WO2019208589A1 - Substrate treatment device, substrate treatment method, delay period setting method, and program - Google Patents

Substrate treatment device, substrate treatment method, delay period setting method, and program Download PDF

Info

Publication number
WO2019208589A1
WO2019208589A1 PCT/JP2019/017291 JP2019017291W WO2019208589A1 WO 2019208589 A1 WO2019208589 A1 WO 2019208589A1 JP 2019017291 W JP2019017291 W JP 2019017291W WO 2019208589 A1 WO2019208589 A1 WO 2019208589A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
valve
substrate
nozzle
delay period
Prior art date
Application number
PCT/JP2019/017291
Other languages
French (fr)
Japanese (ja)
Inventor
憲太郎 ▲徳▼利
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019208589A1 publication Critical patent/WO2019208589A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing apparatus, a substrate processing method, a delay period setting method, and a program.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, FPD (Flat Panel Display) substrates such as organic EL (electroluminescence) display devices, optical disk substrates, magnetic disk substrates, and magneto-optical disks.
  • FPD Full Panel Display
  • organic EL electro-electron emission
  • Substrates, photomask substrates, ceramic substrates, solar cell substrates and the like are included.
  • substrates such as semiconductor wafers and glass substrates for liquid crystal display devices are processed, for example, one by one.
  • the main surface of the substrate is treated with the chemical solution by supplying the chemical solution to the substrate.
  • pure water is supplied to the substrate, so that the chemical solution adhering to the substrate is washed away.
  • IPA isopropyl alcohol
  • the pure water adhering to the substrate is replaced with IPA.
  • IPA adhering to the substrate is removed from the substrate, and the substrate is dried.
  • Patent Document 1 discloses a technique of hydrophobizing the main surface of the substrate after replacement with IPA in order to prevent the pattern from collapsing.
  • the hydrophobizing agent is supplied to the upper surface of the substrate by discharging the hydrophobizing agent from the nozzle toward the center of the upper surface of the substrate, A liquid film of a hydrophobizing agent is formed on the upper surface of the substrate to cover the entire area of the upper surface. Thereby, the upper surface of the substrate is hydrophobized. Thereafter, the substrate is rotated at a high speed to dry the substrate.
  • Patent Document 2 describes that the period from the end of the chemical treatment to the start of the rinsing process is set to a short time of 0.5 seconds or more and 1.5 seconds or less.
  • an interval from the end of the IPA treatment to the start of the hydrophobizing agent treatment is transferred from the IPA treatment (treatment using IPA) to the hydrophobizing agent treatment (treatment using the hydrophobizing agent). If there is a gap, the IPA is dried on the upper surface of the substrate, and as a result, the pattern collapse may occur.
  • the transition from the IPA treatment to the hydrophobizing agent treatment is continuously performed.
  • the nozzle for supplying the hydrophobizing agent and IPA is divided into a hydrophobizing agent nozzle and an IPA nozzle, and a hydrophobizing agent valve interposed in a hydrophobizing agent pipe connected to the hydrophobizing agent nozzle It is conceivable to synchronize the start of the closing operation with the start of the opening operation of the IPA valve interposed in the IPA pipe connected to the IPA nozzle.
  • the hydrophobizing agent discharged from the hydrophobizing agent nozzle and the IPA discharged from the IPA nozzle interfere with each other, and there is a possibility that liquid splashing or large liquid disturbance occurs. Then, there is a possibility that pattern collapse or particle contamination may occur due to these liquid splashes or large liquid disturbances.
  • the treatment liquid (hydrophobizing agent or IPA) is not drained on the substrate, and the hydrophobizing agent treatment is performed while suppressing or preventing the occurrence of liquid splash due to interference between the hydrophobizing agent and IPA. It is necessary to move to.
  • IPA is supplied toward the center of the upper surface of the substrate, and the IPA held on the upper surface of the substrate may be replaced with a hydrophobizing agent prior to drying.
  • IPA is supplied toward the center of the upper surface of the substrate, and the IPA held on the upper surface of the substrate may be replaced with a hydrophobizing agent prior to drying.
  • the present invention is not limited to the case where the hydrophobizing agent and IPA are used as the processing liquid, and the case where the other processing liquid is used is the first processing liquid processing (processing using the first processing liquid) after the end. If a period of time elapses before the start of the second processing liquid processing (processing using the second processing liquid), problems such as generation of particles due to exposure of the upper surface of the substrate may occur.
  • one object of the present invention is to suppress or prevent the occurrence of liquid splash due to interference between the first processing liquid and the second processing liquid, and without causing the substrate to run out of liquid. It is to provide a substrate processing apparatus and a substrate processing method capable of shifting from the processing liquid processing to the second processing liquid processing.
  • the closing operation of the first valve is controlled for the control of the substrate processing apparatus. It is necessary to set a delay period from the start to the start of the opening operation of the second valve. It is required to set such a delay period satisfactorily.
  • another object of the present invention is to provide a substrate processing apparatus, a delay period setting method, and a program capable of satisfactorily setting a delay period from the start of the first valve closing operation to the start of the second valve opening operation. Is to provide.
  • a substrate holding unit for holding a substrate, a first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit, and the first A first pipe for supplying a first processing liquid to one nozzle, a first valve for opening and closing the first pipe, and a nozzle different from the first nozzle, wherein the substrate holding unit A second nozzle for discharging a second processing liquid toward the substrate held on the substrate, a second pipe for supplying the second processing liquid to the second nozzle, and the second nozzle A second valve that opens and closes the second pipe, and a control device that controls the opening and closing of the first valve and the second valve, and the control device controls the first processing liquid from the first nozzle.
  • the first valve in the open state is closed while After the first closing operation step and the delay period from the start of the closing operation of the first valve, the discharge of the first processing liquid from the first nozzle is not completely stopped.
  • a substrate processing apparatus for executing a second opening operation step for starting an opening operation of a second valve.
  • the discharge of the first processing liquid from the first nozzle is not completely stopped, and the second valve Opening operation is started. Since the start of the opening operation of the second valve is delayed from the start of the closing operation of the first valve, the period during which the discharged first processing liquid and the discharged second processing liquid interfere with each other is short. Therefore, it is possible to suppress or prevent the occurrence of liquid splash and large liquid disturbance due to interference between the first processing liquid and the second processing liquid.
  • the opening operation of the second valve is started at the timing when the discharge of the first processing liquid from the first nozzle is not completely stopped, the supply of the processing liquid to the substrate is not interrupted. Can be done continuously.
  • the substrate does not run out of liquid.
  • the second treatment liquid can be removed from the first treatment liquid treatment. It is possible to shift to treatment liquid treatment.
  • the second opening operation step starts the opening operation of the second valve in a state where the flow of the first processing liquid in the first valve is not completely stopped. Process.
  • the second valve opening operation is performed at a timing when the flow of the first processing liquid in the first valve is not completely stopped. Is started.
  • Timing when the discharge of the first processing liquid from the first nozzle is not completely stopped is equivalent to “timing when the flow of the first processing liquid through the first valve is not completely stopped” it can.
  • a flow meter or the like in the first pipe, it is possible to satisfactorily detect “a timing at which the flow of the first processing liquid in the first valve is not completely stopped”. Therefore, the “timing at which the discharge of the first processing liquid from the first nozzle is not completely stopped” can be acquired satisfactorily.
  • the delay period is such that the discharge flow rate of the first processing liquid from the first nozzle matches the discharge flow rate of the second processing liquid from the second nozzle.
  • the total flow rate of the discharge flow rate of the first treatment liquid and the discharge flow rate of the second treatment liquid is provided to be equal to or less than a predetermined threshold value, and the predetermined threshold value is the first treatment liquid. This is a value lower than the discharge flow rate.
  • the period during which the first processing liquid is discharged from the first nozzle and the period during which the second processing liquid is discharged from the second nozzle overlap.
  • the delay period is set so that the total flow rate with the processing liquid discharge flow rate (hereinafter, simply referred to as “total flow rate”) is less than or equal to a predetermined threshold value.
  • the threshold value is lower than the discharge flow rate of the first processing liquid immediately before the start of the closing operation of the first valve.
  • the total flow rate is set to be equal to or less than such a threshold value, a large liquid splash does not occur on the substrate due to the interference between the first processing liquid and the second processing liquid. Therefore, it is possible to suppress or prevent the occurrence of liquid splash at the time of transition from the first treatment liquid treatment to the second treatment liquid treatment.
  • the delay period includes the first flow rate transition information about the transition of the discharge flow rate of the first processing liquid after the start of the closing operation of the first valve, and the opening operation of the second valve. Based on the second flow rate transition information about the transition of the discharge flow rate of the second processing liquid after the start of the above, the total flow rate is provided to be equal to or less than the threshold value.
  • the first flow rate transition information and the second flow rate transition information are different for each substrate processing apparatus that performs processing or for each processing condition. Since a delay period is provided so that the total flow rate is equal to or less than the threshold value based on the first flow rate transition information and the second flow rate transition information, a good delay period corresponding to the substrate processing apparatus and processing conditions is provided. It can be easily provided.
  • the threshold value may be a value obtained by an experiment using the substrate processing apparatus.
  • a predetermined period may be stored in the storage unit as the delay period.
  • the control device may execute the second opening operation step based on a delay period stored in the storage unit.
  • the first treatment liquid may include one of a hydrophobizing agent and an organic solvent
  • the second treatment liquid may include the other of the hydrophobizing agent and the organic solvent
  • the first valve in the open state is closed.
  • the discharge of the one of the hydrophobizing agent and the organic solvent from the first nozzle is not completely stopped. Opening operation is started.
  • the other of the hydrophobizing agent and the organic solvent is discharged from the second nozzle.
  • the opening operation of the second valve is started at the timing when one of the hydrophobizing agent and the organic solvent is not completely stopped from being discharged from the first nozzle, the other of the hydrophobizing agent and the organic solvent Until one of the hydrophobizing agent and the organic solvent is dried on the substrate.
  • a substrate holding unit for holding a substrate, a first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit, and the first A first pipe for supplying a first processing liquid to one nozzle, a first valve for opening and closing the first pipe, and a second process toward the substrate held by the substrate holding unit.
  • a substrate processing apparatus is provided that calculates the delay period based on and sets the delay period.
  • the substrate processing apparatus includes the delay period setting unit that sets the delay period from the start of the closing operation of the first valve to the start of the second opening operation step.
  • the first flow rate transition information and the second flow rate transition information are different for each substrate processing apparatus that performs processing or for each processing condition. Since a delay period is provided so that the total flow rate is equal to or less than the threshold value based on the first flow rate transition information and the second flow rate transition information, a good delay period corresponding to the substrate processing apparatus and processing conditions is provided. It can be easily provided.
  • an information acquisition control device that controls opening and closing of the first valve and the second valve in order to acquire the first flow rate transition information and the second flow rate transition information.
  • the delay period setting unit sets the delay period based on the acquired first flow rate transition information and second flow rate transition information.
  • the information acquisition control device based on a preliminary experiment performed by actually opening and closing the first valve and the second valve, the first flow rate transition information corresponding to the substrate processing apparatus and the first flow rate information.
  • the flow rate transition information of 2 is acquired.
  • a delay period is set based on the acquired first flow rate transition information and second flow rate transition information. Since the first flow rate transition information and the second flow rate transition information are information based on actual measurement in the substrate processing apparatus, it is possible to set a favorable delay period in which individual differences of the substrate processing apparatuses are excluded.
  • an information acquisition control device that controls opening and closing of the first valve and the second valve in order to acquire the first flow rate transition information and the second flow rate transition information; , A flow meter for measuring the discharge flow rate of the first processing liquid, the discharge flow rate measured by the flow meter, and the discharge flow rate of the first processing liquid based on the acquired first flow rate transition information
  • a prediction unit that predicts the future transition of the delay period, and the delay period setting unit is configured to delay the delay period based on the future transition predicted by the prediction unit and the acquired second flow rate transition information.
  • the future transition of the discharge flow rate of the first processing liquid is predicted based on the current discharge flow rate of the first processing liquid being measured. Then, a delay period is set in parallel with the progress of the substrate processing based on the predicted first flow rate transition information and the acquired second flow rate transition information. Thereby, it is possible to set a good delay period most suitable for the processing conditions of the ongoing substrate processing.
  • the delay period setting unit is configured to determine the discharge flow rate of the first processing liquid and the second processing liquid based on the first flow rate transition information and the second flow rate transition information.
  • the delay period is set so that the total flow rate of the discharge flow rate of the first treatment liquid and the discharge flow rate of the second treatment liquid in a state where the discharge flow rate is equal to or less than a threshold value.
  • the period during which the first processing liquid is discharged from the first nozzle and the period during which the second processing liquid is discharged from the second nozzle overlap.
  • the delay period is set so that the total flow rate with the treatment liquid discharge flow rate is equal to or less than a predetermined threshold.
  • the threshold value is lower than the discharge flow rate of the first processing liquid immediately before the start of the closing operation of the first valve.
  • the total flow rate is set to be equal to or less than such a threshold value, a large liquid splash does not occur on the substrate due to the interference between the first processing liquid and the second processing liquid. Therefore, it is possible to suppress or prevent the occurrence of liquid splash at the time of transition from the first treatment liquid treatment to the second treatment liquid treatment.
  • the delay period setting unit sets the shortest period among the periods in which the total flow rate is equal to or less than a threshold as the delay period.
  • the shortest period among the periods in which the total flow rate is equal to or less than the threshold is set as the delay period.
  • the threshold value may be a value obtained by an experiment using the substrate processing apparatus.
  • the landing position of the second processing liquid from the second nozzle on the substrate may be close to the landing position of the first processing liquid from the first nozzle on the substrate.
  • a substrate holding unit for holding a substrate, a first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit, and the first A first pipe for supplying a first processing liquid to one nozzle, a first valve for opening and closing the first pipe, and a nozzle different from the first nozzle, wherein the substrate holding unit A second nozzle for discharging a second processing liquid toward the substrate held on the substrate, a second pipe for supplying the second processing liquid to the second nozzle, and the second nozzle A substrate processing method executed in a substrate processing apparatus including a second valve that opens and closes a second pipe, wherein the first processing liquid is discharged from the first nozzle and is in an open state.
  • a first closing operation step of closing the first valve After the elapse of the delay period from the start of the valve closing operation, the second valve opening operation is started in a state where the discharge of the first processing liquid from the first nozzle is not completely stopped. And a substrate processing method including the opening operation step.
  • the discharge of the first processing liquid from the first nozzle is not completely stopped. Opening operation is started. Since the start of the opening operation of the second valve is delayed from the start of the closing operation of the first valve, the period during which the discharged first processing liquid and the discharged second processing liquid interfere with each other is short. Therefore, it is possible to suppress or prevent the occurrence of liquid splash and large liquid disturbance due to interference between the first processing liquid and the second processing liquid. In addition, since the opening operation of the second valve is started at the timing when the discharge of the first processing liquid from the first nozzle is not completely stopped, the supply of the processing liquid to the substrate is not interrupted. Can be done continuously.
  • the substrate does not run out of liquid.
  • the second treatment liquid can be removed from the first treatment liquid treatment. It is possible to shift to treatment liquid treatment.
  • the delay period is such that the discharge flow rate of the first processing liquid from the first nozzle matches the discharge flow rate of the second processing liquid from the second nozzle.
  • the total flow rate of the flow rate of the first treatment liquid and the flow rate of the second treatment liquid is set to be equal to or less than a predetermined threshold value, and the predetermined threshold value is a discharge flow rate of the first treatment liquid. Is a lower value.
  • the period during which the first processing liquid is discharged from the first nozzle overlaps with the period during which the second processing liquid is discharged from the second nozzle.
  • the delay period is set so that the total flow rate with the treatment liquid discharge flow rate is equal to or less than a predetermined threshold.
  • the threshold value is lower than the discharge flow rate of the first processing liquid immediately before the start of the closing operation of the first valve.
  • the total flow rate is set to be equal to or less than such a threshold value, a large liquid splash does not occur on the substrate due to the interference between the first processing liquid and the second processing liquid. Therefore, it is possible to suppress or prevent the occurrence of liquid splash at the time of transition from the first treatment liquid treatment to the second treatment liquid treatment.
  • the delay period includes first flow rate transition information about a transition of the discharge flow rate of the first processing liquid after the start of the closing operation of the first valve, and the second valve. And the second flow rate transition information about the transition of the discharge flow rate of the second processing liquid after the start of the opening operation.
  • the first flow rate transition information and the second flow rate transition information are different for each substrate processing apparatus that performs processing or for each processing condition. Since a delay period is provided so that the total flow rate is equal to or less than the threshold value based on the first flow rate transition information and the second flow rate transition information, a good delay period corresponding to the substrate processing apparatus and processing conditions is provided. It can be easily provided.
  • the first treatment liquid may contain one of a hydrophobizing agent and an organic solvent
  • the second treatment liquid may contain the other of a hydrophobizing agent and an organic solvent
  • the first valve in the open state is closed.
  • the discharge of the one of the hydrophobizing agent and the organic solvent from the first nozzle is not completely stopped. Opening operation is started.
  • the other of the hydrophobizing agent and the organic solvent is discharged from the second nozzle.
  • the opening operation of the second valve is started at the timing when one of the hydrophobizing agent and the organic solvent is not completely stopped from being discharged from the first nozzle, the other of the hydrophobizing agent and the organic solvent Until one of the hydrophobizing agent and the organic solvent is dried on the substrate.
  • a substrate holding unit for holding a substrate, a first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit, and the first
  • a first pipe for supplying a first processing liquid to one nozzle, a first valve for opening and closing the first pipe, and a second process toward the substrate held by the substrate holding unit.
  • a substrate including a second nozzle for discharging a liquid, a second pipe for supplying a second processing liquid to the second nozzle, and a second valve for opening and closing the second pipe
  • a delay period setting method for setting a delay period from the start of the closing operation of the first valve to the start of the opening operation of the second valve, wherein the delay period is the first valve.
  • the first nozzle from the first nozzle after the start of the closing operation of The first flow rate transition information about the transition of the discharge flow rate of the chemical liquid and the second about the transition of the discharge flow rate of the second processing liquid from the second nozzle after the start of the opening operation of the second valve.
  • the delay period setting method sets a delay period from the start of the first valve closing operation to the start of the second opening operation step.
  • the first flow rate transition information and the second flow rate transition information are different for each substrate processing apparatus that performs processing or for each processing condition. Since a delay period is provided so that the total flow rate is equal to or less than the threshold value based on the first flow rate transition information and the second flow rate transition information, a good delay period corresponding to the substrate processing apparatus and processing conditions is provided. It can be easily provided.
  • the delay period setting method sets the shortest period among the periods in which the total flow rate is equal to or less than a threshold as the delay period.
  • the shortest period among the periods in which the total flow rate is equal to or less than the threshold is set as the delay period.
  • the fifth aspect of the present invention is different from the first nozzle from the start of the closing operation of the first valve for opening and closing the first pipe for supplying the first processing liquid to the first nozzle.
  • a delay period setting method for setting a delay period until the start of the opening operation of the second valve that opens and closes the second pipe for opening and closing the second pipe for supplying the second processing liquid to the second nozzle that is the first nozzle.
  • the delay period setting method is a program for changing the discharge flow rate of the first processing liquid from the first nozzle after the delay period starts the closing operation of the first valve.
  • First flow rate transition information and second flow rate transition information about the transition of the discharge flow rate of the second processing liquid from the second nozzle after the start of the opening operation of the second valve.
  • the discharge flow rate of the first treatment liquid and the discharge flow rate of the second treatment liquid are A program for calculating a period in which a total flow rate of the discharge flow rate of the first treatment liquid and the discharge flow rate of the second treatment liquid is equal to or less than a threshold in a matching state, and setting the period as the delay period provide.
  • the delay period setting method sets a delay period from the start of the first valve closing operation to the start of the second opening operation step.
  • the first flow rate transition information and the second flow rate transition information are different for each substrate processing apparatus that performs processing or for each processing condition. Since a delay period is provided so that the total flow rate is equal to or less than the threshold value based on the first flow rate transition information and the second flow rate transition information, a good delay period corresponding to the substrate processing apparatus and processing conditions is provided. It can be easily provided.
  • the program may be provided by being recorded on a computer-readable recording medium.
  • a recording medium may be a recording medium provided in the computer, or may be a recording medium different from the computer.
  • the program may be provided by communication via a communication line. A part or all of the communication line may be a wireless line.
  • FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above.
  • FIG. 2 is a schematic view of the inside of the processing unit provided in the substrate processing apparatus as viewed in the horizontal direction.
  • FIG. 3 is a schematic longitudinal sectional view for explaining a configuration example of the common nozzle.
  • FIG. 4 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 5 is an enlarged cross-sectional view showing the surface of a substrate to be processed by the substrate processing apparatus.
  • FIG. 6 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus.
  • FIG. 7 is a schematic view of the substrate viewed horizontally from the IPA supply process to the hydrophobizing agent supply process.
  • FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above.
  • FIG. 2 is a schematic view of the inside of the processing unit provided in the substrate processing apparatus
  • FIG. 8 is a diagram showing the transition of the flow rate of the treatment liquid in the valve opening and closing and the valve during the transition from the IPA supply process to the hydrophobizing agent supply process.
  • FIG. 9 is an enlarged view of a main part of FIG.
  • FIG. 10 is a diagram showing the transition of the flow rate of the treatment liquid in the valve opening and closing and the valve during the transition to the hydrophobizing agent supply step according to the reference embodiment.
  • FIG. 11 is an enlarged view of the main part of FIG.
  • FIG. 12 is a diagram for explaining threshold value determination.
  • FIG. 13 is a diagram for explaining threshold value determination.
  • FIG. 14 is a schematic diagram for explaining the first modification.
  • FIG. 15 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus according to the second embodiment of the present invention.
  • FIG. 16A is a diagram for explaining a falling flow rate transition pattern stored in the storage unit of FIG. 15.
  • FIG. 16B is a diagram for explaining the rising flow rate transition pattern stored in the storage unit of FIG. 15.
  • FIG. 16C is a diagram for explaining matching between the falling flow rate transition pattern and the rising flow rate transition pattern.
  • FIG. 17A is a flowchart for explaining delay period setting.
  • FIG. 17B is a flowchart for explaining the preliminary experiment.
  • FIG. 18 is a block diagram for explaining a second modification.
  • FIG. 19 is a flowchart for explaining delay period setting according to the third modification.
  • FIG. 20 is a schematic diagram for explaining the delay period setting according to the third modification.
  • FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above.
  • the substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one.
  • the substrate W is a disk-shaped substrate.
  • the substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid and a rinsing liquid, and a load port on which a substrate container C that stores a plurality of substrates W processed by the processing unit 2 is placed.
  • the indexer robot IR transports the substrate W between the substrate container C and the substrate transport robot CR.
  • the substrate transport robot CR transports the substrate W between the indexer robot IR and the processing unit 2.
  • the plurality of processing units 2 have the same configuration, for example.
  • FIG. 2 is a schematic cross-sectional view for explaining a configuration example of the processing unit 2.
  • the processing unit 2 includes a box-shaped chamber 4 and a spin chuck that holds a single substrate W in the chamber 4 in a horizontal posture and rotates the substrate W about a vertical rotation axis A1 passing through the center of the substrate W.
  • (Substrate holding unit) 5 a chemical solution supply unit 6 for supplying a chemical solution to the upper surface of the substrate W held by the spin chuck 5, and a rinsing solution supplied to the upper surface of the substrate W held by the spin chuck 5
  • Hydrophobizing agent pipe 9 for supplying, hydrophobizing agent valve 10 for opening and closing the hydrophobizing agent pipe 9, and an organic solvent nozzle 11 for discharging the organic solvent onto the upper surface of the substrate W held by the spin chuck 5.
  • An organic solvent pipe 12 for supplying the liquid organic solvent to the organic solvent nozzle 11, and an organic solvent valve 13 for opening and closing the organic solvent pipe 12, and a cylindrical processing cup 14 surrounding the spin chuck 5.
  • the chamber 4 includes a box-shaped partition wall 15 that houses the spin chuck 5 and the like.
  • the spin chuck 5 As the spin chuck 5, a clamping chuck that holds the substrate W horizontally with the substrate W held in the horizontal direction is employed.
  • the spin chuck 5 includes a spin motor (rotary unit) 16, a spin shaft 17 integrated with a drive shaft of the spin motor 16, and a disc attached to the upper end of the spin shaft 17 substantially horizontally. And a spin base 18 having a shape.
  • the spin base 18 includes a horizontal circular upper surface 18a having an outer diameter larger than the outer diameter of the substrate W.
  • Plural (three or more, for example, four or six) clamping members 19 are arranged on the peripheral portion of the upper surface 18a.
  • the plurality of sandwiching members 19 are arranged, for example, at equal intervals on the circumference corresponding to the outer peripheral shape of the substrate W at the periphery of the upper surface of the spin base 18.
  • the spin chuck 5 is not limited to a sandwich type, and for example, the substrate W is held in a horizontal posture by vacuum-sucking the back surface of the substrate W, and further rotated around a vertical rotation axis in that state.
  • a vacuum suction type vacuum chuck
  • the substrate W held on the spin chuck 5 may be employed.
  • the chemical solution supply unit 6 includes a chemical solution nozzle 20 that discharges the chemical solution downward toward the upper surface of the substrate W held by the spin chuck 5, a chemical solution pipe 21 that guides the chemical solution from the chemical solution supply source to the chemical solution nozzle 20, and a chemical solution. And a chemical liquid valve 22 for opening and closing the pipe 21.
  • the chemical solution is, for example, sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, hydrogen peroxide, organic acid (eg, citric acid, oxalic acid, etc.), organic alkali (eg, TMAH: tetramethylammonium hydroxide, etc.), And a liquid containing at least one of a surfactant and a corrosion inhibitor.
  • the chemical solution valve 22 is opened, the chemical solution is supplied from the chemical solution pipe 21 to the chemical solution nozzle 20.
  • the chemical liquid valve 22 is closed, the supply of the chemical liquid from the chemical liquid pipe 21 to the chemical liquid nozzle 20 is stopped.
  • a chemical nozzle moving device is provided that moves the liquid deposition position of the chemical relative to the upper surface of the substrate W between the central portion of the upper surface of the substrate W and other portions (for example, the peripheral portion). It may be.
  • the rinsing liquid supply unit 7 discharges the rinsing liquid downward toward the upper surface of the substrate W held by the spin chuck 5, and guides the rinsing liquid from the rinsing liquid supply source to the rinsing liquid nozzle 23.
  • a rinse liquid pipe 24 and a rinse liquid valve 25 that opens and closes the rinse liquid pipe 24 are included.
  • the rinse liquid is, for example, pure water (deionized water).
  • the rinse liquid is not limited to pure water, but may be any of carbonated water, electrolytic ionic water, hydrogen water, ozone water, and hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm).
  • An apparatus may be provided.
  • the hydrophobizing agent supplied to the hydrophobizing agent pipe 9 is a metal hydrophobizing agent that hydrophobizes metals.
  • the hydrophobizing agent is a highly coordinating hydrophobizing agent. That is, the hydrophobizing agent is a solvent that hydrophobizes the metal mainly through coordination bonds.
  • the hydrophobizing agent includes, for example, at least one of an amine having a hydrophobic group and an organosilicon compound.
  • the hydrophobizing agent may be a silicon-based hydrophobizing agent or a metal-based hydrophobizing agent.
  • Silicon hydrophobizing agents are hydrophobizing agents that hydrophobize silicon (Si) itself and silicon-containing compounds.
  • the silicon hydrophobizing agent is, for example, a silane coupling agent.
  • the silane coupling agent includes, for example, at least one of HMDS (hexamethyldisilazane), TMS (tetramethylsilane), fluorinated alkylchlorosilane, alkyldisilazane, and non-chlorohydrophobizing agent.
  • Non-chloro hydrophobizing agents include, for example, dimethylsilyldimethylamine, dimethylsilyldiethylamine, hexamethyldisilazane, tetramethyldisilazane, bis (dimethylamino) dimethylsilane, N, N-dimethylaminotrimethylsilane, N- (trimethylsilyl) ) Containing at least one of dimethylamine and an organosilane compound.
  • a metal-based hydrophobizing agent is a solvent that has a high coordination property, for example, and hydrophobizes the metal mainly through coordination bonds.
  • the hydrophobizing agent includes, for example, at least one of an amine having a hydrophobic group and an organosilicon compound.
  • hydrophobizing agent examples include OSRA-A004, OSRA-7801, PK-HP-S, and PK-HUS.
  • Hydrophobizing agent valve 10 includes a valve body in which a valve seat is provided, a valve body that opens and closes the valve seat, and an actuator that moves the valve body between an open position and a closed position.
  • the hydrophobizing agent pipe 9 is provided with a hydrophobizing agent flow meter 9A for detecting the flow rate of the hydrophobizing agent flowing through the hydrophobizing agent pipe 9 on the primary side thereof, that is, upstream of the hydrophobizing agent valve 10. Yes.
  • the treatment unit 2 includes a first suction device 9B interposed in the hydrophobizing agent pipe 9.
  • the first suction device 9B is, for example, a diaphragm type suction device.
  • the diaphragm type suction device includes a cylindrical head interposed in the middle of the pipe and a diaphragm housed in the head, and changes the volume of the flow path formed in the head by driving the diaphragm. This is a suction device having a known configuration.
  • the first suction device 9 ⁇ / b> B is configured as a separate device from the hydrophobizing agent valve 10, but may be provided using a part of the hydrophobizing agent valve 10.
  • the organic solvent supplied to the organic solvent pipe 12 is a solvent having a surface tension lower than that of water.
  • the organic solvent may contain water.
  • Specific examples of the organic solvent include alcohol and a mixed solution of a fluorinated solvent and alcohol.
  • the alcohol includes, for example, at least one of methyl alcohol, ethanol, propyl alcohol, and IPA.
  • the fluorine-based solvent includes, for example, at least one of HFE (hydrofluoroether) and HFC (hydrofluorocarbon). In the following description, a case where the organic solvent is IPA is taken as an example.
  • the organic solvent valve 13 includes a valve body in which a valve seat is provided, a valve body that opens and closes the valve seat, and an actuator that moves the valve body between an open position and a closed position.
  • the organic solvent pipe 12 is provided with an organic solvent flow meter 12A for detecting the flow rate of the IPA flowing through the organic solvent pipe 12 on the primary side thereof, that is, on the upstream side of the organic solvent valve 13.
  • a flow meter (hydrophobizing agent flow meter 9A, organic solvent flow meter 12A) is disposed upstream of the valves (hydrophobizing agent valve 10, organic solvent valve 13) in the piping (hydrophobizing agent piping 9, organic solvent piping 12).
  • the upstream side of the valves (hydrophobizing agent valve 10 and organic solvent valve 13) is always kept in a liquid-tight state.
  • the distance between the discharge port 8a of the hydrophobizing agent nozzle 8 and the hydrophobizing agent valve 10 is not so different from the distance between the discharge port 11a of the organic solvent nozzle 11 and the organic solvent valve 13, and therefore the valve (hydrophobizing agent valve).
  • the flow rate can be equated.
  • the processing unit 2 includes a second suction device 12B interposed in the organic solvent pipe 12.
  • the second suction device 12B is, for example, a diaphragm type suction device.
  • the second suction device 12 ⁇ / b> B is configured as a separate device from the organic solvent valve 13, but may be provided using a part of the organic solvent valve 13.
  • a siphon type may be adopted as the first and second suction devices 9B and 12B instead of the diaphragm type.
  • the processing cup 14 is disposed outward (in a direction away from the rotation axis A1) from the substrate W held by the spin chuck 5.
  • the processing cup 14 surrounds the spin base 18.
  • a liquid such as a processing liquid, a rinsing liquid, or a protective liquid
  • the liquid supplied to the substrate W is shaken off around the substrate W.
  • the upper end portion 14 a of the processing cup 14 is disposed above the spin base 18. Accordingly, the liquid discharged around the substrate W is received by the processing cup 14. Then, the liquid received by the processing cup 14 is sent to a recovery device or a waste liquid device (not shown).
  • FIG. 3 is a schematic longitudinal sectional view for explaining a configuration example of the common nozzle CN.
  • the processing unit 2 further includes a gas nozzle 32 for discharging a low humidity gas such as an inert gas above the substrate W held by the spin chuck 5, and a gas for supplying the low humidity gas to the gas nozzle 32.
  • a pipe 30 and a gas valve 31 for opening and closing the gas pipe 30 are included.
  • the hydrophobizing agent nozzle 8 and the organic solvent nozzle 11 are integrally coupled to the gas nozzle 32. That is, the gas nozzle 32 functions as the common nozzle CN. Therefore, the common nozzle CN functions as an organic solvent nozzle that discharges IPA, functions as a hydrophobizing agent nozzle that discharges a hydrophobizing agent, and functions as an inert gas nozzle that discharges an inert gas such as nitrogen gas. And.
  • the nozzle moving unit 29 for moving the common nozzle CN up and down and horizontally is coupled to the common nozzle CN.
  • the nozzle moving unit 29 moves the common nozzle CN horizontally along an arcuate path passing through the center of the upper surface of the substrate W held by the spin chuck 5.
  • the nozzle moving unit 29 includes a processing position (position of the common nozzle CN shown in FIG. 9) above the central portion of the upper surface of the substrate W, and a home position where the common nozzle CN is retracted from the upper side of the substrate W to the side. Move between.
  • the gas nozzle 32 has a cylindrical nozzle body 34 having a flange portion 33 at the lower end. On the outer peripheral surface which is the side surface of the flange portion 33, an upper gas discharge port 35 and a lower gas discharge port 36 each open in an annular shape outward. The upper gas discharge port 35 and the lower gas discharge port 36 are arranged with a space in the vertical direction. A central gas discharge port 37 is disposed on the lower surface of the nozzle body 34.
  • gas inlets 38 and 39 to which an inert gas is supplied from the gas pipe 30 are formed. Individual inert gas pipes may be coupled to the gas inlets 38 and 39.
  • a cylindrical gas flow path 41 that connects the gas introduction port 38, the upper gas discharge port 35, and the lower gas discharge port 36 is formed.
  • a cylindrical gas flow path 42 communicating with the gas introduction port 39 is formed around the hydrophobizing agent nozzle 8 or the organic solvent nozzle 11.
  • a buffer space 43 communicates below the gas flow path 42.
  • the buffer space 43 further communicates with a space 45 below the punching plate 44. This space 45 is open to the central gas outlet 37.
  • Examples of the low-humidity gas supplied to the gas inlets 38 and 39 include an inert gas such as nitrogen gas (N2), but a low-humidity gas other than the inert gas, such as dry air or clean air, is employed. You can also.
  • N2 nitrogen gas
  • a low-humidity gas other than the inert gas such as dry air or clean air
  • the low-humidity gas introduced from the gas introduction port 38 is supplied to the upper gas discharge port 35 and the lower gas discharge port 36 via the gas flow path 41, and is supplied from the upper gas discharge port 35 and the lower gas discharge port 36. It is discharged radially. As a result, two radial airflows overlapping in the vertical direction are formed above the substrate W.
  • the inert gas introduced from the gas introduction port 39 is stored in the buffer space 43 through the gas flow path 42, further diffused through the punching plate 44, and then through the space 45 to the central gas discharge port. It is discharged downward from 37 toward the upper surface of the substrate W. This inert gas hits the upper surface of the substrate W and changes its direction, forming a radial inert gas flow above the substrate W.
  • the radial airflow formed by the inert gas discharged from the central gas discharge port 37 and the two layers of radial airflow discharged from the upper gas discharge port 35 and the lower gas discharge port 36 are combined into three layers. Is formed above the substrate W. The upper surface of the substrate W is protected by the three layers of radial airflow.
  • the hydrophobizing agent nozzle 8 extends vertically through the gas flow path 42, the buffer space 43 and the punching plate 44.
  • the discharge port 8a at the lower end of the hydrophobizing agent nozzle 8 discharges the liquid hydrophobizing agent from above vertically toward the upper surface of the substrate W.
  • the organic solvent nozzle 11 passes through the gas flow path 42, the buffer space 43 and the punching plate 44 and extends in the vertical direction.
  • the discharge port 11 a at the lower end of the organic solvent nozzle 11 discharges liquid IPA from above vertically toward the upper surface of the substrate W.
  • the interval W1 between the lower surface of the common nozzle CN and the upper surface of the substrate W is, for example, about 5 mm.
  • the hydrophobizing agent discharged from the hydrophobizing agent nozzle 8 toward the upper surface of the substrate W in a state where the common nozzle CN is disposed at the processing position is deposited on the center of the upper surface of the substrate W.
  • IPA discharged from the organic solvent nozzle 11 toward the upper surface of the substrate W in a state where the common nozzle CN is disposed at the processing position is deposited on the center of the upper surface of the substrate W.
  • FIG. 4 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
  • the control device 3 is configured using, for example, a microcomputer.
  • the control device 3 includes an arithmetic unit 51 such as a CPU, a fixed memory device (not shown), a storage unit 52 such as a hard disk drive, and an input / output unit (not shown).
  • the storage unit 52 stores a program 53 executed by the arithmetic unit 51 and a recipe that defines the contents of each process for the substrate W.
  • the storage unit 52 is provided with a delay period storage unit 54 for storing delay periods D1 and D2 described later.
  • the delay period storage unit 54 includes a nonvolatile memory that can electrically rewrite data.
  • the input / output unit may be a reader / writer unit that performs writing / reading with respect to a recording medium capable of writing and reading data.
  • the program 51 may be recorded on the recording medium.
  • the recording medium may be an optical disk or a magnetic disk, or a portable memory such as a USB memory or a memory card.
  • the input / output unit may include a communication unit. That is, for example, data input / output may be performed via a network.
  • the detection output from the hydrophobizing agent flow meter 9A is given to the control device 3.
  • the control device 3 can detect the flow rate of the hydrophobizing agent flowing through the hydrophobizing agent pipe 9 based on this detection output.
  • the detection output from the organic solvent flow meter 12A is given to the control device 3.
  • the control device 3 can detect the flow rate of the IPA flowing through the organic solvent pipe 12 based on this detection output.
  • control device 3 controls the operations of the spin motor 16, the nozzle moving unit 29, and the first and second suction devices 9B and 12B.
  • control device 3 controls the operations of the spin motor 16 and the nozzle moving unit 29.
  • the control device 3 opens and closes the hydrophobizing agent valve 10, the organic solvent valve 13, the chemical liquid valve 22, the rinsing liquid valve 25, the gas valve 31, and the like.
  • FIG. 5 is an enlarged cross-sectional view showing the surface of the substrate W to be processed by the substrate processing apparatus 1.
  • the substrate W to be processed is, for example, a silicon wafer, and a pattern P is formed on a surface (upper surface 62) that is a pattern forming surface thereof.
  • the pattern P is a fine pattern, for example.
  • structures 61 having convex shapes (columnar shapes) may be arranged in a matrix.
  • the line width W2 of the structure 61 is set to about 10 nm to 45 nm, for example, and the gap W3 of the pattern P is set to about 10 nm to about several ⁇ m, for example.
  • the film thickness T of the pattern P is, for example, about 1 ⁇ m.
  • the pattern P may have an aspect ratio (ratio of the film thickness T to the line width W2), for example, of about 5 to 500 (typically about 5 to 50).
  • the pattern P may be a linear pattern formed by fine trenches repeatedly arranged. Further, the pattern P may be formed by providing a plurality of fine holes (voids or pores) in the thin film.
  • the pattern P includes, for example, an insulating film.
  • the pattern P may include a conductor film. More specifically, the pattern P is formed by a laminated film in which a plurality of films are laminated, and may further include an insulating film and a conductor film.
  • the pattern P may be a pattern composed of a single layer film.
  • the insulating film may be a silicon oxide film (SiO 2 film) or a silicon nitride film (SiN film).
  • the conductor film may be an amorphous silicon film into which impurities for reducing resistance are introduced, or may be a metal film (for example, a metal wiring film).
  • the pattern P may be a hydrophilic film.
  • An example of the hydrophilic film is a TEOS film (a kind of silicon oxide film).
  • FIG. 6 is a flowchart for explaining a substrate processing example executed by the substrate processing apparatus 1.
  • FIG. 7 is a schematic view of the substrate W viewed horizontally when shifting from the IPA supply step (S5) to the hydrophobizing agent supply step (S6).
  • the substrate processing example will be described with reference to FIGS.
  • the unprocessed substrate W is transported by the indexer robot IR and the substrate transport robot CR, is transported into the chamber 4, and the surface that is the device formation surface is directed upward, for example, to the spin chuck 5 accommodated in the chamber 4. And the substrate W is held on the spin chuck 5 (S1: substrate loading in FIG. 6).
  • the common nozzle CN Prior to the loading of the substrate W, the common nozzle CN is retracted to a retracted position positioned laterally from above the substrate W. Further, the front end surface of the hydrophobizing agent inside the hydrophobizing agent pipe 9 and the front end surface of the IPA inside the organic solvent pipe 12 are retracted to the predetermined retreat positions.
  • control device 3 starts the rotation of the substrate W by the spin motor 16 (S2 in FIG. 6; rotation process).
  • the substrate W is raised to a predetermined liquid processing speed (within 300 to 1500 rpm, for example, 500 rpm) and maintained at the liquid processing speed.
  • the control device 3 executes a chemical liquid process (S3 in FIG. 6) for supplying the chemical liquid to the upper surface of the substrate W.
  • the control device 3 opens the chemical liquid valve 22.
  • the chemical solution is supplied from the chemical solution nozzle 20 toward the upper surface of the substrate W in the rotating state.
  • the supplied chemical solution is spread over the entire upper surface of the substrate W by centrifugal force, and the chemical treatment using the chemical solution is performed on the substrate W.
  • the control device 3 closes the chemical liquid valve 22 and stops the discharge of the chemical liquid from the chemical liquid nozzle 20. Thereby, a chemical
  • the control device 3 executes a rinsing step (S4 in FIG. 6) for replacing the chemical liquid present on the upper surface of the substrate W with the rinse liquid and removing the chemical liquid from the substrate W.
  • the control device 3 opens the rinse liquid valve 25.
  • the rinsing liquid is discharged from the rinsing liquid nozzle 23 toward the upper surface of the rotating substrate W.
  • the discharged rinse liquid is spread over the entire upper surface of the substrate W by centrifugal force.
  • the chemical liquid adhering to the substrate W is washed away by the rinse liquid.
  • an IPA supply step of supplying IPA as an example of an organic solvent is performed on the upper surface of the substrate W (S5 in FIG. 6).
  • the organic solvent (IPA) functions as a low surface tension liquid.
  • the control device 3 controls the nozzle moving unit 29 to move the common nozzle CN from the retracted position to above the substrate W. Further, the control device 3 controls the nozzle moving unit 29 to lower the common nozzle CN and arrange it at the processing position (position shown in FIG. 7). Then, the control device 3 opens the gas valve 31 and supplies the low-humidity gas to the three gas discharge ports (the upper gas discharge port 35 (see FIG. 3) and the lower gas discharge port 36 (see FIG.
  • the control device 3 While rotating the substrate W by the spin chuck 5, the control device 3 opens the organic solvent valve 13 and discharges IPA from the organic solvent nozzle 11 toward the center of the upper surface of the substrate W.
  • the IPA that has landed on the center of the upper surface of the substrate W receives centrifugal force due to the rotation of the substrate W and flows toward the peripheral edge of the upper surface of the substrate W.
  • an IPA liquid film covering the entire upper surface of the substrate W is formed on the upper surface of the substrate W (the upper surface of the substrate W is covered with IPA.
  • Organic solvent liquid film forming step Thereby, the rinse liquid held on the substrate W is replaced with IPA.
  • the control device 3 closes the organic solvent valve 13 and stops IPA discharge. After the organic solvent valve 13 is closed, the control device 3 drives the second suction device 12B to suck a predetermined amount of IPA inside the organic solvent pipe 12. With the IPA suction, the tip surface of the IPA inside the organic solvent pipe 12 is retracted to a predetermined retracted position. The rinse liquid is removed from the substrate W by performing the IPA supply step (S5).
  • a hydrophobizing agent supplying step of supplying a liquid hydrophobizing agent to the upper surface of the substrate W is performed (S6 in FIG. 6). Specifically, the control device 3 positions the common nozzle CN at the processing position, and further opens the hydrophobizing agent valve 10 while rotating the substrate W by the spin chuck 5 to discharge the hydrophobizing agent nozzle 8 from the discharge port 8a. The hydrophobizing agent is discharged from the top toward the center of the upper surface of the substrate W.
  • the hydrophobizing agent that has landed on the center of the upper surface of the substrate W receives centrifugal force due to the rotation of the substrate W and flows toward the peripheral edge of the upper surface of the substrate. Then, the IPA contained in the liquid film held on the substrate W is replaced with the hydrophobizing agent. Thereby, a liquid film of a hydrophobizing agent is formed on the upper surface of the substrate W to cover the entire area of the upper surface of the substrate W.
  • the hydrophobizing agent enters deep into the pattern P, and the upper surface of the substrate W is hydrophobized (hydrophobizing treatment).
  • the control device 3 closes the hydrophobizing agent valve 10 and stops the discharge of the hydrophobizing agent. After the hydrophobizing agent valve 10 is closed, the control device 3 drives the first suction device 9B to suck a predetermined amount of the hydrophobizing agent inside the hydrophobizing agent pipe 9. By suction of the hydrophobizing agent, the front end surface of the hydrophobizing agent inside the hydrophobizing agent pipe 9 is retracted to a predetermined retracted position.
  • an IPA supply step for supplying IPA as an organic solvent to the upper surface of the substrate W is performed (S7 in FIG. 6).
  • IPA functions as a desiccant.
  • the control device 3 positions the common nozzle CN at the processing position (position shown in FIG. 7) and opens the organic solvent valve 13 while rotating the substrate W by the spin chuck 5 to IPA is discharged from 11 toward the center of the upper surface of the substrate W. Thereby, the IPA discharged from the organic solvent nozzle 11 is supplied to the entire upper surface of the substrate W. Therefore, most of the hydrophobizing agent held on the substrate W is washed away by the IPA.
  • the control device 3 closes the organic solvent valve 13 to stop IPA discharge.
  • the control device 3 drives the second suction device 12B to suck a predetermined amount of IPA inside the organic solvent pipe 12. With the IPA suction, the tip surface of the IPA inside the organic solvent pipe 12 is retracted to a predetermined retracted position.
  • the control device 3 executes a spin dry process (S8 in FIG. 6). Specifically, the control device 3 accelerates the substrate W to a predetermined spin dry speed (for example, several thousand rpm) larger than the liquid processing speed, and rotates the substrate W at the spin dry speed. Thereby, a large centrifugal force is applied to the liquid on the substrate W, and the liquid adhering to the substrate W is shaken off around the substrate W. In this way, the liquid is removed from the substrate W, and the substrate W is dried.
  • a predetermined spin dry speed for example, several thousand rpm
  • control device 3 controls the spin motor 16 to stop the rotation of the spin chuck 5 relative to the substrate W (S9 in FIG. 6).
  • control device 3 closes the gas valve 31 and stops the discharge of the low humidity gas from the three gas discharge ports of the gas nozzle 32. Further, the control device 3 controls the nozzle moving unit 29 to return the common nozzle CN to the retracted position.
  • the processed substrate W is unloaded from the spin chuck 5 by the robots IR and CR (S10 in FIG. 6).
  • FIG. 8 shows changes in the flow rate of treatment liquid (hydrophobizing agent and IPA) in the valves (hydrophobizing agent valve 10 and organic solvent valve 13) and the open / closed state of the valves (hydrophobizing agent valve 10 and organic solvent valve 13).
  • FIG. 9 is an enlarged view of a main part of FIG.
  • FIG. 9 also shows the total flow rate TF of the flow rate of IPA in the organic solvent valve 13 and the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10.
  • Hydrophobizing agent valve 10 is a type of valve that moves the valve body. Therefore, there is a time lag from the start of the opening operation of the hydrophobizing agent valve 10 until the hydrophobizing agent valve 10 is completely opened (the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 becomes a predetermined flow rate). . Further, there is a time lag from the start of the closing operation of the hydrophobizing agent valve 10 until the hydrophobizing agent valve 10 is completely closed (the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 becomes zero).
  • the organic solvent valve 13 is a type of valve that moves the valve body. Therefore, there is a time lag from the start of the opening operation of the organic solvent valve 13 until the organic solvent valve 13 is completely opened (the flow rate of IPA in the organic solvent valve 13 becomes a predetermined flow rate). There is a time lag from the start of the closing operation of the organic solvent valve 13 until the organic solvent valve 13 is completely closed (the IPA flow rate in the organic solvent valve 13 becomes zero).
  • the flow rate of IPA from the start of the closing operation of the organic solvent valve 13 to the complete closing thereof changes as described below. That is, with the start of the closing operation of the organic solvent valve 13, the IPA flow rate in the organic solvent valve 13 rapidly decreases. Thereafter, the flow rate of IPA in the organic solvent valve 13 approaches zero while reducing the gradient of the flow rate decrease.
  • the time from the start of the closing operation of the organic solvent valve 13 to the complete closing of the organic solvent valve 13 is, for example, about 2 seconds.
  • the flow rate of the hydrophobizing agent from the start of the opening operation of the hydrophobizing agent valve 10 to the complete opening thereof changes as described below. That is, as the opening operation of the hydrophobizing agent valve 10 starts, the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 increases rapidly. Thereafter, the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 approaches a predetermined flow rate while relaxing the gradient of the flow rate increase.
  • the time from the start of the opening operation of the hydrophobizing agent valve 10 to the fully opening of the hydrophobizing agent valve 10 is, for example, about 2 seconds.
  • the control device 3 sets the start timing of the opening operation of the hydrophobizing agent valve 10 and the start timing of the closing operation of the organic solvent valve 13.
  • the timing is delayed by a predetermined delay period D1.
  • the delay period D1 is, for example, a period of 0.6 sec to 2.0 sec. In particular, 0.8 sec or more and 1.4 sec or less are preferable.
  • the delay period D1 is set to be shorter than the time lag (the period of “PE1” shown in FIG. 8) from the start of the closing operation of the organic solvent valve 13 until the organic solvent valve 13 is completely closed. Therefore, the opening operation of the hydrophobizing agent valve 10 is started in a state where the organic solvent valve 13 is not completely closed (that is, in a state where the discharge of IPA from the organic solvent nozzle 11 is not completely stopped).
  • the delay period D1 is set as follows.
  • the timing at which the flow rate of IPA in the organic solvent valve 13 coincides with the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 (timing at which the flow rate intersection P1 in FIG. 9 is obtained (hereinafter referred to as “flow rate intersection timing”)) Pay attention to.
  • the total flow rate TF of the flow rate of IPA in the organic solvent valve 13 and the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 at this flow rate crossing timing (hereinafter referred to as “total flow rate TF at the flow crossing point timing”)
  • the delay period D1 is set to be less than the predetermined threshold Th.
  • the delay period D1 is set as short as possible within a range in which the organic solvent and the hydrophobizing agent do not interfere with each other or interference is allowed in consideration of pattern collapse and particle contamination.
  • Threshold value Th is a predetermined value equal to or less than the flow rate of IPA in the organic solvent valve 13 immediately before the start of the closing operation of the organic solvent valve 13. More preferably, the threshold value Th is a predetermined value equal to or less than 1 ⁇ 2 of the flow rate of IPA in the organic solvent valve 13 immediately before the start of the closing operation of the organic solvent valve 13. The setting of the threshold Th will be described later with reference to FIGS.
  • the delay period D1 is an extremely short time, the period during which the IPA circulates through the organic solvent valve 13 (hereinafter referred to as the “IPA distribution period”) during the transition from the IPA supply process (S5) to the hydrophobizing agent supply process (S6). And the period during which the hydrophobizing agent flows through the hydrophobizing agent valve 10 (hereinafter, also referred to as “hydrophobizing agent distribution period”) overlaps.
  • a delay period D1 is provided in a period in which the IPA distribution period and the hydrophobizing agent distribution period overlap.
  • the transition of the total flow rate TF has a downwardly convex shape during the period in which the IPA circulation period and the hydrophobizing agent circulation period overlap.
  • the flow rate of the hydrophobizing agent from the start of the closing operation of the hydrophobizing agent valve 10 until it is completely closed changes as described below. That is, with the start of the closing operation of the hydrophobizing agent valve 10, the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 rapidly decreases. Thereafter, the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 approaches zero while reducing the gradient of the flow rate decrease.
  • the time from the start of the closing operation of the hydrophobizing valve 10 to the complete closing of the hydrophobizing valve 10 is, for example, about 2 seconds.
  • the flow rate of IPA from the start of the opening operation of the organic solvent valve 13 to the complete opening thereof changes as described below. That is, with the start of the opening operation of the organic solvent valve 13, the flow rate of IPA in the organic solvent valve 13 increases rapidly. Thereafter, the flow rate of IPA in the organic solvent valve 13 approaches the predetermined flow rate while relaxing the gradient of the flow rate increase.
  • the time from the start of the opening operation of the organic solvent valve 13 to the complete opening of the organic solvent valve 13 is, for example, about 2 seconds.
  • the control device 3 determines the opening timing of the opening operation of the organic solvent valve 13 from the starting timing of the closing operation of the hydrophobizing agent valve 10. Is delayed by a predetermined delay period D2.
  • the delay period D2 is a period of 0.6 sec to 2.0 sec, for example. In particular, 0.8 sec or more and 1.4 sec or less are preferable.
  • the delay period D2 is set to be shorter than the time lag (the period of “PE2” shown in FIG. 8) from the start of the closing operation of the hydrophobizing agent valve 10 until the hydrophobizing valve 10 is completely closed. Therefore, the opening operation of the organic solvent valve 13 is started in a state in which the hydrophobizing agent valve 10 is not completely closed (that is, in a state in which the discharge of the hydrophobizing agent from the hydrophobizing agent nozzle 8 is not completely stopped).
  • the delay period D2 is set as follows.
  • the total flow rate TF of the IPA flow rate in the organic solvent valve 13 and the hydrophobization agent flow rate in the hydrophobizing agent valve 10 at the flow rate intersection timing (hereinafter referred to as “total flow rate TF at the flow rate intersection timing”) is predetermined.
  • the delay period D2 is set to be less than the threshold value Th.
  • the delay period D2 is set as short as possible.
  • the IPA flow rate and the hydrophobizing agent flow rate are measured by the organic solvent flow meter 12A and the hydrophobizing agent flow meter 9A, respectively.
  • the timing at which the distribution of the organic solvent is not completely stopped in the organic solvent valve 13 (the discharge of IPA from the organic solvent nozzle 11 is completely completed).
  • the opening operation of the hydrophobizing agent valve 10 is started at the timing (not stopped).
  • the start of the opening operation of the hydrophobizing agent valve 10 is delayed from the start of the closing operation of the organic solvent valve 13, the period in which the IPA and the hydrophobizing agent interfere on the substrate W is short. Therefore, it is possible to suppress or prevent the occurrence of liquid splash and large liquid turbulence associated with interference between the IPA and the hydrophobizing agent. Therefore, pattern collapse and particle contamination at the center of the upper surface of the substrate W can be effectively suppressed. Further, since the opening operation of the hydrophobizing agent valve 10 is started at a timing at which the discharge of IPA from the organic solvent nozzle 11 is not completely stopped, it is performed on the substrate W until the hydrophobizing agent is supplied. IPA can be suppressed or prevented from drying.
  • the IPA supply step (S5) while suppressing or preventing the occurrence of liquid splash and large liquid disturbance caused by interference between the IPA and the hydrophobizing agent, and suppressing or preventing the drying of the IPA on the substrate W.
  • the hydrophobizing agent supply step (S6) To the hydrophobizing agent supply step (S6).
  • the delay period D1 is set so that the total flow rate TF at the flow rate intersection timing (that is, the total flow rate of the discharge flow rate of the IPA and the discharge flow rate of the hydrophobizing agent) is less than the threshold Th.
  • the threshold value Th is a predetermined value equal to or less than the IPA flow rate (that is, the IPA discharge flow rate) in the organic solvent valve 13 immediately before the start of the closing operation of the organic solvent valve 13 (more preferably, 1 / of the IPA flow rate. 2 or a predetermined value). Since the total flow rate TF is set to be less than the threshold value Th, a large liquid splash does not occur on the substrate W due to the interference between the IPA and the hydrophobizing agent. Therefore, it is possible to suppress or prevent the occurrence of liquid splashing or large liquid disturbance during the transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6).
  • transition from the hydrophobizing agent supply step (S6) to the IPA supply step (S7 in FIG. 6) is equivalent to the transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6). Has the effect of.
  • FIG. 10 shows opening and closing of valves (hydrophobizing agent valve 10 and organic solvent valve 13) and valves (hydrophobizing) at the time of transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6) according to the reference embodiment. It is a figure which shows transition of the flow volume of the process liquid (IPA, hydrophobizing agent) in the agent valve
  • the reference embodiment is different from the embodiment (first embodiment) shown in FIGS. 1 to 9 in that the delay period D1 is changed during the transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6).
  • the control device 3 synchronizes the start timing of the opening operation of the hydrophobizing agent valve 10 and the start timing of the closing operation of the organic solvent valve 13 without providing the above.
  • the start timing of the opening operation of the hydrophobizing agent valve 10 and the start timing of the closing operation of the organic solvent valve 13 are synchronized, at the time of transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6).
  • the IPA distribution period and the hydrophobizing agent distribution period overlap.
  • the transition of the total flow rate TF has an upwardly convex shape during the period in which the IPA circulation period and the hydrophobizing agent circulation period overlap.
  • the total flow rate TF at the flow rate intersection point exceeds the flow rate of the IPA in the organic solvent valve 13 immediately before the start of the closing operation of the organic solvent valve 13.
  • the total flow rate TF at the flow rate intersection timing exceeds the threshold Th.
  • the start timing of the opening operation of the organic solvent valve 13 and the start timing of the closing operation of the hydrophobizing agent valve 10 are synchronized during the transition from the hydrophobizing agent supply step (S6) to the IPA supply step (S7).
  • the IPA and the hydrophobizing agent may interfere with each other, which may cause liquid splash and large liquid disturbance.
  • the supply of IPA is hindered so that sufficient replacement with IPA cannot be performed, and pattern collapse may occur due to high-speed rotation of the substrate during drying. .
  • 12 and 13 are diagrams for explaining the determination of the threshold Th.
  • the threshold value Th is obtained by a preliminary experiment using the substrate processing apparatus 1. Details of the preliminary experiment will be described later.
  • the delay period including the delay period D1 and the delay period D2 may be collectively referred to as a delay period D.
  • the operator changes the delay period D among a plurality of periods (three types of periods of 0.2 sec, 0.4 sec, and 0.6 sec in the example of FIG. 13) while changing the substrate W (for sample). Substrate). Then, the operator determines whether the product is non-defective based on the state of the substrate W after processing. The operator determines, as a threshold value Th, the highest value among the threshold values corresponding to all the delay periods D determined to be non-defective products through a prior experiment.
  • the delay periods determined to be non-defective “OK” are 0.4 sec and 0.6 sec.
  • the value of the flow rate intersection P1 is larger when the delay period is 0.4 sec than when the delay period is 0.6 sec (see FIG. 12).
  • the value corresponding to the case where the delay period is 0.4 sec that is, the value of the total flow rate TF at the flow rate intersection P1 (that is, the flow rate twice the flow rate at the flow rate intersection P1) is determined as the threshold Th.
  • the threshold value Th is the maximum total flow rate TF at the flow rate intersection P1 that is allowed in consideration of pattern collapse and particles.
  • the flow rate intersection P1 coincides with half of the threshold Th (1/2 ⁇ Th).
  • the operator sets the delay period D based on the threshold value Th thus determined. Specifically, the delay period D is set so that the total flow rate TF at the flow rate intersection timing is less than the threshold Th, and the delay period D is stored in the delay period storage unit 54.
  • the delay period D may be directly input to the control device 3 by the operator's operation based on the result of the preliminary experiment and stored in the delay period storage unit 54 (in the case of the above example, 0.4 sec. Is input as the delay period D).
  • FIG. 14 is a schematic diagram for explaining a configuration example of the common nozzle CN in the first modification example according to the first embodiment.
  • the hydrophobizing agent flow meter 9 ⁇ / b> A may be interposed on the secondary side of the hydrophobizing agent pipe 9, that is, on the downstream side of the hydrophobizing agent valve 10.
  • the organic solvent flow meter 12 ⁇ / b> A may be interposed on the secondary side of the organic solvent pipe 12, that is, on the downstream side of the organic solvent valve 13.
  • the first modification shown in FIG. 14 is also applicable to the second embodiment described below.
  • FIG. 15 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 201 according to the second embodiment of the present invention.
  • the substrate processing apparatus 201 according to the second embodiment is different from the substrate processing apparatus 1 according to the first embodiment in that the storage unit 52 includes a threshold storage unit in addition to the program 53 and the delay period storage unit 54. 211 and the flow rate transition information storage unit 212. Since other points are common to the substrate processing apparatus 1 according to the first embodiment, the same reference numerals are given to the respective components, and the description thereof is omitted.
  • the control device 3 functions as an information acquisition control device and a delay period setting unit.
  • the threshold storage unit 211 stores a threshold Th.
  • the threshold storage unit 211 stores a threshold Th obtained by a preliminary experiment (described later) using the substrate processing apparatus 1.
  • the flow rate transition information storage unit 212 stores a falling flow rate transition pattern (first flow rate transition information) FC1 and a rising flow rate transition pattern (second flow rate transition information) FC2 described below.
  • the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 are patterns used for matching as will be described later.
  • FIG. 16A is a diagram for explaining the falling flow rate transition pattern FC1.
  • the falling flow rate transition pattern FC1 is a pattern representing a temporal change in the discharge flow rate of the first processing liquid from the first nozzle (for example, the discharge flow rate of the organic solvent from the organic solvent nozzle 11).
  • the falling flow rate transition pattern FC1 represents a change over time in the discharge flow rate from the start of the closing operation of the processing liquid valve (for example, the organic solvent valve 13).
  • the falling flow rate transition pattern FC1 is obtained by a preliminary experiment (described later) using the substrate processing apparatus 1, and is stored in the flow rate transition information storage unit 212 by the control device 3 of the substrate processing apparatus 1.
  • FIG. 16B is a diagram for explaining the rising flow rate transition pattern FC2.
  • the rising flow rate transition pattern FC2 is a pattern representing a temporal change in the discharge flow rate of the second processing liquid from the second nozzle (for example, the discharge flow rate of the hydrophobizing agent from the hydrophobizing agent nozzle 8).
  • the rising flow rate transition pattern FC2 represents a change over time in the discharge flow rate from the start of the opening operation of the second valve (for example, the hydrophobizing agent valve 10).
  • the rising flow rate transition pattern FC2 is obtained by a preliminary experiment (described later) using the substrate processing apparatus 1, and is stored in the flow rate transition information storage unit 212 by the control device 3 of the substrate processing apparatus 1.
  • the substrate processing apparatus Since the threshold value Th, the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 are respectively obtained by a preliminary experiment using the substrate processing apparatus 1, and the delay period D is calculated using them, the substrate processing apparatus The influence of the piping configuration (the distance between the discharge port 8a of the hydrophobizing agent nozzle 8 and the hydrophobizing agent valve 10 and the distance between the discharge port 11a of the organic solvent nozzle 11 and the organic solvent valve 13 are different). Thus, the delay period D can be obtained satisfactorily.
  • FIG. 16C is a diagram for explaining the matching between the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2.
  • FIG. 17A is a flowchart for explaining delay period setting.
  • the arithmetic unit 51 reads the threshold value Th from the threshold value storage unit 211 (S11 in FIG. 17A), and the arithmetic unit 51 pattern-matches the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 with respect to the time axis direction. (S12 in FIG. 17A).
  • the waveform of the rising flow rate transition pattern FC2 is matched with the waveform of the falling flow rate transition pattern FC1.
  • the rising flow rate transition pattern FC2 at which the rising start time is the same as the falling flow rate transition pattern FC1 is defined as a reference pattern (represented by a solid line in FIG. 16C).
  • the rising flow rate transition pattern FC2 is slid in the time axis direction.
  • the flow rate at the flow rate intersection P1 that is, the height position of the flow rate intersection P1
  • the rising flow rate transition pattern FC2 is slid to the right, the flow rate at the flow rate intersection P1 increases.
  • the rising flow rate transition pattern FC2 is arranged so that the total flow rate TF at the flow rate intersection point P1 (that is, the flow rate twice the flow rate at the flow rate intersection point P1) is within the threshold Th and becomes maximum.
  • the arithmetic unit 51 calculates a deviation amount in the time axis direction from the reference pattern of the rising flow rate transition pattern FC2 (represented by a one-dot chain line in FIG. 16C) at that time as the delay period D.
  • the shortest time can be selected as the delay period D by arranging the rising flow rate transition pattern FC2 at a position where the flow rate at the flow rate intersection P1 is maximized.
  • the arithmetic unit 51 stores the calculated delay period D in the delay period storage unit 54 (S14 in FIG. 17A).
  • FIG. 17B is a flowchart for explaining a preliminary experiment performed using the substrate processing apparatus 1.
  • This preliminary experiment is an experiment for the control device 3 to acquire the threshold value Th.
  • This preliminary experiment is also an experiment for the control device 3 to acquire the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2.
  • a sample substrate is used as a substrate to be processed.
  • the sample substrate is carried into the chamber 4 and held by the spin chuck 5 accommodated in the chamber 4 with the surface that is the device formation surface facing upward, for example.
  • steps equivalent to the respective steps shown in the substrate processing example (S 2 to S 9 in FIG. 6) are performed on the sample substrate (S 21 in S 17 B). That is, the IPA supply step (S5), the hydrophobizing agent supply step (S6), and the IPA supply step (S7) are sequentially performed on the sample substrate.
  • the processing conditions such as the processing time of each process (S2 to S9) and the rotation speed of the sample substrate in each process (S2 to S9) are the same as the processing conditions in the above-described substrate processing example (FIG. 6).
  • the IPA discharge flow rate in the IPA supply step (S5, S7) and the hydrophobization agent discharge flow rate in the hydrophobizing agent supply step (S6) are the same as those in the substrate processing example (FIG. 6). is there.
  • the preliminary experiment is performed a plurality of times while changing the delay period D (see FIG. 16C) while keeping other conditions the same.
  • the falling flow rate transition pattern FC1 is acquired (S22 in FIG. 17B). Specifically, when the organic solvent valve 13 is closed, the control device 3 refers to the measurement value output from the organic solvent flow meter 12 ⁇ / b> A, and uses the measurement value output from the organic solvent flow meter 12 ⁇ / b> A to Sampling is performed in association with the time from the start of the closing operation. The control device 3 acquires a falling flow rate transition pattern FC1 representing a temporal change in the measured value of IPA based on the sampled measured values, and stores the falling flow rate transition pattern FC1 in the flow rate transition information storage unit 212. .
  • the rising flow rate transition pattern FC2 is acquired (S23 in FIG. 17B).
  • the control device 3 refers to the measurement value output from the hydrophobizing agent flow meter 9A, and hydrophobizes the measurement value output from the hydrophobizing agent flow meter 9A. Sampling is performed in association with the time from when the opening operation of the agent valve 10 is started.
  • the control device 3 acquires a rising flow rate transition pattern FC2 representing a temporal change in the measured value of the hydrophobizing agent based on the sampled measured values, and stores this rising flow rate transition pattern FC2 in the flow rate transition information storage unit 212. .
  • the operator observes the sample substrate obtained by the preliminary experiment in the same manner as described in FIGS. 12 and 13, and determines whether or not it is a non-defective product.
  • the operator has the highest threshold value (the total flow rate TF at the flow rate intersection P1 (that is, the flow rate twice as high as the flow rate at the flow rate intersection P1)) corresponding to all the delay periods determined to be non-defective products by the prior experiment.
  • the value is determined as the threshold Th.
  • the threshold value Th thus determined is input to the control device 3 by the operator's operation.
  • the input threshold value Th is stored in the threshold value storage unit 211 (S24 in FIG. 17B).
  • the control device 3 starts the opening operation of the second valve (hydrophobizing agent valve 10) from the start of the closing operation of the first valve (organic solvent valve 13).
  • the delay period D until is set.
  • the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 are different for each substrate processing apparatus 1 that performs substrate processing or for each processing condition.
  • the delay period D is set such that the total flow rate TF is equal to or less than the threshold value Th by matching using the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2, so that it corresponds to the substrate processing apparatus 1 and processing conditions.
  • a good delay period D can be easily provided.
  • the delay period D is obtained by matching, it is possible to relatively easily provide the delay period D such that the total flow rate TF at the flow rate intersection P1 is within the threshold value Th and becomes the maximum.
  • the shortest period among the periods in which the total flow rate TF is equal to or less than the threshold value Th is set as the delay period D.
  • the shortest possible period is set as the delay period D.
  • FIG. 18 is a block diagram for explaining a modified example (second modified example) according to the second embodiment.
  • piping (hydrophobizing agent piping 9 and organic solvent piping 12) is different if the chamber 4 is different. Further, the distance from the valve (hydrophobizing agent valve 10, organic solvent valve 13) to the discharge ports 8 a and 11 a may be different for each chamber 4. Due to these, the opening and closing operation of the valves (hydrophobizing agent valve 10 and organic solvent valve 13) and the transition of the discharge flow rate of the processing liquid from the discharge ports 8a and 11a during the opening and closing operation (valve (hydrophobizing agent valve 10, the transition of the flow rate of the treatment liquid in the organic solvent valve 13) may vary from one chamber 4 to another.
  • each chamber 4 is provided with a falling flow rate transition pattern FC1 and a rising flow rate transition pattern FC2 in association with each other. Therefore, the delay period D is also different for each chamber 4.
  • the threshold Th is a value common to the chambers 4.
  • the transition of the flow rate of the processing liquid discharged from the discharge ports 8a and 11a (the transition of the flow rate of the processing liquid in the valves (hydrophobizing agent valve 10 and organic solvent valve 13)) varies from one chamber 4 to another.
  • a large preliminary experiment for obtaining the threshold value Th needs to be performed only in one chamber 4, and the other chambers 4 A prior experiment for obtaining the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 is sufficient. If it is a preliminary experiment only to obtain the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2, it is sufficient to open and close the valves (hydrophobizing agent valve 10 and organic solvent valve 13) under the processing conditions. And can be done in a short time. Therefore, the burden on the operator accompanying the preliminary experiment is small.
  • FIG. 19 is a flowchart for explaining the delay period setting according to the modification example (third modification example) according to the second embodiment.
  • FIG. 20 is a schematic diagram for explaining the delay period setting according to the third modification.
  • the delay period D is set in parallel with the execution of the substrate processing example in the chamber 4 (real-time setting).
  • the arithmetic unit 51 reads the threshold value Th from the threshold value storage unit 211 (S31 in FIG. 19).
  • the arithmetic unit 51 samples (monitors) the measurement value output from the organic solvent flow meter 12A (S32 in FIG. 19).
  • the arithmetic unit 51 generates an IPA pattern representing a time change of the IPA measurement value based on the sampled measurement value. create.
  • the arithmetic unit 51 pattern-matches the created IPA pattern to the waveform of the falling flow rate transition pattern FC1 stored in the flow rate transition information storage unit 212.
  • the falling flow rate transition pattern FC1 is slid in the time axis direction, and both patterns are pattern-matched so that the deviation of the waveforms of both patterns is reduced.
  • the future transition of the discharge flow rate of IPA is predicted at the present time (S33 in FIG. 19).
  • the arithmetic unit 51 pattern-matches the future transition of the predicted IPA discharge flow rate and the rising flow rate transition pattern FC2 in the time axis direction (S34 in FIG. 19). This matching is performed using the same method as in S12 of FIG. 17A.
  • the rising flow rate transition pattern FC2 is arranged so that the total flow rate TF at the flow rate intersection point P1 (that is, the flow rate twice the flow rate at the flow rate intersection point P1 is within the threshold value Th and becomes maximum, and the delay period D is calculated. (S35 in FIG. 19) After that, the arithmetic unit 51 stores the calculated delay period D in the delay period storage unit 54 (S36 in FIG. 19).
  • the future transition of the IPA discharge flow rate is predicted based on the current IPA discharge flow rate being measured. Then, based on the predicted falling flow rate transition and the acquired rising flow rate transition pattern FC2, the delay period D is set in parallel with the progress of the substrate processing. Thereby, it is possible to set a favorable delay period D most suitable for the processing conditions of the ongoing substrate processing.
  • the opening and closing of the valves (hydrophobizing agent valve 10 and organic solvent valve 13) during the transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6) is an example. And explained. However, the second embodiment can also be applied to opening and closing the valves (hydrophobizing agent valve 10 and organic solvent valve 13) during the transition from the hydrophobizing agent supply step (S6) to the IPA supply step (S7). it can.
  • the threshold Th is different between the transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6) and the transition from the hydrophobizing agent supply step (S6) to the IPA supply step (S7). You may make it let.
  • the preliminary experiment for the control device 3 to acquire the threshold Th and the preliminary experiment for the control device 3 to acquire the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 are performed individually, not collectively. It can also be done.
  • the rising flow rate transition pattern FC2 may be data created in advance, not actual measurement data obtained by a preliminary experiment using the substrate processing apparatus 1.
  • the front end surface of the processing liquid IPA, hydrophobizing agent
  • the valve hydrophobizing agent valve 10
  • the rising flow rate transition pattern FC2 may be data created in advance instead of actual measurement data.
  • the threshold value Th may be a value given in advance instead of a value determined using a prior experiment using the substrate processing apparatus 1.
  • the nozzles (hydrophobizing agent nozzle 8 and organic solvent nozzle 11) are provided not on the common nozzle CN but on a blocking member facing substantially above the entire area of the upper surface of the substrate W. It may be.
  • the substrate processing apparatus 1 is an apparatus for processing the surface of the substrate W made of a semiconductor wafer.
  • the substrate processing apparatus is a substrate for a liquid crystal display device, an organic EL (electroluminescence) display.
  • Even devices that process substrates such as FPD (Flat Panel DiDiplay) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, photomask substrates, ceramic substrates, solar cell substrates, etc. Good.
  • Substrate processing device 2 Processing unit 3: Control device 4: Chamber 5: Spin chuck (substrate holding unit) 8: Hydrophobizing agent nozzle (the other of the first nozzle and the second nozzle) 9: Hydrophobizing agent pipe (the other of the first pipe and the second pipe) 9A: Hydrophobizing agent flow meter 10: Hydrophobizing agent valve (the other of the first valve and the second valve) 11: Organic solvent nozzle (one of the first nozzle and the second nozzle) 12: Organic solvent piping (one of the first piping and the second piping) 12A: Organic solvent flow meter (flow meter) 13: Organic solvent valve (one of the first valve and the second valve) 51: arithmetic unit 52: storage unit 54: delay period storage unit 201: substrate processing apparatus 211: threshold value storage unit 212: flow rate transition information storage unit D: delay period D1: delay period D2: delay period FC1: falling flow rate transition pattern (First flow rate transition information) FC2: rising flow rate transition pattern (second flow rate transition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

This substrate treatment device comprises: a substrate holding unit for holding a substrate; a first nozzle for discharging a first treatment solution toward the substrate held by the substrate holding unit; first piping for supplying the first treatment solution to the first nozzle; a first valve for opening and closing the first piping; a second nozzle for discharging a second treatment solution toward the substrate held by the substrate holding unit, the second nozzle being different from the first nozzle; second piping for supplying the second treatment solution to the second nozzle; a second valve for opening and closing the second piping; and a controller for controlling opening and closing of the first valve and the second valve. The controller executes a first closing operation step for closing the first valve in an open state in a state where the first treatment solution is being discharged from the first nozzle, and a second opening operation step for starting an opening operation of the second valve in a state where the discharge of the first treatment solution from the first nozzle does not completely stop after a lapse of a delay period from the start of the closing operation of the first valve.

Description

基板処理装置、基板処理方法、遅延期間設定方法およびプログラムSubstrate processing apparatus, substrate processing method, delay period setting method, and program
 この発明は、基板処理装置、基板処理方法、遅延期間設定方法およびプログラムに関する。処理対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing apparatus, a substrate processing method, a delay period setting method, and a program. Examples of substrates to be processed include semiconductor wafers, liquid crystal display substrates, FPD (Flat Panel Display) substrates such as organic EL (electroluminescence) display devices, optical disk substrates, magnetic disk substrates, and magneto-optical disks. Substrates, photomask substrates, ceramic substrates, solar cell substrates and the like are included.
  半導体装置や液晶表示装置の製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板がたとえば一枚ずつ処理される。具体的には、薬液が基板に供給されることにより、基板の主面が薬液によって処理される。その後、純水が基板に供給されることにより、基板に付着している薬液が洗い流される。薬液が洗い流された後は、有機溶剤の一例であるIPA(イソプロピルアルコール)が基板に供給され、基板に付着している純水がIPAに置換される。その後、基板が高速回転されることにより、基板に付着しているIPAが基板から除去され、基板が乾燥する。 In the manufacturing process of semiconductor devices and liquid crystal display devices, substrates such as semiconductor wafers and glass substrates for liquid crystal display devices are processed, for example, one by one. Specifically, the main surface of the substrate is treated with the chemical solution by supplying the chemical solution to the substrate. Thereafter, pure water is supplied to the substrate, so that the chemical solution adhering to the substrate is washed away. After the chemical solution is washed away, IPA (isopropyl alcohol) which is an example of an organic solvent is supplied to the substrate, and the pure water adhering to the substrate is replaced with IPA. Thereafter, when the substrate is rotated at a high speed, IPA adhering to the substrate is removed from the substrate, and the substrate is dried.
  しかしながら、このような基板処理方法では、基板を乾燥させるときに、基板の主面に形成されたパターンが倒壊する場合がある。そのため、下記特許文献1では、パターンの倒壊を防止するために、IPAによる置換後に基板の主面を疎水化させる手法が開示されている。 However, in such a substrate processing method, when the substrate is dried, the pattern formed on the main surface of the substrate may collapse. Therefore, Patent Document 1 below discloses a technique of hydrophobizing the main surface of the substrate after replacement with IPA in order to prevent the pattern from collapsing.
 具体的には、基板の上面のIPAの液膜が形成された後、基板の上面中央部に向けてノズルから疎水化剤が吐出されることにより、基板の上面に疎水化剤が供給され、基板の上面に、当該上面の全域を覆う疎水化剤の液膜が形成される。これにより、基板の上面が疎水化される。その後、基板が高速回転されることにより、基板が乾燥する。 Specifically, after the liquid film of IPA on the upper surface of the substrate is formed, the hydrophobizing agent is supplied to the upper surface of the substrate by discharging the hydrophobizing agent from the nozzle toward the center of the upper surface of the substrate, A liquid film of a hydrophobizing agent is formed on the upper surface of the substrate to cover the entire area of the upper surface. Thereby, the upper surface of the substrate is hydrophobized. Thereafter, the substrate is rotated at a high speed to dry the substrate.
 また、下記特許文献2には、薬液処理の終了からリンス処理の開始までの期間が、0.5秒以上1.5秒以内という短い時間に設定されている点が記載されている。 Patent Document 2 below describes that the period from the end of the chemical treatment to the start of the rinsing process is set to a short time of 0.5 seconds or more and 1.5 seconds or less.
特開2017-112391号公報JP 2017-112391 A 特開2005-327807号公報JP 2005-327807 A
 特許文献1の手法では、IPA処理(IPAを用いた処理)から疎水化剤処理(疎水化剤を用いた処理)への移行時において、IPA処理の終了から疎水化剤処理の開始までに間隔が空くと、基板の上面でIPAが乾燥してしまい、その結果、パターン倒壊が発生するおそれがある。 In the method of Patent Document 1, an interval from the end of the IPA treatment to the start of the hydrophobizing agent treatment is transferred from the IPA treatment (treatment using IPA) to the hydrophobizing agent treatment (treatment using the hydrophobizing agent). If there is a gap, the IPA is dried on the upper surface of the substrate, and as a result, the pattern collapse may occur.
 この問題を解決するために、IPA処理から疎水化剤処理への移行を連続的に行うことが考えられる。具体的には、疎水化剤およびIPAを供給するためのノズルを、疎水化剤ノズルとIPAノズルとに分け、疎水化剤ノズルに接続された疎水化剤配管に介装された疎水化剤バルブの閉動作の開始と、IPAノズルに接続されたIPA配管に介装されたIPAバルブの開動作の開始とを同期させることが考えられる。 In order to solve this problem, it can be considered that the transition from the IPA treatment to the hydrophobizing agent treatment is continuously performed. Specifically, the nozzle for supplying the hydrophobizing agent and IPA is divided into a hydrophobizing agent nozzle and an IPA nozzle, and a hydrophobizing agent valve interposed in a hydrophobizing agent pipe connected to the hydrophobizing agent nozzle It is conceivable to synchronize the start of the closing operation with the start of the opening operation of the IPA valve interposed in the IPA pipe connected to the IPA nozzle.
 しかしながら、IPAバルブの閉動作の開始からIPAバルブが完全に閉じるまでにタイムラグがある。また、疎水化剤バルブの開動作の開始から疎水化剤バルブが完全に開くまでにタイムラグがある。そのため、IPA処理から疎水化剤処理への移行時において、IPAノズルからIPAが吐出される期間と、疎水化剤ノズルから疎水化剤が吐出される期間とが部分的に重複する。基板の上面におけるIPAの着液位置と、基板の上面における疎水化剤の着液位置とは、ともに基板の上面中央部であり、互いに接近しているから、IPA処理から疎水化剤処理への移行時において、疎水化剤ノズルから吐出された疎水化剤と、IPAノズルから吐出されたIPAとが干渉し、液跳ねや大きな液乱れが発生するおそれがある。そして、これらの液跳ねや大きな液乱れに起因して、パターン倒壊やパーティクル汚染が発生するおそれがある。 However, there is a time lag from the start of the closing operation of the IPA valve until the IPA valve is completely closed. In addition, there is a time lag from the start of the opening operation of the hydrophobizing agent valve to the fully opening of the hydrophobizing agent valve. Therefore, when shifting from the IPA process to the hydrophobizing agent process, the period during which IPA is discharged from the IPA nozzle partially overlaps with the period during which the hydrophobizing agent is discharged from the hydrophobizing agent nozzle. Since the landing position of the IPA on the upper surface of the substrate and the landing position of the hydrophobizing agent on the upper surface of the substrate are both in the center of the upper surface of the substrate and are close to each other, At the time of transfer, the hydrophobizing agent discharged from the hydrophobizing agent nozzle and the IPA discharged from the IPA nozzle interfere with each other, and there is a possibility that liquid splashing or large liquid disturbance occurs. Then, there is a possibility that pattern collapse or particle contamination may occur due to these liquid splashes or large liquid disturbances.
 このような上面中央部におけるパターン倒壊等を抑制または防止するために、下記特許文献2に記載のように、IPAノズルの吐出口からのIPAの吐出終了から、疎水化剤ノズルの吐出口からの疎水化剤の吐出開始までの期間を、所定の短時間だけ空けることも考えられる。しかしながら、この場合、IPA処理後の状態のまま放置されるから、前述したような、IPAの乾燥に伴うパターン倒壊の懸念がある。 In order to suppress or prevent such pattern collapse at the center of the upper surface, as described in Patent Document 2 below, from the end of the discharge of IPA from the discharge port of the IPA nozzle, the discharge from the discharge port of the hydrophobizing agent nozzle It is also conceivable that the period until the start of discharging the hydrophobizing agent is left for a predetermined short time. However, in this case, since the state after the IPA treatment is left as it is, there is a concern that the pattern collapses due to the drying of the IPA as described above.
 そのため、基板に処理液(疎水化剤またはIPA)を液切れさせることなく、かつ疎水化剤とIPAとの干渉に起因する液跳ねの発生を抑制または防止しながら、IPA処理から疎水化剤処理に移行させる必要がある。 Therefore, the treatment liquid (hydrophobizing agent or IPA) is not drained on the substrate, and the hydrophobizing agent treatment is performed while suppressing or preventing the occurrence of liquid splash due to interference between the hydrophobizing agent and IPA. It is necessary to move to.
 また、基板の疎水化後、基板の上面中央部に向けてIPAが供給され、基板の上面に保持されているIPAを、乾燥時に先立って疎水化剤に置換することもある。このような、疎水化剤処理からIPA処理への移行時にも、同様の課題が存在する。 Also, after the substrate is hydrophobized, IPA is supplied toward the center of the upper surface of the substrate, and the IPA held on the upper surface of the substrate may be replaced with a hydrophobizing agent prior to drying. The same problem exists when shifting from the hydrophobizing agent treatment to the IPA treatment.
 さらには、処理液として疎水化剤およびIPAを採用する場合に限られず、他の処理液を採用する場合においても、第1の処理液処理(第1の処理液を用いる処理)の終了から第2の処理液処理(第2の処理液を用いる処理)の開始までの間に期間が空くと、基板の上面の露出に伴うパーティクルの発生等の問題が生じることもある。 Furthermore, the present invention is not limited to the case where the hydrophobizing agent and IPA are used as the processing liquid, and the case where the other processing liquid is used is the first processing liquid processing (processing using the first processing liquid) after the end. If a period of time elapses before the start of the second processing liquid processing (processing using the second processing liquid), problems such as generation of particles due to exposure of the upper surface of the substrate may occur.
 そこで、この発明の目的の一つは、第1の処理液と第2の処理液との干渉に起因する液跳ねの発生を抑制または防止しながら、かつ基板に液切れさせることなく、第1の処理液処理から第2の処理液処理に移行させることができる、基板処理装置および基板処理方法を提供することである。 Accordingly, one object of the present invention is to suppress or prevent the occurrence of liquid splash due to interference between the first processing liquid and the second processing liquid, and without causing the substrate to run out of liquid. It is to provide a substrate processing apparatus and a substrate processing method capable of shifting from the processing liquid processing to the second processing liquid processing.
 また、第1のバルブ(IPAバルブ)の閉動作の開始後に、第2のバルブ(疎水化剤バルブ)の開動作を開始する場合、基板処理装置の制御上、第1のバルブの閉動作の開始から第2のバルブの開動作の開始までの遅延期間を設定する必要がある。このような遅延期間の設定を良好に設定することが求められている。 When the opening operation of the second valve (hydrophobizing agent valve) is started after the closing operation of the first valve (IPA valve) is started, the closing operation of the first valve is controlled for the control of the substrate processing apparatus. It is necessary to set a delay period from the start to the start of the opening operation of the second valve. It is required to set such a delay period satisfactorily.
 そこで、この発明の他の目的は、第1のバルブの閉動作の開始から第2のバルブの開動作の開始までの遅延期間を良好に設定できる、基板処理装置、遅延期間設定方法およびプログラムを提供することである。 Accordingly, another object of the present invention is to provide a substrate processing apparatus, a delay period setting method, and a program capable of satisfactorily setting a delay period from the start of the first valve closing operation to the start of the second valve opening operation. Is to provide.
 この発明の第1の局面は、基板を保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板に向けて、第1の処理液を吐出するための第1のノズルと、前記第1のノズルに第1の処理液を供給する第1の配管と、前記第1の配管を開閉する第1のバルブと、前記第1のノズルとは別のノズルであって、前記基板保持ユニットに保持されている基板に向けて、第2の処理液を吐出するための第2のノズルと、前記第2のノズルに対して第2の処理液を供給する第2の配管と、前記第2の配管を開閉する第2のバルブと、前記第1のバルブおよび前記第2のバルブの開閉を制御する制御装置とを含み、前記制御装置が、前記第1のノズルから第1の処理液が吐出されている状態において、開状態にある前記第1のバルブを閉じる第1の閉動作工程と、前記第1のバルブの閉動作の開始から遅延期間の経過後、前記第1のノズルからの第1の処理液の吐出が完全には停止していない状態で前記第2のバルブの開動作を開始する第2の開動作工程とを実行する、基板処理装置を提供する。 According to a first aspect of the present invention, there is provided a substrate holding unit for holding a substrate, a first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit, and the first A first pipe for supplying a first processing liquid to one nozzle, a first valve for opening and closing the first pipe, and a nozzle different from the first nozzle, wherein the substrate holding unit A second nozzle for discharging a second processing liquid toward the substrate held on the substrate, a second pipe for supplying the second processing liquid to the second nozzle, and the second nozzle A second valve that opens and closes the second pipe, and a control device that controls the opening and closing of the first valve and the second valve, and the control device controls the first processing liquid from the first nozzle. The first valve in the open state is closed while After the first closing operation step and the delay period from the start of the closing operation of the first valve, the discharge of the first processing liquid from the first nozzle is not completely stopped. Provided is a substrate processing apparatus for executing a second opening operation step for starting an opening operation of a second valve.
 この構成によれば、第1のバルブの閉動作の開始から遅延期間の経過後、第1のノズルからの第1の処理液の吐出が完全には停止していない状態で第2のバルブの開動作が開始される。第2のバルブの開動作の開始が第1のバルブの閉動作の開始よりも遅れるので、吐出された第1の処理液と、吐出された第2の処理液とが干渉する期間が短い。そのため、第1の処理液と第2の処理液との干渉に伴う液跳ねや大きな液乱れの発生を抑制または防止できる。また、第1のノズルからの第1の処理液の吐出が完全には停止していないタイミングで第2のバルブの開動作が開始されるので、基板への処理液の供給を途絶えさせることなく連続的に行うことができる。そのため、基板において液切れが生じない。これらにより、第1の処理液と第2の処理液との干渉に起因する液跳ねの発生を抑制または防止しながら、かつ基板に液切れさせることなく、第1の処理液処理から第2の処理液処理に移行させることができる。 According to this configuration, after the delay period has elapsed since the start of the closing operation of the first valve, the discharge of the first processing liquid from the first nozzle is not completely stopped, and the second valve Opening operation is started. Since the start of the opening operation of the second valve is delayed from the start of the closing operation of the first valve, the period during which the discharged first processing liquid and the discharged second processing liquid interfere with each other is short. Therefore, it is possible to suppress or prevent the occurrence of liquid splash and large liquid disturbance due to interference between the first processing liquid and the second processing liquid. In addition, since the opening operation of the second valve is started at the timing when the discharge of the first processing liquid from the first nozzle is not completely stopped, the supply of the processing liquid to the substrate is not interrupted. Can be done continuously. For this reason, the substrate does not run out of liquid. As a result, while suppressing or preventing the occurrence of liquid splash due to the interference between the first treatment liquid and the second treatment liquid, and without causing the substrate to run out, the second treatment liquid can be removed from the first treatment liquid treatment. It is possible to shift to treatment liquid treatment.
 この発明の一実施形態では、前記第2の開動作工程が、前記第1のバルブにおける第1の処理液の流通が完全に停止していない状態で前記第2のバルブの開動作を開始する工程を含む。 In one embodiment of the present invention, the second opening operation step starts the opening operation of the second valve in a state where the flow of the first processing liquid in the first valve is not completely stopped. Process.
 この構成によれば、第1のバルブの閉動作の開始から遅延期間の経過後、第1のバルブにおける第1の処理液の流通が完全に停止していないタイミングで第2のバルブの開動作が開始される。 According to this configuration, after the lapse of the delay period from the start of the first valve closing operation, the second valve opening operation is performed at a timing when the flow of the first processing liquid in the first valve is not completely stopped. Is started.
 「第1のノズルからの第1の処理液の吐出が完全には停止していないタイミング」は、「第1のバルブにおける第1の処理液の流通が完全に停止していないタイミング」と同視できる。また、第1の配管に流量計等を配置することにより、「第1のバルブにおける第1の処理液の流通が完全に停止していないタイミング」を良好に検出することが可能である。そのため、「第1のノズルからの第1の処理液の吐出が完全には停止していないタイミング」を良好に取得できる。 "Timing when the discharge of the first processing liquid from the first nozzle is not completely stopped" is equivalent to "timing when the flow of the first processing liquid through the first valve is not completely stopped" it can. In addition, by arranging a flow meter or the like in the first pipe, it is possible to satisfactorily detect “a timing at which the flow of the first processing liquid in the first valve is not completely stopped”. Therefore, the “timing at which the discharge of the first processing liquid from the first nozzle is not completely stopped” can be acquired satisfactorily.
 この発明の一実施形態では、前記遅延期間が、前記第1のノズルからの第1の処理液の吐出流量と前記第2のノズルからの第2の処理液の吐出流量とが一致する状態における、当該第1の処理液の吐出流量と当該第2の処理液の吐出流量との合計流量が、所定の閾値以下になるように設けられており、前記所定の閾値が、第1の処理液の吐出流量よりも低い値である。 In one embodiment of the present invention, the delay period is such that the discharge flow rate of the first processing liquid from the first nozzle matches the discharge flow rate of the second processing liquid from the second nozzle. The total flow rate of the discharge flow rate of the first treatment liquid and the discharge flow rate of the second treatment liquid is provided to be equal to or less than a predetermined threshold value, and the predetermined threshold value is the first treatment liquid. This is a value lower than the discharge flow rate.
 この構成によれば、第1のノズルから第1の処理液が吐出される期間と、第2のノズルから第2の処理液が吐出される期間とは重複する。このとき、第1のノズルからの第1の処理液の吐出流量と第2のノズルからの第2の処理液の吐出流量とが一致するタイミングにおける、第1の処理液の吐出流量と第2の処理液の吐出流量との合計流量(以下、単に「合計流量」という場合がある)が、所定の閾値以下になるように、遅延期間が設定される。また、閾値が、第1のバルブの閉動作の開始直前における、第1の処理液の吐出流量より低い値である。合計流量がこのような閾値以下に設けられているので、第1の処理液と第2の処理液との干渉によって基板上で大きな液跳ねが生じない。そのため、第1の処理液処理から第2の処理液処理への移行時における液跳ねの発生を抑制または防止できる。 According to this configuration, the period during which the first processing liquid is discharged from the first nozzle and the period during which the second processing liquid is discharged from the second nozzle overlap. At this time, the discharge flow rate of the first treatment liquid and the second flow rate at the timing when the discharge flow rate of the first treatment liquid from the first nozzle matches the discharge flow rate of the second treatment liquid from the second nozzle. The delay period is set so that the total flow rate with the processing liquid discharge flow rate (hereinafter, simply referred to as “total flow rate”) is less than or equal to a predetermined threshold value. The threshold value is lower than the discharge flow rate of the first processing liquid immediately before the start of the closing operation of the first valve. Since the total flow rate is set to be equal to or less than such a threshold value, a large liquid splash does not occur on the substrate due to the interference between the first processing liquid and the second processing liquid. Therefore, it is possible to suppress or prevent the occurrence of liquid splash at the time of transition from the first treatment liquid treatment to the second treatment liquid treatment.
 この実施形態では、前記遅延期間が、前記第1のバルブの閉動作の開始後における第1の処理液の吐出流量の推移についての第1の流量推移情報と、前記第2のバルブの開動作の開始後における第2の処理液の吐出流量の推移についての第2の流量推移情報とに基づいて、前記合計流量が前記閾値以下になるように設けられている。 In this embodiment, the delay period includes the first flow rate transition information about the transition of the discharge flow rate of the first processing liquid after the start of the closing operation of the first valve, and the opening operation of the second valve. Based on the second flow rate transition information about the transition of the discharge flow rate of the second processing liquid after the start of the above, the total flow rate is provided to be equal to or less than the threshold value.
 この構成によれば、第1の流量推移情報および第2の流量推移情報は、処理を実行する基板処理装置ごとに、または、その処理条件ごとに異なる。そして、これら第1の流量推移情報および第2の流量推移情報に基づいて、合計流量が閾値以下になるような遅延期間が設けられるので、基板処理装置や処理条件に対応した良好な遅延期間を容易に設けることができる。 According to this configuration, the first flow rate transition information and the second flow rate transition information are different for each substrate processing apparatus that performs processing or for each processing condition. Since a delay period is provided so that the total flow rate is equal to or less than the threshold value based on the first flow rate transition information and the second flow rate transition information, a good delay period corresponding to the substrate processing apparatus and processing conditions is provided. It can be easily provided.
 前記閾値が、前記基板処理装置を用いた実験によって求められた値であってもよい。 The threshold value may be a value obtained by an experiment using the substrate processing apparatus.
 この発明の一実施形態では、予め定められた期間が前記遅延期間として記憶ユニットに記憶されていてもよい。この場合、前記制御装置が、前記記憶ユニットに記憶されている遅延期間に基づいて前記第2の開動作工程を実行してもよい。 In one embodiment of the present invention, a predetermined period may be stored in the storage unit as the delay period. In this case, the control device may execute the second opening operation step based on a delay period stored in the storage unit.
 この発明の一実施形態では、前記第1の処理液が、疎水化剤および有機溶剤の一方を含み、前記第2の処理液が、疎水化剤および有機溶剤の他方を含んでいてもよい。 In one embodiment of the present invention, the first treatment liquid may include one of a hydrophobizing agent and an organic solvent, and the second treatment liquid may include the other of the hydrophobizing agent and the organic solvent.
 この場合、第1のノズルから、疎水化剤および有機溶剤の一方が吐出されている状態において、開状態にある第1のバルブが閉じられる。また、第1のバルブの閉動作の開始から遅延期間の経過後、疎水化剤および有機溶剤の一方の、第1のノズルからの吐出が完全には停止していない状態で第2のバルブの開動作が開始される。これにより、第2のノズルから、疎水化剤および有機溶剤の他方が吐出される。 In this case, in a state where one of the hydrophobizing agent and the organic solvent is discharged from the first nozzle, the first valve in the open state is closed. In addition, after the lapse of the delay period from the start of the closing operation of the first valve, the discharge of the one of the hydrophobizing agent and the organic solvent from the first nozzle is not completely stopped. Opening operation is started. As a result, the other of the hydrophobizing agent and the organic solvent is discharged from the second nozzle.
 第2のバルブの開動作の開始が第1のバルブの閉動作の開始よりも遅れるので、疎水化剤と有機溶剤とが基板上で干渉する期間が短い。そのため、疎水化剤と有機溶剤との干渉に伴う液跳ねや大きな液乱れの発生を抑制または防止できる。 Since the start of the opening operation of the second valve is delayed from the start of the closing operation of the first valve, the period during which the hydrophobizing agent and the organic solvent interfere on the substrate is short. For this reason, it is possible to suppress or prevent the occurrence of liquid splash and large liquid disturbance associated with interference between the hydrophobizing agent and the organic solvent.
 また、疎水化剤および有機溶剤の一方の、第1のノズルからの吐出が完全には停止していないタイミングで第2のバルブの開動作が開始されるので、疎水化剤および有機溶剤の他方が供給されるまでの間に、疎水化剤および有機溶剤の一方が基板上において乾燥することを抑制または防止できる。 In addition, since the opening operation of the second valve is started at the timing when one of the hydrophobizing agent and the organic solvent is not completely stopped from being discharged from the first nozzle, the other of the hydrophobizing agent and the organic solvent Until one of the hydrophobizing agent and the organic solvent is dried on the substrate.
 これにより、疎水化剤と有機溶剤との干渉に起因する液跳ねの発生を抑制または防止し、かつ、疎水化剤および有機溶剤の一方の基板での乾燥を抑制または防止しながら、疎水化剤および有機溶剤の一方を用いた処理から、疎水化剤および有機溶剤の他方を用いた処理に移行させることができる。 This suppresses or prevents the occurrence of liquid splash due to interference between the hydrophobizing agent and the organic solvent, and suppresses or prevents drying of the hydrophobizing agent and the organic solvent on one of the substrates. And a treatment using one of the organic solvent and a treatment using the other of the hydrophobizing agent and the organic solvent.
 この発明の第2の局面は、基板を保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板に向けて、第1の処理液を吐出するための第1のノズルと、前記第1のノズルに第1の処理液を供給する第1の配管と、前記第1の配管を開閉する第1のバルブと、前記基板保持ユニットに保持されている基板に向けて、第2の処理液を吐出するための第2のノズルと、前記第2のノズルに対して第2の処理液を供給する第2の配管と、前記第2の配管を開閉する第2のバルブと、前記第1のバルブの閉動作の開始から前記第2のバルブの開動作の開始までの遅延期間を設定する遅延期間設定ユニットとを含み、前記遅延期間設定ユニットが、前記第1のバルブの閉動作の開始後における前記第1のノズルからの第1の処理液の吐出流量の推移についての第1の流量推移情報と、前記第2のバルブの開動作の開始後における前記第2のノズルからの第2の処理液の吐出流量の推移についての第2の流量推移情報とに基づいて前記遅延期間を算出し、前記遅延期間を設定する、基板処理装置を提供する。 According to a second aspect of the present invention, there is provided a substrate holding unit for holding a substrate, a first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit, and the first A first pipe for supplying a first processing liquid to one nozzle, a first valve for opening and closing the first pipe, and a second process toward the substrate held by the substrate holding unit. A second nozzle for discharging a liquid, a second pipe for supplying a second processing liquid to the second nozzle, a second valve for opening and closing the second pipe, and the second A delay period setting unit for setting a delay period from the start of the closing operation of the first valve to the start of the opening operation of the second valve, wherein the delay period setting unit is configured to perform the closing operation of the first valve. Discharge of the first processing liquid from the first nozzle after the start First flow rate transition information about the flow rate transition and second flow rate transition information about the transition of the discharge flow rate of the second processing liquid from the second nozzle after the start of the opening operation of the second valve. A substrate processing apparatus is provided that calculates the delay period based on and sets the delay period.
 この構成によれば、基板処理装置が、第1のバルブの閉動作の開始から第2の開動作工程の開始までの遅延期間を設定する遅延期間設定ユニットを備えている。第1の流量推移情報および第2の流量推移情報は、処理を実行する基板処理装置ごとに、または、その処理条件ごとに異なる。そして、これら第1の流量推移情報および第2の流量推移情報に基づいて、合計流量が閾値以下になるような遅延期間が設けられるので、基板処理装置や処理条件に対応した良好な遅延期間を容易に設けることができる。 According to this configuration, the substrate processing apparatus includes the delay period setting unit that sets the delay period from the start of the closing operation of the first valve to the start of the second opening operation step. The first flow rate transition information and the second flow rate transition information are different for each substrate processing apparatus that performs processing or for each processing condition. Since a delay period is provided so that the total flow rate is equal to or less than the threshold value based on the first flow rate transition information and the second flow rate transition information, a good delay period corresponding to the substrate processing apparatus and processing conditions is provided. It can be easily provided.
 この発明の一実施形態では、前記第1の流量推移情報および前記第2の流量推移情報を取得するために、前記第1のバルブおよび前記第2のバルブの開閉を制御する情報取得制御装置をさらに含み、前記遅延期間設定ユニットが、取得された前記第1の流量推移情報および前記第2の流量推移情報に基づいて前記遅延期間を設定する。 In one embodiment of the present invention, an information acquisition control device that controls opening and closing of the first valve and the second valve in order to acquire the first flow rate transition information and the second flow rate transition information. In addition, the delay period setting unit sets the delay period based on the acquired first flow rate transition information and second flow rate transition information.
 この構成によれば、第1のバルブおよび第2のバルブを実際に開閉して行う事前実験等に基づいて、情報取得制御装置が、当該基板処理装置に対応する第1の流量推移情報および第2の流量推移情報を取得する。そして、取得された第1の流量推移情報および第2の流量推移情報に基づいて、遅延期間が設定される。第1の流量推移情報および第2の流量推移情報が、当該基板処理装置における実測に基づく情報であるので、基板処理装置の個体差が排除された、良好な遅延期間を設定できる。 According to this configuration, the information acquisition control device, based on a preliminary experiment performed by actually opening and closing the first valve and the second valve, the first flow rate transition information corresponding to the substrate processing apparatus and the first flow rate information. The flow rate transition information of 2 is acquired. Then, a delay period is set based on the acquired first flow rate transition information and second flow rate transition information. Since the first flow rate transition information and the second flow rate transition information are information based on actual measurement in the substrate processing apparatus, it is possible to set a favorable delay period in which individual differences of the substrate processing apparatuses are excluded.
 この発明の一実施形態では、前記第1の流量推移情報および前記第2の流量推移情報を取得するために、前記第1のバルブおよび前記第2のバルブの開閉を制御する情報取得制御装置と、第1の処理液の吐出流量を計測する流量計と、前記流量計によって計測されている吐出流量と、取得された前記第1の流量推移情報とに基づいて第1の処理液の吐出流量の将来の推移を予測する予測ユニットとをさらに含み、前記遅延期間設定ユニットが、前記予測ユニットによって予測された前記将来の推移、および取得された前記第2の流量推移情報に基づいて前記遅延期間を設定する。 In one embodiment of the present invention, an information acquisition control device that controls opening and closing of the first valve and the second valve in order to acquire the first flow rate transition information and the second flow rate transition information; , A flow meter for measuring the discharge flow rate of the first processing liquid, the discharge flow rate measured by the flow meter, and the discharge flow rate of the first processing liquid based on the acquired first flow rate transition information A prediction unit that predicts the future transition of the delay period, and the delay period setting unit is configured to delay the delay period based on the future transition predicted by the prediction unit and the acquired second flow rate transition information. Set.
 この構成によれば、計測している現在の第1の処理液の吐出流量に基づいて、第1の処理液の吐出流量の将来の推移が予測される。そして、予測された第1の流量推移情報と、取得した第2の流量推移情報とに基づいて、基板処理の進行に並行して遅延期間が設定される。これにより、進行中の基板処理の処理条件に最も適した良好な遅延期間を設定することが可能である。 According to this configuration, the future transition of the discharge flow rate of the first processing liquid is predicted based on the current discharge flow rate of the first processing liquid being measured. Then, a delay period is set in parallel with the progress of the substrate processing based on the predicted first flow rate transition information and the acquired second flow rate transition information. Thereby, it is possible to set a good delay period most suitable for the processing conditions of the ongoing substrate processing.
 この発明の一実施形態では、前記遅延期間設定ユニットが、前記第1の流量推移情報と前記第2の流量推移情報とに基づいて、第1の処理液の吐出流量と第2の処理液の吐出流量とが一致する状態における、当該第1の処理液の吐出流量と当該第2の処理液の吐出流量との合計流量が閾値以下になるように前記遅延期間を設定する。 In one embodiment of the present invention, the delay period setting unit is configured to determine the discharge flow rate of the first processing liquid and the second processing liquid based on the first flow rate transition information and the second flow rate transition information. The delay period is set so that the total flow rate of the discharge flow rate of the first treatment liquid and the discharge flow rate of the second treatment liquid in a state where the discharge flow rate is equal to or less than a threshold value.
 この構成によれば、第1のノズルから第1の処理液が吐出される期間と、第2のノズルから第2の処理液が吐出される期間とは重複する。このとき、第1のノズルからの第1の処理液の吐出流量と第2のノズルからの第2の処理液の吐出流量とが一致するタイミングにおける、第1の処理液の吐出流量と第2の処理液の吐出流量との合計流量が、所定の閾値以下になるように、遅延期間が設定される。また、閾値が、第1のバルブの閉動作の開始直前における、第1の処理液の吐出流量より低い値である。合計流量がこのような閾値以下に設けられているので、第1の処理液と第2の処理液との干渉によって基板上で大きな液跳ねが生じない。そのため、第1の処理液処理から第2の処理液処理への移行時における液跳ねの発生を抑制または防止できる。 According to this configuration, the period during which the first processing liquid is discharged from the first nozzle and the period during which the second processing liquid is discharged from the second nozzle overlap. At this time, the discharge flow rate of the first treatment liquid and the second flow rate at the timing when the discharge flow rate of the first treatment liquid from the first nozzle matches the discharge flow rate of the second treatment liquid from the second nozzle. The delay period is set so that the total flow rate with the treatment liquid discharge flow rate is equal to or less than a predetermined threshold. The threshold value is lower than the discharge flow rate of the first processing liquid immediately before the start of the closing operation of the first valve. Since the total flow rate is set to be equal to or less than such a threshold value, a large liquid splash does not occur on the substrate due to the interference between the first processing liquid and the second processing liquid. Therefore, it is possible to suppress or prevent the occurrence of liquid splash at the time of transition from the first treatment liquid treatment to the second treatment liquid treatment.
 この発明の一実施形態では、前記遅延期間設定ユニットが、前記合計流量が閾値以下になる期間のうち最も短い期間を、前記遅延期間として設定する。 In one embodiment of the present invention, the delay period setting unit sets the shortest period among the periods in which the total flow rate is equal to or less than a threshold as the delay period.
 この構成によれば、合計流量が閾値以下になる期間のうち最も短い期間が遅延期間として設定される。これにより、基板に液切れさせることなく、第1の処理液処理から第2の処理液処理に移行させることが可能である。 According to this configuration, the shortest period among the periods in which the total flow rate is equal to or less than the threshold is set as the delay period. Thereby, it is possible to shift from the first processing liquid processing to the second processing liquid processing without causing the substrate to run out of liquid.
 前記閾値が、前記基板処理装置を用いた実験によって求められた値であってもよい。 The threshold value may be a value obtained by an experiment using the substrate processing apparatus.
 前記基板における前記第2のノズルからの第2の処理液の着液位置が、前記基板における前記第1のノズルからの第1の処理液の着液位置と接近していてもよい。 The landing position of the second processing liquid from the second nozzle on the substrate may be close to the landing position of the first processing liquid from the first nozzle on the substrate.
 この発明の第3の局面は、 基板を保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板に向けて、第1の処理液を吐出するための第1のノズルと、前記第1のノズルに第1の処理液を供給する第1の配管と、前記第1の配管を開閉する第1のバルブと、前記第1のノズルとは別のノズルであって、前記基板保持ユニットに保持されている基板に向けて、第2の処理液を吐出するための第2のノズルと、前記第2のノズルに対して第2の処理液を供給する第2の配管と、前記第2の配管を開閉する第2のバルブとを含む基板処理装置において実行される基板処理方法であって、前記第1のノズルから第1の処理液が吐出されている状態において、開状態にある前記第1のバルブを閉じる第1の閉動作工程と、前記第1のバルブの閉動作の開始から遅延期間の経過後、前記第1のノズルからの第1の処理液の吐出が完全には停止していない状態で前記第2のバルブの開動作を開始する第2の開動作工程とを含む、基板処理方法を提供する。 According to a third aspect of the present invention, there is provided a substrate holding unit for holding a substrate, a first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit, and the first A first pipe for supplying a first processing liquid to one nozzle, a first valve for opening and closing the first pipe, and a nozzle different from the first nozzle, wherein the substrate holding unit A second nozzle for discharging a second processing liquid toward the substrate held on the substrate, a second pipe for supplying the second processing liquid to the second nozzle, and the second nozzle A substrate processing method executed in a substrate processing apparatus including a second valve that opens and closes a second pipe, wherein the first processing liquid is discharged from the first nozzle and is in an open state. A first closing operation step of closing the first valve; After the elapse of the delay period from the start of the valve closing operation, the second valve opening operation is started in a state where the discharge of the first processing liquid from the first nozzle is not completely stopped. And a substrate processing method including the opening operation step.
 この方法によれば、第1のバルブの閉動作の開始から遅延期間の経過後、第1のノズルからの第1の処理液の吐出が完全には停止していない状態で第2のバルブの開動作が開始される。第2のバルブの開動作の開始が第1のバルブの閉動作の開始よりも遅れるので、吐出された第1の処理液と、吐出された第2の処理液とが干渉する期間が短い。そのため、第1の処理液と第2の処理液との干渉に伴う液跳ねや大きな液乱れの発生を抑制または防止できる。また、第1のノズルからの第1の処理液の吐出が完全には停止していないタイミングで第2のバルブの開動作が開始されるので、基板への処理液の供給を途絶えさせることなく連続的に行うことができる。そのため、基板において液切れが生じない。これらにより、第1の処理液と第2の処理液との干渉に起因する液跳ねの発生を抑制または防止しながら、かつ基板に液切れさせることなく、第1の処理液処理から第2の処理液処理に移行させることができる。 According to this method, after the lapse of the delay period from the start of the closing operation of the first valve, the discharge of the first processing liquid from the first nozzle is not completely stopped. Opening operation is started. Since the start of the opening operation of the second valve is delayed from the start of the closing operation of the first valve, the period during which the discharged first processing liquid and the discharged second processing liquid interfere with each other is short. Therefore, it is possible to suppress or prevent the occurrence of liquid splash and large liquid disturbance due to interference between the first processing liquid and the second processing liquid. In addition, since the opening operation of the second valve is started at the timing when the discharge of the first processing liquid from the first nozzle is not completely stopped, the supply of the processing liquid to the substrate is not interrupted. Can be done continuously. For this reason, the substrate does not run out of liquid. As a result, while suppressing or preventing the occurrence of liquid splash due to the interference between the first treatment liquid and the second treatment liquid, and without causing the substrate to run out, the second treatment liquid can be removed from the first treatment liquid treatment. It is possible to shift to treatment liquid treatment.
 この発明の一実施形態では、前記遅延期間が、前記第1のノズルからの第1の処理液の吐出流量と前記第2のノズルからの第2の処理液の吐出流量とが一致する状態における、当該第1の処理液の流量と当該第2の処理液の流量との合計流量が所定の閾値以下になるように設けられており、前記所定の閾値が、第1の処理液の吐出流量よりも低い値である。 In one embodiment of the present invention, the delay period is such that the discharge flow rate of the first processing liquid from the first nozzle matches the discharge flow rate of the second processing liquid from the second nozzle. The total flow rate of the flow rate of the first treatment liquid and the flow rate of the second treatment liquid is set to be equal to or less than a predetermined threshold value, and the predetermined threshold value is a discharge flow rate of the first treatment liquid. Is a lower value.
 この方法によれば、第1のノズルから第1の処理液が吐出される期間と、第2のノズルから第2の処理液が吐出される期間とは重複する。このとき、第1のノズルからの第1の処理液の吐出流量と第2のノズルからの第2の処理液の吐出流量とが一致するタイミングにおける、第1の処理液の吐出流量と第2の処理液の吐出流量との合計流量が、所定の閾値以下になるように、遅延期間が設定される。また、閾値が、第1のバルブの閉動作の開始直前における、第1の処理液の吐出流量より低い値である。合計流量がこのような閾値以下に設けられているので、第1の処理液と第2の処理液との干渉によって基板上で大きな液跳ねが生じない。そのため、第1の処理液処理から第2の処理液処理への移行時における液跳ねの発生を抑制または防止できる。 According to this method, the period during which the first processing liquid is discharged from the first nozzle overlaps with the period during which the second processing liquid is discharged from the second nozzle. At this time, the discharge flow rate of the first treatment liquid and the second flow rate at the timing when the discharge flow rate of the first treatment liquid from the first nozzle matches the discharge flow rate of the second treatment liquid from the second nozzle. The delay period is set so that the total flow rate with the treatment liquid discharge flow rate is equal to or less than a predetermined threshold. The threshold value is lower than the discharge flow rate of the first processing liquid immediately before the start of the closing operation of the first valve. Since the total flow rate is set to be equal to or less than such a threshold value, a large liquid splash does not occur on the substrate due to the interference between the first processing liquid and the second processing liquid. Therefore, it is possible to suppress or prevent the occurrence of liquid splash at the time of transition from the first treatment liquid treatment to the second treatment liquid treatment.
 この発明の一実施形態では、前記遅延期間が、前記第1のバルブの閉動作の開始後における第1の処理液の吐出流量の推移についての第1の流量推移情報と、前記第2のバルブの開動作の開始後における第2の処理液の吐出流量の推移についての第2の流量推移情報とに基づいて、前記閾値以下になるように設けられている。 In one embodiment of the present invention, the delay period includes first flow rate transition information about a transition of the discharge flow rate of the first processing liquid after the start of the closing operation of the first valve, and the second valve. And the second flow rate transition information about the transition of the discharge flow rate of the second processing liquid after the start of the opening operation.
 この方法によれば、第1の流量推移情報および第2の流量推移情報は、処理を実行する基板処理装置ごとに、または、その処理条件ごとに異なる。そして、これら第1の流量推移情報および第2の流量推移情報に基づいて、合計流量が閾値以下になるような遅延期間が設けられるので、基板処理装置や処理条件に対応した良好な遅延期間を容易に設けることができる。 According to this method, the first flow rate transition information and the second flow rate transition information are different for each substrate processing apparatus that performs processing or for each processing condition. Since a delay period is provided so that the total flow rate is equal to or less than the threshold value based on the first flow rate transition information and the second flow rate transition information, a good delay period corresponding to the substrate processing apparatus and processing conditions is provided. It can be easily provided.
 前記第1の処理液が、疎水化剤および有機溶剤の一方を含み、前記第2の処理液が、疎水化剤および有機溶剤の他方を含んでいてもよい。 The first treatment liquid may contain one of a hydrophobizing agent and an organic solvent, and the second treatment liquid may contain the other of a hydrophobizing agent and an organic solvent.
 この場合、第1のノズルから、疎水化剤および有機溶剤の一方が吐出されている状態において、開状態にある第1のバルブが閉じられる。また、第1のバルブの閉動作の開始から遅延期間の経過後、疎水化剤および有機溶剤の一方の、第1のノズルからの吐出が完全には停止していない状態で第2のバルブの開動作が開始される。これにより、第2のノズルから、疎水化剤および有機溶剤の他方が吐出される。 In this case, in a state where one of the hydrophobizing agent and the organic solvent is discharged from the first nozzle, the first valve in the open state is closed. In addition, after the lapse of the delay period from the start of the closing operation of the first valve, the discharge of the one of the hydrophobizing agent and the organic solvent from the first nozzle is not completely stopped. Opening operation is started. As a result, the other of the hydrophobizing agent and the organic solvent is discharged from the second nozzle.
 第2のバルブの開動作の開始が第1のバルブの閉動作の開始よりも遅れるので、疎水化剤と有機溶剤とが基板上で干渉する期間が短い。そのため、疎水化剤と有機溶剤との干渉に伴う液跳ねや大きな液乱れの発生を抑制または防止できる。 Since the start of the opening operation of the second valve is delayed from the start of the closing operation of the first valve, the period during which the hydrophobizing agent and the organic solvent interfere on the substrate is short. For this reason, it is possible to suppress or prevent the occurrence of liquid splash and large liquid disturbance associated with interference between the hydrophobizing agent and the organic solvent.
 また、疎水化剤および有機溶剤の一方の、第1のノズルからの吐出が完全には停止していないタイミングで第2のバルブの開動作が開始されるので、疎水化剤および有機溶剤の他方が供給されるまでの間に、疎水化剤および有機溶剤の一方が基板上において乾燥することを抑制または防止できる。 In addition, since the opening operation of the second valve is started at the timing when one of the hydrophobizing agent and the organic solvent is not completely stopped from being discharged from the first nozzle, the other of the hydrophobizing agent and the organic solvent Until one of the hydrophobizing agent and the organic solvent is dried on the substrate.
 これにより、疎水化剤と有機溶剤との干渉に起因する液跳ねの発生を抑制または防止し、かつ、疎水化剤および有機溶剤の一方の基板での乾燥を抑制または防止しながら、疎水化剤および有機溶剤の一方を用いた処理から、疎水化剤および有機溶剤の他方を用いた処理に移行させることができる。 This suppresses or prevents the occurrence of liquid splash due to interference between the hydrophobizing agent and the organic solvent, and suppresses or prevents drying of the hydrophobizing agent and the organic solvent on one of the substrates. And a treatment using one of the organic solvent and a treatment using the other of the hydrophobizing agent and the organic solvent.
 この発明の第4の局面は、基板を保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板に向けて、第1の処理液を吐出するための第1のノズルと、前記第1のノズルに第1の処理液を供給する第1の配管と、前記第1の配管を開閉する第1のバルブと、前記基板保持ユニットに保持されている基板に向けて、第2の処理液を吐出するための第2のノズルと、前記第2のノズルに対して第2の処理液を供給する第2の配管と、前記第2の配管を開閉する第2のバルブとを含む基板処理装置において、前記第1のバルブの閉動作の開始から前記第2のバルブの開動作の開始までの遅延期間を設定する遅延期間設定方法であって、前記遅延期間が、前記第1のバルブの閉動作の開始後における前記第1のノズルからの第1の処理液の吐出流量の推移についての第1の流量推移情報と、前記第2のバルブの開動作の開始後における前記第2のノズルからの第2の処理液の吐出流量の推移についての第2の流量推移情報とに基づいて、第1の処理液の吐出流量と第2の処理液の吐出流量とが一致する状態における、当該第1の処理液の吐出流量と当該第2の処理液の吐出流量との合計流量が閾値以下になる期間を算出し、その期間を前記遅延期間として設定する、遅延期間設定方法を提供する。 According to a fourth aspect of the present invention, there is provided a substrate holding unit for holding a substrate, a first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit, and the first A first pipe for supplying a first processing liquid to one nozzle, a first valve for opening and closing the first pipe, and a second process toward the substrate held by the substrate holding unit. A substrate including a second nozzle for discharging a liquid, a second pipe for supplying a second processing liquid to the second nozzle, and a second valve for opening and closing the second pipe In the processing apparatus, a delay period setting method for setting a delay period from the start of the closing operation of the first valve to the start of the opening operation of the second valve, wherein the delay period is the first valve. The first nozzle from the first nozzle after the start of the closing operation of The first flow rate transition information about the transition of the discharge flow rate of the chemical liquid and the second about the transition of the discharge flow rate of the second processing liquid from the second nozzle after the start of the opening operation of the second valve. On the basis of the flow rate transition information of the first treatment liquid and the discharge flow rate of the second treatment liquid when the discharge flow rate of the first treatment liquid and the discharge flow rate of the second treatment liquid coincide with each other. There is provided a delay period setting method for calculating a period during which a total flow rate with a discharge flow rate is equal to or less than a threshold and setting the period as the delay period.
 この方法によれば、遅延期間設定方法が、第1のバルブの閉動作の開始から第2の開動作工程の開始までの遅延期間を設定する。第1の流量推移情報および第2の流量推移情報は、処理を実行する基板処理装置ごとに、または、その処理条件ごとに異なる。そして、これら第1の流量推移情報および第2の流量推移情報に基づいて、合計流量が閾値以下になるような遅延期間が設けられるので、基板処理装置や処理条件に対応した良好な遅延期間を容易に設けることができる。 According to this method, the delay period setting method sets a delay period from the start of the first valve closing operation to the start of the second opening operation step. The first flow rate transition information and the second flow rate transition information are different for each substrate processing apparatus that performs processing or for each processing condition. Since a delay period is provided so that the total flow rate is equal to or less than the threshold value based on the first flow rate transition information and the second flow rate transition information, a good delay period corresponding to the substrate processing apparatus and processing conditions is provided. It can be easily provided.
 この発明の一実施形態では、前記遅延期間設定方法が、前記合計流量が閾値以下になる期間のうち最も短い期間を、前記遅延期間として設定する。 In one embodiment of the present invention, the delay period setting method sets the shortest period among the periods in which the total flow rate is equal to or less than a threshold as the delay period.
 この方法によれば、合計流量が閾値以下になる期間のうち最も短い期間が遅延期間として設定される。これにより、基板に液切れさせることなく、第1の処理液処理から第2の処理液処理に移行させることが可能である。 According to this method, the shortest period among the periods in which the total flow rate is equal to or less than the threshold is set as the delay period. Thereby, it is possible to shift from the first processing liquid processing to the second processing liquid processing without causing the substrate to run out of liquid.
 この発明の第5の局面は、第1のノズルに第1の処理液を供給するための第1の配管を開閉する第1のバルブの閉動作の開始から、前記第1のノズルとは別のノズルである第2のノズルに第2の処理液を供給するための第2の配管を開閉する第2のバルブの開動作の開始までの遅延期間を設定する遅延期間設定方法を実行させるためのプログラムであって、前記遅延期間設定方法が、前記遅延期間が、前記第1のバルブの閉動作の開始後における前記第1のノズルからの第1の処理液の吐出流量の推移についての第1の流量推移情報と、前記第2のバルブの開動作の開始後における前記第2のノズルからの第2の処理液の吐出流量の推移についての第2の流量推移情報とに基づいて、第1の処理液の吐出流量と第2の処理液の吐出流量とが一致する状態における、当該第1の処理液の吐出流量と当該第2の処理液の吐出流量との合計流量が閾値以下になる期間を算出し、その期間を前記遅延期間として設定する、プログラムを提供する。 The fifth aspect of the present invention is different from the first nozzle from the start of the closing operation of the first valve for opening and closing the first pipe for supplying the first processing liquid to the first nozzle. In order to execute a delay period setting method for setting a delay period until the start of the opening operation of the second valve that opens and closes the second pipe for opening and closing the second pipe for supplying the second processing liquid to the second nozzle that is the first nozzle The delay period setting method is a program for changing the discharge flow rate of the first processing liquid from the first nozzle after the delay period starts the closing operation of the first valve. First flow rate transition information and second flow rate transition information about the transition of the discharge flow rate of the second processing liquid from the second nozzle after the start of the opening operation of the second valve. The discharge flow rate of the first treatment liquid and the discharge flow rate of the second treatment liquid are A program for calculating a period in which a total flow rate of the discharge flow rate of the first treatment liquid and the discharge flow rate of the second treatment liquid is equal to or less than a threshold in a matching state, and setting the period as the delay period provide.
 この方法によれば、遅延期間設定方法が、第1のバルブの閉動作の開始から第2の開動作工程の開始までの遅延期間を設定する。第1の流量推移情報および第2の流量推移情報は、処理を実行する基板処理装置ごとに、または、その処理条件ごとに異なる。そして、これら第1の流量推移情報および第2の流量推移情報に基づいて、合計流量が閾値以下になるような遅延期間が設けられるので、基板処理装置や処理条件に対応した良好な遅延期間を容易に設けることができる。 According to this method, the delay period setting method sets a delay period from the start of the first valve closing operation to the start of the second opening operation step. The first flow rate transition information and the second flow rate transition information are different for each substrate processing apparatus that performs processing or for each processing condition. Since a delay period is provided so that the total flow rate is equal to or less than the threshold value based on the first flow rate transition information and the second flow rate transition information, a good delay period corresponding to the substrate processing apparatus and processing conditions is provided. It can be easily provided.
 プログラム(コンピュータプログラム)は、コンピュータによる読み取りが可能な記録媒体に記録されて提供されてもよい。このような記録媒体は、コンピュータに備えられた記録媒体であってもよいし、コンピュータとは別の記録媒体であってもよい。また、プログラムは、通信回線を介する通信によって提供されてもよい。通信回線は、一部または全部が無線回線であってもよい。 The program (computer program) may be provided by being recorded on a computer-readable recording medium. Such a recording medium may be a recording medium provided in the computer, or may be a recording medium different from the computer. The program may be provided by communication via a communication line. A part or all of the communication line may be a wireless line.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
図1は、この発明の第1の実施形態に係る基板処理装置を上から見た模式図である。FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above. 図2は、前記基板処理装置に備えられた処理ユニットの内部を水平方向に見た模式図である。FIG. 2 is a schematic view of the inside of the processing unit provided in the substrate processing apparatus as viewed in the horizontal direction. 図3は、共通ノズルの構成例を説明するための模式的な縦断面図である。FIG. 3 is a schematic longitudinal sectional view for explaining a configuration example of the common nozzle. 図4は、前記基板処理装置の主要部の電気的構成を説明するためのブロック図である。FIG. 4 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus. 図5は、前記基板処理装置の処理対象の基板の表面を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing the surface of a substrate to be processed by the substrate processing apparatus. 図6は、前記基板処理装置による基板処理例を説明するための流れ図である。FIG. 6 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus. 図7は、IPA供給工程から疎水化剤供給工程への移行時における基板を水平に見た模式図である。FIG. 7 is a schematic view of the substrate viewed horizontally from the IPA supply process to the hydrophobizing agent supply process. 図8は、IPA供給工程から疎水化剤供給工程への移行時における、バブルの開閉およびバルブにおける処理液の流通流量の推移を示す図である。FIG. 8 is a diagram showing the transition of the flow rate of the treatment liquid in the valve opening and closing and the valve during the transition from the IPA supply process to the hydrophobizing agent supply process. 図9は、図8の要部を拡大した図である。FIG. 9 is an enlarged view of a main part of FIG. 図10は、参考形態に係る、前記疎水化剤供給工程への移行時における、バブルの開閉およびバルブにおける処理液の流通流量の推移を示す図である。FIG. 10 is a diagram showing the transition of the flow rate of the treatment liquid in the valve opening and closing and the valve during the transition to the hydrophobizing agent supply step according to the reference embodiment. 図11は、図10の要部を拡大した図である。FIG. 11 is an enlarged view of the main part of FIG. 図12は、閾値の決定を説明するための図である。FIG. 12 is a diagram for explaining threshold value determination. 図13は、閾値の決定を説明するための図である。FIG. 13 is a diagram for explaining threshold value determination. 図14は、第1の変形例を説明するための模式図である。FIG. 14 is a schematic diagram for explaining the first modification. 図15は、この発明の第2の実施形態に係る基板処理装置の主要部の電気的構成を説明するためのブロック図である。FIG. 15 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus according to the second embodiment of the present invention. 図16Aは、図15の記憶ユニットに記憶される立ち下がり流量推移パターンを説明するための図である。FIG. 16A is a diagram for explaining a falling flow rate transition pattern stored in the storage unit of FIG. 15. 図16Bは、図15の記憶ユニットに記憶される立ち上がり流量推移パターンを説明するための図である。FIG. 16B is a diagram for explaining the rising flow rate transition pattern stored in the storage unit of FIG. 15. 図16Cは、前記立ち下がり流量推移パターンと、前記立ち上がり流量推移パターンとのマッチングを説明するための図である。FIG. 16C is a diagram for explaining matching between the falling flow rate transition pattern and the rising flow rate transition pattern. 図17Aは、遅延期間設定を説明するための流れ図である。FIG. 17A is a flowchart for explaining delay period setting. 図17Bは、事前実験を説明するための流れ図である。FIG. 17B is a flowchart for explaining the preliminary experiment. 図18は、第2の変形例を説明するためのブロック図である。FIG. 18 is a block diagram for explaining a second modification. 図19は、第3の変形例に係る遅延期間設定を説明するための流れ図である。FIG. 19 is a flowchart for explaining delay period setting according to the third modification. 図20は、第3の変形例に係る遅延期間設定を説明するための模式図である。FIG. 20 is a schematic diagram for explaining the delay period setting according to the third modification.
 以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
<第1の実施形態>
 図1は、この発明の第1の実施形態に係る基板処理装置を上から見た模式図である。基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。基板処理装置1は、処理液およびリンス液で基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容する基板収容器Cが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送するインデクサロボットIRおよび基板搬送ロボットCRと、基板処理装置1を制御する制御装置3とを含む。インデクサロボットIRは、基板収容器Cと基板搬送ロボットCRとの間で基板Wを搬送する。基板搬送ロボットCRは、インデクサロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<First Embodiment>
FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above. The substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one. In this embodiment, the substrate W is a disk-shaped substrate. The substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid and a rinsing liquid, and a load port on which a substrate container C that stores a plurality of substrates W processed by the processing unit 2 is placed. LP, an indexer robot IR and a substrate transfer robot CR that transfer the substrate W between the load port LP and the processing unit 2, and a control device 3 that controls the substrate processing apparatus 1. The indexer robot IR transports the substrate W between the substrate container C and the substrate transport robot CR. The substrate transport robot CR transports the substrate W between the indexer robot IR and the processing unit 2. The plurality of processing units 2 have the same configuration, for example.
 図2は、処理ユニット2の構成例を説明するための図解的な断面図である。 FIG. 2 is a schematic cross-sectional view for explaining a configuration example of the processing unit 2.
 処理ユニット2は、箱形のチャンバ4と、チャンバ4内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック(基板保持ユニット)5と、スピンチャック5に保持されている基板Wの上面に薬液を供給するための薬液供給ユニット6と、スピンチャック5に保持されている基板Wの上面にリンス液を供給するためのリンス液供給ユニット7と、スピンチャック5に保持されている基板Wの上面に疎水化剤を吐出するための疎水化剤ノズル8と、疎水化剤ノズル8に液体の疎水化剤を供給するための疎水化剤配管9と、疎水化剤配管9を開閉する疎水化剤バルブ10と、スピンチャック5に保持されている基板Wの上面に有機溶剤を吐出するための有機溶剤ノズル11と、有機溶剤ノズル11に液体の有機溶剤を供給するための有機溶剤配管12と、有機溶剤配管12を開閉する有機溶剤バルブ13と、スピンチャック5を取り囲む筒状の処理カップ14とを含む。 The processing unit 2 includes a box-shaped chamber 4 and a spin chuck that holds a single substrate W in the chamber 4 in a horizontal posture and rotates the substrate W about a vertical rotation axis A1 passing through the center of the substrate W. (Substrate holding unit) 5, a chemical solution supply unit 6 for supplying a chemical solution to the upper surface of the substrate W held by the spin chuck 5, and a rinsing solution supplied to the upper surface of the substrate W held by the spin chuck 5 A rinsing liquid supply unit 7, a hydrophobizing agent nozzle 8 for discharging the hydrophobizing agent to the upper surface of the substrate W held by the spin chuck 5, and a liquid hydrophobizing agent in the hydrophobizing agent nozzle 8. Hydrophobizing agent pipe 9 for supplying, hydrophobizing agent valve 10 for opening and closing the hydrophobizing agent pipe 9, and an organic solvent nozzle 11 for discharging the organic solvent onto the upper surface of the substrate W held by the spin chuck 5. Includes an organic solvent pipe 12 for supplying the liquid organic solvent to the organic solvent nozzle 11, and an organic solvent valve 13 for opening and closing the organic solvent pipe 12, and a cylindrical processing cup 14 surrounding the spin chuck 5.
 チャンバ4は、スピンチャック5等を収容する箱型の隔壁15を含む。 The chamber 4 includes a box-shaped partition wall 15 that houses the spin chuck 5 and the like.
 スピンチャック5として、基板Wを水平方向に挟んで基板Wを水平に保持する挟持式のチャックが採用されている。具体的には、スピンチャック5は、スピンモータ(回転ユニット)16と、このスピンモータ16の駆動軸と一体化されたスピン軸17と、スピン軸17の上端に略水平に取り付けられた円板状のスピンベース18とを含む。 As the spin chuck 5, a clamping chuck that holds the substrate W horizontally with the substrate W held in the horizontal direction is employed. Specifically, the spin chuck 5 includes a spin motor (rotary unit) 16, a spin shaft 17 integrated with a drive shaft of the spin motor 16, and a disc attached to the upper end of the spin shaft 17 substantially horizontally. And a spin base 18 having a shape.
 スピンベース18は、基板Wの外径よりも大きな外径を有する水平な円形の上面18aを含む。上面18aには、その周縁部に複数個(3個以上。たとえば4個または6個)の挟持部材19が配置されている。複数個の挟持部材19は、スピンベース18の上面周縁部において、基板Wの外周形状に対応する円周上で適当な間隔を空けてたとえば等間隔に配置されている。 The spin base 18 includes a horizontal circular upper surface 18a having an outer diameter larger than the outer diameter of the substrate W. Plural (three or more, for example, four or six) clamping members 19 are arranged on the peripheral portion of the upper surface 18a. The plurality of sandwiching members 19 are arranged, for example, at equal intervals on the circumference corresponding to the outer peripheral shape of the substrate W at the periphery of the upper surface of the spin base 18.
 また、スピンチャック5としては、挟持式のものに限らず、たとえば、基板Wの裏面を真空吸着することにより、基板Wを水平な姿勢で保持し、さらにその状態で鉛直な回転軸線まわりに回転することにより、スピンチャック5に保持された基板Wを回転させる真空吸着式のもの(バキュームチャック)が採用されてもよい。 Further, the spin chuck 5 is not limited to a sandwich type, and for example, the substrate W is held in a horizontal posture by vacuum-sucking the back surface of the substrate W, and further rotated around a vertical rotation axis in that state. By doing so, a vacuum suction type (vacuum chuck) that rotates the substrate W held on the spin chuck 5 may be employed.
 薬液供給ユニット6は、スピンチャック5に保持されている基板Wの上面に向けて薬液を下方に吐出する薬液ノズル20と、薬液供給源からの薬液を薬液ノズル20に導く薬液配管21と、薬液配管21を開閉する薬液バルブ22とを含む。薬液は、たとえば、硫酸、酢酸、硝酸、塩酸、フッ酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸など)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイドなど)、および界面活性剤、腐食防止剤の少なくとも1つを含む液であってもよい。薬液バルブ22が開かれると、薬液配管21から薬液ノズル20に薬液が供給される。薬液バルブ22が閉じられると、薬液配管21から薬液ノズル20への薬液の供給が停止される。薬液ノズル20を移動させることにより、基板Wの上面に対する薬液の着液位置を、基板Wの上面中央部と、それ以外の部分(たとえば周縁部)との間で移動させる薬液ノズル移動装置を備えていてもよい。 The chemical solution supply unit 6 includes a chemical solution nozzle 20 that discharges the chemical solution downward toward the upper surface of the substrate W held by the spin chuck 5, a chemical solution pipe 21 that guides the chemical solution from the chemical solution supply source to the chemical solution nozzle 20, and a chemical solution. And a chemical liquid valve 22 for opening and closing the pipe 21. The chemical solution is, for example, sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, hydrogen peroxide, organic acid (eg, citric acid, oxalic acid, etc.), organic alkali (eg, TMAH: tetramethylammonium hydroxide, etc.), And a liquid containing at least one of a surfactant and a corrosion inhibitor. When the chemical solution valve 22 is opened, the chemical solution is supplied from the chemical solution pipe 21 to the chemical solution nozzle 20. When the chemical liquid valve 22 is closed, the supply of the chemical liquid from the chemical liquid pipe 21 to the chemical liquid nozzle 20 is stopped. By moving the chemical nozzle 20, a chemical nozzle moving device is provided that moves the liquid deposition position of the chemical relative to the upper surface of the substrate W between the central portion of the upper surface of the substrate W and other portions (for example, the peripheral portion). It may be.
 リンス液供給ユニット7は、スピンチャック5に保持されている基板Wの上面に向けてリンス液を下方に吐出するリンス液ノズル23と、リンス液供給源からのリンス液をリンス液ノズル23に導くリンス液配管24と、リンス液配管24を開閉するリンス液バルブ25とを含む。リンス液は、たとえば、純水(脱イオン水:Deionized water)である。 The rinsing liquid supply unit 7 discharges the rinsing liquid downward toward the upper surface of the substrate W held by the spin chuck 5, and guides the rinsing liquid from the rinsing liquid supply source to the rinsing liquid nozzle 23. A rinse liquid pipe 24 and a rinse liquid valve 25 that opens and closes the rinse liquid pipe 24 are included. The rinse liquid is, for example, pure water (deionized water).
 リンス液バルブ25が開かれると、リンス液配管24からリンス液ノズル23にリンス液が供給される。リンス液バルブ25が閉じられると、リンス液配管24からリンス液ノズル23へのリンス液の供給が停止される。リンス液は、純水に限らず、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10~100ppm程度)の塩酸水のいずれであってもよい。リンス液ノズル23を移動させることにより、基板Wの上面に対するリンス液の着液位置を、基板Wの上面中央部と、それ以外の部分(たとえば周縁部)との間で移動させるリンス液ノズル移動装置を備えていてもよい。 When the rinse liquid valve 25 is opened, the rinse liquid is supplied from the rinse liquid pipe 24 to the rinse liquid nozzle 23. When the rinse liquid valve 25 is closed, the supply of the rinse liquid from the rinse liquid pipe 24 to the rinse liquid nozzle 23 is stopped. The rinse liquid is not limited to pure water, but may be any of carbonated water, electrolytic ionic water, hydrogen water, ozone water, and hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm). Rinse liquid nozzle movement for moving the rinsing liquid landing position with respect to the upper surface of the substrate W between the central portion of the upper surface of the substrate W and other portions (for example, peripheral edge portions) by moving the rinsing liquid nozzle 23. An apparatus may be provided.
 疎水化剤配管9に供給される疎水化剤は、金属を疎水化するメタル系の疎水化剤である。疎水化剤は、配位性の高い疎水化剤である。すなわち、疎水化剤は、主として配位結合によって金属を疎水化する溶剤である。疎水化剤は、たとえば、疎水基を有するアミン、および有機シリコン化合物の少なくとも一つを含む。疎水化剤は、シリコン系の疎水化剤であってもよいし、メタル系の疎水化剤であってもよい。 The hydrophobizing agent supplied to the hydrophobizing agent pipe 9 is a metal hydrophobizing agent that hydrophobizes metals. The hydrophobizing agent is a highly coordinating hydrophobizing agent. That is, the hydrophobizing agent is a solvent that hydrophobizes the metal mainly through coordination bonds. The hydrophobizing agent includes, for example, at least one of an amine having a hydrophobic group and an organosilicon compound. The hydrophobizing agent may be a silicon-based hydrophobizing agent or a metal-based hydrophobizing agent.
  シリコン系の疎水化剤は、シリコン(Si)自体およびシリコンを含む化合物を疎水化させる疎水化剤である。シリコン系疎水化剤は、たとえば、シランカップリング剤である。シランカップリング剤は、たとえば、HMDS(ヘキサメチルジシラザン)、TMS(テトラメチルシラン)、フッ素化アルキルクロロシラン、アルキルジシラザン、および非クロロ系疎水化剤の少なくとも一つを含む。非クロロ系疎水化剤は、たとえば、ジメチルシリルジメチルアミン、ジメチルシリルジエチルアミン、ヘキサメチルジシラザン、テトラメチルジシラザン、ビス(ジメチルアミノ)ジメチルシラン、N,N-ジメチルアミノトリメチルシラン、N-(トリメチルシリル)ジメチルアミンおよびオルガノシラン化合物の少なくとも一つを含む。 Silicon hydrophobizing agents are hydrophobizing agents that hydrophobize silicon (Si) itself and silicon-containing compounds. The silicon hydrophobizing agent is, for example, a silane coupling agent. The silane coupling agent includes, for example, at least one of HMDS (hexamethyldisilazane), TMS (tetramethylsilane), fluorinated alkylchlorosilane, alkyldisilazane, and non-chlorohydrophobizing agent. Non-chloro hydrophobizing agents include, for example, dimethylsilyldimethylamine, dimethylsilyldiethylamine, hexamethyldisilazane, tetramethyldisilazane, bis (dimethylamino) dimethylsilane, N, N-dimethylaminotrimethylsilane, N- (trimethylsilyl) ) Containing at least one of dimethylamine and an organosilane compound.
 メタル系の疎水化剤は、たとえば高い配位性を有し、主として配位結合によって金属を疎水化する溶剤である。この疎水化剤は、たとえば、疎水基を有するアミン、および有機シリコン化合物の少なくとも一つを含む。 A metal-based hydrophobizing agent is a solvent that has a high coordination property, for example, and hydrophobizes the metal mainly through coordination bonds. The hydrophobizing agent includes, for example, at least one of an amine having a hydrophobic group and an organosilicon compound.
 より具体的には、疎水化剤として、たとえば、OSRA-A004、OSRA-7801、PK-HP-S、PK-HUS等を例示できる。 More specifically, examples of the hydrophobizing agent include OSRA-A004, OSRA-7801, PK-HP-S, and PK-HUS.
 疎水化剤バルブ10は、弁座が内部に設けられたバルブボディと、弁座を開閉する弁体と、開位置と閉位置との間で弁体を移動させるアクチュエータとを含む。 Hydrophobizing agent valve 10 includes a valve body in which a valve seat is provided, a valve body that opens and closes the valve seat, and an actuator that moves the valve body between an open position and a closed position.
 疎水化剤配管9には、その一次側、すなわち疎水化剤バルブ10の上流側に、疎水化剤配管9を流通する疎水化剤の流量を検出する疎水化剤流量計9Aが介装されている。 The hydrophobizing agent pipe 9 is provided with a hydrophobizing agent flow meter 9A for detecting the flow rate of the hydrophobizing agent flowing through the hydrophobizing agent pipe 9 on the primary side thereof, that is, upstream of the hydrophobizing agent valve 10. Yes.
 処理ユニット2は、疎水化剤配管9に介装された第1の吸引装置9Bを備えている。第1の吸引装置9Bは、たとえばダイヤフラム式の吸引装置である。ダイヤフラム式の吸引装置は、配管の途中部に介装される筒状のヘッドと、ヘッド内に収容されたダイヤフラムとを含み、ダイヤフラムの駆動により、ヘッド内に形成される流路の容積を変化させるような公知の構成の吸引装置である。図2の例では、第1の吸引装置9Bが疎水化剤バルブ10と別装置で構成されているが、疎水化剤バルブ10の一部を利用して設けられていてもよい。 The treatment unit 2 includes a first suction device 9B interposed in the hydrophobizing agent pipe 9. The first suction device 9B is, for example, a diaphragm type suction device. The diaphragm type suction device includes a cylindrical head interposed in the middle of the pipe and a diaphragm housed in the head, and changes the volume of the flow path formed in the head by driving the diaphragm. This is a suction device having a known configuration. In the example of FIG. 2, the first suction device 9 </ b> B is configured as a separate device from the hydrophobizing agent valve 10, but may be provided using a part of the hydrophobizing agent valve 10.
 有機溶剤配管12に供給される有機溶剤は、水よりも表面張力が低い溶剤である。有機溶剤は、水を含んでいてもよい。有機溶剤の具体例としては、アルコールや、フッ素系溶剤とアルコールの混合液が挙げられる。アルコールは、たとえば、メチルアルコール、エタノール、プロピルアルコール、およびIPAの少なくとも一つを含む。フッ素系溶剤は、たとえば、HFE(ハイドロフルオロエーテル)、HFC(ハイドロフルオロカーボン)の少なくとも一つを含む。以下の説明では、有機溶剤がIPAである場合を例に挙げる。 The organic solvent supplied to the organic solvent pipe 12 is a solvent having a surface tension lower than that of water. The organic solvent may contain water. Specific examples of the organic solvent include alcohol and a mixed solution of a fluorinated solvent and alcohol. The alcohol includes, for example, at least one of methyl alcohol, ethanol, propyl alcohol, and IPA. The fluorine-based solvent includes, for example, at least one of HFE (hydrofluoroether) and HFC (hydrofluorocarbon). In the following description, a case where the organic solvent is IPA is taken as an example.
 有機溶剤バルブ13は、弁座が内部に設けられたバルブボディと、弁座を開閉する弁体と、開位置と閉位置との間で弁体を移動させるアクチュエータとを含む。 The organic solvent valve 13 includes a valve body in which a valve seat is provided, a valve body that opens and closes the valve seat, and an actuator that moves the valve body between an open position and a closed position.
 有機溶剤配管12には、その一次側、すなわち有機溶剤バルブ13の上流側に、有機溶剤配管12を流通するIPAの流量を検出する有機溶剤流量計12Aが介装されている。流量計(疎水化剤流量計9A,有機溶剤流量計12A)が、配管(疎水化剤配管9,有機溶剤配管12)においてバルブ(疎水化剤バルブ10,有機溶剤バルブ13)の上流側に配置されているが、バルブ(疎水化剤バルブ10,有機溶剤バルブ13)の上流側は常に液密状態に保たれている。そのため、流量計(疎水化剤流量計9A,有機溶剤流量計12A)の計測流量と、バルブ(疎水化剤バルブ10,有機溶剤バルブ13)における処理液(疎水化剤、IPA)の流通流量とを同視できる。また、疎水化剤ノズル8の吐出口8aと疎水化剤バルブ10との距離は、有機溶剤ノズル11の吐出口11aと有機溶剤バルブ13との距離とそれほど大差なく、そのため、バルブ(疎水化剤バルブ10,有機溶剤バルブ13)における処理液(疎水化剤、IPA)の流通流量と、ノズル(疎水化剤ノズル8,有機溶剤ノズル11)からの処理液(疎水化剤、有機溶剤)の吐出流量を同視できる。 The organic solvent pipe 12 is provided with an organic solvent flow meter 12A for detecting the flow rate of the IPA flowing through the organic solvent pipe 12 on the primary side thereof, that is, on the upstream side of the organic solvent valve 13. A flow meter (hydrophobizing agent flow meter 9A, organic solvent flow meter 12A) is disposed upstream of the valves (hydrophobizing agent valve 10, organic solvent valve 13) in the piping (hydrophobizing agent piping 9, organic solvent piping 12). However, the upstream side of the valves (hydrophobizing agent valve 10 and organic solvent valve 13) is always kept in a liquid-tight state. Therefore, the measured flow rate of the flow meter (hydrophobizing agent flow meter 9A, organic solvent flow meter 12A) and the flow rate of the processing liquid (hydrophobizing agent, IPA) in the valves (hydrophobizing agent valve 10, organic solvent valve 13) Can be equated. Further, the distance between the discharge port 8a of the hydrophobizing agent nozzle 8 and the hydrophobizing agent valve 10 is not so different from the distance between the discharge port 11a of the organic solvent nozzle 11 and the organic solvent valve 13, and therefore the valve (hydrophobizing agent valve The flow rate of the processing liquid (hydrophobizing agent, IPA) in the valve 10 and the organic solvent valve 13) and the discharge of the processing liquid (hydrophobizing agent, organic solvent) from the nozzle (hydrophobizing agent nozzle 8, organic solvent nozzle 11). The flow rate can be equated.
 処理ユニット2は、有機溶剤配管12に介装された第2の吸引装置12Bを備えている。第2の吸引装置12Bは、たとえばダイヤフラム式の吸引装置である。図2の例では、第2の吸引装置12Bが有機溶剤バルブ13と別装置で構成されているが、有機溶剤バルブ13の一部を利用して設けられていてもよい。また、第1および第2の吸引装置9B,12Bとしてダイヤフラム式ではなく、サイフォン式が採用されていてもよい。 The processing unit 2 includes a second suction device 12B interposed in the organic solvent pipe 12. The second suction device 12B is, for example, a diaphragm type suction device. In the example of FIG. 2, the second suction device 12 </ b> B is configured as a separate device from the organic solvent valve 13, but may be provided using a part of the organic solvent valve 13. In addition, a siphon type may be adopted as the first and second suction devices 9B and 12B instead of the diaphragm type.
 処理カップ14は、スピンチャック5に保持されている基板Wよりも外方(回転軸線A1から離れる方向)に配置されている。処理カップ14は、スピンベース18を取り囲んでいる。スピンチャック5が基板Wを回転させている状態で、処理液やリンス液、保護液等の液体が基板Wに供給されると、基板Wに供給された液体が基板Wの周囲に振り切られる。これらの液体が基板Wに供給されるとき、処理カップ14の上端部14aは、スピンベース18よりも上方に配置される。したがって、基板Wの周囲に排出された液体は、処理カップ14によって受け止められる。そして、処理カップ14に受け止められた液体は、図示しない回収装置または廃液装置に送られる。 The processing cup 14 is disposed outward (in a direction away from the rotation axis A1) from the substrate W held by the spin chuck 5. The processing cup 14 surrounds the spin base 18. When a liquid such as a processing liquid, a rinsing liquid, or a protective liquid is supplied to the substrate W while the spin chuck 5 is rotating the substrate W, the liquid supplied to the substrate W is shaken off around the substrate W. When these liquids are supplied to the substrate W, the upper end portion 14 a of the processing cup 14 is disposed above the spin base 18. Accordingly, the liquid discharged around the substrate W is received by the processing cup 14. Then, the liquid received by the processing cup 14 is sent to a recovery device or a waste liquid device (not shown).
 図3は、共通ノズルCNの構成例を説明するための模式的な縦断面図である。 FIG. 3 is a schematic longitudinal sectional view for explaining a configuration example of the common nozzle CN.
 処理ユニット2は、さらに、スピンチャック5に保持されている基板Wの上方に、不活性ガス等の低湿度ガスを吐出するための気体ノズル32と、気体ノズル32に低湿度ガスを供給する気体配管30と、気体配管30を開閉する気体バルブ31とを含む。 The processing unit 2 further includes a gas nozzle 32 for discharging a low humidity gas such as an inert gas above the substrate W held by the spin chuck 5, and a gas for supplying the low humidity gas to the gas nozzle 32. A pipe 30 and a gas valve 31 for opening and closing the gas pipe 30 are included.
 この実施形態では、気体ノズル32に、疎水化剤ノズル8および有機溶剤ノズル11が一体に結合されている。すなわち、気体ノズル32は、共通ノズルCNとして機能する。そのため、共通ノズルCNは、IPAを吐出する有機溶剤ノズルとしての機能と、疎水化剤を吐出する疎水化剤ノズルとしての機能と、窒素ガス等の不活性ガスを吐出する不活性ガスノズルとしての機能とを備えている。 In this embodiment, the hydrophobizing agent nozzle 8 and the organic solvent nozzle 11 are integrally coupled to the gas nozzle 32. That is, the gas nozzle 32 functions as the common nozzle CN. Therefore, the common nozzle CN functions as an organic solvent nozzle that discharges IPA, functions as a hydrophobizing agent nozzle that discharges a hydrophobizing agent, and functions as an inert gas nozzle that discharges an inert gas such as nitrogen gas. And.
 共通ノズルCNには、共通ノズルCNを昇降および水平移動させるためのノズル移動ユニット29が結合されている。ノズル移動ユニット29は、共通ノズルCNを、スピンチャック5に保持された基板Wの上面中央部を通る円弧状の軌跡に沿って水平に移動させる。また、ノズル移動ユニット29は、共通ノズルCNを、基板Wの上面中央部の上方の処理位置(図9に示す共通ノズルCNの位置)と、基板Wの上方から側方に退避したホーム位置との間で移動させる。 The nozzle moving unit 29 for moving the common nozzle CN up and down and horizontally is coupled to the common nozzle CN. The nozzle moving unit 29 moves the common nozzle CN horizontally along an arcuate path passing through the center of the upper surface of the substrate W held by the spin chuck 5. Further, the nozzle moving unit 29 includes a processing position (position of the common nozzle CN shown in FIG. 9) above the central portion of the upper surface of the substrate W, and a home position where the common nozzle CN is retracted from the upper side of the substrate W to the side. Move between.
 気体ノズル32は、下端にフランジ部33を有する円筒状のノズル本体34を有している。フランジ部33の側面である外周面には、上側気体吐出口35および下側気体吐出口36が、それぞれ環状に外方に向けて開口している。上側気体吐出口35および下側気体吐出口36は、上下に間隔を空けて配置されている。ノズル本体34の下面には、中心気体吐出口37が配置されている。 The gas nozzle 32 has a cylindrical nozzle body 34 having a flange portion 33 at the lower end. On the outer peripheral surface which is the side surface of the flange portion 33, an upper gas discharge port 35 and a lower gas discharge port 36 each open in an annular shape outward. The upper gas discharge port 35 and the lower gas discharge port 36 are arranged with a space in the vertical direction. A central gas discharge port 37 is disposed on the lower surface of the nozzle body 34.
 ノズル本体34には、気体配管30から不活性ガスが供給される気体導入口38,39が形成されている。気体導入口38,39に対して、個別の不活性ガス配管が結合されてもよい。ノズル本体34内には、気体導入口38と上側気体吐出口35および下側気体吐出口36とを接続する筒状の気体流路41が形成されている。また、ノズル本体34内には、気体導入口39に連通する筒状の気体流路42が疎水化剤ノズル8または有機溶剤ノズル11のまわりに形成されている。気体流路42の下方にはバッファ空間43が連通している。バッファ空間43は、さらに、パンチングプレート44を介して、その下方の空間45に連通している。この空間45が中心気体吐出口37に開放している。気体導入口38,39に供給される低湿度ガスとしては、窒素ガス(N2)等の不活性ガスを例示できるが、不活性ガス以外の低湿度ガス、たとえば乾燥空気や清浄空気などを採用することもできる。 In the nozzle body 34, gas inlets 38 and 39 to which an inert gas is supplied from the gas pipe 30 are formed. Individual inert gas pipes may be coupled to the gas inlets 38 and 39. In the nozzle body 34, a cylindrical gas flow path 41 that connects the gas introduction port 38, the upper gas discharge port 35, and the lower gas discharge port 36 is formed. In the nozzle body 34, a cylindrical gas flow path 42 communicating with the gas introduction port 39 is formed around the hydrophobizing agent nozzle 8 or the organic solvent nozzle 11. A buffer space 43 communicates below the gas flow path 42. The buffer space 43 further communicates with a space 45 below the punching plate 44. This space 45 is open to the central gas outlet 37. Examples of the low-humidity gas supplied to the gas inlets 38 and 39 include an inert gas such as nitrogen gas (N2), but a low-humidity gas other than the inert gas, such as dry air or clean air, is employed. You can also.
 気体導入口38から導入された低湿度ガスは、気体流路41を介して上側気体吐出口35および下側気体吐出口36に供給され、これら上側気体吐出口35および下側気体吐出口36から放射状に吐出される。これにより、上下方向に重なる2つの放射状気流が基板Wの上方に形成される。一方、気体導入口39から導入された不活性ガスは、気体流路42を介してバッファ空間43に蓄えられ、さらにパンチングプレート44を通って拡散された後に、空間45を通って中心気体吐出口37から基板Wの上面に向けて下方に吐出される。この不活性ガスは、基板Wの上面にぶつかって方向を変え、放射方向の不活性ガス流を基板Wの上方に形成する。 The low-humidity gas introduced from the gas introduction port 38 is supplied to the upper gas discharge port 35 and the lower gas discharge port 36 via the gas flow path 41, and is supplied from the upper gas discharge port 35 and the lower gas discharge port 36. It is discharged radially. As a result, two radial airflows overlapping in the vertical direction are formed above the substrate W. On the other hand, the inert gas introduced from the gas introduction port 39 is stored in the buffer space 43 through the gas flow path 42, further diffused through the punching plate 44, and then through the space 45 to the central gas discharge port. It is discharged downward from 37 toward the upper surface of the substrate W. This inert gas hits the upper surface of the substrate W and changes its direction, forming a radial inert gas flow above the substrate W.
 したがって、中心気体吐出口37から吐出される不活性ガスが形成する放射状気流と、上側気体吐出口35および下側気体吐出口36からの吐出される二層の放射状気流とを合わせて、三層の放射状気流が基板Wの上方に形成されることになる。この三層の放射状気流によって、基板Wの上面が保護される。 Therefore, the radial airflow formed by the inert gas discharged from the central gas discharge port 37 and the two layers of radial airflow discharged from the upper gas discharge port 35 and the lower gas discharge port 36 are combined into three layers. Is formed above the substrate W. The upper surface of the substrate W is protected by the three layers of radial airflow.
 疎水化剤ノズル8は、気体流路42、バッファ空間43およびパンチングプレート44を貫通して上下方向に延びている。疎水化剤ノズル8の下端の吐出口8aは、基板Wの上面に向けて鉛直上方から液体の疎水化剤を吐出する。 The hydrophobizing agent nozzle 8 extends vertically through the gas flow path 42, the buffer space 43 and the punching plate 44. The discharge port 8a at the lower end of the hydrophobizing agent nozzle 8 discharges the liquid hydrophobizing agent from above vertically toward the upper surface of the substrate W.
 有機溶剤ノズル11は、気体流路42、バッファ空間43およびパンチングプレート44を貫通して上下方向に延びている。有機溶剤ノズル11の下端の吐出口11aは、基板Wの上面に向けて鉛直上方から液体のIPAを吐出する。 The organic solvent nozzle 11 passes through the gas flow path 42, the buffer space 43 and the punching plate 44 and extends in the vertical direction. The discharge port 11 a at the lower end of the organic solvent nozzle 11 discharges liquid IPA from above vertically toward the upper surface of the substrate W.
 共通ノズルCNが処理位置(図7に示す、共通ノズルCNの位置)に配置された状態で、共通ノズルCNの下面と基板Wの上面との間隔W1は、たとえば約5mmである。また、共通ノズルCNが処理位置に配置された状態で、疎水化剤ノズル8から基板Wの上面に向けて吐出された疎水化剤は、基板Wの上面中央部に着液する。さらに、共通ノズルCNが処理位置に配置された状態で、有機溶剤ノズル11から基板Wの上面に向けて吐出されたIPAは、基板Wの上面中央部に着液する。 In the state where the common nozzle CN is disposed at the processing position (the position of the common nozzle CN shown in FIG. 7), the interval W1 between the lower surface of the common nozzle CN and the upper surface of the substrate W is, for example, about 5 mm. Further, the hydrophobizing agent discharged from the hydrophobizing agent nozzle 8 toward the upper surface of the substrate W in a state where the common nozzle CN is disposed at the processing position is deposited on the center of the upper surface of the substrate W. Further, IPA discharged from the organic solvent nozzle 11 toward the upper surface of the substrate W in a state where the common nozzle CN is disposed at the processing position is deposited on the center of the upper surface of the substrate W.
 図4は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。 FIG. 4 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
 制御装置3は、たとえばマイクロコンピュータを用いて構成されている。制御装置3はCPU等の演算ユニット51、固定メモリデバイス(図示しない)、ハードディスクドライブ等の記憶ユニット52、および入出力ユニット(図示しない)を有している。 The control device 3 is configured using, for example, a microcomputer. The control device 3 includes an arithmetic unit 51 such as a CPU, a fixed memory device (not shown), a storage unit 52 such as a hard disk drive, and an input / output unit (not shown).
 記憶ユニット52には、演算ユニット51が実行するプログラム53や、基板Wに対する各処理の内容を規定するレシピが記憶されている。また、記憶ユニット52には、後述する遅延期間D1,D2を記憶するための遅延期間記憶部54が設けられている。遅延期間記憶部54は、電気的にデータを書き換え可能な不揮発性メモリからなる。 The storage unit 52 stores a program 53 executed by the arithmetic unit 51 and a recipe that defines the contents of each process for the substrate W. In addition, the storage unit 52 is provided with a delay period storage unit 54 for storing delay periods D1 and D2 described later. The delay period storage unit 54 includes a nonvolatile memory that can electrically rewrite data.
 入出力ユニットは、データの書込みおよび読出しが可能な記録媒体に対する書き込み/読み出しを行うリーダ・ライタユニットであってもよい。記録媒体にプログラム51が記録されていてもよい。記録媒体は、光ディスクや磁気ディスク等であってもいし、USBメモリやメモリカード等のポータブルメモリであってもよい。入出力ユニットは、通信ユニットを含んでいてもよい。すなわち、たとえば、ネットワークを介してデータの入出力が行われてもよい。 The input / output unit may be a reader / writer unit that performs writing / reading with respect to a recording medium capable of writing and reading data. The program 51 may be recorded on the recording medium. The recording medium may be an optical disk or a magnetic disk, or a portable memory such as a USB memory or a memory card. The input / output unit may include a communication unit. That is, for example, data input / output may be performed via a network.
 制御装置3には、疎水化剤流量計9Aからの検出出力が与えられる。制御装置3は、この検出出力に基づいて疎水化剤配管9を流通している疎水化剤の流量を検知できる。また、制御装置3には、有機溶剤流量計12Aからの検出出力が与えられるようになっている。制御装置3は、この検出出力に基づいて有機溶剤配管12を流通しているIPAの流量を検知できる。 The detection output from the hydrophobizing agent flow meter 9A is given to the control device 3. The control device 3 can detect the flow rate of the hydrophobizing agent flowing through the hydrophobizing agent pipe 9 based on this detection output. In addition, the detection output from the organic solvent flow meter 12A is given to the control device 3. The control device 3 can detect the flow rate of the IPA flowing through the organic solvent pipe 12 based on this detection output.
 また、制御装置3は、スピンモータ16、ノズル移動ユニット29および第1および第2の吸引装置9B,12Bの動作を制御する。 Further, the control device 3 controls the operations of the spin motor 16, the nozzle moving unit 29, and the first and second suction devices 9B and 12B.
 また、制御装置3は、スピンモータ16およびノズル移動ユニット29の動作を制御する。また、制御装置3は、疎水化剤バルブ10、有機溶剤バルブ13、薬液バルブ22、リンス液バルブ25、気体バルブ31等を開閉する。 Further, the control device 3 controls the operations of the spin motor 16 and the nozzle moving unit 29. The control device 3 opens and closes the hydrophobizing agent valve 10, the organic solvent valve 13, the chemical liquid valve 22, the rinsing liquid valve 25, the gas valve 31, and the like.
 以下では、デバイス形成面である表面にパターンが形成された基板Wを処理する場合について説明する。 Hereinafter, a case where the substrate W having a pattern formed on the surface which is a device forming surface is processed will be described.
 図5は、基板処理装置1の処理対象の基板Wの表面を拡大して示す断面図である。処理対象の基板Wは、たとえばシリコンウエハであり、そのパターン形成面である表面(上面62)にパターンPが形成されている。パターンPは、たとえば微細パターンである。パターンPは、凸形状(柱状)を有する構造体61が行列状に配置されていてもよい。この場合、構造体61の線幅W2はたとえば10nm~45nm程度に、パターンPの隙間W3はたとえば10nm~数μm程度に、それぞれ設けられている。パターンPの膜厚Tは、たとえば、1μm程度である。また、パターンPは、たとえば、アスペクト比(線幅W2に対する膜厚Tの比)が、たとえば、5~500程度であってもよい(典型的には、5~50程度である)。 FIG. 5 is an enlarged cross-sectional view showing the surface of the substrate W to be processed by the substrate processing apparatus 1. The substrate W to be processed is, for example, a silicon wafer, and a pattern P is formed on a surface (upper surface 62) that is a pattern forming surface thereof. The pattern P is a fine pattern, for example. In the pattern P, structures 61 having convex shapes (columnar shapes) may be arranged in a matrix. In this case, the line width W2 of the structure 61 is set to about 10 nm to 45 nm, for example, and the gap W3 of the pattern P is set to about 10 nm to about several μm, for example. The film thickness T of the pattern P is, for example, about 1 μm. Further, the pattern P may have an aspect ratio (ratio of the film thickness T to the line width W2), for example, of about 5 to 500 (typically about 5 to 50).
 また、パターンPは、微細なトレンチにより形成されたライン状のパターンが、繰り返し並べられていてもよい。また、パターンPは、薄膜に、複数の微細穴(ボイド(void)またはポア(pore))を設けることにより形成されていてもよい。 Further, the pattern P may be a linear pattern formed by fine trenches repeatedly arranged. Further, the pattern P may be formed by providing a plurality of fine holes (voids or pores) in the thin film.
 パターンPは、たとえば絶縁膜を含む。また、パターンPは、導体膜を含んでいてもよい。より具体的には、パターンPは、複数の膜を積層した積層膜により形成されており、さらには、絶縁膜と導体膜とを含んでいてもよい。パターンPは、単層膜で構成されるパターンであってもよい。絶縁膜は、シリコン酸化膜(SiO2膜)やシリコン窒化膜(SiN膜)であってもよい。また、導体膜は、低抵抗化のための不純物を導入したアモルファスシリコン膜であってもよいし、金属膜(たとえば金属配線膜)であってもよい。 The pattern P includes, for example, an insulating film. The pattern P may include a conductor film. More specifically, the pattern P is formed by a laminated film in which a plurality of films are laminated, and may further include an insulating film and a conductor film. The pattern P may be a pattern composed of a single layer film. The insulating film may be a silicon oxide film (SiO 2 film) or a silicon nitride film (SiN film). The conductor film may be an amorphous silicon film into which impurities for reducing resistance are introduced, or may be a metal film (for example, a metal wiring film).
 また、パターンPは、親水性膜であってもよい。親水性膜として、TEOS膜(シリコン酸化膜の一種)を例示できる。 Further, the pattern P may be a hydrophilic film. An example of the hydrophilic film is a TEOS film (a kind of silicon oxide film).
 図6は、基板処理装置1によって実行される基板処理例を説明するための流れ図である。図7は、IPA供給工程(S5)から疎水化剤供給工程(S6)への移行時における基板Wを水平に見た模式図である。 FIG. 6 is a flowchart for explaining a substrate processing example executed by the substrate processing apparatus 1. FIG. 7 is a schematic view of the substrate W viewed horizontally when shifting from the IPA supply step (S5) to the hydrophobizing agent supply step (S6).
 図1~図6を参照しながら、この基板処理例について説明する。 The substrate processing example will be described with reference to FIGS.
  未処理の基板Wは、インデクサロボットIRおよび基板搬送ロボットCRによって搬送されチャンバ4に搬入され、チャンバ4内に収容されているスピンチャック5に、デバイス形成面である表面をたとえば上に向けた状態で受け渡され、スピンチャック5に基板Wが保持される(図6のS1:基板搬入)。基板Wの搬入に先立って、共通ノズルCNは、基板Wの上方から側方に位置する退避位置に退避させられている。また、疎水化剤配管9の内部の疎水化剤の先端面、および有機溶剤配管12の内部のIPAの先端面が、それぞれ所定の後退位置まで後退させられている。 The unprocessed substrate W is transported by the indexer robot IR and the substrate transport robot CR, is transported into the chamber 4, and the surface that is the device formation surface is directed upward, for example, to the spin chuck 5 accommodated in the chamber 4. And the substrate W is held on the spin chuck 5 (S1: substrate loading in FIG. 6). Prior to the loading of the substrate W, the common nozzle CN is retracted to a retracted position positioned laterally from above the substrate W. Further, the front end surface of the hydrophobizing agent inside the hydrophobizing agent pipe 9 and the front end surface of the IPA inside the organic solvent pipe 12 are retracted to the predetermined retreat positions.
 その後、制御装置3は、スピンモータ16によって基板Wの回転を開始させる(図6のS2。回転工程)。基板Wは予め定める液処理速度(300~1500rpmの範囲内で、たとえば500rpm)まで上昇させられ、その液処理速度に維持される。 Thereafter, the control device 3 starts the rotation of the substrate W by the spin motor 16 (S2 in FIG. 6; rotation process). The substrate W is raised to a predetermined liquid processing speed (within 300 to 1500 rpm, for example, 500 rpm) and maintained at the liquid processing speed.
 基板Wの回転が液処理速度に達すると、制御装置3は、基板Wの上面に薬液を供給する薬液工程(図6のS3)を実行する。具体的には、制御装置3は、薬液バルブ22を開く。それにより、回転状態の基板Wの上面に向けて、薬液ノズル20から薬液が供給される。供給された薬液は遠心力によって基板Wの上面の全域に行き渡り、基板Wに薬液を用いた薬液処理が施される。薬液の吐出開始から予め定める期間が経過すると、制御装置3は、薬液バルブ22を閉じて、薬液ノズル20からの薬液の吐出を停止する。これにより、薬液工程(S3)が終了する。 When the rotation of the substrate W reaches the liquid processing speed, the control device 3 executes a chemical liquid process (S3 in FIG. 6) for supplying the chemical liquid to the upper surface of the substrate W. Specifically, the control device 3 opens the chemical liquid valve 22. Thereby, the chemical solution is supplied from the chemical solution nozzle 20 toward the upper surface of the substrate W in the rotating state. The supplied chemical solution is spread over the entire upper surface of the substrate W by centrifugal force, and the chemical treatment using the chemical solution is performed on the substrate W. When a predetermined period has elapsed from the start of the discharge of the chemical liquid, the control device 3 closes the chemical liquid valve 22 and stops the discharge of the chemical liquid from the chemical liquid nozzle 20. Thereby, a chemical | medical solution process (S3) is complete | finished.
 次いで、制御装置3は、基板Wの上面に存在している薬液をリンス液に置換して基板W上から薬液を排除するためのリンス工程(図6のS4)を実行する。具体的には、制御装置3は、リンス液バルブ25を開く。それにより、回転状態の基板Wの上面に向けて、リンス液ノズル23からリンス液が吐出される。吐出されたリンス液は遠心力によって基板Wの上面の全域に行き渡る。このリンス液によって、基板W上に付着している薬液が洗い流される。 Next, the control device 3 executes a rinsing step (S4 in FIG. 6) for replacing the chemical liquid present on the upper surface of the substrate W with the rinse liquid and removing the chemical liquid from the substrate W. Specifically, the control device 3 opens the rinse liquid valve 25. Thereby, the rinsing liquid is discharged from the rinsing liquid nozzle 23 toward the upper surface of the rotating substrate W. The discharged rinse liquid is spread over the entire upper surface of the substrate W by centrifugal force. The chemical liquid adhering to the substrate W is washed away by the rinse liquid.
  次いで、基板Wの上面に、有機溶剤の一例としてのIPAを供給するIPA供給工程が行われる(図6のS5)。このIPA供給工程(S5)において、有機溶剤(IPA)は低表面張力液体として機能する。具体的には、制御装置3は、ノズル移動ユニット29を制御して、退避位置から基板Wの上方に共通ノズルCNを移動させる。さらに、制御装置3は、ノズル移動ユニット29を制御して共通ノズルCNを下降させ、処理位置(図7に示す位置)に配置する。そして、制御装置3は、気体バルブ31を開いて、低湿度ガスを気体ノズル32の3つの気体吐出口(上側気体吐出口35(図3参照)、下側気体吐出口36(図3参照)および中心気体吐出口37(図3参照))から吐出開始させる。これにより、上下方向に重なる三層の環状気流が基板Wの上方に形成され、この三層の環状気流によって基板Wの上面が保護される(図7を併せて参照)。 Next, an IPA supply step of supplying IPA as an example of an organic solvent is performed on the upper surface of the substrate W (S5 in FIG. 6). In this IPA supply step (S5), the organic solvent (IPA) functions as a low surface tension liquid. Specifically, the control device 3 controls the nozzle moving unit 29 to move the common nozzle CN from the retracted position to above the substrate W. Further, the control device 3 controls the nozzle moving unit 29 to lower the common nozzle CN and arrange it at the processing position (position shown in FIG. 7). Then, the control device 3 opens the gas valve 31 and supplies the low-humidity gas to the three gas discharge ports (the upper gas discharge port 35 (see FIG. 3) and the lower gas discharge port 36 (see FIG. 3) of the gas nozzle 32. And the discharge is started from the central gas discharge port 37 (see FIG. 3). As a result, a three-layer annular airflow overlapping in the vertical direction is formed above the substrate W, and the upper surface of the substrate W is protected by the three-layer annular airflow (see also FIG. 7).
 スピンチャック5によって基板Wを回転させながら、制御装置3は、有機溶剤バルブ13を開いて、有機溶剤ノズル11から基板Wの上面中央部に向けてIPAを吐出させる。基板Wの上面中央部に着液したIPAは、基板Wの回転による遠心力を受けて、基板Wの上面の周縁部に向けて流れる。これにより、基板Wの上面に、基板Wの上面の全域を覆うIPAの液膜が形成される(基板Wの上面がIPAでカバレッジされる。有機溶剤液膜形成工程)。これにより、基板Wに保持されていたリンス液がIPAに置換される。IPAの吐出開始から所定期間が経過すると、制御装置3は、有機溶剤バルブ13を閉じてIPAの吐出を停止させる。有機溶剤バルブ13の閉成後、制御装置3は、第2の吸引装置12Bを駆動して、有機溶剤配管12の内部のIPAを所定量吸引する。IPAの吸引により、有機溶剤配管12の内部のIPAの先端面が、所定の後退位置まで後退させられる。IPA供給工程(S5)が行われることにより、基板Wからリンス液が除去される。 While rotating the substrate W by the spin chuck 5, the control device 3 opens the organic solvent valve 13 and discharges IPA from the organic solvent nozzle 11 toward the center of the upper surface of the substrate W. The IPA that has landed on the center of the upper surface of the substrate W receives centrifugal force due to the rotation of the substrate W and flows toward the peripheral edge of the upper surface of the substrate W. As a result, an IPA liquid film covering the entire upper surface of the substrate W is formed on the upper surface of the substrate W (the upper surface of the substrate W is covered with IPA. Organic solvent liquid film forming step). Thereby, the rinse liquid held on the substrate W is replaced with IPA. When a predetermined period has elapsed from the start of IPA discharge, the control device 3 closes the organic solvent valve 13 and stops IPA discharge. After the organic solvent valve 13 is closed, the control device 3 drives the second suction device 12B to suck a predetermined amount of IPA inside the organic solvent pipe 12. With the IPA suction, the tip surface of the IPA inside the organic solvent pipe 12 is retracted to a predetermined retracted position. The rinse liquid is removed from the substrate W by performing the IPA supply step (S5).
  次いで、液体の疎水化剤を基板Wの上面に供給する疎水化剤供給工程が行われる(図6のS6)。具体的には、制御装置3は、共通ノズルCNを処理位置に位置決めし、かつスピンチャック5によって基板Wを回転させながら、さらに疎水化剤バルブ10を開いて疎水化剤ノズル8の吐出口8aから基板Wの上面中央部に向けて疎水化剤を吐出させる。 Next, a hydrophobizing agent supplying step of supplying a liquid hydrophobizing agent to the upper surface of the substrate W is performed (S6 in FIG. 6). Specifically, the control device 3 positions the common nozzle CN at the processing position, and further opens the hydrophobizing agent valve 10 while rotating the substrate W by the spin chuck 5 to discharge the hydrophobizing agent nozzle 8 from the discharge port 8a. The hydrophobizing agent is discharged from the top toward the center of the upper surface of the substrate W.
 基板Wの上面中央部に着液した疎水化剤は、基板Wの回転による遠心力を受けて、基板の上面の周縁部に向けて流れる。そして、基板Wに保持されていた液膜に含まれるIPAが、疎水化剤に置換される。これにより、基板Wの上面に、基板Wの上面の全域を覆う疎水化剤の液膜が形成される。基板Wの上面に疎水化剤の液膜が形成されることにより、疎水化剤がパターンPの奥深くにまで入り込んで、基板Wの上面が疎水化される(疎水化処理)。疎水化剤の吐出開始から所定期間が経過すると、制御装置3は、疎水化剤バルブ10を閉じて疎水化剤の吐出を停止させる。疎水化剤バルブ10の閉成後、制御装置3は、第1の吸引装置9Bを駆動して、疎水化剤配管9の内部の疎水化剤を所定量吸引する。疎水化剤の吸引により、疎水化剤配管9の内部の疎水化剤の先端面が、所定の後退位置まで後退させられる。 The hydrophobizing agent that has landed on the center of the upper surface of the substrate W receives centrifugal force due to the rotation of the substrate W and flows toward the peripheral edge of the upper surface of the substrate. Then, the IPA contained in the liquid film held on the substrate W is replaced with the hydrophobizing agent. Thereby, a liquid film of a hydrophobizing agent is formed on the upper surface of the substrate W to cover the entire area of the upper surface of the substrate W. By forming a liquid film of the hydrophobizing agent on the upper surface of the substrate W, the hydrophobizing agent enters deep into the pattern P, and the upper surface of the substrate W is hydrophobized (hydrophobizing treatment). When a predetermined period has elapsed from the start of the discharge of the hydrophobizing agent, the control device 3 closes the hydrophobizing agent valve 10 and stops the discharge of the hydrophobizing agent. After the hydrophobizing agent valve 10 is closed, the control device 3 drives the first suction device 9B to suck a predetermined amount of the hydrophobizing agent inside the hydrophobizing agent pipe 9. By suction of the hydrophobizing agent, the front end surface of the hydrophobizing agent inside the hydrophobizing agent pipe 9 is retracted to a predetermined retracted position.
  次いで、有機溶剤としてのIPAを基板Wの上面に供給するIPA供給工程が行われる(図6のS7)。このIPA供給工程(S7)において、IPAは乾燥剤として機能する。 Next, an IPA supply step for supplying IPA as an organic solvent to the upper surface of the substrate W is performed (S7 in FIG. 6). In this IPA supply step (S7), IPA functions as a desiccant.
 具体的には、制御装置3は、共通ノズルCNを処理位置(図7に示す位置)に位置決めし、かつスピンチャック5によって基板Wを回転させながら、有機溶剤バルブ13を開いて、有機溶剤ノズル11から基板Wの上面中央部に向けてIPAを吐出させる。これにより、有機溶剤ノズル11から吐出されたIPAが基板Wの上面全域に供給される。したがって、基板Wに保持されている疎水化剤の大部分は、IPAによって洗い流される。そして、IPAの吐出開始から所定期間が経過すると、制御装置3は、有機溶剤バルブ13を閉じてIPAの吐出を停止させる。有機溶剤バルブ13の閉成後、制御装置3は、第2の吸引装置12Bを駆動して、有機溶剤配管12の内部のIPAを所定量吸引する。IPAの吸引により、有機溶剤配管12の内部のIPAの先端面が、所定の後退位置まで後退させられる。 Specifically, the control device 3 positions the common nozzle CN at the processing position (position shown in FIG. 7) and opens the organic solvent valve 13 while rotating the substrate W by the spin chuck 5 to IPA is discharged from 11 toward the center of the upper surface of the substrate W. Thereby, the IPA discharged from the organic solvent nozzle 11 is supplied to the entire upper surface of the substrate W. Therefore, most of the hydrophobizing agent held on the substrate W is washed away by the IPA. When a predetermined period has elapsed from the start of IPA discharge, the control device 3 closes the organic solvent valve 13 to stop IPA discharge. After the organic solvent valve 13 is closed, the control device 3 drives the second suction device 12B to suck a predetermined amount of IPA inside the organic solvent pipe 12. With the IPA suction, the tip surface of the IPA inside the organic solvent pipe 12 is retracted to a predetermined retracted position.
 次いで、制御装置3は、スピンドライ工程(図6のS8)を実行する。具体的には、制御装置3は、液処理速度よりも大きい所定のスピンドライ速度(たとえば数千rpm)まで基板Wを加速させ、そのスピンドライ速度で基板Wを回転させる。これにより、大きな遠心力が基板W上の液体に加わり、基板Wに付着している液体が基板Wの周囲に振り切られる。このようにして、基板Wから液体が除去され、基板Wが乾燥する。 Next, the control device 3 executes a spin dry process (S8 in FIG. 6). Specifically, the control device 3 accelerates the substrate W to a predetermined spin dry speed (for example, several thousand rpm) larger than the liquid processing speed, and rotates the substrate W at the spin dry speed. Thereby, a large centrifugal force is applied to the liquid on the substrate W, and the liquid adhering to the substrate W is shaken off around the substrate W. In this way, the liquid is removed from the substrate W, and the substrate W is dried.
 基板Wの高速回転の開始から予め定める期間が経過すると、制御装置3は、スピンモータ16を制御して、スピンチャック5による基板Wに対する回転を停止させる(図6のS9)。 When a predetermined period has elapsed from the start of high-speed rotation of the substrate W, the control device 3 controls the spin motor 16 to stop the rotation of the spin chuck 5 relative to the substrate W (S9 in FIG. 6).
 また、制御装置3は、気体バルブ31を閉じて、気体ノズル32の3つの気体吐出口からの低湿度ガスの吐出を停止させる。また、制御装置3は、ノズル移動ユニット29を制御して共通ノズルCNを退避位置に戻す。 Further, the control device 3 closes the gas valve 31 and stops the discharge of the low humidity gas from the three gas discharge ports of the gas nozzle 32. Further, the control device 3 controls the nozzle moving unit 29 to return the common nozzle CN to the retracted position.
 その後、処理済みの基板Wが、ロボットIR,CRによってスピンチャック5から搬出される(図6のS10)。 Thereafter, the processed substrate W is unloaded from the spin chuck 5 by the robots IR and CR (S10 in FIG. 6).
 図8は、バルブ(疎水化剤バルブ10,有機溶剤バルブ13)の開閉状態、およびバルブ(疎水化剤バルブ10,有機溶剤バルブ13)における処理液(疎水化剤およびIPA)の流通流量の推移を示す図である。図9は、図8の要部を拡大した図である。 FIG. 8 shows changes in the flow rate of treatment liquid (hydrophobizing agent and IPA) in the valves (hydrophobizing agent valve 10 and organic solvent valve 13) and the open / closed state of the valves (hydrophobizing agent valve 10 and organic solvent valve 13). FIG. FIG. 9 is an enlarged view of a main part of FIG.
 図8および図9では、流量計(疎水化剤流量計9A,有機溶剤流量計12A)によって計測された流量を、バルブ(疎水化剤バルブ10,有機溶剤バルブ13)における処理液(疎水化剤およびIPA)の流通流量としている。また、図9においては、有機溶剤バルブ13におけるIPAの流通流量と、疎水化剤バルブ10における疎水化剤の流通流量との合計流量TFも併せて示している。 8 and 9, the flow rate measured by the flow meter (hydrophobizing agent flow meter 9A, organic solvent flow meter 12A) is used as the treatment liquid (hydrophobizing agent) in the valves (hydrophobizing agent valve 10, organic solvent valve 13). And IPA). FIG. 9 also shows the total flow rate TF of the flow rate of IPA in the organic solvent valve 13 and the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10.
 疎水化剤バルブ10は、弁体を移動させるタイプのバルブである。そのため、疎水化剤バルブ10の開動作の開始から、疎水化剤バルブ10が完全に開かれる(疎水化剤バルブ10における疎水化剤の流通流量が、予め定める流量になる)までにタイムラグがある。また、疎水化剤バルブ10の閉動作の開始から、疎水化剤バルブ10が完全に閉じる(疎水化剤バルブ10における疎水化剤の流通流量が零になる)までにタイムラグがある。 Hydrophobizing agent valve 10 is a type of valve that moves the valve body. Therefore, there is a time lag from the start of the opening operation of the hydrophobizing agent valve 10 until the hydrophobizing agent valve 10 is completely opened (the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 becomes a predetermined flow rate). . Further, there is a time lag from the start of the closing operation of the hydrophobizing agent valve 10 until the hydrophobizing agent valve 10 is completely closed (the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 becomes zero).
 有機溶剤バルブ13は、弁体を移動させるタイプのバルブである。そのため、有機溶剤バルブ13の開動作の開始から、有機溶剤バルブ13が完全に開かれる(有機溶剤バルブ13におけるIPAの流通流量が、予め定める流量になる)までにタイムラグがある。有機溶剤バルブ13の閉動作の開始から、有機溶剤バルブ13が完全に閉じる(有機溶剤バルブ13におけるIPAの流通流量が零になる)までにタイムラグがある。 The organic solvent valve 13 is a type of valve that moves the valve body. Therefore, there is a time lag from the start of the opening operation of the organic solvent valve 13 until the organic solvent valve 13 is completely opened (the flow rate of IPA in the organic solvent valve 13 becomes a predetermined flow rate). There is a time lag from the start of the closing operation of the organic solvent valve 13 until the organic solvent valve 13 is completely closed (the IPA flow rate in the organic solvent valve 13 becomes zero).
 IPA供給工程(S5)から疎水化剤供給工程(S6)への移行について説明する。 The transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6) will be described.
 有機溶剤バルブ13の閉動作の開始から完全に閉じるまでのIPAの流通流量は、次に述べるように推移する。すなわち、有機溶剤バルブ13の閉動作の開始に伴って、有機溶剤バルブ13におけるIPAの流通流量は急減する。その後、有機溶剤バルブ13におけるIPAの流通流量は、流量減少の勾配を緩めながら零に近づく。有機溶剤バルブ13の閉動作の開始から有機溶剤バルブ13が完全に閉じるまでの時間はたとえば約2秒間である。 The flow rate of IPA from the start of the closing operation of the organic solvent valve 13 to the complete closing thereof changes as described below. That is, with the start of the closing operation of the organic solvent valve 13, the IPA flow rate in the organic solvent valve 13 rapidly decreases. Thereafter, the flow rate of IPA in the organic solvent valve 13 approaches zero while reducing the gradient of the flow rate decrease. The time from the start of the closing operation of the organic solvent valve 13 to the complete closing of the organic solvent valve 13 is, for example, about 2 seconds.
 また、疎水化剤バルブ10の開動作の開始から完全に開くまでの疎水化剤の流通流量は、次に述べるように推移する。すなわち、疎水化剤バルブ10の開動作の開始に伴って、疎水化剤バルブ10における疎水化剤の流通流量は急増する。その後、疎水化剤バルブ10における疎水化剤の流通流量は、流量増大の勾配を緩めながら予め定める流量に近づく。疎水化剤バルブ10の開動作の開始から疎水化剤バルブ10が完全に開くまでの時間はたとえば約2秒間である。 Further, the flow rate of the hydrophobizing agent from the start of the opening operation of the hydrophobizing agent valve 10 to the complete opening thereof changes as described below. That is, as the opening operation of the hydrophobizing agent valve 10 starts, the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 increases rapidly. Thereafter, the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 approaches a predetermined flow rate while relaxing the gradient of the flow rate increase. The time from the start of the opening operation of the hydrophobizing agent valve 10 to the fully opening of the hydrophobizing agent valve 10 is, for example, about 2 seconds.
 以下、IPA供給工程(S5)から疎水化剤供給工程(S6)への移行時において、制御装置3は、疎水化剤バルブ10の開動作の開始タイミングを、有機溶剤バルブ13の閉動作の開始タイミングよりも、所定の遅延期間D1だけ遅らせている。遅延期間D1は、たとえば0.6sec以上2.0sec以下の期間である。とくに0.8sec以上1.4sec以下が好ましい。 Hereinafter, at the time of transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6), the control device 3 sets the start timing of the opening operation of the hydrophobizing agent valve 10 and the start timing of the closing operation of the organic solvent valve 13. The timing is delayed by a predetermined delay period D1. The delay period D1 is, for example, a period of 0.6 sec to 2.0 sec. In particular, 0.8 sec or more and 1.4 sec or less are preferable.
 この遅延期間D1は、有機溶剤バルブ13の閉動作の開始から有機溶剤バルブ13が完全に閉じるまでのタイムラグ(図8に示す「PE1」の期間)よりも短く設定されている。そのため、有機溶剤バルブ13が完全に閉じていない状態(つまり、有機溶剤ノズル11からのIPAの吐出が完全には停止していない状態)で疎水化剤バルブ10の開動作が開始される。 The delay period D1 is set to be shorter than the time lag (the period of “PE1” shown in FIG. 8) from the start of the closing operation of the organic solvent valve 13 until the organic solvent valve 13 is completely closed. Therefore, the opening operation of the hydrophobizing agent valve 10 is started in a state where the organic solvent valve 13 is not completely closed (that is, in a state where the discharge of IPA from the organic solvent nozzle 11 is not completely stopped).
 遅延期間D1は、より具体的には、次のように設定されている。有機溶剤バルブ13におけるIPAの流通流量と、疎水化剤バルブ10における疎水化剤の流通流量とが一致するタイミング(図9の流量交点P1が得られるタイミング(以下、「流量交点タイミング」という))に着目する。この流量交点タイミングにおける、有機溶剤バルブ13におけるIPAの流通流量と、疎水化剤バルブ10における疎水化剤の流通流量との合計流量TF(以下、「流量交点タイミングの合計流量TF」という)が、所定の閾値Th未満になるように遅延期間D1が設定されている。また、遅延期間D1は、有機溶剤と疎水化剤とが干渉しないか、あるいはパターン倒壊やパーティクル汚染を考慮して干渉が許容できる範囲内で、可能な限り短い期間に設定されている。 More specifically, the delay period D1 is set as follows. The timing at which the flow rate of IPA in the organic solvent valve 13 coincides with the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 (timing at which the flow rate intersection P1 in FIG. 9 is obtained (hereinafter referred to as “flow rate intersection timing”)) Pay attention to. The total flow rate TF of the flow rate of IPA in the organic solvent valve 13 and the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 at this flow rate crossing timing (hereinafter referred to as “total flow rate TF at the flow crossing point timing”) The delay period D1 is set to be less than the predetermined threshold Th. The delay period D1 is set as short as possible within a range in which the organic solvent and the hydrophobizing agent do not interfere with each other or interference is allowed in consideration of pattern collapse and particle contamination.
 閾値Thは、有機溶剤バルブ13の閉動作の開始直前における有機溶剤バルブ13におけるIPAの流通流量以下の所定値である。より好ましくは、閾値Thは、有機溶剤バルブ13の閉動作の開始直前における有機溶剤バルブ13におけるIPAの流通流量の1/2以下の所定値である。閾値Thの設定については、図12および図13を参照しながら後述する。 Threshold value Th is a predetermined value equal to or less than the flow rate of IPA in the organic solvent valve 13 immediately before the start of the closing operation of the organic solvent valve 13. More preferably, the threshold value Th is a predetermined value equal to or less than ½ of the flow rate of IPA in the organic solvent valve 13 immediately before the start of the closing operation of the organic solvent valve 13. The setting of the threshold Th will be described later with reference to FIGS.
 遅延期間D1が極めて短い時間であるために、IPA供給工程(S5)から疎水化剤供給工程(S6)への移行時において、有機溶剤バルブ13をIPAが流通する期間(以下、「IPA流通期間」という場合がある)と、疎水化剤バルブ10を疎水化剤が流通する期間(以下、「疎水化剤流通期間」という場合がある)とが重複する。この実施形態では、IPA流通期間と疎水化剤流通期間とが重なる期間において、遅延期間D1が設けられている。この場合、図9に示すように、IPA流通期間と疎水化剤流通期間とが重なる期間において、合計流量TFの推移が下に凸の形状をなしている。 Since the delay period D1 is an extremely short time, the period during which the IPA circulates through the organic solvent valve 13 (hereinafter referred to as the “IPA distribution period”) during the transition from the IPA supply process (S5) to the hydrophobizing agent supply process (S6). And the period during which the hydrophobizing agent flows through the hydrophobizing agent valve 10 (hereinafter, also referred to as “hydrophobizing agent distribution period”) overlaps. In this embodiment, a delay period D1 is provided in a period in which the IPA distribution period and the hydrophobizing agent distribution period overlap. In this case, as shown in FIG. 9, the transition of the total flow rate TF has a downwardly convex shape during the period in which the IPA circulation period and the hydrophobizing agent circulation period overlap.
 次に、疎水化剤供給工程(S6)からIPA供給工程(S7)への移行について説明する。 Next, the transition from the hydrophobizing agent supply step (S6) to the IPA supply step (S7) will be described.
 疎水化剤バルブ10の閉動作の開始から完全に閉じるまでの疎水化剤の流通流量は、次に述べるように推移する。すなわち、疎水化剤バルブ10の閉動作の開始に伴って、疎水化剤バルブ10における疎水化剤の流通流量は急減する。その後、疎水化剤バルブ10における疎水化剤の流通流量は、流量減少の勾配を緩めながら零に近づく。疎水化剤バルブ10の閉動作の開始から疎水化剤バルブ10が完全に閉じるまでの時間はたとえば約2秒間である。 The flow rate of the hydrophobizing agent from the start of the closing operation of the hydrophobizing agent valve 10 until it is completely closed changes as described below. That is, with the start of the closing operation of the hydrophobizing agent valve 10, the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 rapidly decreases. Thereafter, the flow rate of the hydrophobizing agent in the hydrophobizing agent valve 10 approaches zero while reducing the gradient of the flow rate decrease. The time from the start of the closing operation of the hydrophobizing valve 10 to the complete closing of the hydrophobizing valve 10 is, for example, about 2 seconds.
 また、有機溶剤バルブ13の開動作の開始から完全に開くまでのIPAの流通流量は、次に述べるように推移する。すなわち、有機溶剤バルブ13の開動作の開始に伴って、有機溶剤バルブ13におけるIPAの流通流量は急増する。その後、有機溶剤バルブ13におけるIPAの流通流量は、流量増大の勾配を緩めながら予め定める流量に近づく。有機溶剤バルブ13の開動作の開始から有機溶剤バルブ13が完全に開くまでの時間はたとえば約2秒間である。 In addition, the flow rate of IPA from the start of the opening operation of the organic solvent valve 13 to the complete opening thereof changes as described below. That is, with the start of the opening operation of the organic solvent valve 13, the flow rate of IPA in the organic solvent valve 13 increases rapidly. Thereafter, the flow rate of IPA in the organic solvent valve 13 approaches the predetermined flow rate while relaxing the gradient of the flow rate increase. The time from the start of the opening operation of the organic solvent valve 13 to the complete opening of the organic solvent valve 13 is, for example, about 2 seconds.
 疎水化剤供給工程(S6)からIPA供給工程(S7)への移行時において、制御装置3は、有機溶剤バルブ13の開動作の開始タイミングを、疎水化剤バルブ10の閉動作の開始タイミングよりも、所定の遅延期間D2だけ遅らせている。遅延期間D2は、たとえば0.6sec以上2.0sec以下の期間である。とくに0.8sec以上1.4sec以下が好ましい。 At the time of transition from the hydrophobizing agent supply step (S6) to the IPA supply step (S7), the control device 3 determines the opening timing of the opening operation of the organic solvent valve 13 from the starting timing of the closing operation of the hydrophobizing agent valve 10. Is delayed by a predetermined delay period D2. The delay period D2 is a period of 0.6 sec to 2.0 sec, for example. In particular, 0.8 sec or more and 1.4 sec or less are preferable.
 この遅延期間D2は、疎水化剤バルブ10の閉動作の開始から疎水化剤バルブ10が完全に閉じるまでのタイムラグ(図8に示す「PE2」の期間)よりも短く設定されている。そのため、疎水化剤バルブ10が完全に閉じていない状態(つまり、疎水化剤ノズル8からの疎水化剤の吐出が完全には停止していない状態)で有機溶剤バルブ13の開動作が開始される。 The delay period D2 is set to be shorter than the time lag (the period of “PE2” shown in FIG. 8) from the start of the closing operation of the hydrophobizing agent valve 10 until the hydrophobizing valve 10 is completely closed. Therefore, the opening operation of the organic solvent valve 13 is started in a state in which the hydrophobizing agent valve 10 is not completely closed (that is, in a state in which the discharge of the hydrophobizing agent from the hydrophobizing agent nozzle 8 is not completely stopped). The
 遅延期間D2は、より具体的には、次のように設定されている。流量交点タイミングにおける、有機溶剤バルブ13におけるIPAの流通流量と、疎水化剤バルブ10における疎水化剤の流通流量との合計流量TF(以下、「流量交点タイミングの合計流量TF」という)が、所定の閾値Th未満になるように遅延期間D2が設定されている。また、遅延期間D2は、可能な限り短い期間に設定されている。これらのIPAの流通流量および疎水化剤の流通流量は、それぞれ、有機溶剤流量計12Aおよび疎水化剤流量計9Aによる計測流量である。 More specifically, the delay period D2 is set as follows. The total flow rate TF of the IPA flow rate in the organic solvent valve 13 and the hydrophobization agent flow rate in the hydrophobizing agent valve 10 at the flow rate intersection timing (hereinafter referred to as “total flow rate TF at the flow rate intersection timing”) is predetermined. The delay period D2 is set to be less than the threshold value Th. In addition, the delay period D2 is set as short as possible. The IPA flow rate and the hydrophobizing agent flow rate are measured by the organic solvent flow meter 12A and the hydrophobizing agent flow meter 9A, respectively.
 以上により、この実施形態によれば、IPA供給工程(図6のS5)から疎水化剤供給工程(図6のS6)への移行時において、次に述べる作用効果を奏する。 As described above, according to this embodiment, at the time of transition from the IPA supply step (S5 in FIG. 6) to the hydrophobizing agent supply step (S6 in FIG. 6), the following operational effects are achieved.
 すなわち、有機溶剤バルブ13の閉動作の開始から遅延期間D1の経過後、有機溶剤バルブ13において有機溶剤の流通が完全に停止していないタイミング(有機溶剤ノズル11からのIPAの吐出が完全には停止していないタイミング)で疎水化剤バルブ10の開動作が開始される。 That is, after the lapse of the delay period D1 from the start of the closing operation of the organic solvent valve 13, the timing at which the distribution of the organic solvent is not completely stopped in the organic solvent valve 13 (the discharge of IPA from the organic solvent nozzle 11 is completely completed). The opening operation of the hydrophobizing agent valve 10 is started at the timing (not stopped).
 疎水化剤バルブ10の開動作の開始が有機溶剤バルブ13の閉動作の開始よりも遅れるので、IPAと疎水化剤とが基板W上で干渉する期間が短い。そのため、IPAと疎水化剤との干渉に伴う液跳ねや大きな液乱れの発生を抑制または防止できる。そのため、基板Wの上面中央部における、パターン倒壊およびパーティクル汚染を効果的に抑制することができる。また、有機溶剤ノズル11からのIPAの吐出が完全には停止していないタイミングで疎水化剤バルブ10の開動作が開始されるので、疎水化剤が供給されるまでの間に基板W上においてIPAが乾燥することを抑制または防止できる。これにより、IPAと疎水化剤との干渉に起因する液跳ねや大きな液乱れの発生を抑制または防止し、かつ基板W上でのIPAの乾燥を抑制または防止しながら、IPA供給工程(S5)から疎水化剤供給工程(S6)に移行させることができる。 Since the start of the opening operation of the hydrophobizing agent valve 10 is delayed from the start of the closing operation of the organic solvent valve 13, the period in which the IPA and the hydrophobizing agent interfere on the substrate W is short. Therefore, it is possible to suppress or prevent the occurrence of liquid splash and large liquid turbulence associated with interference between the IPA and the hydrophobizing agent. Therefore, pattern collapse and particle contamination at the center of the upper surface of the substrate W can be effectively suppressed. Further, since the opening operation of the hydrophobizing agent valve 10 is started at a timing at which the discharge of IPA from the organic solvent nozzle 11 is not completely stopped, it is performed on the substrate W until the hydrophobizing agent is supplied. IPA can be suppressed or prevented from drying. Thereby, the IPA supply step (S5) while suppressing or preventing the occurrence of liquid splash and large liquid disturbance caused by interference between the IPA and the hydrophobizing agent, and suppressing or preventing the drying of the IPA on the substrate W. To the hydrophobizing agent supply step (S6).
 また、流量交点タイミングの合計流量TF(すなわち、IPAの吐出流量と疎水化剤の吐出流量との合計流量)が、閾値Th未満になるように、遅延期間D1が設定されている。閾値Thは、有機溶剤バルブ13の閉動作の開始直前における有機溶剤バルブ13におけるIPAの流通流量(すなわち、IPAの吐出流量)以下の所定値である(より好ましくは、IPAの流通流量の1/2以下の所定値である)。合計流量TFがこのような閾値Th未満に設けられているので、IPAと疎水化剤との干渉によって基板W上で大きな液跳ねが生じない。そのため、IPA供給工程(S5)から疎水化剤供給工程(S6)への移行時における液跳ねや大きな液乱れの発生を抑制または防止できる。 Further, the delay period D1 is set so that the total flow rate TF at the flow rate intersection timing (that is, the total flow rate of the discharge flow rate of the IPA and the discharge flow rate of the hydrophobizing agent) is less than the threshold Th. The threshold value Th is a predetermined value equal to or less than the IPA flow rate (that is, the IPA discharge flow rate) in the organic solvent valve 13 immediately before the start of the closing operation of the organic solvent valve 13 (more preferably, 1 / of the IPA flow rate. 2 or a predetermined value). Since the total flow rate TF is set to be less than the threshold value Th, a large liquid splash does not occur on the substrate W due to the interference between the IPA and the hydrophobizing agent. Therefore, it is possible to suppress or prevent the occurrence of liquid splashing or large liquid disturbance during the transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6).
 また、疎水化剤供給工程(S6)からIPA供給工程(図6のS7)への移行時においても、IPA供給工程(S5)から疎水化剤供給工程(S6)への移行時の場合と同等の作用効果を奏する。 Also, the transition from the hydrophobizing agent supply step (S6) to the IPA supply step (S7 in FIG. 6) is equivalent to the transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6). Has the effect of.
 図10は、参考形態に係る、IPA供給工程(S5)から疎水化剤供給工程(S6)への移行時における、バルブ(疎水化剤バルブ10,有機溶剤バルブ13)の開閉およびバルブ(疎水化剤バルブ10,有機溶剤バルブ13)における処理液(IPA、疎水化剤)の流通流量の推移を示す図である。 FIG. 10 shows opening and closing of valves (hydrophobizing agent valve 10 and organic solvent valve 13) and valves (hydrophobizing) at the time of transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6) according to the reference embodiment. It is a figure which shows transition of the flow volume of the process liquid (IPA, hydrophobizing agent) in the agent valve | bulb 10 and the organic solvent valve | bulb 13).
 参考形態が、図1~図9に示す実施形態(第1の実施形態)と相違する点は、IPA供給工程(S5)から疎水化剤供給工程(S6)への移行時において、遅延期間D1を設けずに、制御装置3が、疎水化剤バルブ10の開動作の開始タイミングと、有機溶剤バルブ13の閉動作の開始タイミングとを同期させた点である。 The reference embodiment is different from the embodiment (first embodiment) shown in FIGS. 1 to 9 in that the delay period D1 is changed during the transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6). The control device 3 synchronizes the start timing of the opening operation of the hydrophobizing agent valve 10 and the start timing of the closing operation of the organic solvent valve 13 without providing the above.
 疎水化剤バルブ10の開動作の開始タイミングと、有機溶剤バルブ13の閉動作の開始タイミングとを同期させたために、IPA供給工程(S5)から疎水化剤供給工程(S6)への移行時において、IPA流通期間と、疎水化剤流通期間とが重複する。この場合、図11に示すように、IPA流通期間と疎水化剤流通期間とが重なる期間において、合計流量TFの推移が上に凸の形状をなしている。この場合、流量交点タイミングの合計流量TFが、有機溶剤バルブ13の閉動作の開始直前における有機溶剤バルブ13におけるIPAの流通流量を超える。換言すると、流量交点タイミングの合計流量TFが、閾値Thを超える。 Since the start timing of the opening operation of the hydrophobizing agent valve 10 and the start timing of the closing operation of the organic solvent valve 13 are synchronized, at the time of transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6). The IPA distribution period and the hydrophobizing agent distribution period overlap. In this case, as shown in FIG. 11, the transition of the total flow rate TF has an upwardly convex shape during the period in which the IPA circulation period and the hydrophobizing agent circulation period overlap. In this case, the total flow rate TF at the flow rate intersection point exceeds the flow rate of the IPA in the organic solvent valve 13 immediately before the start of the closing operation of the organic solvent valve 13. In other words, the total flow rate TF at the flow rate intersection timing exceeds the threshold Th.
 この場合には、基板Wの上面中央部に吐出される疎水化剤およびIPAの合計流量が多いので、基板Wの上面中央部において、IPAと疎水化剤とが干渉し、液跳ねや大きな液乱れが発生するおそれがある。そして、これらの液跳ねや大きな液乱れに起因して、疎水化剤の供給が阻害されることにより、基板Wの上面中央部において十分な疎水化が行われず、乾燥時における基板Wの高速回転によって、パターン倒壊が発生するおそれがある。 In this case, since the total flow rate of the hydrophobizing agent and IPA discharged to the center of the upper surface of the substrate W is large, the IPA and the hydrophobizing agent interfere with each other at the center of the upper surface of the substrate W, causing liquid splashing or large liquid. Disturbance may occur. Then, due to the liquid splash and large liquid disturbance, the supply of the hydrophobizing agent is hindered, so that sufficient hydrophobicity is not performed at the center of the upper surface of the substrate W, and the substrate W rotates at high speed during drying. May cause pattern collapse.
 また、共通ノズルCNが処理位置(図7に示す、共通ノズルCNの位置)に配置されている状態では、共通ノズルCNの下面と基板Wの上面との間が狭いので、液跳ねした疎水化剤やIPAが共通ノズルCNの下面に付着する。そして、乾燥時において、液滴または液滴が固化して生じるパーティクルが基板Wの上面に付着することにより、基板Wの上面中央部におけるパーティクル汚染の原因になることが考えられる。 Further, in the state where the common nozzle CN is disposed at the processing position (the position of the common nozzle CN shown in FIG. 7), since the space between the lower surface of the common nozzle CN and the upper surface of the substrate W is narrow, the liquid splashed hydrophobicity Agent and IPA adhere to the lower surface of the common nozzle CN. Then, during drying, it is conceivable that droplets or particles generated by solidifying the droplets adhere to the upper surface of the substrate W, thereby causing particle contamination at the center of the upper surface of the substrate W.
 また、疎水化剤供給工程(S6)からIPA供給工程(S7)への移行時において、有機溶剤バルブ13の開動作の開始タイミングと、疎水化剤バルブ10の閉動作の開始タイミングとを同期させた場合にも、IPAと疎水化剤とが干渉し、液跳ねや大きな液乱れが発生するおそれがある。そして、これらの液跳ねや大きな液乱れに起因して、IPAの供給が阻害されることによりIPAによる充分な置換が行えず、乾燥時における基板の高速回転によって、パターン倒壊が発生するおそれがある。また、疎水化剤供給工程(S6)からIPA供給工程(S7)への移行時には、前述したパーティクル汚染の問題もある。 Further, the start timing of the opening operation of the organic solvent valve 13 and the start timing of the closing operation of the hydrophobizing agent valve 10 are synchronized during the transition from the hydrophobizing agent supply step (S6) to the IPA supply step (S7). In this case, the IPA and the hydrophobizing agent may interfere with each other, which may cause liquid splash and large liquid disturbance. Further, due to these liquid splashes and large liquid disturbances, the supply of IPA is hindered so that sufficient replacement with IPA cannot be performed, and pattern collapse may occur due to high-speed rotation of the substrate during drying. . In addition, there is a problem of particle contamination as described above when shifting from the hydrophobizing agent supply step (S6) to the IPA supply step (S7).
 図12および図13は、閾値Thの決定を説明するための図である。 12 and 13 are diagrams for explaining the determination of the threshold Th.
 閾値Thは、基板処理装置1を用いた事前実験によって求められる。事前実験の詳細については、後述する。以下では、遅延期間D1および遅延期間D2を含む遅延期間を総称して、遅延期間Dという場合がある。 The threshold value Th is obtained by a preliminary experiment using the substrate processing apparatus 1. Details of the preliminary experiment will be described later. Hereinafter, the delay period including the delay period D1 and the delay period D2 may be collectively referred to as a delay period D.
 オペレータは、事前実験において、遅延期間Dを複数の期間(図13の例では、0.2sec、0.4secおよび0.6secの3種類の期間)の間で異ならせながら、基板W(サンプル用の基板)を処理する。そして、オペレータは、処理後の基板Wの状態に基づき、良品であるか否かを判定する。オペレータは、事前実験によって、良品と判定された全ての遅延期間Dに対応する閾値のうち、最も高い値を閾値Thとして決定する。 In the preliminary experiment, the operator changes the delay period D among a plurality of periods (three types of periods of 0.2 sec, 0.4 sec, and 0.6 sec in the example of FIG. 13) while changing the substrate W (for sample). Substrate). Then, the operator determines whether the product is non-defective based on the state of the substrate W after processing. The operator determines, as a threshold value Th, the highest value among the threshold values corresponding to all the delay periods D determined to be non-defective products through a prior experiment.
 図13を用いて具体的に説明する。良品「OK」と判定された遅延期間が0.4secおよび0.6secであると仮定する。このとき、遅延期間が0.4secの場合の方が、遅延期間が0.6secの場合の方よりも流量交点P1の値が大きくなる(図12参照)。この場合、遅延期間が0.4secの場合に対応する値、すなわち、流量交点P1における合計流量TF(すなわち、流量交点P1における流量の2倍の流量)の値を閾値Thとして決定する。換言すると、閾値Thは、パターン倒壊やパーティクルを考慮して許容される、流量交点P1における最大の合計流量TFである。さらに、換言すると、図12に示すように、閾値Thの半分(1/2・Th)が、流量交点P1が一致する。 This will be specifically described with reference to FIG. Assume that the delay periods determined to be non-defective “OK” are 0.4 sec and 0.6 sec. At this time, the value of the flow rate intersection P1 is larger when the delay period is 0.4 sec than when the delay period is 0.6 sec (see FIG. 12). In this case, the value corresponding to the case where the delay period is 0.4 sec, that is, the value of the total flow rate TF at the flow rate intersection P1 (that is, the flow rate twice the flow rate at the flow rate intersection P1) is determined as the threshold Th. In other words, the threshold value Th is the maximum total flow rate TF at the flow rate intersection P1 that is allowed in consideration of pattern collapse and particles. Furthermore, in other words, as shown in FIG. 12, the flow rate intersection P1 coincides with half of the threshold Th (1/2 · Th).
 このようにして決定された閾値Thに基づいてオペレータは遅延期間Dを設定する。具体的には、流量交点タイミングの合計流量TFが当該閾値Th未満になるように遅延期間Dが設定され、遅延期間記憶部54に当該遅延期間Dが記憶される。なお、事前実験の結果に基づいて、オペレータの操作により制御装置3へ遅延期間Dが直接入力され、遅延期間記憶部54に記憶される構成としても良い(上記の例の場合は、0.4secが遅延期間Dとして入力される)。 The operator sets the delay period D based on the threshold value Th thus determined. Specifically, the delay period D is set so that the total flow rate TF at the flow rate intersection timing is less than the threshold Th, and the delay period D is stored in the delay period storage unit 54. The delay period D may be directly input to the control device 3 by the operator's operation based on the result of the preliminary experiment and stored in the delay period storage unit 54 (in the case of the above example, 0.4 sec. Is input as the delay period D).
 図14は、第1の実施形態に係る第1の変形例における、共通ノズルCNの構成例を説明するための模式図である。第1の変形例において、その他の構成については、第1の実施形態にて説明した構成と同様である。本願発明の実施に関しては、図14に示すように、疎水化剤流量計9Aが、疎水化剤配管9の二次側、すなわち疎水化剤バルブ10の下流側に介装されていてもよい。また、有機溶剤流量計12Aが、有機溶剤配管12の二次側、すなわち有機溶剤バルブ13の下流側に介装されていてもよい。また、図14に示す第1の変形例は、次に述べる第2の実施形態にも適用可能である。
<第2の実施形態>
 図15は、この発明の第2の実施形態に係る基板処理装置201の主要部の電気的構成を説明するためのブロック図である。
FIG. 14 is a schematic diagram for explaining a configuration example of the common nozzle CN in the first modification example according to the first embodiment. In the first modification, other configurations are the same as those described in the first embodiment. Regarding the implementation of the present invention, as shown in FIG. 14, the hydrophobizing agent flow meter 9 </ b> A may be interposed on the secondary side of the hydrophobizing agent pipe 9, that is, on the downstream side of the hydrophobizing agent valve 10. Further, the organic solvent flow meter 12 </ b> A may be interposed on the secondary side of the organic solvent pipe 12, that is, on the downstream side of the organic solvent valve 13. The first modification shown in FIG. 14 is also applicable to the second embodiment described below.
<Second Embodiment>
FIG. 15 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 201 according to the second embodiment of the present invention.
 第2の実施形態に係る基板処理装置201が、第1の実施形態に係る基板処理装置1と相違する点は、記憶ユニット52に、プログラム53や遅延期間記憶部54の他に、閾値記憶部211および流量推移情報記憶部212を備えた点である。その他の点においては、第1の実施形態に係る基板処理装置1と共通するため、各部構成について同一符号を付し、説明を省略する。第2の実施形態では、制御装置3が、情報取得制御装置および遅延期間設定ユニットとして機能する。 The substrate processing apparatus 201 according to the second embodiment is different from the substrate processing apparatus 1 according to the first embodiment in that the storage unit 52 includes a threshold storage unit in addition to the program 53 and the delay period storage unit 54. 211 and the flow rate transition information storage unit 212. Since other points are common to the substrate processing apparatus 1 according to the first embodiment, the same reference numerals are given to the respective components, and the description thereof is omitted. In the second embodiment, the control device 3 functions as an information acquisition control device and a delay period setting unit.
 閾値記憶部211は、閾値Thを記憶する。閾値記憶部211には、基板処理装置1を用いた事前実験(後述する)によって求められた閾値Thが記憶されている。 The threshold storage unit 211 stores a threshold Th. The threshold storage unit 211 stores a threshold Th obtained by a preliminary experiment (described later) using the substrate processing apparatus 1.
 流量推移情報記憶部212は、次に述べる立ち下がり流量推移パターン(第1の流量推移情報)FC1および立ち上がり流量推移パターン(第2の流量推移情報)FC2が記憶されている。立ち下がり流量推移パターンFC1および立ち上がり流量推移パターンFC2は、後述するようにマッチングのために用いられるパターンである。 The flow rate transition information storage unit 212 stores a falling flow rate transition pattern (first flow rate transition information) FC1 and a rising flow rate transition pattern (second flow rate transition information) FC2 described below. The falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 are patterns used for matching as will be described later.
 図16Aは、立ち下がり流量推移パターンFC1を説明するための図である。立ち下がり流量推移パターンFC1は、第1のノズルからの第1の処理液の吐出流量(たとえば、有機溶剤ノズル11からの有機溶剤の吐出流量)の時間変化を表すパターンである。立ち下がり流量推移パターンFC1は、処理液バルブ(たとえば、有機溶剤バルブ13)の閉動作の開始からの、吐出流量の時間変化を表している。立ち下がり流量推移パターンFC1は、基板処理装置1を用いた事前実験(後述する)によって求められており、基板処理装置1の制御装置3によって流量推移情報記憶部212に記憶されている。 FIG. 16A is a diagram for explaining the falling flow rate transition pattern FC1. The falling flow rate transition pattern FC1 is a pattern representing a temporal change in the discharge flow rate of the first processing liquid from the first nozzle (for example, the discharge flow rate of the organic solvent from the organic solvent nozzle 11). The falling flow rate transition pattern FC1 represents a change over time in the discharge flow rate from the start of the closing operation of the processing liquid valve (for example, the organic solvent valve 13). The falling flow rate transition pattern FC1 is obtained by a preliminary experiment (described later) using the substrate processing apparatus 1, and is stored in the flow rate transition information storage unit 212 by the control device 3 of the substrate processing apparatus 1.
 図16Bは、立ち上がり流量推移パターンFC2を説明するための図である。立ち上がり流量推移パターンFC2は、第2のノズルからの第2の処理液の吐出流量(たとえば、疎水化剤ノズル8からの疎水化剤の吐出流量)の時間変化を表すパターンである。立ち上がり流量推移パターンFC2は、第2のバルブ(たとえば、疎水化剤バルブ10)の開動作の開始からの、吐出流量の時間変化を表している。立ち上がり流量推移パターンFC2は、基板処理装置1を用いた事前実験(後述する)によって求められており、基板処理装置1の制御装置3によって流量推移情報記憶部212に記憶されている。 FIG. 16B is a diagram for explaining the rising flow rate transition pattern FC2. The rising flow rate transition pattern FC2 is a pattern representing a temporal change in the discharge flow rate of the second processing liquid from the second nozzle (for example, the discharge flow rate of the hydrophobizing agent from the hydrophobizing agent nozzle 8). The rising flow rate transition pattern FC2 represents a change over time in the discharge flow rate from the start of the opening operation of the second valve (for example, the hydrophobizing agent valve 10). The rising flow rate transition pattern FC2 is obtained by a preliminary experiment (described later) using the substrate processing apparatus 1, and is stored in the flow rate transition information storage unit 212 by the control device 3 of the substrate processing apparatus 1.
 閾値Th、立ち下がり流量推移パターンFC1および立ち上がり流量推移パターンFC2が、それぞれ、基板処理装置1を用いた事前実験によって求められており、しかもそれらを用いて遅延期間Dを算出するので、基板処理装置の配管構成の影響(疎水化剤ノズル8の吐出口8aと疎水化剤バルブ10との距離と、有機溶剤ノズル11の吐出口11aと有機溶剤バルブ13との距離とが異なる等)を排除して、遅延期間Dを良好に求めることができる。 Since the threshold value Th, the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 are respectively obtained by a preliminary experiment using the substrate processing apparatus 1, and the delay period D is calculated using them, the substrate processing apparatus The influence of the piping configuration (the distance between the discharge port 8a of the hydrophobizing agent nozzle 8 and the hydrophobizing agent valve 10 and the distance between the discharge port 11a of the organic solvent nozzle 11 and the organic solvent valve 13 are different). Thus, the delay period D can be obtained satisfactorily.
 図16Cは、立ち下がり流量推移パターンFC1と、立ち上がり流量推移パターンFC2とのマッチングを説明するための図である。図17Aは、遅延期間設定を説明するための流れ図である。 FIG. 16C is a diagram for explaining the matching between the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2. FIG. 17A is a flowchart for explaining delay period setting.
 演算ユニット51は、閾値記憶部211から閾値Thを読み出す(図17AのS11)、また、演算ユニット51は、立ち下がり流量推移パターンFC1と、立ち上がり流量推移パターンFC2とを時間軸方向に関してパターンマッチングする(図17AのS12)。 The arithmetic unit 51 reads the threshold value Th from the threshold value storage unit 211 (S11 in FIG. 17A), and the arithmetic unit 51 pattern-matches the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 with respect to the time axis direction. (S12 in FIG. 17A).
 この実施形態では、立ち上がり流量推移パターンFC2の波形が、立ち下がり流量推移パターンFC1の波形にマッチングされている。立ち上がりの開始時点が、立ち下がり流量推移パターンFC1と同じ立ち上がり流量推移パターンFC2を、基準パターン(図16Cに実線で表す)とする。 In this embodiment, the waveform of the rising flow rate transition pattern FC2 is matched with the waveform of the falling flow rate transition pattern FC1. The rising flow rate transition pattern FC2 at which the rising start time is the same as the falling flow rate transition pattern FC1 is defined as a reference pattern (represented by a solid line in FIG. 16C).
 パターンマッチング(S12)では、立ち上がり流量推移パターンFC2が時間軸方向にスライドされる。立ち上がり流量推移パターンFC2を左側にスライドさせると、流量交点P1における流量(すなわち、流量交点P1の高さ位置)が減少する。立ち上がり流量推移パターンFC2を右側にスライドさせると、流量交点P1における流量が増大する。 In the pattern matching (S12), the rising flow rate transition pattern FC2 is slid in the time axis direction. When the rising flow rate transition pattern FC2 is slid to the left, the flow rate at the flow rate intersection P1 (that is, the height position of the flow rate intersection P1) decreases. When the rising flow rate transition pattern FC2 is slid to the right, the flow rate at the flow rate intersection P1 increases.
 そして、立ち上がり流量推移パターンFC2を、流量交点P1における合計流量TF(すなわち、流量交点P1における流量の2倍の流量)が閾値Th以内でかつ最大になるように配置する。そのときの立ち上がり流量推移パターンFC2(図16Cに一点鎖線で表す)の、基準パターンからの時間軸方向のずれ量を、演算ユニット51は、遅延期間Dとして算出する。立ち上がり流量推移パターンFC2を、流量交点P1における流量が最大になるような位置に配置することで、遅延期間Dとして最も短い時間を選択できる。 Then, the rising flow rate transition pattern FC2 is arranged so that the total flow rate TF at the flow rate intersection point P1 (that is, the flow rate twice the flow rate at the flow rate intersection point P1) is within the threshold Th and becomes maximum. The arithmetic unit 51 calculates a deviation amount in the time axis direction from the reference pattern of the rising flow rate transition pattern FC2 (represented by a one-dot chain line in FIG. 16C) at that time as the delay period D. The shortest time can be selected as the delay period D by arranging the rising flow rate transition pattern FC2 at a position where the flow rate at the flow rate intersection P1 is maximized.
 演算ユニット51は、算出した遅延期間Dを、遅延期間記憶部54に記憶させる(図17AのS14)。 The arithmetic unit 51 stores the calculated delay period D in the delay period storage unit 54 (S14 in FIG. 17A).
 図17Bは、基板処理装置1を用いて行われる事前実験を説明するための流れ図である。 FIG. 17B is a flowchart for explaining a preliminary experiment performed using the substrate processing apparatus 1.
 この事前実験は、制御装置3が閾値Thを取得するための実験である。また、この事前実験は、制御装置3が、立ち下がり流量推移パターンFC1および立ち上がり流量推移パターンFC2を取得するための実験でもある。この事前実験では、処理対象の基板として、サンプル用の基板が用いられる。 This preliminary experiment is an experiment for the control device 3 to acquire the threshold value Th. This preliminary experiment is also an experiment for the control device 3 to acquire the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2. In this preliminary experiment, a sample substrate is used as a substrate to be processed.
 サンプル用の基板は、チャンバ4に搬入され、チャンバ4内に収容されているスピンチャック5に、デバイス形成面である表面をたとえば上に向けた状態で保持される。 The sample substrate is carried into the chamber 4 and held by the spin chuck 5 accommodated in the chamber 4 with the surface that is the device formation surface facing upward, for example.
 この状態で、チャンバ4内において、前述した基板処理例に示す各工程(図6のS2~S9)との同等の工程が、サンプル用の基板に施される(S17BのS21)。すなわち、IPA供給工程(S5)、疎水化剤供給工程(S6)およびIPA供給工程(S7)が、サンプル用の基板に順に施される。 In this state, in the chamber 4, steps equivalent to the respective steps shown in the substrate processing example (S 2 to S 9 in FIG. 6) are performed on the sample substrate (S 21 in S 17 B). That is, the IPA supply step (S5), the hydrophobizing agent supply step (S6), and the IPA supply step (S7) are sequentially performed on the sample substrate.
 各工程(S2~S9)の処理時間、各工程(S2~S9)におけるサンプル用の基板の回転速度等の処理条件は、前述した基板処理例(図6)における処理条件と同一である。むろん、IPA供給工程(S5,S7)におけるIPAの吐出流量や、疎水化剤供給工程(S6)における疎水化剤の吐出流量についても、前述した基板処理例(図6)の場合と同一流量である。 The processing conditions such as the processing time of each process (S2 to S9) and the rotation speed of the sample substrate in each process (S2 to S9) are the same as the processing conditions in the above-described substrate processing example (FIG. 6). Of course, the IPA discharge flow rate in the IPA supply step (S5, S7) and the hydrophobization agent discharge flow rate in the hydrophobizing agent supply step (S6) are the same as those in the substrate processing example (FIG. 6). is there.
 事前実験は、他の条件を同一に保持したまま、遅延期間D(図16C参照)を異ならせながら、複数回行われる。 The preliminary experiment is performed a plurality of times while changing the delay period D (see FIG. 16C) while keeping other conditions the same.
 この事前実験において、立ち下がり流量推移パターンFC1が取得される(図17BのS22)。具体的には、有機溶剤バルブ13が閉じられると、制御装置3は、有機溶剤流量計12Aの出力する計測値を参照し、有機溶剤流量計12Aが出力する計測値を、有機溶剤バルブ13の閉動作が開始されてからの時間と対応付けてサンプリングする。制御装置3は、サンプリングされた計測値に基づいて、IPAの計測値の時間変化を表す立ち下がり流量推移パターンFC1を取得し、この立ち下がり流量推移パターンFC1を流量推移情報記憶部212に格納する。 In this preliminary experiment, the falling flow rate transition pattern FC1 is acquired (S22 in FIG. 17B). Specifically, when the organic solvent valve 13 is closed, the control device 3 refers to the measurement value output from the organic solvent flow meter 12 </ b> A, and uses the measurement value output from the organic solvent flow meter 12 </ b> A to Sampling is performed in association with the time from the start of the closing operation. The control device 3 acquires a falling flow rate transition pattern FC1 representing a temporal change in the measured value of IPA based on the sampled measured values, and stores the falling flow rate transition pattern FC1 in the flow rate transition information storage unit 212. .
 また、この事前実験において、立ち上がり流量推移パターンFC2が取得される(図17BのS23)。具体的には、疎水化剤バルブ10が開かれると、制御装置3は、疎水化剤流量計9Aの出力する計測値を参照し、疎水化剤流量計9Aが出力する計測値を、疎水化剤バルブ10の開動作が開始されてからの時間と対応付けてサンプリングする。制御装置3は、サンプリングされた計測値に基づいて、疎水化剤の計測値の時間変化を表す立ち上がり流量推移パターンFC2を取得し、この立ち上がり流量推移パターンFC2を流量推移情報記憶部212に格納する。 In this preliminary experiment, the rising flow rate transition pattern FC2 is acquired (S23 in FIG. 17B). Specifically, when the hydrophobizing agent valve 10 is opened, the control device 3 refers to the measurement value output from the hydrophobizing agent flow meter 9A, and hydrophobizes the measurement value output from the hydrophobizing agent flow meter 9A. Sampling is performed in association with the time from when the opening operation of the agent valve 10 is started. The control device 3 acquires a rising flow rate transition pattern FC2 representing a temporal change in the measured value of the hydrophobizing agent based on the sampled measured values, and stores this rising flow rate transition pattern FC2 in the flow rate transition information storage unit 212. .
 そして、オペレータが、図12および図13において説明した内容と同様に、事前実験によって得られたサンプル用の基板を観察し、良品であるか否かを判定する。オペレータは、事前実験によって、良品と判定された全ての遅延期間に対応する閾値(流量交点P1における合計流量TF(すなわち、流量交点P1における流量の2倍の流量)の値)のうち、最も高い値を閾値Thとして決定する。このようにして決定された閾値Thが、オペレータの操作により制御装置3に入力される。入力された閾値Thが、閾値記憶部211に記憶される(図17BのS24)。 Then, the operator observes the sample substrate obtained by the preliminary experiment in the same manner as described in FIGS. 12 and 13, and determines whether or not it is a non-defective product. The operator has the highest threshold value (the total flow rate TF at the flow rate intersection P1 (that is, the flow rate twice as high as the flow rate at the flow rate intersection P1)) corresponding to all the delay periods determined to be non-defective products by the prior experiment. The value is determined as the threshold Th. The threshold value Th thus determined is input to the control device 3 by the operator's operation. The input threshold value Th is stored in the threshold value storage unit 211 (S24 in FIG. 17B).
 以上により、この第2の実施形態によれば、制御装置3が、第1のバルブ(有機溶剤バルブ13)の閉動作の開始から第2のバルブ(疎水化剤バルブ10)の開動作の開始までの遅延期間Dを設定する。立ち下がり流量推移パターンFC1および立ち上がり流量推移パターンFC2は、基板処理を実行する基板処理装置1ごとに、または、その処理条件ごとに異なる。そして、これら立ち下がり流量推移パターンFC1および立ち上がり流量推移パターンFC2を用いたマッチングによって、合計流量TFが閾値Th以下になるような遅延期間Dが設けられるので、基板処理装置1や処理条件に対応した良好な遅延期間Dを容易に設けることができる。しかもマッチングによって遅延期間Dを求めるので、流量交点P1における合計流量TFが閾値Th以内でかつ最大になるような遅延期間Dを比較的容易に設けることができる。 As described above, according to the second embodiment, the control device 3 starts the opening operation of the second valve (hydrophobizing agent valve 10) from the start of the closing operation of the first valve (organic solvent valve 13). The delay period D until is set. The falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 are different for each substrate processing apparatus 1 that performs substrate processing or for each processing condition. The delay period D is set such that the total flow rate TF is equal to or less than the threshold value Th by matching using the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2, so that it corresponds to the substrate processing apparatus 1 and processing conditions. A good delay period D can be easily provided. Moreover, since the delay period D is obtained by matching, it is possible to relatively easily provide the delay period D such that the total flow rate TF at the flow rate intersection P1 is within the threshold value Th and becomes the maximum.
 また、立ち下がり流量推移パターンFC1および立ち上がり流量推移パターンFC2が、基板処理装置1を用いた事前実験に基づいて取得されるので(すなわち、実測値であるので)、基板処理装置1の個体差が排除された、良好な遅延期間Dを設定できる。 In addition, since the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 are acquired based on a preliminary experiment using the substrate processing apparatus 1 (that is, since it is an actual measurement value), the individual difference between the substrate processing apparatuses 1 is increased. A good delay period D that has been eliminated can be set.
 また、合計流量TFが閾値Th以下になる期間のうち最も短い期間が遅延期間Dとして設定される。換言すると、遅延期間Dとして、可能な限り短い期間が設定される。これにより、基板Wに液切れさせることなく、第1の処理液処理(有機溶剤供給工程(S5))から第2の処理液処理(疎水化剤供給工程(S6))に移行させることが可能である。 Further, the shortest period among the periods in which the total flow rate TF is equal to or less than the threshold value Th is set as the delay period D. In other words, the shortest possible period is set as the delay period D. Thereby, it is possible to shift from the first processing liquid processing (organic solvent supply step (S5)) to the second processing liquid processing (hydrophobizing agent supply step (S6)) without causing the substrate W to run out of liquid. It is.
 図18は、第2の実施形態に係る変形例(第2の変形例)を説明するためのブロック図である。 FIG. 18 is a block diagram for explaining a modified example (second modified example) according to the second embodiment.
 基板処理装置1のように、複数のチャンバ4を備えた基板処理装置1では、チャンバ4が異なれば配管(疎水化剤配管9,有機溶剤配管12)が異なる。また、バルブ(疎水化剤バルブ10,有機溶剤バルブ13)から吐出口8a,11aまでの距離がチャンバ4毎に異なることがある。これらに起因して、バルブ(疎水化剤バルブ10,有機溶剤バルブ13)の開閉動作と、その開閉動作における、吐出口8a,11aからの処理液の吐出流量の推移(バルブ(疎水化剤バルブ10,有機溶剤バルブ13)における処理液の流通流量の推移)とが、チャンバ4ごとにばらつくおそれがある。 As in the substrate processing apparatus 1, in the substrate processing apparatus 1 having a plurality of chambers 4, piping (hydrophobizing agent piping 9 and organic solvent piping 12) is different if the chamber 4 is different. Further, the distance from the valve (hydrophobizing agent valve 10, organic solvent valve 13) to the discharge ports 8 a and 11 a may be different for each chamber 4. Due to these, the opening and closing operation of the valves (hydrophobizing agent valve 10 and organic solvent valve 13) and the transition of the discharge flow rate of the processing liquid from the discharge ports 8a and 11a during the opening and closing operation (valve (hydrophobizing agent valve 10, the transition of the flow rate of the treatment liquid in the organic solvent valve 13) may vary from one chamber 4 to another.
 そのため、第2の変形例では、各チャンバ4に、立ち下がり流量推移パターンFC1および立ち上がり流量推移パターンFC2を対応付けて設けている。そのため、遅延期間Dもチャンバ4毎に異なる。この場合、閾値Thは、各チャンバ4間で共通の値が用いられる。 Therefore, in the second modification, each chamber 4 is provided with a falling flow rate transition pattern FC1 and a rising flow rate transition pattern FC2 in association with each other. Therefore, the delay period D is also different for each chamber 4. In this case, the threshold Th is a value common to the chambers 4.
 これにより、吐出口8a,11aからの処理液の吐出流量の推移(バルブ(疎水化剤バルブ10,有機溶剤バルブ13)における処理液の流通流量の推移)がチャンバ4ごとにばらつく場合であっても、IPA供給工程(S5)から疎水化剤供給工程(S6)への移行時のパターン倒壊やパーティクルの発生を抑制または防止できる。 Thereby, the transition of the flow rate of the processing liquid discharged from the discharge ports 8a and 11a (the transition of the flow rate of the processing liquid in the valves (hydrophobizing agent valve 10 and organic solvent valve 13)) varies from one chamber 4 to another. In addition, it is possible to suppress or prevent pattern collapse and generation of particles during the transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6).
 この場合、閾値Thが共通であるので、閾値Thを得るための大掛かりな事前実験(図17Bを用いて説明した事前実験)は、1つのチャンバ4でのみ行えば足り、他のチャンバ4については、立ち下がり流量推移パターンFC1や立ち上がり流量推移パターンFC2を取得するための事前実験で足りる。立ち下がり流量推移パターンFC1や立ち上がり流量推移パターンFC2を得るためだけの事前実験であれば、処理条件でバルブ(疎水化剤バルブ10,有機溶剤バルブ13)を開閉させれば足りるのでダミー基板等を用いて、短時間で行うことができる。よって、事前実験に伴うオペレータの負担が少ない。 In this case, since the threshold value Th is common, a large preliminary experiment (preliminary experiment described with reference to FIG. 17B) for obtaining the threshold value Th needs to be performed only in one chamber 4, and the other chambers 4 A prior experiment for obtaining the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 is sufficient. If it is a preliminary experiment only to obtain the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2, it is sufficient to open and close the valves (hydrophobizing agent valve 10 and organic solvent valve 13) under the processing conditions. And can be done in a short time. Therefore, the burden on the operator accompanying the preliminary experiment is small.
 図19は、第2の実施形態に係る変形例(第3の変形例)に係る遅延期間設定を説明するための流れ図である。図20は、第3の変形例に係る遅延期間設定を説明するための模式図である。 FIG. 19 is a flowchart for explaining the delay period setting according to the modification example (third modification example) according to the second embodiment. FIG. 20 is a schematic diagram for explaining the delay period setting according to the third modification.
 第3の変形例では、チャンバ4における基板処理例の実行に並行して遅延期間Dを設定する(リアルタイム設定)。 In the third modification, the delay period D is set in parallel with the execution of the substrate processing example in the chamber 4 (real-time setting).
 演算ユニット51は、閾値記憶部211から閾値Thを読み出す(図19のS31)。また、演算ユニット51は、有機溶剤流量計12Aが出力する計測値をサンプリング(監視)する(図19のS32)。有機溶剤バルブ13の閉動作が開始されると、有機溶剤流量計12Aによる計測値が急減する。有機溶剤バルブ13の閉動作が開始後の所定タイミング(図20に示す「現時点」)において、演算ユニット51は、サンプリングされた計測値に基づいて、IPAの計測値の時間変化を表すIPAパターンを作成する。また、演算ユニット51は、作成したIPAパターンを、流量推移情報記憶部212に記憶されている立ち下がり流量推移パターンFC1の波形にパターンマッチングさせる。このパターンマッチングでは、立ち下がり流量推移パターンFC1が時間軸方向にスライドされ、両パターンの波形のずれが少なくなるように両パターンがパターンマッチングされる。これにより、現時点において、IPAの吐出流量の将来の推移が予測される(図19のS33)。 The arithmetic unit 51 reads the threshold value Th from the threshold value storage unit 211 (S31 in FIG. 19). The arithmetic unit 51 samples (monitors) the measurement value output from the organic solvent flow meter 12A (S32 in FIG. 19). When the closing operation of the organic solvent valve 13 is started, the measured value by the organic solvent flow meter 12A rapidly decreases. At a predetermined timing after the closing operation of the organic solvent valve 13 is started ("current time" shown in FIG. 20), the arithmetic unit 51 generates an IPA pattern representing a time change of the IPA measurement value based on the sampled measurement value. create. Further, the arithmetic unit 51 pattern-matches the created IPA pattern to the waveform of the falling flow rate transition pattern FC1 stored in the flow rate transition information storage unit 212. In this pattern matching, the falling flow rate transition pattern FC1 is slid in the time axis direction, and both patterns are pattern-matched so that the deviation of the waveforms of both patterns is reduced. Thereby, the future transition of the discharge flow rate of IPA is predicted at the present time (S33 in FIG. 19).
 そして、演算ユニット51は、予測されたIPAの吐出流量の将来の推移と、立ち上がり流量推移パターンFC2とを時間軸方向に関してパターンマッチングする(図19のS34)。このマッチングは、図17AのS12の場合と同様の手法を用いて行う。 Then, the arithmetic unit 51 pattern-matches the future transition of the predicted IPA discharge flow rate and the rising flow rate transition pattern FC2 in the time axis direction (S34 in FIG. 19). This matching is performed using the same method as in S12 of FIG. 17A.
 そして、立ち上がり流量推移パターンFC2を、流量交点P1における合計流量TF(すなわち、流量交点P1における流量の2倍の流量が閾値Th以内でかつ最大になるように配置して、遅延期間Dを算出する(図19のS35)。その後、演算ユニット51は、算出した遅延期間Dを、遅延期間記憶部54に記憶させる(図19のS36)。 Then, the rising flow rate transition pattern FC2 is arranged so that the total flow rate TF at the flow rate intersection point P1 (that is, the flow rate twice the flow rate at the flow rate intersection point P1 is within the threshold value Th and becomes maximum, and the delay period D is calculated. (S35 in FIG. 19) After that, the arithmetic unit 51 stores the calculated delay period D in the delay period storage unit 54 (S36 in FIG. 19).
 この場合、計測している現在のIPAの吐出流量に基づいて、IPAの吐出流量の将来の推移が予測される。そして、予測された立ち下がり流量推移と、取得した立ち上がり流量推移パターンFC2とに基づいて、基板処理の進行に並行して遅延期間Dが設定される。これにより、進行中の基板処理の処理条件に最も適した良好な遅延期間Dを設定することが可能である。 In this case, the future transition of the IPA discharge flow rate is predicted based on the current IPA discharge flow rate being measured. Then, based on the predicted falling flow rate transition and the acquired rising flow rate transition pattern FC2, the delay period D is set in parallel with the progress of the substrate processing. Thereby, it is possible to set a favorable delay period D most suitable for the processing conditions of the ongoing substrate processing.
 また、第2の実施形態の前述の説明では、IPA供給工程(S5)から疎水化剤供給工程(S6)への移行時のバルブ(疎水化剤バルブ10,有機溶剤バルブ13)の開閉を例に挙げて説明した。しかしながら、疎水化剤供給工程(S6)からIPA供給工程(S7)への移行時のバルブ(疎水化剤バルブ10,有機溶剤バルブ13)の開閉にも、第2の実施形態を適用することができる。 In the above description of the second embodiment, the opening and closing of the valves (hydrophobizing agent valve 10 and organic solvent valve 13) during the transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6) is an example. And explained. However, the second embodiment can also be applied to opening and closing the valves (hydrophobizing agent valve 10 and organic solvent valve 13) during the transition from the hydrophobizing agent supply step (S6) to the IPA supply step (S7). it can.
 また、IPA供給工程(S5)から疎水化剤供給工程(S6)への移行時と、疎水化剤供給工程(S6)からIPA供給工程(S7)への移行時とで、閾値Thを互いに異ならせるようにしてもよい。 Further, the threshold Th is different between the transition from the IPA supply step (S5) to the hydrophobizing agent supply step (S6) and the transition from the hydrophobizing agent supply step (S6) to the IPA supply step (S7). You may make it let.
 以上、この発明の2つの実施形態および3つの変形例について説明したが、本発明は、さらに他の実施形態を用いて実施することもできる。 As mentioned above, although two embodiments and three modifications of the present invention have been described, the present invention can also be implemented using other embodiments.
 たとえば、制御装置3が閾値Thを取得するための事前実験と、制御装置3が、立ち下がり流量推移パターンFC1および立ち上がり流量推移パターンFC2を取得するための事前実験とを、一括ではなく、個別に行うこともできる。 For example, the preliminary experiment for the control device 3 to acquire the threshold Th and the preliminary experiment for the control device 3 to acquire the falling flow rate transition pattern FC1 and the rising flow rate transition pattern FC2 are performed individually, not collectively. It can also be done.
 また、第2の実施形態において、立ち上がり流量推移パターンFC2は、基板処理装置1を用いた事前実験によって得られた実測データではく、予め作成されたデータであってもよい。バルブ(疎水化剤バルブ10,有機溶剤バルブ13)の開動作の開始時には、処理液(IPA、疎水化剤)の先端面が後退させられており、バルブ(疎水化剤バルブ10,有機溶剤バルブ13)の開動作の開始後におけるバルブ(疎水化剤バルブ10,有機溶剤バルブ13)を流通する処理液の挙動(IPA、疎水化剤)にそれほど差が見られない。そのため、立ち上がり流量推移パターンFC2は、実測データでなく、予め作成されたデータであってもよい。 In the second embodiment, the rising flow rate transition pattern FC2 may be data created in advance, not actual measurement data obtained by a preliminary experiment using the substrate processing apparatus 1. At the start of the opening operation of the valve (hydrophobizing agent valve 10, organic solvent valve 13), the front end surface of the processing liquid (IPA, hydrophobizing agent) is retracted, and the valve (hydrophobizing agent valve 10, organic solvent valve) There is not much difference in the behavior (IPA, hydrophobizing agent) of the processing liquid flowing through the valves (hydrophobizing agent valve 10 and organic solvent valve 13) after the start of the opening operation of 13). Therefore, the rising flow rate transition pattern FC2 may be data created in advance instead of actual measurement data.
 また、閾値Thは、該基板処理装置1を用いた事前実験を用いて判定された値でなく、予め与えられた値であってもよい。 Further, the threshold value Th may be a value given in advance instead of a value determined using a prior experiment using the substrate processing apparatus 1.
 また、第1および第2の実施形態において、ノズル(疎水化剤ノズル8,有機溶剤ノズル11)が、共通ノズルCNではなく、基板Wの上面の略全域の上方に対向する遮断部材に設けられていてもよい。 In the first and second embodiments, the nozzles (hydrophobizing agent nozzle 8 and organic solvent nozzle 11) are provided not on the common nozzle CN but on a blocking member facing substantially above the entire area of the upper surface of the substrate W. It may be.
 また、前述の実施形態において、基板処理装置1が半導体ウエハからなる基板Wの表面を処理する装置である場合について説明したが、基板処理装置が、液晶表示装置用基板、有機EL(electroluminescence)表示装置などのFPD(Flat Panel DiSplay)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などの基板を処理する装置であってもよい。 In the above-described embodiment, the case where the substrate processing apparatus 1 is an apparatus for processing the surface of the substrate W made of a semiconductor wafer has been described. However, the substrate processing apparatus is a substrate for a liquid crystal display device, an organic EL (electroluminescence) display. Even devices that process substrates such as FPD (Flat Panel DiDiplay) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, photomask substrates, ceramic substrates, solar cell substrates, etc. Good.
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。 Other various design changes can be made within the scope of the matters described in the claims.
 この出願は、2018年4月25日に日本国特許庁に提出された特願2018-84444号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2018-84444 filed with the Japan Patent Office on April 25, 2018, the entire disclosure of which is incorporated herein by reference.
1   :基板処理装置
2   :処理ユニット
3   :制御装置
4   :チャンバ
5   :スピンチャック(基板保持ユニット)
8   :疎水化剤ノズル(第1のノズルおよび第2のノズルの他方)
9   :疎水化剤配管(第1の配管および第2の配管の他方)
9A  :疎水化剤流量計
10  :疎水化剤バルブ(第1のバルブおよび第2のバルブの他方)
11  :有機溶剤ノズル(第1のノズルおよび第2のノズルの一方)
12  :有機溶剤配管(第1の配管および第2の配管の一方)
12A :有機溶剤流量計(流量計)
13  :有機溶剤バルブ(第1のバルブおよび第2のバルブの一方)
51  :演算ユニット
52  :記憶ユニット
54  :遅延期間記憶部
201 :基板処理装置
211 :閾値記憶部
212 :流量推移情報記憶部
D   :遅延期間
D1  :遅延期間
D2  :遅延期間
FC1 :立ち下がり流量推移パターン(第1の流量推移情報)
FC2 :立ち上がり流量推移パターン(第2の流量推移情報)
P1  :流量交点
TF  :合計流量
Th  :閾値
W   :基板
1: Substrate processing device 2: Processing unit 3: Control device 4: Chamber 5: Spin chuck (substrate holding unit)
8: Hydrophobizing agent nozzle (the other of the first nozzle and the second nozzle)
9: Hydrophobizing agent pipe (the other of the first pipe and the second pipe)
9A: Hydrophobizing agent flow meter 10: Hydrophobizing agent valve (the other of the first valve and the second valve)
11: Organic solvent nozzle (one of the first nozzle and the second nozzle)
12: Organic solvent piping (one of the first piping and the second piping)
12A: Organic solvent flow meter (flow meter)
13: Organic solvent valve (one of the first valve and the second valve)
51: arithmetic unit 52: storage unit 54: delay period storage unit 201: substrate processing apparatus 211: threshold value storage unit 212: flow rate transition information storage unit D: delay period D1: delay period D2: delay period FC1: falling flow rate transition pattern (First flow rate transition information)
FC2: rising flow rate transition pattern (second flow rate transition information)
P1: Flow intersection point TF: Total flow Th: Threshold W: Substrate

Claims (21)

  1.  基板を保持する基板保持ユニットと、
     前記基板保持ユニットに保持されている基板に向けて、第1の処理液を吐出するための第1のノズルと、
     前記第1のノズルに第1の処理液を供給する第1の配管と、
     前記第1の配管を開閉する第1のバルブと、
     前記第1のノズルとは別のノズルであって、前記基板保持ユニットに保持されている基板に向けて、第2の処理液を吐出するための第2のノズルと、
     前記第2のノズルに対して第2の処理液を供給する第2の配管と、
     前記第2の配管を開閉する第2のバルブと、
     前記第1のバルブおよび前記第2のバルブの開閉を制御する制御装置とを含み、
     前記制御装置が、前記第1のノズルから第1の処理液が吐出されている状態において、開状態にある前記第1のバルブを閉じる第1の閉動作工程と、前記第1のバルブの閉動作の開始から遅延期間の経過後、前記第1のノズルからの第1の処理液の吐出が完全には停止していない状態で前記第2のバルブの開動作を開始する第2の開動作工程とを実行する、基板処理装置。
    A substrate holding unit for holding a substrate;
    A first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit;
    A first pipe for supplying a first treatment liquid to the first nozzle;
    A first valve for opening and closing the first pipe;
    A second nozzle for discharging a second processing liquid toward the substrate held by the substrate holding unit, the nozzle being different from the first nozzle;
    A second pipe for supplying a second processing liquid to the second nozzle;
    A second valve for opening and closing the second pipe;
    A control device for controlling opening and closing of the first valve and the second valve,
    In the state where the first processing liquid is being discharged from the first nozzle, the control device closes the first valve in the open state, and closes the first valve. A second opening operation for starting the opening operation of the second valve in a state where the discharge of the first processing liquid from the first nozzle is not completely stopped after a delay period has elapsed from the start of the operation; A substrate processing apparatus that executes the process.
  2.  前記第2の開動作工程が、前記第1のバルブにおける第1の処理液の流通が完全に停止していない状態で前記第2のバルブの開動作を開始する工程を含む、請求項1に記載の基板処理装置。 The second opening operation step includes a step of starting the opening operation of the second valve in a state where the flow of the first processing liquid in the first valve is not completely stopped. The substrate processing apparatus as described.
  3.  前記遅延期間が、前記第1のノズルからの第1の処理液の吐出流量と前記第2のノズルからの第2の処理液の吐出流量とが一致する状態における、当該第1の処理液の吐出流量と当該第2の処理液の吐出流量との合計流量が、所定の閾値以下になるように設けられており、
     前記所定の閾値が、第1の処理液の吐出流量よりも低い値である、請求項1または2に記載の基板処理装置。
    In the state in which the delay period coincides with the discharge flow rate of the first treatment liquid from the first nozzle and the discharge flow rate of the second treatment liquid from the second nozzle, The total flow rate of the discharge flow rate and the discharge flow rate of the second treatment liquid is provided to be equal to or less than a predetermined threshold value,
    The substrate processing apparatus according to claim 1, wherein the predetermined threshold is a value lower than a discharge flow rate of the first processing liquid.
  4.  前記遅延期間が、前記第1のバルブの閉動作の開始後における第1の処理液の吐出流量の推移についての第1の流量推移情報と、前記第2のバルブの開動作の開始後における第2の処理液の吐出流量の推移についての第2の流量推移情報とに基づいて、前記合計流量が前記閾値以下になるように設けられている、請求項3に記載の基板処理装置。 The delay period includes first flow rate transition information on the transition of the discharge flow rate of the first processing liquid after the start of the closing operation of the first valve, and the first flow rate information after the start of the opening operation of the second valve. The substrate processing apparatus according to claim 3, wherein the total flow rate is set to be equal to or less than the threshold value based on second flow rate transition information regarding a transition of the discharge flow rate of the second processing liquid.
  5.  前記閾値が、前記基板処理装置を用いた実験によって求められた値である、請求項3に記載の基板処理装置。 4. The substrate processing apparatus according to claim 3, wherein the threshold value is a value obtained by an experiment using the substrate processing apparatus.
  6.  前記遅延期間として、予め定められた期間を記憶する記憶ユニットを含み、
     前記制御装置が、前記記憶ユニットに記憶されている前記遅延期間に基づいて前記第2の開動作工程を実行する、請求項1または2に記載の基板処理装置。
    A storage unit for storing a predetermined period as the delay period;
    The substrate processing apparatus according to claim 1, wherein the control device executes the second opening operation step based on the delay period stored in the storage unit.
  7.  前記第1の処理液が、疎水化剤および有機溶剤の一方を含み、
     前記第2の処理液が、疎水化剤および有機溶剤の他方を含む、請求項1または2に記載の基板処理装置。
    The first treatment liquid contains one of a hydrophobizing agent and an organic solvent,
    The substrate processing apparatus according to claim 1, wherein the second processing liquid includes the other of a hydrophobizing agent and an organic solvent.
  8.  基板を保持する基板保持ユニットと、
     前記基板保持ユニットに保持されている基板に向けて、第1の処理液を吐出するための第1のノズルと、
     前記第1のノズルに第1の処理液を供給する第1の配管と、
     前記第1の配管を開閉する第1のバルブと、
     前記基板保持ユニットに保持されている基板に向けて、第2の処理液を吐出するための第2のノズルと、
     前記第2のノズルに対して第2の処理液を供給する第2の配管と、
     前記第2の配管を開閉する第2のバルブと、
     前記第1のバルブの閉動作の開始から前記第2のバルブの開動作の開始までの遅延期間を設定する遅延期間設定ユニットとを含み、
     前記遅延期間設定ユニットが、前記第1のバルブの閉動作の開始後における前記第1のノズルからの第1の処理液の吐出流量の推移についての第1の流量推移情報と、前記第2のバルブの開動作の開始後における前記第2のノズルからの第2の処理液の吐出流量の推移についての第2の流量推移情報とに基づいて前記遅延期間を算出し、前記遅延期間を設定する、基板処理装置。
    A substrate holding unit for holding a substrate;
    A first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit;
    A first pipe for supplying a first treatment liquid to the first nozzle;
    A first valve for opening and closing the first pipe;
    A second nozzle for discharging a second processing liquid toward the substrate held by the substrate holding unit;
    A second pipe for supplying a second processing liquid to the second nozzle;
    A second valve for opening and closing the second pipe;
    A delay period setting unit that sets a delay period from the start of the closing operation of the first valve to the start of the opening operation of the second valve;
    The delay period setting unit includes first flow rate transition information about a transition of a discharge flow rate of the first processing liquid from the first nozzle after the start of the closing operation of the first valve, and the second flow rate information. The delay period is calculated based on the second flow rate transition information about the transition of the discharge flow rate of the second processing liquid from the second nozzle after the start of the valve opening operation, and the delay period is set. Substrate processing equipment.
  9.  前記第1の流量推移情報および前記第2の流量推移情報を取得するために、前記第1のバルブおよび前記第2のバルブの開閉を制御する情報取得制御装置をさらに含み、
     前記遅延期間設定ユニットが、取得された前記第1の流量推移情報、および取得された前記第2の流量推移情報に基づいて前記遅延期間を設定する、請求項8に記載の基板処理装置。
    An information acquisition control device for controlling opening and closing of the first valve and the second valve in order to acquire the first flow rate transition information and the second flow rate transition information;
    The substrate processing apparatus according to claim 8, wherein the delay period setting unit sets the delay period based on the acquired first flow rate transition information and the acquired second flow rate transition information.
  10.  前記第1の流量推移情報および前記第2の流量推移情報を取得するために、前記第1のバルブおよび前記第2のバルブの開閉を制御する情報取得制御装置と、
     第1の処理液の吐出流量を計測する流量計と、
     前記流量計によって計測されている吐出流量と、取得された前記第1の流量推移情報とに基づいて第1の処理液の吐出流量の将来の推移を予測する予測ユニットとをさらに含み、
     前記遅延期間設定ユニットが、前記予測ユニットによって予測された前記将来の推移、および取得された前記第2の流量推移情報に基づいて前記遅延期間を設定する、請求項8に記載の基板処理装置。
    An information acquisition control device for controlling opening and closing of the first valve and the second valve in order to acquire the first flow rate transition information and the second flow rate transition information;
    A flow meter for measuring the discharge flow rate of the first treatment liquid;
    A prediction unit that predicts a future transition of the discharge flow rate of the first processing liquid based on the discharge flow rate measured by the flow meter and the acquired first flow rate transition information;
    The substrate processing apparatus according to claim 8, wherein the delay period setting unit sets the delay period based on the future transition predicted by the prediction unit and the acquired second flow rate transition information.
  11.  前記遅延期間設定ユニットが、前記第1の流量推移情報と前記第2の流量推移情報とに基づいて、第1の処理液の吐出流量と第2の処理液の吐出流量とが一致する状態における、当該第1の処理液の吐出流量と当該第2の処理液の吐出流量との合計流量が閾値以下になるように前記遅延期間を設定する、請求項8~10のいずれか一項に記載の基板処理装置。 In the state where the delay period setting unit matches the discharge flow rate of the first processing liquid and the discharge flow rate of the second processing liquid based on the first flow rate transition information and the second flow rate transition information. The delay period is set so that a total flow rate of the discharge flow rate of the first treatment liquid and the discharge flow rate of the second treatment liquid is less than or equal to a threshold value. Substrate processing equipment.
  12.  前記遅延期間設定ユニットが、前記合計流量が閾値以下になる期間のうち最も短い期間を、前記遅延期間として設定する、請求項11に記載の基板処理装置。 12. The substrate processing apparatus according to claim 11, wherein the delay period setting unit sets the shortest period among the periods in which the total flow rate is equal to or less than a threshold as the delay period.
  13.  前記閾値が、前記基板処理装置を用いた実験によって求められた値である、請求項10に記載の基板処理装置。 The substrate processing apparatus according to claim 10, wherein the threshold value is a value obtained by an experiment using the substrate processing apparatus.
  14.  前記基板における前記第2のノズルからの第2の処理液の着液位置が、前記基板における前記第1のノズルからの第1の処理液の着液位置と接近している、請求項1または2に記載の基板処理装置。 The landing position of the second processing liquid from the second nozzle on the substrate is close to the landing position of the first processing liquid from the first nozzle on the substrate. 2. The substrate processing apparatus according to 2.
  15.  基板を保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板に向けて、第1の処理液を吐出するための第1のノズルと、前記第1のノズルに第1の処理液を供給する第1の配管と、前記第1の配管を開閉する第1のバルブと、前記第1のノズルとは別のノズルであって、前記基板保持ユニットに保持されている基板に向けて、第2の処理液を吐出するための第2のノズルと、前記第2のノズルに対して第2の処理液を供給する第2の配管と、前記第2の配管を開閉する第2のバルブとを含む基板処理装置において実行される基板処理方法であって、
     前記第1のノズルから第1の処理液が吐出されている状態において、開状態にある前記第1のバルブを閉じる第1の閉動作工程と、
     前記第1のバルブの閉動作の開始から遅延期間の経過後、前記第1のノズルからの第1の処理液の吐出が完全には停止していない状態で前記第2のバルブの開動作を開始する第2の開動作工程とを含む、基板処理方法。
    A substrate holding unit for holding a substrate, a first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit, and a first processing liquid at the first nozzle A first pipe that supplies the first pipe, a first valve that opens and closes the first pipe, and a nozzle different from the first nozzle, toward the substrate held by the substrate holding unit , A second nozzle for discharging the second processing liquid, a second pipe for supplying the second processing liquid to the second nozzle, and a second for opening and closing the second pipe A substrate processing method executed in a substrate processing apparatus including a valve,
    A first closing operation step of closing the first valve in an open state in a state where the first processing liquid is being discharged from the first nozzle;
    After the lapse of the delay period from the start of the first valve closing operation, the second valve opening operation is performed in a state where the discharge of the first processing liquid from the first nozzle is not completely stopped. And a second opening operation step to be started.
  16.  前記遅延期間が、前記第1のノズルからの第1の処理液の吐出流量と前記第2のノズルからの第2の処理液の吐出流量とが一致する状態における、当該第1の処理液の流量と当該第2の処理液の流量との合計流量が所定の閾値以下になるように設けられており、
     前記所定の閾値が、第1の処理液の吐出流量よりも低い値である、請求項15に記載の基板処理方法。
    In the state in which the delay period coincides with the discharge flow rate of the first treatment liquid from the first nozzle and the discharge flow rate of the second treatment liquid from the second nozzle, The total flow rate of the flow rate and the flow rate of the second processing liquid is provided to be equal to or less than a predetermined threshold value
    The substrate processing method according to claim 15, wherein the predetermined threshold is a value lower than a discharge flow rate of the first processing liquid.
  17.  前記遅延期間が、前記第1のバルブの閉動作の開始後における第1の処理液の吐出流量の推移についての第1の流量推移情報と、前記第2のバルブの開動作の開始後における第2の処理液の吐出流量の推移についての第2の流量推移情報とに基づいて、前記閾値以下になるように設けられている、請求項16に記載の基板処理方法。 The delay period includes first flow rate transition information about the transition of the discharge flow rate of the first processing liquid after the start of the closing operation of the first valve, and the first flow rate information after the start of the opening operation of the second valve. The substrate processing method according to claim 16, wherein the substrate processing method is provided so as to be equal to or less than the threshold based on second flow rate transition information regarding a transition of the discharge flow rate of the second processing liquid.
  18.  前記第1の処理液が、疎水化剤および有機溶剤の一方を含み、
     前記第2の処理液が、疎水化剤および有機溶剤の他方を含む、請求項15~17のいずれか一項に記載の基板処理方法。
    The first treatment liquid contains one of a hydrophobizing agent and an organic solvent,
    The substrate processing method according to any one of claims 15 to 17, wherein the second processing liquid contains the other of a hydrophobizing agent and an organic solvent.
  19.  基板を保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板に向けて、第1の処理液を吐出するための第1のノズルと、前記第1のノズルに第1の処理液を供給する第1の配管と、前記第1の配管を開閉する第1のバルブと、前記基板保持ユニットに保持されている基板に向けて、第2の処理液を吐出するための第2のノズルと、前記第2のノズルに対して第2の処理液を供給する第2の配管と、前記第2の配管を開閉する第2のバルブとを含む基板処理装置において、前記第1のバルブの閉動作の開始から前記第2のバルブの開動作の開始までの遅延期間を設定する遅延期間設定方法であって、
     前記遅延期間が、前記第1のバルブの閉動作の開始後における前記第1のノズルからの第1の処理液の吐出流量の推移についての第1の流量推移情報と、前記第2のバルブの開動作の開始後における前記第2のノズルからの第2の処理液の吐出流量の推移についての第2の流量推移情報とに基づいて、第1の処理液の吐出流量と第2の処理液の吐出流量とが一致する状態における、当該第1の処理液の吐出流量と当該第2の処理液の吐出流量との合計流量が閾値以下になる期間を算出し、その期間を前記遅延期間として設定する、遅延期間設定方法。
    A substrate holding unit for holding a substrate, a first nozzle for discharging a first processing liquid toward the substrate held by the substrate holding unit, and a first processing liquid at the first nozzle A first valve for opening and closing the first pipe, a second valve for discharging the second processing liquid toward the substrate held by the substrate holding unit In the substrate processing apparatus, comprising: a nozzle; a second pipe that supplies a second processing liquid to the second nozzle; and a second valve that opens and closes the second pipe. A delay period setting method for setting a delay period from the start of the closing operation to the start of the opening operation of the second valve,
    The delay period includes first flow rate transition information about a transition of the discharge flow rate of the first processing liquid from the first nozzle after the start of the closing operation of the first valve, and the second valve Based on the second flow rate transition information about the transition of the discharge flow rate of the second processing liquid from the second nozzle after the start of the opening operation, the discharge flow rate of the first processing liquid and the second processing liquid When the total discharge flow rate of the first treatment liquid and the discharge flow rate of the second treatment liquid is equal to or less than a threshold value in a state in which the discharge flow rates coincide with each other, the period is set as the delay period. How to set the delay period.
  20.  前記遅延期間設定方法が、前記遅延期間設定方法が、前記合計流量が閾値以下になる期間のうち最も短い期間を、前記遅延期間として設定する、請求項19に記載の遅延期間設定方法。 20. The delay period setting method according to claim 19, wherein the delay period setting method sets the shortest period among the periods in which the total flow rate is equal to or less than a threshold as the delay period.
  21.  第1のノズルに第1の処理液を供給するための第1の配管を開閉する第1のバルブの閉動作の開始から、前記第1のノズルとは別のノズルである第2のノズルに第2の処理液を供給するための第2の配管を開閉する第2のバルブの開動作の開始までの遅延期間を設定する遅延期間設定方法を実行させるためのプログラムであって、
     前記遅延期間設定方法が、前記遅延期間が、前記第1のバルブの閉動作の開始後における前記第1のノズルからの第1の処理液の吐出流量の推移についての第1の流量推移情報と、前記第2のバルブの開動作の開始後における前記第2のノズルからの第2の処理液の吐出流量の推移についての第2の流量推移情報とに基づいて、第1の処理液の吐出流量と第2の処理液の吐出流量とが一致する状態における、当該第1の処理液の吐出流量と当該第2の処理液の吐出流量との合計流量が閾値以下になる期間を算出し、その期間を前記遅延期間として設定する、プログラム。
    From the start of the closing operation of the first valve that opens and closes the first pipe for supplying the first processing liquid to the first nozzle, the second nozzle that is a nozzle different from the first nozzle is used. A program for executing a delay period setting method for setting a delay period until the start of an opening operation of a second valve for opening and closing a second pipe for supplying a second processing liquid,
    The delay period setting method includes the first flow rate transition information about the transition of the discharge flow rate of the first processing liquid from the first nozzle after the delay period starts the closing operation of the first valve. Based on the second flow rate transition information about the transition of the discharge flow rate of the second processing liquid from the second nozzle after the start of the opening operation of the second valve, the discharge of the first processing liquid In a state where the flow rate and the discharge flow rate of the second processing liquid coincide with each other, a period in which the total flow rate of the discharge flow rate of the first processing liquid and the discharge flow rate of the second processing liquid is equal to or less than a threshold value is calculated A program for setting the period as the delay period.
PCT/JP2019/017291 2018-04-25 2019-04-23 Substrate treatment device, substrate treatment method, delay period setting method, and program WO2019208589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-084444 2018-04-25
JP2018084444A JP7048403B2 (en) 2018-04-25 2018-04-25 Board processing equipment, board processing method, delay period setting method and program

Publications (1)

Publication Number Publication Date
WO2019208589A1 true WO2019208589A1 (en) 2019-10-31

Family

ID=68295063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017291 WO2019208589A1 (en) 2018-04-25 2019-04-23 Substrate treatment device, substrate treatment method, delay period setting method, and program

Country Status (3)

Country Link
JP (1) JP7048403B2 (en)
TW (1) TWI710414B (en)
WO (1) WO2019208589A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731671A (en) * 2020-05-29 2021-12-03 株式会社斯库林集团 Substrate processing method and substrate processing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023005095A (en) * 2021-06-28 2023-01-18 株式会社Screenホールディングス Substrate processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197571A (en) * 2012-08-28 2014-10-16 大日本スクリーン製造株式会社 Substrate processing method and substrate processing device
JP2015211207A (en) * 2014-04-30 2015-11-24 東京エレクトロン株式会社 Substrate liquid processing device and substrate liquid processing method
JP2016072344A (en) * 2014-09-29 2016-05-09 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197571A (en) * 2012-08-28 2014-10-16 大日本スクリーン製造株式会社 Substrate processing method and substrate processing device
JP2015211207A (en) * 2014-04-30 2015-11-24 東京エレクトロン株式会社 Substrate liquid processing device and substrate liquid processing method
JP2016072344A (en) * 2014-09-29 2016-05-09 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731671A (en) * 2020-05-29 2021-12-03 株式会社斯库林集团 Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
TWI710414B (en) 2020-11-21
TW202010577A (en) 2020-03-16
JP7048403B2 (en) 2022-04-05
JP2019192799A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
TWI709169B (en) Substrate processing method and substrate processing apparatus
KR102541745B1 (en) Wet etching method, substrate liquid processing device and storage medium
US9275881B2 (en) Liquid processing apparatus, liquid processing method, and storage medium
KR102008061B1 (en) Substrate cleaning device, substrate processing apparatus, substrate cleaning method and substrate processing method
US20060291855A1 (en) Substrate processing apparatus
JP2009071235A (en) Substrate processing equipment
US20060098979A1 (en) Substrate processing apparatus and substrate processing method
US11660644B2 (en) Substrate processing method and substrate processing device
JP5771035B2 (en) Substrate processing method and substrate processing apparatus
TWI735798B (en) Substrate processing apparatus
US20180071884A1 (en) Substrate cleaning device, substrate processing apparatus and substrate cleaning method
US20060159449A1 (en) Substrate processing apparatus
WO2019208589A1 (en) Substrate treatment device, substrate treatment method, delay period setting method, and program
US11823921B2 (en) Substrate processing device and substrate processing method
US10331034B2 (en) Substrate processing apparatus and substrate processing method
KR102270337B1 (en) Substrate processing apparatus and method of processing substrate
KR101972226B1 (en) Substrate cleaning device and substrate processing apparatus including the same
JP2018206851A (en) Substrate processing method and substrate processing device
US11037805B2 (en) Wafer cleaning apparatus and method of cleaning wafer
JP7203685B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND PROGRAM
KR20180087391A (en) Substrate processing apparatus and substrate processing method
JP5674851B2 (en) Substrate processing method and substrate processing apparatus
US20060107970A1 (en) Method and apparatus for cleaning semiconductor substrates
JP2018049918A (en) Evaluation sample manufacturing method, evaluation sample manufacturing device, and substrate processing device
WO2023223769A1 (en) Substrate processing method and substrate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792720

Country of ref document: EP

Kind code of ref document: A1