutical composition. More preferably, the content is from 30% by mass to 30% by mass.
Further, the content of the surfactant when the pharmaceutical composition of the present disclosure contains a surfactant is preferably more than 0% by mass and 100% by mass or less with respect to the content of HPC in the pharmaceutical composition, It is more preferably 5% by mass to 100% by mass, and further preferably 7.5% by mass to 75% by mass.
When the content of the surfactant in the pharmaceutical composition is in the above range, the surfactant can sufficiently improve the dispersion stability of the ABR particles in the digestive tract, and the surfactant can be contained. There is no concern that the ABR absorbability decreases when the amount is too large, and that the surfactant has an effect on the living body.
 医薬組成物の製造方法としては、HPCを溶解した溶液に、ABRを添加して分散処理する方法が挙げられる。しかし、製造方法は上記の方法には限定されない。なお、医薬組成物の好ましい製造方法の詳細については、後述する。 As a method for producing a pharmaceutical composition, there may be mentioned a method in which ABR is added to a solution in which HPC is dissolved and subjected to a dispersion treatment. However, the manufacturing method is not limited to the above method. In addition, the detail of the preferable manufacturing method of a pharmaceutical composition is mentioned later.
(医薬組成物の剤型、投与方法)
 本開示の医薬組成物の剤型は、生体に投与可能な形態であれば、特に制限はない。
 本開示の医薬組成物は、経口投与に供されることが好ましい。
 剤型としては、例えば、経口投与可能な剤型として、錠剤、顆粒剤、散剤、細粒剤、カプセル剤、液剤、シロップ剤などが挙げられる。
 錠剤には、打錠した錠剤、糖衣錠等の他、チュアブル錠、トローチ剤、ドロップ剤、口腔内で速やかに溶解又は崩壊し、水なしでも服用できる、粒状物を含んで調製される所謂口腔内崩壊錠を含み、さらに、用時溶解して用いる発泡錠等の再溶解錠を含む。
 顆粒剤、散剤及び細粒剤は、用時溶解して用いるドライシロップ剤を含み、また、口腔内で速やかに溶解又は崩壊し、水なしでも服用できる粒状物を含む。
 液剤及びシロップ剤は、さらに、薬学的に許容される種々の分散媒を含んでもよい。
(Form of pharmaceutical composition, administration method)
The dosage form of the pharmaceutical composition of the present disclosure is not particularly limited as long as it can be administered to a living body.
The pharmaceutical composition of the present disclosure is preferably provided for oral administration.
Examples of the dosage form include tablets, granules, powders, fine granules, capsules, liquids, syrups and the like as oral dosage forms.
Tablets include tablets, sugar-coated tablets, etc., chewable tablets, troches, drops, solubilized or disintegrated rapidly in the oral cavity, and so-called oral cavity prepared with granular materials that can be taken without water Includes disintegrating tablets, and further includes redissolved tablets such as effervescent tablets that are used after dissolution.
Granules, powders, and fine granules include dry syrups that are dissolved at the time of use, and also include granules that dissolve or disintegrate rapidly in the oral cavity and can be taken without water.
The liquid preparation and syrup preparation may further contain various pharmaceutically acceptable dispersion media.
 本開示の医薬組成物は、固体製剤であることが好ましい。
 本開示の医薬組成物は消化管内、即ち、胃及び腸内におけるABR粒子の安定性が良好であるため、粉末製剤、粉末製剤を打錠して得られる錠剤、粉末製剤をカプセルに内包させたカプセル剤などの固体製剤としても好適に用いることができる。
 なお、本開示における固体製剤は、粉末製剤(散剤)に加え、粉末製剤と賦形剤とを含む顆粒剤、粉末製剤を打錠して得られる錠剤、得られた錠剤をコーティングしたコーティング錠、粉末製剤をカプセルに内包したカプセル剤等の形態を包含する。本開示の医薬組成物を固体製剤とすることで、医薬組成物の製造性及び保存性がより良好となり、容易に携帯し得る上に、必要量を服用し易いという利点をも有する。
The pharmaceutical composition of the present disclosure is preferably a solid preparation.
Since the pharmaceutical composition of the present disclosure has good stability of ABR particles in the digestive tract, that is, in the stomach and intestines, the powder formulation, the tablet obtained by compressing the powder formulation, and the powder formulation are encapsulated. It can also be suitably used as a solid preparation such as a capsule.
The solid preparation in the present disclosure includes a powder preparation (powder), a granule containing the powder preparation and an excipient, a tablet obtained by tableting the powder preparation, a coated tablet coated with the obtained tablet, It includes forms such as capsules in which powder preparations are encapsulated. By making the pharmaceutical composition of the present disclosure into a solid preparation, the manufacturability and storage stability of the pharmaceutical composition become better, and it can be easily carried and also has the advantage that it is easy to take the required amount.
 本開示の医薬組成物を、固体製剤としての粉末製剤、顆粒剤、カプセル剤及び錠剤とする場合には、服用し易さの観点から、1日に経口投与される製剤の総質量は2400mg以下が好ましく、2000mg以下がさらに好ましい。例えば、本開示の医薬組成物を錠剤として、1日4錠で経口投与される場合は、1錠あたりの質量が600mg以下であることが好ましく、500mg以下であることがさらに好ましい。また、1日2錠で経口投与される場合は、1錠あたりの質量が1200mg以下であることが好ましく、1000mg以下であることがさらに好ましい。 When the pharmaceutical composition of the present disclosure is used as a powder formulation, granule, capsule, and tablet as a solid formulation, the total mass of the formulation administered orally per day is 2400 mg or less from the viewpoint of ease of taking. Is preferable, and 2000 mg or less is more preferable. For example, when the pharmaceutical composition of the present disclosure is orally administered as 4 tablets per day, the mass per tablet is preferably 600 mg or less, more preferably 500 mg or less. Moreover, when it is orally administered by 2 tablets a day, it is preferable that the mass per tablet is 1200 mg or less, and it is further more preferable that it is 1000 mg or less.
(製剤添加物)
 本開示の医薬組成物は、効果を妨げない限りにおいて、一般に用いられ、薬学的に許容される種々の製剤添加物を含んでいてもよい。
 製剤添加物としては、例えば、賦形剤、崩壊剤、結合剤、滑沢剤、着色剤、着香剤、甘味剤、矯味剤、pH調整剤等を挙げることができる。
 なお、本開示における固体製剤成形用添加剤とは、ABRを含む医薬組成物を、固体製剤、例えば、粉末製剤、顆粒剤、カプセル剤、錠剤等の剤型に成形するために用いられる添加剤を指す。
(Formulation additives)
The pharmaceutical composition of the present disclosure may contain various pharmaceutical additives that are generally used and pharmaceutically acceptable as long as the effects are not hindered.
Examples of the formulation additive include an excipient, a disintegrant, a binder, a lubricant, a colorant, a flavoring agent, a sweetener, a corrigent, and a pH adjuster.
In addition, the solid formulation molding additive in the present disclosure is an additive used to mold a pharmaceutical composition containing ABR into a solid formulation, for example, a powder formulation, a granule, a capsule, a tablet, or the like. Point to.
(賦形剤)
 本開示の医薬組成物が粉末製剤及び錠剤を含む固体製剤である場合、安定な剤型を維持するため、固体製剤成形用の賦形剤を含むことが好ましい。
 賦形剤としては、糖類(例えば、グルコース、乳糖、スクロース、マルトース、トレハロース、デキストリン、シクロデキストリン等)、糖アルコール(例えば、マンニトール、エリスリトール、イソマルト、ラクチトール、マルチトール、ソルビトール、キシリトール、イノシトール等)、デンプン(例えば、トウモロコシデンプン、バレイショデンプン、コメデンプン、コムギデンプン等)、結晶セルロース、軽質無水ケイ酸・結晶セルロース、カルシウム塩(例えば、無水リン酸カルシウム、軽質無水ケイ酸カルシウム、ケイ酸カルシウム、硫酸カルシウム、炭酸カルシウム、乳酸カルシウム)、軽質無水ケイ酸、含水二酸化ケイ素、メタケイ酸アルミン酸マグネシウム、無水ケイ酸、アミノ酸類(例えば、グリシン、アラニン、アスパラギン、トリプロファン等)等が挙げられる。
 なお、マンニトールは光学活性物質であり、d体、l体、ラセミ体などが存在するが、天然に多く存在するd-マンニトールが賦形剤として好適である。
 賦形剤としては、崩壊性とABR粒子の凝集抑制の観点から、糖類もしくは糖アルコール類が好ましい。また、本開示の医薬組成物を、粉末製剤、顆粒剤、カプセル剤又は錠剤とする場合には、軽質無水ケイ酸・結晶セルロース、d-マンニトール、スクロース、乳糖、トレハロース、エリスリトール、マルチトール、及びマルトースからなる群より選ばれる少なくとも1種の賦形剤を含むことが好ましい。
(Excipient)
When the pharmaceutical composition of the present disclosure is a solid preparation including a powder preparation and a tablet, it is preferable to include an excipient for forming a solid preparation in order to maintain a stable dosage form.
Examples of excipients include sugars (eg, glucose, lactose, sucrose, maltose, trehalose, dextrin, cyclodextrin, etc.), sugar alcohols (eg, mannitol, erythritol, isomalt, lactitol, maltitol, sorbitol, xylitol, inositol, etc.) , Starch (eg, corn starch, potato starch, rice starch, wheat starch, etc.), crystalline cellulose, light anhydrous silicic acid / crystalline cellulose, calcium salt (eg, anhydrous calcium phosphate, light anhydrous calcium silicate, calcium silicate, calcium sulfate) , Calcium carbonate, calcium lactate), light anhydrous silicic acid, hydrous silicon dioxide, magnesium aluminate metasilicate, silicic anhydride, amino acids (eg glycine, alanine, asthma Ragin, include the tryptophan, etc.) and the like.
Mannitol is an optically active substance, and there are d-form, l-form, racemate, and the like, and naturally-occurring d-mannitol is suitable as an excipient.
As the excipient, saccharides or sugar alcohols are preferable from the viewpoints of disintegration and aggregation suppression of ABR particles. When the pharmaceutical composition of the present disclosure is used as a powder formulation, granule, capsule or tablet, light anhydrous silicic acid / crystalline cellulose, d-mannitol, sucrose, lactose, trehalose, erythritol, maltitol, and It is preferable to include at least one excipient selected from the group consisting of maltose.
(水溶性高分子)
 本開示の医薬組成物は、さらに、HPC以外の水溶性高分子(以下、他の水溶性高分子と称することがある)を含むことができる。
 他の水溶性高分子を含むことで、HPCと併用してABR粒子の分散安定性を向上させることができる。また、錠剤を含む粉末製剤に用いる場合には、結合剤として機能し、粉末製剤などの固体製剤の安定性を高め、且つ、固体製剤が経口摂取された場合には、速やかに溶解して医薬組成物に含まれる成分を再分散させることができる。
 水溶性高分子としては、HPC以外のセルロース誘導体(例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、カルボキシプロピルメチルセルロース等)、ヒドロキシプロピルスターチ、デキストリン、カルボマー(化粧品原料名:架橋ポリアクリル酸)、ビニルピロリドン重合体(例えば、ポリビニルピロリドン、ビニルピロリドン/酢酸ビニル共重合体等)、ポリビニルアルコール、ポリエチレングリコール等が挙げられる。
(Water-soluble polymer)
The pharmaceutical composition of the present disclosure may further contain a water-soluble polymer other than HPC (hereinafter sometimes referred to as other water-soluble polymer).
By including other water-soluble polymers, the dispersion stability of ABR particles can be improved in combination with HPC. In addition, when used in powder formulations including tablets, it functions as a binder, enhances the stability of solid formulations such as powder formulations, and dissolves rapidly when solid formulations are taken orally. The components contained in the composition can be redispersed.
Examples of the water-soluble polymer include cellulose derivatives other than HPC (for example, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose sodium, carboxypropyl methyl cellulose, etc.), hydroxypropyl starch, dextrin, carbomer (cosmetic raw material name: crosslinked) Polyacrylic acid), vinylpyrrolidone polymers (for example, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymer, etc.), polyvinyl alcohol, polyethylene glycol and the like.
(崩壊剤)
 医薬組成物は、崩壊剤を含有してもよい。医薬組成物が、錠剤、顆粒剤などの剤型である場合、医薬組成物が崩壊剤を含有することで、経口摂取された製剤がより速やかに崩壊し、より早い消化管内での溶解性改善効果の発現が期待できる。
 崩壊剤としては、カルメロース、クロスポピドン、カルメロースカルシウム、クロスカルメロースナトリウム、デンプングリコール酸ナトリウム、部分α化デンプン、α化デンプン、ヒドロキシプロピルスターチ、低置換度ヒドロキシプロピルセルロース、加工コーンスターチなどが挙げられ、クロスポビドン、デンプングリコール酸ナトリウム、部分α化デンプン、クロスカルメロースナトリウム、カルメロースカルシウムが好ましい。
(Disintegrant)
The pharmaceutical composition may contain a disintegrant. When the pharmaceutical composition is in the form of a tablet, granule or the like, the pharmaceutical composition contains a disintegrating agent, so that the preparation taken orally disintegrates more quickly and improves the solubility in the digestive tract faster. The effect can be expected.
Examples of disintegrants include carmellose, crospovidone, carmellose calcium, croscarmellose sodium, sodium starch glycolate, partially pregelatinized starch, pregelatinized starch, hydroxypropyl starch, low-substituted hydroxypropylcellulose, and processed corn starch. Crospovidone, sodium starch glycolate, partially pregelatinized starch, croscarmellose sodium, and carmellose calcium are preferred.
(pH調整剤)
 医薬組成物は、製造に際し、必要に応じてpH調整剤を含むことができる。pH調整剤としては、生体適合性の酸又はアルカリ剤であれば特に制限なく用いることができる。
 公知のpH調整剤としては、例えば、水酸化ナトリウム(NaOH)、塩酸(HCl)等が挙げられる。
(PH adjuster)
The pharmaceutical composition can contain a pH adjuster as necessary during production. As the pH adjuster, any biocompatible acid or alkali agent can be used without particular limitation.
Examples of the known pH adjuster include sodium hydroxide (NaOH), hydrochloric acid (HCl) and the like.
(その他の製剤添加剤)
 医薬組成物は、外観及び経口摂取する際の感触向上を目的として、滑沢剤、着色剤、着香剤、甘味剤、矯味剤等を含有してもよい。
 滑沢剤としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、タルク、ショ糖脂肪酸エステルなどが挙げられる。
 着色剤としては、食用黄色5号色素、食用赤色2号色素、食用青色2号色素、食用レーキ色素、黄色三二酸化鉄、酸化チタンなどの可食着色剤を挙げることができる。
 着香剤としては、オレンジ香料、レモン香料、その他の経口摂取可能な各種香料などを挙げることができる。
(Other formulation additives)
The pharmaceutical composition may contain a lubricant, a coloring agent, a flavoring agent, a sweetening agent, a corrigent, and the like for the purpose of improving the appearance and feel when ingested orally.
Examples of the lubricant include magnesium stearate, calcium stearate, talc, and sucrose fatty acid ester.
Examples of the colorant include edible colorants such as edible yellow No. 5 dye, edible red No. 2 dye, edible blue No. 2 dye, edible lake dye, yellow ferric oxide, and titanium oxide.
Examples of flavoring agents include orange flavor, lemon flavor, and other various flavors that can be taken orally.
 甘味剤としては、アスパルテーム、ステビア、ソーマチン、サッカリンナトリウム、グリチルリチン酸二カリウムなどを挙げることができる。
 矯味剤としては、L-メントール、カンフル、ハッカ、L-グルタミン酸ナトリウム、イノシン酸二ナトリウム、塩化マグネシウムなどを挙げることができる。
Examples of the sweetening agent include aspartame, stevia, thaumatin, sodium saccharin, dipotassium glycyrrhizinate and the like.
Examples of the corrigent include L-menthol, camphor, mint, sodium L-glutamate, disodium inosinate, magnesium chloride and the like.
 既述の製剤添加物は、医薬組成物の製造に際して、適宜、適当な工程で添加すればよい。 The preparation additives described above may be appropriately added at an appropriate step in the production of the pharmaceutical composition.
<医薬組成物の製造方法>
 既述の本開示の医薬組成物の製造方法には特に制限はなく、公知の方法にて製造することができる。
 なかでも、以下に記載する本開示の医薬組成物の製造方法により製造することが好ましい。
 本開示の医薬組成物の製造方法(以下、単に、本開示の製造方法と称することがある)は、ABRと、医薬組成物におけるABRの含有量に対し10質量%~150質量%のHPCと、分散媒と、を含む被分散物を、湿式粉砕法により分散して、平均粒子径が50nm~200nmのABR粒子を含む分散物を得る工程(工程(I))を含む。
<Method for producing pharmaceutical composition>
There is no restriction | limiting in particular in the manufacturing method of the pharmaceutical composition of this indication mentioned above, It can manufacture by a well-known method.
Especially, it is preferable to manufacture by the manufacturing method of the pharmaceutical composition of this indication described below.
A method for producing a pharmaceutical composition of the present disclosure (hereinafter sometimes simply referred to as a production method of the present disclosure) includes ABR and HPC having a content of 10% to 150% by mass with respect to the content of ABR in the pharmaceutical composition. And a dispersion medium containing a dispersion medium is dispersed by a wet pulverization method to obtain a dispersion containing ABR particles having an average particle diameter of 50 nm to 200 nm (step (I)).
(工程(I))
 本開示の製造方法における湿式粉砕法による分散について詳述する。
 原料として用いるABRの粒子の平均粒子径は任意である。市販のABRをそのまま原料として使用してもよい。
 好ましくは、まず、HPCを溶媒に溶解する。溶媒は目的に応じて選択される。なかでも、HPCの溶解性がより良好である点、得られる医薬組成物の処方の自由度がより高い点などを考慮すれば、溶媒としては水を用いることが好ましい。
 ここで、HPCを溶解する溶媒は、そのまま被分散物の分散媒としても機能し得る。
 HPCの溶解に用いられる水は、不純物が少ないという観点から、イオン交換水、純水、超純水、注射用水、精製水等が好ましい。
(Process (I))
The dispersion by the wet pulverization method in the production method of the present disclosure will be described in detail.
The average particle diameter of the ABR particles used as the raw material is arbitrary. Commercially available ABR may be used as a raw material as it is.
Preferably, HPC is first dissolved in a solvent. The solvent is selected according to the purpose. Among these, it is preferable to use water as the solvent in view of the better solubility of HPC and the higher degree of freedom of formulation of the resulting pharmaceutical composition.
Here, the solvent which dissolves HPC can function as a dispersion medium for the dispersion as it is.
The water used for dissolving HPC is preferably ion-exchanged water, pure water, ultrapure water, water for injection, purified water or the like from the viewpoint that there are few impurities.
 得られたHPCの溶液に、原料としてのABRを添加して被分散物を調製する。
 得られた被分散物中のABR粒子を、湿式粉砕法により分散処理する。より具体的には、被分散物を、固体分散機を用いて機械的分散処理を行ない、分散媒中で、固体状のABRを粉砕し、微細なABRの粒子を含む分散物を調製する。
ABR as a raw material is added to the obtained HPC solution to prepare a dispersion.
The ABR particles in the obtained dispersion are dispersed by a wet pulverization method. More specifically, the dispersion is subjected to mechanical dispersion using a solid disperser, and solid ABR is pulverized in a dispersion medium to prepare a dispersion containing fine ABR particles.
 分散物の調製に用いられる公知の固体分散機には、駆動部やメディアを使って分散粒子に直接剪断力を与えるトライポロジー剪断力型分散機と、分散粒子に液媒体を介して剪断力を与えるレオロジー剪断力型分散機がある。
 トライポロジー剪断力型分散機としては、固体状の被分散物を含むスラリーを、複数本のロール間を通過させることで分散するロールミル、スラリーに撹拌翼で剪断力を付与するニーダー、スラリー中にビーズ等のメディアを共存させ、メディアを介して剪断力を付与するメディアミル等が挙げられる。
 レオロジー剪断力型分散機としては、各種撹拌型分散機、高圧分散機、超音波分散機等が挙げられる。
Known solid dispersers used for the preparation of dispersions include a tribological shear force type disperser that applies a shear force directly to dispersed particles using a drive unit and a medium, and a shear force applied to dispersed particles via a liquid medium There is a rheological shear type disperser.
The tribology shear force type disperser includes a roll mill that disperses a slurry containing a solid dispersion through a plurality of rolls, a kneader that applies shear force to the slurry with a stirring blade, and beads in the slurry. The media mill etc. which coexist media, such as these, and give a shearing force through media are mentioned.
Examples of the rheological shear force type disperser include various stirring type dispersers, high pressure dispersers, ultrasonic dispersers, and the like.
 本開示の製造方法では、固体状のABRに直接、高剪断力を付加して、ABRを粉砕し、且つ、分散する機械的分散機を用いることが、微細且つ安定的な分散物粒子を形成し易いという観点から好ましい。従って、工程(I)においては、湿式粉砕法に好適なトライポロジー剪断力型分散機を用いて湿式粉砕する方法を含むことがより好ましく、メディアミルに代表されるメディアを用いる湿式分散処理法を含むことがさらに好ましい。
 メディアを用いる湿式分散処理法としては、ABR粒子を含む被分散物と、目的に応じて選択された素材と粒径を有するメディアとを混合して、メディア分散を行う方法が挙げられる。工程(I)が、メディアを用いる湿式分散処理法を含むことで、微細なABR粒子が安定に分散された分散物を得ることができる。
In the manufacturing method of the present disclosure, a high-shearing force is directly applied to solid ABR, and a mechanical disperser that pulverizes and disperses ABR forms fine and stable dispersion particles. From the viewpoint that it is easy to do. Therefore, in the step (I), it is more preferable to include a wet pulverization method using a tribological shear force type disperser suitable for the wet pulverization method, including a wet dispersion treatment method using a medium represented by a media mill. More preferably.
Examples of the wet dispersion method using media include a method of dispersing media by mixing a material to be dispersed containing ABR particles, a material selected according to the purpose, and a media having a particle size. When step (I) includes a wet dispersion treatment method using media, a dispersion in which fine ABR particles are stably dispersed can be obtained.
 メディアとしては、目的とする分散粒子の粒径に応じて、ボール、ビーズなどのメディアから適宜選択して用いることができ、より微細な分散粒子を得ることができるという観点からは、メディアとしてビーズを用いることが好ましい。
 分散に用いるメディアの材質としては、ジルコニア、アルミナ、ステアタイト、炭化ケイ素、窒化ケイ素、シリカ、砂、メノー、鋼球、ステンレス、ガラス等の無機化合物、ポリスチレン、ポリメチルメタクリレート、ポリテトラフルオロエチレン、ポリアミド、ポリエチレン、ポリプロピレン、ポリエーテルエーテルケトン(PEEK)、ポリイミド等の高分子樹脂等が挙げられる。
 なかでも、分散力、耐久性、及びメディアに起因する不純物混入の懸念がないという観点から、メディアとしては、ジルコニアビーズが好ましい。
The medium can be appropriately selected from media such as balls and beads according to the particle size of the target dispersed particles. From the viewpoint that finer dispersed particles can be obtained, the beads are used as the media. Is preferably used.
Media materials used for dispersion include zirconia, alumina, steatite, silicon carbide, silicon nitride, silica, sand, menor, steel balls, stainless steel, glass and other inorganic compounds, polystyrene, polymethyl methacrylate, polytetrafluoroethylene, Examples thereof include polymer resins such as polyamide, polyethylene, polypropylene, polyetheretherketone (PEEK), and polyimide.
Among these, zirconia beads are preferable as the media from the viewpoint of dispersion power, durability, and the absence of fear of contamination due to the media.
 メディアに運動力を付加するメディア分散機には、撹拌方式、メディアの分離機構、縦型か横型か、冷却方式等によって種々の分散機が知られているが、特に0.1mmφ以下の微小ビーズの分離機構を備えたビーズミルが好ましい。
 0.1mmφ以下の如き微小ビーズ分離機構を有するビーズミル分散機の市販品としては、ウルトラアペックスミル(商品名:寿工業)、スターミル(商品名:アシザワファインテック)、パールミル(商品名:ビューラー)、OBミル(商品名:フロイント産業)、ダイノーミル(商品名:WAB)等が挙げられ、いずれも本開示の医薬組成物の製造方法に使用することができる。なお、分散処理に使用し得る分散装置は既述の例に限定されない。
Various media dispersers that add kinetic force to the media are known depending on the agitation method, media separation mechanism, vertical or horizontal type, cooling method, etc. A bead mill equipped with a separation mechanism is preferable.
As commercial products of bead mill dispersers having a microbead separation mechanism such as 0.1 mmφ or less, Ultra Apex Mill (trade name: Kotobuki Kogyo), Star Mill (trade name: Ashizawa Finetech), Pearl Mill (trade name: Buhler), OB mill (trade name: Freund Sangyo), dyno mill (trade name: WAB) and the like can be mentioned, and any of them can be used in the method for producing a pharmaceutical composition of the present disclosure. Note that the dispersing device that can be used for the distributed processing is not limited to the above-described example.
 なお、ビーズの分離機構を備えていない分散装置であっても、分散処理後に、ビーズ濾過の後工程を加えることで本開示の製造方法に使用することができる。
 本開示の製造方法に使用し得るビーズの分離機構を備えていない分散機としては、ボールミル、サンドグラインダーミル、遊星ボールミ等がある。
 ボールミルは、回転台の上にスラリーとビーズを入れた磁製、ナイロン製、ポリマー製、ステンレス製等から選ばれる材料により形成されたポットを載せて回転させる分散装置である。
 サンドグラインダーミルとしては、スラリーの粘性に応じてアジテーターの形状をピン型又はディスク型に変えることができる形態の装置が多く、レディーミル(商品名:アイメックス)等が知られている。
 遊星ボールミルはスラリーとボールを入れたベッセルが自転しながら公転する構造になっており、一般のボールミルより分散効率に優れているが、遊星ボールミルの例としては、遊星型ボールミル(商品名:フリッチュ)、自転・公転ナノ粉砕機NP-100(商品名:シンキー)等が挙げられる。
Even a dispersion apparatus that does not include a bead separation mechanism can be used in the manufacturing method of the present disclosure by adding a post-bead filtration step after the dispersion treatment.
Examples of a disperser that does not include a bead separation mechanism that can be used in the manufacturing method of the present disclosure include a ball mill, a sand grinder mill, and a planetary ball mill.
The ball mill is a dispersing device that places and rotates a pot formed of a material selected from magnetic, nylon, polymer, stainless steel, and the like in which slurry and beads are placed on a rotating table.
As the sand grinder mill, there are many devices that can change the shape of the agitator into a pin type or a disk type according to the viscosity of the slurry, and a ready mill (trade name: Imex) is known.
The planetary ball mill has a structure in which a vessel containing slurry and balls revolves while rotating, and has better dispersion efficiency than ordinary ball mills. An example of a planetary ball mill is a planetary ball mill (trade name: Fritsch). Rotating / revolving nano-pulverizer NP-100 (trade name: Sinky) and the like.
 湿式粉砕法による分散処理において、ABRの粒子を含む分散粒子の調製に際してジルコニアビーズを用いたメディア分散処理を行う場合、二段階以上の多段分散処理を行うことができ、三段階以上の多段分散処理を行なってもよい。
 なかでも、効果と、工程の簡易性の観点から二段階分散処理を行なうことが好ましい。
 二段階分散処理を例に挙げれば、一段目の分散処理はABRの比較的粗大な原料粒子を、ある程度の大きさ、例えば、1μm~10μm程度まで粉砕する工程を行い、その後、さらに、微細な粒子を得るための二段目の分散を行なう方法が挙げられる。
 多段階分散を行う際の一段目の分散処理においては、必ずしも湿式粉砕法を適用しなくてもよい。即ち、メディアを用いた湿式分散機を用いなくてもよく、例えば、高速撹拌方式等のレオロジーせん断力型の分散機を使うこともできる。しかしながら、分散効率の観点からは、0.5mmφ以上の比較的大きなビーズを使い、メディア分散機で粗分散を行うことが好ましい。一段目の分散工程、(以下、粗分散工程と称することがある)に続いて、二段階分散処理の場合には、二段目の分散、即ち、本分散を行う。二段目の分散処理には、メディアとして0.3mmφ以下の微小ビーズを用いたメディア分散機を適用した、メディアを用いる粉砕分散処理法を行うことが好ましい。
 二段目の分散処理において、ABRの粒子が、目的の粒子径である平均粒子径50nm~200nm程度まで微細分散された分散物を得る。
In the dispersion treatment by the wet pulverization method, when media dispersion treatment using zirconia beads is performed in preparation of dispersion particles containing ABR particles, multistage dispersion treatment in two or more stages can be performed, and multistage dispersion treatment in three or more stages. May be performed.
Especially, it is preferable to perform a two-stage dispersion process from a viewpoint of an effect and the simplicity of a process.
Taking the two-stage dispersion process as an example, the first stage dispersion process involves a step of pulverizing relatively coarse raw material particles of ABR to a certain size, for example, about 1 μm to 10 μm. A method of performing second-stage dispersion to obtain particles is mentioned.
In the first stage dispersion process when performing multistage dispersion, the wet pulverization method is not necessarily applied. That is, it is not necessary to use a wet disperser using a medium, and for example, a rheological shear force type disperser such as a high-speed stirring method may be used. However, from the viewpoint of dispersion efficiency, it is preferable to use a relatively large bead of 0.5 mmφ or more and perform coarse dispersion with a media disperser. In the case of the two-stage dispersion process following the first-stage dispersion process (hereinafter sometimes referred to as the coarse dispersion process), the second-stage dispersion, that is, the main dispersion is performed. In the second stage dispersion treatment, it is preferable to carry out a pulverization dispersion treatment method using media, to which a media dispersion machine using fine beads of 0.3 mmφ or less is applied as the media.
In the second stage dispersion treatment, a dispersion is obtained in which the ABR particles are finely dispersed to an average particle size of about 50 nm to 200 nm, which is the target particle size.
 既述の如く、多段階分散を行なう場合には、いずれかの段階でメディアを用いる粉砕分散処理法を含むことが好ましく、最終段階の分散処理において、メディアを用いる粉砕分散処理法を行なうことがより好ましい。 As described above, when performing multi-stage dispersion, it is preferable to include a pulverization / dispersion method using a medium at any stage, and in the final stage of the dispersion process, a pulverization / dispersion process using a medium may be performed. More preferred.
 機械的分散工程において、多段分散処理を行う際、一段目の分散処理である粗分散処理に補助的に用いることのできる、メディア分散機以外の分散機としては、レオロジー剪断力型分散機である、ホモミキサー、ディスパーミキサー、ウルトラミキサー、クレアミックス(商品名:エムテクニック)等の撹拌機、超音波ホモジナイザー、高圧ホモジナイザー等を用いることができる。高圧ホモジナイザーとしては、マイクロフルイダイザー(商品名:マイクロフルイディクス)、ナノマイザー(商品名:吉田機械興業)、スターバースト(商品名:スギノマシン)、ゴーリンホモジナイザー(商品名:APV)、ラニエホモジナイザー(商品名:ラニエ)、高圧ホモジナイザー(商品名:ニロ・ソアビ)、ホモゲナイザー(商品名:三和機械)、高圧ホモゲナイザー(商品名:イズミフードマシナリ)、超高圧ホモジナイザー(商品名:イカ)等が挙げられる。
 なお、機械的分散処理は、三段以上の多段分散処理であってもよい。
In the mechanical dispersion process, when performing multi-stage dispersion processing, the dispersion machine other than the media dispersion machine that can be used as an auxiliary to the coarse dispersion process, which is the first stage dispersion process, is a rheological shear force type dispersion machine. Stirrers such as homomixers, disper mixers, ultramixers, and CLEARMIX (trade name: M Technique), ultrasonic homogenizers, high-pressure homogenizers, and the like can be used. High-pressure homogenizers include microfluidizer (trade name: microfluidics), nanomizer (trade name: Yoshida Kikai Kogyo), starburst (trade name: Sugino Machine), gorin homogenizer (trade name: APV), and Ranie homogenizer (product) Name: Lanier), high-pressure homogenizer (product name: Niro Soabi), homogenizer (product name: Sanwa Machinery), high-pressure homogenizer (product name: Izumi Food Machinery), ultra-high pressure homogenizer (product name: squid), etc. .
The mechanical distributed process may be a multistage distributed process having three or more stages.
 湿式粉砕法による分散処理を行なう際に、原料としてのABRの粒子とHPCとを共存させて分散物を調製することで、粉砕されたABRの粒子の破砕面の少なくとも一部に、HPCが吸着し、新たな破砕面にさらにHPCが吸着され、微細化されたABRの粒子は、所謂保護層を有する如き粒子となり、水を含む分散媒中において、隣接する分散粒子同士の再凝集が、粒子表面の少なくとも一部に吸着したHPCの存在により効果的に抑制される。従って、得られたABRの粒子を含む分散物は、ABRの粒子の平均粒子径が200nm以下のナノオーダーとなり、且つ、粒子の分散性、及び分散安定性に優れる。
 従って、好ましくは、本開示の医薬組成物におけるABRの粒子は、粒子表面の少なくとも一部に、HPCを有する。
When dispersing by the wet pulverization method, HPC is adsorbed on at least a part of the pulverized surface of the pulverized ABR particles by preparing a dispersion by coexisting ABR particles and HPC as raw materials. Then, HPC is further adsorbed on the new crushing surface, and the refined ABR particles become particles having a so-called protective layer. In the dispersion medium containing water, reaggregation between adjacent dispersed particles It is effectively suppressed by the presence of HPC adsorbed on at least a part of the surface. Therefore, the obtained dispersion containing ABR particles has an average particle diameter of ABR particles of nano-order of 200 nm or less, and is excellent in particle dispersibility and dispersion stability.
Therefore, preferably, the particles of ABR in the pharmaceutical composition of the present disclosure have HPC on at least a part of the particle surface.
 湿式粉砕法による分散処理を行なうことで、得られたABRの粒子の平均粒子径を、既述の50nm~200nmとすることができる。分散粒子の平均粒子径は50nm~180nmがより好ましく、50nm~150nmがさらに好ましい。 By carrying out the dispersion treatment by the wet pulverization method, the average particle diameter of the obtained ABR particles can be set to 50 nm to 200 nm as described above. The average particle diameter of the dispersed particles is more preferably 50 nm to 180 nm, and further preferably 50 nm to 150 nm.
 既述の本開示の製造方法により得られた医薬組成物は、水を含む分散媒中に微細なABRの粒子が安定に分散された分散物となる。
 界面活性剤は湿式粉砕法による分散処理を行った後に添加してもよいし、分散処理の際に分散剤として添加するHPCと同時に添加してもよい。
 湿式粉砕法により得られたABRの粒子は、模擬胃液及び模擬腸液といった消化管内環境下においても好ましくは300nm以下、より好ましくは200nm以下の粒子サイズを維持し、良好な吸収性が期待できる。
 上記分散物は、そのまま、液剤、シロップ剤、或いはローション剤として用いてもよい。また、薬学的に許容される種々の分散媒、水を含む溶媒等を用いて希釈し、飲用として適正な物性に調整してもよい。さらに、飲用に適する味、外観などに調整するため、既述の着色剤、着香剤、甘味剤、矯味剤等を、適宜、添加してもよい。既述の調整の少なくともいずれかを行なうことで、飲用により適する医薬組成物とすることができる。
The pharmaceutical composition obtained by the production method of the present disclosure described above is a dispersion in which fine ABR particles are stably dispersed in a dispersion medium containing water.
The surfactant may be added after the dispersion treatment by the wet pulverization method, or may be added simultaneously with the HPC added as a dispersant during the dispersion treatment.
The ABR particles obtained by the wet pulverization method maintain a particle size of preferably 300 nm or less, more preferably 200 nm or less even in an environment in the digestive tract such as simulated gastric fluid and simulated intestinal fluid, and good absorbability can be expected.
The dispersion may be used as it is as a liquid, syrup, or lotion. Further, it may be diluted with various pharmaceutically acceptable dispersion media, solvents containing water, etc., and adjusted to appropriate physical properties for drinking. Furthermore, in order to adjust the taste and appearance suitable for drinking, the above-mentioned coloring agents, flavoring agents, sweetening agents, flavoring agents and the like may be added as appropriate. By performing at least one of the adjustments described above, a pharmaceutical composition more suitable for drinking can be obtained.
 本開示の医薬組成物の製造方法は、さらに、既述の工程(I)で得られた、平均粒子径が50nm~200nmのABRの粒子を含む分散物から分散媒を除去して、固体製剤を得る工程(工程(II))を含むことができる。
 分散物から分散媒を除去する方法には特に限定はなく、公知の方法を適用することができる。なお、本開示において、「分散媒を除去する」とは、必ずしも分散媒を全て除去して絶乾状態とすることを意味するものではなく、固体製剤としての剤型を維持できる程度に分散媒の含有量を減少させることを含む。
The method for producing the pharmaceutical composition of the present disclosure further comprises removing the dispersion medium from the dispersion containing ABR particles having an average particle diameter of 50 nm to 200 nm obtained in the above-described step (I), to obtain a solid preparation (Step (II)).
The method for removing the dispersion medium from the dispersion is not particularly limited, and a known method can be applied. In the present disclosure, “removing the dispersion medium” does not necessarily mean that the dispersion medium is completely removed to make it completely dry, but the dispersion medium is maintained to the extent that the dosage form as a solid preparation can be maintained. Reducing the content of.
(工程(II))
 工程(II)は、既述の工程(I)で得られた平均粒子径50nm~200nmのABRの粒子の分散物を、固体製剤である医薬組成物とする工程である。
 具体的には、工程(I)で得られた分散物、好ましくは、分散物と固体製剤成形用の賦形剤との混合物に対し、噴霧乾燥等の乾燥手段により分散媒を除去し、粉末状の固体製剤とすればよい。粉末状の固体製剤を、以下、粉末製剤とも称する。
(Process (II))
Step (II) is a step in which the dispersion of ABR particles having an average particle diameter of 50 nm to 200 nm obtained in the above-described step (I) is used as a pharmaceutical composition as a solid preparation.
Specifically, the dispersion medium obtained in the step (I), preferably a mixture of the dispersion and an excipient for solid preparation molding, is removed by a drying means such as spray drying to remove powder. A solid formulation may be used. Hereinafter, the powdery solid preparation is also referred to as a powder preparation.
 固体製剤形成用の賦形剤としては、マンニトール、スクロース、乳糖、トレハロース、エリスリトール、マルチトール、及びマルトースから選ばれる少なくとも1種が好ましく、マンニトール、乳糖、トレハロースから選ばれる少なくとも1種がより好ましい。
 分散媒の除去に際し、賦形剤を用いることで、乾燥後も凝集し難い粉末製剤が得られる。得られた粉末製剤は、例えば、直接、打錠工程に供して錠剤を製造することができる。また、後述するように、粉末製剤をさらに造粒し、得られた造粒物を打錠工程に供して錠剤を製造することもできる。
The excipient for forming a solid preparation is preferably at least one selected from mannitol, sucrose, lactose, trehalose, erythritol, maltitol, and maltose, and more preferably at least one selected from mannitol, lactose, and trehalose.
When the dispersion medium is removed, a powder preparation that hardly aggregates after drying can be obtained by using an excipient. The obtained powder formulation can be directly subjected to a tableting process to produce a tablet, for example. Further, as will be described later, the powder preparation can be further granulated, and the resulting granulated product can be subjected to a tableting process to produce a tablet.
 分散媒の除去手段(以下、乾燥手段と称することがある)としては、公知の乾燥手段を用いることができ、例えば、自然乾燥、加熱乾燥、熱風乾燥、高周波乾燥、超音波乾燥、減圧乾燥、真空乾燥、凍結乾燥、噴霧乾燥等が挙げられる。乾燥手段は単独で用いてもよいが、2種以上の乾燥手段を組み合わせて用いることもできる。 As a means for removing the dispersion medium (hereinafter sometimes referred to as a drying means), a known drying means can be used. For example, natural drying, heat drying, hot air drying, high frequency drying, ultrasonic drying, reduced pressure drying, Examples include vacuum drying, freeze drying, and spray drying. Although a drying means may be used independently, it can also be used in combination of 2 or more types of drying means.
 乾燥手段としては、凍結状態にある材料から氷を昇華させて水分を除去する凍結乾燥を適用することもできる。
 凍結乾燥に使用し得る市販の凍結乾燥機の例としては、凍結乾燥機VD-800F(商品名:タイテック(株))、フレキシドライMP(商品名:FTSシステムズ社)、デュラトップ・デュラストップ(商品名:FTSシステムズ社)、宝真空凍結乾燥機A型(商品名:(株)宝エーテーエム)、卓上凍結乾燥機FD-1000(商品名:東京理化器械(株))、真空凍結乾燥機FD-550(商品名:東京理化器械(株))、真空凍結乾燥機(商品名:(株)宝製作所)等が挙げられるがこれらに限定されない。
As the drying means, freeze-drying in which water is removed by sublimating ice from a frozen material can also be applied.
Examples of commercially available freeze dryers that can be used for freeze drying include freeze dryer VD-800F (trade name: Taitec Co., Ltd.), Flexi Dry MP (trade name: FTS Systems), Duratop Durastop ( Product name: FTS Systems Co., Ltd.), Takara vacuum freeze dryer A type (product name: Takara ATM), desktop freeze dryer FD-1000 (trade name: Tokyo Rika Kikai Co., Ltd.), vacuum freeze dryer FD -550 (trade name: Tokyo Rika Kikai Co., Ltd.), vacuum freeze dryer (trade name: Takara Seisakusho Co., Ltd.), and the like.
 また、乾燥手段として、生産効率と品質を両立する観点からは、噴霧乾燥が好ましい手段として挙げられる。噴霧乾燥法を適用する場合、工程(I)で得られたABRの粒子の分散物である液状組成物と賦形剤とを含む混合物を噴霧しながら水分を除去して固体製剤としての粉末製剤を調製すればよい。
 噴霧乾燥に用い得る市販の噴霧乾燥機の例としては、噴霧乾燥機スプレードライヤSD-1000(商品名:東京理化器械(株))、スプレードライヤL-8i(商品名:大川原化工機(株))、クローズドスプレードライヤCL-12(商品名:大川原化工機(株))、スプレードライヤADL310(商品名:ヤマト科学(株))、ミニスプレードライヤB-290(商品名:ビュッヒ(BUCHI)社)、PJ-MiniMax(商品名:パウダリングジャパン(株))、PHARMASD(商品名:ニロ社)等が挙げられる。
 また、例えば、流動層造粒乾燥機MP-01(商品名:(株)パウレック)、流動層内蔵型スプレードライヤFSD(商品名:ニロ社)等を用いた処理の如く、既述の装置を用いて、乾燥と造粒とを同時に行う方法をとることもできる。
Further, as a drying means, spray drying is a preferable means from the viewpoint of achieving both production efficiency and quality. In the case of applying the spray drying method, a powder preparation as a solid preparation by removing moisture while spraying a mixture containing a liquid composition, which is a dispersion of ABR particles obtained in step (I), and an excipient. May be prepared.
Examples of commercially available spray dryers that can be used for spray drying include spray dryer SD-1000 (trade name: Tokyo Rika Kikai Co., Ltd.), spray dryer L-8i (trade name: Okawara Kako Co., Ltd.) ), Closed spray dryer CL-12 (trade name: Okawara Chemical Co., Ltd.), spray dryer ADL310 (trade name: Yamato Kagaku Co., Ltd.), mini spray dryer B-290 (trade name: BUCHI) , PJ-MiniMax (trade name: Powdering Japan Co., Ltd.), PHARMASD (trade name: Niro Co., Ltd.) and the like.
Further, for example, the above-described apparatus is used, for example, a treatment using a fluidized bed granulator / dryer MP-01 (trade name: POWREC Co., Ltd.), a fluidized bed built-in spray dryer FSD (trade name: Niro). It is also possible to use a method of simultaneously performing drying and granulation.
 得られた粉末製剤は、表面の少なくとも一部に、HPCを有し、且つ、平均粒子径が50nm~200nmのABRの粒子と、好ましくは少なくとも1種の賦形剤と、含む。
 賦形剤の含有量は、粉末製剤に含まれるABRの粒子100質量部に対し、10質量部~500質量部が好ましく、20質量部~300質量部がより好ましく、50質量部~200質量部がさらに好ましい。
 賦形剤の含有量が上記範囲において、良好な粉末製剤が得られる。
The obtained powder formulation contains ABR particles having HPC and an average particle diameter of 50 nm to 200 nm, and preferably at least one excipient, on at least a part of the surface.
The content of the excipient is preferably 10 parts by weight to 500 parts by weight, more preferably 20 parts by weight to 300 parts by weight, and more preferably 50 parts by weight to 200 parts by weight with respect to 100 parts by weight of the ABR particles contained in the powder preparation. Is more preferable.
When the content of the excipient is in the above range, a good powder formulation can be obtained.
 得られた粉末製剤は、そのまま顆粒状の医薬組成物とすることができる。さらに、粉末製剤を用いて、ABRの粒子を含む造粒物、ABRの粒子を含む錠剤等を形成することもできる。
 即ち、本開示の製造方法は、既述の工程(II)にて得られた粉末製剤を打錠して固体製剤としての錠剤を得る工程(工程(III))をさらに含むことができる。
The obtained powder formulation can be directly used as a granular pharmaceutical composition. Further, a granulated product containing ABR particles, a tablet containing ABR particles, and the like can be formed using the powder preparation.
That is, the production method of the present disclosure can further include a step (step (III)) of tableting the powder formulation obtained in the above-described step (II) to obtain a tablet as a solid formulation.
(工程(II-2))
 工程(II-2)は、既述の工程(II)で得られた粉末製剤を造粒する工程である。粉末製剤を予め造粒して造粒物を製造し、得られた造粒物を打錠して固体製剤としての錠剤を得る工程(工程(III))に供することが好ましい。即ち、工程(III)により錠剤を製造するに際しては、本開示の医薬組成物の製造方法は、造粒物を調製する工程(II-2)を更に含むことが好ましい。
 造粒には、乾式造粒及び湿式造粒があり、いずれもが使用可能であるが、ナノオーダーのABRの粒子の凝集抑制の観点から乾式造粒であることが好ましい。
 湿式造粒には、流動層造粒法、高速撹拌造粒法、押出造粒法等の公知の湿式造粒法が適用可能である。
(Process (II-2))
Step (II-2) is a step of granulating the powder preparation obtained in the above-mentioned step (II). It is preferable to granulate the powder preparation in advance to produce a granulated product, and to tablet the obtained granulated product to obtain a tablet as a solid preparation (step (III)). That is, when producing a tablet by the step (III), the method for producing a pharmaceutical composition of the present disclosure preferably further includes a step (II-2) for preparing a granulated product.
Granulation includes dry granulation and wet granulation, both of which can be used, but dry granulation is preferred from the viewpoint of suppressing aggregation of nano-order ABR particles.
For wet granulation, known wet granulation methods such as fluidized bed granulation method, high speed stirring granulation method, extrusion granulation method and the like can be applied.
 造粒物を調製する工程(II-2)では、工程(II)で得られた粉末製剤に、少なくとも1つの薬学的に許容される固体製剤成形用添加剤を添加し、乾式造粒して、乾式造粒物を調製することが好ましい。
 乾式造粒とは、溶液を使用することなく、混合粉末から乾式造粒物(即ち、粒状物)を形成することをいう。
In the step (II-2) of preparing the granulated product, at least one pharmaceutically acceptable additive for solid preparation is added to the powder formulation obtained in the step (II), followed by dry granulation. It is preferable to prepare a dry granulated product.
Dry granulation refers to forming a dry granulated product (ie, a granular product) from a mixed powder without using a solution.
 乾式造粒の方法としては、コンパクティング法及びスラッギング法が挙げられ、コンパクティング法が好ましい。
 コンパクティング法としては、ローラーコンパクターを用いて圧縮成形物を製造し、それを破砕して、乾式造粒物を得る方法が挙げられる。コンパクティング法には、ローラーコンパクター TF-LABO、TF-MINI(フロイント産業(株))等の装置を用いることができる。
Examples of the dry granulation method include a compacting method and a slagging method, and the compacting method is preferable.
Examples of the compacting method include a method of producing a compression-molded product using a roller compactor and crushing it to obtain a dry granulated product. For the compacting method, an apparatus such as a roller compactor TF-LABO or TF-MINI (Freund Sangyo Co., Ltd.) can be used.
 なお、本開示の医薬組成物の製造方法においては、製造スケールが小さい場合は、乾式造粒に打錠機を用いてもよく、打錠機を用いて圧縮成形物としての造粒物を製造することができる。
 打錠機により、以下のようにして造粒物を製造することができる。
 まず、得られた粉末製剤に少なくとも1種の薬学的に許容される固体製剤成形用添加剤を添加し、混合粉末を得た後、打錠機にて圧縮成形し、圧縮成形物を得る。その後、得られた圧縮成形物を乳鉢にて破砕し、粉砕物を試験篩により整粒することで、乾式造粒を行うことができる。試験篩により整粒することで、所望のサイズの造粒物を得ることができる。
In the method for producing a pharmaceutical composition of the present disclosure, if the production scale is small, a tableting machine may be used for dry granulation, and a granulated product as a compression molded product is produced using the tableting machine. can do.
The granulated product can be produced by the tableting machine as follows.
First, at least one pharmaceutically acceptable additive for solid preparation molding is added to the obtained powder preparation to obtain a mixed powder, and then compression molding is performed with a tableting machine to obtain a compression molding. Thereafter, the obtained compression-molded product is crushed in a mortar, and the pulverized product is sized with a test sieve, whereby dry granulation can be performed. By granulating with a test sieve, a granulated product of a desired size can be obtained.
 造粒物を調製する工程(II-2)で用いられる薬学的に許容される固体製剤成形用添加剤としては、既述の製剤添加物の項に記載の崩壊剤、賦形剤、滑沢剤、結合剤、造粒剤、流動化促進剤などが挙げられ、これらの添加剤のうち1種以上を目的とする添加量に応じて選択して用いることができる。
 乾式造粒物を調製する工程(II-2)においては、添加剤として、崩壊剤、賦形剤及び滑沢剤からなる群より選択される少なくとも1種を用いることが好ましい。
Examples of the pharmaceutically acceptable additive for forming a solid preparation used in the step (II-2) for preparing the granulated product include a disintegrant, an excipient, and a lubricant described in the above-mentioned preparation additive. Agents, binders, granulating agents, fluidization accelerators and the like can be mentioned, and one or more of these additives can be selected and used according to the target addition amount.
In the step (II-2) of preparing the dry granulated product, it is preferable to use at least one selected from the group consisting of a disintegrant, an excipient, and a lubricant as an additive.
(工程(III))
 工程(III)は、工程(II)で得られた粉末混合物又は工程(II-2)で得られた造粒物を圧縮し、打錠して錠剤を形成する工程である。
 即ち、上記工程(II)で得られた粉末混合物又は上記工程(II)で得られた造粒物を圧縮して打錠することで、錠剤としての医薬組成物を調製することができる。
 錠剤を形成する際には、粉末混合物又は造粒物を、必要に応じて、崩壊剤、賦形剤、滑沢剤、結合剤等の薬学的に許容される固体製剤成形用添加剤の少なくとも1種と混合し、得られた混合物を打錠機の型内に導入して圧縮打錠し、錠剤を得ればよい。
 工程(III)における打錠方法としては、一般に適用されている打錠方法をそのまま適用すればよく、特に制限はない。
 打錠に用いる装置としては、例えば、回転式錠剤作製機 HT-AP series(畑鐵工所(株))、卓上ロータリー式打錠機 PICCOLA(RIVA社)、卓上簡易錠剤成形機 HANDTAB-jr,HANDTAB-100(市橋精機(株))等が挙げられる。
 打錠圧、錠剤のサイズなどは、錠剤の使用目的等に応じて適宜選択される。
(Step (III))
Step (III) is a step in which the powder mixture obtained in step (II) or the granulated product obtained in step (II-2) is compressed and tableted to form tablets.
That is, the pharmaceutical composition as a tablet can be prepared by compressing and compressing the powder mixture obtained in the step (II) or the granulated product obtained in the step (II).
When forming a tablet, the powder mixture or the granulated product is added with at least a pharmaceutically acceptable additive for solid pharmaceutical preparation such as a disintegrant, an excipient, a lubricant, and a binder as necessary. Mixing with one type, the mixture obtained may be introduced into a mold of a tableting machine and compressed into tablets to obtain tablets.
As a tableting method in the step (III), a generally applied tableting method may be applied as it is, and there is no particular limitation.
Examples of the apparatus used for tableting include a rotary tablet making machine HT-AP series (Hatabe Laboratories), a tabletop rotary tableting machine PICCOLA (RIVA), a tabletop simple tablet molding machine HANDTAB-jr, HANDTAB-100 (Ichibashi Seiki Co., Ltd.).
The tableting pressure, tablet size, and the like are appropriately selected according to the purpose of use of the tablet.
 錠剤を形成する工程(工程(III))の一例を挙げれば、まず、工程(II)により得られた粉末製剤と、賦形剤、崩壊剤、及び滑沢剤からなる群より選ばれる少なくとも1種を含む薬学的に許容される固体製剤成形用添加剤と、を混合して、粉末混合物を調製し、得られた粉末混合物を打錠する工程が挙げられる。
 粉末混合物の調製に用いられる添加剤は、少なくとも賦形剤及び滑沢剤を含むことが好ましい。
If an example of the process (process (III)) which forms a tablet is given, first, at least 1 chosen from the group which consists of a powder formulation obtained by process (II), an excipient | filler, a disintegrating agent, and a lubricant. Examples include a step of mixing a pharmaceutically acceptable additive for solid pharmaceutical preparation containing a seed to prepare a powder mixture and tableting the obtained powder mixture.
The additive used for the preparation of the powder mixture preferably contains at least an excipient and a lubricant.
 錠剤の形成時に用い得る固体製剤成形用賦形剤としては、マンニトール、トウモロコシデンプン、乳糖水和物、無水乳糖、結晶セルロース、ソルビトール、エリスリトール、軽質無水ケイ酸・結晶セルロース、軽質無水ケイ酸、含水二酸化ケイ素、ケイ酸カルシウム及びこれらの混合物が挙げられる。
 固体製剤成形用賦形剤の市販品としては、ロケットジャパン(株)製のペアリトールフラッシュなどが挙げられる。
The solid formulation excipients that can be used during tablet formation include mannitol, corn starch, lactose hydrate, anhydrous lactose, crystalline cellulose, sorbitol, erythritol, light anhydrous silicic acid / crystalline cellulose, light anhydrous silicic acid, water containing Examples include silicon dioxide, calcium silicate, and mixtures thereof.
Examples of commercially available excipients for forming solid preparations include Pearitol Flash manufactured by Rocket Japan Co., Ltd.
 錠剤の形成時に用い得る固体製剤成形用添加剤である滑沢剤は、原料粉体の流動性を向上させ、打錠機の臼に一定量が充填し易くする機能を有し、さらに、打錠の際のキャッピング、スティッキング及びバインディング等を防止し、錠剤の表面に光沢を与える成分である。
 例えば、上記滑沢剤としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、フマル酸ステアリルナトリウム、モノステアリン酸グリセリン、硬化油、タルク、軽質無水ケイ酸等が挙げられる。
 滑沢剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 滑沢剤は市販品を使用してもよい。市販品としてはメルク社製のPartek MST(商品名:ステアリン酸マグネシウム)等が挙げられる。
A lubricant, which is an additive for forming a solid preparation that can be used during tablet formation, has the function of improving the fluidity of the raw material powder and facilitating filling a fixed amount into the die of a tableting machine. It is a component that prevents capping, sticking, binding, and the like at the time of tableting and gives gloss to the surface of the tablet.
For example, examples of the lubricant include magnesium stearate, calcium stearate, sodium stearyl fumarate, glyceryl monostearate, hydrogenated oil, talc, and light anhydrous silicic acid.
One type of lubricant may be used alone, or two or more types may be used in combination.
A commercially available product may be used as the lubricant. Examples of commercially available products include Partek MST (trade name: magnesium stearate) manufactured by Merck.
 粉末混合物を調製する際の混合方法としては、各成分を混合することができれば、特に制限されない。
 混合方法としては、例えば、V型混合器(筒井理化学器械(株)製)等の公知の混合器を用いて、混合する方法が挙げられる。
 混合に要する時間等の混合条件は、粉末製剤と結合剤との量、種類等により適宜調整することができる。
The mixing method for preparing the powder mixture is not particularly limited as long as each component can be mixed.
As a mixing method, for example, a method of mixing using a known mixer such as a V-type mixer (manufactured by Tsutsui Chemical Co., Ltd.) can be mentioned.
Mixing conditions such as the time required for mixing can be appropriately adjusted depending on the amount and type of the powder preparation and the binder.
 工程(III)の他の例としては、既述のように、工程(II-2)により得られた造粒物を打錠する工程が挙げられる。造粒物を打錠する際にも、必要に応じて薬学的に許容される固体製剤成形用添加剤の少なくとも1種を予め混合して混合物を調製し、得られた混合物を圧縮して打錠することができる。
 造粒物を打錠する際にも、既述の固体製剤成形用添加剤の少なくとも1種を必要に応じて造粒物と混合し、混合物を得た後、圧縮し、打錠することができる。
 本開示における錠剤である医薬組成物の製造においては、工程(III)は、工程(II-2)で得られた造粒物を含む混合物を打錠する工程であることが好ましい。
Another example of the step (III) is a step of tableting the granulated product obtained in the step (II-2) as described above. When tableting the granulated product, if necessary, at least one pharmaceutically acceptable additive for solid preparation molding is mixed in advance to prepare a mixture, and the resulting mixture is compressed and compressed. Can be locked.
When tableting the granulated product, it is possible to mix at least one of the above-mentioned additives for molding a solid preparation with the granulated product as necessary, obtain a mixture, and then compress and compress the tablet. it can.
In the production of the pharmaceutical composition that is a tablet in the present disclosure, the step (III) is preferably a step of tableting the mixture containing the granulated product obtained in the step (II-2).
(再分散性)
 本開示の医薬組成物が、造粒物又は錠剤などの固体製剤の形態を有する場合、固体製剤を水に浸漬すると速やかに再分散され、再分散された場合にも、ABRの粒子は、50nm~200nmの粒子サイズを維持する。
 本開示の医薬組成物は、粉末製剤の形態である場合でも、目的とする平均粒子径のABRの粒子を含む状態に再分散されるため、良好な吸収性が期待できる。
 既述の如く、粉末製剤、或いはこれを打錠した錠剤の形態をとる本開示の医薬組成物を、必要に応じて水などの溶媒に溶解して服用する「用時調製用」の医薬組成物として用いることもできる。
 粉末状又は錠剤の医薬組成物と、水又は水溶液等の溶媒とを混合し、固体製剤である医薬組成物を溶媒に溶解又は分散することで、溶媒中に、ABRの粒子が微細な分散粒子状に再分散され、良好な吸収性を期待できる。
(Redispersibility)
When the pharmaceutical composition of the present disclosure is in the form of a solid preparation such as a granulated product or a tablet, the solid preparation is rapidly redispersed when immersed in water. Maintain a particle size of ~ 200 nm.
Even when the pharmaceutical composition of the present disclosure is in the form of a powder preparation, good resorbability can be expected because it is redispersed in a state containing ABR particles having a target average particle size.
As described above, the pharmaceutical composition of the present disclosure in the form of a powder preparation or a tablet obtained by compressing the powder preparation is dissolved in a solvent such as water as needed, and is used for “preparation for use” pharmaceutical composition It can also be used as a product.
A powdered or tableted pharmaceutical composition and a solvent such as water or an aqueous solution are mixed, and the pharmaceutical composition, which is a solid preparation, is dissolved or dispersed in the solvent, so that the ABR particles are finely dispersed in the solvent. It can be redispersed into a good shape and good absorption can be expected.
 水に再分散されたABRの粒子は、50nm~200nmとすることができ、50nm~180nmが好ましく、50nm~150nmがより好ましい。 The particles of ABR redispersed in water can be 50 nm to 200 nm, preferably 50 nm to 180 nm, and more preferably 50 nm to 150 nm.
<治療方法>
 本開示の他の実施形態は、有効成分としてABRの粒子を含む本開示の医薬組成物を、治療対象となる適用対象者へ経口投与することを含む治療方法も包含する。
<Treatment method>
Other embodiments of the present disclosure also encompass a method of treatment comprising orally administering a pharmaceutical composition of the present disclosure comprising ABR particles as an active ingredient to an application subject to be treated.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。
 なお、特に断りのない限り、「%」及び「部」は質量基準である。
 以下の実施例において、アビラテロン酢酸エステル(ABR)の粒子をABR粒子と称することがある。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof.
Unless otherwise specified, “%” and “part” are based on mass.
In the following examples, abiraterone acetate (ABR) particles may be referred to as ABR particles.
(実施例1)
[粒子分散液の調製]
 分散剤としてのヒドロキシプロピルセルロース(NISSO HPC-SSL、分子量:4万、日本曹達(株)製)300mgを水8gに溶解し、pH調整剤(0.1mol/L NaOH又はHCl)を添加して、pHを6.8~7.2に調整した後、全量が9.25gとなる量の水を加えHPC溶液を得た。
 アビラテロン酢酸エステル(ABR)75mgに対し、得られたHPC溶液を925mg加えて、被分散物を得た。
 得られた被分散物を、メディアとしての直径0.1mmのジルコニアビーズ3gと混合し、混合物を外温5℃にて20時間メディアを用いた湿式粉砕法により分散処理し、粉砕されたABR粒子を含む分散液を得た(工程(I))。
Example 1
[Preparation of particle dispersion]
Dissolve 300 mg of hydroxypropylcellulose (NISSO HPC-SSL, molecular weight: 40,000, manufactured by Nippon Soda Co., Ltd.) as a dispersant in 8 g of water, and add a pH adjuster (0.1 mol / L NaOH or HCl). After adjusting the pH to 6.8 to 7.2, an amount of water of a total amount of 9.25 g was added to obtain an HPC solution.
925 mg of the obtained HPC solution was added to 75 mg of abiraterone acetate (ABR) to obtain a dispersion.
The obtained dispersion was mixed with 3 g of zirconia beads having a diameter of 0.1 mm as a medium, and the mixture was dispersed by a wet pulverization method using a medium at an external temperature of 5 ° C. for 20 hours, and pulverized ABR particles A dispersion liquid containing was obtained (step (I)).
[調製直後のABR粒子の平均粒子径]
 得られた分散液中のABR粒子の平均粒子径は、濃厚系粒径アナライザー FPAR-1000(商品名:大塚電子(株)製)を用いて、動的光散乱法により測定し、D50として求めた。結果を下記表1に示す。
[Average particle size of ABR particles immediately after preparation]
The average particle size of the ABR particles in the obtained dispersion was measured by a dynamic light scattering method using a dense particle size analyzer FPAR-1000 (trade name: manufactured by Otsuka Electronics Co., Ltd.), and D 50 Asked. The results are shown in Table 1 below.
[模擬消化管液中におけるABR粒子の平均粒子径]
 経口投与されたABR粒子の消化液中での挙動を確認する目的で、以下の試験を行なった。
(1)模擬胃液との混合
 得られた分散液(ABR粒子含有量20mg相当)に対し、模擬胃液としての溶出試験第1液(日本薬局方準拠、関東化学(株)社製)1mL(ミリリットル)を添加、混合し、37℃環境下で30分間静置した。30分間静置後のABR粒子の平均粒子径を、既述と同様にして測定した。結果を下記表1に示す。
[Average particle size of ABR particles in simulated gastrointestinal fluid]
The following test was conducted for the purpose of confirming the behavior of orally administered ABR particles in the digestive fluid.
(1) Mixing with simulated gastric fluid For the obtained dispersion (ABR particle content equivalent to 20 mg), 1 mL of dissolution test 1st liquid as simulated gastric fluid (compliant with Japanese Pharmacopoeia, manufactured by Kanto Chemical Co., Ltd.) ) Was added, mixed, and allowed to stand at 37 ° C. for 30 minutes. The average particle size of the ABR particles after standing for 30 minutes was measured in the same manner as described above. The results are shown in Table 1 below.
(2)模擬腸液との混合
 上記(1)にて模擬胃液と混合し、30分間静置した後の試験液0.2mLに対し、模擬腸液としてのFaSSIF 0.8mL(ミリリットル)を添加、混合し、37℃環境下で60分間静置した。60分間静置後のABR粒子の平均粒子径を、既述と同様にして測定した。結果を下記表1に示す。
(2) Mixing with simulated intestinal fluid Mixing with simulated gastric fluid in (1) above, adding 0.2 mL of FaSSIF (milliliter) as simulated intestinal fluid to 0.2 mL of test solution after standing for 30 minutes And left at 37 ° C. for 60 minutes. The average particle size of the ABR particles after standing for 60 minutes was measured in the same manner as described above. The results are shown in Table 1 below.
 模擬胃液として用いた溶出試験第1液は、塩化ナトリウム2.0gを塩酸7.0mL(ミリリットル)及び水に溶かして1000mLとした液であり、無色澄明であり、pHは、約1.2である。
 模擬腸液として用いたFaSSIF(絶食時模擬腸液:Fasted State Simulated Intestinal Fluid)は、人工腸液調製試薬((株)セレステ社)2.18g、塩化ナトリウム6.19g及びリン酸二水素ナトリウム・2水和物4.47gを水に溶かして1000mLにした液であり、pHは1mol/L 水酸化ナトリウムを用いて8.0に調整した液である。
The first dissolution test used as a simulated gastric juice is a solution obtained by dissolving 2.0 g of sodium chloride in 7.0 mL (milliliter) of hydrochloric acid and water to make 1000 mL, is colorless and clear, and has a pH of about 1.2. is there.
FaSSIF (Fasted State Simulated Intestinal Fluid) used as simulated intestinal fluid was 2.18 g of an artificial intestinal fluid preparation reagent (Celeste Co., Ltd.), 6.19 g of sodium chloride and sodium dihydrogen phosphate dihydrate. A solution prepared by dissolving 4.47 g of the product in water to 1000 mL, and a pH adjusted to 8.0 using 1 mol / L sodium hydroxide.
(実施例2~実施例3、比較例1~比較例16)
 HPC又は比較分散剤の種類を下記表1に記載の如く変えた以外は実施例1と同様にしてABR粒子の分散物を得た。
 得られた分散物に対して、実施例1と同様にして調製直後、模擬胃液と混合後、さらに模擬腸液と混合後の平均粒子径を測定した。結果を下記表1に示す。
(Examples 2 to 3, Comparative Examples 1 to 16)
A dispersion of ABR particles was obtained in the same manner as in Example 1 except that the type of HPC or comparative dispersant was changed as shown in Table 1 below.
For the obtained dispersion, the average particle size was measured immediately after preparation, after mixing with simulated gastric juice, and after mixing with simulated intestinal fluid in the same manner as in Example 1. The results are shown in Table 1 below.
 なお、各実施例にて使用した成分の詳細は以下の通りである。なお、HPCの分子量はカタログ値である。
(ABR)
 アビラテロン酢酸エステル(テバファーマスーティカル(株)製)
In addition, the detail of the component used in each Example is as follows. The molecular weight of HPC is a catalog value.
(ABR)
Abiraterone acetate (manufactured by Teva Pharmaceuticals)
(HPC)
 ヒドロキシプロピルセルロース(NISSO HPC-SSL、日本曹達(株)製、分子量:4万)
 ヒドロキシプロピルセルロース(NISSO HPC-SL、日本曹達(株)製、分子量:10万)
 ヒドロキシプロピルセルロース(NISSO HPC-L、日本曹達(株)製、分子量:14万)
(HPC)
Hydroxypropylcellulose (NISSO HPC-SSL, Nippon Soda Co., Ltd., molecular weight: 40,000)
Hydroxypropyl cellulose (NISSO HPC-SL, Nippon Soda Co., Ltd., molecular weight: 100,000)
Hydroxypropyl cellulose (NISSO HPC-L, Nippon Soda Co., Ltd., molecular weight: 140,000)
(比較分散剤)
 メチルセルロース(METOLOSE(登録商標)SM-4、信越化学工業(株)製)
 ヒドロキシエチルセルロース(Natrosol 250(商品名)、ASHLAND(株)製)
 ポリビニルピロリドン(PVP K30、BASF(株)製)
 ポリオキシエチレン(196)ポリオキシプロピレン(67)グリコール(Kolliphor(登録商標) P407、BASF(株)製)
 ポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール(Kolliphor(登録商標)P188、BASF(株)製)
 ポリオキシエチレンヒマシ油(Kolliphor(登録商標) EL、BASF(株)製)
 ポリオキシエチレンヒドロキシステアレート(Solutol HS15、BASF(株)製)
 ポリソルベート20(富士フイルム和光純薬(株)製)
 ポリソルベート80(日油 (株)製)
 ラウロマクロゴール BL-25(日光ケミカルズ (株)製)
 ポリオキシエチレン硬化ひまし油50(NIKKOL(登録商標)HCO-50、日光ケミカルズ(株)製)
 デオキシコール酸ナトリウム(東京化成工業(株)製)
 ラウリル硫酸ナトリウム(SLS、商品名:エマールOS、花王(株)製)
 ドクサートナトリウム(東京化成工業(株)製)
 カルメロースナトリウム(セロゲンPR-S、第一工業製薬(株)製)
 ヒドロキシプロピルメチルセルロース(HPMC2910 TC-5M、信越化学工業(株)製、分子量:2.2万)
(Comparison dispersant)
Methylcellulose (METOLOSE (registered trademark) SM-4, manufactured by Shin-Etsu Chemical Co., Ltd.)
Hydroxyethyl cellulose (Natrosol 250 (trade name), manufactured by ASHLAND Co., Ltd.)
Polyvinylpyrrolidone (PVP K30, manufactured by BASF Corporation)
Polyoxyethylene (196) polyoxypropylene (67) glycol (Kolliphor (registered trademark) P407, manufactured by BASF Corporation)
Polyoxyethylene (160) polyoxypropylene (30) glycol (Kolliphor (registered trademark) P188, manufactured by BASF Corporation)
Polyoxyethylene castor oil (Kolliphor (registered trademark) EL, manufactured by BASF Corporation)
Polyoxyethylene hydroxystearate (Solutol HS15, manufactured by BASF Corporation)
Polysorbate 20 (Fujifilm Wako Pure Chemical Industries, Ltd.)
Polysorbate 80 (manufactured by NOF Corporation)
Lauro Macrogol BL-25 (Nikko Chemicals Co., Ltd.)
Polyoxyethylene hydrogenated castor oil 50 (NIKKOL (registered trademark) HCO-50, manufactured by Nikko Chemicals Co., Ltd.)
Sodium deoxycholate (manufactured by Tokyo Chemical Industry Co., Ltd.)
Sodium lauryl sulfate (SLS, trade name: Emar OS, manufactured by Kao Corporation)
Doxert sodium (manufactured by Tokyo Chemical Industry Co., Ltd.)
Carmellose sodium (Serogen PR-S, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
Hydroxypropyl methylcellulose (HPMC2910 TC-5M, manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 22,000)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の記載より、実施例1~実施例3の医薬組成物では、いずれも、ABR粒子の分散液の調製直後の平均粒子径は200nm以下であり、ナノオーダーのABR粒子の分散物であった。さらに、模擬胃液、及びさらに模擬腸液と混合し、静置した後においても、ABR粒子の平均粒子径の大幅な上昇が抑制され、模擬胃液との混合後では、平均粒子径の最大値が221nmであり、模擬腸液との混合後の平均粒径の最大値は265nmであり、いずれも、ABR粒子がナノオーダーの平均粒子径に維持されることが確認された。 As shown in Table 1, in the pharmaceutical compositions of Examples 1 to 3, the average particle size immediately after the preparation of the dispersion of ABR particles is 200 nm or less, and it is a dispersion of nano-order ABR particles. It was. Further, even after mixing with the simulated gastric fluid and further with the simulated intestinal fluid and allowing to stand, a significant increase in the average particle size of the ABR particles is suppressed, and after mixing with the simulated gastric fluid, the maximum average particle size is 221 nm. The maximum value of the average particle size after mixing with the simulated intestinal fluid was 265 nm, and it was confirmed that the ABR particles were maintained at an average particle size of nano order.
 他方、比較分散剤を用いて得た分散液(医薬組成物)では、調製直後のABR粒子の平均粒子径は200nm以下である例もあるが、模擬胃液中では平均粒子径が大幅に上昇した例が認められた。また、比較例12~比較例13の如く、比較分散剤としてイオン性の界面活性剤を用いた場合では、消化管液により固化したり、粗大粒子の発生及び沈殿が認められたりした。
 例えば、比較分散剤として、構造がHPCと類似するヒドロキシプロピルメチルセルロースを用いた比較例16においては、調製直後の平均粒子径は200nmを超え、模擬腸液との混合後には、平均粒径の大幅な上昇はなかったが、目視により確認できる粗大粒子の発生が認められた。
 上記の結果より、実施例の医薬組成物では、ABR粒子の平均粒子径が、調製直後のみならず、模擬胃液、さらには、模擬腸液との混合によってもナノオーダーに維持されるため、医薬組成物として、ABRの体内吸収性が良好であることが期待できる。
On the other hand, in the dispersion (pharmaceutical composition) obtained using the comparative dispersant, the average particle diameter of the ABR particles immediately after preparation was 200 nm or less in some cases, but the average particle diameter was significantly increased in the simulated gastric fluid. An example was found. Further, as in Comparative Examples 12 to 13, when an ionic surfactant was used as a comparative dispersant, solidification was caused by gastrointestinal fluid, and generation and precipitation of coarse particles were observed.
For example, in Comparative Example 16 using hydroxypropyl methylcellulose having a structure similar to HPC as a comparative dispersant, the average particle diameter immediately after preparation exceeds 200 nm, and after mixing with simulated intestinal fluid, the average particle diameter is greatly increased. Although there was no increase, the generation of coarse particles that could be visually confirmed was observed.
From the above results, in the pharmaceutical compositions of the examples, the average particle size of the ABR particles is maintained not only immediately after the preparation but also in the nano-order by mixing with simulated gastric fluid and further simulated intestinal fluid. As a product, it can be expected that the absorbability of ABR in the body is good.
(実施例4~実施例8)
[粒子分散液の調製]
 上記実施例1にて用いたABRの含有量、HPCの種類、HPCの含有量及び被分散物の分散処理時間を、下記表2に記載の如く変えた以外は実施例1と同様にしてABR粒子の分散物を得た。
 得られた分散物に対して、実施例1と同様にして調製直後のABR粒子の平均粒子径を測定した。結果を下記表2に示す。
(Examples 4 to 8)
[Preparation of particle dispersion]
In the same manner as in Example 1 except that the content of ABR, the type of HPC, the content of HPC, and the dispersion treatment time of the dispersion used in Example 1 were changed as shown in Table 2 below. A dispersion of particles was obtained.
The average particle diameter of the ABR particles immediately after preparation was measured in the same manner as in Example 1 for the obtained dispersion. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
 表2の結果より、実施例4~実施例8の医薬組成物におけるABR粒子の平均粒子径はいずれも200nm以下であり、微細粒子の分散が達成されていた。
 HPCの重量平均分子量が4万~14万の範囲では、重量平均分子量が4万の実施例4が、粒子径の観点からは、やや良好ではあるが、大きな差異は見られなかった。また、実施例4、5、6と、実施例7、8との対比より、分散処理時間を長くすることで、分散粒子の平均粒子径が小さくなる傾向がみられ、さらに重量平均分子量が4万の実施例が、より短時間で微細粒子を得ることがわかる。
From the results shown in Table 2, the average particle diameters of the ABR particles in the pharmaceutical compositions of Examples 4 to 8 were all 200 nm or less, and fine particle dispersion was achieved.
When the weight average molecular weight of HPC was in the range of 40,000 to 140,000, Example 4 having a weight average molecular weight of 40,000 was slightly good from the viewpoint of particle diameter, but no significant difference was observed. Further, as compared with Examples 4, 5, and 6 and Examples 7 and 8, there is a tendency that the average particle diameter of the dispersed particles tends to be reduced by increasing the dispersion treatment time, and the weight average molecular weight is 4 It can be seen that ten thousand examples obtain fine particles in a shorter time.
(実施例9~実施例15、比較例17~比較例19)
 HPCとして重量平均分子量4万のHPC-SSLを用い、上記実施例1にて用いたABRの含有量、HPCの含有量及び被分散物の分散処理時間を、下記表3に記載の如く変えた以外は実施例1と同様にしてABR粒子の分散物を得た。
 得られた分散物に対して、実施例1と同様にして調製直後のABR粒子の平均粒子径を測定した。結果を下記表3に示す。
(Examples 9 to 15, Comparative Examples 17 to 19)
The HPC-SSL having a weight average molecular weight of 40,000 was used as the HPC, and the ABR content, the HPC content and the dispersion treatment time used in Example 1 were changed as shown in Table 3 below. Except for the above, a dispersion of ABR particles was obtained in the same manner as in Example 1.
The average particle diameter of the ABR particles immediately after preparation was measured in the same manner as in Example 1 for the obtained dispersion. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
 表3に記載の結果より、医薬組成物におけるABRの含有量に対し、HPCを10%~150%含有する実施例9~実施例15及び表2に記載の実施例4の医薬組成物は、含まれるABR粒子の平均粒子径がいずれも200nm以下であった。
 他方、ABRの含有量に対するHPCの含有量が200%の比較例17では、分散処理時間を長くすることで、平均粒子径は200nm以下となったが、分散物中に目視で確認できる粗大粒子の存在が認められ、分散性に問題があった。また、ABRの含有量に対するHPCの含有量が10%未満の比較例18では、得られたABR粒子の平均粒子径は200nmを超え、比較例19では、分散剤としてのHPCが少なすぎるため、実施例10~実施例15と同条件の分散処理では、均一分散ができなかった。
From the results shown in Table 3, the pharmaceutical compositions of Examples 9 to 15 and Example 4 described in Table 2 containing 10% to 150% of HPC with respect to the content of ABR in the pharmaceutical composition are as follows: The average particle size of the ABR particles contained was 200 nm or less.
On the other hand, in Comparative Example 17 in which the content of HPC with respect to the content of ABR is 200%, the average particle size becomes 200 nm or less by increasing the dispersion treatment time, but coarse particles that can be visually confirmed in the dispersion There was a problem in dispersibility. Further, in Comparative Example 18 in which the HPC content is less than 10% relative to the ABR content, the average particle diameter of the obtained ABR particles exceeds 200 nm, and in Comparative Example 19, the amount of HPC as the dispersant is too small. In the dispersion treatment under the same conditions as in Examples 10 to 15, uniform dispersion could not be achieved.
(実施例16~実施例30)
〔分散物の調製〕
 HPCとして重量平均分子量4万のHPC-SSLを用い、上記実施例1と同様の方法でABR粒子の分散物を得た。次に、表4に示す賦形剤を含有する水溶液を調製し、得られた分散物に対し表4に示すABR及びHPC含有量となる量を添加して混合液を調製した。さらに、実施例22~実施例28では、表4に示す賦形剤を含有する水溶液を調製する際に界面活性剤であるKolliphor P407を含有させ、分散物に添加することで混合液を得た。(工程(I))。
 得られた混合液に対して、実施例1と同様にして調製直後のABR粒子の平均粒子径を測定した。結果を下記表4示す。
(Example 16 to Example 30)
(Preparation of dispersion)
Using HPC-SSL having a weight average molecular weight of 40,000 as HPC, a dispersion of ABR particles was obtained in the same manner as in Example 1. Next, an aqueous solution containing the excipients shown in Table 4 was prepared, and an amount of ABR and HPC contents shown in Table 4 was added to the resulting dispersion to prepare a mixed solution. Further, in Examples 22 to 28, when preparing an aqueous solution containing the excipients shown in Table 4, Kolliphor P407, which is a surfactant, was added and added to the dispersion to obtain a mixed solution. . (Step (I)).
The average particle diameter of the ABR particles immediately after preparation was measured in the same manner as in Example 1 for the obtained mixed solution. The results are shown in Table 4 below.
〔粉末製剤の調製〕
 工程(I)で得られた混合液を、噴霧乾燥器(スプレードライヤー、BUCHI(株)製)にて、入口温度100℃、出口温度50℃、液速度3g/minにて噴霧乾燥してABRを含有する粉末製剤を得た(工程(II))。
(Preparation of powder formulation)
The mixture obtained in the step (I) is spray-dried with a spray dryer (spray dryer, manufactured by BUCHI Co., Ltd.) at an inlet temperature of 100 ° C., an outlet temperature of 50 ° C., and a liquid speed of 3 g / min. Was obtained (step (II)).
(賦形剤)
 スクロース(精製白糖、商品名:シュクレーヌSR80/100、塩水港精糖(株)製)
 d-マンニトール(商品名:マンニットP、三菱商事フードテック(株)製)
 乳糖(乳糖1水和物、商品名:グラニュトールR、フロイント産業(株)製)
 トレハロース(林原(株)製)
 マルトース(マルトース1水和物、富士フイルム和光純薬(株)製)
 エリスリトール(三菱ケミカルフーズ(株)製)
 マルチトール(アマルティ(商標登録)、三菱商事フードテック(株)製)
(Excipient)
Sucrose (refined white sugar, trade name: Sukurene SR80 / 100, manufactured by Shimizu Minato Sugar Co., Ltd.)
d-Mannitol (trade name: Mannit P, manufactured by Mitsubishi Corporation Foodtech)
Lactose (Lactose monohydrate, trade name: Granitol R, manufactured by Freund Sangyo Co., Ltd.)
Trehalose (manufactured by Hayashibara)
Maltose (Maltose monohydrate, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.)
Erythritol (Mitsubishi Chemical Foods Co., Ltd.)
Maltitol (Amalti (registered trademark), manufactured by Mitsubishi Corporation Foodtech)
〔粉末製剤の再分散性〕
 得られた粉末製剤を、ABRが0.5mg/mLとなる量で25℃の精製水に添加し、目視で固形分が無くなるまで緩やかに撹拌し、粉末製剤を精製水に再分散させた。
 得られた再分散液に含まれるABR粒子の平均粒子径を、実施例1における調製直後のABR粒子の平均粒子径の測定方法と同様にして測定した。結果を下記表4に示す。
 なお、表4中、「-」は、当該成分を含有しないことを表す。
[Redispersibility of powder formulations]
The obtained powder formulation was added to purified water at 25 ° C. in such an amount that the ABR was 0.5 mg / mL, and gently stirred until the solid content disappeared visually to redisperse the powder formulation in purified water.
The average particle size of the ABR particles contained in the obtained redispersed liquid was measured in the same manner as the method for measuring the average particle size of the ABR particles immediately after preparation in Example 1. The results are shown in Table 4 below.
In Table 4, “-” indicates that the component is not contained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果に示すように、実施例16~実施例30の分散物はいずれも、分散物に含まれるABR粒子の平均粒子径は150nm以下であった。分散物を粉末製剤とし、精製水に再分散した場合もABR粒子の平均粒子径はいずれも200nm以下であり、粉末製剤の再分散性にも優れることがわかる。このため、実施例の医薬組成物はいずれも、粉末製剤とした際にも、経口投与されると速やかに再分散されたナノオーダーのABR粒子となり、吸収性が良好な医薬組成物であることが期待できる。
 実施例20と、実施例22との対比より、界面活性剤の共存によりABR粒子の平均粒子径がより小さくなり、界面活性剤が再分散性に寄与していることが分かる。
As shown in the results of Table 4, in all of the dispersions of Examples 16 to 30, the average particle size of the ABR particles contained in the dispersion was 150 nm or less. Even when the dispersion is made into a powder preparation and redispersed in purified water, the average particle diameter of the ABR particles is 200 nm or less, indicating that the redispersibility of the powder preparation is excellent. For this reason, all of the pharmaceutical compositions of the Examples are pharmaceutical compositions that have good absorbability because they are rapidly re-dispersed nano-order ABR particles when administered orally even when powdered. Can be expected.
From the comparison between Example 20 and Example 22, it can be seen that the average particle diameter of the ABR particles is smaller due to the coexistence of the surfactant, and the surfactant contributes to the redispersibility.
(実施例31~実施例40)
 HPCとして重量平均分子量4万のHPC-SSLを用いた。用いたABRの含有量及びをHPCの含有量を下記表5に記載の量とした。さらに、表5に記載の界面活性剤を分散助剤として含有させた。
 界面活性剤の添加方法として、被分散物に当初より界面活性剤を含有させ、界面活性剤を含有する被分散物に対して実施例1と同様の分散処理を行なったものは、表5の添加方法に「被分散物」と記載した。また、被分散物に界面活性剤を加えない状態で分散処理を行なって分散物を得た後、得られた分散物に界面活性剤を含有させたものは、表5の添加方法に「分散後」と記載した。
 得られた分散物に対して、実施例1と同様にして調製直後のABR粒子の平均粒子径を測定した。結果を下記表5示す。なお、対照として、界面活性剤を含まない実施例1の評価結果を表5に併記した。
(Example 31 to Example 40)
HPC-SSL having a weight average molecular weight of 40,000 was used as HPC. The content of ABR used and the content of HPC were the amounts shown in Table 5 below. Furthermore, surfactants listed in Table 5 were included as dispersion aids.
As a method for adding the surfactant, the surfactant was initially added to the dispersion, and the dispersion containing the surfactant was subjected to the same dispersion treatment as in Example 1. Table 5 It was described as “dispersed substance” in the addition method. In addition, after a dispersion treatment was performed without adding a surfactant to the dispersion, a dispersion was obtained, and the obtained dispersion was allowed to contain a surfactant. "After".
The average particle diameter of the ABR particles immediately after preparation was measured in the same manner as in Example 1 for the obtained dispersion. The results are shown in Table 5 below. As a control, the evaluation results of Example 1 not containing a surfactant are also shown in Table 5.
 その後、実施例1と同様にして、模擬消化管液中におけるABR粒子の平均粒子径を測定した。結果を下記表5に示す。
 なお、対照として、界面活性剤を含まない実施例1の評価結果を表5に併記した。
Thereafter, in the same manner as in Example 1, the average particle diameter of ABR particles in the simulated gastrointestinal fluid was measured. The results are shown in Table 5 below.
As a control, the evaluation results of Example 1 not containing a surfactant are also shown in Table 5.
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000005

 
 表5の結果に記載された如く、界面活性剤を含有させることで、ABR粒子の平均粒子径がより小さいまま維持されることがわかる。
 界面活性剤は、被分散物に添加し、その後、メディアを用いた湿式粉砕法により分散処理した場合、及び、湿式粉砕法により分散処理された分散液に添加した場合のいずれにおいても、界面活性剤の添加によるABR粒子の分散性が向上し、得られるABR粒子の平均粒子径及び模擬消化管液中のABR粒子の平均粒子径のいずれもが、界面活性剤を添加しない場合に比較してより小さく安定に維持できていることが分かる。
As described in the results of Table 5, it can be seen that the inclusion of the surfactant keeps the average particle diameter of the ABR particles smaller.
The surfactant is added to the material to be dispersed, and then dispersed in a wet pulverization method using a medium, and when added to a dispersion treated by a wet pulverization method. The dispersibility of ABR particles is improved by the addition of the agent, and both the average particle size of the obtained ABR particles and the average particle size of the ABR particles in the simulated gastrointestinal fluid are compared with the case where no surfactant is added. It can be seen that it can be kept smaller and more stable.
(実施例41~実施例48)
 界面活性剤の種類及び含有量の少なくともいずれかを表6に記載の如く変更した以外は、実施例35と同様にして、ABR粒子を含む分散物を調製した。即ち、表6に記載の各実施例では、界面活性剤は、ABRを湿式粉砕法により分散して得た分散物に添加した。
 分散物におけるABR粒子の平均粒子径及び模擬消化管液と混合した後のABR粒子の平均粒子径を、実施例1と同様にして測定した。結果を表6に示す。なお、対照例として、界面活性剤を含まない実施例1、HPCの含有量が異なる実施例35及び実施例36の評価結果を表6に併記した。
(Examples 41 to 48)
A dispersion containing ABR particles was prepared in the same manner as in Example 35 except that at least one of the type and content of the surfactant was changed as shown in Table 6. That is, in each Example described in Table 6, the surfactant was added to a dispersion obtained by dispersing ABR by a wet pulverization method.
The average particle size of the ABR particles in the dispersion and the average particle size of the ABR particles after mixing with the simulated gastrointestinal fluid were measured in the same manner as in Example 1. The results are shown in Table 6. In addition, as a control example, the evaluation results of Example 1 not containing a surfactant, Example 35 and Example 36 having different HPC contents are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
 表6の結果より、分散助剤としての界面活性剤を含有させることで、ABR粒子の平均粒子径を分散物のみならず、模擬消化液中でもより小さく維持し得ることがわかる。なかでも、界面活性剤としてKolliphor P407を用いた場合には、ABRの含有量に対して、4%~40%、HPCに対しては、10%~100%でより良好な効果が得られ、界面活性剤としてHCO-50を用いた場合には、ABRの含有量に対して、30%~40%、HPCに対しては、75%~100%でより良好な効果が得られた。このことから、界面活性剤の種類及び含有量を適宜選択して用いることで、ABR粒子の平均粒子径をより小さく、より安定に維持しうることが期待される。 From the results in Table 6, it can be seen that the inclusion of a surfactant as a dispersion aid can keep the average particle size of ABR particles smaller not only in the dispersion but also in the simulated digestive fluid. In particular, when Kolliphor P407 is used as the surfactant, 4% to 40% of the ABR content is obtained, and 10% to 100% of the HPC is more effective. When HCO-50 was used as the surfactant, a better effect was obtained at 30% to 40% with respect to the ABR content and 75% to 100% with respect to HPC. From this, it is expected that the average particle size of the ABR particles can be made smaller and more stable by appropriately selecting and using the type and content of the surfactant.
(実施例49~実施例53)
[錠剤の調製]
 工程(I)及び工程(II)を経て得られた実施例29で得た粉末製剤に対し、固体製剤成形用の崩壊剤、賦形剤として軽質無水ケイ酸・結晶セルロース、滑沢剤としてステアリン酸マグネシウムを表7に記載の造粒物調製工程で用いる処方比率に従って混合し、粉末混合物を得た。混合はV型混合機(VM-2型 筒井理化学器械(株))を用いて行なった。
 続いて、得られた粉末混合物を、卓上簡易錠剤成形機(HANDTAB-jr 市橋精機(株))にて圧縮成形した後、圧縮成形物を乳鉢にて破砕、試験篩により整粒することで、乾式造粒を行い、顆粒状の乾式造粒物を得た。(工程II-2)
(Example 49 to Example 53)
[Preparation of tablets]
For the powder formulation obtained in Example 29 obtained through the steps (I) and (II), a disintegrant for forming a solid formulation, light anhydrous silicic acid / crystalline cellulose as an excipient, stearin as a lubricant Magnesium acid was mixed according to the formulation ratio used in the granulated product preparation step shown in Table 7 to obtain a powder mixture. Mixing was carried out using a V-type mixer (VM-2 type Tsutsui Rika Kikai Co., Ltd.).
Subsequently, the obtained powder mixture was compression-molded with a tabletop simple tablet molding machine (HANDTAB-jr Ichihashi Seiki Co., Ltd.), and then the compacted product was crushed in a mortar and sized with a test sieve. Dry granulation was performed to obtain a granular dry granulated product. (Process II-2)
 その後、得られた乾式造粒物に対し、表7に記載の固体製剤成形用の崩壊剤、賦形剤、及び滑沢剤を、表7に記載の含有量となる量で混合して、ABR粒子含有造粒物を含む混合物を得た。
 また、表7中、「-」は、当該成分を含有しないことを表す。
 得られた混合粉末115mgを臼杵(サイズ:10mm×5mm オーバル型)に導入し、卓上簡易錠剤成形機(HANDTAB-jr 市橋精機(株))にて打錠し、錠剤を得た。(工程(III))
Then, to the obtained dry granulated product, the disintegrant for solid preparation molding, the excipient, and the lubricant described in Table 7 were mixed in an amount corresponding to the content described in Table 7, A mixture containing the ABR particle-containing granulated product was obtained.
In Table 7, “-” indicates that the component is not contained.
115 mg of the obtained mixed powder was introduced into a mortar (size: 10 mm × 5 mm oval type), and tableted with a tabletop simple tablet press (HANDTAB-jr Ichihashi Seiki Co., Ltd.) to obtain tablets. (Step (III))
 表7~表9に記載の固体製剤成形用の添加物は以下のものを用いた。
 デンプングリコール酸ナトリウム(商品名 primojel :DFE Pharma社製)
 カルメロースカルシウム(商品名 ECG-505:五徳薬品(株)製)
 クロスカルメロースNa(クロスカルメロースナトリウム)(商品名 primellose :DFE Pharma社製)
 部分α化デンプン(商品名 PCS PC10:旭化成(株)製)
 クロスポビドン(Polyplasdone XL-10:Ashland社製)
 軽質無水ケイ酸・結晶セルロース(商品名 prosolv SMCC90:木村産業(株)製)
 スプレードライ乳糖(商品名 supertab 11SD:DFE Pharma社製)
 D-マンニトール(商品名 グラニュトールF:フロイント産業(株)製)
 ケイ酸カルシウム(商品名 フローライト(登録商標)R:エーザイフード・ケミカル(株))
 軽質無水ケイ酸(商品名 アドソリダー(登録商標)102、フロイント産業(株))
 含水無水ケイ酸(商品名 カープレックス#67、デグサ社)
 含水無水ケイ酸(商品名 カープレックス#80、デグサ社)
 含水無水ケイ酸(商品名 サイシリア350、富士シリシア化学(株))
The following additives were used for molding solid preparations described in Tables 7 to 9.
Sodium starch glycolate (trade name primojel: manufactured by DFE Pharma)
Carmellose calcium (trade name ECG-505: Gotoku Pharmaceutical Co., Ltd.)
Croscarmellose Na (croscarmellose sodium) (trade name primellose: manufactured by DFE Pharma)
Partially pregelatinized starch (trade name: PCS PC10: manufactured by Asahi Kasei Corporation)
Crospovidone (Polyplasmone XL-10: manufactured by Ashland)
Light anhydrous silicic acid / crystalline cellulose (trade name prosolv SMCC90: manufactured by Kimura Sangyo Co., Ltd.)
Spray-dried lactose (trade name supertab 11SD: manufactured by DFE Pharma)
D-mannitol (trade name Granitol F: manufactured by Freund Corporation)
Calcium silicate (trade name: FLORITE (registered trademark) R: Eisai Food Chemical Co., Ltd.)
Light anhydrous silicic acid (trade name Adsolider (registered trademark) 102, Freund Sangyo Co., Ltd.)
Hydrous anhydrous silica (trade name Carplex # 67, Degussa)
Hydrous anhydrous silica (trade name Carplex # 80, Degussa)
Hydrous Anhydrous Silicic Acid (trade name Cycilia 350, Fuji Silysia Chemical Ltd.)
〔錠剤の評価〕
 得られた錠剤を、以下の方法で評価した。
[1.錠剤の再分散性評価]
 得られた錠剤を乳鉢で粉砕し、錠剤の一部を、粉砕物に含まれるABRが0.5mg/mLとなる量で25℃の精製水に添加し、目視で固形分が無くなるまで緩やかに撹拌し、精製水に再分散させ、再分散液を調製した。
 得られた再分散液に含まれるABR粒子の平均粒子径を、実施例1における調製直後のABR粒子の平均粒子径の測定方法と同様にして測定した。結果を表7に併記した。
[Tablet evaluation]
The obtained tablets were evaluated by the following methods.
[1. Evaluation of redispersibility of tablets]
The obtained tablet is pulverized in a mortar, and a part of the tablet is added to purified water at 25 ° C. in an amount such that the ABR contained in the pulverized product is 0.5 mg / mL, and is slowly gradually until there is no solid content visually. Stir and redisperse in purified water to prepare a redispersion.
The average particle size of the ABR particles contained in the obtained redispersed liquid was measured in the same manner as the method for measuring the average particle size of the ABR particles immediately after preparation in Example 1. The results are also shown in Table 7.
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
 表7の結果より、薬学的に許容される固体製剤成形用添加剤を用いて製造した錠剤は、いずれも再分散性が良好であることが分かる。再分散粒子径の結果から、崩壊剤としては、デンプングリコール酸ナトリウムとクロスカルメロースナトリウムがより好ましいことがわかる。 From the results of Table 7, it can be seen that all the tablets produced using pharmaceutically acceptable additives for solid preparation molding have good redispersibility. From the results of the redispersed particle size, it is understood that sodium starch glycolate and croscarmellose sodium are more preferable as the disintegrant.
(実施例54~実施例61)
[錠剤の調製]
 工程(I)及び工程(II)を経て得られた実施例29で得た粉末製剤の含有量、及び崩壊剤、賦形剤、滑沢剤の含有量を表8に記載の割合に変更した以外は実施例49と同様の操作を行い、ABR造粒物を含む混合粉末を得た。
 ABR 100mgを含有する量の混合粉末を臼杵に導入し、実施例49と同様の操作を行い、錠剤を得た。
(Example 54 to Example 61)
[Preparation of tablets]
The content of the powder preparation obtained in Example 29 obtained through the steps (I) and (II), and the contents of the disintegrant, excipient, and lubricant were changed to the ratios shown in Table 8. Except for the above, the same operation as in Example 49 was performed to obtain a mixed powder containing an ABR granulated product.
An amount of mixed powder containing 100 mg of ABR was introduced into a mortar and the same operation as in Example 49 was performed to obtain tablets.
[錠剤の評価]
[1.錠剤の再分散性評価]
 得られた各実施例の錠剤に対し、実施例49と同様の操作を行い、錠剤の再分散性を評価した。実施例54~実施例61の評価結果を表8に記載した。また、実施例49の評価結果を表8に併記した。
[Tablet evaluation]
[1. Evaluation of redispersibility of tablets]
The tablet of each Example obtained was subjected to the same operation as Example 49, and the redispersibility of the tablet was evaluated. The evaluation results of Examples 54 to 61 are shown in Table 8. The evaluation results of Example 49 are also shown in Table 8.
〔2.錠剤の崩壊性評価〕
 得られた錠剤を、日本薬局方に記載の崩壊試験法に適用し、錠剤が完全に崩壊するまでの時間を計測した。
 試験条件を以下に示す。
   試験装置:崩壊試験機(HM-41D 宮本理研(株))
   試験液:0.1 mol/L 塩酸水溶液
   試験温度:37℃
   往復速度:30回/1分間
 崩壊時間が短いほど、消化管内で錠剤から薬物が速やかに放出され、良好な吸収性が期待できると評価される。結果を表8に併記した。
[2. Tablet disintegration evaluation)
The obtained tablet was applied to the disintegration test method described in the Japanese Pharmacopoeia, and the time until the tablet disintegrated completely was measured.
Test conditions are shown below.
Test device: Disintegration tester (HM-41D Miyamoto Riken Co., Ltd.)
Test solution: 0.1 mol / L hydrochloric acid aqueous solution Test temperature: 37 ° C
Reciprocating speed: 30 times / 1 minute It is estimated that the shorter the disintegration time, the faster the drug is released from the tablet in the digestive tract and the better absorbability can be expected. The results are also shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8の結果から、実施例54~実施例61の錠剤はいずれも再分散性及び錠剤の崩壊性が良好であることがわかる。また、錠剤中の固体製剤成形用添加剤の含有量が28質量%~70質量%の範囲である実施例49、及び実施例56~実施例61の錠剤は、崩壊性がより良好であり、錠剤中の固体製剤成形用添加剤の含有量が37質量%~70質量%となる実施例57~実施例61の錠剤は、崩壊性が更に良好となることがわかる。 From the results in Table 8, it can be seen that the tablets of Example 54 to Example 61 are all excellent in redispersibility and tablet disintegration. In addition, the tablets of Example 49 and Examples 56 to 61 in which the content of the additive for solid preparation molding in the tablet is in the range of 28% by mass to 70% by mass have better disintegration, It can be seen that the tablets of Examples 57 to 61, in which the content of the solid formulation-forming additive in the tablet is 37% by mass to 70% by mass, have even better disintegration.
(実施例62~実施例71)
 ABR粒子含有造粒物、併用する固体製剤成形用の崩壊剤、賦形剤、及び滑沢剤の種類と含有量とを、表9に記載の如く変えた以外は、実施例49と同様にしてABR造粒物を含む混合粉末を得た。
 混合粉末120mgを臼杵に導入し、実施例49と同様の操作を行い実施例62~実施例71の錠剤を得た。得られた各実施例の錠剤に対し、実施例49と同様にして錠剤の再分散性と崩壊性を評価した。結果を表9に併記する。
(Example 62 to Example 71)
Except for changing the types and contents of the ABR particle-containing granulated product, the disintegrant for forming a solid preparation to be used together, the excipient, and the lubricant as shown in Table 9, the procedure was the same as in Example 49. Thus, a mixed powder containing the ABR granulated product was obtained.
120 mg of the mixed powder was introduced into a mortar, and the same operation as in Example 49 was performed to obtain tablets of Examples 62 to 71. The redispersibility and disintegration of the tablets were evaluated in the same manner as in Example 49 with respect to the obtained tablets of each Example. The results are also shown in Table 9.
 実施例62~実施例71では、上記評価に加え、さらに錠剤の安定性についても評価した。
〔3.錠剤の安定性評価〕
 得られた錠剤を、シリカゲルを同梱したバイアル瓶に入れて密栓し、70℃にて6日間保管した。保管後、錠剤を取り出し、錠剤中のアビラテロン酢酸エステルの類縁体の量を、高速液体クロマトグラフィー法を用いて測定した。
 アビラテロン酢酸エステルの類縁体の指標として、7-ケト-アビラテロン(表中には、「7-keto abiraterone」と記載)の生成量を測定した。
 高速液体クロマトグラフィー法はHPLCシステム(prominence 島津製作所社製)を用い、以下の条件で評価を実施した。
(測定条件)
 カラム: InertSustain C18 3.0μm、3.0*150mm
 溶離液A:10mM酢酸アンモニウム水溶液/エタノール=7/3(vol/vol)
 溶離液B:アセトニトリル/エタノール=7/3(vol/vol)
 溶離条件:以下の時間のとおりにグラジエントで分離した。
      時間0分→35分 溶離液B=30体積%→65体積%
      時間35分→45分 溶離液B=65体積%→100体積%
      時間45分→55分 溶離液B=100体積%→100体積%
 流量:0.45mL/分
 カラム温度:25℃
 検出波長:254nm
In Examples 62 to 71, in addition to the above evaluation, the stability of the tablet was also evaluated.
[3. Tablet stability evaluation)
The obtained tablet was put in a vial bottle containing silica gel and sealed, and stored at 70 ° C. for 6 days. After storage, the tablet was taken out, and the amount of analog of abiraterone acetate in the tablet was measured using a high performance liquid chromatography method.
As an indicator of analogs of abiraterone acetate, the amount of 7-keto-abiraterone (described as “7-keto abiraterone” in the table) was measured.
In the high performance liquid chromatography method, an HPLC system (product of Shimadzu Corporation) was used, and the evaluation was performed under the following conditions.
(Measurement condition)
Column: Inert Sustain C18 3.0 μm, 3.0 * 150 mm
Eluent A: 10 mM ammonium acetate aqueous solution / ethanol = 7/3 (vol / vol)
Eluent B: acetonitrile / ethanol = 7/3 (vol / vol)
Elution conditions: Separation by gradient according to the following time.
Time 0 minute → 35 minutes Eluent B = 30% by volume → 65% by volume
Time 35 minutes → 45 minutes Eluent B = 65% by volume → 100% by volume
Time 45 minutes → 55 minutes Eluent B = 100 volume% → 100 volume%
Flow rate: 0.45 mL / min Column temperature: 25 ° C
Detection wavelength: 254 nm
 生成した類縁体の量が少ないほど保存性に優れた安定性の高い錠剤であると評価できる。結果を表9に併記する。 It can be evaluated that the smaller the amount of the produced analog, the more stable the tablet with excellent storage stability. The results are also shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9の結果から、実施例62~実施例71の錠剤はいずれも、再分散性、崩壊性、さらに安定性も良好であることがわかる。また、崩壊性と安定性の結果から、賦形剤としては、カープレックス#80、スプレードライ乳糖がより好ましく、アドソリダー102、D-マンニトールがさらに好ましいことがわかる。 From the results of Table 9, it can be seen that the tablets of Examples 62 to 71 are all excellent in redispersibility, disintegration, and stability. From the results of disintegration and stability, it can be seen that as the excipient, Carplex # 80 and spray-dried lactose are more preferable, and Adsolider 102 and D-mannitol are more preferable.
 2018年4月25日に出願された日本国特許出願2018-084321の開示は参照により本開示に取り込まれる。
 本開示に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本開示中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-084321 filed on Apr. 25, 2018 is incorporated into this disclosure by reference.
All documents, patent applications, and technical standards mentioned in this disclosure are as if they were specifically and individually stated that each individual document, patent application, and technical standard was incorporated by reference. Incorporated by reference in the disclosure.

Claims (14)

  1.  平均粒子径が50nm~200nmであるアビラテロン酢酸エステルの粒子と、
     前記アビラテロン酢酸エステルの粒子の含有量に対し、10質量%~150質量%のヒドロキシプロピルセルロースと、を含む医薬組成物。
    Abiraterone acetate particles having an average particle size of 50 nm to 200 nm;
    A pharmaceutical composition comprising 10% by mass to 150% by mass of hydroxypropylcellulose with respect to the content of the abiraterone acetate particles.
  2.  前記ヒドロキシプロピルセルロースの重量平均分子量が14万以下である請求項1に記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the hydroxypropylcellulose has a weight average molecular weight of 140,000 or less.
  3.  さらに、界面活性剤を含む請求項1又は請求項2に記載の医薬組成物。 The pharmaceutical composition according to claim 1 or 2, further comprising a surfactant.
  4.  前記界面活性剤が、ポリオキシエチレンポリオキシプロピレングリコール、ラウロマクロゴール、デオキシコール酸ナトリウム、ポリオキシエチレン硬化ひまし油、ポリオキシエチレンヒドロキシステアレート、ポリソルベート20、及びポリソルベート80からなる群より選ばれる少なくとも1種である請求項3に記載の医薬組成物。 The surfactant is at least one selected from the group consisting of polyoxyethylene polyoxypropylene glycol, lauromacrogol, sodium deoxycholate, polyoxyethylene hydrogenated castor oil, polyoxyethylene hydroxystearate, polysorbate 20, and polysorbate 80. The pharmaceutical composition according to claim 3, which is a seed.
  5.  前記界面活性剤の含有量が、前記アビラテロン酢酸エステルの含有量に対し、0.1質量%~40質量%である請求項3又は請求項4に記載の医薬組成物。 The pharmaceutical composition according to claim 3 or 4, wherein a content of the surfactant is 0.1% by mass to 40% by mass with respect to a content of the abiraterone acetate.
  6.  前記界面活性剤の含有量が、前記ヒドロキシプロピルセルロースの含有量に対し、0質量%を超え100質量%以下である請求項3~請求項5のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 3 to 5, wherein a content of the surfactant is more than 0% by mass and 100% by mass or less with respect to a content of the hydroxypropylcellulose.
  7.  固体製剤である請求項1~請求項6のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 6, which is a solid preparation.
  8.  粉末製剤である請求項7に記載の医薬組成物。 The pharmaceutical composition according to claim 7, which is a powder preparation.
  9.  さらに、賦形剤、崩壊剤、及び滑沢剤からなる群より選ばれる少なくとも1種を含む薬学的に許容される固体製剤成形用添加剤を含有し、錠剤である請求項7に記載の医薬組成物。 The pharmaceutical according to claim 7, which further comprises a pharmaceutically acceptable additive for molding a solid preparation containing at least one selected from the group consisting of an excipient, a disintegrant, and a lubricant, and is a tablet. Composition.
  10.  前記薬学的に許容される固体製剤成形用添加剤の合計含有量が、前記医薬組成物の全質量に対し、10質量%~80質量%である請求項9に記載の医薬組成物。 The pharmaceutical composition according to claim 9, wherein the total content of the pharmaceutically acceptable additive for solid preparation molding is 10% by mass to 80% by mass with respect to the total mass of the pharmaceutical composition.
  11.  経口投与に供される請求項1~請求項10のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 10, which is used for oral administration.
  12.  アビラテロン酢酸エステルと、前記アビラテロン酢酸エステルの含有量に対し、10質量%~150質量%のヒドロキシプロピルセルロースと、分散媒と、を含む被分散物を、湿式粉砕法により分散して、平均粒子径が50nm~200nmであるアビラテロン酢酸エステルの粒子を含む分散物を得る工程を含む医薬組成物の製造方法。 A dispersion to be dispersed containing abiraterone acetate, 10% by mass to 150% by mass of hydroxypropyl cellulose, and a dispersion medium with respect to the content of abiraterone acetate is dispersed by a wet pulverization method to obtain an average particle size. A method for producing a pharmaceutical composition comprising the step of obtaining a dispersion comprising particles of abiraterone acetate having a particle size of 50 nm to 200 nm.
  13.  前記湿式粉砕法が、メディアを用いる粉砕分散処理法を含む請求項12に記載の医薬組成物の製造方法。 The method for producing a pharmaceutical composition according to claim 12, wherein the wet pulverization method includes a pulverization dispersion method using a medium.
  14.  さらに、前記分散物から分散媒を除去して、粉末製剤を得る工程を含む請求項12又は請求項13に記載の医薬組成物の製造方法。 Furthermore, the manufacturing method of the pharmaceutical composition of Claim 12 or Claim 13 including the process of removing a dispersion medium from the said dispersion, and obtaining a powder formulation.
PCT/JP2019/017769 2018-04-25 2019-04-25 Pharmaceutical composition, and method for producing pharmaceutical composition WO2019208725A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515582A JPWO2019208725A1 (en) 2018-04-25 2019-04-25 Pharmaceutical composition and method for producing the pharmaceutical composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-084321 2018-04-25
JP2018084321 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208725A1 true WO2019208725A1 (en) 2019-10-31

Family

ID=68295481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017769 WO2019208725A1 (en) 2018-04-25 2019-04-25 Pharmaceutical composition, and method for producing pharmaceutical composition

Country Status (2)

Country Link
JP (1) JPWO2019208725A1 (en)
WO (1) WO2019208725A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179701A1 (en) * 2019-03-01 2020-09-10 塩野義製薬株式会社 Contaminant-depleted nanoparticle composition and method for producing same
JP6920564B1 (en) * 2020-07-03 2021-08-18 富士製薬工業株式会社 Solid formulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009436A1 (en) * 2012-07-11 2014-01-16 Sandoz Ag Nanosuspension of abiraterone acetate
WO2014205226A1 (en) * 2013-06-19 2014-12-24 Kashiv Pharma, Llc Self-nanoemulsion of poorly soluble drugs
CN106539765A (en) * 2015-09-18 2017-03-29 天津市汉康医药生物技术有限公司 A kind of Abiraterone Acetate Tablets and preparation method thereof
WO2017209216A1 (en) * 2016-05-31 2017-12-07 協和発酵キリン株式会社 Method for producing pharmaceutical composition containing microparticles of sparingly-soluble drug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009436A1 (en) * 2012-07-11 2014-01-16 Sandoz Ag Nanosuspension of abiraterone acetate
WO2014205226A1 (en) * 2013-06-19 2014-12-24 Kashiv Pharma, Llc Self-nanoemulsion of poorly soluble drugs
CN106539765A (en) * 2015-09-18 2017-03-29 天津市汉康医药生物技术有限公司 A kind of Abiraterone Acetate Tablets and preparation method thereof
WO2017209216A1 (en) * 2016-05-31 2017-12-07 協和発酵キリン株式会社 Method for producing pharmaceutical composition containing microparticles of sparingly-soluble drug

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179701A1 (en) * 2019-03-01 2020-09-10 塩野義製薬株式会社 Contaminant-depleted nanoparticle composition and method for producing same
JP6920564B1 (en) * 2020-07-03 2021-08-18 富士製薬工業株式会社 Solid formulation
WO2022003980A1 (en) * 2020-07-03 2022-01-06 富士製薬工業株式会社 Solid formulation

Also Published As

Publication number Publication date
JPWO2019208725A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
TWI519321B (en) Film-coated and/or granulated calcium-containing compounds and use thereof in pharmaceutical compositions
EP2893940B1 (en) Granulated material for tablet that rapidly disintegrates in mouth
JP4737754B2 (en) Cellulose powder
EP1985310B1 (en) Solid dosage forms
JP4884975B2 (en) Fine particle-containing composition and method for producing the same
JP2011063611A (en) Cilostazol preparation
JP4748839B2 (en) Cilostazol preparation
EP1849830A1 (en) Finely divided composition containing poorly water soluble substance
WO2006073154A1 (en) Medicinal composition and process for producing the same
JP2016174616A (en) Disintegrable composition, and easily disintegrable compression molding
CA3124534C (en) Cellulose powder, use thereof, and tablets
WO2019208725A1 (en) Pharmaceutical composition, and method for producing pharmaceutical composition
JP2015218322A (en) Fine starch particle and production method thereof
JP2019077644A (en) Pharmaceutical composition and method of producing pharmaceutical composition
WO2012107541A1 (en) Pharmaceutical composition comprising tadalafil and a cyclodextrin
JP4842960B2 (en) Method for producing a compressed solid dosage form well suited for use with low water-soluble drugs and compressed solid dosage form produced thereby
EP2682105A1 (en) Orally-disintegrating formulations of dexketoprofen
EP2682104A1 (en) Orally-disintegrating formulations of dexketoprofen
WO2017209216A1 (en) Method for producing pharmaceutical composition containing microparticles of sparingly-soluble drug
WO2020204001A1 (en) Method for producing aqueous suspension composition and aqueous suspension composition
JP5508311B2 (en) Method for producing a compressed solid dosage form well suited for use with low water-soluble drugs and compressed solid dosage form produced thereby
JP2024076228A (en) Nintedanib ethanesulfonate tablet
EP2672960A1 (en) Pharmaceutical composition comprising tadalafil and a cyclodextrin
JP2010241695A (en) Intraoral quickly disintegrating tablet and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515582

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793813

Country of ref document: EP

Kind code of ref document: A1