WO2019208355A1 - Method for producing trifluoromethyl thioalkyl compound, and composition of trifluoromethyl thioalkyl halide compound - Google Patents

Method for producing trifluoromethyl thioalkyl compound, and composition of trifluoromethyl thioalkyl halide compound Download PDF

Info

Publication number
WO2019208355A1
WO2019208355A1 PCT/JP2019/016449 JP2019016449W WO2019208355A1 WO 2019208355 A1 WO2019208355 A1 WO 2019208355A1 JP 2019016449 W JP2019016449 W JP 2019016449W WO 2019208355 A1 WO2019208355 A1 WO 2019208355A1
Authority
WO
WIPO (PCT)
Prior art keywords
trifluoromethylthioalkyl
formula
atom
compound
reaction
Prior art date
Application number
PCT/JP2019/016449
Other languages
French (fr)
Japanese (ja)
Inventor
信吾 安村
Original Assignee
クミアイ化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クミアイ化学工業株式会社 filed Critical クミアイ化学工業株式会社
Priority to CN201980012615.7A priority Critical patent/CN111699172B/en
Priority to JP2019565358A priority patent/JP6660518B1/en
Priority to IL278051A priority patent/IL278051B2/en
Publication of WO2019208355A1 publication Critical patent/WO2019208355A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/01Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and halogen atoms, or nitro or nitroso groups bound to the same carbon skeleton
    • C07C323/02Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and halogen atoms, or nitro or nitroso groups bound to the same carbon skeleton having sulfur atoms of thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/03Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and halogen atoms, or nitro or nitroso groups bound to the same carbon skeleton having sulfur atoms of thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated

Definitions

  • the present invention relates to a method for producing a trifluoromethylthioalkyl compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end.
  • the present invention also relates to a composition comprising such a trifluoromethylthioalkyl halide compound.
  • the fluoroalkylthio group is a useful substituent in pharmaceutical and agrochemical compounds.
  • the pest control agent disclosed in Patent Document 1 has a trifluoroethylsulfinyl group and a trifluoromethylthioalkoxy group on the benzene ring, and the fluoroalkylthio group is important in the expression of the pest control activity. Have a role.
  • Patent Document 2 the hydroxy group of bromohexanol, which is a raw material, is acetyl protected, and after reacting a metal thiocyanate to synthesize a thiocyanate compound, the resulting thiocyanate compound is reacted with a trifluoromethylation reagent, The target trifluoromethylthiohexyl bromide is produced through deprotection and bromination of the group ("Reference Example 1" in this document).
  • Non-Patent Document 1 a target trifluoromethylthiohexyl bromide is produced in one step by performing a coupling reaction between a raw material bromohexaneboronic acid and a trifluoromethylthiolation reagent in the presence of a copper catalyst. Yes.
  • Non-Patent Document 2 bromoundecanoic acid as a raw material is reacted with a trifluoromethyl thiolating reagent in the presence of an iridium catalyst to produce the target trifluoromethyl thiodecyl bromide in one step.
  • Patent Document 4 describes a trifluoromethylthiolation reaction in which a raw material alkyl halide compound is reacted with thiophosgene in the presence of a fluorine compound.
  • the method described in Patent Document 4 is a method for producing a trifluoromethylthioalkyl compound from a low-reactivity alkyl halide compound using a single step and a less expensive raw material. It is superior to the conventional technology.
  • Patent Document 4 neither describes nor suggests a method for producing an alkyl compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end.
  • Patent Documents 2 and 3 The method for producing a trifluoromethylthioalkyl halide compound disclosed in Patent Documents 2 and 3 is a very long process that requires 5 steps to produce the target compound, and is costly and labor-intensive, and is improved in terms of industrial production. It was desired.
  • the method for producing a trifluoromethylthioalkyl halide compound disclosed in Non-Patent Documents 1 and 2 can obtain the target compound in one step.
  • this method since it is necessary to use a special catalyst, a special ligand, a special reaction apparatus, etc., it costs.
  • the manufacturing method of these literatures is an excellent method as a laboratory manufacturing method, it cannot be said that it is preferable in terms of industrial manufacturing.
  • the trifluoromethyl thioating agent used in Non-Patent Documents 1 and 2 a portion not introduced into the product remains as an extra organic compound, which may adversely affect the subsequent reaction.
  • the yield of the target compound is low, and improvement has been desired from this aspect.
  • the present inventor has conducted extensive research on a method for producing a trifluoromethylthioalkyl halide compound.
  • a dihalogenated alkyl compound having halogen atoms at both ends as a raw material and adding thiophosgene while heating in the presence of a fluorine compound
  • the target trifluoromethylthioalkyl halide compound is obtained as follows: It has been found that it can be obtained in one step without using a special catalyst or the like. And based on this knowledge, it came to complete this invention.
  • this invention solves the said subject by providing the invention as described in the following [1] to [11].
  • Formula (1) (In the formula, X 1 represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and n represents an integer in the range of 1 to 10.)
  • a method for producing a trifluoromethylthioalkyl halide compound, comprising adding thiophosgene while heating at 45 ° C. or higher in the presence of a dihalogenated alkyl compound represented by formula (I) and a fluorine compound.
  • X 1 represents a chlorine atom or a bromine atom
  • X 2 represents a bromine atom or an iodine atom
  • n shows 5 or 6
  • X 1 represents a chlorine atom or a bromine atom
  • X 2 represents a bromine atom or an iodine atom
  • n shows the integer of the range of 3 to 8
  • X 1 represents a chlorine atom
  • X 2 represents a bromine atom or an iodine atom
  • n shows 5 or 6
  • X 1 represents a chlorine atom
  • X 2 represents a bromine atom
  • n shows 5 or 6
  • the fluorine compound used in the reaction is tetramethylammonium fluoride, tetrabutylammonium fluoride, sodium fluoride, potassium fluoride, cesium fluoride or a mixture thereof.
  • Formula (1) (In the formula, X 1 represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and n represents an integer in the range of 1 to 10.)
  • a trifluoromethylthioalkyl halide compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end can be produced in a single step using relatively inexpensive raw materials and reagents. It is possible to provide a simple method. Moreover, according to this invention, it becomes possible to provide the composition containing such a trifluoromethylthioalkyl halide compound.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the present invention relates to formula (1): (In the formula, X 1 represents a halogen atom, and n represents an integer in the range of 1 to 10.)
  • a dihalogenated alkyl compound represented by the formula (I) and a fluorine compound thiophosgene is added while heating, a method for producing a trifluoromethylthioalkyl halide compound.
  • the present invention can produce the target trifluoromethylthioalkyl halide compound of the formula (1) in one step according to the following reaction formula. For this reason, as in the prior art, a multi-step process is not necessary for producing a trifluoromethylthioalkyl halide compound, and no special catalyst is required, so that it is an industrially preferred production method in terms of production cost. It is.
  • the compounds and reaction conditions used in the present invention will be described in detail.
  • the raw material used in the present invention is a dihalogenated alkyl compound represented by the formula (2), which is a known compound or can be produced from a known compound by a known method.
  • the dihalogenated alkyl compound of the formula (2) include bromochloromethane, dibromomethane, chloroiodomethane, bromoiodomethane, 1-bromo-2-chloroethane, 1,2-dibromoethane, 1-chloro-2-iodoethane.
  • dihalogenated alkyl compound of formula (2) preferably 1-bromo-3-chloropropane, 1,3-dibromopropane, 1-chloro-3-iodopropane, 1-bromo-4-chlorobutane, 1,4-dibromo Butane, 1-chloro-4-iodobutane, 1-bromo-5-chloropentane, 1,5-dibromopentane, 1-chloro-5-iodopentane, 1-bromo-6-chlorohexane, 1,6-dibromohexane 1-chloro-6-iodohexane, 1-bromo-7-chloroheptane, 1,7-dibromoheptane, 1-chloro-7-iodoheptane, 1-bromo-8-chlorooctane, 1,8-dibromooctane 1-chloro-8-iodooctan
  • X 1 and X 2 may be the same halogen atom or different halogen atoms. From the viewpoint of the yield of the target compound of the formula (1), X 1 and X 2 Are preferably different halogen atoms. Further, also in terms of yield, it is preferred that X 1 atomic number is smaller than the atomic number of the X 2. The reason is as follows.
  • X 1 and X 2 are both halogen atoms, both may be substituted with a trifluoromethylthio group by the reaction of a fluorine compound and thiophosgene. For this reason, by making X 1 and X 2 different halogen atoms, the trifluoromethylthio group is preferentially introduced into only one of the X 1 and X 2 with a difference in reactivity. This is because the desired formula (1) can be obtained in a high yield.
  • the atom with the atomic number of X 1 being X 2 It is preferably smaller than the number.
  • X 1 and X 2 are different halogen atoms from the viewpoint of reducing the by-product bis (trifluoromethylthio) alkyl compound (described later) of the formula (3). preferable. When many by-products are generated, the yield of the target compound of the formula (1) is lowered accordingly. Also from this point, it is preferable that X 1 and X 2 are different halogen atoms, and that the atomic number of X 1 is smaller than the atomic number of X 2 .
  • X 1 and X 2 are different halogen atoms from the viewpoint of reducing the unreacted formula (2).
  • the reaction is carried out in the step of producing an alkylphenyl sulfide derivative by reacting the compound of formula (1) (hereinafter sometimes referred to as “post-step”). It becomes a factor to inhibit.
  • post-step the step of producing an alkylphenyl sulfide derivative by reacting the compound of formula (1)
  • reducing unreacted Formula (2) is preferable not only from the viewpoint of the yield of the compound of Formula (1) but also from the viewpoint of reactivity in the subsequent steps.
  • X 1 and X 2 are different halogen atoms, thiophosgene preferentially nucleophilic attacks on one halogen atom, so that the yield increases and the amount of unreacted compound of formula (2) is reduced. Can do. From the same viewpoint, it is preferable X 1 atomic number is smaller than the atomic number of the X 2.
  • X 1 is preferably a chlorine atom or a bromine atom
  • X 2 is preferably a bromine atom or an iodine atom.
  • X 1 is a chlorine atom
  • X 2 is a bromine atom.
  • n in formula (2) is not particularly limited, but n is preferably in the range of 3 to 8, more preferably in the range of 4 to 7, and preferably 5 or 6. Particularly preferred.
  • the fluorine compound used in the present invention may be any fluorine compound as long as the reaction proceeds.
  • the fluorine compound used in the present invention include a tetraalkylammonium fluoride salt (eg, tetramethylammonium fluoride, tetrabutylammonium fluoride), an alkali metal fluoride salt (eg, sodium fluoride, fluoride). Potassium, cesium fluoride, etc.), alkaline earth metal fluoride salts (eg, magnesium fluoride, calcium fluoride, etc.), and mixtures thereof, but are not limited thereto.
  • a tetraalkylammonium fluoride salt eg, tetramethylammonium fluoride, tetrabutylammonium fluoride
  • an alkali metal fluoride salt eg, sodium fluoride, fluoride. Potassium, cesium fluoride, etc.
  • alkaline earth metal fluoride salts e
  • the fluorine compound used in the present invention preferably includes a tetraalkylammonium fluoride salt and an alkali metal fluoride salt, more preferably an alkali metal fluoride salt. It is done.
  • fluorine compound used in the present invention preferably include tetramethylammonium fluoride, tetrabutylammonium fluoride, sodium fluoride, potassium fluoride, cesium fluoride and the like, more preferably fluoride.
  • tetramethylammonium fluoride tetrabutylammonium fluoride
  • sodium fluoride potassium fluoride
  • cesium fluoride cesium fluoride
  • potassium fluoride is mentioned.
  • the form of potassium fluoride used in the present invention may be any form as long as the reaction proceeds, and those skilled in the art can appropriately select it.
  • potassium fluoride commercially available potassium fluoride can be used directly, and it can be used evenly dissolved in a solvent or partially dissolved.
  • the potassium fluoride includes potassium fluoride produced by a spray-drying method with a fine powder and a large specific surface area in terms of dissolution and dispersibility in a reaction organic solvent.
  • the amount of the fluorine compound used in the present invention may be any amount as long as the reaction proceeds. From the viewpoints of yield, by-product suppression, economic efficiency, etc., it is usually 3.0 mol or more, preferably 3.0 mol or more and 15.0 mol or less, relative to 1.0 mol of the dihalogenated alkyl compound of formula (2) More preferably, the range is 3.0 mol or more and 12.0 mol or less, more preferably 4.0 mol or more and 9.0 mol or less, and further preferably 4.0 mol or more and 7.0 mol or less.
  • thiophosgene form The form of thiophosgene used in the present invention may be any form as long as the reaction proceeds, and those skilled in the art can appropriately select it.
  • thiophosgene When thiophosgene is added dropwise, thiophosgene may be used directly without a solvent, or may be used in a state dissolved in a solvent.
  • dissolved in the solvent those skilled in the art can select from the solvent mentioned later suitably. However, this is not the case when thiophosgene is obtained as a solution other than the solvent described below.
  • the amount of thiophosgene used in the present invention may be any amount as long as the reaction proceeds. From the viewpoints of yield, by-product suppression, economic efficiency, etc., it is usually 0.9 mol or more and 5.0 mol or less, preferably 1.0 mol or more with respect to 1.0 mol of the dihalogenated alkyl compound of formula (2). Examples include a range of 3.0 mol or less, more preferably 1.0 mol or more and 2.0 mol or less, and still more preferably 1.0 mol or more and 1.5 mol or less.
  • the present invention is preferably carried out using a solvent.
  • the solvent used in the present invention may be any solvent as long as the reaction proceeds.
  • examples of the solvent used in the present invention include nitriles (for example, acetonitrile), ethers (for example, diethyl ether, diisopropyl ether, cyclopentyl methyl ether (CPME), tetrahydrofuran (THF), dioxane, monoglyme, diglyme and the like.
  • Carboxylic acid esters eg, ethyl acetate, butyl acetate, etc.
  • halogenated hydrocarbons eg, dichloromethane, chloroform, carbon tetrachloride, tetrachloroethane, etc.
  • aromatic hydrocarbons eg, benzene, chlorobenzene, Dichlorobenzene, nitrobenzene, toluene, xylene, etc.
  • amides eg, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methylpyrrolidone (NMP), etc.
  • Zorinon compound such as 1,3-dimethyl-2-imidazolinone (DMI), etc.
  • sulfoxides e.g., dimethyl sulfoxide (DMSO) etc.
  • DMSO dimethyl sulfoxide
  • the solvent used in the present invention is preferably nitriles, ethers, aromatic hydrocarbons and amides, more preferably nitriles.
  • the solvent used in the present invention are preferably acetonitrile, propionitrile, diethyl ether, diisopropyl ether, cyclopentyl methyl ether (CPME), tetrahydrofuran (THF), 1,4-dioxane, monoglyme, diglyme, Benzene, chlorobenzene, dichlorobenzene, nitrobenzene, toluene, xylene, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methylpyrrolidone (NMP) and the like, more preferably acetonitrile, A propionitrile etc. are mentioned, More preferably, acetonitrile is mentioned.
  • the acetonitrile used in the present invention is preferably dehydrated, but a person skilled in the art can appropriately adjust the dehydration method.
  • the amount of the solvent used in the present invention may be any amount as long as the reaction proceeds. From the viewpoints of yield, by-product suppression, economic efficiency, etc., usually 0.01 to 50 L (liter), preferably 0.1 to 15 L, relative to 1.0 mol of the dihalogenated alkyl compound of formula (2), A range of 0.1 to 10 L is more preferable, and a range of 0.1 to 5 L is more preferable.
  • reaction temperature The reaction temperature in the present invention may be any temperature as long as the reaction proceeds. From the viewpoint of yield, suppression of by-products and economic efficiency, the reaction temperature is usually 50 ° C. or higher and below the boiling point of the solvent used, preferably 50 ° C. or higher and 110 ° C. or lower, more preferably 60 ° C. or higher and 100 ° C. or lower. More preferably, a range of 70 ° C. or higher and 90 ° C. or lower can be exemplified.
  • reaction time The reaction time in the present invention is not particularly limited.
  • the reaction time in this invention can adjust the reaction time of this invention suitably for those skilled in the art. From the viewpoint of yield, by-product suppression, economic efficiency, etc., a range of usually 0.5 hours to 48 hours, preferably 1 hour to 36 hours, more preferably 1 hour to 24 hours can be exemplified.
  • reaction time means the time from immediately after the addition of the entire amount of thiophosgene to the end of the reaction.
  • the reaction time in the present invention is an aging period for consuming unreacted raw materials, and is distinguished from the addition time of thiophosgene.
  • the product produced by the present invention is a trifluoromethylthioalkyl halide compound represented by the formula (1).
  • the trifluoromethylthioalkyl halide compound of the formula (1) include chloromethyl (trifluoromethyl) sulfide, bromomethyl (trifluoromethyl) sulfide, chloroethyl (trifluoromethyl) sulfide, bromoethyl (trifluoromethyl) sulfide, and chloropropyl.
  • Trifluoromethyl sulfide bromopropyl (trifluoromethyl) sulfide, chlorobutyl (trifluoromethyl) sulfide, bromobutyl (trifluoromethyl) sulfide, chloropentyl (trifluoromethyl) sulfide, bromopentyl (trifluoromethyl) sulfide, Chlorohexyl (trifluoromethyl) sulfide, bromohexyl (trifluoromethyl) sulfide, chloroheptyl (trifluoromethyl) ) Sulfide, bromoheptyl (trifluoromethyl) sulfide, chlorooctyl (trifluoromethyl) sulfide, bromooctyl (trifluoromethyl) sulfide, chlorononyl (trifluoromethyl) sulfide, bromononyl (trifluorofluor
  • the trifluoromethylthioalkyl halide compound of formula (1) is preferably chloropropyl (trifluoromethyl) sulfide, bromopropyl (trifluoromethyl) sulfide, chlorobutyl (trifluoromethyl) sulfide, bromobutyl (trifluoromethyl) sulfide, chloro Pentyl (trifluoromethyl) sulfide, bromopentyl (trifluoromethyl) sulfide, chlorohexyl (trifluoromethyl) sulfide, bromohexyl (trifluoromethyl) sulfide, chloroheptyl (trifluoromethyl) sulfide, bromoheptyl (trifluoromethyl) ) Sulfide, chlorooctyl (trifluoromethyl) sulfide, bromooctyl (trifluoromethyl) sulfide, etc
  • Examples thereof include chloropentyl (trifluoromethyl) sulfide, bromopentyl (trifluoromethyl) sulfide, chlorohexyl (trifluoromethyl) sulfide, bromohexyl (trifluoromethyl) sulfide, and more preferably chloropentyl (trifluoromethyl).
  • a by-product In the production method of the present invention, a by-product may be generated depending on conditions.
  • a bis (trifluoromethylthio) alkyl compound represented by the following formula (3) can be exemplified.
  • the bis (trifluoromethylthio) alkyl compound of the formula (3) does not inhibit the reaction in the production of the alkylphenyl sulfide derivative, which is a subsequent step of the formula (1).
  • the compound of the formula (1) is a raw material for producing the alkylphenyl sulfide derivative and reacts with a trifluoroalkylthiophenol derivative in a later step (described later). In this step, the compound of the formula (3) inhibits the reaction. There is nothing to do. Therefore, even if the by-product of formula (3) remains, the production method of the present invention does not lower the reactivity in the subsequent step.
  • Addition conditions of thiophosgene The present invention is characterized in that thiophosgene is added to a raw material mixture containing the raw material compound of general formula (2) and a fluorine compound at an addition temperature of 45 ° C. or more and an addition time of 0.25 hours or more. .
  • thiophosgene is added to a raw material mixture containing the raw material compound of general formula (2) and a fluorine compound at an addition temperature of 45 ° C. or more and an addition time of 0.25 hours or more.
  • Addition of thiophosgene to the raw material mixture can be performed by a known method. For example, the method etc. which are dripped at a reaction system using a separating funnel, a dropping funnel, a burette, a syringe, etc. can be mentioned.
  • a small amount of thiophosgene is added over time, it is preferable to use a combination of a syringe and a syringe pump.
  • a method of dropping it into the reaction system using a metering pump, a dropping tank or the like can be mentioned.
  • the addition temperature of thiophosgene in the present invention can be appropriately adjusted by those skilled in the art if it is 45 ° C. or higher. From the viewpoints of yield, by-product suppression, economic efficiency, etc., the addition temperature is usually in the range of 45 ° C. or higher and the boiling point of the solvent used, preferably 50 ° C. or higher and 110 ° C. or lower. More preferably, the range of 60 degreeC or more and 100 degrees C or less can be illustrated, More preferably, the range of 70 degreeC or more and 90 degrees C or less can be illustrated.
  • “addition temperature” means the temperature of the reaction system immediately after the addition of thiophosgene.
  • the temperature of the thiophosgene is considered to have little effect on the reaction system, so the temperature of the raw material mixture at the time of addition should be the addition temperature. You can also.
  • the addition time of thiophosgene in the present invention can be appropriately adjusted by those skilled in the art as long as it is 0.25 hours (that is, 15 minutes) or longer.
  • the lower limit of the addition time in the present invention is preferably 0.5 hours or more, more preferably 1.0 hours or more, still more preferably 2.0 hours or more, and particularly preferably 3.5 hours. The above can be illustrated.
  • the upper limit of the addition time in the present invention is preferably 48 hours or less, more preferably 36 hours or less, still more preferably 24 hours or less, and particularly preferably 12 hours. The following can be illustrated.
  • the range of addition time in the present invention can be appropriately adjusted by those skilled in the art by combining the above lower limit and upper limit.
  • the combination of the upper limit and the lower limit of the addition time is, for example, preferably 0.5 hours to 48 hours, more preferably 1.0 hours to 36 hours, still more preferably 2.0 hours to 24 hours, and particularly preferably 3. Examples are 5 hours to 12 hours.
  • the “addition time” means the time from the start of adding thiophosgene to the reaction system until the completion of the addition of the entire amount to the reaction system.
  • the addition rate of thiophosgene with respect to 1 mol of dihalogenated alkyl compounds of Formula (2) is 10 mol / hour or less.
  • the composition of the trifluoromethylthioalkyl halide compound of the present invention will be described.
  • the composition of the trifluoromethylthioalkyl halide compound of the present invention comprises a trifluoromethylthioalkyl halide compound represented by the above formula (1), a bis (trifluoromethylthio) alkyl compound represented by the above formula (3), and Containing.
  • the bis (trifluoromethylthio) alkyl compound of the formula (3) is a by-product in the production method of the present invention, but does not inhibit the reaction in the production of the alkylphenyl sulfide derivative, which is a subsequent step of the formula (1). Therefore, there is no problem even if the expression (3) is included.
  • the composition of the present invention can be used as a raw material in an alkylphenyl sulfide derivative.
  • the content of the compound of the formula (3) is usually not more than 1 time, preferably not more than 0.1 times, based on the weight with respect to the content of the compound of the formula (1). More preferably, it is 0.01 times or less.
  • the ratio of the compound of the formula (3) to the compound of the formula (1) exceeds 1 time, the ratio of the by-product becomes too high, and the ratio of the compound of the formula (1) becomes low in the post-process. It is easy to deteriorate.
  • alkylphenyl sulfide derivative (post-process) will be described.
  • the trifluoromethylthioalkyl halide compound of formula 1 can be used for the production of alkylphenyl sulfide derivatives.
  • Alkylphenyl sulfide derivatives are useful as pest control agents or intermediates thereof.
  • the alkylphenyl sulfide derivative can be produced by the following formula.
  • m represents an integer of 0, 1, 2;
  • R 1 is a C1-C6 haloalkyl group (excluding 2-bromoethyl group), C2-C8 alkenyl group (excluding allyl group), C2-C8 haloalkenyl group, C2-C6 alkynyl group, C2-C6 halo An alkynyl group, a branched C4-C6 alkyl group (excluding an isobutyl group), a C3-C6 cycloalkyl C1-C6 alkyl group or a C3-C6 halocycloalkyl C1-C6 alkyl group,
  • R 2 represents a halogen atom, a C1-C6 alkyl group, a C1-C6 haloalkyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, a C1-C6 alkoxy group, a
  • the above reaction is performed in the presence of a base.
  • the base used in the above reaction may be any base as long as the reaction proceeds.
  • examples of the base include alkali metal hydroxides, alkali metal carbonates, and alkali metal hydrogen carbonates.
  • Preferable specific examples of the base for the above reaction include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate, more preferably sodium carbonate. You may use the base in the said reaction individually or in combination of 2 or more types of arbitrary ratios.
  • the amount of the base used in the above reaction may be any amount as long as the reaction proceeds.
  • the above reaction may be performed in the presence of a catalytic amount of iodides.
  • iodides include sodium iodide and potassium iodide, and preferably sodium iodide.
  • the amount of iodide used may be any amount as long as the reaction proceeds.
  • the above reaction is preferably performed using a solvent. Any solvent may be used as long as the reaction proceeds.
  • the solvent preferably includes nitriles, ethers, aromatic hydrocarbons, and amides, and more preferably aromatic hydrocarbons and amides.
  • the solvent used in the above reaction preferably acetonitrile, propionitrile, diethyl ether, diisopropyl ether, cyclopentyl methyl ether (CPME), tetrahydrofuran (THF), 1,4-dioxane, chlorobenzene, dichlorobenzene , Toluene, xylene, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methylpyrrolidone (NMP), etc., more preferably chlorobenzene, dichlorobenzene, toluene, xylene, N , N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methylpyrrolidone (NMP) and the like.
  • solvents can be used alone or as a mixed solvent having an arbitrary mixing ratio.
  • the amount of solvent used may be any amount as long as the reaction proceeds. Further, the ratio of the mixed solvent may be any ratio as long as the reaction proceeds.
  • the reaction temperature in the above reaction is not particularly limited as long as the reaction proceeds. From the viewpoint of yield, suppression of by-products and economic efficiency, the reaction temperature is usually 50 ° C. or higher and below the boiling point of the solvent used, preferably 50 ° C. or higher and 110 ° C. or lower, more preferably 60 ° C. or higher and 100 ° C. or lower. More preferably, a range from 70 ° C. to 90 ° C. can be exemplified.
  • the reaction time in the above reaction is not particularly limited as long as the reaction proceeds. From the viewpoint of yield, by-product suppression, economic efficiency, etc., a range of usually 0.5 hours to 48 hours, preferably 1 hour to 36 hours, more preferably 1 hour to 24 hours can be exemplified.
  • the alkylphenyl sulfide derivative Needless to say, it may be used for manufacturing.
  • Example 3 Production of (5-chloropentyl) trifluoromethyl sulfide
  • a stirrer, reflux condenser, thermometer and dropping funnel 5.57 g (30 mmol) of 1-bromo-5-chloropentane, 6.97 g (120 mmol) of potassium fluoride (spray-dried product), 12 mL o-xylene and 30 mL acetonitrile were added.
  • the components other than the solvent and the like in the reaction solution were 9-0.1% (6-chlorohexyl) trifluoromethyl sulfide, 1,6-bis ((tri Fluoromethyl) thio) hexane was 3.0%, and unreacted starting material 1-bromo-6-chlorohexane was 4.3%.
  • a part of the obtained reaction solution was isolated and purified by a method well known to those skilled in the art, and subjected to NMR measurement to confirm the following spectrum.
  • Example 6 Example 7 Except having changed the usage-amount of potassium fluoride and thiophosgene, operation similar to Example 5 was performed and Example 6 and Example 7 were implemented. The results are summarized in Table 1.
  • Example 5 shows that when the reaction was carried out using 1,5-dibromopentane having bromine atoms at both ends of the alkyl chain as a raw material, the target compound (5-bromopentyl) trifluoromethyl sulfide, This shows that a mixture of 1,5-bis ((trifluoromethyl) thio) pentane having both ends trifluoromethylthiolated and 1,5-dibromopentane, which is an unreacted raw material, is obtained.
  • Example 6 when the reaction was carried out using twice the amount of thiophosgene and potassium fluoride used in Example 5, the reaction proceeded rapidly and 1,5-bis ((trifluoromethyl) thio) Pentane was obtained quantitatively.
  • Example 7 the reaction was carried out using half the amount of thiophosgene and potassium fluoride used in Example 5 to obtain (5-bromopentyl) trifluoromethyl sulfide in a yield of 73%. It was. The result of Example 7 is better than that of Example 5, but 51% of unreacted raw material remains.
  • the starting material 1,5-dibromopentane is a known substance, and 1,5-dibromopentane can be found in literature (for example, the Journal of Organic Chemistry, 51 (12), 2206-2210, (1986)) and reagent catalogs. It is described that the boiling point of pentane is 111-112 ° C / 15 mmHg and 221 ° C / 760 mmHg. On the other hand, when the boiling point of (5-bromopentyl) trifluoromethyl sulfide was measured, they were 90 ° C./15 mmHg (actual measured value) and 210 ° C./760 mmHg (calculated value).
  • an industrially preferable method for producing an alkyl compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end is provided.
  • an industrially preferable production method of an alkyl compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end which does not require many steps until the production of the target compound. Is done.
  • an alkyl compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end which does not require a special catalyst, a special ligand, a special reaction apparatus or the like.
  • a preferred manufacturing method is provided.
  • trifluoromethylthioalkyl halide compounds useful as medical pesticides and intermediates thereof can be produced on an industrial scale.
  • (5-chloropentyl) trifluoromethyl sulfide produced in Example 1 was prepared according to the method described in Reference Production Example 1, and 5-trifluoromethylthiopentyl [4-chloro-2-fluoro-5- (2,2 , 2-trifluoroethylthio) phenyl] ether and then an oxidation reaction disclosed in International Publication No. 2013/157229 can be derived into a compound having excellent pest control activity. Therefore, the present invention has a high industrial utility value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for producing a trifluoromethyl thioalkyl halide compound represented by formula (1) (wherein X1 represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; and n represents an integer of 1 to 10), the method being characterized by comprising adding thiophosgene while heating at 45°C or higher in the presence of a dihalogenated alkyl compound represented by formula (2) (wherein X2 represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; and X1 and n are as defined above) and a fluorine compound.

Description

トリフルオロメチルチオアルキル化合物の製造方法及びトリフルオロメチルチオアルキルハライド化合物の組成物Method for producing trifluoromethylthioalkyl compound and composition of trifluoromethylthioalkyl halide compound
 本発明は、アルキル鎖の一方の末端にトリフルオロメチルチオ基を、他方の末端にハロゲン原子を有するトリフルオロメチルチオアルキル化合物の製造方法に関する。また、本発明は、このようなトリフルオロメチルチオアルキルハライド化合物を含む組成物に関する。 The present invention relates to a method for producing a trifluoromethylthioalkyl compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end. The present invention also relates to a composition comprising such a trifluoromethylthioalkyl halide compound.
 フルオロアルキルチオ基は、医薬・農薬化合物において有用な置換基である。例えば、特許文献1に開示されている有害生物防除剤は、ベンゼン環上にトリフルオロエチルスルフィニル基及びトリフルオロメチルチオアルコキシ基を有しており、フルオロアルキルチオ基が有害生物防除活性の発現において重要な役割を有している。 The fluoroalkylthio group is a useful substituent in pharmaceutical and agrochemical compounds. For example, the pest control agent disclosed in Patent Document 1 has a trifluoroethylsulfinyl group and a trifluoromethylthioalkoxy group on the benzene ring, and the fluoroalkylthio group is important in the expression of the pest control activity. Have a role.
 トリフルオロメチルチオアルキル基を有する医薬・農薬化合物を製造するためには、トリフルオロメチルチオアルキル化試薬として機能する合成等価体の製造が不可欠であり、これまで種々のトリフルオロメチルチオアルキルシントン(synthon)の合成法が検討されてきた。 In order to produce pharmaceutical and agrochemical compounds having a trifluoromethylthioalkyl group, it is indispensable to produce a synthetic equivalent that functions as a trifluoromethylthioalkylating reagent, and various trifluoromethylthioalkyl synthons have been produced so far. Synthetic methods have been investigated.
 例えば、特許文献2では、原料であるブロモヘキサノールのヒドロキシ基をアセチル保護し、金属チオシアン酸塩を反応させチオシアネート化合物を合成した後、得られたチオシアネート化合物をトリフルオロメチル化試薬と反応させ、ヒドロキシ基の脱保護及び臭素化を経て目的のトリフルオロメチルチオヘキシルブロミドを製造している(本文献の「参考例1」)。
Figure JPOXMLDOC01-appb-C000005
For example, in Patent Document 2, the hydroxy group of bromohexanol, which is a raw material, is acetyl protected, and after reacting a metal thiocyanate to synthesize a thiocyanate compound, the resulting thiocyanate compound is reacted with a trifluoromethylation reagent, The target trifluoromethylthiohexyl bromide is produced through deprotection and bromination of the group ("Reference Example 1" in this document).
Figure JPOXMLDOC01-appb-C000005
 例えば、特許文献3では、原料であるブロモペンタノールのヒドロキシ基をアセチル保護し、金属チオシアン酸塩を反応させチオシアネート化合物を合成した後、得られたチオシアネート化合物をトリフルオロメチル化試薬と反応させ、ヒドロキシ基の脱保護及び臭素化を経て目的のトリフルオロメチルチオペンチルブロミドを製造している(本文献の「実施例122~123、参考例2~3」)。
Figure JPOXMLDOC01-appb-C000006
For example, in Patent Document 3, the hydroxy group of bromopentanol as a raw material is acetyl protected, and after reacting a metal thiocyanate to synthesize a thiocyanate compound, the resulting thiocyanate compound is reacted with a trifluoromethylation reagent, The target trifluoromethylthiopentyl bromide is produced through deprotection and bromination of the hydroxy group (“Examples 122 to 123, Reference Examples 2 to 3” in this document).
Figure JPOXMLDOC01-appb-C000006
 例えば、非特許文献1では、原料であるブロモヘキサンボロン酸とトリフルオロメチルチオ化試薬を銅触媒の存在下でカップリング反応を行うことにより、目的のトリフルオロメチルチオヘキシルブロミドを1工程で製造している。
Figure JPOXMLDOC01-appb-C000007
For example, in Non-Patent Document 1, a target trifluoromethylthiohexyl bromide is produced in one step by performing a coupling reaction between a raw material bromohexaneboronic acid and a trifluoromethylthiolation reagent in the presence of a copper catalyst. Yes.
Figure JPOXMLDOC01-appb-C000007
 例えば、非特許文献2では、原料であるブロモウンデカン酸とトリフルオロメチルチオ化試薬をイリジウム触媒の存在下で反応させ、目的のトリフルオロメチルチオデシルブロミドを1工程で製造している。
Figure JPOXMLDOC01-appb-C000008
For example, in Non-Patent Document 2, bromoundecanoic acid as a raw material is reacted with a trifluoromethyl thiolating reagent in the presence of an iridium catalyst to produce the target trifluoromethyl thiodecyl bromide in one step.
Figure JPOXMLDOC01-appb-C000008
 特許文献4には、原料のアルキルハライド化合物をフッ素化合物の存在下でチオホスゲンと反応させるトリフルオロメチルチオ化反応が記載されている。特許文献4に記載された方法は、反応性の低いアルキルハライド化合物からトリフルオロメチルチオアルキル化合物を単工程(single step)且つより安価な原料を用いて製造する方法であり、特許文献4以前に知られていた従来技術よりも優れている。しかし、特許文献4には、アルキル鎖の一方の末端にトリフルオロメチルチオ基を、他方の末端にハロゲン原子を有するアルキル化合物の製造方法についての記載も示唆もされていない。 Patent Document 4 describes a trifluoromethylthiolation reaction in which a raw material alkyl halide compound is reacted with thiophosgene in the presence of a fluorine compound. The method described in Patent Document 4 is a method for producing a trifluoromethylthioalkyl compound from a low-reactivity alkyl halide compound using a single step and a less expensive raw material. It is superior to the conventional technology. However, Patent Document 4 neither describes nor suggests a method for producing an alkyl compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end.
WO2013/157229A1WO2013 / 157229A1 WO2015/122396A1WO2015 / 122396A1 WO2015/199109A1WO2015 / 199109A1 WO2016/076183A1WO2016 / 076183A1
 特許文献2及び3に開示されたトリフルオロメチルチオアルキルハライド化合物の製造方法は、目的化合物製造までに5工程を要する非常に長いものであり、コストや手間がかかるなど、工業的製造の面で改善が望まれていた。 The method for producing a trifluoromethylthioalkyl halide compound disclosed in Patent Documents 2 and 3 is a very long process that requires 5 steps to produce the target compound, and is costly and labor-intensive, and is improved in terms of industrial production. It was desired.
 一方、非特許文献1及び2に開示されたトリフルオロメチルチオアルキルハライド化合物の製造方法は、1工程で目的化合物を得ることができる。しかし、本方法では、特殊な触媒、特殊な配位子、特殊な反応装置等を使用する必要があるため、コストがかかる。このため、これらの文献の製造方法は、実験室的製造方法としては優れた方法であるが、工業的製造の面で好ましいとは言えない。また、非特許文献1,2で使用しているトリフルオロメチルチオ化剤は、生成物に導入されなかった部分が余分な有機化合物として残存し、これがのちの反応に悪影響をおよぼすおそれがある。さらに、本方法では、目的化合物の収率が低く、この面からも改善が望まれていた。 On the other hand, the method for producing a trifluoromethylthioalkyl halide compound disclosed in Non-Patent Documents 1 and 2 can obtain the target compound in one step. However, in this method, since it is necessary to use a special catalyst, a special ligand, a special reaction apparatus, etc., it costs. For this reason, although the manufacturing method of these literatures is an excellent method as a laboratory manufacturing method, it cannot be said that it is preferable in terms of industrial manufacturing. Further, in the trifluoromethyl thioating agent used in Non-Patent Documents 1 and 2, a portion not introduced into the product remains as an extra organic compound, which may adversely affect the subsequent reaction. Furthermore, in this method, the yield of the target compound is low, and improvement has been desired from this aspect.
 本発明の目的は、アルキル鎖の一方の末端にトリフルオロメチルチオ基を、他方の末端にハロゲン原子を有するトリフルオロメチルチオアルキルハライド化合物を、比較的安価な原料や試薬を用いて1工程で製造可能な方法を提供することにある。また、本発明の他の目的は、このようなトリフルオロメチルチオアルキルハライド化合物を含む組成物を提供することにある。 The object of the present invention is to produce a trifluoromethylthioalkyl halide compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end in a single step using relatively inexpensive raw materials and reagents. Is to provide a simple method. Another object of the present invention is to provide a composition containing such a trifluoromethylthioalkyl halide compound.
 上記のような状況に鑑み、トリフルオロメチルチオアルキルハライド化合物の製造方法について本発明者は鋭意研究を重ねた。その結果、意外にも、原料として両末端にハロゲン原子を有するジハロゲン化アルキル化合物を使用し、フッ素化合物の存在下で加熱しながらチオホスゲンを添加することにより、目的のトリフルオロメチルチオアルキルハライド化合物が、特殊な触媒等を用いることなく1工程で得られることを見出した。そして、この知見に基づき本発明を完成するに至った。 In view of the above situation, the present inventor has conducted extensive research on a method for producing a trifluoromethylthioalkyl halide compound. As a result, surprisingly, by using a dihalogenated alkyl compound having halogen atoms at both ends as a raw material and adding thiophosgene while heating in the presence of a fluorine compound, the target trifluoromethylthioalkyl halide compound is obtained as follows: It has been found that it can be obtained in one step without using a special catalyst or the like. And based on this knowledge, it came to complete this invention.
 すなわち、本発明は、下記〔1〕から〔11〕項に記載の発明を提供することにより前記課題を解決したものである。 That is, this invention solves the said subject by providing the invention as described in the following [1] to [11].
 〔1〕式(1):
Figure JPOXMLDOC01-appb-C000009

(式中、Xはフッ素原子、塩素原子、臭素原子、ヨウ素原子からなる群より選択されるハロゲン原子を示し、nは1から10の範囲の整数を示す。)
で表されるトリフルオロメチルチオアルキルハライド化合物の製造方法であって、
式(2):
Figure JPOXMLDOC01-appb-C000010

(式中、Xはフッ素原子、塩素原子、臭素原子、ヨウ素原子からなる群より選択されるハロゲン原子を示し、X及びnは前記で定義したとおりである。)
で表されるジハロゲン化アルキル化合物とフッ素化合物の存在下、45℃以上で加熱しながらチオホスゲンを添加することを特徴とするトリフルオロメチルチオアルキルハライド化合物の製造方法。
[1] Formula (1):
Figure JPOXMLDOC01-appb-C000009

(In the formula, X 1 represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and n represents an integer in the range of 1 to 10.)
A process for producing a trifluoromethylthioalkyl halide compound represented by:
Formula (2):
Figure JPOXMLDOC01-appb-C000010

(Wherein, X 2 represents a fluorine atom, a chlorine atom, a bromine atom, a halogen atom selected from the group consisting of an iodine atom, X 1 and n are as defined above.)
A method for producing a trifluoromethylthioalkyl halide compound, comprising adding thiophosgene while heating at 45 ° C. or higher in the presence of a dihalogenated alkyl compound represented by formula (I) and a fluorine compound.
 〔2〕XとXが互いに異なるハロゲン原子であり、Xの原子番号がXの原子番号よりも小さいことを特徴とする〔1〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [2] The method for producing a trifluoromethylthioalkyl halide compound according to [1], wherein X 1 and X 2 are different halogen atoms, and the atomic number of X 1 is smaller than the atomic number of X 2 .
 〔3〕Xは、塩素原子又は臭素原子を示し、
は、臭素原子又はヨウ素原子を示し、
nは5又は6を示すことを特徴とする〔1〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。
[3] X 1 represents a chlorine atom or a bromine atom,
X 2 represents a bromine atom or an iodine atom,
n shows 5 or 6, The manufacturing method of the trifluoromethylthioalkyl halide compound as described in [1] characterized by the above-mentioned.
 〔3’〕Xは、塩素原子又は臭素原子を示し、
は、臭素原子又はヨウ素原子を示し、
nは3から8の範囲の整数を示すことを特徴とする〔1〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。
[3 ′] X 1 represents a chlorine atom or a bromine atom,
X 2 represents a bromine atom or an iodine atom,
n shows the integer of the range of 3 to 8, The manufacturing method of the trifluoromethylthioalkyl halide compound as described in [1] characterized by the above-mentioned.
 〔3’’〕Xは、塩素原子を示し、
は、臭素原子又はヨウ素原子を示し、
nは5又は6を示すことを特徴とする〔3〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。
[3 ″] X 1 represents a chlorine atom,
X 2 represents a bromine atom or an iodine atom,
n shows 5 or 6, The manufacturing method of the trifluoromethylthioalkyl halide compound as described in [3] characterized by the above-mentioned.
 〔4〕Xは、塩素原子を示し、
は、臭素原子を示し、
nは5又は6を示すことを特徴とする〔1〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。
[4] X 1 represents a chlorine atom,
X 2 represents a bromine atom,
n shows 5 or 6, The manufacturing method of the trifluoromethylthioalkyl halide compound as described in [1] characterized by the above-mentioned.
 〔5〕チオホスゲンの添加が60℃以上100℃以下の範囲の温度で行われることを特徴とする〔1〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [5] The method for producing a trifluoromethylthioalkyl halide compound according to [1], wherein the addition of thiophosgene is performed at a temperature in the range of 60 ° C to 100 ° C.
 〔5’〕チオホスゲンの添加が70℃以上90℃以下の範囲の温度で行われることを特徴とする〔5〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [5 '] The method for producing a trifluoromethylthioalkyl halide compound according to [5], wherein the addition of thiophosgene is performed at a temperature in the range of 70 ° C to 90 ° C.
 〔6〕反応に使用されるフッ素化合物がフッ化テトラアルキルアンモニウム塩、フッ化アルカリ金属塩又はそれらの混合物であることを特徴とする〔1〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [6] The method for producing a trifluoromethylthioalkyl halide compound according to [1], wherein the fluorine compound used in the reaction is a tetraalkylammonium fluoride salt, an alkali metal fluoride salt or a mixture thereof.
 〔6’〕反応に使用されるフッ素化合物がフッ化テトラメチルアンモニウム、フッ化テトラブチルアンモニウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム又はそれらの混合物であることを特徴とする〔6〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [6 '] The fluorine compound used in the reaction is tetramethylammonium fluoride, tetrabutylammonium fluoride, sodium fluoride, potassium fluoride, cesium fluoride or a mixture thereof. The manufacturing method of the trifluoromethylthioalkyl halide compound of description.
 〔6’’〕反応に使用されるフッ素化合物がフッ化アルカリ金属塩であることを特徴とする〔6〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [6 ″] The method for producing a trifluoromethylthioalkyl halide compound according to [6], wherein the fluorine compound used in the reaction is an alkali metal fluoride salt.
 〔6’’’〕反応に使用されるフッ素化合物がフッ化カリウムであることを特徴とする〔6〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [6 ′ ″] The method for producing a trifluoromethylthioalkyl halide compound according to [6], wherein the fluorine compound used in the reaction is potassium fluoride.
 〔7〕前記式(2)の化合物1.0モルに対して3.0モル以上12.0モル以下の範囲のフッ素化合物を使用することを特徴とする〔1〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [7] The trifluoromethylthioalkyl according to [1], wherein the fluorine compound is used in an amount of 3.0 to 12.0 mol per 1.0 mol of the compound of the formula (2). A method for producing a halide compound.
 〔7’〕前記式(2)の化合物1.0モルに対して4.0モル以上9.0モル以下の範囲のフッ素化合物を使用することを特徴とする〔7〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [7 '] The trifluoromethylthio according to [7], wherein a fluorine compound in a range of 4.0 mol to 9.0 mol is used with respect to 1.0 mol of the compound of the formula (2). A method for producing an alkyl halide compound.
 〔8〕前記式(2)の化合物1.0モルに対して1.0モル以上3.0モル以下の範囲のチオホスゲンを使用することを特徴とする〔1〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [8] The trifluoromethylthioalkyl halide according to [1], wherein thiophosgene is used in an amount of 1.0 mol or more and 3.0 mol or less with respect to 1.0 mol of the compound of the formula (2). Compound production method.
 〔8’〕前記式(2)の化合物1.0モルに対して1.0モル以上2.0モル以下の範囲のチオホスゲンを使用することを特徴とする〔8〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [8 ′] The trifluoromethylthioalkyl according to [8], wherein thiophosgene is used in an amount of 1.0 mol or more and 2.0 mol or less with respect to 1.0 mol of the compound of the formula (2). A method for producing a halide compound.
 〔9〕反応が60℃以上100℃以下の範囲の温度で行われることを特徴とする〔1〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [9] The method for producing a trifluoromethylthioalkyl halide compound according to [1], wherein the reaction is performed at a temperature in the range of 60 ° C. or higher and 100 ° C. or lower.
 〔9’〕反応が70℃以上90℃以下の範囲の温度で行われることを特徴とする〔9〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [9 '] The process for producing a trifluoromethylthioalkyl halide compound according to [9], wherein the reaction is performed at a temperature in the range of 70 ° C to 90 ° C.
 〔10〕反応に使用される溶媒がニトリル類、エーテル類、アミド類、芳香族炭化水素類又はそれらの混合物であることを特徴とする〔1〕に記載の製造方法。 [10] The production method according to [1], wherein the solvent used in the reaction is a nitrile, an ether, an amide, an aromatic hydrocarbon, or a mixture thereof.
 〔10’〕反応に使用される溶媒がニトリル類であることを特徴とする〔10〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [10 '] The method for producing a trifluoromethylthioalkyl halide compound according to [10], wherein the solvent used in the reaction is a nitrile.
 〔10’ ’〕反応に使用される溶媒がアセトニトリルであることを特徴とする〔10〕に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 [10 ′ ′] The method for producing a trifluoromethylthioalkyl halide compound according to [10], wherein the solvent used in the reaction is acetonitrile.
 〔11〕式(1):
Figure JPOXMLDOC01-appb-C000011

(式中、Xはフッ素原子、塩素原子、臭素原子、ヨウ素原子からなる群より選択されるハロゲン原子を示し、nは1から10の範囲の整数を示す。)
で表されるトリフルオロメチルチオアルキルハライド化合物と、
 式(3):
Figure JPOXMLDOC01-appb-C000012

で表されるビス(トリフルオロメチルチオ)アルキル化合物と、を含有することを特徴とするトリフルオロメチルチオアルキルハライド化合物の組成物。
[11] Formula (1):
Figure JPOXMLDOC01-appb-C000011

(In the formula, X 1 represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and n represents an integer in the range of 1 to 10.)
A trifluoromethylthioalkyl halide compound represented by:
Formula (3):
Figure JPOXMLDOC01-appb-C000012

And a bis (trifluoromethylthio) alkyl compound represented by the formula: a composition of a trifluoromethylthioalkyl halide compound.
 本発明によれば、アルキル鎖の一方の末端にトリフルオロメチルチオ基を、他方の末端にハロゲン原子を有するトリフルオロメチルチオアルキルハライド化合物を、比較的安価な原料や試薬を用いて1工程で製造可能な方法を提供することが可能となる。また、本発明によれば、このようなトリフルオロメチルチオアルキルハライド化合物を含む組成物を提供することが可能になる。 According to the present invention, a trifluoromethylthioalkyl halide compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end can be produced in a single step using relatively inexpensive raw materials and reagents. It is possible to provide a simple method. Moreover, according to this invention, it becomes possible to provide the composition containing such a trifluoromethylthioalkyl halide compound.
1.本明細書に記載された記号及び用語について説明する。 1. The symbols and terms described in this specification will be described.
 ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子である。 The halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
2.本発明のトリフルオロメチルチオアルキルハライド化合物の製造方法について説明する。 2. The manufacturing method of the trifluoromethylthioalkyl halide compound of this invention is demonstrated.
本発明は、式(1):
Figure JPOXMLDOC01-appb-C000013

(式中、Xはハロゲン原子を示し、nは1から10の範囲の整数を示す。)
で表されるトリフルオロメチルチオアルキルハライド化合物の製造方法であって、
式(2):
Figure JPOXMLDOC01-appb-C000014

(式中、Xはハロゲン原子を示し、X及びnは前記で定義したとおりである。)
で表されるジハロゲン化アルキル化合物とフッ素化合物の存在下、加熱しながらチオホスゲンを添加することを特徴とするトリフルオロメチルチオアルキルハライド化合物の製造方法である。
The present invention relates to formula (1):
Figure JPOXMLDOC01-appb-C000013

(In the formula, X 1 represents a halogen atom, and n represents an integer in the range of 1 to 10.)
A process for producing a trifluoromethylthioalkyl halide compound represented by:
Formula (2):
Figure JPOXMLDOC01-appb-C000014

(Wherein X 2 represents a halogen atom, and X 1 and n are as defined above.)
In the presence of a dihalogenated alkyl compound represented by the formula (I) and a fluorine compound, thiophosgene is added while heating, a method for producing a trifluoromethylthioalkyl halide compound.
 すなわち、本発明は、目的とする式(1)のトリフルオロメチルチオアルキルハライド化合物を、以下の反応式により1工程で製造することができる。
Figure JPOXMLDOC01-appb-C000015

 このため、従来のように、トリフルオロメチルチオアルキルハライド化合物を製造するために多段階の工程が必要でなく、特殊な触媒なども必要としないため、製造コストなどの面で工業的に好ましい製造方法である。以下、本発明で使用する化合物や反応条件等について詳細に説明する。
That is, the present invention can produce the target trifluoromethylthioalkyl halide compound of the formula (1) in one step according to the following reaction formula.
Figure JPOXMLDOC01-appb-C000015

For this reason, as in the prior art, a multi-step process is not necessary for producing a trifluoromethylthioalkyl halide compound, and no special catalyst is required, so that it is an industrially preferred production method in terms of production cost. It is. Hereinafter, the compounds and reaction conditions used in the present invention will be described in detail.
(原料化合物)
 本発明において使用される原料は、式(2)で表されるジハロゲン化アルキル化合物であり、公知の化合物であるか、又は公知化合物から公知の方法により製造することができる。式(2)のジハロゲン化アルキル化合物としては、例えばブロモクロロメタン、ジブロモメタン、クロロヨードメタン、ブロモヨードメタン、1-ブロモ-2-クロロエタン、1,2-ジブロモエタン、1-クロロ-2-ヨードエタン、1-ブロモ-2-ヨードエタン、1-ブロモ-3-クロロプロパン、1,3-ジブロモプロパン、1-クロロ-3-ヨードプロパン、1-ブロモ-3-ヨードプロパン、1-ブロモ-4-クロロブタン、1,4-ジブロモブタン、1-クロロ-4-ヨードブタン、1-ブロモ-4-ヨードブタン、1-ブロモ-5-クロロペンタン、1,5-ジブロモペンタン、1-クロロ-5-ヨードペンタン、1-ブロモ-5-ヨードペンタン、1-ブロモ-6-クロロヘキサン、1,6-ジブロモヘキサン、1-クロロ-6-ヨードヘキサン、1-ブロモ-6-ヨードヘキサン、1-ブロモ-7-クロロヘプタン、1,7-ジブロモヘプタン、1-クロロ-7-ヨードヘプタン、1-ブロモ-7-ヨードヘプタン、1-ブロモ-8-クロロオクタン、1,8-ジブロモオクタン、1-クロロ-8-ヨードオクタン、1-ブロモ-8-ヨードオクタン、1-ブロモ-9-クロロノナン、1,9-ジブロモノナン、1-クロロ-9-ヨードノナン、1-ブロモ-9-ヨードノナン、1-ブロモ-10-クロロデカン、1,10-ジブロモデカン、1-クロロ-10-ヨードデカン、1-ブロモ-10-ヨードデカン等が挙げられるが、これらに限定されるものではない。
(Raw compound)
The raw material used in the present invention is a dihalogenated alkyl compound represented by the formula (2), which is a known compound or can be produced from a known compound by a known method. Examples of the dihalogenated alkyl compound of the formula (2) include bromochloromethane, dibromomethane, chloroiodomethane, bromoiodomethane, 1-bromo-2-chloroethane, 1,2-dibromoethane, 1-chloro-2-iodoethane. 1-bromo-2-iodoethane, 1-bromo-3-chloropropane, 1,3-dibromopropane, 1-chloro-3-iodopropane, 1-bromo-3-iodopropane, 1-bromo-4-chlorobutane, 1,4-dibromobutane, 1-chloro-4-iodobutane, 1-bromo-4-iodobutane, 1-bromo-5-chloropentane, 1,5-dibromopentane, 1-chloro-5-iodopentane, 1- Bromo-5-iodopentane, 1-bromo-6-chlorohexane, 1,6-dibromohexane, 1-chloro -6-iodohexane, 1-bromo-6-iodohexane, 1-bromo-7-chloroheptane, 1,7-dibromoheptane, 1-chloro-7-iodoheptane, 1-bromo-7-iodoheptane, 1 -Bromo-8-chlorooctane, 1,8-dibromooctane, 1-chloro-8-iodooctane, 1-bromo-8-iodooctane, 1-bromo-9-chlorononane, 1,9-dibromononane, 1- Chloro-9-iodononane, 1-bromo-9-iodononane, 1-bromo-10-chlorodecane, 1,10-dibromodecane, 1-chloro-10-iododecane, 1-bromo-10-iododecane, etc. It is not limited to these.
 式(2)のジハロゲン化アルキル化合物として、好ましくは1-ブロモ-3-クロロプロパン、1,3-ジブロモプロパン、1-クロロ-3-ヨードプロパン、1-ブロモ-4-クロロブタン、1,4-ジブロモブタン、1-クロロ-4-ヨードブタン、1-ブロモ-5-クロロペンタン、1,5-ジブロモペンタン、1-クロロ-5-ヨードペンタン、1-ブロモ-6-クロロヘキサン、1,6-ジブロモヘキサン、1-クロロ-6-ヨードヘキサン、1-ブロモ-7-クロロヘプタン、1,7-ジブロモヘプタン、1-クロロ-7-ヨードヘプタン、1-ブロモ-8-クロロオクタン、1,8-ジブロモオクタン、1-クロロ-8-ヨードオクタン等が挙げられ、より好ましくは1-ブロモ-5-クロロペンタン、1,5-ジブロモペンタン、1-クロロ-5-ヨードペンタン、1-ブロモ-6-クロロヘキサン、1,6-ジブロモヘキサン、1-クロロ-6-ヨードヘキサン等が挙げられ、更に好ましくは1-ブロモ-5-クロロペンタン、1-ブロモ-6-クロロヘキサン等が挙げられる。 As the dihalogenated alkyl compound of formula (2), preferably 1-bromo-3-chloropropane, 1,3-dibromopropane, 1-chloro-3-iodopropane, 1-bromo-4-chlorobutane, 1,4-dibromo Butane, 1-chloro-4-iodobutane, 1-bromo-5-chloropentane, 1,5-dibromopentane, 1-chloro-5-iodopentane, 1-bromo-6-chlorohexane, 1,6-dibromohexane 1-chloro-6-iodohexane, 1-bromo-7-chloroheptane, 1,7-dibromoheptane, 1-chloro-7-iodoheptane, 1-bromo-8-chlorooctane, 1,8-dibromooctane 1-chloro-8-iodooctane and the like, more preferably 1-bromo-5-chloropentane, 1,5-dibromope And 1-chloro-5-iodopentane, 1-bromo-6-chlorohexane, 1,6-dibromohexane, 1-chloro-6-iodohexane and the like, more preferably 1-bromo-5-chloro. Examples include pentane and 1-bromo-6-chlorohexane.
 式(2)において、XとXは同一のハロゲン原子であっても異なるハロゲン原子であってもよいが、目的化合物である式(1)の収率の面から、XとXが互いに異なるハロゲン原子であることが好ましい。さらに、同じく収率の面から、Xの原子番号がXの原子番号よりも小さいことが好ましい。理由は以下のとおりである。 In the formula (2), X 1 and X 2 may be the same halogen atom or different halogen atoms. From the viewpoint of the yield of the target compound of the formula (1), X 1 and X 2 Are preferably different halogen atoms. Further, also in terms of yield, it is preferred that X 1 atomic number is smaller than the atomic number of the X 2. The reason is as follows.
 XとXは、いずれもハロゲン原子であるため、フッ素化合物とチオホスゲンとの反応によって両方ともトリフルオロメチルチオ基に置換される場合がある。このため、XとXとを異なるハロゲン原子とすることで、XとXとの間で反応性に違いを持たせて一方のみにトリフルオロメチルチオ基を優先的に導入することで、目的とする式(1)を高い収率で得ることができるためである。ここで、ハロゲン原子の反応性は、F<Cl<Br<Iの順であるため、トリフルオロメチルチオ基をXに優先的に置換させるためには、Xの原子番号がXの原子番号よりも小さいことが好ましい。 Since X 1 and X 2 are both halogen atoms, both may be substituted with a trifluoromethylthio group by the reaction of a fluorine compound and thiophosgene. For this reason, by making X 1 and X 2 different halogen atoms, the trifluoromethylthio group is preferentially introduced into only one of the X 1 and X 2 with a difference in reactivity. This is because the desired formula (1) can be obtained in a high yield. Here, since the reactivity of the halogen atoms is in the order of F <Cl <Br <I, in order to preferentially substitute the trifluoromethylthio group with X 2 , the atom with the atomic number of X 1 being X 2 It is preferably smaller than the number.
 また、式(2)において、XとXが互いに異なるハロゲン原子であることは、副生成物である式(3)のビス(トリフルオロメチルチオ)アルキル化合物(後述する)を減らす観点からも好ましい。副生成物が多く生じると、その分、目的とする式(1)の化合物の収率が低下する。この点からも、XとXが互いに異なるハロゲン原子であること、さらには、Xの原子番号がXの原子番号よりも小さいことが好ましい。 Further, in the formula (2), X 1 and X 2 are different halogen atoms from the viewpoint of reducing the by-product bis (trifluoromethylthio) alkyl compound (described later) of the formula (3). preferable. When many by-products are generated, the yield of the target compound of the formula (1) is lowered accordingly. Also from this point, it is preferable that X 1 and X 2 are different halogen atoms, and that the atomic number of X 1 is smaller than the atomic number of X 2 .
 さらに、式(2)において、XとXが互いに異なるハロゲン原子であることは、未反応の式(2)を減らす観点からも好ましい。式(2)のジハロゲン化アルキルが未反応で残存すると、その後に式(1)の化合物を反応させてアルキルフェニルスルフィド誘導体を製造する工程(以下、「後工程」ということがある)において反応を阻害する要因となる。このため、未反応の式(2)を減らすことは、式(1)の化合物の収率の面だけでなく、その後の工程における反応性の面からも好ましい。XとXが互いに異なるハロゲン原子であると、一方のハロゲン原子に対してチオホスゲンが優先的に求核攻撃するため、収率が高くなるとともに未反応の式(2)の化合物を減らすことができる。同様の観点から、Xの原子番号がXの原子番号よりも小さいことが好ましい。 Furthermore, in the formula (2), it is preferable that X 1 and X 2 are different halogen atoms from the viewpoint of reducing the unreacted formula (2). When the dihalogenated alkyl of formula (2) remains unreacted, the reaction is carried out in the step of producing an alkylphenyl sulfide derivative by reacting the compound of formula (1) (hereinafter sometimes referred to as “post-step”). It becomes a factor to inhibit. For this reason, reducing unreacted Formula (2) is preferable not only from the viewpoint of the yield of the compound of Formula (1) but also from the viewpoint of reactivity in the subsequent steps. If X 1 and X 2 are different halogen atoms, thiophosgene preferentially nucleophilic attacks on one halogen atom, so that the yield increases and the amount of unreacted compound of formula (2) is reduced. Can do. From the same viewpoint, it is preferable X 1 atomic number is smaller than the atomic number of the X 2.
 XとXの組み合わせとしては、Xが塩素原子又は臭素原子であり、Xが臭素原子又はヨウ素原子であることが好ましい。特に、目的とする式(1)のトリフルオロメチルチオアルキルハライド化合物の収率の点から、Xが塩素原子であり、Xが臭素原子であることが好ましい。 As a combination of X 1 and X 2 , X 1 is preferably a chlorine atom or a bromine atom, and X 2 is preferably a bromine atom or an iodine atom. In particular, from the viewpoint of the yield of the target trifluoromethylthioalkyl halide compound of the formula (1), it is preferable that X 1 is a chlorine atom and X 2 is a bromine atom.
 式(2)におけるnの値は、特に制限はないが、nが3~8の範囲内であることが好ましく、4~7の範囲内であることがより好ましく、5又は6であることが特に好ましい。 The value of n in formula (2) is not particularly limited, but n is preferably in the range of 3 to 8, more preferably in the range of 4 to 7, and preferably 5 or 6. Particularly preferred.
(フッ素化合物)
 本発明で使用されるフッ素化合物は、反応が進行する限りはいずれのフッ素化合物でもよい。本発明で使用されるフッ素化合物としては、例えば、フッ化テトラアルキルアンモニウム塩(例えば、フッ化テトラメチルアンモニウム、フッ化テトラブチルアンモニウム等)、フッ化アルカリ金属塩(例えば、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等)、フッ化アルカリ土類金属塩(例えば、フッ化マグネシウム、フッ化カルシウム等)、及びそれらの混合物が挙げられるが、これらに限定されるものではない。
(Fluorine compound)
The fluorine compound used in the present invention may be any fluorine compound as long as the reaction proceeds. Examples of the fluorine compound used in the present invention include a tetraalkylammonium fluoride salt (eg, tetramethylammonium fluoride, tetrabutylammonium fluoride), an alkali metal fluoride salt (eg, sodium fluoride, fluoride). Potassium, cesium fluoride, etc.), alkaline earth metal fluoride salts (eg, magnesium fluoride, calcium fluoride, etc.), and mixtures thereof, but are not limited thereto.
 反応性、収率及び経済効率等の観点から、本発明で使用されるフッ素化合物として好ましくはフッ化テトラアルキルアンモニウム塩、フッ化アルカリ金属塩が挙げられ、より好ましくはフッ化アルカリ金属塩が挙げられる。 From the viewpoint of reactivity, yield, economic efficiency, etc., the fluorine compound used in the present invention preferably includes a tetraalkylammonium fluoride salt and an alkali metal fluoride salt, more preferably an alkali metal fluoride salt. It is done.
 本発明で使用されるフッ素化合物の具体的な例として、好ましくはフッ化テトラメチルアンモニウム、フッ化テトラブチルアンモニウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等が挙げられ、より好ましくはフッ化ナトリウム、フッ化カリウム、フッ化セシウム等が挙げられ、更に好ましくはフッ化カリウムが挙げられる。 Specific examples of the fluorine compound used in the present invention preferably include tetramethylammonium fluoride, tetrabutylammonium fluoride, sodium fluoride, potassium fluoride, cesium fluoride and the like, more preferably fluoride. Sodium, potassium fluoride, cesium fluoride, etc. are mentioned, More preferably, potassium fluoride is mentioned.
(フッ化カリウムの形態)
 本発明で使用されるフッ化カリウムの形態は、反応が進行する限りはいずれの形態でもよく、当業者は適宜に選択できる。フッ化カリウムは通常に市販されているフッ化カリウムを直接用いることができ、溶媒に均一に溶解した状態、あるいは一部が溶解した状態でも使用可能である。当該フッ化カリウムには、反応有機溶媒への溶解、分散性の面から微粉体で比表面積が大きいスプレードライ製法によるフッ化カリウムが含まれる。
(Form of potassium fluoride)
The form of potassium fluoride used in the present invention may be any form as long as the reaction proceeds, and those skilled in the art can appropriately select it. As potassium fluoride, commercially available potassium fluoride can be used directly, and it can be used evenly dissolved in a solvent or partially dissolved. The potassium fluoride includes potassium fluoride produced by a spray-drying method with a fine powder and a large specific surface area in terms of dissolution and dispersibility in a reaction organic solvent.
(フッ素化合物の使用量)
 本発明におけるフッ素化合物の使用量は、反応が進行する限りはいずれの量でもよい。収率、副生成物抑制及び経済効率等の観点から、式(2)のジハロゲン化アルキル化合物1.0モルに対して通常3.0モル以上、好ましくは3.0モル以上15.0モル以下、より好ましくは3.0モル以上12.0モル以下、更に好ましくは4.0モル以上9.0モル以下、更に好ましくは4.0モル以上7.0モル以下の範囲を例示できる。
(Amount of fluorine compound used)
The amount of the fluorine compound used in the present invention may be any amount as long as the reaction proceeds. From the viewpoints of yield, by-product suppression, economic efficiency, etc., it is usually 3.0 mol or more, preferably 3.0 mol or more and 15.0 mol or less, relative to 1.0 mol of the dihalogenated alkyl compound of formula (2) More preferably, the range is 3.0 mol or more and 12.0 mol or less, more preferably 4.0 mol or more and 9.0 mol or less, and further preferably 4.0 mol or more and 7.0 mol or less.
(チオホスゲンの形態)
 本発明で使用されるチオホスゲンの形態は、反応が進行する限りはいずれの形態でもよく、当業者は適宜に選択できる。チオホスゲンを滴下する際は、チオホスゲンを無溶媒で直接用いてもよく、また溶媒に溶解した状態で使用してもよい。チオホスゲンを溶媒に溶解した状態で使用する場合は、当業者は適宜に後述する溶媒から選択できる。ただし、チオホスゲンを後述する溶媒以外の溶液として入手した場合は、この限りではない。
(Thiophosgene form)
The form of thiophosgene used in the present invention may be any form as long as the reaction proceeds, and those skilled in the art can appropriately select it. When thiophosgene is added dropwise, thiophosgene may be used directly without a solvent, or may be used in a state dissolved in a solvent. When using thiophosgene in the state melt | dissolved in the solvent, those skilled in the art can select from the solvent mentioned later suitably. However, this is not the case when thiophosgene is obtained as a solution other than the solvent described below.
(チオホスゲンの使用量)
 本発明におけるチオホスゲンの使用量は、反応が進行する限りはいずれの量でもよい。収率、副生成物抑制及び経済効率等の観点から、式(2)のジハロゲン化アルキル化合物1.0モルに対して通常0.9モル以上5.0モル以下、好ましくは1.0モル以上3.0モル以下、より好ましくは1.0モル以上2.0モル以下、更に好ましくは1.0モル以上1.5モル以下の範囲を例示できる。
(Amount of thiophosgene used)
The amount of thiophosgene used in the present invention may be any amount as long as the reaction proceeds. From the viewpoints of yield, by-product suppression, economic efficiency, etc., it is usually 0.9 mol or more and 5.0 mol or less, preferably 1.0 mol or more with respect to 1.0 mol of the dihalogenated alkyl compound of formula (2). Examples include a range of 3.0 mol or less, more preferably 1.0 mol or more and 2.0 mol or less, and still more preferably 1.0 mol or more and 1.5 mol or less.
(溶媒)
 本発明は、好ましくは溶媒を使用して行われる。本発明で使用される溶媒は、反応が進行する限りはいずれの溶媒でもよい。本発明において使用される溶媒としては、例えば、ニトリル類(例えば、アセトニトリル等)、エーテル類(例えば、ジエチルエーテル、ジイソプロピルエーテル、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン(THF)、ジオキサン、モノグライム、ジグライム等)、カルボン酸エステル類(例えば、酢酸エチル、酢酸ブチル等)、ハロゲン化炭化水素類(例えば、ジクロロメタン、クロロホルム、四塩化炭素、テトラクロロエタン等)、芳香族炭化水素類(例えば、ベンゼン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、トルエン、キシレン等)、アミド類(例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、N-メチルピロリドン(NMP)等)、イミダゾリノン類(例えば、1,3-ジメチル-2-イミダゾリノン(DMI)等)、スルホキシド類(例えば、ジメチルスルホキシド(DMSO)等)などが挙げられるが、これらに限定されるものではない。これらの溶媒は単独で、又は任意の混合割合の混合溶媒として用いることができる。
(solvent)
The present invention is preferably carried out using a solvent. The solvent used in the present invention may be any solvent as long as the reaction proceeds. Examples of the solvent used in the present invention include nitriles (for example, acetonitrile), ethers (for example, diethyl ether, diisopropyl ether, cyclopentyl methyl ether (CPME), tetrahydrofuran (THF), dioxane, monoglyme, diglyme and the like. ), Carboxylic acid esters (eg, ethyl acetate, butyl acetate, etc.), halogenated hydrocarbons (eg, dichloromethane, chloroform, carbon tetrachloride, tetrachloroethane, etc.), aromatic hydrocarbons (eg, benzene, chlorobenzene, Dichlorobenzene, nitrobenzene, toluene, xylene, etc.), amides (eg, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methylpyrrolidone (NMP), etc.), Zorinon compound (such as 1,3-dimethyl-2-imidazolinone (DMI), etc.), sulfoxides (e.g., dimethyl sulfoxide (DMSO) etc.) and the like, but is not limited thereto. These solvents can be used alone or as a mixed solvent having an arbitrary mixing ratio.
 反応性、収率及び経済効率等の観点から、本発明で使用される溶媒として好ましくはニトリル類、エーテル類、芳香族炭化水素類、アミド類が挙げられ、より好ましくはニトリル類が挙げられる。 From the viewpoint of reactivity, yield, economic efficiency, etc., the solvent used in the present invention is preferably nitriles, ethers, aromatic hydrocarbons and amides, more preferably nitriles.
 本発明で使用される溶媒の具体的な例として、好ましくはアセトニトリル、プロピオニトリル、ジエチルエーテル、ジイソプロピルエーテル、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン(THF)、1,4-ジオキサン、モノグライム、ジグライム、ベンゼン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、トルエン、キシレン、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、N-メチルピロリドン(NMP)等が挙げられ、より好ましくはアセトニトリル、プロピオニトリル等が挙げられ、更に好ましくはアセトニトリルが挙げられる。
 本発明で使用されるアセトニトリルは、脱水されていることが好ましいが、脱水方法は当業者が適宜に調整することができる。
Specific examples of the solvent used in the present invention are preferably acetonitrile, propionitrile, diethyl ether, diisopropyl ether, cyclopentyl methyl ether (CPME), tetrahydrofuran (THF), 1,4-dioxane, monoglyme, diglyme, Benzene, chlorobenzene, dichlorobenzene, nitrobenzene, toluene, xylene, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methylpyrrolidone (NMP) and the like, more preferably acetonitrile, A propionitrile etc. are mentioned, More preferably, acetonitrile is mentioned.
The acetonitrile used in the present invention is preferably dehydrated, but a person skilled in the art can appropriately adjust the dehydration method.
(溶媒の使用量)
 本発明における溶媒の使用量は、反応が進行する限りはいずれの量でもよい。収率、副生成物抑制及び経済効率等の観点から、式(2)のジハロゲン化アルキル化合物1.0モルに対して、通常0.01~50L(リットル)、好ましくは0.1~15L、より好ましくは0.1~10L、更に好ましくは0.1~5Lの範囲を例示できる。
(Amount of solvent used)
The amount of the solvent used in the present invention may be any amount as long as the reaction proceeds. From the viewpoints of yield, by-product suppression, economic efficiency, etc., usually 0.01 to 50 L (liter), preferably 0.1 to 15 L, relative to 1.0 mol of the dihalogenated alkyl compound of formula (2), A range of 0.1 to 10 L is more preferable, and a range of 0.1 to 5 L is more preferable.
(反応温度)
 本発明における反応温度は、反応が進行する限りはいずれの温度でもよい。収率、副生成物抑制及び経済効率等の観点から、反応温度としては通常50℃以上かつ使用される溶媒の沸点以下、好ましくは50℃以上110℃以下、より好ましくは60℃以上100℃以下、更に好ましくは70℃以上90℃以下の範囲を例示できる。
(Reaction temperature)
The reaction temperature in the present invention may be any temperature as long as the reaction proceeds. From the viewpoint of yield, suppression of by-products and economic efficiency, the reaction temperature is usually 50 ° C. or higher and below the boiling point of the solvent used, preferably 50 ° C. or higher and 110 ° C. or lower, more preferably 60 ° C. or higher and 100 ° C. or lower. More preferably, a range of 70 ° C. or higher and 90 ° C. or lower can be exemplified.
(反応時間)
 本発明における反応時間は、特に制限されない。本発明における反応時間は、当業者は、本発明の反応時間を適切に調整できる。収率、副生成物抑制及び経済効率等の観点から、通常0.5時間~48時間、好ましくは1時間~36時間、より好ましくは1時間~24時間の範囲を例示できる。ここで、「反応時間」とは、全量のチオホスゲンを添加した直後から反応を終了するまでの時間を意味する。本発明における反応時間は、未反応の原料が消費されるための熟成期間のことであり、チオホスゲンの添加時間とは区別される。
(Reaction time)
The reaction time in the present invention is not particularly limited. The reaction time in this invention can adjust the reaction time of this invention suitably for those skilled in the art. From the viewpoint of yield, by-product suppression, economic efficiency, etc., a range of usually 0.5 hours to 48 hours, preferably 1 hour to 36 hours, more preferably 1 hour to 24 hours can be exemplified. Here, “reaction time” means the time from immediately after the addition of the entire amount of thiophosgene to the end of the reaction. The reaction time in the present invention is an aging period for consuming unreacted raw materials, and is distinguished from the addition time of thiophosgene.
(主生成物)
 本発明により製造される生成物は、式(1)で表されるトリフルオロメチルチオアルキルハライド化合物である。式(1)のトリフルオロメチルチオアルキルハライド化合物としては、例えばクロロメチル(トリフルオロメチル)スルフィド、ブロモメチル(トリフルオロメチル)スルフィド、クロロエチル(トリフルオロメチル)スルフィド、ブロモエチル(トリフルオロメチル)スルフィド、クロロプロピル(トリフルオロメチル)スルフィド、ブロモプロピル(トリフルオロメチル)スルフィド、クロロブチル(トリフルオロメチル)スルフィド、ブロモブチル(トリフルオロメチル)スルフィド、クロロペンチル(トリフルオロメチル)スルフィド、ブロモペンチル(トリフルオロメチル)スルフィド、クロロヘキシル(トリフルオロメチル)スルフィド、ブロモヘキシル(トリフルオロメチル)スルフィド、クロロヘプチル(トリフルオロメチル)スルフィド、ブロモヘプチル(トリフルオロメチル)スルフィド、クロロオクチル(トリフルオロメチル)スルフィド、ブロモオクチル(トリフルオロメチル)スルフィド、クロロノニル(トリフルオロメチル)スルフィド、ブロモノニル(トリフルオロメチル)スルフィド、クロロデシル(トリフルオロメチル)スルフィド、ブロモデシル(トリフルオロメチル)スルフィド等が挙げられるが、これらに限定されるものではない。
(Main product)
The product produced by the present invention is a trifluoromethylthioalkyl halide compound represented by the formula (1). Examples of the trifluoromethylthioalkyl halide compound of the formula (1) include chloromethyl (trifluoromethyl) sulfide, bromomethyl (trifluoromethyl) sulfide, chloroethyl (trifluoromethyl) sulfide, bromoethyl (trifluoromethyl) sulfide, and chloropropyl. (Trifluoromethyl) sulfide, bromopropyl (trifluoromethyl) sulfide, chlorobutyl (trifluoromethyl) sulfide, bromobutyl (trifluoromethyl) sulfide, chloropentyl (trifluoromethyl) sulfide, bromopentyl (trifluoromethyl) sulfide, Chlorohexyl (trifluoromethyl) sulfide, bromohexyl (trifluoromethyl) sulfide, chloroheptyl (trifluoromethyl) ) Sulfide, bromoheptyl (trifluoromethyl) sulfide, chlorooctyl (trifluoromethyl) sulfide, bromooctyl (trifluoromethyl) sulfide, chlorononyl (trifluoromethyl) sulfide, bromononyl (trifluoromethyl) sulfide, chlorodecyl (trifluoro) Methyl) sulfide, bromodecyl (trifluoromethyl) sulfide, and the like, but are not limited thereto.
 式(1)のトリフルオロメチルチオアルキルハライド化合物として、好ましくはクロロプロピル(トリフルオロメチル)スルフィド、ブロモプロピル(トリフルオロメチル)スルフィド、クロロブチル(トリフルオロメチル)スルフィド、ブロモブチル(トリフルオロメチル)スルフィド、クロロペンチル(トリフルオロメチル)スルフィド、ブロモペンチル(トリフルオロメチル)スルフィド、クロロヘキシル(トリフルオロメチル)スルフィド、ブロモヘキシル(トリフルオロメチル)スルフィド、クロロヘプチル(トリフルオロメチル)スルフィド、ブロモヘプチル(トリフルオロメチル)スルフィド、クロロオクチル(トリフルオロメチル)スルフィド、ブロモオクチル(トリフルオロメチル)スルフィド等が挙げられ、より好ましくはクロロペンチル(トリフルオロメチル)スルフィド、ブロモペンチル(トリフルオロメチル)スルフィド、クロロヘキシル(トリフルオロメチル)スルフィド、ブロモヘキシル(トリフルオロメチル)スルフィド等が挙げられ、更に好ましくはクロロペンチル(トリフルオロメチル)スルフィド、クロロヘキシル(トリフルオロメチル)スルフィド等が挙げられる。 The trifluoromethylthioalkyl halide compound of formula (1) is preferably chloropropyl (trifluoromethyl) sulfide, bromopropyl (trifluoromethyl) sulfide, chlorobutyl (trifluoromethyl) sulfide, bromobutyl (trifluoromethyl) sulfide, chloro Pentyl (trifluoromethyl) sulfide, bromopentyl (trifluoromethyl) sulfide, chlorohexyl (trifluoromethyl) sulfide, bromohexyl (trifluoromethyl) sulfide, chloroheptyl (trifluoromethyl) sulfide, bromoheptyl (trifluoromethyl) ) Sulfide, chlorooctyl (trifluoromethyl) sulfide, bromooctyl (trifluoromethyl) sulfide, etc. Examples thereof include chloropentyl (trifluoromethyl) sulfide, bromopentyl (trifluoromethyl) sulfide, chlorohexyl (trifluoromethyl) sulfide, bromohexyl (trifluoromethyl) sulfide, and more preferably chloropentyl (trifluoromethyl). Methyl) sulfide, chlorohexyl (trifluoromethyl) sulfide and the like.
(副生成物)
 本発明の製造方法では、条件によっては副生成物が生じる場合がある。副生成物としては、下記式(3)で表されるビス(トリフルオロメチルチオ)アルキル化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000016
(By-product)
In the production method of the present invention, a by-product may be generated depending on conditions. As a by-product, a bis (trifluoromethylthio) alkyl compound represented by the following formula (3) can be exemplified.
Figure JPOXMLDOC01-appb-C000016
 式(3)のビス(トリフルオロメチルチオ)アルキル化合物は、式(1)の後工程であるアルキルフェニルスルフィド誘導体の製造において反応を阻害しない。式(1)の化合物は、アルキルフェニルスルフィド誘導体の製造の原料であり、後工程においてトリフルオロアルキルチオフェノール誘導体と反応する(後述する)が、この工程において、式(3)の化合物は反応を阻害することがない。したがって、本発明の製造方法は、式(3)の副生成物が残存していても、後工程において反応性を低下させることがないため、式(3)の化合物の除去や式(1)の化合物の精製を必ずしも行う必要がなく、より簡易に反応を進めることが可能となる。さらに、本発明では、原料としてチオホスゲンとフッ化カリウムのみ使用しているため、生成物に導入されなかった残りの部分は無機塩となり、水による洗浄操作で簡単に取り除ける。このため、非特許文献1,2のように、余分な有機化合物が残存することなく、後工程において悪影響をおよぼすおそれが少ないという利点もある。 The bis (trifluoromethylthio) alkyl compound of the formula (3) does not inhibit the reaction in the production of the alkylphenyl sulfide derivative, which is a subsequent step of the formula (1). The compound of the formula (1) is a raw material for producing the alkylphenyl sulfide derivative and reacts with a trifluoroalkylthiophenol derivative in a later step (described later). In this step, the compound of the formula (3) inhibits the reaction. There is nothing to do. Therefore, even if the by-product of formula (3) remains, the production method of the present invention does not lower the reactivity in the subsequent step. Therefore, the removal of the compound of formula (3) and formula (1) It is not always necessary to purify the compound, and the reaction can be carried out more easily. Furthermore, in the present invention, since only thiophosgene and potassium fluoride are used as raw materials, the remaining portion not introduced into the product becomes an inorganic salt and can be easily removed by a washing operation with water. For this reason, as in Non-Patent Documents 1 and 2, there is an advantage that there is little possibility of adverse effects in the post-process without the excess organic compound remaining.
3.チオホスゲンの添加条件
 本発明は、一般式(2)の原料化合物とフッ素化合物とを含む原料混合物にチオホスゲンを45℃以上の添加温度かつ0.25時間以上の添加時間で添加することを特徴とする。以下、チオホスゲンの添加条件について詳細に説明する。
3. Addition conditions of thiophosgene The present invention is characterized in that thiophosgene is added to a raw material mixture containing the raw material compound of general formula (2) and a fluorine compound at an addition temperature of 45 ° C. or more and an addition time of 0.25 hours or more. . Hereinafter, conditions for adding thiophosgene will be described in detail.
(添加方法)
 原料混合物へのチオホスゲンの添加は、公知の方法で行うことができる。例えば、分液ロート、滴下ロート、ビュレット、シリンジ等を使用して反応系に滴下する方法などを挙げることができる。少量のチオホスゲンを時間かけて添加する場合は、シリンジとシリンジポンプを組み合わせて使用することが好ましい。大量のチオホスゲンを反応缶等に時間をかけて添加する場合は、定量ポンプ、滴下槽等を使用して反応系に滴下する方法などを挙げることができる。また、チオホスゲンの添加の際は、反応を進行させるためにスターラーなどで原料混合物を攪拌することが好ましい。
(Addition method)
Addition of thiophosgene to the raw material mixture can be performed by a known method. For example, the method etc. which are dripped at a reaction system using a separating funnel, a dropping funnel, a burette, a syringe, etc. can be mentioned. When a small amount of thiophosgene is added over time, it is preferable to use a combination of a syringe and a syringe pump. In the case where a large amount of thiophosgene is added to a reaction can or the like over time, a method of dropping it into the reaction system using a metering pump, a dropping tank or the like can be mentioned. Moreover, when adding thiophosgene, in order to advance reaction, it is preferable to stir a raw material mixture with a stirrer.
(添加温度)
 本発明におけるチオホスゲンの添加温度は、45℃以上であれば当業者が適宜に調整することができる。収率、副生成物抑制及び経済効率等の観点から、添加温度としては、通常は45℃以上かつ使用される溶媒の沸点以下の範囲内であり、好ましくは50℃以上110℃以下の範囲、より好ましくは60℃以上100℃以下の範囲、更に好ましくは70℃以上90℃以下の範囲を例示できる。ここで、「添加温度」とは、チオホスゲンを添加した直後の反応系の温度を意味する。なお、原料混合物に対して一度に添加するチオホスゲンの量が相対的に少なければ、チオホスゲンの温度が反応系に与える影響が少ないと考えられるため、添加時の原料混合物の温度を添加温度とすることもできる。
(Addition temperature)
The addition temperature of thiophosgene in the present invention can be appropriately adjusted by those skilled in the art if it is 45 ° C. or higher. From the viewpoints of yield, by-product suppression, economic efficiency, etc., the addition temperature is usually in the range of 45 ° C. or higher and the boiling point of the solvent used, preferably 50 ° C. or higher and 110 ° C. or lower. More preferably, the range of 60 degreeC or more and 100 degrees C or less can be illustrated, More preferably, the range of 70 degreeC or more and 90 degrees C or less can be illustrated. Here, “addition temperature” means the temperature of the reaction system immediately after the addition of thiophosgene. Note that if the amount of thiophosgene added to the raw material mixture at a time is relatively small, the temperature of the thiophosgene is considered to have little effect on the reaction system, so the temperature of the raw material mixture at the time of addition should be the addition temperature. You can also.
(添加時間)
 本発明におけるチオホスゲンの添加時間は、0.25時間(すなわち、15分間)以上であれば当業者が適宜に調整することができる。特に収率向上の観点から、本発明における添加時間の下限として、好ましくは0.5時間以上、より好ましくは1.0時間以上、更に好ましくは2.0時間以上、特に好ましくは3.5時間以上を例示できる。加えて、特に副生成物抑制及び経済効率等の観点から、本発明における添加時間の上限として、好ましくは48時間以下、より好ましくは36時間以下、更に好ましくは24時間以下、特に好ましくは12時間以下を例示できる。本発明における添加時間の範囲は、上記の下限と上限を組み合わせて当業者が適宜に調整することができる。添加時間の上限と下限の組み合わせとしては、例えば、好ましくは0.5時間~48時間、より好ましくは1.0時間~36時間、更に好ましくは2.0時間~24時間、特に好ましくは3.5時間~12時間を例示できる。しかし、本発明はこれら組みあわせによって何ら限定されるものではない。ここで、「添加時間」とは、チオホスゲンを反応系に添加し始めてから、全量を反応系に添加し終わるまでの時間を意味する。
(Addition time)
The addition time of thiophosgene in the present invention can be appropriately adjusted by those skilled in the art as long as it is 0.25 hours (that is, 15 minutes) or longer. In particular, from the viewpoint of yield improvement, the lower limit of the addition time in the present invention is preferably 0.5 hours or more, more preferably 1.0 hours or more, still more preferably 2.0 hours or more, and particularly preferably 3.5 hours. The above can be illustrated. In addition, particularly from the viewpoints of suppressing by-products and economic efficiency, the upper limit of the addition time in the present invention is preferably 48 hours or less, more preferably 36 hours or less, still more preferably 24 hours or less, and particularly preferably 12 hours. The following can be illustrated. The range of addition time in the present invention can be appropriately adjusted by those skilled in the art by combining the above lower limit and upper limit. The combination of the upper limit and the lower limit of the addition time is, for example, preferably 0.5 hours to 48 hours, more preferably 1.0 hours to 36 hours, still more preferably 2.0 hours to 24 hours, and particularly preferably 3. Examples are 5 hours to 12 hours. However, the present invention is not limited by these combinations. Here, the “addition time” means the time from the start of adding thiophosgene to the reaction system until the completion of the addition of the entire amount to the reaction system.
 チオホスゲンの添加時間としては、特に以下の条件が好ましい。
  添加時間(h)×(添加温度(℃)-45)≧10
 また、式(2)のジハロゲン化アルキル化合物1モルに対するチオホスゲンの添加速度が、10モル/時間以下であることが好ましい。
 さらに、以下の条件でチオホスゲンを添加することが好ましい。
 1≦前記添加速度(モル/時間)×(前記添加温度(℃)-45)≦400
As the addition time of thiophosgene, the following conditions are particularly preferable.
Addition time (h) × (addition temperature (° C.) − 45) ≧ 10
Moreover, it is preferable that the addition rate of thiophosgene with respect to 1 mol of dihalogenated alkyl compounds of Formula (2) is 10 mol / hour or less.
Furthermore, it is preferable to add thiophosgene under the following conditions.
1 ≦ addition rate (mol / hour) × (addition temperature (° C.) − 45) ≦ 400
4.本発明のトリフルオロメチルチオアルキルハライド化合物の組成物について説明する。
 本発明のトリフルオロメチルチオアルキルハライド化合物の組成物は、上記式(1)で表されるトリフルオロメチルチオアルキルハライド化合物と、上記式(3)で表されるビス(トリフルオロメチルチオ)アルキル化合物と、を含有する。
4). The composition of the trifluoromethylthioalkyl halide compound of the present invention will be described.
The composition of the trifluoromethylthioalkyl halide compound of the present invention comprises a trifluoromethylthioalkyl halide compound represented by the above formula (1), a bis (trifluoromethylthio) alkyl compound represented by the above formula (3), and Containing.
 式(3)のビス(トリフルオロメチルチオ)アルキル化合物は、本発明の製造方法における副生成物であるが、式(1)の後工程であるアルキルフェニルスルフィド誘導体の製造において反応を阻害するものではないため、式(3)が含まれていても問題はない。本発明の組成物は、アルキルフェニルスルフィド誘導体において原料として使用することができる。
 本発明の組成物において、式(3)の化合物の含有量は、式(1)の化合物の含有量に対して、重量基準で、通常は1倍以下であり、好ましくは0.1倍以下であり、より好ましくは0.01倍以下である。式(1)の化合物に対する式(3)の化合物の比率が1倍を超えると、副生成物の比率が高くなりすぎて、後工程においても式(1)の化合物の比率が低くなり、反応性が低下しやすい。
The bis (trifluoromethylthio) alkyl compound of the formula (3) is a by-product in the production method of the present invention, but does not inhibit the reaction in the production of the alkylphenyl sulfide derivative, which is a subsequent step of the formula (1). Therefore, there is no problem even if the expression (3) is included. The composition of the present invention can be used as a raw material in an alkylphenyl sulfide derivative.
In the composition of the present invention, the content of the compound of the formula (3) is usually not more than 1 time, preferably not more than 0.1 times, based on the weight with respect to the content of the compound of the formula (1). More preferably, it is 0.01 times or less. When the ratio of the compound of the formula (3) to the compound of the formula (1) exceeds 1 time, the ratio of the by-product becomes too high, and the ratio of the compound of the formula (1) becomes low in the post-process. It is easy to deteriorate.
5.アルキルフェニルスルフィド誘導体の製造方法(後工程)について説明する。
 式1のトリフルオロメチルチオアルキルハライド化合物は、アルキルフェニルスルフィド誘導体の製造に使用することができる。アルキルフェニルスルフィド誘導体は、有害生物防除剤又はその中間体として有用である。アルキルフェニルスルフィド誘導体は、以下の式により製造することができる。
Figure JPOXMLDOC01-appb-C000017

(式中、mは0、1、2の整数を示し、
はC1~C6ハロアルキル基(但し、2-ブロモエチル基を除く)、C2~C8アルケニル基(但し、アリル基を除く)、C2~C8ハロアルケニル基、C2~C6アルキニル基、C2~C6ハロアルキニル基、分岐鎖状のC4~C6アルキル基(但し、イソブチル基を除く)、C3~C6シクロアルキルC1~C6アルキル基又はC3~C6ハロシクロアルキルC1~C6アルキル基を示し、
はハロゲン原子、C1~C6アルキル基、C1~C6ハロアルキル基、C3~C6シクロアルキル基、C3~C6ハロシクロアルキル基、C1~C6アルコキシ基、C1~C6ハロアルコキシ基、シアノ基又はニトロ基を示し、
は水素原子、ハロゲン原子、C1~C6アルキル基又はC1~C6ハロアルキル基を示す。)
5. A method for producing an alkylphenyl sulfide derivative (post-process) will be described.
The trifluoromethylthioalkyl halide compound of formula 1 can be used for the production of alkylphenyl sulfide derivatives. Alkylphenyl sulfide derivatives are useful as pest control agents or intermediates thereof. The alkylphenyl sulfide derivative can be produced by the following formula.
Figure JPOXMLDOC01-appb-C000017

(In the formula, m represents an integer of 0, 1, 2;
R 1 is a C1-C6 haloalkyl group (excluding 2-bromoethyl group), C2-C8 alkenyl group (excluding allyl group), C2-C8 haloalkenyl group, C2-C6 alkynyl group, C2-C6 halo An alkynyl group, a branched C4-C6 alkyl group (excluding an isobutyl group), a C3-C6 cycloalkyl C1-C6 alkyl group or a C3-C6 halocycloalkyl C1-C6 alkyl group,
R 2 represents a halogen atom, a C1-C6 alkyl group, a C1-C6 haloalkyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, a C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a cyano group, or a nitro group. Group,
R 3 represents a hydrogen atom, a halogen atom, a C1-C6 alkyl group or a C1-C6 haloalkyl group. )
 上記の反応は塩基の存在下で行われる。上記の反応で使用される塩基は、反応が進行する限りはいずれの塩基でもよい。反応性、収率及び経済効率等の観点から、塩基の例としては、アルカリ金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩が挙げられる。上記反応の塩基の好ましい具体的な例としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム及び炭酸水素カリウムが挙げられ、より好ましくは炭酸ナトリウムが挙げられる。上記反応における塩基は、単独で又は任意の割合の2種以上の組み合わせで使用してもよい。上記反応の塩基の使用量は、反応が進行する限りは、いずれの量でもよい。 The above reaction is performed in the presence of a base. The base used in the above reaction may be any base as long as the reaction proceeds. From the viewpoint of reactivity, yield, economic efficiency, etc., examples of the base include alkali metal hydroxides, alkali metal carbonates, and alkali metal hydrogen carbonates. Preferable specific examples of the base for the above reaction include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate, more preferably sodium carbonate. You may use the base in the said reaction individually or in combination of 2 or more types of arbitrary ratios. The amount of the base used in the above reaction may be any amount as long as the reaction proceeds.
 反応を促進するために、上記の反応を触媒量のヨウ化物類の存在下で行ってもよい。ヨウ化物類としては、例えば、ヨウ化ナトリウム及びヨウ化カリウムが挙げられ、好ましくはヨウ化ナトリウムが挙げられる。ヨウ化物類の使用量は、反応が進行する限りは、いずれの量でもよい。 In order to accelerate the reaction, the above reaction may be performed in the presence of a catalytic amount of iodides. Examples of iodides include sodium iodide and potassium iodide, and preferably sodium iodide. The amount of iodide used may be any amount as long as the reaction proceeds.
 上記の反応は、好ましくは溶媒を使用して行われる。反応が進行する限りはいずれの溶媒でもよい。反応性、収率及び経済効率等の観点から、溶媒として好ましくはニトリル類、エーテル類、芳香族炭化水素類、アミド類が挙げられ、より好ましくは芳香族炭化水素類、アミド類が挙げられる。上記反応で使用される溶媒の具体的な例として、好ましくはアセトニトリル、プロピオニトリル、ジエチルエーテル、ジイソプロピルエーテル、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン(THF)、1,4-ジオキサン、クロロベンゼン、ジクロロベンゼン、トルエン、キシレン、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、N-メチルピロリドン(NMP)等が挙げられ、より好ましくはクロロベンゼン、ジクロロベンゼン、トルエン、キシレン、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、N-メチルピロリドン(NMP)等が挙げられる。これらの溶媒は単独で、又は任意の混合割合の混合溶媒として用いることができる。 The above reaction is preferably performed using a solvent. Any solvent may be used as long as the reaction proceeds. From the viewpoints of reactivity, yield, and economic efficiency, the solvent preferably includes nitriles, ethers, aromatic hydrocarbons, and amides, and more preferably aromatic hydrocarbons and amides. As specific examples of the solvent used in the above reaction, preferably acetonitrile, propionitrile, diethyl ether, diisopropyl ether, cyclopentyl methyl ether (CPME), tetrahydrofuran (THF), 1,4-dioxane, chlorobenzene, dichlorobenzene , Toluene, xylene, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methylpyrrolidone (NMP), etc., more preferably chlorobenzene, dichlorobenzene, toluene, xylene, N , N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methylpyrrolidone (NMP) and the like. These solvents can be used alone or as a mixed solvent having an arbitrary mixing ratio.
 溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。また、混合溶媒の比率は、反応が進行する限りは、いずれの比率でもよい。 The amount of solvent used may be any amount as long as the reaction proceeds. Further, the ratio of the mixed solvent may be any ratio as long as the reaction proceeds.
 上記の反応における反応温度は、反応が進行する限りは特に制限はない。収率、副生成物抑制及び経済効率等の観点から、反応温度としては通常50℃以上かつ使用される溶媒の沸点以下、好ましくは50℃以上110℃以下、より好ましくは60℃以上100℃以下、更に好ましくは70℃以上90℃以下の範囲を例示できる。上記の反応における反応時間は、反応が進行する限りは特に制限はない。収率、副生成物抑制及び経済効率等の観点から、通常0.5時間~48時間、好ましくは1時間~36時間、より好ましくは1時間~24時間の範囲を例示できる。 The reaction temperature in the above reaction is not particularly limited as long as the reaction proceeds. From the viewpoint of yield, suppression of by-products and economic efficiency, the reaction temperature is usually 50 ° C. or higher and below the boiling point of the solvent used, preferably 50 ° C. or higher and 110 ° C. or lower, more preferably 60 ° C. or higher and 100 ° C. or lower. More preferably, a range from 70 ° C. to 90 ° C. can be exemplified. The reaction time in the above reaction is not particularly limited as long as the reaction proceeds. From the viewpoint of yield, by-product suppression, economic efficiency, etc., a range of usually 0.5 hours to 48 hours, preferably 1 hour to 36 hours, more preferably 1 hour to 24 hours can be exemplified.
 上記のアルキルフェニルスルフィド誘導体の製造方法においては、上記のように、式(3)のビス(トリフルオロメチルチオ)アルキル化合物が混在していても反応を阻害するなどの影響がない。このため、本発明のトリフルオロメチルチオアルキルハライド化合物の製造方法で生じた副生成物のビス(トリフルオロメチルチオ)アルキル化合物が混在していても、そのままアルキルフェニルスルフィド誘導体の製造に使用することができる。なお、本発明のトリフルオロメチルチオアルキルハライド化合物の製造方法ののちに、トリフルオロメチルチオアルキルハライド化合物を生成して副生成物のビス(トリフルオロメチルチオ)アルキル化合物を除去したのち、アルキルフェニルスルフィド誘導体の製造に使用してもよいことは言うまでもない。 In the above method for producing an alkylphenyl sulfide derivative, as described above, even if a bis (trifluoromethylthio) alkyl compound of the formula (3) is mixed, there is no influence such as inhibiting the reaction. For this reason, even if the by-product bis (trifluoromethylthio) alkyl compound produced by the method for producing a trifluoromethylthioalkyl halide compound of the present invention is mixed, it can be used as it is for producing an alkylphenyl sulfide derivative. . In addition, after the production method of the trifluoromethylthioalkyl halide compound of the present invention, after producing the trifluoromethylthioalkyl halide compound and removing the by-product bis (trifluoromethylthio) alkyl compound, the alkylphenyl sulfide derivative Needless to say, it may be used for manufacturing.
 次に、実施例を挙げて本発明の製造方法を具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。 Next, the production method of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
 本明細書中、実施例及び参考製造例の各物性の測定には次の機器を用いた。
 (H核磁気共鳴スペクトル(H-NMR))
Varian Mercury-300、内部基準物質:テトラメチルシラン(TMS)
 (ガスクロマトグラフィー(GC)分析方法)
GC-2010(株式会社島津製作所製)、検出方法:FID
 GC分析方法に関しては、必要に応じて、以下の文献を参照することができる。
(a):(社)日本化学会編、「新実験化学講座9 分析化学 II」、第60~86頁(1977年)、発行者 飯泉新吾、丸善株式会社(例えば、カラムに使用可能な固定相液体に関しては、第66頁を参照できる。)
(b):(社)日本化学会編、「実験化学講座20-1 分析化学」第5版、第121~129頁(2007年)、発行者 村田誠四郎、丸善株式会社(例えば、中空キャピラリー分離カラムの具体的な使用方法に関しては、第124~125頁を参照できる。)
In this specification, the following apparatus was used for the measurement of each physical property of Examples and Reference Production Examples.
( 1 H nuclear magnetic resonance spectrum ( 1 H-NMR))
Varian Mercury-300, internal reference material: tetramethylsilane (TMS)
(Gas chromatography (GC) analysis method)
GC-2010 (manufactured by Shimadzu Corporation), detection method: FID
Regarding the GC analysis method, the following documents can be referred to as necessary.
(A): (Corporation) The Chemical Society of Japan, “New Experimental Chemistry Course 9 Analytical Chemistry II”, pp. 60-86 (1977), publisher Shingo Iizumi, Maruzen Co., Ltd. (See page 66 for phase liquid)
(B): The Chemical Society of Japan, “Experimental Chemistry Course 20-1 Analytical Chemistry”, 5th edition, pages 121-129 (2007), publisher Seishiro Murata, Maruzen Co., Ltd. (for example, hollow capillary (See pages 124-125 for specific use of the separation column.)
 (実施例1)
 (5-クロロペンチル)トリフルオロメチルスルフィドの製造
Figure JPOXMLDOC01-appb-C000018
Example 1
Production of (5-chloropentyl) trifluoromethyl sulfide
Figure JPOXMLDOC01-appb-C000018
 マグネチックスターラーを備えた反応フラスコに、1-ブロモ-5-クロロペンタン1.85g(10mmol)、フッ化カリウム(スプレードライ品)2.32g(40mmol)及びアセトニトリル20mLを加えた。混合物を加熱還流下(反応系内の温度は82℃)で撹拌しながら、チオホスゲン1.38g(12mmol)を1時間かけて滴下した後、反応混合物を加熱還流下で1時間撹拌した。得られた反応溶液について、ビフェニルを内部標準物質としたGC内部標準法により分析したところ、(5-クロロペンチル)トリフルオロメチルスルフィドの収率は90.0%、1,5-ビス((トリフルオロメチル)チオ)ペンタンの収率は6.0%、未反応の原料である1-ブロモ-5-クロロペンタンの回収率は0.5%であった。得られた反応溶液の一部を当業者に周知の方法で単離・精製し、NMR測定に付して以下の通りのスペクトルが確認された。 To a reaction flask equipped with a magnetic stirrer, 1.85 g (10 mmol) of 1-bromo-5-chloropentane, 2.32 g (40 mmol) of potassium fluoride (spray dried product) and 20 mL of acetonitrile were added. While stirring the mixture under heating under reflux (temperature in the reaction system was 82 ° C.), 1.38 g (12 mmol) of thiophosgene was added dropwise over 1 hour, and then the reaction mixture was stirred under heating under reflux for 1 hour. The obtained reaction solution was analyzed by a GC internal standard method using biphenyl as an internal standard substance. As a result, the yield of (5-chloropentyl) trifluoromethyl sulfide was 90.0% and 1,5-bis ((tri The yield of fluoromethyl) thio) pentane was 6.0%, and the recovery rate of 1-bromo-5-chloropentane which was an unreacted raw material was 0.5%. A part of the obtained reaction solution was isolated and purified by a method well known to those skilled in the art, and subjected to NMR measurement to confirm the following spectrum.
H-NMR(300MHz,CDCl)δ(ppm):3.55(t,J=6.6Hz,2H),2.90(t,J=7.2Hz,2H),1.86-1.69(m,4H),1.62-1.54(m,2H) 1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 3.55 (t, J = 6.6 Hz, 2H), 2.90 (t, J = 7.2 Hz, 2H), 1.86-1 .69 (m, 4H), 1.62-1.54 (m, 2H)
 (実施例2)
 (5-クロロペンチル)トリフルオロメチルスルフィドの製造
Figure JPOXMLDOC01-appb-C000019
(Example 2)
Production of (5-chloropentyl) trifluoromethyl sulfide
Figure JPOXMLDOC01-appb-C000019
 マグネチックスターラーを備えた反応フラスコに、1-ブロモ-5-クロロペンタン3.71g(20mmol)、フッ化カリウム(スプレードライ品)4.65g(80mmol)及びアセトニトリル30mLを加えた。混合物を加熱還流下(反応系内の温度は82℃)で撹拌しながら、チオホスゲンの30%o-キシレン溶液9.20g(24mmol)を3時間かけて滴下した後、反応混合物を加熱還流下で1時間撹拌した。得られた反応溶液について、ビフェニルを内部標準物質としたGC内部標準法により分析したところ、(5-クロロペンチル)トリフルオロメチルスルフィドの収率は89.5%、1,5-ビス((トリフルオロメチル)チオ)ペンタンの収率は4.7%、未反応の原料である1-ブロモ-5-クロロペンタンの回収率は0.6%であった。 To a reaction flask equipped with a magnetic stirrer, 3.71 g (20 mmol) of 1-bromo-5-chloropentane, 4.65 g (80 mmol) of potassium fluoride (spray dried product) and 30 mL of acetonitrile were added. While stirring the mixture with heating under reflux (the temperature in the reaction system was 82 ° C.), 9.20 g (24 mmol) of a 30% o-xylene solution of thiophosgene was added dropwise over 3 hours, and then the reaction mixture was heated under reflux. Stir for 1 hour. The obtained reaction solution was analyzed by a GC internal standard method using biphenyl as an internal standard substance. As a result, the yield of (5-chloropentyl) trifluoromethyl sulfide was 89.5% and 1,5-bis ((tri The yield of fluoromethyl) thio) pentane was 4.7%, and the recovery rate of unreacted starting material 1-bromo-5-chloropentane was 0.6%.
 (実施例3)
 (5-クロロペンチル)トリフルオロメチルスルフィドの製造
Figure JPOXMLDOC01-appb-C000020

 攪拌機、還流冷却器、温度計及び滴下ロートを備えた四つ口フラスコに、1-ブロモ-5-クロロペンタン5.57g(30mmol)、フッ化カリウム(スプレードライ品)6.97g(120mmol)、o-キシレン12mL及びアセトニトリル30mLを加えた。混合物を加熱還流下(反応系内の温度は90℃)で撹拌しながら、チオホスゲン4.14g(36mmol)を3時間かけて滴下した後、反応混合物を加熱還流下で1時間撹拌した。得られた反応溶液についてGC面積百分率法により分析したところ、反応溶液中の溶媒等を除く成分は、(5-クロロペンチル)トリフルオロメチルスルフィドは92.0%、1,5-ビス((トリフルオロメチル)チオ)ペンタンは1.0%、未反応の原料である1-ブロモ-5-クロロペンタンは3.0%であった。
(Example 3)
Production of (5-chloropentyl) trifluoromethyl sulfide
Figure JPOXMLDOC01-appb-C000020

In a four-necked flask equipped with a stirrer, reflux condenser, thermometer and dropping funnel, 5.57 g (30 mmol) of 1-bromo-5-chloropentane, 6.97 g (120 mmol) of potassium fluoride (spray-dried product), 12 mL o-xylene and 30 mL acetonitrile were added. While stirring the mixture under heating under reflux (temperature in the reaction system was 90 ° C.), 4.14 g (36 mmol) of thiophosgene was added dropwise over 3 hours, and then the reaction mixture was stirred under heating under reflux for 1 hour. When the obtained reaction solution was analyzed by the GC area percentage method, the components other than the solvent and the like in the reaction solution were 9-2.0% (5-chloropentyl) trifluoromethyl sulfide and 1,5-bis ((trimethyl Fluoromethyl) thio) pentane was 1.0%, and unreacted starting material 1-bromo-5-chloropentane was 3.0%.
 (比較例1)
 (5-クロロペンチル)トリフルオロメチルスルフィドの製造
Figure JPOXMLDOC01-appb-C000021

 攪拌機、還流冷却器、温度計及び滴下ロートを備えた四つ口反応フラスコに、1-ブロモ-5-クロロペンタン3.99g(20mmol)、フッ化カリウム(スプレードライ品)4.65g(80mmol)及びアセトニトリル40mLを加えた。混合物を内温35℃で撹拌しながら、チオホスゲン2.76g(24mmol)を3時間かけて滴下した後、反応混合物を内温35℃で1時間撹拌した。得られた反応溶液についてGC面積百分率法により分析したところ、反応溶液中の溶媒等を除く成分は、(5-クロロペンチル)トリフルオロメチルスルフィドは9.9%、1,5-ビス((トリフルオロメチル)チオ)ペンタンは0%、未反応の原料である1-ブロモ-5-クロロペンタンは88.6%であった。
(Comparative Example 1)
Production of (5-chloropentyl) trifluoromethyl sulfide
Figure JPOXMLDOC01-appb-C000021

In a four-necked reaction flask equipped with a stirrer, reflux condenser, thermometer and dropping funnel, 3.99 g (20 mmol) of 1-bromo-5-chloropentane, 4.65 g (80 mmol) of potassium fluoride (spray-dried product) And 40 mL of acetonitrile was added. While stirring the mixture at an internal temperature of 35 ° C., 2.76 g (24 mmol) of thiophosgene was added dropwise over 3 hours, and then the reaction mixture was stirred at an internal temperature of 35 ° C. for 1 hour. When the obtained reaction solution was analyzed by the GC area percentage method, the components other than the solvent and the like in the reaction solution were 9.9% for (5-chloropentyl) trifluoromethyl sulfide and 1,5-bis ((trimethyl Fluoromethyl) thio) pentane was 0%, and unreacted starting material 1-bromo-5-chloropentane was 88.6%.
 (実施例4)
 (6-クロロヘキシル)トリフルオロメチルスルフィドの製造
Figure JPOXMLDOC01-appb-C000022
Example 4
Production of (6-chlorohexyl) trifluoromethyl sulfide
Figure JPOXMLDOC01-appb-C000022
 マグネチックスターラーを備えた反応フラスコに、1-ブロモ-6-クロロヘキサン2.00g(10mmol)、フッ化カリウム(スプレードライ品)2.32g(40mmol)及びアセトニトリル20mLを加えた。混合物を加熱還流下(反応系内の温度は82℃)で撹拌しながら、チオホスゲン1.38g(12mmol)を1時間かけて滴下した後、反応混合物を加熱還流下で1時間撹拌した。得られた反応溶液についてGC面積百分率法により分析したところ、反応溶液中の溶媒等を除く成分は、(6-クロロヘキシル)トリフルオロメチルスルフィドが90.1%、1,6-ビス((トリフルオロメチル)チオ)ヘキサンが3.0%、未反応の原料である1-ブロモ-6-クロロヘキサンが4.3%であった。得られた反応溶液の一部を当業者に周知の方法で単離・精製し、NMR測定に付して以下の通りのスペクトルが確認された。 To a reaction flask equipped with a magnetic stirrer, 2.00 g (10 mmol) of 1-bromo-6-chlorohexane, 2.32 g (40 mmol) of potassium fluoride (spray dried product) and 20 mL of acetonitrile were added. While stirring the mixture under heating under reflux (temperature in the reaction system was 82 ° C.), 1.38 g (12 mmol) of thiophosgene was added dropwise over 1 hour, and then the reaction mixture was stirred under heating under reflux for 1 hour. When the obtained reaction solution was analyzed by the GC area percentage method, the components other than the solvent and the like in the reaction solution were 9-0.1% (6-chlorohexyl) trifluoromethyl sulfide, 1,6-bis ((tri Fluoromethyl) thio) hexane was 3.0%, and unreacted starting material 1-bromo-6-chlorohexane was 4.3%. A part of the obtained reaction solution was isolated and purified by a method well known to those skilled in the art, and subjected to NMR measurement to confirm the following spectrum.
H-NMR(300MHz,CDCl)δ(ppm):3.54(t,J=6.6Hz,2H),2.89(t,J=7.2Hz,2H),1.75(m,4H),1.47(m,4H) 1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 3.54 (t, J = 6.6 Hz, 2H), 2.89 (t, J = 7.2 Hz, 2H), 1.75 (m , 4H), 1.47 (m, 4H)
 (実施例5)
 (5-ブロモペンチル)トリフルオロメチルスルフィドの製造
Figure JPOXMLDOC01-appb-C000023
(Example 5)
Production of (5-bromopentyl) trifluoromethyl sulfide
Figure JPOXMLDOC01-appb-C000023
 マグネチックスターラーを備えた反応フラスコに、1,5-ジブロモペンタン2.30g(10mmol)、フッ化カリウム(スプレードライ品)2.32g(40mmol)及びアセトニトリル20mLを加えた。混合物を加熱還流下(反応系内の温度は82℃)で撹拌しながら、チオホスゲン1.38g(12mmol)を1時間かけて滴下した後、反応混合物を加熱還流下で1時間撹拌した。得られた反応混合物について、ビフェニルを内部標準物質としたGC内部標準法により分析したところ、(5-ブロモペンチル)トリフルオロメチルスルフィドの収率は45.2%、1,5-ビス((トリフルオロメチル)チオ)ペンタンの収率は26.5%、未反応の原料である1,5-ジブロモペンタンの回収率は22.4%であった。得られた反応溶液の一部を当業者に周知の方法で単離・精製し、NMR測定に付して以下の通りのスペクトルが確認された。 To a reaction flask equipped with a magnetic stirrer, 2.30 g (10 mmol) of 1,5-dibromopentane, 2.32 g (40 mmol) of potassium fluoride (spray dried product) and 20 mL of acetonitrile were added. While stirring the mixture under heating under reflux (temperature in the reaction system was 82 ° C.), 1.38 g (12 mmol) of thiophosgene was added dropwise over 1 hour, and then the reaction mixture was stirred under heating under reflux for 1 hour. When the obtained reaction mixture was analyzed by GC internal standard method using biphenyl as an internal standard substance, the yield of (5-bromopentyl) trifluoromethyl sulfide was 45.2% and 1,5-bis ((tri The yield of fluoromethyl) thio) pentane was 26.5%, and the recovery rate of 1,5-dibromopentane which was an unreacted raw material was 22.4%. A part of the obtained reaction solution was isolated and purified by a method well known to those skilled in the art, and subjected to NMR measurement to confirm the following spectrum.
((5-ブロモペンチル)トリフルオロメチルスルフィドのH-NMRシフト)
H-NMR(300MHz,CDCl)δ(ppm):3.39(t,J=6.6Hz,2H),2.90(t,J=7.2Hz,2H),1.90(m,2H),1.74(m,2H),1.57(m,2H)
(1,5-ビス((トリフルオロメチル)チオ)ペンタンのH-NMRシフト)
H-NMR(300MHz,CDCl)δ(ppm):2.89(t,J=7.2Hz,4H),1.74(quin,J=7.2Hz,4H),1.55(m,2H)
( 1 H-NMR shift of (5-bromopentyl) trifluoromethyl sulfide)
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 3.39 (t, J = 6.6 Hz, 2H), 2.90 (t, J = 7.2 Hz, 2H), 1.90 (m , 2H), 1.74 (m, 2H), 1.57 (m, 2H)
( 1 H-NMR shift of 1,5-bis ((trifluoromethyl) thio) pentane)
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 2.89 (t, J = 7.2 Hz, 4H), 1.74 (quin, J = 7.2 Hz, 4H), 1.55 (m , 2H)
 (実施例6、実施例7)
 フッ化カリウム及びチオホスゲンの使用量を変更した以外は実施例5と同様の操作を行い、実施例6及び実施例7を実施した。結果を表1にまとめた。
(Example 6, Example 7)
Except having changed the usage-amount of potassium fluoride and thiophosgene, operation similar to Example 5 was performed and Example 6 and Example 7 were implemented. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 実施例5の結果は、アルキル鎖の両末端に臭素原子を有する1,5-ジブロモペンタンを原料として反応を行った場合、目的化合物である(5-ブロモペンチル)トリフルオロメチルスルフィド、アルキル鎖の両末端がトリフルオロメチルチオ化された1,5-ビス((トリフルオロメチル)チオ)ペンタン及び未反応の原料である1,5-ジブロモペンタンの混合物が得られることを示している。
 実施例6では、実施例5で使用した量の2倍のチオホスゲン及びフッ化カリウムを用いて反応を行ったところ、反応は速やかに進行し、1,5-ビス((トリフルオロメチル)チオ)ペンタンが定量的に得られた。
 実施例7では、実施例5で使用した量の2分の1のチオホスゲン及びフッ化カリウムを用いて反応を行ったところ、(5-ブロモペンチル)トリフルオロメチルスルフィドが収率73%で得られた。実施例7の結果は実施例5よりも良好な結果であるが、未反応の原料が51%残っている。
The result of Example 5 shows that when the reaction was carried out using 1,5-dibromopentane having bromine atoms at both ends of the alkyl chain as a raw material, the target compound (5-bromopentyl) trifluoromethyl sulfide, This shows that a mixture of 1,5-bis ((trifluoromethyl) thio) pentane having both ends trifluoromethylthiolated and 1,5-dibromopentane, which is an unreacted raw material, is obtained.
In Example 6, when the reaction was carried out using twice the amount of thiophosgene and potassium fluoride used in Example 5, the reaction proceeded rapidly and 1,5-bis ((trifluoromethyl) thio) Pentane was obtained quantitatively.
In Example 7, the reaction was carried out using half the amount of thiophosgene and potassium fluoride used in Example 5 to obtain (5-bromopentyl) trifluoromethyl sulfide in a yield of 73%. It was. The result of Example 7 is better than that of Example 5, but 51% of unreacted raw material remains.
 原料である1,5-ジブロモペンタンは公知物質であり、文献(例えば、the Journal of Organic Chemistry, 51(12), 2206-2210,(1986)等)や試薬カタログ等に、1,5-ジブロモペンタンの沸点が111-112℃/15mmHg、221℃/760mmHgであると記載されている。一方、(5-ブロモペンチル)トリフルオロメチルスルフィドの沸点を測定したところ、90℃/15mmHg(実測値)、210℃/760mmHg(計算値)であった。
 以上のように、1,5-ジブロモペンタンと(5-ブロモペンチル)トリフルオロメチルスルフィドの沸点は非常に近く、蒸留操作による単離精製は困難である。したがって、実施例1から4のように未反応の原料を低減させることが工業的製造の面から好ましい。
The starting material 1,5-dibromopentane is a known substance, and 1,5-dibromopentane can be found in literature (for example, the Journal of Organic Chemistry, 51 (12), 2206-2210, (1986)) and reagent catalogs. It is described that the boiling point of pentane is 111-112 ° C / 15 mmHg and 221 ° C / 760 mmHg. On the other hand, when the boiling point of (5-bromopentyl) trifluoromethyl sulfide was measured, they were 90 ° C./15 mmHg (actual measured value) and 210 ° C./760 mmHg (calculated value).
As described above, the boiling points of 1,5-dibromopentane and (5-bromopentyl) trifluoromethyl sulfide are very close, and isolation and purification by distillation is difficult. Therefore, it is preferable from the viewpoint of industrial production to reduce unreacted raw materials as in Examples 1 to 4.
 (参考製造例1)
 5-トリフルオロメチルチオペンチル[4-クロロ-2-フルオロ-5-(2,2,2-トリフルオロエチルチオ)フェニル]エーテルの製造
Figure JPOXMLDOC01-appb-C000025
(Reference Production Example 1)
Preparation of 5-trifluoromethylthiopentyl [4-chloro-2-fluoro-5- (2,2,2-trifluoroethylthio) phenyl] ether
Figure JPOXMLDOC01-appb-C000025
 マグネチックスターラーを備えた反応容器に、純度77.1%の4-クロロ-2-フルオロ-5-(2,2,2-トリフルオロエチルチオ)フェノール10.1g(30mmol)、純度88.2%の(5-クロロペンチル)トリフルオロメチルスルフィド7.7g(33mmol)、炭酸ナトリウム3.5g(33mmol)、ヨウ化ナトリウム0.45g(3mmol)及びN,N-ジメチルホルムアミド15mLを加え、混合物を90℃で8時間撹拌した。反応の終了を確認した後、反応混合物を冷却し、25%水酸化ナトリウム水溶液4.8g及び水30mLを加え、ジクロロメタン15mLで抽出した。有機層と水に分配し、5-トリフルオロメチルチオペンチル[4-クロロ-2-フルオロ-5-(2,2,2-トリフルオロエチルチオ)フェニル]エーテルをジクロロメタン溶液31.9gとして得た。得られたジクロロメタン溶液についてLC絶対検量線法により分析したところ、純度36.6%、収率90.3%であった。得られたジクロロメタン溶液の一部を当業者に周知の方法で単離・精製し、NMR測定に付して以下の通りのスペクトルが確認された。 Into a reaction vessel equipped with a magnetic stirrer, 10.1 g (30 mmol) of 4-chloro-2-fluoro-5- (2,2,2-trifluoroethylthio) phenol having a purity of 77.1%, a purity of 88.2. % (5-chloropentyl) trifluoromethyl sulfide 7.7 g (33 mmol), sodium carbonate 3.5 g (33 mmol), sodium iodide 0.45 g (3 mmol) and N, N-dimethylformamide 15 mL were added and the mixture was Stir at 90 ° C. for 8 hours. After confirming the completion of the reaction, the reaction mixture was cooled, 4.8 g of 25% aqueous sodium hydroxide solution and 30 mL of water were added, and the mixture was extracted with 15 mL of dichloromethane. Partitioning between the organic layer and water gave 5-trifluoromethylthiopentyl [4-chloro-2-fluoro-5- (2,2,2-trifluoroethylthio) phenyl] ether as 31.9 g of dichloromethane solution. When the obtained dichloromethane solution was analyzed by LC absolute calibration curve method, it was found that the purity was 36.6% and the yield was 90.3%. A part of the obtained dichloromethane solution was isolated and purified by a method well known to those skilled in the art, and subjected to NMR measurement to confirm the following spectrum.
H-NMR(300MHz,CDCl)δ(ppm):7.23(d,J=3.9Hz,1H),7.20(d,J=6.0Hz,1H),4.03(t,J=6.3Hz,2H),3.41(q,J=9.9Hz,2H),2.92(t,J=7.2Hz,2H),1.90-1.74(m,4H),1.66-1.58(m,2H) 1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.23 (d, J = 3.9 Hz, 1H), 7.20 (d, J = 6.0 Hz, 1H), 4.03 (t , J = 6.3 Hz, 2H), 3.41 (q, J = 9.9 Hz, 2H), 2.92 (t, J = 7.2 Hz, 2H), 1.90-1.74 (m, 4H), 1.66-1.58 (m, 2H)
 溶媒の種類と使用量を変更した以外は参考製造例1と同様の操作を行い、参考製造例2、3、4及び5を実施した。結果を表2にまとめた。 The same operations as in Reference Production Example 1 were carried out except that the type and amount of the solvent were changed, and Reference Production Examples 2, 3, 4 and 5 were carried out. The results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 本発明によれば、アルキル鎖の一方の末端にトリフルオロメチルチオ基を、他方の末端にハロゲン原子を有するアルキル化合物の工業的に好ましい製造方法が提供される。
 本発明によれば、目的化合物製造までに多くの工程を必要としない、アルキル鎖の一方の末端にトリフルオロメチルチオ基、他方の末端にハロゲン原子を有するアルキル化合物の工業的に好ましい製造方法が提供される。
 本発明によれば、特殊な触媒、特殊な配位子、特殊な反応装置等を必要としない、アルキル鎖の一方の末端にトリフルオロメチルチオ、他方の末端にハロゲン原子を有するアルキル化合物の工業的に好ましい製造方法が提供される。
 本発明によれば、目的化合物が高収率で得られる、アルキル鎖の一方の末端にトリフルオロメチルチオ、他方の末端にハロゲン原子を有するアルキル化合物の工業的に好ましい製造方法が提供される。
 さらに、本発明によれば、医農薬及びその中間体として有用なトリフルオロメチルチオアルキルハライド化合物を工業的規模で製造できる。
 例えば、実施例1で製造した(5-クロロペンチル)トリフルオロメチルスルフィドは、参考製造例1に記載の方法に従って5-トリフルオロメチルチオペンチル[4-クロロ-2-フルオロ-5-(2,2,2-トリフルオロエチルチオ)フェニル]エーテルとした後、国際公開第2013/157229号公報等に開示されている酸化反応を行うことで、優れた有害生物防除活性を有する化合物へと誘導できる。
 したがって、本発明は、高い工業的利用価値を有する。

 
According to the present invention, an industrially preferable method for producing an alkyl compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end is provided.
According to the present invention, there is provided an industrially preferable production method of an alkyl compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end, which does not require many steps until the production of the target compound. Is done.
According to the present invention, industrial use of an alkyl compound having a trifluoromethylthio group at one end of an alkyl chain and a halogen atom at the other end, which does not require a special catalyst, a special ligand, a special reaction apparatus or the like. A preferred manufacturing method is provided.
According to the present invention, there is provided an industrially preferred method for producing an alkyl compound having trifluoromethylthio at one end of an alkyl chain and a halogen atom at the other end, in which the target compound is obtained in high yield.
Furthermore, according to the present invention, trifluoromethylthioalkyl halide compounds useful as medical pesticides and intermediates thereof can be produced on an industrial scale.
For example, (5-chloropentyl) trifluoromethyl sulfide produced in Example 1 was prepared according to the method described in Reference Production Example 1, and 5-trifluoromethylthiopentyl [4-chloro-2-fluoro-5- (2,2 , 2-trifluoroethylthio) phenyl] ether and then an oxidation reaction disclosed in International Publication No. 2013/157229 can be derived into a compound having excellent pest control activity.
Therefore, the present invention has a high industrial utility value.

Claims (11)

  1.  式(1):
    Figure JPOXMLDOC01-appb-C000001

    (式中、Xはフッ素原子、塩素原子、臭素原子、ヨウ素原子からなる群より選択されるハロゲン原子を示し、nは1から10の範囲の整数を示す。)
    で表されるトリフルオロメチルチオアルキルハライド化合物の製造方法であって、
    式(2):
    Figure JPOXMLDOC01-appb-C000002

    (式中、Xはフッ素原子、塩素原子、臭素原子、ヨウ素原子からなる群より選択されるハロゲン原子を示し、X及びnは前記で定義したとおりである。)
    で表されるジハロゲン化アルキル化合物とフッ素化合物の存在下、45℃以上で加熱しながらチオホスゲンを添加することを特徴とするトリフルオロメチルチオアルキルハライド化合物の製造方法。
    Formula (1):
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, X 1 represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and n represents an integer in the range of 1 to 10.)
    A process for producing a trifluoromethylthioalkyl halide compound represented by:
    Formula (2):
    Figure JPOXMLDOC01-appb-C000002

    (Wherein, X 2 represents a fluorine atom, a chlorine atom, a bromine atom, a halogen atom selected from the group consisting of an iodine atom, X 1 and n are as defined above.)
    A method for producing a trifluoromethylthioalkyl halide compound, comprising adding thiophosgene while heating at 45 ° C. or higher in the presence of a dihalogenated alkyl compound represented by formula (I) and a fluorine compound.
  2.  XとXが互いに異なるハロゲン原子であり、Xの原子番号がXの原子番号よりも小さいことを特徴とする請求項1に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 A X 1 and X 2 are different halogen atoms, the production method of the trifluoromethylthio alkyl halide compound of claim 1 in which X 1 atomic number is equal to or smaller than the atomic number of the X 2.
  3.  Xは、塩素原子又は臭素原子を示し、
    は、臭素原子又はヨウ素原子を示し、
    nは5又は6を示すことを特徴とする請求項1に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。
    X 1 represents a chlorine atom or a bromine atom,
    X 2 represents a bromine atom or an iodine atom,
    The method for producing a trifluoromethylthioalkyl halide compound according to claim 1, wherein n represents 5 or 6.
  4.  Xは、塩素原子を示し、
    は、臭素原子を示し、
    nは5又は6を示すことを特徴とする請求項3に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。
    X 1 represents a chlorine atom,
    X 2 represents a bromine atom,
    4. The method for producing a trifluoromethylthioalkyl halide compound according to claim 3, wherein n represents 5 or 6.
  5.  チオホスゲンの添加が60℃以上100℃以下の範囲の温度で行われることを特徴とする請求項1に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 The method for producing a trifluoromethylthioalkyl halide compound according to claim 1, wherein the addition of thiophosgene is performed at a temperature in the range of 60 ° C to 100 ° C.
  6.  反応に使用されるフッ素化合物がフッ化テトラアルキルアンモニウム塩、フッ化アルカリ金属塩又はそれらの混合物であることを特徴とする請求項1に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 The method for producing a trifluoromethylthioalkyl halide compound according to claim 1, wherein the fluorine compound used in the reaction is a tetraalkylammonium fluoride salt, an alkali metal fluoride salt or a mixture thereof.
  7.  前記式(2)の化合物1.0モルに対して3.0モル以上12.0モル以下の範囲のフッ素化合物を使用することを特徴とする請求項1に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 2. The trifluoromethylthioalkyl halide compound according to claim 1, wherein a fluorine compound in a range of 3.0 mol to 12.0 mol is used with respect to 1.0 mol of the compound of the formula (2). Production method.
  8.  前記式(2)の化合物1.0モルに対して1.0モル以上3.0モル以下の範囲のチオホスゲンを使用することを特徴とする請求項1に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 2. The production of a trifluoromethylthioalkyl halide compound according to claim 1, wherein thiophosgene in the range of 1.0 mol to 3.0 mol is used with respect to 1.0 mol of the compound of the formula (2). Method.
  9.  反応が60℃以上100℃以下の範囲の温度で行われることを特徴とする請求項1に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 The method for producing a trifluoromethylthioalkyl halide compound according to claim 1, wherein the reaction is carried out at a temperature in the range of 60 ° C to 100 ° C.
  10.  反応に使用される溶媒がニトリル類、エーテル類、アミド類、芳香族炭化水素類又はそれらの混合物であることを特徴とする請求項1に記載のトリフルオロメチルチオアルキルハライド化合物の製造方法。 The method for producing a trifluoromethylthioalkyl halide compound according to claim 1, wherein the solvent used in the reaction is a nitrile, an ether, an amide, an aromatic hydrocarbon, or a mixture thereof.
  11.  式(1):
    Figure JPOXMLDOC01-appb-C000003

    (式中、Xはフッ素原子、塩素原子、臭素原子、ヨウ素原子からなる群より選択されるハロゲン原子を示し、nは1から10の範囲の整数を示す。)
    で表されるトリフルオロメチルチオアルキルハライド化合物と、
     式(3):
    Figure JPOXMLDOC01-appb-C000004

    で表されるビス(トリフルオロメチルチオ)アルキル化合物と、を含有することを特徴とするトリフルオロメチルチオアルキルハライド化合物の組成物。

     
    Formula (1):
    Figure JPOXMLDOC01-appb-C000003

    (In the formula, X 1 represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and n represents an integer in the range of 1 to 10.)
    A trifluoromethylthioalkyl halide compound represented by:
    Formula (3):
    Figure JPOXMLDOC01-appb-C000004

    And a bis (trifluoromethylthio) alkyl compound represented by the formula: a composition of a trifluoromethylthioalkyl halide compound.

PCT/JP2019/016449 2018-04-25 2019-04-17 Method for producing trifluoromethyl thioalkyl compound, and composition of trifluoromethyl thioalkyl halide compound WO2019208355A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980012615.7A CN111699172B (en) 2018-04-25 2019-04-17 Process for producing trifluoromethylsulfanylalkyl compound and trifluoromethylsulfanylalkyl compound composition
JP2019565358A JP6660518B1 (en) 2018-04-25 2019-04-17 Method for producing trifluoromethylthioalkyl compound and composition of trifluoromethylthioalkyl halide compound
IL278051A IL278051B2 (en) 2018-04-25 2019-04-17 Method for producing trifluoromethylthioalkyl compound, and trifluoromethylthioalkyl halide compound composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-084522 2018-04-25
JP2018084522 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208355A1 true WO2019208355A1 (en) 2019-10-31

Family

ID=68294078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016449 WO2019208355A1 (en) 2018-04-25 2019-04-17 Method for producing trifluoromethyl thioalkyl compound, and composition of trifluoromethyl thioalkyl halide compound

Country Status (5)

Country Link
JP (1) JP6660518B1 (en)
CN (1) CN111699172B (en)
IL (1) IL278051B2 (en)
TW (1) TWI719457B (en)
WO (1) WO2019208355A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076183A1 (en) * 2014-11-12 2016-05-19 イハラケミカル工業株式会社 Method for producing trifluoromethyl thioalkyl compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010100307A4 (en) * 2010-01-04 2010-06-03 Keki Hormusji Gharda A method for the preparation of perfluoroalkyl sulfenyl chloride
CN102516000B (en) * 2011-10-27 2014-07-23 中国科学院上海有机化学研究所 Method for synthesizing aryl trifluoromethyl sulphydryl compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076183A1 (en) * 2014-11-12 2016-05-19 イハラケミカル工業株式会社 Method for producing trifluoromethyl thioalkyl compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUNA VALLI, S. ET AL.: "1-(Trimethylsilyl)-1, 2, 4- triazene: A novel free radical initiator", PHOSPHORUS, SULFUR AND SILICON AND THE RELATED ELEMENTS, vol. 177, no. 5, May 2002 (2002-05-01), pages 1109 - 1116, XP055649864 *

Also Published As

Publication number Publication date
CN111699172B (en) 2023-03-24
IL278051B1 (en) 2023-08-01
TWI719457B (en) 2021-02-21
CN111699172A (en) 2020-09-22
IL278051B2 (en) 2023-12-01
IL278051A (en) 2020-11-30
JPWO2019208355A1 (en) 2020-04-30
TW201945335A (en) 2019-12-01
JP6660518B1 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
US9006477B2 (en) Method for producing nitrobenzene compound
EP3207023B1 (en) Process for the preparation of 1-(3,5-dichlorophenyl)-2,2,2-trifluoroethanone and derivatives thereof
JP6660518B1 (en) Method for producing trifluoromethylthioalkyl compound and composition of trifluoromethylthioalkyl halide compound
WO2019208043A1 (en) Method for producing n-unprotected imine compound
WO2018180943A1 (en) Method for producing halogen-containing pyrazol carboxylic acid and intermediate thereof
JP6789526B2 (en) Method for Producing Nitrobenzene Compound
US5705674A (en) Process for preparing ortho-nitrobenzonitriles
WO2017056501A1 (en) Method for producing acid halide solution, mixed solution, and method for producing monoester compound
JP6894608B2 (en) New Cyclic Urea Derivative-Hydrogen Bromide
WO2014208296A1 (en) Method for manufacturing nitrobenzene compound
JP2010222304A (en) Method for producing trifluoromethyl arenes
JP5917514B2 (en) Method for selective meta-chlorination of alkylanilines
WO2017033813A1 (en) Method for producing alkenyl halide
WO2000021922A2 (en) Chemical processes
JP2003171359A (en) Method for producing 2-nitrophenylacetonitrile derivative, and its synthetic intermediate
RU2315749C1 (en) Method for preparing 2,4,6-trichloro-3,5-dinitroaniline
JP2004161703A (en) Method for producing 2-fluoro-4-(trifluoromethyl) benzonitrile
JP2020083797A (en) Method for producing aromatic halogen derivative
EP3492453A1 (en) Method of producing fluorine-containing pyrazole carboxylic acid halide
JP2006188501A (en) Method for producing brominated dialkyl ketone compound

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565358

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792788

Country of ref document: EP

Kind code of ref document: A1