WO2019208340A1 - CAPACITOR AND METHOD FOR MANUFACTURING HfO2 FILM - Google Patents

CAPACITOR AND METHOD FOR MANUFACTURING HfO2 FILM Download PDF

Info

Publication number
WO2019208340A1
WO2019208340A1 PCT/JP2019/016378 JP2019016378W WO2019208340A1 WO 2019208340 A1 WO2019208340 A1 WO 2019208340A1 JP 2019016378 W JP2019016378 W JP 2019016378W WO 2019208340 A1 WO2019208340 A1 WO 2019208340A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
hfo
mol
film
metal oxide
Prior art date
Application number
PCT/JP2019/016378
Other languages
French (fr)
Japanese (ja)
Inventor
真吾 米田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020516259A priority Critical patent/JP7036204B2/en
Publication of WO2019208340A1 publication Critical patent/WO2019208340A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Definitions

  • the present invention relates to a capacitor, and more particularly to a capacitor containing Hf in a metal oxide constituting a dielectric layer.
  • the present invention also relates to a method for manufacturing an HfO 2 film suitable for use in manufacturing the capacitor of the present invention.
  • HfO 2 As a material for such a highly reliable capacitor dielectric layer, HfO 2 having high insulation, high strength, high toughness, and the like is a promising candidate.
  • conventional HfO 2 has a low dielectric constant of about 20, so far it has been necessary to increase the area of the electrode in order to use it as a material for the dielectric layer of the capacitor.
  • Non-Patent Document 1 (Nano Letters, 12, 4318 (2012)) discloses that a thin film of HfO 2 produced by an ALD (Atomic Layer Deposition) method exhibits ferroelectricity. Yes.
  • ALD Atomic Layer Deposition
  • Non-Patent Document 2 Journal of Solid State Science and Technology, 4 (12), 419 (2015)
  • a thin film of HfO 2 produced by spin coating replaces a part of Hf with La. It is disclosed that it exhibits ferroelectricity.
  • Patent Document 1 Japanese Patent Publication No. 2013-518400
  • Patent Document 2 Japanese Patent Publication No. 2015-518458
  • Patent Document 3 Japanese Patent Laid-Open No. 52-153200
  • Patent Document 1 discloses a capacitor (capacitor) using an antiferroelectric positive bias characteristic made of Pb 1-1.5y La y Ti 1-z Zr z O 3 .
  • Non-Patent Document 3 Journal of Applied Physics 122, 144105 (2017) reports that even a thin film of HfO 2 may exhibit antiferroelectricity. Specifically, it is disclosed that a thin film of HfO 2 to which Si is added exhibits antiferroelectric properties. More specifically, it is disclosed that a thin film of HfO 2 to which Si is added and produced by the ALD method exhibits antiferroelectric properties, and the dielectric constant increases under a bias electric field.
  • Non-Patent Document 3 As described above, it has been reported that metal oxides containing HfO 2 may exhibit antiferroelectric properties (Non-Patent Document 3). However, in order to actually use a metal oxide containing HfO 2 for the dielectric layer of the capacitor, it is desired that the dielectric constant be improved by applying a small bias electric field. It is also desirable that the increase in the dielectric constant due to the application of the bias electric field is large. Furthermore, it is desirable to provide a high dielectric constant even when no bias electric field is applied.
  • a capacitor according to an embodiment of the present invention includes a first electrode layer and a dielectric formed on the first electrode layer. And a second electrode layer formed on the dielectric layer.
  • the dielectric layer is made of a metal oxide, and the metal oxide contains Hf, Bi, and an element having a valence of 5 or more. Shall be.
  • the metal oxide containing Hf, Bi, and a pentavalent or higher element includes, for example, HfO 2 in which a part of Hf is substituted with Bi and a pentavalent or higher element.
  • one manufacturing method of the HfO 2 film with an embodiment of the present invention, HfO 2, or a HfO 2 film manufacturing method including Hf and O and HfO 2 containing other elements, the film-forming target A step of preparing a material, a step of preparing a chemical solution as a raw material of the HfO 2 film, a step of spin-coating the chemical solution on the film-forming target, and a heat treatment to spin-coat on the film-forming target And a step of precipitating an HfO 2 film containing at least one of a tetragonal crystal and an orthorhombic crystal phase from a chemical solution.
  • HfO 2 containing Hf and O and other elements for example, a HfO 2 some Hf is substituted with another element.
  • the capacitor of the present invention has high reliability.
  • the dielectric layer has a high dielectric constant.
  • the dielectric constant of the dielectric layer is greatly improved.
  • the capacitor of the present invention can be easily produced.
  • FIG. 1 is a cross-sectional view of a capacitor 100 according to a first embodiment.
  • 2 is an X-ray diffraction spectrum of a dielectric layer of a capacitor 100.
  • FIG. 3 is a dielectric constant-electric field curve of a capacitor 100 and capacitors 1100 and 1200 of comparative examples.
  • 7 is a relative dielectric constant-electric field curve of a capacitor 210 according to a comparative example and capacitors 220 to 270 according to the second embodiment.
  • 10 is a relative dielectric constant-electric field curve of capacitors 310 and 320 according to the third embodiment.
  • 12 is a relative dielectric constant-electric field curve of capacitors 410 to 440 according to the fourth embodiment. It is a dielectric constant-electric field curve of the capacitor 500 concerning 5th Embodiment.
  • a capacitor according to an embodiment of the present invention includes a first electrode layer, a dielectric layer formed on the first electrode layer, and a second electrode layer formed on the dielectric layer.
  • the dielectric layer is made of a metal oxide, and the metal oxide includes Hf, Bi, and a pentavalent or higher element.
  • the metal oxide containing Hf, Bi, and a pentavalent or higher element includes, for example, HfO 2 in which a part of Hf is substituted with Bi and a pentavalent or higher element.
  • the metal oxide constituting the dielectric layer has a high dielectric constant. This is presumably because the crystal structure is easily distorted and the dielectric constant is improved by replacing part of Hf with Bi.
  • Bi is replaced by Bi alone, there is a risk that the valence does not match and oxygen vacancies are generated and the characteristics are deteriorated. It is considered that the generation of oxygen vacancies was suppressed and the high dielectric constant could be obtained.
  • the metal oxide can have a fluorite structure, for example.
  • the pentavalent or higher element can be, for example, one or more kinds of elements selected from Nb, Ta, Mo, and W.
  • the addition amounts of Bi and pentavalent or higher elements can each be 15 mol% or less. In this case, a decrease in insulation is suppressed.
  • the molar ratio of Bi to the pentavalent element is 1: 1, and when the pentavalent or higher element is a hexavalent element, Bi And the molar ratio of the hexavalent element to 2: 1. In this case, the valence of the element is adjusted, and the generation of oxygen vacancies is satisfactorily suppressed.
  • a group IV element may be added to the metal oxide.
  • the dielectric constant can be further improved.
  • the group IV element can be, for example, one or both of Si and Ge.
  • the amount of Group IV element added can be 3 mol% or less. In this case, the dielectric constant can be improved satisfactorily. Further, the amount of Group IV element added can be 2 mol% or less. In this case, the dielectric constant can be further improved. When the addition amount of the group IV element is 1 mol% or less, the dielectric constant can be further improved.
  • the thickness of the dielectric layer is 10 nm or more, it is preferable to add a stabilizer.
  • the metal oxide mainly has one or more crystal structures of tetragonal, orthorhombic, and cubic without adding a stabilizer, Good antiferroelectricity can be expressed.
  • the film thickness of the dielectric layer is 10 nm or more, the crystal structure of the metal oxide may be monoclinic, and good antiferroelectricity may not be exhibited. Therefore, when the film thickness of the dielectric layer is 10 nm or more, it is preferable to add a stabilizer as described above to suppress the crystal structure of the metal oxide from being monoclinic.
  • the stabilizer for example, one or more kinds of elements selected from La, Al, Y, Zr, and Ce can be used. Even when the thickness of the dielectric layer is less than 10 nm, a stabilizer may be added. Also in this case, it is possible to suppress the crystal structure of the metal oxide from being monoclinic.
  • each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention.
  • the drawings are for helping the understanding of the specification, and may be schematically drawn, and the drawn components or the ratio of dimensions between the components are described in the specification. There are cases where the ratio of these dimensions does not match.
  • the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
  • FIG. 1 shows a capacitor 100 according to the first embodiment.
  • FIG. 1 is a cross-sectional view of the capacitor 100.
  • the capacitor 100 includes a substrate 1.
  • the material, characteristics, thickness and the like of the substrate 1 are arbitrary, but in this embodiment, a Si (100) substrate having a thickness of 500 ⁇ m was used.
  • a first electrode layer 2 is formed on the substrate 1.
  • the material, characteristics, thickness, etc. of the first electrode layer 2 are arbitrary, but in this embodiment, a Pt (111) film having a thickness of 100 nm is formed.
  • a dielectric layer 3 is formed on the first electrode layer 2.
  • the dielectric layer 3 is made of a metal oxide having a fluorite structure.
  • the metal oxide contains HfO 2 in which a part of Hf is substituted with Bi and a pentavalent or higher element.
  • pentavalent Nb is used as the pentavalent or higher element. That is, in the metal oxide, a part of tetravalent Hf is substituted with trivalent Bi and pentavalent Nb. Bi is mainly added to improve the dielectric constant. Nb is added mainly to adjust the valence of the element to suppress the generation of oxygen vacancies and to suppress deterioration of characteristics (decrease in dielectric constant).
  • La is added to the metal oxide as a stabilizer.
  • the stabilizer (La) is added in order to avoid that the metal oxide film has a monoclinic crystal structure and does not exhibit good antiferroelectricity.
  • the thickness of the dielectric material layer 3 is less than 10 nm, it is thought that favorable antiferroelectric property is obtained even if it does not add a stabilizer.
  • the stabilizer is not limited to La, for example, one or more kinds selected from La, Ce, Al, Ti, Sn, Zr, Sc, Mg, Zn, Y, Ca, Sr, Ba These elements can be used.
  • the dielectric layer 3 has a thickness of 60 nm.
  • the dielectric layer 3 may be referred to as an HfO 2 film.
  • the dielectric layer 3 has antiferroelectric properties. Therefore, the dielectric layer 3 exhibits a high dielectric constant by applying a bias electric field.
  • a second electrode layer 4 is formed on the dielectric layer 3.
  • the material, characteristics, thickness, etc. of the second electrode layer 4 are arbitrary, but in this embodiment, a Pt (111) film having a thickness of 100 nm is formed.
  • the capacitor 100 according to the first embodiment having the above-described structure can be used as a capacitor that develops a high capacitance by applying a bias electric field. Note that the capacitor 100 exhibits a high capacitance even when no bias electric field is applied.
  • the capacitor 100 according to the first embodiment can be manufactured, for example, by the following method.
  • the substrate 1 is prepared.
  • the first electrode layer 2 made of a Pt (111) film is formed on the substrate 1 by sputtering.
  • the substrate 1 on which the first electrode layer 2 is formed is attached to a turntable, and the turntable is rotated at 3000 rpm, and the first electrode layer 2 is formed on the first electrode layer 2.
  • a chemical solution is dropped, and a film of a chemical solution having a thickness of 60 nm is coated on the first electrode layer 2.
  • the chemical solution dripped be the quantity of 1/3 of the produced chemical solution.
  • the substrate 1 on which the film of the chemical solution is formed on the first electrode layer 2 is heated to 500 ° C. at a heating rate of 300 ° C./min in an oxygen atmosphere with an oxygen flow rate of 200 ml / min. Hold for a minute.
  • a first HfO 2 film is formed on the first electrode layer 2.
  • a chemical solution is coated by a spin coating method under the same conditions as the first coating, and heated to form a second HfO 2 film. To do. In addition, let the chemical solution dripped be the quantity of 1/3 of the produced chemical solution.
  • a chemical solution is coated by a spin coat method under the same conditions as the first and second times, and heated to form a third HfO 2 film. Two films are formed. In addition, let the chemical solution dripped be the quantity of 1/3 of the produced chemical solution.
  • the dielectric layer 3 in which the first HfO 2 film, the second HfO 2 film, and the third HfO 2 film having the same thickness are laminated on the first electrode layer 2 is formed.
  • the second electrode layer 4 made of a Pt (111) film is formed on the dielectric layer 3 by sputtering.
  • heat treatment is performed to improve the crystallinity of the dielectric layer (HfO 2 film) 3.
  • the substrate 1 on which the first electrode layer 2, the dielectric layer 3, and the second electrode layer 4 are formed is heated at a rate of temperature increase of 300 ° C./min in an oxygen atmosphere with an oxygen flow rate of 200 ml / min. Heat to 700 ° C. and hold for 10 minutes.
  • Table 1 shows the composition of the dielectric layer of the capacitor 100, the type of raw material salt, and the weight.
  • FIG. 2 shows an X-ray diffraction spectrum of the dielectric layer 3 of the capacitor 100. From FIG. 2, the diffraction lines appearing near 30 ° and 35 ° can be attributed to cubic, tetragonal or orthorhombic fluorite structures, and HfO having a fluorite structure in which a part of Hf is substituted with Bi, Nb, and La. It can be confirmed that two films are formed.
  • FIG. 3 shows a relative dielectric constant-bias electric field curve of the capacitor 100.
  • capacitors 1100 and 1200 were produced.
  • Each of the capacitors 1100 and 1200 is a part of the configuration of the capacitor 100.
  • In was added instead of Bi.
  • the capacitor 1200 did not add Nb. Note that the capacitors 1100 and 1200 were manufactured by the same method as the capacitor 100.
  • Table 2 shows the composition of the dielectric layers of the capacitors 1100 and 1200.
  • FIG. 3 shows a relative dielectric constant-bias electric field curve of the dielectric layers of the capacitors 1100 and 1200.
  • the capacitor 100 according to the first embodiment was compared with the capacitors 1100 and 1200 according to the comparative example.
  • the relative permittivity of the capacitor 100 was increased by application of a bias electric field, and a relative permittivity of 75 was exhibited at 0.7 MV / cm. That is, by applying a small bias electric field, the relative dielectric constant was greatly improved and good antiferroelectric properties were exhibited.
  • the capacitor 1100 showed only a relative dielectric constant of 36 even when a bias field of 2 MV / cm was applied. That is, the relative dielectric constant of the capacitor 1100 was low, and the bias electric field indicating the maximum value of the relative dielectric constant was high. That is, the capacitor 1100 did not show good antiferroelectricity.
  • the capacitor 1200 showed only a relative dielectric constant of 35 even when a bias electric field of 1.5 MV / cm was applied. That is, the relative dielectric constant of the capacitor 1200 was low, and the bias electric field indicating the maximum value of the relative dielectric constant was high. That is, the capacitor 1200 also did not show good antiferroelectricity.
  • the capacitor 100 had a relative dielectric constant of 50, indicating a high value.
  • the capacitor 1100 had a relative dielectric constant of 28, and the capacitor 1100 had a relative dielectric constant of 29, both of which were low values.
  • the dielectric layer (HfO 2 film) 3 easily responds to an electric field, and exhibits a higher relative dielectric constant under a lower bias electric field than in the past, and has a high static It was found that electric capacity was developed.
  • This effect of the capacitor 100 is an effect obtained by substituting a part of Hf with Bi and Nb at the same time, and is an effect that cannot be obtained by replacing Bi alone or replacing it with In instead of Bi.
  • La is added as a stabilizer in order to adjust the crystal structure of HfO 2 .
  • the stabilizer is not limited to La, and the same effect can be obtained by adding other elements such as Ce. Therefore, the characteristic improvement (improvement of dielectric constant, good antiferroelectric expression) in the present embodiment is due to co-substitution of a part of Hf with Bi and Nb rather than addition of La. Conceivable.
  • Al, Ti, Sn, Zr, Sc, Mg, Zn, Y, Ca, Sr, Ba, etc. can be used as the stabilizer.
  • Capacitors 210, 220, 230, 240, 250, 260, 270 and 280 according to the second embodiment were produced.
  • Reference numerals 210 to 280 denote sample numbers.
  • each capacitor has the same structure as the capacitor 100 according to the first embodiment shown in FIG.
  • the capacitors 210 to 280 the capacitor 210 is a comparative example.
  • Bi and Nb are changed by changing the addition amount to the metal oxide constituting the dielectric layer (HfO 2 film) 3 of the capacitor 100 according to the first embodiment.
  • the amount of La added is optimized according to the amount added. Therefore, in any of the examples and comparative examples, the total amount of Hf, Bi, Nb, and La becomes 100 mol%.
  • the capacitor 210 was added with 5 mol% of La without adding Bi and Nb.
  • the capacitor 220 was added with 0.5 mol% of Bi and Nb and 5 mol% of La.
  • the capacitor 230 was added with 1 mol% of Bi and Nb, respectively, and 5 mol% of La.
  • the capacitor 240 was added with 3 mol% of Bi and Nb and 5 mol% of La.
  • In the capacitor 250 7.5 mol% of Bi and Nb were added, and 5 mol% of La was added.
  • the capacitor 260 was added with 10 mol% of Bi and Nb and 3 mol% of La.
  • the capacitor 270 was added with 15 mol% of Bi and Nb and 1 mol% of La.
  • Capacitor 280 was added with 17.5 mol% of Bi and Nb and 1 mol% of La, respectively.
  • capacitors 210 to 280 for example, the type of raw material salt used in the chemical solution, the type and amount of the solvent contained, and the manufacturing method were the same as those of the capacitor 100.
  • Table 3 shows the composition of the dielectric layer of each of the capacitors 210 to 280. In Table 3, the numerical value of the capacitor 100 is also shown.
  • part of Hf of HfO 2 contained in the dielectric layer is replaced with Bi, Nb, and La.
  • Hf is a tetravalent element
  • La and Bi are trivalent elements
  • Nb is a pentavalent element.
  • FIG. 4 shows relative dielectric constant-electric field curves of the dielectric layers of the capacitors 100 and 210 to 270, respectively.
  • the insulation was lowered and the relative dielectric constant could not be measured.
  • the relative dielectric constant was increased by adding Bi and Nb and could be increased up to about 80. This is probably because Bi and Nb were added simultaneously, while maintaining the charge neutrality, the Bi substitution caused distortion in the crystal and the crystal became more responsive to the electric field. However, when the added amounts of Bi and Nb exceeded a certain amount, the insulating properties of the film deteriorated. This is thought to be because Bi and Nb formed impurity levels in the band gap of HfO 2 and the conduction carriers increased.
  • the dielectric constant could be increased by replacing part of Hf of the metal oxide film constituting the dielectric layer (HfO 2 film) with Bi and Nb.
  • Bi and Nb are preferably replaced with 15 mol% or less, because Bi and Nb are excessively substituted to deteriorate the insulating properties.
  • Capacitors 310 and 320 according to the third embodiment were produced. Reference numerals 310 and 320 are sample numbers. Although not shown, each capacitor has the same structure as the capacitor 100 according to the first embodiment shown in FIG.
  • the capacitors 310 and 320 according to the third embodiment a part of the configuration of the capacitor 100 according to the first embodiment is changed. Specifically, in the capacitor 100, Nb was added to the metal oxide constituting the dielectric layer (HfO 2 film) 3 simultaneously with Bi. The capacitor 310 changed this and added Ta instead of Nb. In addition, the capacitor 320 is changed, and Wa is added instead of Nb.
  • the capacitor 310 is added with 5 mol% of Bi and Ta and 5 mol% of La (the amount of Hf is reduced by 15 mol%, and 5 mol% of Bi and Ta are added instead, and 5 mol% of La is added. Added).
  • Capacitor 320 was added with 6.6 mol% Bi, 3.3 mol% W, and 5 mol% La (the amount of Hf was reduced by 14.9 mol%, and Bi 6.6 mol% was added instead. W was added at 3.3 mol%, and La was added at 5 mol%).
  • tantalum isopropoxide was used as a Ta raw material salt.
  • tungsten ethoxide was used as a raw material salt of W.
  • the other matters of the capacitors 310 and 320 for example, the type and amount of the solvent contained in the chemical solution, and the manufacturing method are the same as those of the capacitor 100.
  • Table 4 shows the composition of the dielectric layer of each of the capacitors 310 and 320. In Table 4, the numerical value of the capacitor 100 is also shown for comparison.
  • a part of Hf of HfO 2 contained in the metal oxide of the dielectric layer of the capacitor 310 is replaced with Bi, Ta, and La.
  • a part of Hf of HfO 2 contained in the metal oxide of the dielectric layer of the capacitor 320 is replaced with Bi, W, and La.
  • Hf is a tetravalent element
  • Bi and La are trivalent elements
  • Ta is a pentavalent element
  • W is a hexavalent element.
  • the molar ratio of Bi and Ta is preferably 1: 1.
  • the molar ratio of Bi and W is preferably 2: 1. This is because the valence of the element is adjusted and the generation of oxygen vacancies is suppressed.
  • FIG. 5 shows relative dielectric constant-electric field curves of the dielectric layers of the capacitors 100, 310, and 320, respectively.
  • the capacitor 310 added with 5 mol% of Bi and Ta each showed a high relative dielectric constant of 61 when no bias electric field was applied.
  • the relative dielectric constant was improved, and a relative dielectric constant of 75 was exhibited at a bias electric field of 0.7 MV / cm.
  • the capacitor 320 to which 6.6 mol% Bi and 3.3 mol% W were added showed a high relative dielectric constant of 42 in a state where no bias electric field was applied.
  • the relative dielectric constant was improved, and a relative dielectric constant of 62 was exhibited at a bias electric field of 1.2 MV / cm.
  • the relative dielectric constants of the capacitors 310 and 320 are equivalent to those of the capacitor 100 to which Nb is added, and it is considered that the effects of adding Nb, Ta, and W are similar.
  • the dielectric constant could be increased by adding Bi, Ta or Bi, W to the dielectric layer (HfO 2 film).
  • the element added simultaneously with Bi may be Mo or the like.
  • Capacitors 410, 420, 430, and 440 according to the fourth embodiment were produced. Reference numerals 410 to 440 are sample numbers. Although not shown, each capacitor has the same structure as the capacitor 100 according to the first embodiment shown in FIG.
  • the capacitors 410 to 440 according to the fourth embodiment are obtained by adding Si to the dielectric layer (HfO 2 film) 3 of the capacitor 100 according to the first embodiment while changing the addition amount.
  • the capacitor 410 is added with 5 mol% of Bi and Nb, 5 mol% of La, and 1 mol% of Si (the amount of Hf is reduced by 16 mol%, and Bi and Nb are each 5 mol% instead. And 5 mol% La and 1 mol% Si were added).
  • the capacitor 420 5 mol% of Bi and Nb were added, 5 mol% of La was added, and 2 mol% of Si was added.
  • the capacitor 430 was added with 5 mol% of Bi and Nb, 5 mol% of La, and 3 mol% of Si.
  • the capacitor 440 5 mol% of Bi and Nb were added, 5 mol% of La was added, and 4 mol% of Si was added.
  • silicon ethoxide was used as a raw material salt of Si.
  • the other matters of the capacitors 410 to 440, for example, the type, amount, and manufacturing method of the solvent included are the same as those of the capacitor 100.
  • Table 5 shows the composition of the dielectric layer of each of the capacitors 410 to 440. In Table 5, the numerical value of the capacitor 100 is also shown for comparison.
  • part of Hf of HfO 2 contained in the dielectric layer is replaced with Bi, Nb, La, and Si.
  • Hf and Si are tetravalent elements
  • La and Bi are trivalent elements
  • Nb is a pentavalent element.
  • FIG. 6 shows the relative permittivity-electric field curves of the dielectric layers of the capacitors 410 to 440, respectively.
  • the relative permittivity was greatly increased.
  • the increase amount of the relative dielectric constant was equal to that of the capacitor 100, but the bias electric field necessary for the increase of the relative dielectric constant was increased.
  • the increase amount of the relative dielectric constant was smaller than that of the capacitor 100, and the bias electric field required for increasing the relative dielectric constant was also increased.
  • the relative dielectric constant was greatly reduced and the antiferroelectric property was not exhibited.
  • Table 5 shows that the capacitor 100 is ⁇ , that the relative permittivity is larger than that of the capacitor 100, ⁇ , that the relative permittivity is increased to the same level as the capacitor 100, and that the relative permittivity is decreased from the capacitor 100. ⁇ , where the relative permittivity is greatly reduced as compared with the capacitor 100 and the antiferroelectric property is not shown.
  • the relative dielectric constant changed corresponding to the amount of Si added, and could be increased up to about 87 by adding Si. This is considered to be because the crystal structure can be easily fluctuated by the Si substitution, and the response to the electric field becomes easier.
  • the added amount of Si exceeded a certain amount, the relative dielectric constant decreased conversely.
  • the reason why the relative permittivity is decreased is considered to be that when the added amount of Si exceeds a certain amount, Si cannot be dissolved in HfO 2 and the crystallinity is lowered.
  • the amount of Si added is preferably 3 mol% or less, and more preferably 2 mol% or less.
  • the dielectric constant could be increased by adding Si to the dielectric layer (HfO 2 film) to which Bi and Nb were added.
  • the element added to increase the dielectric constant is not limited to Si, and may be, for example, Ge.
  • a capacitor 500 according to the fifth embodiment was produced.
  • Reference numeral 500 denotes a sample number.
  • the capacitor 500 has the same structure as the capacitor 100 according to the first embodiment shown in FIG.
  • the capacitor 500 according to the fifth embodiment a part of the configuration of the capacitor 100 according to the first embodiment is changed. Specifically, in the capacitor 100, La is added as a stabilizer to the metal oxide constituting the dielectric layer (HfO 2 film) 3. The capacitor 500 changed this and added Ce instead of La.
  • cerium isopropoxide was used as a raw material salt of Ce.
  • capacitor 500 for example, the type, amount and manufacturing method of the solvent contained in the chemical solution were the same as those of the capacitor 100.
  • Table 6 shows the composition of the dielectric layer of the capacitor 500. In Table 6, the numerical value of the capacitor 100 is also shown for comparison.
  • a part of Hf of HfO 2 contained in the metal oxide of the dielectric layer of the capacitor 500 is replaced with Bi, Nb, and Ce.
  • FIG. 7 shows the relative permittivity-electric field curve of the dielectric layers of the capacitors 100 and 500.
  • the capacitor 500 to which Ce is added instead of La shows a high relative dielectric constant of 76 when a bias electric field of 0.6 MV / cm is applied. It has a dielectric constant-electric field curve.
  • La and Ce are added as stabilizers for adjusting the crystal structure of HfO 2 . Specifically, it is considered that the addition of La and Ce suppresses the crystal structure from becoming monoclinic.
  • the stabilizer is not limited to La and Ce, and may be an element such as Al, Y, or Zr. Further, not only one type but also a plurality of types of elements may be added in combination.
  • composition of the dielectric layer is arbitrary within the scope of the invention and is not limited to the above-described contents.
  • the kind and weight of the raw material salt for producing the dielectric layer of the capacitor are arbitrary, and other kinds of raw material salts can be used.
  • hafnium isopropoxide is used as a raw material salt of Hf.
  • other hafnium alkoxides such as hafnium ethoxide, hafnium-t-butoxide, and hafnium carboxylate are used.
  • hafnium chloride, hafnium nitrate, and hafnium acetate may be used.

Abstract

Provided is a capacitor including a dielectric layer constituted of a metal oxide having a high dielectric constant. This capacitor comprises a first electrode layer 2, a dielectric layer 3 formed on the first electrode layer 2, and a second electrode layer 4 formed on the dielectric layer 3, wherein the dielectric layer 3 is made of a metal oxide, and the metal oxide includes Hf, Bi, and a pentavalent or higher element. The metal oxide including Hf, Bi, and a pentavalent or higher element is, for example, HfO2 where a part of Hf is substituted by Bi and a pentavalent or higher element. The metal oxide may have, for example, a fluorite structure. The pentavalent or higher element may be, for example, one or more elements selected from Nb, Ta, Mo and W.

Description

キャパシタおよびHfO2膜の製造方法Capacitor and method for manufacturing HfO2 film
 本発明はキャパシタに関し、さらに詳しくは、誘電体層を構成する金属酸化物にHfを含むキャパシタに関する。 The present invention relates to a capacitor, and more particularly to a capacitor containing Hf in a metal oxide constituting a dielectric layer.
 また、本発明は、本発明のキャパシタの製造に用いるのに適したHfO膜の製造方法に関する。 The present invention also relates to a method for manufacturing an HfO 2 film suitable for use in manufacturing the capacitor of the present invention.
 高温下で使用したり、静電気などによって高電圧が印加されたりしても、故障することのない信頼性の高いキャパシタが、車載用途を始めとして、各種用途のキャパシタとして求められている。 Highly reliable capacitors that do not fail even when used at high temperatures or when a high voltage is applied due to static electricity or the like are demanded as capacitors for various applications including in-vehicle applications.
 そのような信頼性の高いキャパシタの誘電体層の材料として、高絶縁性、高強度、高靭性などを備えたHfOが有望な候補にあげられる。しかしながら、従来のHfOは、誘電率が20程度と低いため、これまでは、キャパシタの誘電体層の材料に使用するためには、電極の面積を大きくする必要があった。 As a material for such a highly reliable capacitor dielectric layer, HfO 2 having high insulation, high strength, high toughness, and the like is a promising candidate. However, conventional HfO 2 has a low dielectric constant of about 20, so far it has been necessary to increase the area of the electrode in order to use it as a material for the dielectric layer of the capacitor.
 本発明は、HfOを含む金属酸化物の誘電率を向上させることを目的とし、更には高信頼性(高絶縁性など)と高誘電率の両方を兼ね備えたキャパシタを提供することを目的としている。 It is an object of the present invention to improve the dielectric constant of a metal oxide containing HfO 2 and to provide a capacitor having both high reliability (such as high insulation) and high dielectric constant. Yes.
 HfOを含む金属酸化物をキャパシタの誘電体層の材料に使用することを検討する上で、以下のような技術情報が参考になる。 In considering the use of a metal oxide containing HfO 2 as a material for a dielectric layer of a capacitor, the following technical information is helpful.
 まず、非特許文献1(Nano Letters, 12, 4318 (2012))には、ALD(Atomic Layer Deposition;原子層堆積)法によって作製したHfOの薄膜が、強誘電性を示すことが開示されている。 First, Non-Patent Document 1 (Nano Letters, 12, 4318 (2012)) discloses that a thin film of HfO 2 produced by an ALD (Atomic Layer Deposition) method exhibits ferroelectricity. Yes.
 また、非特許文献2(Journal of Solid State Science and Technology, 4 (12), 419(2015))には、スピンコートで作製したHfOの薄膜であっても、Hfの一部をLaで置換することによって、強誘電性を示すことが開示されている。 In Non-Patent Document 2 (Journal of Solid State Science and Technology, 4 (12), 419 (2015)), even a thin film of HfO 2 produced by spin coating replaces a part of Hf with La. It is disclosed that it exhibits ferroelectricity.
 また、誘電体層に反強誘電体を用い、バイアス電界下で高誘電率を発現するキャパシタが、特許文献1(特表2013-518400号公報)、特許文献2(特表2015-518459号公報)、特許文献3(特開昭52-153200号公報)などに開示されている。たとえば、特許文献1には、Pb1-1.5yLaTi1-zZrからなる反強誘電体の正バイアス特性を用いたキャパシタ(コンデンサ)が開示されている。 Further, capacitors that use an antiferroelectric material for the dielectric layer and exhibit a high dielectric constant under a bias electric field are disclosed in Patent Document 1 (Japanese Patent Publication No. 2013-518400) and Patent Document 2 (Japanese Patent Publication No. 2015-518458). ), Patent Document 3 (Japanese Patent Laid-Open No. 52-153200), and the like. For example, Patent Document 1 discloses a capacitor (capacitor) using an antiferroelectric positive bias characteristic made of Pb 1-1.5y La y Ti 1-z Zr z O 3 .
 さらに、非特許文献3(Journal of Applied Physics 122, 144105 (2017))には、HfOの薄膜においても、反強誘電性を示す場合があることが報告されている。具体的には、Siを添加したHfOの薄膜が、反強誘電性を示すことが開示されている。さらに具体的には、ALD法によって作製した、Siを添加したHfOの薄膜が反強誘電性を示し、バイアス電界下で誘電率が増加したことが開示されている。 Furthermore, Non-Patent Document 3 (Journal of Applied Physics 122, 144105 (2017)) reports that even a thin film of HfO 2 may exhibit antiferroelectricity. Specifically, it is disclosed that a thin film of HfO 2 to which Si is added exhibits antiferroelectric properties. More specifically, it is disclosed that a thin film of HfO 2 to which Si is added and produced by the ALD method exhibits antiferroelectric properties, and the dielectric constant increases under a bias electric field.
特表2013-518400号公報Special table 2013-518400 gazette 特表2015-518459号公報Special table 2015-518459 gazette 特開昭52-153200号公報JP-A-52-153200
 上述したように、HfOを含む金属酸化物が反強誘電性を示す場合があることが報告されている(非特許文献3)。しかしながら、実際に、HfOを含む金属酸化物をキャパシタの誘電体層に使用するためには、小さいバイアス電界の印加で誘電率が向上することが望まれる。また、バイアス電界の印加による誘電率の増加幅が大きいことが望まれる。さらに、バイアス電界を印加していない状態であっても、高い誘電率を備えることが望まれる。 As described above, it has been reported that metal oxides containing HfO 2 may exhibit antiferroelectric properties (Non-Patent Document 3). However, in order to actually use a metal oxide containing HfO 2 for the dielectric layer of the capacitor, it is desired that the dielectric constant be improved by applying a small bias electric field. It is also desirable that the increase in the dielectric constant due to the application of the bias electric field is large. Furthermore, it is desirable to provide a high dielectric constant even when no bias electric field is applied.
 本発明は、上述した従来の課題を解決するためになされたものであり、その手段として本発明の一実施態様にかかるキャパシタは、第1電極層と、第1電極層上に形成された誘電体層と、誘電体層上に形成された第2電極層と、を備え、誘電体層が、金属酸化物からなり、金属酸化物は、Hf、Bi、および、5価以上の元素を含むものとする。なお、Hf、Bi、および、5価以上の元素を含む金属酸化物は、たとえば、Hfの一部が、Bi、および、5価以上の元素によって置換されたHfOを含んでいる。 The present invention has been made to solve the above-described conventional problems, and as a means therefor, a capacitor according to an embodiment of the present invention includes a first electrode layer and a dielectric formed on the first electrode layer. And a second electrode layer formed on the dielectric layer. The dielectric layer is made of a metal oxide, and the metal oxide contains Hf, Bi, and an element having a valence of 5 or more. Shall be. Note that the metal oxide containing Hf, Bi, and a pentavalent or higher element includes, for example, HfO 2 in which a part of Hf is substituted with Bi and a pentavalent or higher element.
 また、本発明の一実施態様にかかるHfO膜の製造方法は、HfO、または、HfとOと他の元素を含んだHfOを含むHfO膜の製造方法であって、成膜対象物を用意する工程と、HfO膜の原料となる化学溶液を用意する工程と、化学溶液を成膜対象物上にスピンコートする工程と、熱処理により、成膜対象物上にスピンコートされた化学溶液から、正方晶および斜方晶の少なくとも一方の結晶相を含むHfO膜を析出させる工程と、を備えたものとする。なお、HfとOと他の元素を含んだHfOは、たとえば、Hfの一部が他の元素に置換されたHfOである。 Further, one manufacturing method of the HfO 2 film with an embodiment of the present invention, HfO 2, or a HfO 2 film manufacturing method, including Hf and O and HfO 2 containing other elements, the film-forming target A step of preparing a material, a step of preparing a chemical solution as a raw material of the HfO 2 film, a step of spin-coating the chemical solution on the film-forming target, and a heat treatment to spin-coat on the film-forming target And a step of precipitating an HfO 2 film containing at least one of a tetragonal crystal and an orthorhombic crystal phase from a chemical solution. Incidentally, HfO 2 containing Hf and O and other elements, for example, a HfO 2 some Hf is substituted with another element.
 本発明のキャパシタは、高い信頼性を備えている。また、バイアス電界を印加していない状態であっても、誘電体層が高い誘電率を備えている。さらに、小さいバイアス電界の印加であっても、誘電体層の誘電率が大きく向上する。 The capacitor of the present invention has high reliability. In addition, even when a bias electric field is not applied, the dielectric layer has a high dielectric constant. Furthermore, even when a small bias electric field is applied, the dielectric constant of the dielectric layer is greatly improved.
 また、本発明のHfO膜の製造方法によれば、本発明のキャパシタを容易に製造することができる。 Further, according to the method for producing the HfO 2 film of the present invention, the capacitor of the present invention can be easily produced.
第1実施形態にかかるキャパシタ100の断面図である。1 is a cross-sectional view of a capacitor 100 according to a first embodiment. キャパシタ100の誘電体層のX線回折スペクトルである。2 is an X-ray diffraction spectrum of a dielectric layer of a capacitor 100. FIG. キャパシタ100と比較例のキャパシタ1100、1200の比誘電率-電界曲線である。3 is a dielectric constant-electric field curve of a capacitor 100 and capacitors 1100 and 1200 of comparative examples. 比較例にかかるキャパシタ210、第2実施形態にかかるキャパシタ220~270の比誘電率-電界曲線である。7 is a relative dielectric constant-electric field curve of a capacitor 210 according to a comparative example and capacitors 220 to 270 according to the second embodiment. 第3実施形態にかかるキャパシタ310、320の比誘電率-電界曲線である。10 is a relative dielectric constant-electric field curve of capacitors 310 and 320 according to the third embodiment. 第4実施形態にかかるキャパシタ410~440の比誘電率-電界曲線である。12 is a relative dielectric constant-electric field curve of capacitors 410 to 440 according to the fourth embodiment. 第5実施形態にかかるキャパシタ500の比誘電率-電界曲線である。It is a dielectric constant-electric field curve of the capacitor 500 concerning 5th Embodiment.
 以下、本発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the present invention will be described.
 上述したとおり、本発明の一実施態様にかかるキャパシタは、第1電極層と、第1電極層上に形成された誘電体層と、誘電体層上に形成された第2電極層と、を備え、誘電体層が、金属酸化物からなり、金属酸化物は、Hf、Bi、および、5価以上の元素を含むものとする。なお、Hf、Bi、および、5価以上の元素を含む金属酸化物は、たとえば、Hfの一部が、Bi、および、5価以上の元素によって置換されたHfOを含んでいる。当該実施態様のキャパシタは、誘電体層を構成する金属酸化物が高い誘電率を備える。これは、Hfの一部をBiによって置換したことにより、結晶構造が歪みやすくなり、誘電率が向上したものと考えられる。また、Biで置換するにあたり、Bi単独であれば価数が合わずに酸素空孔が発生して特性が劣化する虞があるが、5価以上の元素も同時に添加させたことにより、価数が調整されて酸素空孔の発生が抑制され、高い誘電率を得ることができたものと考えられる。 As described above, a capacitor according to an embodiment of the present invention includes a first electrode layer, a dielectric layer formed on the first electrode layer, and a second electrode layer formed on the dielectric layer. The dielectric layer is made of a metal oxide, and the metal oxide includes Hf, Bi, and a pentavalent or higher element. Note that the metal oxide containing Hf, Bi, and a pentavalent or higher element includes, for example, HfO 2 in which a part of Hf is substituted with Bi and a pentavalent or higher element. In the capacitor of this embodiment, the metal oxide constituting the dielectric layer has a high dielectric constant. This is presumably because the crystal structure is easily distorted and the dielectric constant is improved by replacing part of Hf with Bi. In addition, when Bi is replaced by Bi alone, there is a risk that the valence does not match and oxygen vacancies are generated and the characteristics are deteriorated. It is considered that the generation of oxygen vacancies was suppressed and the high dielectric constant could be obtained.
 なお、金属酸化物は、たとえば、蛍石構造を有するものとすることができる。 The metal oxide can have a fluorite structure, for example.
 5価以上の元素は、たとえば、Nb、Ta、Mo、Wの中から選ばれた、1種類または複数種類の元素とすることができる。 The pentavalent or higher element can be, for example, one or more kinds of elements selected from Nb, Ta, Mo, and W.
 Oを除いた金属酸化物の総量を100mol%としたとき、Bi、および、5価以上の元素の添加量を、それぞれ、15mol%以下とすることができる。この場合には、絶縁性の低下が抑制される。 When the total amount of metal oxides excluding O is 100 mol%, the addition amounts of Bi and pentavalent or higher elements can each be 15 mol% or less. In this case, a decrease in insulation is suppressed.
 5価以上の元素が5価の元素である場合は、Biと当該5価の元素とのmol比が、1:1であり、5価以上の元素が6価の元素である場合は、Biと当該6価の元素とのmol比が、2:1とすることができる。この場合には、元素の価数が調整され、酸素空孔の発生が良好に抑制される。 When the pentavalent or higher element is a pentavalent element, the molar ratio of Bi to the pentavalent element is 1: 1, and when the pentavalent or higher element is a hexavalent element, Bi And the molar ratio of the hexavalent element to 2: 1. In this case, the valence of the element is adjusted, and the generation of oxygen vacancies is satisfactorily suppressed.
 更に、金属酸化物にIV族の元素が添加されたものとすることができる。この場合には、誘電率を、更に向上させることができる。IV族の元素は、たとえば、Si、Geの一方または両方の元素とすることができる。また、Oを除いた金属酸化物の総量を100mol%としたとき、IV族の元素の添加量を3mol%以下とすることができる。この場合には、誘電率を、良好に向上させることができる。また、IV族の元素の添加量を2mol%以下とすることができる。この場合には、誘電率を、更に良好に向上させることができる。そして、IV族の元素の添加量を1mol%以下にすると、誘電率を、更に良好に向上させることができる。 Furthermore, a group IV element may be added to the metal oxide. In this case, the dielectric constant can be further improved. The group IV element can be, for example, one or both of Si and Ge. Further, when the total amount of metal oxides excluding O is 100 mol%, the amount of Group IV element added can be 3 mol% or less. In this case, the dielectric constant can be improved satisfactorily. Further, the amount of Group IV element added can be 2 mol% or less. In this case, the dielectric constant can be further improved. When the addition amount of the group IV element is 1 mol% or less, the dielectric constant can be further improved.
 誘電体層の膜厚が10nm以上である場合は、更に、安定化剤が添加されることが好ましい。誘電体層の膜厚が10nm未満である場合は、安定化剤を添加しなくても、金属酸化物が主に正方晶、斜方晶、立方晶の1つまたは複数の結晶構造になり、良好な反強誘電性を発現させることができる。しかしながら、誘電体層の膜厚が10nm以上である場合には、金属酸化物の結晶構造が単斜晶になる虞があり、良好な反強誘電性が発現しない虞がある。そのため、誘電体層の膜厚が10nm以上である場合は、上記のように、安定化剤を添加し、金属酸化物の結晶構造が単斜晶になることを抑制することが好ましい。安定化剤としては、たとえば、La、Al、Y、Zr、Ceの中から選ばれた、1種類または複数種類の元素を使用することができる。なお、誘電体層の膜厚が10nm未満である場合においても、安定化剤を添加させても良い。この場合も、金属酸化物の結晶構造が単斜晶になることを抑制することができる。 When the thickness of the dielectric layer is 10 nm or more, it is preferable to add a stabilizer. When the thickness of the dielectric layer is less than 10 nm, the metal oxide mainly has one or more crystal structures of tetragonal, orthorhombic, and cubic without adding a stabilizer, Good antiferroelectricity can be expressed. However, when the film thickness of the dielectric layer is 10 nm or more, the crystal structure of the metal oxide may be monoclinic, and good antiferroelectricity may not be exhibited. Therefore, when the film thickness of the dielectric layer is 10 nm or more, it is preferable to add a stabilizer as described above to suppress the crystal structure of the metal oxide from being monoclinic. As the stabilizer, for example, one or more kinds of elements selected from La, Al, Y, Zr, and Ce can be used. Even when the thickness of the dielectric layer is less than 10 nm, a stabilizer may be added. Also in this case, it is possible to suppress the crystal structure of the metal oxide from being monoclinic.
 以下に、複数の実施形態について説明する。ただし、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、明細書の理解を助けるためのものであって、模式的に描画されている場合があり、描画された構成要素または構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合などがある。 Hereinafter, a plurality of embodiments will be described. However, each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention. Further, the drawings are for helping the understanding of the specification, and may be schematically drawn, and the drawn components or the ratio of dimensions between the components are described in the specification. There are cases where the ratio of these dimensions does not match. In addition, the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
 [第1実施形態]
 図1に、第1実施形態にかかるキャパシタ100を示す。ただし、図1は、キャパシタ100の断面図である。
[First Embodiment]
FIG. 1 shows a capacitor 100 according to the first embodiment. FIG. 1 is a cross-sectional view of the capacitor 100.
 キャパシタ100は、基板1を備える。基板1の材質、特性、厚みなどは任意であるが、本実施形態においては、厚み500μmのSi(100)基板を使用した。 The capacitor 100 includes a substrate 1. The material, characteristics, thickness and the like of the substrate 1 are arbitrary, but in this embodiment, a Si (100) substrate having a thickness of 500 μm was used.
 基板1の上に、第1電極層2が形成されている。第1電極層2の材質、特性、厚みなども任意であるが、本実施形態においては、厚み100nmのPt(111)膜を形成した。 A first electrode layer 2 is formed on the substrate 1. The material, characteristics, thickness, etc. of the first electrode layer 2 are arbitrary, but in this embodiment, a Pt (111) film having a thickness of 100 nm is formed.
 第1電極層2の上に、誘電体層3が形成されている。誘電体層3は、蛍石構造を有する金属酸化物によって構成されている。そして、金属酸化物は、Hfの一部が、Biおよび5価以上の元素で置換されたHfOを含んでいる。 A dielectric layer 3 is formed on the first electrode layer 2. The dielectric layer 3 is made of a metal oxide having a fluorite structure. The metal oxide contains HfO 2 in which a part of Hf is substituted with Bi and a pentavalent or higher element.
 本実施形態においては、5価以上の元素として、5価のNbを用いた。すなわち、金属酸化物は、4価のHfの一部が、3価のBiと、5価のNbとで置換されている。Biは、主に、誘電率を向上させるために添加されている。Nbは、主に、元素の価数を調整して酸素空孔の発生を抑制し、特性の劣化(誘電率の低下)を抑制するために添加されている。 In this embodiment, pentavalent Nb is used as the pentavalent or higher element. That is, in the metal oxide, a part of tetravalent Hf is substituted with trivalent Bi and pentavalent Nb. Bi is mainly added to improve the dielectric constant. Nb is added mainly to adjust the valence of the element to suppress the generation of oxygen vacancies and to suppress deterioration of characteristics (decrease in dielectric constant).
 さらに、本実施形態においては、金属酸化物に、安定化剤としてLaが添加されている。安定化剤(La)は、金属酸化膜の結晶構造が単斜晶になり、良好な反強誘電性が発現しなくなることを回避するために添加されている。なお、誘電体層3の厚みが10nm未満である場合には、安定化剤を添加しなくても、良好な反強誘電性が得られるものと考えられる。安定化剤は、Laには限られず、たとえば、La、Ce、Al、Ti、Sn、Zr、Sc、Mg、Zn、Y、Ca、Sr、Baの中から選ばれた、1種類または複数種類の元素を使用することができる。 Furthermore, in this embodiment, La is added to the metal oxide as a stabilizer. The stabilizer (La) is added in order to avoid that the metal oxide film has a monoclinic crystal structure and does not exhibit good antiferroelectricity. In addition, when the thickness of the dielectric material layer 3 is less than 10 nm, it is thought that favorable antiferroelectric property is obtained even if it does not add a stabilizer. The stabilizer is not limited to La, for example, one or more kinds selected from La, Ce, Al, Ti, Sn, Zr, Sc, Mg, Zn, Y, Ca, Sr, Ba These elements can be used.
 本実施形態においては、誘電体層3の厚みを60nmとした。なお、以下において、誘電体層3をHfO膜という場合がある。 In the present embodiment, the dielectric layer 3 has a thickness of 60 nm. In the following, the dielectric layer 3 may be referred to as an HfO 2 film.
 誘電体層3は、反強誘電性を備えている。したがって、誘電体層3は、バイアス電界を印加することによって、高い誘電率を示す。 The dielectric layer 3 has antiferroelectric properties. Therefore, the dielectric layer 3 exhibits a high dielectric constant by applying a bias electric field.
 誘電体層3の上に、第2電極層4が形成されている。第2電極層4の材質、特性、厚みなども任意であるが、本実施形態においては、厚み100nmのPt(111)膜を形成した。 A second electrode layer 4 is formed on the dielectric layer 3. The material, characteristics, thickness, etc. of the second electrode layer 4 are arbitrary, but in this embodiment, a Pt (111) film having a thickness of 100 nm is formed.
 以上の構造からなる第1実施形態にかかるキャパシタ100は、バイアス電界を印加することによって、高い静電容量を発現するキャパシタとして使用することができる。なお、キャパシタ100は、バイアス電界を印加しない状態においても、高い静電容量を発現する。 The capacitor 100 according to the first embodiment having the above-described structure can be used as a capacitor that develops a high capacitance by applying a bias electric field. Note that the capacitor 100 exhibits a high capacitance even when no bias electric field is applied.
 第1実施形態にかかるキャパシタ100は、たとえば、次の方法で製造することができる。 The capacitor 100 according to the first embodiment can be manufactured, for example, by the following method.
 まず、基板1を用意する。 First, the substrate 1 is prepared.
 また、基板1の用意と並行して、化学溶液を作製する。 Also, a chemical solution is prepared in parallel with the preparation of the substrate 1.
 化学溶液の原料塩として、ハフニウムイソプロポキシドを0.952g、酢酸ビスマスを0.052g、ニオブイソプロポキシドを0.052g、ランタンイソプロポキシドを0.042g用意する。 As raw material salts of the chemical solution, 0.952 g of hafnium isopropoxide, 0.052 g of bismuth acetate, 0.052 g of niobium isopropoxide, and 0.042 g of lanthanum isopropoxide are prepared.
 また、化学溶液の溶媒として、酢酸を2mlと、2-メトキシエタノールを4mlと用意する。 Also, prepare 2 ml of acetic acid and 4 ml of 2-methoxyethanol as the solvent for the chemical solution.
 容器に、酢酸と、2-メトキシエタノールとを入れて撹拌する。さらに、容器に各原料塩を追加し、撹拌して化学溶液を得る。 In a container, add acetic acid and 2-methoxyethanol and stir. Furthermore, each raw material salt is added to the container and stirred to obtain a chemical solution.
 次に、基板1の上に、スパッタリング法により、Pt(111)膜からなる第1電極層2を形成する。 Next, the first electrode layer 2 made of a Pt (111) film is formed on the substrate 1 by sputtering.
 次に、第1電極層2の上に、スピンコート法により、化学溶液をコーティングする。 Next, a chemical solution is coated on the first electrode layer 2 by spin coating.
 具体的には、第1回目のコーティングとして、第1電極層2の形成された基板1を回転台に取付け、回転台を3000回転/秒で回転させた状態で、第1電極層2上に化学溶液を滴下し、第1電極層2上に厚み60nmの化学溶液の膜をコーティングする。なお、滴下する化学溶液は、作製した化学溶液の1/3の量とする。続いて、第1電極層2上に化学溶液の膜が形成された基板1を、酸素流量が200ml/分の酸素雰囲気下で、300℃/分の昇温速度で500℃まで加熱し、10分間保持する。この結果、第1電極層2上に、第1のHfO膜が形成される。 Specifically, as the first coating, the substrate 1 on which the first electrode layer 2 is formed is attached to a turntable, and the turntable is rotated at 3000 rpm, and the first electrode layer 2 is formed on the first electrode layer 2. A chemical solution is dropped, and a film of a chemical solution having a thickness of 60 nm is coated on the first electrode layer 2. In addition, let the chemical solution dripped be the quantity of 1/3 of the produced chemical solution. Subsequently, the substrate 1 on which the film of the chemical solution is formed on the first electrode layer 2 is heated to 500 ° C. at a heating rate of 300 ° C./min in an oxygen atmosphere with an oxygen flow rate of 200 ml / min. Hold for a minute. As a result, a first HfO 2 film is formed on the first electrode layer 2.
 続いて、第1のHfO膜上に、第2回目のコーティングとして、第1回目と同一の条件で、スピンコート法により化学溶液をコーティングし、加熱して、第2のHfO膜を形成する。なお、滴下する化学溶液は、作製した化学溶液の1/3の量とする。 Subsequently, on the first HfO 2 film, as a second coating, a chemical solution is coated by a spin coating method under the same conditions as the first coating, and heated to form a second HfO 2 film. To do. In addition, let the chemical solution dripped be the quantity of 1/3 of the produced chemical solution.
 続いて、第2のHfO膜上に、第3回目のコーティングとして、第1回目および第2回目と同一の条件で、スピンコート法により化学溶液をコーティングし、加熱して、第3のHfO膜を形成する。なお、滴下する化学溶液は、作製した化学溶液の1/3の量とする。 Subsequently, on the second HfO 2 film, as a third coating, a chemical solution is coated by a spin coat method under the same conditions as the first and second times, and heated to form a third HfO 2 film. Two films are formed. In addition, let the chemical solution dripped be the quantity of 1/3 of the produced chemical solution.
 この結果、第1電極層2の上に、同じ厚みの、第1のHfO膜、第2のHfO膜、第3のHfO膜が積層された、誘電体層3が形成される。 As a result, the dielectric layer 3 in which the first HfO 2 film, the second HfO 2 film, and the third HfO 2 film having the same thickness are laminated on the first electrode layer 2 is formed.
 次に、誘電体層3上に、スパッタリング法により、Pt(111)膜からなる第2電極層4を形成する。 Next, the second electrode layer 4 made of a Pt (111) film is formed on the dielectric layer 3 by sputtering.
 次に、誘電体層(HfO膜)3の結晶性を向上させるために、熱処理をおこなう。具体的には、第1電極層2、誘電体層3、第2電極層4が形成された基板1を、酸素流量が200ml/分の酸素雰囲気下で、300℃/分の昇温速度で700℃まで加熱し、10分間保持する。 Next, heat treatment is performed to improve the crystallinity of the dielectric layer (HfO 2 film) 3. Specifically, the substrate 1 on which the first electrode layer 2, the dielectric layer 3, and the second electrode layer 4 are formed is heated at a rate of temperature increase of 300 ° C./min in an oxygen atmosphere with an oxygen flow rate of 200 ml / min. Heat to 700 ° C. and hold for 10 minutes.
 以上により、キャパシタ100が完成する。 Thus, the capacitor 100 is completed.
 表1に、キャパシタ100の誘電体層の組成、原料塩の種類、重量を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the composition of the dielectric layer of the capacitor 100, the type of raw material salt, and the weight.
Figure JPOXMLDOC01-appb-T000001
 完成したキャパシタ100の誘電体層(HfO膜)3のX線回折スペクトルを測定した。図2に、キャパシタ100の誘電体層3のX線回折スペクトルを示す。図2から、30°および35°付近に現れる回折線は立方晶、正方晶または斜方晶の蛍石構造に帰属でき、Hfの一部をBi、Nb、Laで置換した蛍石構造のHfO膜が形成されていることが確認できる。 The X-ray diffraction spectrum of the dielectric layer (HfO 2 film) 3 of the completed capacitor 100 was measured. FIG. 2 shows an X-ray diffraction spectrum of the dielectric layer 3 of the capacitor 100. From FIG. 2, the diffraction lines appearing near 30 ° and 35 ° can be attributed to cubic, tetragonal or orthorhombic fluorite structures, and HfO having a fluorite structure in which a part of Hf is substituted with Bi, Nb, and La. It can be confirmed that two films are formed.
 また、キャパシタ100の誘電体層(HfO膜)3の比誘電率のバイアス特性を、LCRメーターを用いて測定した。図3に、キャパシタ100の比誘電率―バイアス電界曲線を示す。 Further, the bias characteristic of the relative dielectric constant of the dielectric layer (HfO 2 film) 3 of the capacitor 100 was measured using an LCR meter. FIG. 3 shows a relative dielectric constant-bias electric field curve of the capacitor 100.
 比較のために、比較例にかかるキャパシタ1100、1200を作製した。キャパシタ1100、1200は、それぞれ、キャパシタ100の構成の一部に変更を加えた。具体的には、キャパシタ1100は、Biの代わりにInを添加した。キャパシタ1200は、Nbを添加しなかった。なお、キャパシタ1100、1200は、キャパシタ100と同じ方法で作製した。 For comparison, capacitors 1100 and 1200 according to comparative examples were produced. Each of the capacitors 1100 and 1200 is a part of the configuration of the capacitor 100. Specifically, in the capacitor 1100, In was added instead of Bi. The capacitor 1200 did not add Nb. Note that the capacitors 1100 and 1200 were manufactured by the same method as the capacitor 100.
 表2に、キャパシタ1100、1200の誘電体層の組成を示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the composition of the dielectric layers of the capacitors 1100 and 1200.
Figure JPOXMLDOC01-appb-T000002
 図3に、キャパシタ1100、1200の誘電体層の比誘電率-バイアス電界曲線を示す。 FIG. 3 shows a relative dielectric constant-bias electric field curve of the dielectric layers of the capacitors 1100 and 1200.
 第1実施形態にかかるキャパシタ100と、比較例にかかるキャパシタ1100、1200とを比較した。 The capacitor 100 according to the first embodiment was compared with the capacitors 1100 and 1200 according to the comparative example.
 キャパシタ100は、バイアス電界の印加によって比誘電率が上昇し、0.7MV/cmにおいて、75の比誘電率を示した。すなわち、小さなバイアス電界の印加によって、比誘電率が大きく向上し、良好な反強誘電性を示した。 The relative permittivity of the capacitor 100 was increased by application of a bias electric field, and a relative permittivity of 75 was exhibited at 0.7 MV / cm. That is, by applying a small bias electric field, the relative dielectric constant was greatly improved and good antiferroelectric properties were exhibited.
 これに対し、キャパシタ1100は、2MV/cmのバイアス電界の印加においても、36の比誘電率しか示さなかった。すなわち、キャパシタ1100の比誘電率は低く、かつ、比誘電率の最大値を示すバイアス電界が高かった。すなわち、キャパシタ1100は、良好な反強誘電性を示さなかった。 On the other hand, the capacitor 1100 showed only a relative dielectric constant of 36 even when a bias field of 2 MV / cm was applied. That is, the relative dielectric constant of the capacitor 1100 was low, and the bias electric field indicating the maximum value of the relative dielectric constant was high. That is, the capacitor 1100 did not show good antiferroelectricity.
 また、キャパシタ1200は、1.5MV/cmのバイアス電界の印加においても、35の比誘電率しか示さなかった。すなわち、キャパシタ1200の比誘電率も低く、かつ、比誘電率の最大値を示すバイアス電界が高かった。すなわち、キャパシタ1200も、良好な反強誘電性を示さなかった。 The capacitor 1200 showed only a relative dielectric constant of 35 even when a bias electric field of 1.5 MV / cm was applied. That is, the relative dielectric constant of the capacitor 1200 was low, and the bias electric field indicating the maximum value of the relative dielectric constant was high. That is, the capacitor 1200 also did not show good antiferroelectricity.
 また、バイアス電界を印加していない状態において、キャパシタ100は比誘電率が50であり、高い値を示した。これに対し、バイアス電界を印加していない状態において、キャパシタ1100は比誘電率が28であり、キャパシタ1100は比誘電率が29であり、いずれも低い値であった。 Further, in a state where no bias electric field was applied, the capacitor 100 had a relative dielectric constant of 50, indicating a high value. In contrast, in the state where no bias electric field was applied, the capacitor 1100 had a relative dielectric constant of 28, and the capacitor 1100 had a relative dielectric constant of 29, both of which were low values.
 以上より、第1実施形態にかかるキャパシタ100は、誘電体層(HfO膜)3が電界に対して応答しやすく、従来に比べて、低いバイアス電界下で高い比誘電率を示し、高い静電容量を発現することが分かった。キャパシタ100のこの効果は、Hfの一部を、BiとNbとで同時に置換したことによる効果であり、Bi単独の置換や、Biの代わりにInで置換した場合では得られない効果である。 As described above, in the capacitor 100 according to the first embodiment, the dielectric layer (HfO 2 film) 3 easily responds to an electric field, and exhibits a higher relative dielectric constant under a lower bias electric field than in the past, and has a high static It was found that electric capacity was developed. This effect of the capacitor 100 is an effect obtained by substituting a part of Hf with Bi and Nb at the same time, and is an effect that cannot be obtained by replacing Bi alone or replacing it with In instead of Bi.
 BiとNbとで共置換することによって、バイアス電界のない状態および比較的低いバイアス電界下において高い誘電率を示すようになった理由は明らかではない。しかしながら、Biが結晶に歪みを発生させ、電界に対して結晶がより応答しやすくなったためではないかと考えられる。 It is not clear why the co-substitution with Bi and Nb has resulted in a high dielectric constant in the absence of a bias field and under a relatively low bias field. However, it is thought that Bi caused distortion in the crystal, and the crystal became more responsive to the electric field.
 比較例のキャパシタ1100では、Biの代わりにInで置換した。InはBiと同じ3価の元素であるが、Inで置換した場合には、誘電率は向上せず、良好な反強誘電性を示さなかった。Inに比べてBiの場合に顕著な誘電特性の向上がみられた理由については、Bi3+イオンが非共有電子対を有していて、結晶構造内でより歪んだ構造をとろうとするためではないかと考えられる。 In the capacitor 1100 of the comparative example, In was substituted for Bi instead of Bi. In is the same trivalent element as Bi, but when it was substituted with In, the dielectric constant did not improve, and good antiferroelectricity was not exhibited. The reason for the remarkable improvement in dielectric properties in the case of Bi compared to In is that Bi 3+ ions have unshared electron pairs and are trying to take a more distorted structure in the crystal structure. It is thought that there is not.
 比較例のキャパシタ1200では、BiとNbとで共置換することはせず、Biのみで置換した。しかしながら、Bi単独での置換では十分な効果は顕れなかった。BiとNbとの共置換によって高誘電率が得られた理由については、4価のHfを、3価のBiと、5価のNbとで置換したことにより、元素の価数が調整され、酸素空孔の発生が抑制され、特性の劣化(誘電率の低下)が抑制されたためではないかと考えられる。 In the capacitor 1200 of the comparative example, Bi and Nb are not co-replaced, and Bi is substituted only. However, the substitution with Bi alone did not show a sufficient effect. Regarding the reason why a high dielectric constant was obtained by co-substitution of Bi and Nb, the valence of the element was adjusted by substituting tetravalent Hf with trivalent Bi and pentavalent Nb, This is probably because the generation of oxygen vacancies was suppressed and the deterioration of characteristics (decrease in dielectric constant) was suppressed.
 なお、本実施形態においては、HfOの結晶構造を調整するために、安定化剤としてLaを添加している。しかしながら、安定化剤は、Laには限られず、Ceなど他の元素の添加でも同様の効果が得られる。したがって、本実施形態における特性向上(誘電率の向上、良好な反強誘電性の発現)は、Laの添加ではなく、Hfの一部をBiとNbとで共置換したことによるものであると考えられる。なお、安定化剤には、LaやCe以外でも、たとえば、Al、Ti、Sn、Zr、Sc、Mg、Zn、Y、Ca、Sr、Baなどを使用することができる。 In the present embodiment, La is added as a stabilizer in order to adjust the crystal structure of HfO 2 . However, the stabilizer is not limited to La, and the same effect can be obtained by adding other elements such as Ce. Therefore, the characteristic improvement (improvement of dielectric constant, good antiferroelectric expression) in the present embodiment is due to co-substitution of a part of Hf with Bi and Nb rather than addition of La. Conceivable. In addition to La and Ce, for example, Al, Ti, Sn, Zr, Sc, Mg, Zn, Y, Ca, Sr, Ba, etc. can be used as the stabilizer.
 [第2実施形態]
 第2実施形態にかかるキャパシタ210、220、230、240,250、260、270、280を作製した。符号210~280は試料番号である。図示しないが、いずれのキャパシタも、図1に示した第1実施形態にかかるキャパシタ100と同一の構造からなる。ただし、キャパシタ210~280のうち、キャパシタ210は比較例である。
[Second Embodiment]
Capacitors 210, 220, 230, 240, 250, 260, 270 and 280 according to the second embodiment were produced. Reference numerals 210 to 280 denote sample numbers. Although not shown, each capacitor has the same structure as the capacitor 100 according to the first embodiment shown in FIG. However, of the capacitors 210 to 280, the capacitor 210 is a comparative example.
 第2実施形態にかかるキャパシタ210~280は、それぞれ、第1実施形態にかかるキャパシタ100の誘電体層(HfO膜)3を構成する金属酸化物に、添加量を変化させてBi、Nbを添加し、添加量に応じてLaの添加量を最適化したものである。しかがって、いずれの実施例、比較例においても、Hf、Bi、Nb、Laの合計量が100mol%になる。 In the capacitors 210 to 280 according to the second embodiment, Bi and Nb are changed by changing the addition amount to the metal oxide constituting the dielectric layer (HfO 2 film) 3 of the capacitor 100 according to the first embodiment. The amount of La added is optimized according to the amount added. Therefore, in any of the examples and comparative examples, the total amount of Hf, Bi, Nb, and La becomes 100 mol%.
 具体的には、キャパシタ210は、Bi、Nbは添加せず、Laを5mol%添加した。キャパシタ220は、Bi、Nbをそれぞれ0.5mol%添加し、Laを5mol%添加した。キャパシタ230は、Bi、Nbをそれぞれ1mol%添加し、Laを5mol%添加した。キャパシタ240は、Bi、Nbをそれぞれ3mol%添加し、Laを5mol%添加した。キャパシタ250は、Bi、Nbをそれぞれ7.5mol%添加し、Laを5mol%添加した。キャパシタ260は、Bi、Nbをそれぞれ10mol%添加し、Laを3mol%添加した。キャパシタ270は、Bi、Nbをそれぞれ15mol%添加し、Laを1mol%添加した。キャパシタ280は、Bi、Nbをそれぞれ17.5mol%添加し、Laを1mol%添加した。 Specifically, the capacitor 210 was added with 5 mol% of La without adding Bi and Nb. The capacitor 220 was added with 0.5 mol% of Bi and Nb and 5 mol% of La. The capacitor 230 was added with 1 mol% of Bi and Nb, respectively, and 5 mol% of La. The capacitor 240 was added with 3 mol% of Bi and Nb and 5 mol% of La. In the capacitor 250, 7.5 mol% of Bi and Nb were added, and 5 mol% of La was added. The capacitor 260 was added with 10 mol% of Bi and Nb and 3 mol% of La. The capacitor 270 was added with 15 mol% of Bi and Nb and 1 mol% of La. Capacitor 280 was added with 17.5 mol% of Bi and Nb and 1 mol% of La, respectively.
 キャパシタ210~280のその他の事項、たとえば、化学溶液に用いた原料塩の種類、含まれる溶媒の種類、量や、製造方法は、キャパシタ100と同じにした。 Other items of the capacitors 210 to 280, for example, the type of raw material salt used in the chemical solution, the type and amount of the solvent contained, and the manufacturing method were the same as those of the capacitor 100.
 表3に、キャパシタ210~280、それぞれの、誘電体層の組成を示す。なお、表3には、キャパシタ100の数値も示している。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the composition of the dielectric layer of each of the capacitors 210 to 280. In Table 3, the numerical value of the capacitor 100 is also shown.
Figure JPOXMLDOC01-appb-T000003
 第2実施形態においては、誘電体層に含まれるHfOのHfの一部がBi、Nb、Laに置換されている。なお、Hfは4価の元素、La,Biは3価の元素,Nbは5価の元素である。 In the second embodiment, part of Hf of HfO 2 contained in the dielectric layer is replaced with Bi, Nb, and La. Hf is a tetravalent element, La and Bi are trivalent elements, and Nb is a pentavalent element.
 キャパシタ100、210~270の誘電体層の比誘電率-電界曲線を、それぞれ、図4に示す。なお、Bi、Nbをそれぞれ17.5mol%添加したキャパシタ280においては、絶縁性の低下がみられ比誘電率の測定ができなかった。 FIG. 4 shows relative dielectric constant-electric field curves of the dielectric layers of the capacitors 100 and 210 to 270, respectively. In addition, in the capacitor 280 to which 17.5 mol% of Bi and Nb were added respectively, the insulation was lowered and the relative dielectric constant could not be measured.
 図4から分かるように、Bi、Nbを添加したキャパシタ220~270では、いずれも、Bi、Nbを添加していないキャパシタ210(比較例)に比べて比誘電率が増加した。キャパシタ210~270において、キャパシタ100と同等に大きく比誘電率が増加したものを◎、キャパシタ210より比誘電率が増加したものを○、キャパシタ210を×とした。評価結果を、表3に示す。 As can be seen from FIG. 4, in each of the capacitors 220 to 270 to which Bi and Nb were added, the relative dielectric constant increased compared to the capacitor 210 to which Bi and Nb were not added (Comparative Example). Among the capacitors 210 to 270, those having a relative dielectric constant that is as large as the capacitor 100 and increased are indicated by ◎, those having a relative dielectric constant increased by the capacitor 210, and capacitors 210 by ×. The evaluation results are shown in Table 3.
 比誘電率は、Bi、Nbを添加することで増加し、最大約80まで増加させることができた。これは、Bi、Nbを同時に添加することによって、電荷中性を保ちつつ、Bi置換によって結晶に歪みが発生し、電界に対して結晶がより応答しやすくなったためではないかと考えられる。ただし、Bi、Nbの添加量が一定量を超えると、膜の絶縁性の低下が起こった。これはBi、NbがHfOのバンドギャップ中に不純物準位を形成し伝導キャリアが増加しているためではないかと考えられる。 The relative dielectric constant was increased by adding Bi and Nb and could be increased up to about 80. This is probably because Bi and Nb were added simultaneously, while maintaining the charge neutrality, the Bi substitution caused distortion in the crystal and the crystal became more responsive to the electric field. However, when the added amounts of Bi and Nb exceeded a certain amount, the insulating properties of the film deteriorated. This is thought to be because Bi and Nb formed impurity levels in the band gap of HfO 2 and the conduction carriers increased.
 以上のように、誘電体層(HfO膜)を構成する金属酸化膜のHfの一部を、Bi、Nbに置換することによって、誘電率を増加させ得ることが確認できた。ただし、Bi、Nbを置換しすぎると絶縁性が損なわれてしまうため、Bi、Nbは、それぞれ、15mol%以下で置換することが望ましいことが分かった。 As described above, it was confirmed that the dielectric constant could be increased by replacing part of Hf of the metal oxide film constituting the dielectric layer (HfO 2 film) with Bi and Nb. However, it has been found that Bi and Nb are preferably replaced with 15 mol% or less, because Bi and Nb are excessively substituted to deteriorate the insulating properties.
 [第3実施形態]
 第3実施形態にかかるキャパシタ310、320を作製した。符号310、320は試料番号である。図示しないが、いずれのキャパシタも、図1に示した第1実施形態にかかるキャパシタ100と同一の構造からなる。
[Third Embodiment]
Capacitors 310 and 320 according to the third embodiment were produced. Reference numerals 310 and 320 are sample numbers. Although not shown, each capacitor has the same structure as the capacitor 100 according to the first embodiment shown in FIG.
 第3実施形態にかかるキャパシタ310、320は、それぞれ、第1実施形態にかかるキャパシタ100の構成の一部に変更を加えた。具体的には、キャパシタ100では、誘電体層(HfO膜)3を構成する金属酸化物に、Biと同時にNbを添加した。キャパシタ310はこれを変更し、Nbの代わりにTaを添加した。また、キャパシタ320はこれを変更し、Nbの代わりにWaを添加した。 In the capacitors 310 and 320 according to the third embodiment, a part of the configuration of the capacitor 100 according to the first embodiment is changed. Specifically, in the capacitor 100, Nb was added to the metal oxide constituting the dielectric layer (HfO 2 film) 3 simultaneously with Bi. The capacitor 310 changed this and added Ta instead of Nb. In addition, the capacitor 320 is changed, and Wa is added instead of Nb.
 具体的には、キャパシタ310は、Bi、Taをそれぞれ5mol%添加し、Laを5mol%添加した(Hfの量を15mol%減らし、代わりにBi、Taをそれぞれ5mol%添加し、Laを5mol%添加した)。キャパシタ320は、Biを6.6mol%添加し、Wを3.3mol%添加し、Laを5mol%添加した(Hfの量を14.9mol%減らし、代わりにBiを6.6mol%添加し、Wを3.3mol%添加し、Laを5mol%添加した)。 Specifically, the capacitor 310 is added with 5 mol% of Bi and Ta and 5 mol% of La (the amount of Hf is reduced by 15 mol%, and 5 mol% of Bi and Ta are added instead, and 5 mol% of La is added. Added). Capacitor 320 was added with 6.6 mol% Bi, 3.3 mol% W, and 5 mol% La (the amount of Hf was reduced by 14.9 mol%, and Bi 6.6 mol% was added instead. W was added at 3.3 mol%, and La was added at 5 mol%).
 キャパシタ310では、Taの原料塩としてタンタルイソプロポキシドを使用した。キャパシタ320では、Wの原料塩としてタングステンエトキシドを使用した。 In the capacitor 310, tantalum isopropoxide was used as a Ta raw material salt. In the capacitor 320, tungsten ethoxide was used as a raw material salt of W.
 キャパシタ310、320のその他の事項、たとえば、化学溶液に含まれる溶媒の種類、量や、製造方法は、キャパシタ100と同じにした。 The other matters of the capacitors 310 and 320, for example, the type and amount of the solvent contained in the chemical solution, and the manufacturing method are the same as those of the capacitor 100.
 表4に、キャパシタ310、320、それぞれの、誘電体層の組成を示す。なお、表4には、比較のために、キャパシタ100の数値も示している。
Figure JPOXMLDOC01-appb-T000004
Table 4 shows the composition of the dielectric layer of each of the capacitors 310 and 320. In Table 4, the numerical value of the capacitor 100 is also shown for comparison.
Figure JPOXMLDOC01-appb-T000004
 第3実施形態においては、キャパシタ310の誘電体層の金属酸化物に含まれるHfOのHfの一部が、Bi、Ta、Laに置換されている。また、キャパシタ320の誘電体層の金属酸化物に含まれるHfOのHfの一部が、Bi、W、Laに置換されている。 In the third embodiment, a part of Hf of HfO 2 contained in the metal oxide of the dielectric layer of the capacitor 310 is replaced with Bi, Ta, and La. In addition, a part of Hf of HfO 2 contained in the metal oxide of the dielectric layer of the capacitor 320 is replaced with Bi, W, and La.
 なお、Hfは4価の元素、Bi、Laは3価の元素、Taは5価の元素、Wは6価の元素である。3価の元素であるBiと、5価の元素であるTaとを同時に添加する場合は、BiとTaのmol比が1:1であることが好ましい。また、3価の元素であるBiと、6価の元素であるWとを同時に添加する場合は、BiとWのmol比が2:1であることが好ましい。元素の価数が調整され、酸素空孔の発生が抑制されるからである。 Hf is a tetravalent element, Bi and La are trivalent elements, Ta is a pentavalent element, and W is a hexavalent element. When Bi, which is a trivalent element, and Ta, which is a pentavalent element, are added simultaneously, the molar ratio of Bi and Ta is preferably 1: 1. When Bi, which is a trivalent element, and W, which is a hexavalent element, are added simultaneously, the molar ratio of Bi and W is preferably 2: 1. This is because the valence of the element is adjusted and the generation of oxygen vacancies is suppressed.
 キャパシタ100、310、320の誘電体層の比誘電率-電界曲線を、それぞれ、図5に示す。 FIG. 5 shows relative dielectric constant-electric field curves of the dielectric layers of the capacitors 100, 310, and 320, respectively.
 図5から分かるように、Bi、Taをそれぞれ5mol%添加したキャパシタ310は、バイアス電界を印加していない状態で、比誘電率が61と高い値を示した。そして、キャパシタ310にバイアス電界を印加すると比誘電率が向上し、バイアス電界0.7MV/cmにおいて、75の比誘電率を示した。Biを6.6mol%、Wを3.3mol%添加したキャパシタ320は、バイアス電界を印加していない状態で、比誘電率が42と高い値を示した。そして、キャパシタ320にバイアス電界を印加すると比誘電率が向上し、バイアス電界1.2MV/cmにおいて、62の比誘電率を示した。 As can be seen from FIG. 5, the capacitor 310 added with 5 mol% of Bi and Ta each showed a high relative dielectric constant of 61 when no bias electric field was applied. When a bias electric field was applied to the capacitor 310, the relative dielectric constant was improved, and a relative dielectric constant of 75 was exhibited at a bias electric field of 0.7 MV / cm. The capacitor 320 to which 6.6 mol% Bi and 3.3 mol% W were added showed a high relative dielectric constant of 42 in a state where no bias electric field was applied. When a bias electric field was applied to the capacitor 320, the relative dielectric constant was improved, and a relative dielectric constant of 62 was exhibited at a bias electric field of 1.2 MV / cm.
 キャパシタ310、320の比誘電率は、Nbを添加したキャパシタ100と同等の誘電率を示し、NbとTaとWの添加による効果は類似していると考えられる。 The relative dielectric constants of the capacitors 310 and 320 are equivalent to those of the capacitor 100 to which Nb is added, and it is considered that the effects of adding Nb, Ta, and W are similar.
 以上のように、誘電体層(HfO膜)にBi、TaまたはBi、Wを添加することによって、誘電率を増加させ得ることが確認できた。なお、Biと同時に添加する元素は、Nb、Ta、Wの他に、Moなどであっても良い。 As described above, it was confirmed that the dielectric constant could be increased by adding Bi, Ta or Bi, W to the dielectric layer (HfO 2 film). In addition to Nb, Ta, and W, the element added simultaneously with Bi may be Mo or the like.
 [第4実施形態]
 第4実施形態にかかるキャパシタ410、420、430、440を作製した。符号410~440は試料番号である。図示しないが、いずれのキャパシタも、図1に示した第1実施形態にかかるキャパシタ100と同一の構造からなる。
[Fourth Embodiment]
Capacitors 410, 420, 430, and 440 according to the fourth embodiment were produced. Reference numerals 410 to 440 are sample numbers. Although not shown, each capacitor has the same structure as the capacitor 100 according to the first embodiment shown in FIG.
 第4実施形態にかかるキャパシタ410~440は、それぞれ、第1実施形態にかかるキャパシタ100の誘電体層(HfO膜)3に、添加量を変化させてSiを添加したものである。 The capacitors 410 to 440 according to the fourth embodiment are obtained by adding Si to the dielectric layer (HfO 2 film) 3 of the capacitor 100 according to the first embodiment while changing the addition amount.
 具体的には、キャパシタ410は、Bi、Nbをそれぞれ5mol%添加し、Laを5mol%添加し、Siを1mol%添加した(Hfの量を16mol%減らし、代わりにBi、Nbをそれぞれ5mol%添加し、Laを5mol%添加し、Siを1mol%添加した)。キャパシタ420は、Bi、Nbをそれぞれ5mol%添加し、Laを5mol%添加し、Siを2mol%添加した。キャパシタ430は、Bi、Nbをそれぞれ5mol%添加し、Laを5mol%添加し、Siを3mol%添加した。キャパシタ440は、Bi、Nbをそれぞれ5mol%添加し、Laを5mol%添加し、Siを4mol%添加した。 Specifically, the capacitor 410 is added with 5 mol% of Bi and Nb, 5 mol% of La, and 1 mol% of Si (the amount of Hf is reduced by 16 mol%, and Bi and Nb are each 5 mol% instead. And 5 mol% La and 1 mol% Si were added). In the capacitor 420, 5 mol% of Bi and Nb were added, 5 mol% of La was added, and 2 mol% of Si was added. The capacitor 430 was added with 5 mol% of Bi and Nb, 5 mol% of La, and 3 mol% of Si. In the capacitor 440, 5 mol% of Bi and Nb were added, 5 mol% of La was added, and 4 mol% of Si was added.
 キャパシタ410~440では、Siの原料塩としてシリコンエトキシドを使用した。 In capacitors 410 to 440, silicon ethoxide was used as a raw material salt of Si.
 キャパシタ410~440のその他の事項、たとえば、含まれる溶媒の種類、量や、製造方法は、キャパシタ100と同じにした。 The other matters of the capacitors 410 to 440, for example, the type, amount, and manufacturing method of the solvent included are the same as those of the capacitor 100.
 表5に、キャパシタ410~440、それぞれの、誘電体層の組成を示す。なお、表5には、比較のために、キャパシタ100の数値も示している。
Figure JPOXMLDOC01-appb-T000005
Table 5 shows the composition of the dielectric layer of each of the capacitors 410 to 440. In Table 5, the numerical value of the capacitor 100 is also shown for comparison.
Figure JPOXMLDOC01-appb-T000005
 第4実施形態においては、誘電体層に含まれるHfOのHfの一部が、Bi、Nb、La、Siに置換されている。なお、Hf、Siは4価の元素、La,Biは3価の元素,Nbは5価の元素である。 In the fourth embodiment, part of Hf of HfO 2 contained in the dielectric layer is replaced with Bi, Nb, La, and Si. Hf and Si are tetravalent elements, La and Bi are trivalent elements, and Nb is a pentavalent element.
 キャパシタ410~440の誘電体層の比誘電率-電界曲線を、それぞれ、図6に示す。 FIG. 6 shows the relative permittivity-electric field curves of the dielectric layers of the capacitors 410 to 440, respectively.
 図6から分かるように、Siを1mol%添加したキャパシタ410において、大きく比誘電率の増加がみられた。Siを2mol%添加したキャパシタ420においては、比誘電率の増加量はキャパシタ100と同等であったが、比誘電率の増加に必要なバイアス電界が高くなった。Siを3mol%添加したキャパシタ430においては、比誘電率の増加量はキャパシタ100よりも小さくなり、かつ、比誘電率の増加に必要なバイアス電界も高くなった。Siを4mol%添加したキャパシタ440においては、比誘電率が大きく減少し、かつ、反強誘電性を示さなくなった。 As can be seen from FIG. 6, in the capacitor 410 to which 1 mol% of Si was added, the relative permittivity was greatly increased. In the capacitor 420 to which 2 mol% of Si was added, the increase amount of the relative dielectric constant was equal to that of the capacitor 100, but the bias electric field necessary for the increase of the relative dielectric constant was increased. In the capacitor 430 to which 3 mol% of Si was added, the increase amount of the relative dielectric constant was smaller than that of the capacitor 100, and the bias electric field required for increasing the relative dielectric constant was also increased. In the capacitor 440 to which 4 mol% of Si was added, the relative dielectric constant was greatly reduced and the antiferroelectric property was not exhibited.
 表5に、キャパシタ100を○、キャパシタ100より大きく比誘電率が増加をしたものを◎、比誘電率がキャパシタ100と同等に増加したものを○、キャパシタ100より比誘電率が減少したものを△、キャパシタ100より比誘電率が大きく減少するとともに反強誘電性を示さなくなったものを×で示す。 Table 5 shows that the capacitor 100 is ◯, that the relative permittivity is larger than that of the capacitor 100, ◎, that the relative permittivity is increased to the same level as the capacitor 100, and that the relative permittivity is decreased from the capacitor 100. Δ, where the relative permittivity is greatly reduced as compared with the capacitor 100 and the antiferroelectric property is not shown.
 比誘電率は、Siの添加量に対応して変化し、Siの添加によって最大約87まで増加させることができた。これは、Si置換によって結晶構造を揺らぎやすくすることができ、より電界に対して応答しやすくなったためだと考えられる。ただし、Siの添加量が一定量を超えると、比誘電率は逆に減少した。比誘電率が減少したのは、Siの添加量が一定量を超えると、SiがHfO中に固溶できなくなり結晶性が低下することが要因であると考えられる。Siの添加量は、3mol%以下が好ましく、2mol%以下が更に好ましい。 The relative dielectric constant changed corresponding to the amount of Si added, and could be increased up to about 87 by adding Si. This is considered to be because the crystal structure can be easily fluctuated by the Si substitution, and the response to the electric field becomes easier. However, when the added amount of Si exceeded a certain amount, the relative dielectric constant decreased conversely. The reason why the relative permittivity is decreased is considered to be that when the added amount of Si exceeds a certain amount, Si cannot be dissolved in HfO 2 and the crystallinity is lowered. The amount of Si added is preferably 3 mol% or less, and more preferably 2 mol% or less.
 以上のように、Bi、Nbを添加した誘電体層(HfO膜)にSiを添加することによって、誘電率を増加させ得ることが確認できた。なお、誘電率を増加させるために添加する元素は、Siには限定されず、たとえば、Geなどであっても良い。 As described above, it was confirmed that the dielectric constant could be increased by adding Si to the dielectric layer (HfO 2 film) to which Bi and Nb were added. Note that the element added to increase the dielectric constant is not limited to Si, and may be, for example, Ge.
 [第5実施形態]
 第5実施形態にかかるキャパシタ500を作製した。符号500は試料番号である。図示しないが、キャパシタ500は、図1に示した第1実施形態にかかるキャパシタ100と同一の構造からなる。
[Fifth Embodiment]
A capacitor 500 according to the fifth embodiment was produced. Reference numeral 500 denotes a sample number. Although not shown, the capacitor 500 has the same structure as the capacitor 100 according to the first embodiment shown in FIG.
 第5実施形態にかかるキャパシタ500は、第1実施形態にかかるキャパシタ100の構成の一部に変更を加えた。具体的には、キャパシタ100では、誘電体層(HfO膜)3を構成する金属酸化物に、安定化剤としてLaを添加していた。キャパシタ500はこれを変更し、Laの代わりにCeを添加した。 In the capacitor 500 according to the fifth embodiment, a part of the configuration of the capacitor 100 according to the first embodiment is changed. Specifically, in the capacitor 100, La is added as a stabilizer to the metal oxide constituting the dielectric layer (HfO 2 film) 3. The capacitor 500 changed this and added Ce instead of La.
 キャパシタ500では、Ceの原料塩としてセリウムイソプロポキシドを使用した。 In the capacitor 500, cerium isopropoxide was used as a raw material salt of Ce.
 キャパシタ500のその他の事項、たとえば、化学溶液に含まれる溶媒の種類、量や、製造方法は、キャパシタ100と同じにした。 Other items of the capacitor 500, for example, the type, amount and manufacturing method of the solvent contained in the chemical solution were the same as those of the capacitor 100.
 表6に、キャパシタ500の誘電体層の組成を示す。なお、表6には、比較のために、キャパシタ100の数値も示している。
Figure JPOXMLDOC01-appb-T000006
Table 6 shows the composition of the dielectric layer of the capacitor 500. In Table 6, the numerical value of the capacitor 100 is also shown for comparison.
Figure JPOXMLDOC01-appb-T000006
 第5実施形態においては、キャパシタ500の誘電体層の金属酸化物に含まれるHfOのHfの一部が、Bi、Nb、Ceに置換されている。 In the fifth embodiment, a part of Hf of HfO 2 contained in the metal oxide of the dielectric layer of the capacitor 500 is replaced with Bi, Nb, and Ce.
 キャパシタ100、500の誘電体層の比誘電率-電界曲線を、図7示す。 FIG. 7 shows the relative permittivity-electric field curve of the dielectric layers of the capacitors 100 and 500.
 図7から分かるように、Laの代わりにCeを添加したキャパシタ500は、0.6MV/cmのバイアス電界の印加において、76の高い比誘電率を示しており、キャパシタ100と同等の優れた比誘電率-電界曲線を備えている。 As can be seen from FIG. 7, the capacitor 500 to which Ce is added instead of La shows a high relative dielectric constant of 76 when a bias electric field of 0.6 MV / cm is applied. It has a dielectric constant-electric field curve.
 LaやCeは、HfOの結晶構造を調整するための安定化剤として添加したものである。具体的には、LaやCeを添加することにより、結晶構造が単斜晶になることが抑制されるものと考えられる。安定化剤は、La、Ceには限定されず、Al、Y、Zrなどの元素であっても良い。また、1種類だけではなく、複数種類の元素を組み合わせて添加しても良い。 La and Ce are added as stabilizers for adjusting the crystal structure of HfO 2 . Specifically, it is considered that the addition of La and Ce suppresses the crystal structure from becoming monoclinic. The stabilizer is not limited to La and Ce, and may be an element such as Al, Y, or Zr. Further, not only one type but also a plurality of types of elements may be added in combination.
 以上、第1実施形態~第5実施形態にかかるキャパシタ、HfO膜の製造方法について説明した。しかしながら、本発明が上述した内容に限定されることはなく、発明の趣旨に沿って、種々の変更をなすことができる。 The method for manufacturing the capacitor and the HfO 2 film according to the first to fifth embodiments has been described above. However, the present invention is not limited to the contents described above, and various modifications can be made in accordance with the spirit of the invention.
 たとえば、誘電体層の組成は、発明の規定の範囲内において任意であり、上述した内容には限定されない。 For example, the composition of the dielectric layer is arbitrary within the scope of the invention and is not limited to the above-described contents.
 また、キャパシタの誘電体層を作製するための原料塩の種類、重量なども任意であり、他の種類の原料塩を使用することも可能である。たとえば、キャパシタ100では、Hfの原料塩としてハフニウムイソプロポキシドを使用したが、これに代えて、あるいはこれに加えて、ハフニウムエトキシド、ハフニウム-t-ブトキシド等の他のハフニウムアルコキシド、カルボン酸ハフニウム、塩化ハフニウム、硝酸ハフニウム、酢酸ハフニウムなどの1種類または複数種類を使用しても良い。 Also, the kind and weight of the raw material salt for producing the dielectric layer of the capacitor are arbitrary, and other kinds of raw material salts can be used. For example, in the capacitor 100, hafnium isopropoxide is used as a raw material salt of Hf. Instead of or in addition to this, other hafnium alkoxides such as hafnium ethoxide, hafnium-t-butoxide, and hafnium carboxylate are used. One type or a plurality of types such as hafnium chloride, hafnium nitrate, and hafnium acetate may be used.
1・・・基板
2・・・第1電極層
3・・・誘電体層
4・・・第2電極層
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... 1st electrode layer 3 ... Dielectric layer 4 ... 2nd electrode layer

Claims (13)

  1.  第1電極層と、
     前記第1電極層上に形成された誘電体層と、
     前記誘電体層上に形成された第2電極層と、を備えたキャパシタであって、
     前記誘電体層が、金属酸化物からなり、
     前記金属酸化物は、Hf、Bi、および、5価以上の元素を含む、キャパシタ。
    A first electrode layer;
    A dielectric layer formed on the first electrode layer;
    A capacitor comprising: a second electrode layer formed on the dielectric layer;
    The dielectric layer is made of a metal oxide;
    The metal oxide includes Hf, Bi, and a pentavalent or higher element.
  2.  前記金属酸化物が、蛍石構造を有する、請求項1に記載されたキャパシタ。 The capacitor according to claim 1, wherein the metal oxide has a fluorite structure.
  3.  前記5価以上の元素が、Nb、Ta、Mo、Wの中から選ばれた、1種類または複数種類の元素である、請求項1または2に記載されたキャパシタ。 The capacitor according to claim 1 or 2, wherein the pentavalent or higher element is one or more kinds of elements selected from Nb, Ta, Mo, and W.
  4.  Oを除いた前記金属酸化物の総量を100mol%としたとき、
     前記Bi、および、前記5価以上の元素の添加量が、それぞれ、15mol%以下である、請求項1ないし3のいずれか1項に記載されたキャパシタ。
    When the total amount of the metal oxide excluding O is 100 mol%,
    4. The capacitor according to claim 1, wherein addition amounts of the Bi and the pentavalent or higher element are each 15 mol% or less. 5.
  5.  前記5価以上の元素が5価の元素である場合は、前記Biと当該5価の元素とのmol比が、1:1であり、
     前記5価以上の元素が6価の元素である場合は、前記Biと当該6価の元素とのmol比が、2:1である、請求項1ないし4のいずれか1項に記載されたキャパシタ。
    When the pentavalent or higher element is a pentavalent element, the molar ratio of Bi to the pentavalent element is 1: 1.
    5. The element according to claim 1, wherein when the pentavalent or higher element is a hexavalent element, a molar ratio of Bi to the hexavalent element is 2: 1. Capacitor.
  6.  更に、前記金属酸化物にIV族の元素が添加された、請求項1ないし5のいずれか1項に記載されたキャパシタ。 The capacitor according to claim 1, further comprising a group IV element added to the metal oxide.
  7.  前記IV族の元素が、Si、Geの一方または両方の元素である、請求項6に記載されたキャパシタ。 The capacitor according to claim 6, wherein the group IV element is one or both of Si and Ge.
  8.  Oを除いた前記金属酸化物の総量を100mol%としたとき、
     前記IV族の元素の添加量が3mol%以下である、請求項6または7に記載されたキャパシタ。
    When the total amount of the metal oxide excluding O is 100 mol%,
    The capacitor according to claim 6 or 7, wherein an additive amount of the group IV element is 3 mol% or less.
  9.  前記IV族の元素の添加量が2mol%以下である、請求項8に記載されたキャパシタ。 The capacitor according to claim 8, wherein the amount of the group IV element added is 2 mol% or less.
  10.  前記誘電体層の膜厚が10nm以上であり、
     更に、安定化剤が添加された、請求項1ないし9のいずれか1項に記載されたキャパシタ。
    The thickness of the dielectric layer is 10 nm or more;
    The capacitor according to any one of claims 1 to 9, further comprising a stabilizer.
  11.  前記安定化剤が、La、Ce、Al、Ti、Sn、Zr、Sc、Mg、Zn、Y、Ca、Sr、Baの中から選ばれた、1種類または複数種類の元素である、請求項10に記載されたキャパシタ。 The stabilizer is one or more kinds of elements selected from La, Ce, Al, Ti, Sn, Zr, Sc, Mg, Zn, Y, Ca, Sr, and Ba. 10. The capacitor described in 10.
  12.  HfO、または、HfとOと他の元素を含んだHfOを含むHfO膜の製造方法であって、
     成膜対象物を用意する工程と、
     前記HfO膜の原料となる化学溶液を用意する工程と、
     前記化学溶液を前記成膜対象物上にスピンコートする工程と、
     熱処理により、前記成膜対象物上にスピンコートされた前記化学溶液から、正方晶および斜方晶の少なくとも一方の結晶相を含むHfO膜を析出させる工程と、を備えたHfO膜の製造方法。
    HfO 2, or a method for producing a HfO 2 film containing HfO 2 containing Hf and O and other elements,
    Preparing a film formation target;
    Preparing a chemical solution as a raw material for the HfO 2 film;
    Spin-coating the chemical solution on the film formation target;
    By heat treatment, the production of the film from the chemical solution was spin-coated on the object, tetragonal and orthorhombic HfO 2 film and a step of precipitating the HfO 2 film containing at least one crystalline phase Method.
  13.  前記HfO膜の原料となる前記化学溶液が、ハフニウムアルコキシド、カルボン酸ハフニウム、塩化ハフニウム、硝酸ハフニウム、酢酸ハフニウムの中から選択された1種類または複数種類が有機溶剤中に混合された化学溶液である、請求項12に記載されたHfO膜の製造方法。 The chemical solution as a raw material of the HfO 2 film is a chemical solution in which one or more selected from hafnium alkoxide, hafnium carboxylate, hafnium chloride, hafnium nitrate, and hafnium acetate are mixed in an organic solvent. A method for producing an HfO 2 film according to claim 12.
PCT/JP2019/016378 2018-04-26 2019-04-16 CAPACITOR AND METHOD FOR MANUFACTURING HfO2 FILM WO2019208340A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020516259A JP7036204B2 (en) 2018-04-26 2019-04-16 Method for manufacturing capacitor and HfO2 film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-085846 2018-04-26
JP2018085846 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019208340A1 true WO2019208340A1 (en) 2019-10-31

Family

ID=68294011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016378 WO2019208340A1 (en) 2018-04-26 2019-04-16 CAPACITOR AND METHOD FOR MANUFACTURING HfO2 FILM

Country Status (2)

Country Link
JP (1) JP7036204B2 (en)
WO (1) WO2019208340A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022219939A1 (en) * 2021-04-15 2022-10-20 パナソニックIpマネジメント株式会社 Capacitor, electric circuit, circuit board, electronic apparatus, and power storage device
WO2022230431A1 (en) * 2021-04-28 2022-11-03 パナソニックIpマネジメント株式会社 Dielectric, capacitor, electrical circuit, circuit board, and device
WO2023042882A1 (en) * 2021-09-17 2023-03-23 株式会社村田製作所 Ferroelectric film, method for manufacturing ferroelectric film, and electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018930A1 (en) * 2004-08-18 2006-02-23 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric element
WO2014080577A1 (en) * 2012-11-26 2014-05-30 パナソニック株式会社 Infrared detecting device
JP2014535124A (en) * 2011-09-30 2014-12-25 インテル コーポレイション Method for increasing the energy density and achievable power output of an energy storage device
JP2015144251A (en) * 2013-12-26 2015-08-06 株式会社半導体エネルギー研究所 Semiconductor device and manufacture method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205056B2 (en) * 2001-06-13 2007-04-17 Seiko Epson Corporation Ceramic film and method of manufacturing the same, ferroelectric capacitor, semiconductor device, and other element
JP6623569B2 (en) * 2014-07-23 2019-12-25 Tdk株式会社 Thin film dielectric and thin film capacitor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018930A1 (en) * 2004-08-18 2006-02-23 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric element
JP2014535124A (en) * 2011-09-30 2014-12-25 インテル コーポレイション Method for increasing the energy density and achievable power output of an energy storage device
WO2014080577A1 (en) * 2012-11-26 2014-05-30 パナソニック株式会社 Infrared detecting device
JP2015144251A (en) * 2013-12-26 2015-08-06 株式会社半導体エネルギー研究所 Semiconductor device and manufacture method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022219939A1 (en) * 2021-04-15 2022-10-20 パナソニックIpマネジメント株式会社 Capacitor, electric circuit, circuit board, electronic apparatus, and power storage device
WO2022230431A1 (en) * 2021-04-28 2022-11-03 パナソニックIpマネジメント株式会社 Dielectric, capacitor, electrical circuit, circuit board, and device
WO2023042882A1 (en) * 2021-09-17 2023-03-23 株式会社村田製作所 Ferroelectric film, method for manufacturing ferroelectric film, and electronic component

Also Published As

Publication number Publication date
JP7036204B2 (en) 2022-03-15
JPWO2019208340A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
WO2019208340A1 (en) CAPACITOR AND METHOD FOR MANUFACTURING HfO2 FILM
Lomenzo et al. Doped Hf0. 5Zr0. 5O2 for high efficiency integrated supercapacitors
Chen et al. PTCR effect in donor doped barium titanate: review of compositions, microstructures, processing and properties
US20130100577A1 (en) Method for Forming a MIMCAP Structure and the MIMCAP Structure Thereof
JP6101068B2 (en) Metal-insulator-metal stack and manufacturing method thereof
WO2014157023A1 (en) Ceramic composition
CN110400792B (en) Dielectric film, semiconductor memory element having the same, and method of manufacturing the same
US20230074895A1 (en) Thin film structure including dielectric material layer and electronic device including the same
TWI601161B (en) Dielectric thin film-forming composition for forming barium strontium titanate (bst) dielectric thin film, method of forming dielectric thin film,bst dielectric thin film containing cu and mn formed by the method and composite electronic component having
Yao et al. Leakage current and breakdown behavior of bismuth-doped amorphous strontium titanate thin film
CN104072135B (en) The manufacture method and complex electronic device of PNbZT ferroelectric thin films
Lee et al. Controlling the crystallinity of HfO2 thin film using the surface energy-driven phase stabilization and template effect
Liu et al. Structure and electrical properties of Mn doped Bi (Mg1/2Ti1/2) O3-PbTiO3 ferroelectric thin films
Basu et al. Effect of uniform and periodic doping by Ce on the properties of barium strontium titanate thin films
Choi et al. Effect of charge compensation change on the crystal structure, grain growth behavior, and dielectric properties in the La2O3-doped BaTiO3 system with MnCO3 addition
JP6825420B2 (en) Capacitor, ZrO2 film manufacturing method and capacitor manufacturing method
Yao et al. Effects of Nb and Mg doping on the dielectric and electromechanical properties of PbZrO3 thin films
TW200941506A (en) Transparent electroconductive substrate and method of manufacturing the same
Saito et al. Impact of CeOx layer insertion on ferroelectric properties of Hf-Zr-O films prepared by chemical solution deposition
Song et al. Crystallinity-Controlled Atomic Layer Deposition of Ti-Doped ZrO2 Thin Films
US11791373B2 (en) Dielectric thin film, capacitor including the dielectric thin film, and method for manufacturing the dielectric thin film
WO2015198882A1 (en) Pzt thin film laminate and method for producing pzt thin film laminate
WO2023223677A1 (en) Capacitor, electric circuit, circuit board, apparatus, and power storage device
JPH08290902A (en) Thin-film dielectric and its production
US20220406884A1 (en) Thin film structure, capacitor including thin film structure, semiconductor device including thin film structure, and method of manufacturing thin film structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791924

Country of ref document: EP

Kind code of ref document: A1