WO2019208655A1 - 発光材料及び発光装置 - Google Patents

発光材料及び発光装置 Download PDF

Info

Publication number
WO2019208655A1
WO2019208655A1 PCT/JP2019/017488 JP2019017488W WO2019208655A1 WO 2019208655 A1 WO2019208655 A1 WO 2019208655A1 JP 2019017488 W JP2019017488 W JP 2019017488W WO 2019208655 A1 WO2019208655 A1 WO 2019208655A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
luminescent
light emitting
optionally substituted
luminescent material
Prior art date
Application number
PCT/JP2019/017488
Other languages
English (en)
French (fr)
Inventor
英雄 田幡
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日亜化学工業株式会社 filed Critical 日亜化学工業株式会社
Priority to JP2020515539A priority Critical patent/JP7295439B2/ja
Priority to US17/049,841 priority patent/US11702590B2/en
Publication of WO2019208655A1 publication Critical patent/WO2019208655A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a light emitting material and a light emitting device.
  • Luminescent nanoparticles have the characteristics of high luminous efficiency and a narrow half-value width of the emission spectrum, and the emission color can be controlled over a wide wavelength range by changing the particle diameter. Such properties are excellent for high-efficiency and high color rendering illumination and wide color gamut displays. For this reason, the luminescent nanoparticle attracts attention as a next-generation luminescent material. However, since nanoparticles have a high surface area to volume ratio, they have low chemical stability and are particularly susceptible to degradation by water, oxygen, and the like. Therefore, methods for imparting barrier properties to nanoparticles have been studied.
  • Patent Document 1 discloses a wavelength in which luminescent semiconductor nanoparticles are dispersed in a resin including a structural unit derived from an ionic liquid having a polymerizable functional group. A conversion member is described. Also, Nano Letters, Vol. 12, pp 5348-5354, 2012. (Hereinafter also referred to as non-patent document 1) reports that CdTe nanoparticles and ionic crystals (NaCl, KCl, KBr) are combined. Furthermore, Nanoscale, Vol. 7, pp17611-17616, 2015.
  • Non-Patent Document 1 reports a method of combining an ionic crystal and CdSe / CdZnSeS / ZnS nanoparticles without using water by using LiCl soluble in an organic solvent. ing.
  • the barrier property against a gas component such as oxygen and water vapor contained in the atmosphere of the resin derived from the ionic liquid is present. Since it is insufficient, the luminescent nanoparticles may be deteriorated when exposed to an air atmosphere for a long time. Moreover, since the luminescent material containing the ionic crystal including the luminescent nanoparticle described in Non-Patent Documents 1 and 2 has a hygroscopic property, water vapor easily approaches the luminescent nanoparticle. Particle degradation may occur. Furthermore, since the method described in Non-Patent Document 1 uses water in the production process, there is a concern that the nanoparticles themselves deteriorate during production.
  • An object of one embodiment of the present invention is to provide a light-emitting material that includes a light-emitting nanoparticle and an ionic crystal having a specific structure and is excellent in environmental resistance.
  • a 1st aspect is a luminescent material containing a luminescent nanoparticle and the ionic crystal containing the anion component represented by following formula (1).
  • each of R 1 and R 2 independently represents a fluorine atom or a fluoroalkyl group, or a fluoroalkylene group that is linked to each other to form a ring.
  • the second aspect is a light emitting device comprising a light source having an emission peak wavelength in a range of 380 nm to 485 nm and the light emitting material.
  • the anion represented by the following formula (1) in the production of a luminescent material including a luminescent nanoparticle and an ionic crystal containing an anion component represented by the following formula (1) Use of an ionic crystal containing a component; represented by the following formula (1) in improving the environmental resistance of a luminescent material comprising a luminescent nanoparticle and an ionic crystal containing an anionic component represented by the following formula (1)
  • Use of an ionic crystal containing an anionic component use of the light emitting material in the manufacture of a light emitting device comprising a light source having an emission peak wavelength in a range of 380 nm to 485 nm and the light emitting material.
  • a light-emitting material including a light-emitting nanoparticle and an ionic crystal having a specific structure and having excellent environmental resistance can be provided.
  • FIG. 1 It is a schematic diagram of the luminescent material containing a luminescent nanoparticle and an ionic crystal. It is a schematic cross section which shows an example of a light-emitting device. It is a schematic cross section which shows the other example of a light-emitting device. It is a schematic cross section which shows the other example of a light-emitting device. It is a figure which shows the time-dependent change of the relative light emission intensity
  • the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • content of each component in a composition means the total amount of the said some substance which exists in a composition, unless there is particular notice, when the substance applicable to each component exists in a composition in multiple numbers.
  • embodiments of the present invention will be described in detail.
  • the embodiment described below exemplifies a light emitting material for embodying the technical idea of the present invention, and the present invention is not limited to the light emitting material shown below.
  • the member shown by a claim is not limited to the member of embodiment by any means.
  • the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only, unless otherwise specified, and are merely illustrative examples. Only.
  • Luminescent material contains a luminescent nanoparticle and the ionic crystal containing the anion component represented by following formula (1).
  • each of R 1 and R 2 independently represents a fluorine atom or a fluoroalkyl group, or a fluoroalkylene group that is linked to each other to form a ring.
  • the light-emitting material is composed of luminescent nanoparticles and an ionic crystal containing a specific anion component, thereby improving the environmental resistance of the light-emitting material.
  • an ionic crystal containing a specific anion component can suppress water vapor from approaching the luminescent nanoparticle due to its low hygroscopicity, and it is contained in the atmosphere compared to a resin due to its crystallinity. It is considered that the environmental resistance of the light emitting material is improved because of its excellent barrier property against gas components such as water vapor and oxygen.
  • the luminescent material is composed of luminescent nanoparticles and ionic crystals.
  • the luminescent material is configured such that an ionic crystal encloses at least part of the luminescent nanoparticles.
  • the luminescent nanoparticles in the luminescent material may be encapsulated in an ionic crystal in a state where a plurality of particles are aggregated, or individual particles may be independently encapsulated in an ionic crystal.
  • FIG. 1 is a schematic view schematically showing an example of the luminescent material 1.
  • the luminescent material 1 is composed of an ionic crystal 3 that contains luminescent nanoparticles 2.
  • the luminescent nanoparticle 2 is included in the ionic crystal 3 as a single particle or an aggregated particle. Some of the luminescent nanoparticles 2 are partially exposed from the crystal plane of the ionic crystal.
  • the luminescent nanoparticles 2 have a spherical shape for simplification of description, but the shape of the luminescent nanoparticles is not limited to a spherical shape.
  • the ion crystal 3 is drawn in a cubic shape, but the shape of the ion crystal 3 is not limited to the cubic shape.
  • An ionic crystal is different from an ionic liquid having a low melting point (for example, less than 100 ° C.), and is composed of a salt compound having a higher melting point or decomposition point and showing characteristics characteristic of the crystal structure. It can be confirmed, for example, by an X-ray diffraction method that the ionic crystal has a crystal structure.
  • the anionic component constituting the ionic crystal has a specific structure containing a fluorine atom represented by the above formula (1). Thereby, it is thought that the hygroscopicity of the ionic crystal formed with a cation component falls.
  • the anion component may have a structure represented by the following formula (1a) or (1b).
  • R 1a and R 2a each independently represent a fluorine atom or a fluoroalkyl group, preferably a C 1-4 perfluoroalkyl group.
  • n represents an integer of 1 to 5, preferably 2 or 3.
  • anion component examples include anions represented by any of the following formulas (2-1) to (2-7), and it is preferable to include at least one selected from the group consisting of these.
  • the cation component constituting the ionic crystal is not particularly limited as long as it can form an ionic crystal with the anion component, and may be either an inorganic cation or an organic cation. It is preferable that the cationic component has little absorption in the visible region.
  • Examples of the inorganic cation include Li + , Na + , K + , Rb + , Cs + , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ti 4+ , Zr 4+ , Hf 4+, V 5+, Nb 5+, Ta 5+, Zn 2+, Cd 2+, Hg 2+, Al 3+, Ga 3+, In 3+, Tl 3+, Sn 4+, Pb 4+, Bi 3+, La 3+, Ce 3+, Gd 3+, Yb 3+ , Lu 3+ and the like can be mentioned, and preferably include at least one selected from the group consisting of these, and at least one selected from the group consisting of metals of Group 1 and Group 2 of the periodic table it is still more preferable that it contains, K +, more preferably contains at least one selected from the group consisting of Rb + and Cs +, K + and Cs
  • the organic cation may be a cation containing an organic group, and even if it is a carbon cation that is formally charged with a carbon atom, it is formally charged with a heteroatom such as a nitrogen atom, phosphorus atom, oxygen atom, or sulfur atom. Or a heteroatom cation.
  • Specific examples of the organic cation include, for example, cations represented by any of the following formulas (3-1) to (3-15), including at least one selected from the group consisting of these It is preferable.
  • Y represents an oxygen atom or a sulfur atom.
  • Z represents a nitrogen atom or a phosphorus atom.
  • Each R 10 independently comprises an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, an optionally substituted aryl group and an optionally substituted heterocyclic group. It represents at least one substituent selected from the group or a hydrogen atom, or represents an optionally substituted alkylene group in which two R 10 are linked to each other to form a ring. Further, the aromatic ring and the aliphatic ring in the formula may have at least one substituent. n represents an integer of 1 to 3.
  • the carbon number of the alkyl group, alkenyl group and alkynyl group in R 10 is, for example, 8 or less, preferably 4 or less.
  • the aryl group include a phenyl group and a naphthyl group.
  • the heterocyclic group include a pyridyl group, a quinolyl group, a furyl group, an imidazolium group, a pyridinium group, a pyrrolidinium group, and a piperidinium group.
  • Examples of the substituent in R 10 include alkyl groups having 4 or less carbon atoms; alkoxy groups such as methoxy groups and ethoxy groups; hydroxyl groups; amino groups; halogen atoms such as chlorine atoms and fluorine atoms; oniums such as ammonium groups and phosphonium groups. Groups and the like.
  • R 10 include a hydrogen atom; an alkyl having 4 or less carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • organic cation a cation represented by any of the following formulas (3-21) to (3-29) can be mentioned, and it is preferable that the organic cation contains at least one selected from the group consisting of these. preferable.
  • each R 20 independently represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an n-butyl group or an allyl group.
  • the ionic crystal constituting the luminescent material is a substance that includes an anion component and a cation component having a specific structure and is a crystalline solid at room temperature.
  • the melting point or decomposition point of the ionic crystal is, for example, 100 ° C. or higher, exceeding 100 ° C., 150 ° C. or higher, or 250 ° C. or higher.
  • the melting point of the ion crystal is measured using a differential scanning calorimeter.
  • the decomposition point is a temperature corresponding to 1% weight loss by thermogravimetric analysis (TGA).
  • the ionic crystal is preferably one having a temperature range of not more than 100 ° C., preferably not more than 150 ° C., more preferably not more than 250 ° C. and not causing a phase transition to a plastic crystal in the production and use of the light emitting material and the light emitting device. Whether or not the ionic crystal has plastic viscosity can be determined by a change in melting entropy. That is, the melting entropy change of the ionic crystal is preferably 20 Jmol ⁇ 1 K ⁇ 1 or more. In the case of a flexible crystal, since the rotational movement and diffusion of ions constituting the crystal are active, the gas barrier property against water, oxygen and the like tends to be lowered.
  • ionic crystal containing the anion component represented by the formula (1) examples include ionic crystals composed of the salt compounds shown in the following table.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Pr represents an n-propyl group
  • Bu represents an n-butyl group.
  • Particularly preferred ionic crystals include an ionic crystal containing at least one anion component represented by the formula (2-5) or (2-7) and at least one inorganic cation such as an alkali metal, or a formula ( Examples thereof include an ionic crystal containing at least one anion component represented by 2-5) or (2-7) and at least one of K + and Cs + .
  • an ionic crystal represented by any of the following formulas (4-1) to (4-4) can be given.
  • the luminescent nanoparticle which comprises a luminescent material should just be a nanoparticle which emits the light of the wavelength different from excitation light with light.
  • the compound constituting the luminescent nanoparticle include, for example, II-VI group compounds such as ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, CdSeS, CdSeTe; AlN, AlP, AlAs, AlSb, GaN, GaP, Group III-VI compounds such as GaAs, GaSb, InN, InP, InAs, InSb, InGaP; Group IV-VI compounds such as PbS, PbSe; Group IV simple substances and compounds such as C, Si, Ge, SiC, SiGe; CuInS 2 , CuInSe 2 , CuGa x In 1-x S 2 , AgInS 2 , AgInSe 2 and other I-III-VI group compounds (where x represents a number satisfying
  • the luminescent nanoparticle may include a plurality of compounds.
  • the luminescent nanoparticles may be composed of, for example, at least two kinds of semiconductor compounds having different band gap energies, and a so-called core-shell type in which a compound forming a core is coated with another compound having a larger band gap. It may be a structure called a structure.
  • the shell functions as a protective layer for the core.
  • the shell is not limited to a single layer, and may be two or more layers.
  • the band gap energy of the compound constituting the shell on the outer layer side may be larger than that on the inner layer side.
  • Examples of the structure of the core-shell type luminescent nanoparticles are CdS / ZnS, CdSe / ZnS, CdTe / ZnS, CdSeS / ZnS, CdSeTe / ZnS, CdSe / CdSeS / ZnS, InP / ZnS. , AgInS 2 / ZnS, AgInSe 2 / ZnS, and the like.
  • the shape of the luminescent nanoparticles is appropriately selected according to the compound to be constituted.
  • the shape of the luminescent nanoparticle may be any of a spherical shape, a plate shape, a rod shape, and a polyhedron, for example.
  • the average particle diameter of the luminescent nanoparticles is, for example, from 1 nm to 100 nm, and preferably from 1 nm to 20 nm.
  • the average particle size is a value including a shell
  • the average particle size of the core itself is, for example, 1 nm or more and 10 nm or less
  • the core includes a perovskite compound, for example, 90 nm or less It is.
  • the particle diameter of the luminescent nanoparticle can be obtained from, for example, a TEM image taken using a transmission electron microscope (TEM), and connects two arbitrary points on the outer periphery of the particle observed in the TEM image. This is the longest line segment in the interior.
  • TEM transmission electron microscope
  • the length of the minor axis is regarded as the particle size.
  • the rod-shaped particles have a short axis and a long axis perpendicular to the short axis in the TEM image, and the ratio of the length of the long axis to the length of the short axis is larger than 1.2. .
  • Rod-shaped particles are observed in a TEM image as, for example, a quadrilateral shape including a rectangular shape, an elliptical shape, or a polygonal shape.
  • the cross-sectional shape that is a surface orthogonal to the long axis of the rod shape may be, for example, a circle, an ellipse, or a polygon.
  • the length of the long axis indicates the length of the longest line segment connecting any two points on the outer periphery of the particle in the case of an elliptical shape.
  • the length is the length of the longest line segment that is parallel to the longest side among the sides that define the outer periphery and connects any two points on the outer periphery of the particle.
  • the length of the short axis indicates the length of the longest line segment that is orthogonal to the line segment that defines the length of the long axis among the line segments connecting any two points on the outer periphery.
  • the average particle diameter of the luminescent nanoparticles is measured for all measurable particles observed in a TEM image of 50,000 times to 150,000 times, and the arithmetic average of the particle diameters is measured.
  • “measurable” particles are those in which the entire particles can be observed in a TEM image. Accordingly, a part of the TEM image is not included in the imaging range, and particles that are “cut” are not measurable.
  • the average particle diameter is obtained using the TEM image.
  • the imaging location can be changed to obtain more TEM images, and more than 100 measurable in two or more TEM images can be measured.
  • the average particle size is determined by measuring the particle size of the fine particles.
  • the luminescent nanoparticles may be surface-treated with an ionic surface modifier and have a modifying group on the particle surface.
  • the surface modification tends to further improve the stability of the luminescent nanoparticles and further improve the dispersibility in various media.
  • the surface modifier preferably has an ionic functional group in the molecule.
  • the ionic group may be either cationic or anionic, and preferably has at least a cationic group.
  • Specific examples of the surface modifier and the surface modification method are described in, for example, Chemistry Letters, Vol. 45, pp 898-900, 2016 can be referred to.
  • Preferred examples of the surface modifier include compounds having a cationic functional group containing a nitrogen atom, and compounds represented by the following formula (5-1) or (5-2) are more preferred.
  • X ⁇ represents an anion, for example, a halogen anion such as a fluorine ion, a chlorine ion, or a bromine ion, and may be an anion represented by the formula (1).
  • the luminescent nanoparticles may be surface-treated with a nonionic surface modifier having a structure represented by the following formula (6), and may have a modifying group on the particle surface.
  • the surface modification tends to further improve the stability of the luminescent nanoparticles and further improve the dispersibility in various media.
  • R 30 is selected from the group consisting of a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, and an optionally substituted aryl group.
  • R 31 is at least one divalent selected from the group consisting of an alkylene group that may be substituted, an alkenylene group that may be substituted, an alkynylene group that may be substituted, and an arylene group that may be substituted.
  • n represents a number from 1 to 20.
  • X represents at least one substituent selected from the group consisting of a thiol group, a hydroxyl group and an amino group.
  • the carbon number of the alkyl group, alkenyl group, and alkynyl group in R 30 is, for example, 8 or less, preferably 6 or less, 4 or less, 3 or less, or 2 or less.
  • the alkyl group has 1 or more carbon atoms, and the alkenyl group and alkynyl group have 2 or more carbon atoms.
  • the carbon number of the aryl group is, for example, 6 or more and 10 or less.
  • Examples of the substituent for R 30 include an alkyl group having 1 to 4 carbon atoms and a halogen atom.
  • R 30 include a hydrogen atom; methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, An alkyl group having 8 or less carbon atoms such as a hexyl group, a heptyl group, an octyl group or an ethylhexyl group; an alkenyl group having 8 or less carbon atoms such as a vinyl group, an allyl group, a butenyl group, a hexenyl group or an octenyl group; An aryl group such as a naphthyl group can be mentioned.
  • the carbon number of the alkylene group, alkenylene group and alkynylene group in R 31 is, for example, 8 or less, preferably 6 or less, 4 or less, 3 or less, or 2.
  • the carbon number of the alkylene group is 1 or more or 2 or more, and the carbon number of the alkenylene group and the alkynylene group is 2 or more.
  • the carbon number of the arylene group is, for example, 6 or more and 10 or less.
  • Examples of the substituent in R 31 include an alkyl group having 1 to 4 carbon atoms and a halogen atom.
  • R 31 examples include methylene, ethylene, propylene, 2-propylene, butylene, 1-methylpropylene, 2-methylpropylene, 1,1-dimethylethylene, 1,2-dimethyl.
  • alkylene groups having 8 or less carbon atoms such as ethylene group, pentanediyl group, hexanediyl group and octanediyl group; alkenylene groups such as propylenediyl group; and arylene groups such as phenylene group and naphthalenediyl group.
  • N is preferably a number from 1 to 20, and may be a number from 1 to 10, 2 to 10, or 2 to 8.
  • X is at least one substituent selected from the group consisting of a thiol group, a hydroxyl group and an amino group, and is preferably a thiol group or an amino group.
  • the nonionic surface modifier having a structure represented by the formula (6) may include, for example, an alkylene glycol structure, a polyalkylene glycol structure, an alkylene glycol monoalkyl ether structure, or a polyalkylene glycol monoalkyl ether structure.
  • the nonionic surface modifier may contain, for example, an alkyleneoxy group having 2, 3, or 4 carbon atoms as a structural unit.
  • nonionic surface modifiers include nonionic surface modifiers containing at least one compound represented by the following formula (6-1) or (6-2).
  • the amount of the surface modifier used relative to the luminescent nanoparticles is, for example, 10% by mass or more, and preferably 100% by mass or more. Moreover, the upper limit of the usage-amount is 10000 mass% or less, for example.
  • the content of the luminescent nanoparticles in the luminescent material is, for example, 0.01% by mass or more and 10% by mass or less, and preferably 0.1% by mass or more and 5% by mass or less with respect to the total mass of the luminescent material. .
  • the luminescent material is, for example, a manufacturing method including a preparation step of preparing a solution in which luminescent nanoparticles are dispersed and anions and cations constituting the ionic crystal are dissolved, and a precipitation step of precipitating the ionic crystal from the prepared solution.
  • the production method may include post-treatment steps such as a drying step and a purification step after the precipitation step, if necessary.
  • a solution in which the luminescent nanoparticles are dispersed and the anion and cation constituting the ionic crystal are dissolved is prepared.
  • the solvent for example, a non-aqueous solvent is preferable.
  • the solvent include ketone solvents such as acetone; nitrile solvents such as acetonitrile; alcohol solvents such as methanol; amide solvents such as N, N-dimethylformamide; polar organic solvents such as sulfoxide solvents such as dimethyl sulfoxide. .
  • the anion and cation constituting the ionic crystal may be generated by dissolving a salt compound composed of the anion and cation in a solvent, and each of the salt compound containing the anion and the salt compound containing the cation is dissolved in the solvent. May be generated.
  • ionic crystals are precipitated from the prepared solution by recrystallization or reprecipitation.
  • a luminescent material in which at least a part of the luminescent nanoparticles is included in the ionic crystal is obtained.
  • a recrystallization method for example, a known method such as concentration of a solution by removing a solvent, cooling of the solution, addition of a poor solvent, or the like can be appropriately selected and used, and a plurality of these methods may be combined.
  • the reprecipitation method include mixing of the prepared solution and a poor solvent. Specifically, the prepared solution can be added to a large excess of the poor solvent.
  • Examples of the poor solvent used for recrystallization or reprecipitation include aliphatic hydrocarbon solvents such as hexane and cyclohexane; aromatic hydrocarbon solvents such as toluene; and halogenated hydrocarbon solvents such as dichloromethane and chloroform.
  • the light emitting device includes a light source having an emission peak wavelength in a range of 380 nm to 485 nm and the light emitting material.
  • the light emitting device may further include other components as necessary. By including the light emitting material in the light emitting device, excellent long-term reliability can be achieved.
  • the light emitting device may include a member that covers the light source in addition to the light source and the light emitting material.
  • a light source having an emission peak wavelength in the range of 380 nm to 485 nm which is a short wavelength region of visible light is used.
  • the emission peak wavelength of the light source is preferably 420 nm or more and 485 nm or less, and more preferably 440 nm or more and 480 nm or less.
  • the light emitting element may include a semiconductor layer made of at least one selected from the group consisting of GaN, GaAs, InGaN, AlInGaP, GaP, SiC, ZnO, and the like.
  • a nitride compound (In X Al Y Ga 1-XY N, 0 ⁇ X, 0 ⁇ Y, X + Y ⁇ 1) is preferably used as a semiconductor. It is provided as a layer.
  • the luminescent material may be contained in a member that covers the light source, or may be disposed on the member that covers the light source.
  • the light emitting material By disposing the light emitting material on the light source, a part of the light emitted from the light source can be absorbed and emitted as light having a longer wavelength.
  • the light source has an emission peak wavelength in a range of 380 nm to 485 nm, light emitted from the light source can be used more effectively. That is, loss of light emitted from the light emitting device can be reduced, and a highly efficient light emitting device can be provided.
  • Content of the luminescent material with which a light-emitting device is provided can be suitably selected according to a light source, the objective, etc.
  • the light emitting device may contain a phosphor as necessary in addition to the light emitting material. Any phosphor that absorbs part of the light emitted from the light source and converts it into light having a wavelength different from that of the light emitting material may be used.
  • the phosphor can be contained in a member that covers a light source to constitute a light emitting device. By including the phosphor, it is possible to provide light emitting devices of various colors.
  • the phosphor examples include nitride phosphors, oxynitride phosphors, sialon phosphors mainly activated by lanthanoid elements such as Eu and Ce; lanthanoid phosphors such as Eu, and transition metal compounds such as Mn.
  • the member that covers the light source includes, for example, at least one kind of resin.
  • the resin may be any of a thermoplastic resin, a thermosetting resin, and a photocurable resin.
  • Specific examples of the thermosetting resin include an epoxy resin and a silicone resin.
  • Specific examples of the photocurable resin include a silicone resin.
  • the member that covers the light source may contain the above-described light emitting material, phosphor, and the like in addition to the resin, and may further contain other components as necessary. Examples of other components include fillers such as silica, barium titanate, titanium oxide, and aluminum oxide, light stabilizers, and colorants. For example, when a fluorescent member contains a filler as another component, the content can be 0.01 mass% to 20 mass% with respect to resin.
  • FIGS. 2 and 3 are schematic cross-sectional views of the light-emitting devices 10 and 20, respectively, and are examples of surface-mounted light-emitting devices.
  • the light emitting devices 10 and 20 emit light on the short wavelength side of visible light (for example, a range of 380 nm to 485 nm), and a light emitting element 6 having a light emission peak wavelength in a range of 440 nm to 480 nm.
  • the molded body 9 is formed by integrally molding the lead 7 and the resin portion.
  • the molded body 9 forms a recess having a bottom surface and side surfaces, and the light emitting element 6 is disposed on the bottom surface of the recess.
  • the light emitting element 6 has a pair of positive and negative electrodes, and the pair of positive and negative electrodes are electrically connected to each other through leads 7 and wires 8.
  • the light emitting element 6 is covered with a covering member 4 containing a resin.
  • the light emitting material 1 including the light emitting nanoparticles 2 and the ionic crystals 3 is disposed on the surface of the covering member 4, and at least a part of the light emitting material 1 is embedded in the covering member 4.
  • the light emitting material 1 including the light emitting nanoparticles 2 and the ionic crystals 3 is included in the covering member 4.
  • the covering member 4 not only functions as a member for protecting the light emitting element 10 from the external environment, but also can convert the wavelength of light emitted from the light emitting element 6.
  • the luminescent material 1 is mixed with the covering member 4 in a substantially uniform ratio. Thereby, light in which color unevenness is further suppressed can be obtained. Further, the luminescent material 1 may be unevenly distributed in the covering member 4. For example, by arranging the light emitting material 1 close to the light emitting element 10, the wavelength of light from the light emitting element 10 can be efficiently converted, and a light emitting device having excellent light emission efficiency can be obtained. In consideration of the influence of heat on the light emitting material 1, the light emitting element 6 and the light emitting material 1 can be arranged with a space in the covering member 4.
  • FIG. 4 is a schematic cross-sectional view of the light emitting device 30 according to the prior art.
  • the luminescent nanoparticles 2 are directly dispersed in the covering member 5 containing resin.
  • Examples of the use of the light emitting device include lighting equipment; display devices such as displays and radars; and light sources for liquid crystal display devices.
  • Example 1 Production of luminescent material by recrystallization method As a luminescent nanoparticle dispersion, 0.2 ml of a CdSe / ZnS toluene dispersion (luminescence maximum 630 nm, luminescent nanoparticle content 1.7 mass%) was used. Chemistry Letters, Vol. 45, pp 898-900, 2016. The surface of CdSe / ZnS nanoparticles was modified with 2-dimethylaminoethanethiol hydrochloride. Next, it was dispersed in 0.6 ml of (2-methacryloyloxyethyl) trimethylammonium bis (trifluoromethanesulfonyl) imide (CAS No. 676257-10-6), which is a polymerizable ionic liquid, to give 0.34 mass of luminescent nanoparticles. % Ionic liquid dispersion was obtained.
  • 250 ⁇ l of methanol was added to 100 ⁇ l of the ionic liquid in which the above CdSe / ZnS nanoparticles were dispersed, mixed well, and then centrifuged. The supernatant was removed, and 100 ⁇ l of acetone in which 50 mg of cyclohexafluoropropane-1,3-bis (sulfonyl) imide potassium (CAS No. 588668-97-7) was dissolved was added to the precipitated nanoparticles and dispersed. To this, 250 ⁇ l of methanol was added, mixed well, and then centrifuged.
  • the obtained mother solution was concentrated by gradually evaporating acetone over 11 days in a nitrogen atmosphere to precipitate crystals.
  • the precipitated crystals were washed with a saturated solution of potassium cyclohexafluoropropane-1,3-bis (sulfonyl) imide potassium in acetone and dried to obtain ions containing luminescent nanoparticles as orange crystals of about 4 mm ⁇ 3 mm.
  • a luminescent material containing crystals was obtained.
  • Example 2 Production of Luminescent Material by Reprecipitation Method
  • 250 ⁇ l of methanol was added, mixed well, and then centrifuged.
  • the supernatant was removed, and 100 ⁇ l of acetone in which 50 mg of cyclohexafluoropropane-1,3-bis (sulfonyl) imide potassium was dissolved was added to the precipitated nanoparticles and dispersed.
  • 250 ⁇ l of methanol was added, mixed well, and then centrifuged.
  • the supernatant was removed, and 120 ⁇ l of acetone in which 100 mg of potassium cyclohexafluoropropane-1,3-bis (sulfonyl) imide was dissolved was added to the precipitated nanoparticles and dispersed.
  • the obtained dispersion was dropped into 1 ml of cyclohexane stirred with a magnetic stirrer to precipitate crystals.
  • the supernatant was removed, and the precipitate was dried to obtain a luminescent material containing ionic crystals containing 0.25% by mass of luminescent nanoparticles as orange powder crystals.
  • Example 3 Production of light-emitting device A photo-curing silicone resin (Shin-Etsu Silicone KER-4130M-UV) was applied to the concave portion of a molded body having a concave portion in which a surface-mounted blue light-emitting diode (main emission wavelength 448 nm) was arranged at the bottom. The luminescent material obtained in Example 1 was placed on the resin surface. Next, the resin was cured under predetermined conditions to produce a light emitting device as shown in FIG.
  • a photo-curing silicone resin Shin-Etsu Silicone KER-4130M-UV
  • Example 4 The powdery luminescent material obtained in Example 2 was mixed with photocured silicone (KER-4130M-UV manufactured by Shin-Etsu Silicone) to obtain a resin composition.
  • the obtained resin composition was filled in a concave portion of a molded body having a concave portion in which a surface-mounted blue light-emitting diode (main emission wavelength 448 nm) was arranged at the bottom.
  • the resin was cured under predetermined conditions to produce a light emitting device as shown in FIG.
  • UV polymerization was performed under predetermined conditions, and FIG. A light emitting device as shown was fabricated.
  • FIG. 5 shows the change with time of the relative light emission intensity at 85 ° C. of the light emitting devices of Example 3 and Comparative Example 1.
  • the light emitting devices of Example 3 and Comparative Example 1 use luminescent nanoparticles composed of the same core, shell, and modifying group, but the medium around the luminescent nanoparticles is different, and compared with Comparative Example 1.
  • the attenuation of light emission is small. This indicates that the ionic crystal of the example has a gas barrier property with respect to the air atmosphere, and thus the environmental resistance of the luminescent material including the ionic crystal including the luminescent nanoparticles is improved.
  • the hygroscopicity of the ionic crystal used for the production of the light emitting material was evaluated as follows. As a sample, bis (nonafluorobutanesulfonyl) imide potassium (CAS No. 129135-87-1) as Example 5 and cyclohexafluoropropane-1,3-bis (sulfonyl) imide potassium as Example 6 were compared. As Example 2, sodium chloride (NaCl) was used.
  • a petri dish with a diameter of 90 mm and a height of 10 mm containing 50 ml of water was placed in the center of a beaker having a diameter of 170 mm and a height of 270 mm.
  • a 50 mg sample ground well in a mortar was placed in a 25 mm ⁇ 25 mm polystyrene dish so as to spread thinly and uniformly, and placed in a beaker so as to contact the outer periphery of the petri dish.
  • the opening of the beaker was covered with aluminum foil, and the infrared absorption spectrum of the sample was measured after a moisture absorption test in which a predetermined time was passed at room temperature.
  • FIG. 6 shows infrared absorption spectra of potassium bis (nonafluorobutanesulfonyl) imide potassium before and after a 24-hour moisture absorption test.
  • FIG. 7 shows infrared absorption spectra of cyclohexafluoropropane-1,3-bis (sulfonyl) imide potassium before and after a 24-hour moisture absorption test.
  • FIG. 8 shows infrared absorption spectra of sodium chloride before and after a 90-minute moisture absorption test.
  • Example 7 5.16 g of bis (nonafluorobutanesulfonyl) imidolithium was dissolved in 25 ml of water. A solution obtained by dissolving 1.87 g of cesium bromide in 5 ml of water was added dropwise thereto. The mixture was stirred at room temperature for 30 minutes, and the precipitated solid was filtered, washed with water, and dried to obtain 6.02 g of bis (nonafluorobutanesulfonyl) imidocesium.
  • Example 8 A light emitting device was produced in the same manner as in Example 4 except that the powdery light emitting material obtained in Example 7 was used.
  • Example 8 The environmental resistance of the light emitting device obtained in Example 8 was evaluated. The results are shown in FIG. In addition, the place where the light emitting device in the above-described evaluation of environmental resistance is held for a predetermined time in a constant temperature oven at 85 ° C. is changed to hold for a predetermined time in a constant temperature and humidity chamber at 60 ° C. and 90% humidity. Environmental evaluation was performed. The results are shown in FIG.
  • the light emitting device of Example 8 has improved environmental resistance compared to the light emitting device of Comparative Example 1 shown in FIG.
  • Example 9 Evaluation of hygroscopicity Hygroscopicity was evaluated by using bis (nonafluorobutanesulfonyl) imidocesium used in the production of the light emitting material of Example 7 as Example 9. The results are shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

発光性のナノ粒子および特定の構造を有するイオン結晶を含み、耐環境性に優れる発光材料を提供する。 発光性ナノ粒子と、下記式(1)で表されるアニオン成分を含むイオン結晶と、を含む発光材料である。式中、RおよびRはそれぞれ独立して、フッ素原子もしくはフルオロアルキル基を示すか、又は互いに連結して環を形成するフルオロアルキレン基を示す。

Description

発光材料及び発光装置
 本発明は、発光材料及び発光装置に関する。
 発光性のナノ粒子は、発光効率が高く、発光スペクトルの半値幅が狭いという特徴を有し、またその粒子径を変えることによって、発光色を広い波長域にわたって制御することができる。このような性質は、高効率かつ高い演色性の照明や広色域のディスプレイ用として優れている。このため、発光性ナノ粒子は次世代の発光材料として注目されている。しかし、ナノ粒子は体積に対する表面積の割合が高いため、化学的安定性が低く、特に水、酸素等によって劣化しやすい。そのためナノ粒子にバリア性を付与する方法が検討されている。
 例えば、特開2017-32995号公報(以下、特許文献1ともいう)には、発光性半導体ナノ粒子が、重合性官能基を有するイオン液体に由来する構成単位を含む樹脂中に分散された波長変換部材が記載されている。また、Nano Letters,Vol.12,pp5348-5354,2012.(以下、非特許文献1ともいう)には、CdTeナノ粒子とイオン結晶(NaCl、KCl、KBr)とを複合化することが報告されている。更に、Nanoscale,Vol.7,pp17611-17616,2015.(以下、非特許文献1ともいう)には、有機溶媒に可溶なLiClを用いることによって、水を使用せずにイオン結晶とCdSe/CdZnSeS/ZnSナノ粒子とを複合化する方法が報告されている。
 しかしながら、特許文献1に記載の発光性ナノ粒子を内包したイオン性液体由来の樹脂を含む波長変換部材では、イオン性液体由来の樹脂の大気中に含まれる酸素や水蒸気などガス成分に対するバリア性が不十分なため、大気雰囲気に長期間さらされた場合に発光性ナノ粒子の劣化が起こる場合がある。また非特許文献1及び2に記載の発光性ナノ粒子を内包したイオン結晶を含む発光材料は、イオン結晶が吸湿性を有することにより発光性ナノ粒子に水蒸気が近づきやすくなることから、発光性ナノ粒子の劣化が起こる場合がある。更に非特許文献1に記載の方法では製造工程に水を使用するため、製造中にナノ粒子自体が劣化することも懸念される。
 本発明の一態様は、発光性のナノ粒子および特定の構造を有するイオン結晶を含み、耐環境性に優れる発光材料を提供することを目的とする。
 第一態様は、発光性ナノ粒子と、下記式(1)で表されるアニオン成分を含むイオン結晶と、を含む発光材料である。式中、RおよびRはそれぞれ独立して、フッ素原子もしくはフルオロアルキル基を示すか、又は互いに連結して環を形成するフルオロアルキレン基を示す。
Figure JPOXMLDOC01-appb-C000006
 第二態様は、380nm以上485nm以下の範囲に発光ピーク波長を有する光源と、前記発光材料と、を備える発光装置である。本実施形態は、別の態様として、発光性ナノ粒子と、下記式(1)で表されるアニオン成分を含むイオン結晶と、を含む発光材料の製造における下記式(1)で表されるアニオン成分を含むイオン結晶の使用;発光性ナノ粒子と、下記式(1)で表されるアニオン成分を含むイオン結晶と、を含む発光材料の耐環境性向上における下記式(1)で表されるアニオン成分を含むイオン結晶の使用;380nm以上485nm以下の範囲に発光ピーク波長を有する光源と、前記発光材料と、を備える発光装置の製造における前記発光材料の使用;をも包含する。
 本発明の一態様によれば、発光性のナノ粒子および特定の構造を有するイオン結晶を含み、耐環境性に優れる発光材料を提供することができる。
発光性ナノ粒子とイオン結晶と含む発光材料の模式図である。 発光装置の一例を示す模式断面図である。 発光装置の他例を示す模式断面図である。 発光装置の他例を示す模式断面図である。 発光装置の耐環境性試験における相対発光強度の経時変化を示す図である。 実施例5の赤外吸収スペクトルの変化を示す図である。 実施例6の赤外吸収スペクトルの変化を示す図である。 比較例2の赤外吸収スペクトルの変化を示す図である。 実施例8の発光装置の耐環境性試験における相対発光強度の経時変化を示す図である。 実施例8の発光装置の耐環境性試験における相対発光強度の経時変化を示す図である。 実施例9の赤外吸収スペクトルの変化を示す図である。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。以下、本発明の実施形態を詳細に説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための、発光材料等を例示するものであって、本発明は、以下に示す発光材料等に限定されない。なお特許請求の範囲に示される部材を、実施形態の部材に限定するものでは決してない。特に実施形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
発光材料
 発光材料は、発光性ナノ粒子と、下記式(1)で表されるアニオン成分を含むイオン結晶と、を含む。
Figure JPOXMLDOC01-appb-C000007
 式中、RおよびRはそれぞれ独立して、フッ素原子もしくはフルオロアルキル基を示すか、又は互いに連結して環を形成するフルオロアルキレン基を示す。
 発光材料が、発光性ナノ粒子と特定のアニオン成分を含むイオン結晶から構成されることで、発光材料の耐環境性が向上する。これは例えば、特定のアニオン成分を含むイオン結晶は、吸湿性が低いことにより発光性ナノ粒子へ水蒸気が近づくことを抑制することができ、また結晶性を有することにより樹脂と比べて大気中含まれる水蒸気や酸素などのガス成分に対するバリア性に優れるため発光材料の耐環境性が向上すると考えられる。
 発光材料は、発光性ナノ粒子とイオン結晶とを含んで構成される。発光材料は、例えば、イオン結晶が発光性ナノ粒子の少なくとも一部を内包して構成される。発光材料における発光性ナノ粒子は、複数の粒子が凝集状態でイオン結晶に内包されていてもよく、個々の粒子が独立してイオン結晶に内包されていてもよい。
 発光材料の構成例を、図面を参照して説明する。図1は発光材料1の一例を模式的に示す概略図である。発光材料1は、発光性ナノ粒子2を内包するイオン結晶3から構成される。図1では発光性ナノ粒子2が、単独粒子又は凝集粒子としてイオン結晶3に内包されている。また一部の発光性ナノ粒子2はイオン結晶の結晶面から部分的に露出している。図1では説明の簡略化のために、発光性ナノ粒子2を球形状としているが、発光性ナノ粒子の形状は球形状に限られない。また図1では、イオン結晶3を立方体形状として描いているが、イオン結晶3の形状は立方体形状には限られない。
 イオン結晶とは、融点が低い(例えば、100℃未満)のイオン性液体とは異なり、より高温の融点又は分解点を有し、結晶構造に特徴的な特性を示す塩化合物からなる。イオン結晶が結晶構造を有することは、例えば、X線回折法で確認することができる。
 イオン結晶を構成するアニオン成分は、上記式(1)で表されるフッ素原子を含む特定構造を有している。これにより、カチオン成分と共に形成されるイオン結晶の吸湿性が低下すると考えられる。アニオン成分は、下記式(1a)又は(1b)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000008
 式(1a)中、R1aおよびR2aはそれぞれ独立して、フッ素原子もしくはフルオロアルキル基を示し、好ましくは炭素数1から4のペルフルオロアルキル基を示す。nは1から5の整数を示し、好ましくは2又は3を示す。
 アニオン成分として具体的には、下記式(2-1)から(2-7)のいずれかで表されるアニオンが挙げられ、これらからなる群から選択される少なくとも1種を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009
 イオン結晶を構成するカチオン成分は、上記アニオン成分と共にイオン結晶を形成し得るものであればよく、無機カチオン及び有機カチオンのいずれであってもよい。カチオン成分は可視領域における吸収が少ないことが好ましい。無機カチオンとしては、例えば、Li、Na、K、Rb、Cs、Be2+、Mg2+、Ca2+、Sr2+、Ba2+、Sc3+、Y3+、Ti4+、Zr4+、Hf4+、V5+、Nb5+、Ta5+、Zn2+、Cd2+、Hg2+、Al3+、Ga3+、In3+、Tl3+、Sn4+、Pb4+、Bi3+、La3+、Ce3+、Gd3+、Yb3+、Lu3+等を挙げることができ、これらからなる群から選択される少なくとも1種を含むことが好ましく、周期表の1族及び2族の金属からなる群から選択される少なくとも1種を含むことがより好ましく、K、Rb及びCsからなる群から選ばれる少なくとも1種を含むことが更に好ましく、K及びCsからなる群から選ばれる少なくとも1種を含むことが特に好ましい。
 有機カチオンは、有機基を含むカチオンであればよく、形式的に炭素原子が荷電した炭素カチオンであっても、形式的に、窒素原子、リン原子、酸素原子、イオウ原子等のヘテロ原子が荷電したヘテロ原子カチオンであってもよい。有機カチオンの具体例としては、例えば、下記式(3-1)から(3-15)のいずれかで表されるカチオンを挙げることができ、これらからなる群から選択される少なくとも1種を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式中、Yは酸素原子又はイオウ原子を示す。Zは窒素原子又はリン原子を示す。R10はそれぞれ独立して、置換されてもよいアルキル基、置換されてもよいアルケニル基、置換されてもよいアルキニル基、置換されてもよいアリール基および置換されてもよい複素環基からなる群から選択される少なくとも1種の置換基若しくは水素原子を示すか、又は2つのR10が互いに連結して環を形成する置換されてもよいアルキレン基を示す。また、式中の芳香族環および脂肪族環は、少なくとも1つの該置換基を有していてもよい。nは1から3の整数を示す。
 R10におけるアルキル基、アルケニル基およびアルキニル基の炭素数は例えば8以下であり、好ましくは4以下である。アリール基としてはフェニル基、ナフチル基等を挙げることができる。複素環基としてはピリジル基、キノリル基、フリル基、イミダゾリウム基、ピリジニウム基、ピロリジウム基、ピペリジニウム基等を挙げることができる。R10における置換基としては、炭素数4以下のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;ヒドロキシル基;アミノ基;塩素原子、フッ素原子等のハロゲン原子;アンモニウム基、ホスホニウム基等のオニウム基等を挙げることができる。
 R10として具体的には、水素原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等の炭素数4以下のアルキル基;メトキシメチル基、エトキシメチル基、2-メトキシエチル基等の炭素数4以下のアルコキシアルキル基;アリル基等の炭素数4以下のアルケニル基等を挙げることができる。
 有機カチオンとしては、好ましくは下記式(3-21)から(3-29)のいずれかで表されるカチオンを挙げることができ、これらからなる群から選択される少なくとも1種を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000011
 式中、R20はそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基、n-ブチル基又はアリル基を示す。
 発光材料を構成するイオン結晶は、特定構造のアニオン成分とカチオン成分とを含んで構成され、常温で結晶性の固体である物質である。イオン結晶の融点又は分解点は、例えば、100℃以上であり、100℃超え、150℃以上、又は250℃以上である。ここでイオン結晶の融点は示差走査熱量計を用いて測定される。また分解点は熱重量分析(TGA)によって1%重量減に対応する温度とする。
 イオン結晶は、発光材料及び発光装置の製造と使用における温度範囲以下、例えば、100℃以下、好ましくは150℃以下、より好ましくは250℃以下で、柔粘性結晶へ相転移しないものが好ましい。イオン結晶が柔粘性を有するか否かは、融解エントロピー変化で判断することができる。すなわちイオン結晶の融解エントロピー変化は、好ましくは20Jmol-1-1以上である。柔軟性結晶である場合、結晶を構成するイオンの回転運動と拡散が活発であるため、水、酸素等に対するガスバリア性が低下する傾向がある。
 式(1)で示されるアニオン成分を含むイオン結晶の具体例としては、下表に示す塩化合物からなるイオン結晶を挙げることができる。なお、表中、Meはメチル基、Etはエチル基、Prはn-プロピル基、Buはn-ブチル基を示す。
Figure JPOXMLDOC01-appb-T000012
 特に好ましいイオン結晶としては、式(2-5)又は(2-7)で表されるアニオン成分の少なくとも1種と、アルカリ金属等の無機カチオンの少なくとも1種とを含むイオン結晶、又は式(2-5)又は(2-7)で表されるアニオン成分の少なくとも1種と、K及びCsの少なくとも1種とを含むイオン結晶が挙げられる。具体的には、例えば、下記式(4-1)から(4-4)のいずれかで示されるイオン結晶が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 発光材料を構成する発光性ナノ粒子は、光により励起光とは異なる波長の光を発するナノ粒子であればよい。発光性ナノ粒子を構成する化合物としては、例えば、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、CdSeS、CdSeTe等のII-VI族化合物;AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、InGaP等のIII-VI族化合物;PbS、PbSe等のIV-VI族化合物;C、Si、Ge、SiC、SiGe等のIV族単体及び化合物;CuInS、CuInSe、CuGaIn1-x、AgInS、AgInSe等のI-III-VI族化合物(但し、xは0<x<1を満たす数を示す。);ABXで示されるペロブスカイト化合物(但し、AはCs、Rb、CH、N=CHNHを示し、BはPb2+又はSb2+を示し、XはCl、Br又はIを示す。)を挙げることができ、これらからなる群から選択される少なくとも一種を含むことが好ましい。より好ましい化合物としては、CdS、CdSe、CdTe、CdSeS、CdSeTe、InP、AgInS、AgInSe、CsPbBr、CsPbI、CsPb(Br1-x、(CHNH)PbBr、(CHNH)PbI、(CHNH)Pb(Br1-x(但し、xは0<x<1を満たす数を示す。)が挙げられる。
 発光性ナノ粒子は、複数の化合物を含んで構成されていてもよい。発光性ナノ粒子は、例えば、バンドギャップエネルギーが異なる少なくとも2種の半導体化合物から構成されていてもよく、コアを形成する化合物がバンドギャップのより大きな他の化合物で被覆されている、いわゆるコアシェル型構造と呼ばれる構造であってもよい。コアシェル型構造では、例えば、シェルはコアの保護層等として機能する。シェルは単層に限らず、2層以上であってもよい。発光性ナノ粒子が2層以上のシェルを有する場合、外層側のシェルを構成する化合物のバンドギャップエネルギーが、内層側よりも大きくなるように構成すればよい。
 コアシェル型の発光性ナノ粒子の構成例を、コア化合物/シェル化合物として例示すると、CdS/ZnS、CdSe/ZnS、CdTe/ZnS、CdSeS/ZnS、CdSeTe/ZnS、CdSe/CdSeS/ZnS、InP/ZnS、AgInS/ZnS、AgInSe/ZnS等を例示することができる。
 発光性ナノ粒子の形状は、構成する化合物に応じて適宜選択される。発光性ナノ粒子の形状としては、例えば、球状、板状、棒状、多面体等のいずれであってもよい。
 発光性ナノ粒子の平均粒径は、例えば1nm以上100nm以下であり、好ましくは1nm以上20nm以下である。コアシェル型の発光性ナノ粒子の場合、平均粒径はシェルを含む値であり、コア自体の平均粒径は、例えば、1nm以上10nm以下であり、コアがペロブスカイト化合物を含む場合は、例えば90nm以下である。
 発光性ナノ粒子の粒径は、例えば、透過型電子顕微鏡(TEM)を用いて撮影されたTEM像から求めることができ、TEM像で観察される粒子の外周の任意の二点を結び、粒子の内部に存在する線分のうち、最も長いものを指す。ただし、粒子がロッド形状を有するものである場合には、短軸の長さを粒径とみなす。ここで、ロッド形状の粒子とは、TEM像において短軸と短軸に直交する長軸とを有し、短軸の長さに対する長軸の長さの比が1.2より大きいものを指す。ロッド形状の粒子は、TEM像で、例えば、長方形状を含む四角形状、楕円形状、又は多角形状等として観察される。ロッド形状の長軸に直交する面である断面の形状は、例えば、円、楕円、又は多角形であってよい。具体的にはロッド状の形状の粒子について、長軸の長さは、楕円形状の場合には、粒子の外周の任意の二点を結ぶ線分のうち、最も長い線分の長さを指し、長方形状又は多角形状の場合、外周を規定する辺の中で最も長い辺に平行であり、かつ粒子の外周の任意の二点を結ぶ線分のうち、最も長い線分の長さを指す。短軸の長さは、外周の任意の二点を結ぶ線分のうち、前記長軸の長さを規定する線分に直交し、かつ最も長さの長い線分の長さを指す。
 発光性ナノ粒子の平均粒径は、50,000倍以上150,000倍以下のTEM像で観察される、すべての計測可能な粒子について粒径を測定し、それらの粒径の算術平均とする。ここで、「計測可能な」粒子は、TEM像において粒子全体が観察できるものである。したがって、TEM像において、その一部が撮像範囲に含まれておらず、「切れて」いるような粒子は計測可能なものではない。1つのTEM像に含まれる計測可能な粒子数が100以上である場合には、そのTEM像を用いて平均粒径を求める。一方、1つのTEM像に含まれる計測可能な粒子の数が100未満の場合には、撮像場所を変更して、TEM像をさらに取得し、2以上のTEM像に含まれる100以上の計測可能な粒子について粒径を測定して平均粒径を求める。
 発光性ナノ粒子は、イオン性表面修飾剤で表面処理されて、粒子表面に修飾基を有していてもよい。表面修飾されることで発光性ナノ粒子の安定性がより向上し、また各種の媒体への分散性がより向上する傾向がある。表面修飾剤は分子内にイオン性官能基を有することが好ましい。イオン性基はカチオン性、アニオン性のいずれであってもよく、少なくともカチオン性基を有することが好ましい。表面修飾剤の具体例及び表面修飾の方法は、例えばChemistry Letters,Vol.45,pp898-900,2016の記載を参照することができる。好ましい表面修飾剤としては、窒素原子を含むカチオン性官能基を有する化合物が挙げられ、下記式(5-1)又は(5-2)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000014
 式中、Xはアニオンを示し、例えば、フッ素イオン、塩素イオン、臭素イオン等のハロゲンアニオンであり、式(1)で示されるアニオンであってもよい。
 発光性ナノ粒子は、下記式(6)で表される構造を有するノニオン性表面修飾剤で表面処理されて、粒子表面に修飾基を有していてもよい。表面修飾されることで発光性ナノ粒子の安定性がより向上し、また各種の媒体への分散性がより向上する傾向がある。
  R30-(OR31-X  (6)
 式(6)中、R30は、水素原子、置換されてもよいアルキル基、置換されてもよいアルケニル基、置換されてもよいアルキニル基、および置換されてもよいアリール基からなる群から選択される少なくとも1種の置換基を示す。R31は置換されてもよいアルキレン基、置換されてもよいアルケニレン基、および置換されてもよいアルキニレン基、および置換されてもよいアリーレン基からなる群から選択される少なくとも1種の2価の基を示す。nは1以上20以下の数を示す。Xは、チオール基、水酸基及びアミノ基からなる群から選択される少なくとも1種の置換基を示す。
 R30におけるアルキル基、アルケニル基およびアルキニル基の炭素数は、例えば8以下であり、好ましくは6以下、4以下、3以下、又は2以下である。アルキル基の炭素数は1以上であり、アルケニル基及びアルキニル基の炭素数は2以上である。アリール基の炭素数は例えば6以上10以下である。また、R30における置換基としては、例えば、炭素数1から4のアルキル基、ハロゲン原子等を挙げることができる。
 R30として具体的には、水素原子;メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、エチルヘキシル基等の炭素数8以下のアルキル基;ビニル基、アリル基、ブテニル基、ヘキセニル基、オクテニル基等の炭素数8以下のアルケニル基等;フェニル基、ナフチル基等のアリール基を挙げることができる。
 R31におけるアルキレン基、アルケニレン基およびアルキニレン基の炭素数は例えば8以下であり、好ましくは6以下、4以下、3以下、又は2である。アルキレン基の炭素数は1以上又は2以上であり、アルケニレン基及びアルキニレン基の炭素数は2以上である。アリーレン基の炭素数は例えば6以上10以下である。R31における置換基としては、例えば、炭素数1から4のアルキル基、ハロゲン原子等を挙げることができる。
 R31として具体的には、メチレン基、エチレン基、プロピレン基、2-プロピレン基、ブチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,1-ジメチルエチレン基、1,2-ジメチルエチレン基、ペンタンジイル基、ヘキサンジイル基、オクタンジイル基等の炭素数8以下のアルキレン基;プロピレンジイル基等のアルケニレン基;フェニレン基、ナフタレンジイル基等のアリーレン基を挙げることができる。
 nは、好ましくは1以上20以下の数であり、1以上10以下、2以上10以下、又は2以上8以下の数であってよい。Xは、チオール基、水酸基及びアミノ基からなる群から選択される少なくとも1種の置換基であって、好ましくはチオール基又はアミノ基である。
 式(6)で表される構造を有するノニオン性表面修飾剤は、例えば、アルキレングリコール構造、ポリアルキレングリコール構造、アルキレングリコールモノアルキルエーテル構造、又はポリアルキレングリコールモノアルキルエーテル構造を含んでいてよい。ノニオン性表面修飾剤は、例えば、炭素数が2、3、又は4であるアルキレンオキシ基を構造単位として含んでいてよい。
 特に好ましいノニオン性表面修飾剤としては、下記式(6-1)または(6-2)で示される化合物の少なくとも1種を含むノニオン性表面修飾剤が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 発光性ナノ粒子を表面修飾剤で表面処理する場合、発光性ナノ粒子に対する表面修飾剤の使用量は、例えば、10質量%以上であり、好ましくは100質量%以上である。また使用量の上限は例えば10000質量%以下である。
 発光材料における発光性ナノ粒子の含有率は、発光材料の全質量に対して、例えば、0.01質量%以上10質量%以下であり、好ましくは0.1質量%以上5質量%以下である。
 発光材料は、例えば、発光性ナノ粒子が分散し、イオン結晶を構成するアニオンとカチオンが溶解した溶液を準備する準備工程と、準備した溶液からイオン結晶を析出させる析出工程とを含む製造方法で製造することができる。製造方法は必要に応じて、析出工程後に乾燥工程、精製工程等の後処理工程を含んでいてもよい。
 準備工程では発光性ナノ粒子が分散し、イオン結晶を構成するアニオンとカチオンが溶解した溶液を調製する。溶媒としては例えば、非水溶媒が好ましい。溶媒として具体的には、アセトン等のケトン溶剤;アセトニトリル等のニトリル溶剤;メタノール等のアルコール溶剤;N,N-ジメチルホルムアミド等のアミド溶剤;ジメチルスルホキシド等のスルホキシド溶剤等の極性有機溶剤が挙げられる。イオン結晶を構成するアニオン及びカチオンは、当該アニオン及びカチオンからなる塩化合物を溶媒に溶解して生成するものであってもよく、当該アニオンを含む塩化合物とカチオンを含む塩化合物をそれぞれ溶媒に溶解して生成するものであってもよい。
 析出工程では、準備した溶液から、再結晶又は再沈殿によりイオン結晶を析出させる。これにより、イオン結晶に発光性ナノ粒子の少なくとも一部が包含された発光材料が得られる。再結晶の方法としては、例えば、溶媒除去による溶液の濃縮、溶液の冷却、貧溶媒の添加等の公知の方法から適宜選択して用いることができ、これらの方法は複数組合せてもよい。再沈殿の方法としては、例えば、調製した溶液と貧溶媒との混和が挙げられ、具体的には、調製した溶液を大過剰の貧溶媒へ添加して行うことができる。再結晶又は再沈殿に用いる貧溶媒としては、ヘキサン、シクロヘキサン等の脂肪族炭化水素溶剤;トルエン等の芳香族炭化水素溶剤;ジクロロメタン、クロロホルム等のハロゲン化炭化水素溶剤を挙げることができる。
発光装置
 発光装置は、380nm以上485nm以下の範囲に発光ピーク波長を有する光源と、前記発光材料とを備える。発光装置は、必要に応じて、その他の構成部材を更に含んでいてもよい。発光装置が前記発光材料を含むことで、優れた長期信頼性を達成することができる。発光装置は、光源及び発光材料に加えて光源を被覆する部材を備えていてもよい。
 光源としては、可視光の短波長領域である380nm以上485nm以下の範囲に発光ピーク波長を有するものを使用する。光源の発光ピーク波長は、好ましくは420nm以上485nm以下であり、より好ましくは440nm以上480nm以下である。これにより、前記発光材料を効率よく励起し、可視光を有効活用することができる。また当該波長範囲の光源を用いることにより、発光強度が高い発光装置を提供することができる。
 光源には半導体発光素子(以下単に「発光素子」ともいう)を用いることが好ましい。光源に半導体発光素子を用いることによって、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を構成することができる。発光素子としては、GaN、GaAs、InGaN、AlInGaP、GaP、SiC、およびZnO等から成る群より選択される少なくとも1種からなる半導体層を備えたものであってよい。青紫色光、青色光又は紫外線を発光する半導体発光素子としては、好ましくは窒化物系化合物(InAlGa1-X-YN、0≦X、0≦Y、X+Y≦1)を半導体層として備えるものである。
 発光装置が備える発光材料の詳細については既述の通りである。発光材料は、例えば、光源を被覆する部材に含有されていてもよく、光源を被覆する部材上に配置されていてもよい。発光材料が光源上に配置されることで、光源から出射される光の一部を吸収して、より長波長の光として放射することができる。また光源が380nm以上485nm以下の範囲に発光ピーク波長を有することで、光源から放射される光をより有効に利用することができる。すなわち、発光装置から出射される光の損失を少なくすることができ、高効率の発光装置を提供することができる。発光装置が備える発光材料の含有量は、光源、目的等に応じて適宜選択することができる。
 発光装置は、前記発光材料に加えて、必要に応じて蛍光体を含んでいてもよい。蛍光体としては光源から射出される光の一部を吸収し、発光材料とは異なる波長の光に波長変換するものであればよい。蛍光体は、例えば、光源を被覆する部材に含有させて発光装置を構成することができる。蛍光体を含むことにより、種々の色調の発光装置を提供することができる。
 蛍光体としては、Eu、Ce等のランタノイド系元素で主に賦活される窒化物系蛍光体、酸窒化物系蛍光体、サイアロン系蛍光体;Eu等のランタノイド系、Mn等の遷移金属系の元素により主に賦活されるアルカリ土類ハロゲンアパタイト蛍光体、アルカリ土類金属ホウ酸ハロゲン蛍光体、アルカリ土類金属アルミン酸塩蛍光体、アルカリ土類ケイ酸塩、アルカリ土類硫化物、アルカリ土類チオガレート、アルカリ土類窒化ケイ素、ゲルマン酸塩、フッ化物錯体;Ce等のランタノイド系元素で主に賦活される希土類アルミン酸塩、希土類ケイ酸塩;及びEu等のランタノイド系元素で主に賦活される無機及び有機錯体等を挙げることができる。
 蛍光体として具体的には、例えば、(Ca,Sr,Ba)SiO:Eu、(Y,Gd)(Ga,Al)12:Ce、(Si,Al)(O,N):Eu(β-サイアロン)、SrGa:Eu、(Ca,Sr)Si:Eu、CaAlSiN:Eu、(Ca,Sr)AlSiN:Eu、LuAl12:Ce、(Ca,Sr,Ba,Zn)MgSi16(F,Cl,Br,I):Eu、K(Si,Ti,Ge)F:Mn、3.5MgO・0.5MgF・GeO:Mn等が挙げられ、これらからなる群から選択される少なくとも1種を含むことが好ましい。
 光源を被覆する部材は、例えば、少なくとも1種の樹脂を含んで構成される。樹脂は熱可塑性樹脂、熱硬化性樹脂及び光硬化性樹脂のいずれであってもよい。熱硬化性樹脂として具体的には、エポキシ樹脂、シリコーン樹脂などを挙げることができる。光硬化性樹脂として具体的には、シリコーン樹脂などを挙げることができる。光源を被覆する部材は、樹脂に加えて前述の発光材料、蛍光体等を含んでいてもよく、更に必要に応じて、その他の成分を含んでいてもよい。その他の成分としては、シリカ、チタン酸バリウム、酸化チタン、酸化アルミニウム等のフィラー、光安定化剤、着色剤等を挙げることができる。蛍光部材が例えば、その他の成分としてフィラーを含む場合、その含有量は樹脂に対して0.01質量%から20質量%とすることができる。
 本実施形態に係る発光装置10の一例を図2及び図3に基づいて説明する。図2及び図3はそれぞれ発光装置10及び20の概略断面図であり、表面実装型発光装置の一例である。発光装置10及び20は、可視光の短波長側(例えば、380nm以上485nm以下の範囲)の光を発し、発光ピーク波長が440nm以上480nm以下の範囲内にある発光素子6と、発光素子6を載置する成形体9と、を備える。成形体9は、リード7と樹脂部とが一体的に成形されてなるものである。成形体9は底面と側面を持つ凹部を形成しており、凹部の底面に発光素子6が配置されている。発光素子6は一対の正負の電極を有しており、その一対の正負の電極はそれぞれリード7とワイヤ8を介して電気的に接続されている。発光素子6は、樹脂を含む被覆部材4により被覆されている。図2の発光装置10では、発光性ナノ粒子2及びイオン結晶3を含む発光材料1が被覆部材4の表面に配置され、発光材料1の少なくとも一部が被覆部材4に埋設されている。また図3の発光装置20では、発光性ナノ粒子2及びイオン結晶3を含む発光材料1が被覆部材4に内包されている。
 被覆部材4は、外部環境から発光素子10を保護するための部材として機能するだけなく、発光素子6が発する光を波長変換し得る。図3では、発光材料1は被覆部材4の全体にほぼ均一の割合で混合されている。これにより、色ムラがより抑制された光を得ることができる。また発光材料1を被覆部材4中に偏在させてもよい。例えば、発光材料1を発光素子10に接近させて配置することにより、発光素子10からの光を効率よく波長変換することができ、発光効率の優れた発光装置とできる。また、発光材料1への熱の影響を考慮して、被覆部材4中で発光素子6と、発光材料1との間隔を空けて配置することもできる。
 なお、図4は、従来技術に係る発光装置30の概略断面図である。発光装置30では、樹脂を含む被覆部材5中に、発光性ナノ粒子2が直接分散されている。
 発光装置の用途としては、例えば、照明器具;ディスプレイ、レーダ等の表示装置;液晶表示装置用光源が挙げられる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕再結晶法による発光材料の作製
 発光性ナノ粒子分散液として、CdSe/ZnSのトルエン分散液(発光極大630nm、発光性ナノ粒子の含有率1.7質量%)0.2mlを使用した。Chemistry Letters,Vol.45,pp898-900,2016に記載の方法に従い、CdSe/ZnSナノ粒子の表面を2-ジメチルアミノエタンチオール塩酸塩で修飾した。次いで、重合性イオン液体である(2-メタクリロイルオキシエチル)トリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド(CAS No.676257-10-6)0.6mlへ分散して、発光性ナノ粒子0.34質量%を含むイオン液体分散液を得た。
 上記のCdSe/ZnSナノ粒子を分散したイオン液体100μlにメタノール250μlを加え、よく混合した後、遠心分離した。上澄みを除去し、沈殿したナノ粒子にシクロヘキサフルオロプロパン-1,3-ビス(スルホニル)イミドカリウム(CAS No.588668-97-7)50mgを溶解したアセトン100μlを加えて、分散した。これにメタノール250μlを加え、よく混合した後、遠心分離した。上澄みを除去し、沈殿したナノ粒子に、再びシクロヘキサフルオロプロパン-1,3-ビス(スルホニル)イミドカリウム50mgを溶解したアセトン60μlを加え、発光性ナノ粒子が分散し(0.51質量%)、イオン結晶を構成する塩化合物が溶解した(51質量%)母溶液を得た。
 得られた母溶液を、窒素雰囲気下で11日間かけてアセトンを徐々に揮発させることによって濃縮して結晶を析出させた。析出した結晶を、シクロヘキサフルオロプロパン-1,3-ビス(スルホニル)イミドカリウムのアセトン飽和溶液で洗浄し、乾燥したところ約4mm×3mmのオレンジ色の結晶として、発光性ナノ粒子を内包したイオン結晶を含む発光材料を得た。
〔実施例2〕再沈殿法による発光材料の作製
 実施例1で調製した発光性ナノ粒子のイオン液体分散液50μlに、メタノール250μlを加え、よく混合した後、遠心分離した。上澄みを除去し、沈殿したナノ粒子にシクロヘキサフルオロプロパン-1,3-ビス(スルホニル)イミドカリウム50mgを溶解したアセトン100μlを加え、分散した。これにメタノール250μlを加え、よく混合した後、遠心分離した。上澄みを除去し、沈殿したナノ粒子にシクロヘキサフルオロプロパン-1,3-ビス(スルホニル)イミドカリウム100mgを溶解したアセトン120μlを加え、分散した。得られた分散液を、マグネチックスターラーで攪拌されているシクロヘキサン1mlへ滴下して結晶を析出させた。上澄みを除去し、沈殿を乾燥してオレンジ色の粉末結晶として、発光性ナノ粒子を0.25質量%内包したイオン結晶を含む発光材料を得た。
〔実施例3〕発光装置の作製
 表面実装型青色発光ダイオード(主発光波長448nm)が底部に配置された凹部を有する成形体の凹部に光硬化シリコーン樹脂(信越シリコーン製KER-4130M-UV)を充填し、実施例1で得た発光材料を樹脂表面に乗せた。次いで所定条件で樹脂を硬化させて、図2に示すような発光装置を作製した。
〔実施例4〕
 実施例2で得た粉末状の発光材料を光硬化シリコーン(信越シリコーン製KER-4130M-UV)に混合して、樹脂組成物を得た。得られた樹脂組成物を、面実装型青色発光ダイオード(主発光波長448nm)が底部に配置された凹部を有する成形体の凹部に充填した。次いで所定条件で樹脂を硬化させて、図3に示すような発光装置を作製した。
〔比較例1〕
 実施例1で作成した発光性ナノ粒子のイオン液体分散液10μlに、(2-メタクリロイルオキシエチル)トリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、ジエチレングリコールジメタクリラート及び2-ヒドロキシ-2-メチルプロピオフェノンを添加し、発光性ナノ粒子を0.09質量%、2-メタクリロイルオキシエチル)トリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミドを87質量%、ジエチレングリコールジメタクリラートを12質量%、2-ヒドロキシ-2-メチルプロピオフェノンを0.4質量%含む重合性組成物を得た。得られた重合性組成物を、表面実装型青色発光ダイオード(主発光波長448nm)が底部に配置された凹部を有する成形体の凹部に充填した後、所定条件でUV重合して、図4に示すような発光装置を作製した。
耐環境性の評価
 上記で得られた実施例3と比較例1の発光装置について耐久性の評価を以下のようにして行った。発光スペクトルの測定にはUPRtec製MK350N PLUSを使用した。作製直後の発光装置について発光スペクトルを測定した。次いで大気雰囲気下、発光装置を85℃の恒温器内で所定時間保持した後に、再び発光スペクトルを測定する試験を所定回数繰り返した。得られた各発光スペクトルの550nmから700nmの面積を求め、これを発光強度とした。85℃の恒温器内での総保持時間をtとし、時間tにおける相対発光強度を次式より求め、時間tに対して相対発光強度をプロットした。結果を図5に示す。
 (相対発光強度)=(時間tにおける発光強度)/(時間0における発光強度)
 図5は、実施例3及び比較例1の発光装置の85℃における相対発光強度の経時変化を示す。実施例3及び比較例1の発光装置には、同じコア、シェル、修飾基からなる発光性ナノ粒子を使用しているが、発光性ナノ粒子周囲の媒体が異なっており比較例1に比べ実施例3の発光装置では発光の減衰が小さい。これは、実施例のイオン結晶が、大気雰囲気に対し、ガスバリア性を有することを示しており、そのため発光性ナノ粒子を内包したイオン結晶を含む発光材料の耐環境性が向上している。
吸湿性の評価
 発光材料の作製に用いたイオン結晶の吸湿性を以下のようにして評価した。試料としては、実施例5としてビス(ノナフルオロブタンスルホニル)イミドカリウム(CAS No.129135-87-1)及び実施例6としてシクロヘキサフルオロプロパン-1,3-ビス(スルホニル)イミドカリウムと、比較例2として塩化ナトリウム(NaCl)を用いた。
 直径170mm、高さ270mmのビーカーの中央に、水50mlを入れた直径90mm、高さ10mmのシャーレを配置した。乳鉢でよくすり潰した試料50mgを25mm×25mmのポリスチレン製の皿に薄く均一に広がるように入れ、シャーレの外周に接するように、ビーカー内に配置した。ビーカーの開口部をアルミホイルで覆い、室温で所定時間経過させる吸湿試験後、試料の赤外吸収スペクトルを測定した。
 結果を図6に示す。図6は、ビス(ノナフルオロブタンスルホニル)イミドカリウムの吸湿試験前と24時間の吸湿試験後の赤外吸収スペクトルである。図7は、シクロヘキサフルオロプロパン-1,3-ビス(スルホニル)イミドカリウムの吸湿試験前と24時間の吸湿試験後の赤外吸収スペクトルである。図8は、塩化ナトリウムの吸湿試験前と90分間の吸湿試験後の赤外吸収スペクトルである。
 塩化ナトリウムでは90分後には、3400cm-1に吸収が観測された。吸収はOH基によるものであり、NaClが吸湿していることを示す。一方、ビス(ノナフルオロブタンスルホニル)イミドカリウム及びシクロヘキサフルオロプロパン-1,3-ビス(スルホニル)イミドカリウムは、24時間経過後も赤外吸収スペクトルに変化は見られなかったことから、これらイオン結晶の吸湿性が低いことを確認できた。よって、実施例のイオン結晶を用いた場合、発光性ナノ粒子に水蒸気が近づくことを抑制することができることから、発光性ナノ粒子を内包したイオン結晶を含む発光材料の耐環境性が向上すると考えられる。
〔実施例7〕
 ビス(ノナフルオロブタンスルホニル)イミドリチウム5.16gを水25mlに溶解した。これに、臭化セシウム1.87gを水5mlに溶解した溶液を滴下した。室温で30分間攪拌し、析出した固体をろ過、水洗、乾燥し、ビス(ノナフルオロブタンスルホニル)イミドセシウム6.02gを得た。
 CdSe/ZnSのトルエン分散液(発光極大630nm、発光性ナノ粒子の含有率1.7質量%)0.1mlにトルエン0.15mlとメタノール0.09mlとを加え、遠心分離した。上澄みを除去し、沈殿したナノ粒子に、クロロホルム0.8mlを加え分散し、O‐(2‐メルカプトエチル)-O’-メチル‐ヘキサ(エチレングリコール)(CAS No.651042-82-9)72.5mgをメタノール0.4mlに溶解した溶液へ添加した。30℃で186時間攪拌し、O‐(2‐メルカプトエチル)-O’-メチル‐ヘキサ(エチレングリコール)で表面修飾した発光性ナノ粒子の分散液を得た。
 上記表面修飾した発光性ナノ粒子の分散液120μlにシクロヘキサン360μlを加え、遠心分離した。上澄みを除去し、沈殿したナノ粒子に、体積比1:1のアセトンとメタノールとの混合溶媒33μlにビス(ノナフルオロブタンスルホニル)イミドセシウム50mgを溶解した溶液を加え、ナノ粒子を分散した。得られた分散液を、マグネチックスターラーで攪拌されているシクロヘキサン1.5mlへ滴下して結晶を析出させた。上澄みを除去し、沈殿を乾燥してオレンジ色の粉末結晶として、発光性ナノ粒子を0.28質量%内包したイオン結晶を含む発光材料を得た。
 [実施例8]
 実施例7で得た粉末状の発光材料を用いること以外は、実施例4と同様にして発光装置を作製した。
 実施例8で得られた発光装置について耐環境性の評価を行った。結果を図9に示す。また、上述の耐環境性の評価における発光装置を85℃の恒温器内で所定時間保持するところを、60℃湿度90%の恒温恒湿器内で所定時間保持することに変更し同様に耐環境性の評価を行った。結果を図10に示す。
 図9より実施例8の発光装置は、図5に示した比較例1の発光装置に比べ、耐環境性が向上している。
 図10より実施例8の発光装置は、高湿の環境下においても耐環境性を有することを確認した。
 [実施例9]
吸湿性の評価
 実施例7の発光材料の作製に用いたビス(ノナフルオロブタンスルホニル)イミドセシウムを実施例9として吸湿性の評価を行った。結果を図11に示す。
 ビス(ノナフルオロブタンスルホニル)イミドセシウムは、実施例5又は実施例6と同様に、24時間経過後も赤外吸収スペクトルに変化は見られなかったことから、これらイオン結晶の吸湿性が低いことを確認できた。
 日本国特許出願2018-083818号(出願日:2018年4月25日)の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (13)

  1.  発光性ナノ粒子と、下記式(1)で表されるアニオン成分を含むイオン結晶と、を含む発光材料。
    Figure JPOXMLDOC01-appb-C000001
    (式中、RおよびRはそれぞれ独立して、フッ素原子もしくはフルオロアルキル基を示すか、又は互いに連結して環を形成するフルオロアルキレン基を示す。)
  2.  前記イオン結晶は、下記式(2-1)から(2-7)のいずれかで表されるアニオン成分からなる群から選択される少なくとも1種を含む請求項1に記載の発光材料。
    Figure JPOXMLDOC01-appb-C000002
  3.  前記イオン結晶は、Li、Na、K、Rb、Cs、Be2+、Mg2+、Ca2+、Sr2+、Ba2+、Sc3+、Y3+、Ti4+、Zr4+、Hf4+、V5+、Nb5+、Ta5+、Zn2+、Cd2+、Hg2+、Al3+、Ga3+、In3+、Tl3+、Sn4+、Pb4+、Bi3+、La3+、Ce3+、Gd3+、Yb3+およびLu3+からなる群から選ばれる少なくとも1種を含む請求項1又は2に記載の発光材料。
  4.  前記イオン結晶は、K、RbおよびCsからなる群から選ばれる少なくとも1種を含む請求項1から3のいずれか1項に記載の発光材料。
  5.  前記イオン結晶は、下記式(3-1)から(3-15)のいずれかで表されるカチオン成分からなる群から選択される少なくとも1種を含む請求項1から4のいずれか1項に記載の発光材料。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Yは酸素原子又はイオウ原子を示し、Zは窒素原子又はリン原子を示す。R10はそれぞれ独立して、置換されてもよいアルキル基、置換されてもよいアルケニル基、置換されてもよいアルキニル基、置換されてもよいアリール基および置換されてもよい複素環基からなる群から選択される少なくとも1種の置換基若しくは水素原子を示すか、又は2つのR10が互いに連結して環を形成する置換されてもよいアルキレン基を示す。式中の芳香族環および脂肪族環は、少なくとも1つの該置換基を有していてもよい。nは1から3の整数を示す。)
  6.  前記イオン結晶は、式(2-5)又は(2-7)で表されるアニオン成分の少なくとも1種と、K及びCsの少なくとも1種とを含む請求項2に記載の発光材料。
  7.  前記発光性ナノ粒子は、イオン性表面修飾剤で表面処理されている請求項1から6のいずれか1項に記載の発光材料。
  8.  前記イオン性表面修飾剤は、カチオン性官能基を有する請求項7に記載の発光材料。
  9.  前記イオン性表面修飾剤は、下記式(5-1)又は(5-2)で表される化合物の少なくとも1種を含む請求項7又は8に記載の発光材料。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Xはアニオンを示す。)
  10.  前記発光性ナノ粒子は、下記式(6)で表されるノニオン性表面修飾剤で表面処理されている請求項1から6のいずれか1項に記載の発光材料。
      R30-(OR31-X  (6)
    (式中、R30は、水素原子、置換されてもよいアルキル基、置換されてもよいアルケニル基、置換されてもよいアルキニル基、および置換されてもよいアリール基からなる群から選択される少なくとも1種の置換基を示す。R31は、置換されてもよいアルキレン基、置換されてもよいアルケニレン基、および置換されてもよいアルキニレン基、および置換されてもよいアリーレン基からなる群から選択される少なくとも1種の2価の基を示す。nは1以上20以下の数を示す。Xは、チオール基、水酸基及びアミノ基からなる群から選択される少なくとも1種の置換基を示す。)
  11.  前記ノニオン性表面修飾剤は、下記式(6-1)又は(6-2)で表される化合物の少なくとも1種を含む請求項1から10のいずれか1項に記載の発光材料。
    Figure JPOXMLDOC01-appb-C000005
  12.  前記イオン結晶は、前記発光性ナノ粒子の少なくとも一部を内包する請求項1から11のいずれか1項に記載の発光材料。
  13.  380nm以上485nm以下の範囲に発光ピーク波長を有する光源と、請求項1から12のいずれか1項に記載の発光材料と、を備える発光装置。
PCT/JP2019/017488 2018-04-25 2019-04-24 発光材料及び発光装置 WO2019208655A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020515539A JP7295439B2 (ja) 2018-04-25 2019-04-24 発光材料及び発光装置
US17/049,841 US11702590B2 (en) 2018-04-25 2019-04-24 Light-emitting material and light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018083818 2018-04-25
JP2018-083818 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208655A1 true WO2019208655A1 (ja) 2019-10-31

Family

ID=68294661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017488 WO2019208655A1 (ja) 2018-04-25 2019-04-24 発光材料及び発光装置

Country Status (3)

Country Link
US (1) US11702590B2 (ja)
JP (1) JP7295439B2 (ja)
WO (1) WO2019208655A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300253A (ja) * 2003-03-31 2004-10-28 Nof Corp ポリエチレングリコール修飾半導体微粒子、その製造法及び生物学的診断用材料
JP2017032995A (ja) * 2016-08-02 2017-02-09 シャープ株式会社 波長変換部材および発光装置
CN107353889A (zh) * 2017-06-22 2017-11-17 广东昭信光电科技有限公司 一种提高水相量子点稳定性的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729931B2 (ja) * 2016-07-12 2020-07-29 国立研究開発法人理化学研究所 熱電素子材料とその製造方法
CN111051469B (zh) * 2017-06-05 2024-06-04 昭荣化学工业株式会社 量子点-树脂浓缩物和预混物的酸稳定化

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300253A (ja) * 2003-03-31 2004-10-28 Nof Corp ポリエチレングリコール修飾半導体微粒子、その製造法及び生物学的診断用材料
JP2017032995A (ja) * 2016-08-02 2017-02-09 シャープ株式会社 波長変換部材および発光装置
CN107353889A (zh) * 2017-06-22 2017-11-17 广东昭信光电科技有限公司 一种提高水相量子点稳定性的方法

Also Published As

Publication number Publication date
JPWO2019208655A1 (ja) 2021-05-13
JP7295439B2 (ja) 2023-06-21
US11702590B2 (en) 2023-07-18
US20210253946A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
TWI791713B (zh) 光轉換材料
JP6971972B2 (ja) 光変換材料
TWI747918B (zh) 固體聚合物組成物
KR101917051B1 (ko) 발광 성분
JP6393043B2 (ja) 量子ドット層を有する赤色ランプ
KR101519509B1 (ko) 형광체-나노입자 조합물
EP2598601B1 (en) Moisture-resistant phosphor and associated method
JP5988335B1 (ja) 波長変換部材および発光装置
CN108473865A (zh) 用作发光材料的并入基质的有机-无机金属氯化物钙钛矿
JP5988334B1 (ja) 発光装置
CN112662395A (zh) 波长转换颗粒和包含其的发光器件
US20190144743A1 (en) Quantum Dot (QD) Delivery Method
DE102012210195A1 (de) Vorrichtung zum Bereitstellen elektromagnetischer Strahlung
EP2973753A1 (en) Nano-crystalline core and nano-crystalline shell pairing having group i-iii-vi material nano-crystalline core
CN105829494A (zh) 包含邻苯二甲酸衍生物的复合纳米粒子
Trung et al. Single-composition Al 3+-singly doped ZnO phosphors for UV-pumped warm white light-emitting diode applications
JP7295439B2 (ja) 発光材料及び発光装置
Liu et al. ZnO quantum dots-filled encapsulant for LED packaging
KR101695373B1 (ko) 다분산 양자점 매트릭스, 그 제조 방법 및 발광소자
JP2017032995A (ja) 波長変換部材および発光装置
JP2017034259A (ja) 発光装置
Wang et al. Micromechanical chemical synthesis of two tin-based organic-inorganic hybrid perovskites for high color rendering index solid-state lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515539

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791575

Country of ref document: EP

Kind code of ref document: A1