WO2019208205A1 - Optical phase control device and display device - Google Patents

Optical phase control device and display device Download PDF

Info

Publication number
WO2019208205A1
WO2019208205A1 PCT/JP2019/015457 JP2019015457W WO2019208205A1 WO 2019208205 A1 WO2019208205 A1 WO 2019208205A1 JP 2019015457 W JP2019015457 W JP 2019015457W WO 2019208205 A1 WO2019208205 A1 WO 2019208205A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
phase
modulation element
optical phase
phase modulation
Prior art date
Application number
PCT/JP2019/015457
Other languages
French (fr)
Japanese (ja)
Inventor
佳明 神山
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN201980026796.9A priority Critical patent/CN112005547B/en
Publication of WO2019208205A1 publication Critical patent/WO2019208205A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present disclosure relates to an optical phase control device that controls an optical phase modulation element and a display device that uses the optical phase modulation element.
  • the optical phase modulation element that obtains a desired reproduced image by modulating the phase of light is known.
  • the optical phase modulation element is composed of an SLM (Spatial Light Modulator) such as a liquid crystal panel.
  • SLM Surface Light Modulator
  • a reproduction image that is phase-modulated according to an image is generated by using the optical phase modulation element in an illumination device, and the reproduction image is used as a light intensity for video display.
  • the optical phase modulation element is also used for holography technology and the like.
  • the optical phase modulation element is also used in technologies such as an optical switch and an optical computer.
  • An optical phase control device includes a phase distribution arithmetic circuit that generates data of a plurality of phase distributions for each wavelength corresponding to a reproduction image for each wavelength reproduced by an optical phase modulation element, and a wavelength
  • a plurality of applied voltages for each wavelength applied to the optical phase modulation element are generated based on the data of the plurality of phase distributions for each of the plurality of light beams having different wavelengths incident on the optical phase modulation element in a time division manner.
  • a drive circuit that modulates the phase of each wavelength in a time-sharing manner so that the drive circuit has a different voltage range for each wavelength, and the longer the wavelength, the smaller the minimum value of the voltage range and the larger the maximum value.
  • a plurality of applied voltages are generated.
  • a display device includes a light source that emits a plurality of lights having different wavelengths in a time-division manner, and a phase of the plurality of lights from the light source that is modulated in a time-division manner for each wavelength.
  • Phase distribution calculation that generates multiple phase distribution data for each wavelength corresponding to multiple reproduction images for each wavelength reproduced by the optical phase modulation element Based on the data of the circuit and multiple phase distributions for each wavelength, multiple applied voltages for each wavelength to be applied to the optical phase modulation element are generated, and the phases of the multiple lights for each wavelength are applied to the optical phase modulation element.
  • a drive circuit that modulates in a time-sharing manner, and the drive circuit has different voltage ranges for each wavelength, and the longer the wavelength, the smaller the minimum value of the voltage range and the larger the maximum value. To generate voltage It is intended.
  • a plurality of applied voltages for each wavelength applied to the optical phase modulation element based on data of a plurality of phase distributions for each wavelength. Is generated.
  • a plurality of applied voltages are generated such that the voltage range is different for each wavelength and the minimum value of the voltage range is smaller and the maximum value is larger as the wavelength is longer.
  • FIG. 10 is an explanatory diagram illustrating an example of a voltage range of each color necessary for 0 to 2 ⁇ phase modulation in a display device according to a comparative example.
  • FIG. 6 is an explanatory diagram illustrating an example of a voltage range of each color necessary for phase modulation of 0 to 2 ⁇ in the display device according to the first embodiment. It is explanatory drawing which shows one Example of the relationship between the phase modulation amount and applied voltage in the display apparatus which concerns on 1st Embodiment.
  • the display device when the same phase is displayed on the optical phase modulation element, the amount of voltage fluctuation caused by the switching of the wavelength between R and G and the frequency thereof It is explanatory drawing which shows an example of a relationship.
  • the display device when the same phase is displayed on the optical phase modulation element, the voltage fluctuation amount generated by the switching of the wavelength between G and B and the frequency thereof It is explanatory drawing which shows an example of a relationship.
  • FIG. 10 is an explanatory diagram illustrating an example of a voltage range of each color necessary for phase modulation of 0 to about 2 ⁇ in a display device according to a comparative example. It is explanatory drawing which shows an example of the relationship between the phase modulation amount and applied voltage in the display apparatus which concerns on a comparative example.
  • FIG. 10 is an explanatory diagram illustrating an example of a voltage range of each color necessary for phase modulation of 0 to about 2 ⁇ in a display device according to a comparative example. It is explanatory drawing which shows an example of the relationship between the phase modulation amount and applied voltage in the display apparatus which concerns on a comparative example.
  • 10 is an explanatory diagram showing an example of a voltage range of each color necessary for phase modulation of 0 to about 2 ⁇ in the display device according to the second embodiment. It is explanatory drawing which shows one Example of the relationship between the phase modulation amount and applied voltage in the display apparatus which concerns on 2nd Embodiment. In the display apparatus which concerns on 2nd Embodiment, when the same phase is displayed, it is explanatory drawing which shows an example of the relationship between the voltage fluctuation amount produced by the switching of the wavelength of R and G, and its frequency. In the display apparatus which concerns on 2nd Embodiment, when the same phase is displayed, it is explanatory drawing which shows an example of the relationship between the voltage fluctuation amount produced by the switching of the wavelength of B and R, and its frequency.
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-184288 discloses a technique for generating a phase distribution at a high speed, which can be applied to field sequential driving. However, even if the phase distribution is generated at high speed, the liquid crystal in the optical phase modulation element cannot sufficiently respond to the switching of the phase distribution, so that the reproduced image is deteriorated such as noise generation, luminance reduction, contrast reduction, and flicker. Can occur.
  • Patent Document 2 Japanese Patent Publication No. 2015-505971 discloses a high-speed phase distribution generation method based on the Gerchberg-Saxton method (GS method) using Fourier transform.
  • the phase distribution is generated at high speed by handing over the phase information of the previous frame to the initial phase information of the next frame. Furthermore, when this method is used, the convergent phase distribution becomes close between frames, and the change in voltage at the pixel is small. Therefore, there is no large change in the tilt of the liquid crystal when the phase distribution is switched, and the degradation of the reproduced image can be suppressed.
  • the phase modulation amount and thus the voltage range of the applied voltage change according to the wavelength to be modulated, so even if the phase distribution can be made closer between frames, the final Since applied voltages differ, it is inevitable that the reproduced image is deteriorated.
  • the voltage range of the applied voltage of the optical phase modulation element is adjusted for each wavelength to be phase-modulated, and the voltage change of each pixel between frames
  • a technique for improving the quality of a reproduced image by reducing the amount is provided.
  • FIG. 1 schematically illustrates a configuration example of a phase modulation device including an optical phase control device according to the first embodiment of the present disclosure.
  • the phase modulation device includes an optical phase modulation element 1 that modulates the phase of light from the light source 50, a phase distribution calculation circuit 51, and a phase modulation element drive circuit 52.
  • the optical phase control device includes at least a phase distribution calculation circuit 51 and a phase modulation element driving circuit 52.
  • the phase distribution calculation circuit 51 is a phase distribution calculation unit that generates target phase distribution data (phase modulation signal) based on an input signal.
  • the target phase distribution data is data having a phase distribution that enables the target reproduction image 60 (target reproduction image) to be reproduced by the optical phase modulation element 1.
  • the input signal is, for example, an image signal.
  • the reproduced image 60 is an illumination image that illuminates the illumination target 5.
  • the illumination object 5 is a light intensity modulation element such as an intensity modulation liquid crystal panel in a projector.
  • the target phase distribution data is data having a phase distribution pattern capable of forming an illumination image having a luminance distribution corresponding to an image displayed by the projector.
  • the phase modulation element driving circuit 52 generates an applied voltage (drive voltage) based on the target phase distribution data generated by the phase distribution calculation circuit 51, and the optical phase modulation element so that each pixel 10 has a target phase distribution. 1 is driven.
  • the optical phase modulation element 1 modulates the phase of light from the light source 50 based on the applied voltage given by the phase modulation element drive circuit 52.
  • the optical phase modulation element 1 may be a transmission type phase modulation element or a reflection type phase modulation element.
  • phase modulation apparatus of FIG. 1 when performing phase modulation of a plurality of lights having different wavelengths by the field sequential method, a plurality of lights having different wavelengths are emitted from the light source 50 in a time-sharing manner.
  • the optical phase modulation element 1 modulates the phases of a plurality of lights from the light source 50 for each wavelength in a time division manner, and reproduces a plurality of reproduced images 60 for each wavelength in a time division manner.
  • the phase distribution calculation circuit 51 generates a plurality of phase distribution data (target phase distribution data) for each wavelength corresponding to the plurality of reproduced images 60 for each wavelength reproduced by the optical phase modulation element 1.
  • the phase modulation element driving circuit 52 generates a plurality of applied voltages for each wavelength to be applied to the optical phase modulation element 1 based on data of a plurality of phase distributions for each wavelength, and a plurality of voltages are applied to the optical phase modulation element 1.
  • the light phase is modulated in a time-sharing manner for each wavelength.
  • FIG. 2 shows an outline of the optical phase modulation element 1.
  • FIG. 2 shows an example in which the optical phase modulation element 1 is composed of a phase modulation liquid crystal panel.
  • the optical phase modulation element 1 includes, for example, a first glass substrate and a second glass substrate that are arranged to face each other. Between the first glass substrate and the second glass substrate, a liquid crystal layer containing liquid crystal molecules 14 is sealed by a sealing member (not shown).
  • a counter electrode (common electrode) 4 is provided on the first glass substrate.
  • a plurality of pixel electrodes 11 (pixels 10) are provided on the second glass substrate.
  • both the counter electrode 4 and the pixel electrode 11 are configured by transparent electrodes that transmit light.
  • the counter electrode 4 is configured by a transparent electrode that transmits light
  • the pixel electrode 11 is configured by a reflective electrode that reflects light.
  • a common voltage is applied to the counter electrode 4.
  • An applied voltage corresponding to the input signal is applied to the plurality of pixel electrodes 11.
  • the inclination of the liquid crystal molecules 14 in the optical phase modulation element 1 changes according to the applied voltage.
  • the phase distribution (refractive index distribution) for the light passing through the element changes as shown in the lower part of FIG. Thereby, the optical action can be changed in units of pixels.
  • Such an optical phase modulation element 1 is used as a part of an illumination device that generates illumination light for the light intensity modulation element in a projector, for example.
  • Example of application to display devices show first and second configuration examples of the projector as the display device according to the first embodiment using the phase modulation device of FIG. 3 and 4 show a configuration example of a projector that performs full-color display by a field sequential method.
  • the projector 100 shown in FIG. 3 and the projector 100A shown in FIG. 4 each include a light source 50, an optical phase modulation element 1, a light intensity modulation element 61, and a projection lens (projection optical system) 81. .
  • 3 and 4 show a configuration example in which a transmission type phase modulation element is used as the optical phase modulation element 1, it may be constituted by a reflection type phase modulation element.
  • the projector 100 shown in FIG. 3 shows an example in which the light intensity modulation element 61 is constituted by a transmission type light intensity modulation element, for example, a transmission type intensity modulation liquid crystal display panel.
  • the projector 100A shown in FIG. 4 shows an example in which the light intensity modulation element 61 is constituted by a reflection type light intensity modulation element, for example, a reflection type intensity modulation liquid crystal display panel.
  • the light source 50 has a red light source that emits red (R) light, a green light source that emits green (G) light, and a blue light source that emits blue (B) light.
  • R red
  • G green
  • B blue
  • Each of the red light source, the green light source, and the blue light source is composed of, for example, one or a plurality of laser light sources.
  • the light source 50 emits red light, green light, and blue light in a time-sharing manner.
  • the optical phase modulation element 1 is illuminated with light of each color from the light source 50. At this time, the optical phase modulation element 1 is illuminated in a time division manner for each color of red light, green light, and blue light.
  • the optical phase modulation element 1 displays the phase distribution pattern optimized for each wavelength of each color in a time division manner.
  • the phase distribution calculation circuit 51 in FIG. 1 generates phase distribution data (target phase distribution data) of each color corresponding to the reproduction image 60 of each color reproduced by the optical phase modulation element 1.
  • the phase modulation element driving circuit 52 generates an applied voltage of each color to be applied to the optical phase modulation element 1 based on the phase distribution data of each color, and changes the phase of the light of each color to the optical phase modulation element 1. Modulate in time division every time.
  • the light intensity modulation element 61 is irradiated with a reproduction image of each color formed by the optical phase modulation element 1 as illumination light in a time division manner for each color.
  • the light intensity modulation element 61 performs intensity modulation on the illumination light of each color in synchronization with the timing at which the light source 50 emits each color light, and generates a projection image of each color in a time division manner.
  • the projection lens 81 projects the projection images of the respective colors on a projection surface such as the screen 80 in a time division manner.
  • the configuration example of the display device in which the optical phase modulation element 1 and the light intensity modulation element 61 are combined has been described.
  • a display device that does not use the light intensity modulation element 61 may be used.
  • a display device may be used in which the reproduced image 60 itself is used as a display image instead of using the reproduced image 60 by the optical phase modulation element 1 as illumination light.
  • FIG. 5 shows an example of the voltage range of each color necessary for the phase modulation of 0 to 2 ⁇ in the display device according to the comparative example.
  • the horizontal axis represents the applied voltage (V)
  • the vertical axis represents the phase ( ⁇ ).
  • FIG. 6 shows an example of the relationship between the phase modulation amount and the applied voltage in the display device according to the comparative example.
  • the horizontal axis represents the phase modulation amount ( ⁇ )
  • the vertical axis represents the applied voltage (V).
  • the ranges Vb are different.
  • the longer the wavelength the larger the voltage range of the applied voltage.
  • the applied voltages are generated so that the maximum values of the voltage ranges are the same for each color of R, G, and B.
  • the optical phase modulation element 1 is composed of a phase modulation liquid crystal panel, it is necessary to display the phase distribution pattern even when the optical phase modulation element 1 displays the same phase distribution pattern.
  • the applied voltage differs for each wavelength. Therefore, when phase modulation of each color is performed in a time division manner, even if the phase distribution calculation circuit 51 can generate the phase distribution at high speed and high quality, a reproduced image caused by the response speed of the liquid crystal in the optical phase modulation element 1 60 degradation occurs.
  • FIG. 7 shows an example in which the same reproduced image 60 (checker pattern) is displayed by the optical phase modulation element 1 using different phase distributions in the display device according to the comparative example.
  • FIG. 7 shows an ideal reproduced image (still image), a reproduced image immediately after switching of the phase distribution, and a reproduced image when the liquid crystal response in the optical phase modulation element 1 is completed, in order from the left side.
  • the liquid crystal response is not completed, and the reproduced image is deteriorated. This deterioration of the reproduced image appears as a decrease in brightness, a decrease in contrast, and generation of noise.
  • the liquid crystal response is completed, the luminance changes with time, flickering occurs, and the reproduced image deteriorates.
  • FIG. 8 shows an example of the voltage range of each color necessary for the phase modulation of 0 to 2 ⁇ in the display device (example) according to the first embodiment.
  • the horizontal axis represents the applied voltage (V)
  • the vertical axis represents the phase ( ⁇ ).
  • FIG. 9 shows an example of the relationship between the phase modulation amount and the applied voltage in the display device (example) according to the first embodiment.
  • the horizontal axis represents the phase modulation amount ( ⁇ )
  • the vertical axis represents the applied voltage (V).
  • the phase modulation element driving circuit 52 has a different voltage range for each wavelength, and the longer the wavelength, the smaller the minimum value of the voltage range, and the maximum value becomes larger.
  • a plurality of applied voltages for each wavelength are generated so as to increase.
  • the phase modulation element driving circuit 52 generates an applied voltage for each wavelength so as to satisfy the following conditions.
  • Rmin ⁇ Gmin ⁇ Bmin ⁇ Bmax ⁇ Gmax ⁇ Rmax the minimum value of the applied voltage of R is Rmin, and the maximum value is Rmax.
  • the minimum value of the applied voltage of G is Gmin, and the maximum value is Gmax.
  • the minimum value of the applied voltage of B is Bmin, and the maximum value is Bmax.
  • FIGS. 10 to 12 are caused by switching of wavelengths when the same phase is displayed on the optical phase modulation element 1 in the display device according to the comparative example and the display device according to the first embodiment (example).
  • An example of the relationship between the voltage fluctuation amount and its frequency is shown. 10 to 12, the horizontal axis indicates the voltage fluctuation amount, and the vertical axis indicates the frequency. The frequency corresponds to the number of pixels in which the voltage fluctuation amount appears.
  • FIG. 10 shows the amount of voltage fluctuation (difference in applied voltage) when the wavelength is switched between R and G.
  • FIG. 11 shows the amount of voltage fluctuation (difference in applied voltage) when the wavelength is switched between G and B.
  • FIG. 12 shows the amount of voltage fluctuation (difference in applied voltage) when the wavelength is switched between B and R.
  • the display device (example) according to the first embodiment can be improved to a state where the frequency of occurrence of the voltage fluctuation amount is low compared to the display device according to the comparative example. I understand that.
  • the average value of the voltage range of the applied voltage in each color may be matched.
  • the phase modulation element driving circuit 52 generates an applied voltage quantized for each wavelength.
  • the number of applied voltage divisions (number of quantization levels) for each color is N and the applied voltage corresponding to the division point is V N , ( ⁇ V N ) / N may be set to match. Good.
  • the voltage range differs for each wavelength, and the longer the wavelength, the smaller the minimum value of the voltage range, and the maximum value. Is increased so that a plurality of applied voltages for each wavelength applied to the optical phase modulation element 1 are generated, so that the image quality of the reproduced image 60 by the optical phase modulation element 1 can be improved.
  • optical phase control device and the display device for example, noise reduction, luminance improvement, contrast improvement, flicker suppression, and color reproducibility improvement of the reproduced image 60 by the optical phase modulation element 1,
  • effects such as suppression of afterimages between frames can be obtained.
  • FIG. 13 shows an example of the voltage range of each color necessary for phase modulation of 0 to about 2 ⁇ in the display device according to the comparative example.
  • the horizontal axis represents the applied voltage (V)
  • the vertical axis represents the phase ( ⁇ ).
  • FIG. 13 shows an example of the relationship between the phase modulation amount and the applied voltage in the display device according to the comparative example.
  • the horizontal axis represents the phase modulation amount ( ⁇ )
  • the vertical axis represents the applied voltage (V).
  • FIG. 15 shows an example of the voltage range of each color necessary for phase modulation of 0 to about 2 ⁇ in the display device (example) according to the second embodiment.
  • the horizontal axis represents the applied voltage (V)
  • the vertical axis represents the phase ( ⁇ ).
  • FIG. 16 shows an example of the relationship between the phase modulation amount and the applied voltage in the display device (example) according to the second embodiment.
  • the horizontal axis represents the phase modulation amount ( ⁇ )
  • the vertical axis represents the applied voltage (V).
  • the setting of the voltage range in the comparative example of FIG. 13 is substantially the same as that of the comparative example (FIG. 5) for the first embodiment except for the longest wavelength applied voltage (R applied voltage). Further, the voltage range in the display device (example) according to the second embodiment shown in FIG. 15 is the same as that of the first embodiment (FIG. 15) except for the applied voltage having the longest wavelength (applied voltage of R). This is substantially the same as 8).
  • the phase modulation element driving circuit 52 generates an applied voltage quantized for each wavelength. Further, the plurality of applied voltages for each wavelength are quantized so that the number of quantization levels of the applied voltage of the longest wavelength is smaller than the number of quantization levels of the applied voltages of other wavelengths.
  • the voltage range of the applied voltage becomes wider as the wavelength becomes longer. Therefore, by lowering the quantization level of the phase distribution on the long wavelength side, the voltage range of the applied voltage can be reduced, and the voltage range of the applied voltage of each wavelength can be made closer. The voltage fluctuation amount can be made smaller.
  • the quantization level of the applied voltage of R is 16 levels, and the maximum modulation amount is 1.85 ⁇ .
  • the G and B quantization levels are, for example, 256 levels, and the maximum modulation amount is 2 ⁇ .
  • 17 and 18 show the switching of wavelengths when the same phase is displayed on the optical phase modulation element 1 in the display device according to the comparative example and the display device according to the second embodiment (example).
  • An example of the relationship between the generated voltage fluctuation amount and its frequency is shown. 17 and 18, the horizontal axis indicates the voltage fluctuation amount, and the vertical axis indicates the frequency. The frequency corresponds to the number of pixels in which the voltage fluctuation amount appears.
  • FIG. 17 shows the amount of voltage fluctuation (difference in applied voltage) when the wavelength is switched between R and G.
  • FIG. 18 shows the amount of voltage fluctuation (difference in applied voltage) when the wavelength is switched between B and R.
  • the display device (example) according to the second embodiment can be improved to a state where the frequency of occurrence of the voltage fluctuation amount is lower than the display device according to the comparative example. I understand that.
  • phase distribution generation by the phase distribution calculation circuit 51 a specific example of phase distribution generation by the phase distribution calculation circuit 51 will be described.
  • the phase distribution calculation circuit 51 in FIG. 1 sequentially generates a plurality of phase distribution data for each wavelength. At this time, the phase distribution calculation circuit 51 changes the voltage between the applied voltage generated based on the phase distribution data generated immediately before in time and the applied voltage generated based on the current phase distribution data. It is desirable to generate a plurality of phase distribution data so that the amount is minimized. For example, the phase distribution calculation circuit 51 preferably generates current phase distribution data with reference to the phase distribution data generated immediately before in time.
  • the image quality of the reproduced image 60 is improved as the phase distribution between the frames is closer, it is desirable to generate the phase distribution so that the voltage fluctuation between the frames becomes smaller when the phase distribution calculation circuit 51 generates the phase distribution.
  • the phase distribution there is a GS method for generating a phase distribution by repeating Fourier transform shown in FIG. 19 described below. By making the random initial phase given when generating this phase distribution the final phase distribution of the previous frame, the converging phase distribution can be made closer between frames. As a result, voltage fluctuation is reduced, and the quality of the reproduced image 60 is improved.
  • FIG. 19 shows a first example of a method for generating target phase distribution data in the display device according to the third embodiment.
  • the phase distribution calculation method may be other than the GS method.
  • a calculation method of the phase distribution for example, there are a method of deriving the phase distribution from a diffraction approximate expression of the Fresnel region or the Fraunhofer region, and a method of deriving the phase distribution as a free-form surface lens instead of diffraction.
  • the GS method is a method of deriving the phase distribution from the diffraction approximate expression of the Fraunhofer region, but the method of calculating the phase distribution in the present disclosure is not limited to this.
  • the phase distribution calculation circuit 51 may generate target phase distribution data by a GS method as a predetermined phase distribution calculation method.
  • the phase distribution calculation circuit 51 gives a random initial phase as an initial condition to the target reproduction image having the intensity distribution to be reproduced, and performs inverse Fourier transform (step S101).
  • the phase distribution calculation circuit 51 may replace the phase of the phase and amplitude obtained thereby with a uniform phase (step S102) to obtain the target phase distribution.
  • the reason why the phase is replaced with a uniform phase is that it is assumed that the optical phase modulation element 1 performs reproduction using parallel light.
  • the phase distribution calculation circuit 51 performs reproduction calculation by performing Fourier transform on the phase and amplitude obtained in step S102 (step S103). Thereby, a reproduced image is calculated.
  • the phase distribution calculation circuit 51 replaces the amplitude of the phase and amplitude obtained in step S103 with the amplitude of the target reproduction image (step S104).
  • the phase distribution calculation circuit 51 performs inverse Fourier transform on the phase and amplitude obtained in step S104 (step S105), and thereafter repeats calculation (iteration) that repeats the calculations in steps S102 to S105. Do.
  • the iterative calculation may be performed until a reproduced image having a quality satisfying as the target reproduced image is obtained.
  • the phase distribution calculation circuit 51 When the same target reproduction image is to be reproduced over a plurality of frames or a plurality of subframes in the optical phase modulation element 1, the phase distribution calculation circuit 51 performs the above GS method for each frame or each subframe. Of the calculations, the phase distribution of the target phase distribution data may be changed by changing at least the random initial phase over time (step S201).
  • the phase distribution calculation circuit 51 changes the phase distribution of the target phase distribution data by changing at least the number of repetitive calculations in time among the calculations by the GS method. It is also possible (step S202).
  • FIG. 20 shows a second example of a method for generating target phase distribution data in the display device according to the third embodiment.
  • the phase distribution calculation circuit 51 generates target phase distribution data by a table method.
  • the phase modulation device may include a storage unit 71 that stores data of a plurality of partial phase distributions each capable of reproducing the same reproduced image. As illustrated in FIG. 20, the storage unit 71 may store a plurality of partial phase distribution data as a phase distribution data table.
  • the phase distribution calculation circuit 51 may generate target phase distribution data by combining partial phase distribution data stored in the storage unit 71.
  • the phase distribution calculation circuit 51 may partially change the phase distribution of the target phase distribution data by randomly changing the combination of the partial phase distribution data in terms of time.
  • the phase distribution calculation circuit 51 divides the target reproduction image into a plurality of divided regions, and generates the target phase distribution data by combining the partial phase distribution data for each divided region. May be.
  • N the number of divided regions
  • MN the number of partial phase distribution data held as a phase distribution data table
  • MN phase distribution combinations are possible. Even if the number M of partial phase distribution data is small, it is possible to generate a substantially random phase distribution as a whole by increasing the number of divided regions (for example, thousands).
  • the partial phase distribution data stored in the storage unit 71 is a similar pattern or the same pattern for each wavelength.
  • the phase distribution can be made close between frames, so that the voltage fluctuation is reduced and the quality of the reproduced image 60 is improved.
  • this technique can also take the following structures.
  • the voltage range is different for each wavelength, and the longer the wavelength, the smaller the minimum value of the voltage range and the larger the maximum value.
  • a phase distribution arithmetic circuit that generates data of a plurality of phase distributions for each wavelength corresponding to a reproduction image for each wavelength reproduced by the optical phase modulation element; Based on the data of the plurality of phase distributions for each wavelength, a plurality of applied voltages for each wavelength to be applied to the optical phase modulation element are generated, and the wavelength of each wavelength incident on the optical phase modulation element in a time division manner is generated.
  • the drive circuit is An optical phase control device that generates the plurality of applied voltages in such a manner that the voltage range differs for each wavelength and the longer the wavelength, the smaller the minimum value of the voltage range and the larger the maximum value.
  • the plurality of lights includes red light, green light, and blue light
  • the plurality of applied voltages include a red applied voltage, a green applied voltage, and a blue applied voltage,
  • the minimum value of the red applied voltage is Rmin
  • the maximum value is Rmax
  • the minimum value of the green applied voltage is Gmin
  • the maximum value is Gmax
  • the minimum value of the blue applied voltage is Bmin
  • the maximum value is Bmax
  • the drive circuit is The plurality of applied voltages are quantized so that the number of quantization levels of the applied voltage with the longest wavelength is smaller than the number of quantization levels of the applied voltages with other wavelengths.
  • the phase distribution calculation circuit is configured to sequentially generate data of the plurality of phase distributions for each wavelength. The applied voltage generated based on the phase distribution data generated one time earlier and the current The data of the plurality of phase distributions is generated so that a voltage change amount with the applied voltage generated based on the data of the phase distribution is minimized.
  • the one of the above (1) to (3) Optical phase control device is configured to sequentially generate data of the plurality of phase distributions for each wavelength. The applied voltage generated based on the phase distribution data generated one time earlier and the current The data of the plurality of phase distributions is generated so that a voltage change amount with the applied voltage generated based on the data of the phase distribution is minimized.
  • phase distribution calculation circuit generates the current phase distribution data with reference to the phase distribution data generated one time before.
  • a light source that emits a plurality of lights having different wavelengths in a time-sharing manner;
  • An optical phase modulation element that modulates the phase of the plurality of lights from the light source for each wavelength in a time division manner and reproduces a plurality of reproduction images for each wavelength in a time division manner;
  • a phase distribution calculation circuit that generates data of a plurality of phase distributions for each wavelength corresponding to the plurality of reproduced images for each wavelength reproduced by the optical phase modulation element; Based on the data of the plurality of phase distributions for each wavelength, a plurality of applied voltages for each wavelength to be applied to the optical phase modulation element are generated, and the phases of the plurality of lights are converted to wavelengths with respect to the optical phase modulation element.
  • the drive circuit is A display device that generates the plurality of applied voltages such that the voltage range differs for each wavelength and the minimum value of the voltage range decreases and the maximum value increases as the wavelength increases.
  • the display device according to (6) further including: a light intensity modulation element that generates the image by using the reproduced image by the optical phase modulation element as illumination light and modulating the intensity of the illumination light.

Abstract

This display device is provided with: a phase distribution computation circuit for generating data of a plurality of phase distributions for each wavelength, the phase distributions corresponding to a reproduced image for each wavelength that is reproduced by an optical phase modulation element; and a drive circuit for generating, on the basis of the data of the plurality of phase distributions for each wavelength, a plurality of applied voltages for each wavelength that are applied to the optical phase modulation element and causing the phases of a plurality of lights mutually differing in wavelength that are entered separately in time to be modulated for each wavelength separately in time by the optical phase modulation element. The drive circuit generates the plurality of applied voltages so that the voltage range differs for each wavelength, and so that the minimum value of the voltage range decreases and the maximum value increases as the wavelength increases.

Description

光位相制御装置、および表示装置Optical phase control device and display device
 本開示は、光位相変調素子の制御を行う光位相制御装置、および光位相変調素子用いる表示装置に関する。 The present disclosure relates to an optical phase control device that controls an optical phase modulation element and a display device that uses the optical phase modulation element.
 光の位相を変調して所望の再生像を得る光位相変調素子が知られている。光位相変調素子は、例えば液晶パネル等のSLM(Spatial Light Modulator)で構成される。このような光位相変調素子の応用例として、プロジェクタにおいて、照明装置に光位相変調素子を用いることで画像に応じて位相変調された再生像を生成し、その再生像を映像表示用の光強度変調素子への照明光として利用する技術がある。また、光位相変調素子は、ホログラフィ技術等にも用いられる。また、光位相変調素子は、光スイッチや光コンピュータ等の技術にも用いられる。 An optical phase modulation element that obtains a desired reproduced image by modulating the phase of light is known. The optical phase modulation element is composed of an SLM (Spatial Light Modulator) such as a liquid crystal panel. As an application example of such an optical phase modulation element, in a projector, a reproduction image that is phase-modulated according to an image is generated by using the optical phase modulation element in an illumination device, and the reproduction image is used as a light intensity for video display. There is a technique used as illumination light for a modulation element. The optical phase modulation element is also used for holography technology and the like. The optical phase modulation element is also used in technologies such as an optical switch and an optical computer.
特開2015-184288号公報Japanese Patent Laying-Open No. 2015-184288 特表2015-505971号公報JP-T-2015-505971
 液晶を用いた光位相変調素子を用いて動画表示、特にフィールドシーケンシャル方式(時分割方式)によるフルカラー表示を行う際には、液晶の応答速度の遅さによって再生像が劣化し得る。 When a moving image is displayed using an optical phase modulation element using a liquid crystal, particularly a full-color display by a field sequential method (time division method), a reproduced image may be deteriorated due to a slow response speed of the liquid crystal.
 光位相変調素子による再生像の画質向上を図ることが可能な光位相制御装置、および表示装置を提供することが望ましい。 It is desirable to provide an optical phase control device and a display device that can improve the quality of a reproduced image by an optical phase modulation element.
 本開示の一実施の形態に係る光位相制御装置は、光位相変調素子によって再生される波長ごとの再生像に対応する波長ごとの複数の位相分布のデータを生成する位相分布演算回路と、波長ごとの複数の位相分布のデータに基づいて、光位相変調素子に印加する波長ごとの複数の印加電圧を生成し、光位相変調素子に対して、時分割で入射した互いに波長の異なる複数の光の位相を波長ごとに時分割で変調させる駆動回路とを備え、駆動回路が、波長ごとに電圧範囲が異なり、かつ、波長が長いほど電圧範囲の最小値が小さく、最大値が大きくなるようにして、複数の印加電圧を生成するようにしたものである。 An optical phase control device according to an embodiment of the present disclosure includes a phase distribution arithmetic circuit that generates data of a plurality of phase distributions for each wavelength corresponding to a reproduction image for each wavelength reproduced by an optical phase modulation element, and a wavelength A plurality of applied voltages for each wavelength applied to the optical phase modulation element are generated based on the data of the plurality of phase distributions for each of the plurality of light beams having different wavelengths incident on the optical phase modulation element in a time division manner. A drive circuit that modulates the phase of each wavelength in a time-sharing manner so that the drive circuit has a different voltage range for each wavelength, and the longer the wavelength, the smaller the minimum value of the voltage range and the larger the maximum value. Thus, a plurality of applied voltages are generated.
 本開示の一実施の形態に係る表示装置は、互いに波長の異なる複数の光を時分割で出射する光源と、光源からの複数の光の位相を波長ごとに時分割で変調して、波長ごとの複数の再生像を時分割で再生する光位相変調素子と、光位相変調素子によって再生される波長ごとの複数の再生像に対応する波長ごとの複数の位相分布のデータを生成する位相分布演算回路と、波長ごとの複数の位相分布のデータに基づいて、光位相変調素子に印加する波長ごとの複数の印加電圧を生成し、光位相変調素子に対して、複数の光の位相を波長ごとに時分割で変調させる駆動回路とを備え、駆動回路が、波長ごとに電圧範囲が異なり、かつ、波長が長いほど電圧範囲の最小値が小さく、最大値が大きくなるようにして、複数の印加電圧を生成するようにしたものである。 A display device according to an embodiment of the present disclosure includes a light source that emits a plurality of lights having different wavelengths in a time-division manner, and a phase of the plurality of lights from the light source that is modulated in a time-division manner for each wavelength. Phase distribution calculation that generates multiple phase distribution data for each wavelength corresponding to multiple reproduction images for each wavelength reproduced by the optical phase modulation element Based on the data of the circuit and multiple phase distributions for each wavelength, multiple applied voltages for each wavelength to be applied to the optical phase modulation element are generated, and the phases of the multiple lights for each wavelength are applied to the optical phase modulation element. A drive circuit that modulates in a time-sharing manner, and the drive circuit has different voltage ranges for each wavelength, and the longer the wavelength, the smaller the minimum value of the voltage range and the larger the maximum value. To generate voltage It is intended.
 本開示の一実施の形態に係る光位相制御装置、または表示装置では、駆動回路において、波長ごとの複数の位相分布のデータに基づいて、光位相変調素子に印加する波長ごとの複数の印加電圧を生成する。駆動回路では、波長ごとに電圧範囲が異なり、かつ、波長が長いほど電圧範囲の最小値が小さく、最大値が大きくなるようにして、複数の印加電圧を生成する。 In the optical phase control device or the display device according to the embodiment of the present disclosure, in the driving circuit, a plurality of applied voltages for each wavelength applied to the optical phase modulation element based on data of a plurality of phase distributions for each wavelength. Is generated. In the drive circuit, a plurality of applied voltages are generated such that the voltage range is different for each wavelength and the minimum value of the voltage range is smaller and the maximum value is larger as the wavelength is longer.
本開示の第1の実施の形態に係る光位相制御装置を含む位相変調装置の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a phase modulation device containing an optical phase control device concerning a 1st embodiment of this indication. 光位相変調素子の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of an optical phase modulation element. 第1の実施の形態に係る表示装置としてのプロジェクタの第1の構成例を示す構成図である。It is a block diagram which shows the 1st structural example of the projector as a display apparatus which concerns on 1st Embodiment. 第1の実施の形態に係る表示装置としてのプロジェクタの第2の構成例を示す構成図である。It is a block diagram which shows the 2nd structural example of the projector as a display apparatus which concerns on 1st Embodiment. 比較例に係る表示装置における0~2πの位相変調に必要な各色の電圧範囲の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a voltage range of each color necessary for 0 to 2π phase modulation in a display device according to a comparative example. 比較例に係る表示装置における位相変調量と印加電圧との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the phase modulation amount and applied voltage in the display apparatus which concerns on a comparative example. 比較例に係る表示装置において、異なる位相分布を用いて、光位相変調素子によって同一再生像を表示した場合を示す説明図である。In the display apparatus which concerns on a comparative example, it is explanatory drawing which shows the case where the same reproduced image is displayed by the optical phase modulation element using different phase distribution. 第1の実施の形態に係る表示装置における0~2πの位相変調に必要な各色の電圧範囲の一実施例を示す説明図である。FIG. 6 is an explanatory diagram illustrating an example of a voltage range of each color necessary for phase modulation of 0 to 2π in the display device according to the first embodiment. 第1の実施の形態に係る表示装置における位相変調量と印加電圧との関係の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the relationship between the phase modulation amount and applied voltage in the display apparatus which concerns on 1st Embodiment. 比較例に係る表示装置と第1の実施の形態に係る表示装置において、光位相変調素子に同一位相を表示した場合に、RとGとの波長の切り替わりで生じる電圧変動量とその頻度との関係の一例を示す説明図である。In the display device according to the comparative example and the display device according to the first embodiment, when the same phase is displayed on the optical phase modulation element, the amount of voltage fluctuation caused by the switching of the wavelength between R and G and the frequency thereof It is explanatory drawing which shows an example of a relationship. 比較例に係る表示装置と第1の実施の形態に係る表示装置において、光位相変調素子に同一位相を表示した場合に、GとBとの波長の切り替わりで生じる電圧変動量とその頻度との関係の一例を示す説明図である。In the display device according to the comparative example and the display device according to the first embodiment, when the same phase is displayed on the optical phase modulation element, the voltage fluctuation amount generated by the switching of the wavelength between G and B and the frequency thereof It is explanatory drawing which shows an example of a relationship. 比較例に係る表示装置と第1の実施の形態に係る表示装置において、光位相変調素子に同一位相を表示した場合に、BとRとの波長の切り替わりで生じる電圧変動量とその頻度との関係の一例を示す説明図である。In the display device according to the comparative example and the display device according to the first embodiment, when the same phase is displayed on the optical phase modulation element, the amount of voltage fluctuation caused by the switching of the wavelength between B and R and the frequency thereof It is explanatory drawing which shows an example of a relationship. 比較例に係る表示装置における0~約2πの位相変調に必要な各色の電圧範囲の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a voltage range of each color necessary for phase modulation of 0 to about 2π in a display device according to a comparative example. 比較例に係る表示装置における位相変調量と印加電圧との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the phase modulation amount and applied voltage in the display apparatus which concerns on a comparative example. 第2の実施の形態に係る表示装置における0~約2πの位相変調に必要な各色の電圧範囲の一実施例を示す説明図である。FIG. 10 is an explanatory diagram showing an example of a voltage range of each color necessary for phase modulation of 0 to about 2π in the display device according to the second embodiment. 第2の実施の形態に係る表示装置における位相変調量と印加電圧との関係の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the relationship between the phase modulation amount and applied voltage in the display apparatus which concerns on 2nd Embodiment. 第2の実施の形態に係る表示装置において、同一位相を表示した場合に、RとGとの波長の切り替わりで生じる電圧変動量とその頻度との関係の一例を示す説明図である。In the display apparatus which concerns on 2nd Embodiment, when the same phase is displayed, it is explanatory drawing which shows an example of the relationship between the voltage fluctuation amount produced by the switching of the wavelength of R and G, and its frequency. 第2の実施の形態に係る表示装置において、同一位相を表示した場合に、BとRとの波長の切り替わりで生じる電圧変動量とその頻度との関係の一例を示す説明図である。In the display apparatus which concerns on 2nd Embodiment, when the same phase is displayed, it is explanatory drawing which shows an example of the relationship between the voltage fluctuation amount produced by the switching of the wavelength of B and R, and its frequency. 第3の実施の形態に係る表示装置における目的位相分布データの生成手法の第1の例を示す説明図である。It is explanatory drawing which shows the 1st example of the production | generation method of the target phase distribution data in the display apparatus which concerns on 3rd Embodiment. 第3の実施の形態に係る表示装置における目的位相分布データの生成手法の第2の例を示す説明図である。It is explanatory drawing which shows the 2nd example of the production | generation method of the target phase distribution data in the display apparatus which concerns on 3rd Embodiment.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
 1.第1の実施の形態(図1~図12)
  1.0 比較例
  1.1 第1の実施の形態に係る光位相制御装置および表示装置の構成および動作
  1.2 効果
 2.第2の実施の形態(図13~図18)
 3.第3の実施の形態(図19~図20)
 4.その他の実施の形態
1. First embodiment (FIGS. 1 to 12)
1.0 Comparative Example 1.1 Configuration and Operation of Optical Phase Control Device and Display Device According to First Embodiment 1.2 Effect Second embodiment (FIGS. 13 to 18)
3. Third embodiment (FIGS. 19 to 20)
4). Other embodiments
<1.第1の実施の形態>
[1.0 比較例]
 液晶を用いた光位相変調素子を用いて動画表示、特にフィールドシーケンシャル方式によるフルカラー表示を行う際には、液晶の応答速度の遅さによって再生像が劣化し得る。
<1. First Embodiment>
[1.0 Comparative Example]
When a moving image is displayed using an optical phase modulation element using liquid crystal, particularly a full-color display by a field sequential method, a reproduced image can be deteriorated due to a slow response speed of the liquid crystal.
 特許文献1(特開2015-184288号公報)には位相分布の高速な生成技術が開示されており、それによりフィールドシーケンシャル駆動にも対応できるとされている。しかしながら、位相分布が高速に生成されたとしても、光位相変調素子における液晶が位相分布の切り替わりに十分に応答できないため、再生像に、ノイズ発生、輝度低下、コントラスト低下、およびフリッカなどの劣化が生じ得る。 Patent Document 1 (Japanese Patent Laid-Open No. 2015-184288) discloses a technique for generating a phase distribution at a high speed, which can be applied to field sequential driving. However, even if the phase distribution is generated at high speed, the liquid crystal in the optical phase modulation element cannot sufficiently respond to the switching of the phase distribution, so that the reproduced image is deteriorated such as noise generation, luminance reduction, contrast reduction, and flicker. Can occur.
 特許文献2(特表2015-505971号公報)には、フーリエ変換を用いたGerchberg-Saxton法(GS法)に基づく高速な位相分布の生成手法が開示されている。特許文献2に記載の技術では、前フレームの位相情報を次フレームの初期位相情報に引き継ぐことによって、高速に位相分布が生成される。さらにこの手法を用いると、収束する位相分布がフレーム間で近くなり、画素における電圧の変化が小さくなる特徴がある。そのため、位相分布の切り替わりに大きな液晶の傾きの変化がなくなり、再生像の劣化が抑制できる。しかし、フィールドシーケンシャル駆動を行う場合には、変調を行う波長に応じて位相変調量ひいては印加電圧の電圧範囲が変化するため、位相分布をフレーム間で近くすることができたとしても、最終的な印可電圧が異なってしまうため、再生像の劣化が避けられない。 Patent Document 2 (Japanese Patent Publication No. 2015-505971) discloses a high-speed phase distribution generation method based on the Gerchberg-Saxton method (GS method) using Fourier transform. In the technique described in Patent Document 2, the phase distribution is generated at high speed by handing over the phase information of the previous frame to the initial phase information of the next frame. Furthermore, when this method is used, the convergent phase distribution becomes close between frames, and the change in voltage at the pixel is small. Therefore, there is no large change in the tilt of the liquid crystal when the phase distribution is switched, and the degradation of the reproduced image can be suppressed. However, when performing field sequential drive, the phase modulation amount and thus the voltage range of the applied voltage change according to the wavelength to be modulated, so even if the phase distribution can be made closer between frames, the final Since applied voltages differ, it is inevitable that the reproduced image is deteriorated.
 そこで、本開示では、液晶を用いた光位相変調素子をフィールドシーケンシャル駆動する際に、位相変調する波長ごとに光位相変調素子の印加電圧の電圧範囲を調整し、フレーム間における各画素の電圧変化量を小さくすることで、再生像の画質向上を図る技術を提供する。 Therefore, in this disclosure, when the optical phase modulation element using liquid crystal is field-sequentially driven, the voltage range of the applied voltage of the optical phase modulation element is adjusted for each wavelength to be phase-modulated, and the voltage change of each pixel between frames A technique for improving the quality of a reproduced image by reducing the amount is provided.
[1.1 第1の実施の形態に係る光位相制御装置および表示装置の構成および動作]
(光位相制御装置を含む位相変調装置の概要)
 図1は、本開示の第1の実施の形態に係る光位相制御装置を含む位相変調装置の一構成例を概略的に示している。
[1.1 Configuration and Operation of Optical Phase Control Device and Display Device According to First Embodiment]
(Outline of phase modulator including optical phase controller)
FIG. 1 schematically illustrates a configuration example of a phase modulation device including an optical phase control device according to the first embodiment of the present disclosure.
 位相変調装置は、光源50からの光の位相を変調する光位相変調素子1と、位相分布演算回路51と、位相変調素子駆動回路52とを備えている。 The phase modulation device includes an optical phase modulation element 1 that modulates the phase of light from the light source 50, a phase distribution calculation circuit 51, and a phase modulation element drive circuit 52.
 本開示の光位相制御装置は、少なくとも、位相分布演算回路51と、位相変調素子駆動回路52とを含んで構成される。 The optical phase control device according to the present disclosure includes at least a phase distribution calculation circuit 51 and a phase modulation element driving circuit 52.
 位相分布演算回路51は、入力信号に基づいて、目的位相分布データ(位相変調信号)を生成する位相分布演算部である。目的位相分布データは、目的とする再生像60(目的再生像)を光位相変調素子1によって再生することが可能となるような位相分布を持つデータである。 The phase distribution calculation circuit 51 is a phase distribution calculation unit that generates target phase distribution data (phase modulation signal) based on an input signal. The target phase distribution data is data having a phase distribution that enables the target reproduction image 60 (target reproduction image) to be reproduced by the optical phase modulation element 1.
 ここで、例えば、光位相変調素子1をプロジェクタにおける照明装置の一部として利用する場合、入力信号は例えば画像信号である。この場合、再生像60は照明対象物5を照明する照明像となる。照明対象物5は、例えばプロジェクタにおける強度変調液晶パネル等の光強度変調素子である。この場合、目的位相分布データは、プロジェクタで表示する画像に応じた輝度分布を持つ照明像を形成することが可能な位相分布パターンを持つデータである。 Here, for example, when the optical phase modulation element 1 is used as a part of the illumination device in the projector, the input signal is, for example, an image signal. In this case, the reproduced image 60 is an illumination image that illuminates the illumination target 5. The illumination object 5 is a light intensity modulation element such as an intensity modulation liquid crystal panel in a projector. In this case, the target phase distribution data is data having a phase distribution pattern capable of forming an illumination image having a luminance distribution corresponding to an image displayed by the projector.
 位相変調素子駆動回路52は、位相分布演算回路51で生成された目的位相分布データに基づく印加電圧(駆動電圧)を生成し、各画素10が目的とする位相分布となるように光位相変調素子1を駆動する。 The phase modulation element driving circuit 52 generates an applied voltage (drive voltage) based on the target phase distribution data generated by the phase distribution calculation circuit 51, and the optical phase modulation element so that each pixel 10 has a target phase distribution. 1 is driven.
 光位相変調素子1は、位相変調素子駆動回路52によって与えられた印加電圧に基づいて光源50からの光の位相を変調する。光位相変調素子1は、透過型位相変調素子であってもよいし、反射型位相変調素子であってもよい。 The optical phase modulation element 1 modulates the phase of light from the light source 50 based on the applied voltage given by the phase modulation element drive circuit 52. The optical phase modulation element 1 may be a transmission type phase modulation element or a reflection type phase modulation element.
 図1の位相変調装置において、フィールドシーケンシャル方式で、互いに波長の異なる複数の光の位相変調を行う場合、光源50から、互いに波長の異なる複数の光を時分割で出射する。光位相変調素子1は、光源50からの複数の光の位相を波長ごとに時分割で変調して、波長ごとの複数の再生像60を時分割で再生する。位相分布演算回路51は、光位相変調素子1によって再生される波長ごとの複数の再生像60に対応する波長ごとの複数の位相分布のデータ(目的位相分布データ)を生成する。位相変調素子駆動回路52は、波長ごとの複数の位相分布のデータに基づいて、光位相変調素子1に印加する波長ごとの複数の印加電圧を生成し、光位相変調素子1に対して、複数の光の位相を波長ごとに時分割で変調させる。 In the phase modulation apparatus of FIG. 1, when performing phase modulation of a plurality of lights having different wavelengths by the field sequential method, a plurality of lights having different wavelengths are emitted from the light source 50 in a time-sharing manner. The optical phase modulation element 1 modulates the phases of a plurality of lights from the light source 50 for each wavelength in a time division manner, and reproduces a plurality of reproduced images 60 for each wavelength in a time division manner. The phase distribution calculation circuit 51 generates a plurality of phase distribution data (target phase distribution data) for each wavelength corresponding to the plurality of reproduced images 60 for each wavelength reproduced by the optical phase modulation element 1. The phase modulation element driving circuit 52 generates a plurality of applied voltages for each wavelength to be applied to the optical phase modulation element 1 based on data of a plurality of phase distributions for each wavelength, and a plurality of voltages are applied to the optical phase modulation element 1. The light phase is modulated in a time-sharing manner for each wavelength.
(光位相変調素子1の概要)
 図2は、光位相変調素子1の概要を示している。図2には、光位相変調素子1を位相変調液晶パネルで構成した例を示している。光位相変調素子1は、例えば、互いに対向配置された第1のガラス基板と第2のガラス基板とを備えている。第1のガラス基板と第2のガラス基板との間には、液晶分子14を含む液晶層が図示しない封止部材によって封止されている。
(Outline of optical phase modulation element 1)
FIG. 2 shows an outline of the optical phase modulation element 1. FIG. 2 shows an example in which the optical phase modulation element 1 is composed of a phase modulation liquid crystal panel. The optical phase modulation element 1 includes, for example, a first glass substrate and a second glass substrate that are arranged to face each other. Between the first glass substrate and the second glass substrate, a liquid crystal layer containing liquid crystal molecules 14 is sealed by a sealing member (not shown).
 第1のガラス基板には、対向電極(共通電極)4が設けられている。第2のガラス基板には、複数の画素電極11(画素10)が設けられている。 A counter electrode (common electrode) 4 is provided on the first glass substrate. A plurality of pixel electrodes 11 (pixels 10) are provided on the second glass substrate.
 光位相変調素子1が透過型位相変調素子である場合、対向電極4と画素電極11とが共に、光を透過する透明電極で構成される。光位相変調素子が反射型位相変調素子である場合、対向電極4は光を透過する透明電極で構成され、画素電極11は光を反射する反射電極で構成される。 When the optical phase modulation element 1 is a transmissive phase modulation element, both the counter electrode 4 and the pixel electrode 11 are configured by transparent electrodes that transmit light. When the optical phase modulation element is a reflection type phase modulation element, the counter electrode 4 is configured by a transparent electrode that transmits light, and the pixel electrode 11 is configured by a reflective electrode that reflects light.
 対向電極4には、共通電圧が印加される。複数の画素電極11には、入力信号に応じた印加電圧が印加される。光位相変調素子1における液晶分子14の傾きは、印加電圧に応じて変化する。液晶分子14の傾きが変わることにより、図2の下段に示したように素子内を通過する光に対する位相分布(屈折率分布)が変化する。これにより、画素単位で光学作用を変化させることができる。 A common voltage is applied to the counter electrode 4. An applied voltage corresponding to the input signal is applied to the plurality of pixel electrodes 11. The inclination of the liquid crystal molecules 14 in the optical phase modulation element 1 changes according to the applied voltage. As the inclination of the liquid crystal molecules 14 changes, the phase distribution (refractive index distribution) for the light passing through the element changes as shown in the lower part of FIG. Thereby, the optical action can be changed in units of pixels.
 このような光位相変調素子1は、例えばプロジェクタにおける光強度変調素子への照明光を生成する照明装置の一部として利用される。 Such an optical phase modulation element 1 is used as a part of an illumination device that generates illumination light for the light intensity modulation element in a projector, for example.
(表示装置への適用例)
 図3および図4に、図1の位相変調装置を用いた第1の実施の形態に係る表示装置としてのプロジェクタの第1および第2の構成例を示す。図3および図4には、フィールドシーケンシャル方式によるフルカラー表示を行うプロジェクタの構成例を示す。
(Example of application to display devices)
3 and 4 show first and second configuration examples of the projector as the display device according to the first embodiment using the phase modulation device of FIG. 3 and 4 show a configuration example of a projector that performs full-color display by a field sequential method.
 図3に示したプロジェクタ100、および図4に示したプロジェクタ100Aはそれぞれ、光源50と、光位相変調素子1と、光強度変調素子61と、投射レンズ(投影光学系)81とを備えている。 The projector 100 shown in FIG. 3 and the projector 100A shown in FIG. 4 each include a light source 50, an optical phase modulation element 1, a light intensity modulation element 61, and a projection lens (projection optical system) 81. .
 なお、図3および図4には、光位相変調素子1として透過型位相変調素子を用いた構成例を示すが、反射型位相変調素子で構成してもよい。 3 and 4 show a configuration example in which a transmission type phase modulation element is used as the optical phase modulation element 1, it may be constituted by a reflection type phase modulation element.
 図3に示したプロジェクタ100は、光強度変調素子61として透過型の光強度変調素子、例えば透過型の強度変調液晶表示パネルで構成した例を示している。図4に示したプロジェクタ100Aは、光強度変調素子61として反射型の光強度変調素子、例えば反射型の強度変調液晶表示パネルで構成した例を示している。 The projector 100 shown in FIG. 3 shows an example in which the light intensity modulation element 61 is constituted by a transmission type light intensity modulation element, for example, a transmission type intensity modulation liquid crystal display panel. The projector 100A shown in FIG. 4 shows an example in which the light intensity modulation element 61 is constituted by a reflection type light intensity modulation element, for example, a reflection type intensity modulation liquid crystal display panel.
 光源50は、赤色(R)光を発する赤用光源と、緑色(G)光を発する緑用光源と、青色(B)光を発する青用光源とを有している。赤用光源、緑用光源、および青用光源はそれぞれ、例えば1または複数のレーザ光源で構成されている。光源50は、赤色光と、緑色光と、青色光とを時分割で出射する。 The light source 50 has a red light source that emits red (R) light, a green light source that emits green (G) light, and a blue light source that emits blue (B) light. Each of the red light source, the green light source, and the blue light source is composed of, for example, one or a plurality of laser light sources. The light source 50 emits red light, green light, and blue light in a time-sharing manner.
 プロジェクタ100,100Aでは、光位相変調素子1が光源50からの各色の光で照明される。このとき、光位相変調素子1は、赤色光、緑色光、および青色光のそれぞれの色ごとに、時分割で照明される。光位相変調素子1は、各色の波長ごとに最適化された位相分布パターンを時分割で表示する。図1の位相分布演算回路51は、光位相変調素子1によって再生される各色の再生像60に対応する各色の位相分布のデータ(目的位相分布データ)を生成する。位相変調素子駆動回路52は、各色の位相分布のデータに基づいて、光位相変調素子1に印加する各色の印加電圧を生成し、光位相変調素子1に対して、各色の光の位相を色ごとに時分割で変調させる。 In the projectors 100 and 100 </ b> A, the optical phase modulation element 1 is illuminated with light of each color from the light source 50. At this time, the optical phase modulation element 1 is illuminated in a time division manner for each color of red light, green light, and blue light. The optical phase modulation element 1 displays the phase distribution pattern optimized for each wavelength of each color in a time division manner. The phase distribution calculation circuit 51 in FIG. 1 generates phase distribution data (target phase distribution data) of each color corresponding to the reproduction image 60 of each color reproduced by the optical phase modulation element 1. The phase modulation element driving circuit 52 generates an applied voltage of each color to be applied to the optical phase modulation element 1 based on the phase distribution data of each color, and changes the phase of the light of each color to the optical phase modulation element 1. Modulate in time division every time.
 光強度変調素子61には、光位相変調素子1によって形成された各色の再生像が照明光として、色ごとに時分割で照射される。光強度変調素子61は、光源50が各色光を発するタイミングに同期して、各色の照明光に対して強度変調を行い、各色の投影画像を時分割で生成する。 The light intensity modulation element 61 is irradiated with a reproduction image of each color formed by the optical phase modulation element 1 as illumination light in a time division manner for each color. The light intensity modulation element 61 performs intensity modulation on the illumination light of each color in synchronization with the timing at which the light source 50 emits each color light, and generates a projection image of each color in a time division manner.
 赤色光、緑色光、および青色光による各色の投影画像は、投射レンズ81に向けて出射される。投射レンズ81は、その各色の投影画像を、スクリーン80等の投影面に時分割で投影する。 Projected images of each color by red light, green light, and blue light are emitted toward the projection lens 81. The projection lens 81 projects the projection images of the respective colors on a projection surface such as the screen 80 in a time division manner.
 なお、以上では、光位相変調素子1と光強度変調素子61とを組み合わせた表示装置の構成例を説明したが、光強度変調素子61を用いない表示装置であってもよい。例えば、光位相変調素子1による再生像60を照明光に利用するのではなく、再生像60そのものを、表示画像とするような表示装置であってもよい。 In the above, the configuration example of the display device in which the optical phase modulation element 1 and the light intensity modulation element 61 are combined has been described. However, a display device that does not use the light intensity modulation element 61 may be used. For example, a display device may be used in which the reproduced image 60 itself is used as a display image instead of using the reproduced image 60 by the optical phase modulation element 1 as illumination light.
(波長ごとの印加電圧の最適化)
 図5には、比較例に係る表示装置における0~2πの位相変調に必要な各色の電圧範囲の一例を示す。図5において、横軸は印加電圧(V)、縦軸は位相(π)を示す。図6には、比較例に係る表示装置における位相変調量と印加電圧との関係の一例を示す。図5において、横軸は位相変調量(π)、縦軸は印加電圧(V)を示す。
(Optimization of applied voltage for each wavelength)
FIG. 5 shows an example of the voltage range of each color necessary for the phase modulation of 0 to 2π in the display device according to the comparative example. In FIG. 5, the horizontal axis represents the applied voltage (V), and the vertical axis represents the phase (π). FIG. 6 shows an example of the relationship between the phase modulation amount and the applied voltage in the display device according to the comparative example. In FIG. 5, the horizontal axis represents the phase modulation amount (π), and the vertical axis represents the applied voltage (V).
 図5に示したように、光位相変調素子1において、0~2πの位相変調に必要な、R(赤色)の電圧範囲Vr、G(緑色)の電圧範囲Vg、B(青色)の変調電圧範囲Vbはそれぞれ異なる。図5および図6に示したように、波長が長いほど、印加電圧の電圧範囲は大きくなる。また、図5および図6に示した比較例では、R,G,Bの各色で、電圧範囲の最大値が一致するように印加電圧を生成している。 As shown in FIG. 5, in the optical phase modulation element 1, R (red) voltage range Vr, G (green) voltage range Vg, and B (blue) modulation voltage required for phase modulation of 0 to 2π. The ranges Vb are different. As shown in FIGS. 5 and 6, the longer the wavelength, the larger the voltage range of the applied voltage. In the comparative example shown in FIGS. 5 and 6, the applied voltages are generated so that the maximum values of the voltage ranges are the same for each color of R, G, and B.
 このように、光位相変調素子1を位相変調液晶パネルで構成した場合、光位相変調素子1において同一の位相分布パターンを表示する場合であっても、その位相分布パターンを表示するために必要とされる印加電圧は波長ごとに異なる。このため、時分割で各色の位相変調を行う場合、位相分布演算回路51において、位相分布を高速、高品位に生成できたとしても、光位相変調素子1における液晶の応答速度に起因した再生像60の劣化が生じる。 As described above, when the optical phase modulation element 1 is composed of a phase modulation liquid crystal panel, it is necessary to display the phase distribution pattern even when the optical phase modulation element 1 displays the same phase distribution pattern. The applied voltage differs for each wavelength. Therefore, when phase modulation of each color is performed in a time division manner, even if the phase distribution calculation circuit 51 can generate the phase distribution at high speed and high quality, a reproduced image caused by the response speed of the liquid crystal in the optical phase modulation element 1 60 degradation occurs.
 図7には、比較例に係る表示装置において、異なる位相分布を用いて、光位相変調素子1によって同一の再生像60(チェッカーパターン)を表示した例を示す。図7には、左側から順に、理想的な再生像(静止画)と、位相分布の切り替わり直後の再生像と、光位相変調素子1における液晶応答完了時の再生像とを示す。位相分布の切り替わり直後では、液晶応答が完了しないため、再生像の劣化が生じる。この再生像の劣化は、輝度低下、コントラスト低下、およびノイズ発生などとして現れる。液晶応答完了時には、輝度が時間で変化し、フリッカが発生するなどして再生像が劣化する。 FIG. 7 shows an example in which the same reproduced image 60 (checker pattern) is displayed by the optical phase modulation element 1 using different phase distributions in the display device according to the comparative example. FIG. 7 shows an ideal reproduced image (still image), a reproduced image immediately after switching of the phase distribution, and a reproduced image when the liquid crystal response in the optical phase modulation element 1 is completed, in order from the left side. Immediately after the phase distribution is switched, the liquid crystal response is not completed, and the reproduced image is deteriorated. This deterioration of the reproduced image appears as a decrease in brightness, a decrease in contrast, and generation of noise. When the liquid crystal response is completed, the luminance changes with time, flickering occurs, and the reproduced image deteriorates.
 このため、フィールドシーケンシャル方式での位相変調や画像表示を行う場合、図8および図9に示すような、波長ごとに印加電圧の最適化を行うことが望ましい。 For this reason, when performing phase modulation and image display by the field sequential method, it is desirable to optimize the applied voltage for each wavelength as shown in FIGS.
 図8には、第1の実施の形態に係る表示装置(実施例)における0~2πの位相変調に必要な各色の電圧範囲の一例を示す。図8において、横軸は印加電圧(V)、縦軸は位相(π)を示す。図9には、第1の実施の形態に係る表示装置(実施例)における位相変調量と印加電圧との関係の一例を示す。図9において、横軸は位相変調量(π)、縦軸は印加電圧(V)を示す。 FIG. 8 shows an example of the voltage range of each color necessary for the phase modulation of 0 to 2π in the display device (example) according to the first embodiment. In FIG. 8, the horizontal axis represents the applied voltage (V), and the vertical axis represents the phase (π). FIG. 9 shows an example of the relationship between the phase modulation amount and the applied voltage in the display device (example) according to the first embodiment. In FIG. 9, the horizontal axis represents the phase modulation amount (π), and the vertical axis represents the applied voltage (V).
 第1の実施の形態に係る光位相制御装置および表示装置では、位相変調素子駆動回路52は、波長ごとに電圧範囲が異なり、かつ、波長が長いほど電圧範囲の最小値が小さく、最大値が大きくなるようにして、波長ごとの複数の印加電圧を生成する。具体的には、 位相変調素子駆動回路52は、以下の条件を満たすように、波長ごとの印加電圧を生成する。
 Rmin<Gmin<Bmin<Bmax<Gmax<Rmax
 ここで、Rの印加電圧の最小値をRmin、最大値をRmaxとする。Gの印加電圧の最小値をGmin、最大値をGmaxとする。Bの印加電圧の最小値をBmin、最大値をBmaxとする。
In the optical phase control device and the display device according to the first embodiment, the phase modulation element driving circuit 52 has a different voltage range for each wavelength, and the longer the wavelength, the smaller the minimum value of the voltage range, and the maximum value becomes larger. A plurality of applied voltages for each wavelength are generated so as to increase. Specifically, the phase modulation element driving circuit 52 generates an applied voltage for each wavelength so as to satisfy the following conditions.
Rmin <Gmin <Bmin <Bmax <Gmax <Rmax
Here, the minimum value of the applied voltage of R is Rmin, and the maximum value is Rmax. The minimum value of the applied voltage of G is Gmin, and the maximum value is Gmax. The minimum value of the applied voltage of B is Bmin, and the maximum value is Bmax.
 以上のように印加電圧の最適化を行うことで、波長の切り替わり時の電圧変動量を小さくすることが可能である。 By optimizing the applied voltage as described above, it is possible to reduce the amount of voltage fluctuation at the time of wavelength switching.
 図10~図12は、比較例に係る表示装置と第1の実施の形態に係る表示装置(実施例)とにおいて、光位相変調素子1に同一位相を表示した場合に、波長の切り替わりで生じる電圧変動量とその頻度との関係の一例を示す。図10~図12において、横軸は電圧変動量、縦軸は頻度を示す。頻度とは、その電圧変動量が現れる画素の数に相当する。 FIGS. 10 to 12 are caused by switching of wavelengths when the same phase is displayed on the optical phase modulation element 1 in the display device according to the comparative example and the display device according to the first embodiment (example). An example of the relationship between the voltage fluctuation amount and its frequency is shown. 10 to 12, the horizontal axis indicates the voltage fluctuation amount, and the vertical axis indicates the frequency. The frequency corresponds to the number of pixels in which the voltage fluctuation amount appears.
 図10には、波長の切り替わりがRとGである場合の電圧変動量(印加電圧の差分)を示す。図11には、波長の切り替わりがGとBである場合の電圧変動量(印加電圧の差分)を示す。図12には、波長の切り替わりがBとRである場合の電圧変動量(印加電圧の差分)を示す。 FIG. 10 shows the amount of voltage fluctuation (difference in applied voltage) when the wavelength is switched between R and G. FIG. 11 shows the amount of voltage fluctuation (difference in applied voltage) when the wavelength is switched between G and B. FIG. 12 shows the amount of voltage fluctuation (difference in applied voltage) when the wavelength is switched between B and R.
 図10~図12に示したように、第1の実施の形態に係る表示装置(実施例)では、比較例に係る表示装置に対して、電圧変動量の発生頻度が少ない状態に改善できていることが分かる。 As shown in FIG. 10 to FIG. 12, the display device (example) according to the first embodiment can be improved to a state where the frequency of occurrence of the voltage fluctuation amount is low compared to the display device according to the comparative example. I understand that.
 なお、電圧範囲の設定方法として、各色における印可電圧の電圧範囲の平均値を一致させるようにしてもよい。例えば、位相変調素子駆動回路52が、波長ごとに量子化された印加電圧を生成するものとする。この場合、例えば各色の印可電圧の分割数(量子化レベル数)をNとおき、分割ポイントに対応する印可電圧をVNとすると、(ΣVN)/Nが一致するように設定してもよい。 As a method for setting the voltage range, the average value of the voltage range of the applied voltage in each color may be matched. For example, it is assumed that the phase modulation element driving circuit 52 generates an applied voltage quantized for each wavelength. In this case, for example, if the number of applied voltage divisions (number of quantization levels) for each color is N and the applied voltage corresponding to the division point is V N , (ΣV N ) / N may be set to match. Good.
[1.2 効果]
 以上説明したように、第1の実施の形態に係る光位相制御装置、および表示装置によれば、波長ごとに電圧範囲が異なり、かつ、波長が長いほど電圧範囲の最小値が小さく、最大値が大きくなるようにして、光位相変調素子1に印加する波長ごとの複数の印加電圧を生成するようにしたので、光位相変調素子1による再生像60の画質向上を図ることが可能となる。
[1.2 Effects]
As described above, according to the optical phase control device and the display device according to the first embodiment, the voltage range differs for each wavelength, and the longer the wavelength, the smaller the minimum value of the voltage range, and the maximum value. Is increased so that a plurality of applied voltages for each wavelength applied to the optical phase modulation element 1 are generated, so that the image quality of the reproduced image 60 by the optical phase modulation element 1 can be improved.
 第1の実施の形態に係る光位相制御装置、および表示装置によれば、例えば、光位相変調素子1による再生像60のノイズ低減、輝度向上、コントラスト向上、フリッカ抑制、色再現性の向上、およびフレーム間の残像抑制などの効果が得られる。 According to the optical phase control device and the display device according to the first embodiment, for example, noise reduction, luminance improvement, contrast improvement, flicker suppression, and color reproducibility improvement of the reproduced image 60 by the optical phase modulation element 1, In addition, effects such as suppression of afterimages between frames can be obtained.
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態の効果についても同様である。 It should be noted that the effects described in this specification are merely examples and are not limited, and other effects may be obtained. The same applies to the effects of the other embodiments thereafter.
<2.第2の実施の形態>
 次に、本開示の第2の実施の形態に係る光位相制御装置、および表示装置について説明する。なお、以下では、上記第1の実施の形態に係る光位相制御装置、および表示装置の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
<2. Second Embodiment>
Next, an optical phase control device and a display device according to the second embodiment of the present disclosure will be described. In the following description, substantially the same components as those of the optical phase control device and the display device according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted as appropriate.
 図13には、比較例に係る表示装置における0~約2πの位相変調に必要な各色の電圧範囲の一例を示す。図13において、横軸は印加電圧(V)、縦軸は位相(π)を示す。図13には、比較例に係る表示装置における位相変調量と印加電圧との関係の一例を示す。図13において、横軸は位相変調量(π)、縦軸は印加電圧(V)を示す。 FIG. 13 shows an example of the voltage range of each color necessary for phase modulation of 0 to about 2π in the display device according to the comparative example. In FIG. 13, the horizontal axis represents the applied voltage (V), and the vertical axis represents the phase (π). FIG. 13 shows an example of the relationship between the phase modulation amount and the applied voltage in the display device according to the comparative example. In FIG. 13, the horizontal axis represents the phase modulation amount (π), and the vertical axis represents the applied voltage (V).
 図15には、第2の実施の形態に係る表示装置(実施例)における0~約2πの位相変調に必要な各色の電圧範囲の一例を示す。図15において、横軸は印加電圧(V)、縦軸は位相(π)を示す。図16には、第2の実施の形態に係る表示装置(実施例)における位相変調量と印加電圧との関係の一例を示す。図16において、横軸は位相変調量(π)、縦軸は印加電圧(V)を示す。 FIG. 15 shows an example of the voltage range of each color necessary for phase modulation of 0 to about 2π in the display device (example) according to the second embodiment. In FIG. 15, the horizontal axis represents the applied voltage (V), and the vertical axis represents the phase (π). FIG. 16 shows an example of the relationship between the phase modulation amount and the applied voltage in the display device (example) according to the second embodiment. In FIG. 16, the horizontal axis represents the phase modulation amount (π), and the vertical axis represents the applied voltage (V).
 図13の比較例における電圧範囲の設定は、最も長い波長の印加電圧(Rの印加電圧)を除き、上記第1の実施の形態に対する比較例(図5)と略同様である。また、図15の第2の実施の形態に係る表示装置(実施例)における電圧範囲の設定は、最も長い波長の印加電圧(Rの印加電圧)を除き、上記第1の実施の形態(図8)と略同様である。 The setting of the voltage range in the comparative example of FIG. 13 is substantially the same as that of the comparative example (FIG. 5) for the first embodiment except for the longest wavelength applied voltage (R applied voltage). Further, the voltage range in the display device (example) according to the second embodiment shown in FIG. 15 is the same as that of the first embodiment (FIG. 15) except for the applied voltage having the longest wavelength (applied voltage of R). This is substantially the same as 8).
 比較例に係る表示装置と第2の実施の形態に係る表示装置(実施例)では、位相変調素子駆動回路52は、波長ごとに量子化された印加電圧を生成する。また、波長ごとの複数の印加電圧を、最も長い波長の印加電圧の量子化レベル数が、他の波長の印加電圧の量子化レベル数よりも小さくなるように量子化する。 In the display device according to the comparative example and the display device according to the second embodiment (example), the phase modulation element driving circuit 52 generates an applied voltage quantized for each wavelength. Further, the plurality of applied voltages for each wavelength are quantized so that the number of quantization levels of the applied voltage of the longest wavelength is smaller than the number of quantization levels of the applied voltages of other wavelengths.
 各波長で同一の位相変調量を必要とする場合、波長が長くなるほど印加電圧の電圧範囲は広くなる。したがって、長波長側の位相分布の量子化レベルを下げることで、印加電圧の電圧範囲を小さくすることができ、各波長の印加電圧の電圧範囲を近づけることができるので、位相分布の切り替わりの際の電圧変動量を、より小さくすることができる。 When the same phase modulation amount is required for each wavelength, the voltage range of the applied voltage becomes wider as the wavelength becomes longer. Therefore, by lowering the quantization level of the phase distribution on the long wavelength side, the voltage range of the applied voltage can be reduced, and the voltage range of the applied voltage of each wavelength can be made closer. The voltage fluctuation amount can be made smaller.
 比較例に係る表示装置と第2の実施の形態に係る表示装置(実施例)では、Rの印加電圧の量子化レベルを16レベル、最大変調量を1.85πとした例を示している。なお、G,Bの量子化レベルは例えば256レベル、最大変調量は2πである。 In the display device according to the comparative example and the display device according to the second embodiment (example), the quantization level of the applied voltage of R is 16 levels, and the maximum modulation amount is 1.85π. The G and B quantization levels are, for example, 256 levels, and the maximum modulation amount is 2π.
 図17、図18には、比較例に係る表示装置と第2の実施の形態に係る表示装置(実施例)とにおいて、光位相変調素子1に同一位相を表示した場合に、波長の切り替わりで生じる電圧変動量とその頻度との関係の一例を示す。図17、図18において、横軸は電圧変動量、縦軸は頻度を示す。頻度とは、その電圧変動量が現れる画素の数に相当する。 17 and 18 show the switching of wavelengths when the same phase is displayed on the optical phase modulation element 1 in the display device according to the comparative example and the display device according to the second embodiment (example). An example of the relationship between the generated voltage fluctuation amount and its frequency is shown. 17 and 18, the horizontal axis indicates the voltage fluctuation amount, and the vertical axis indicates the frequency. The frequency corresponds to the number of pixels in which the voltage fluctuation amount appears.
 図17には、波長の切り替わりがRとGである場合の電圧変動量(印加電圧の差分)を示す。図18には、波長の切り替わりがBとRである場合の電圧変動量(印加電圧の差分)を示す。 FIG. 17 shows the amount of voltage fluctuation (difference in applied voltage) when the wavelength is switched between R and G. FIG. 18 shows the amount of voltage fluctuation (difference in applied voltage) when the wavelength is switched between B and R.
 図17、図18に示したように、第2の実施の形態に係る表示装置(実施例)では、比較例に係る表示装置に対して、電圧変動量の発生頻度が少ない状態に改善できていることが分かる。 As shown in FIGS. 17 and 18, the display device (example) according to the second embodiment can be improved to a state where the frequency of occurrence of the voltage fluctuation amount is lower than the display device according to the comparative example. I understand that.
 その他の構成、動作および効果は、上記第1の実施の形態に係る光位相制御装置、および表示装置と略同様であってもよい。 Other configurations, operations, and effects may be substantially the same as those of the optical phase control device and the display device according to the first embodiment.
<3.第3の実施の形態>
 次に、本開示の第3の実施の形態に係る光位相制御装置、および表示装置について説明する。なお、以下では、上記第1または第2の実施の形態に係る光位相制御装置、および表示装置の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
<3. Third Embodiment>
Next, an optical phase control device and a display device according to a third embodiment of the present disclosure will be described. In the following description, substantially the same components as those of the optical phase control device and the display device according to the first or second embodiment will be denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 第3の実施の形態では、位相分布演算回路51による具体的な位相分布の生成例を説明する。 In the third embodiment, a specific example of phase distribution generation by the phase distribution calculation circuit 51 will be described.
(第1の例)
 図1の位相分布演算回路51は、複数の位相分布のデータを波長ごとに順次、生成する。この際、位相分布演算回路51は、時間的に1つ前に生成した位相分布のデータに基づいて生成された印加電圧と現在の位相分布のデータに基づいて生成される印加電圧との電圧変化量が最小となるように、複数の位相分布のデータを生成することが望ましい。例えば、位相分布演算回路51は、時間的に1つ前に生成した位相分布のデータを参照して、現在の位相分布のデータを生成することが望ましい。
(First example)
The phase distribution calculation circuit 51 in FIG. 1 sequentially generates a plurality of phase distribution data for each wavelength. At this time, the phase distribution calculation circuit 51 changes the voltage between the applied voltage generated based on the phase distribution data generated immediately before in time and the applied voltage generated based on the current phase distribution data. It is desirable to generate a plurality of phase distribution data so that the amount is minimized. For example, the phase distribution calculation circuit 51 preferably generates current phase distribution data with reference to the phase distribution data generated immediately before in time.
 フレーム間の位相分布は近いほど再生像60の画質は向上するため、位相分布演算回路51における位相分布の生成の際に、フレーム間の電圧変動が小さくなるように位相分布を生成することが望ましい。位相分布の生成には、以下で説明する図19に示されるフーリエ変換の繰り返しにより位相分布を生成するGS法がある。この位相分布の生成の際に与えるランダムな初期位相を、前フレームの最終的な位相分布とすることにより、収束する位相分布をフレーム間で近くすることができる。これにより、電圧変動が小さくなるため再生像60の画質が向上する。 Since the image quality of the reproduced image 60 is improved as the phase distribution between the frames is closer, it is desirable to generate the phase distribution so that the voltage fluctuation between the frames becomes smaller when the phase distribution calculation circuit 51 generates the phase distribution. . For the generation of the phase distribution, there is a GS method for generating a phase distribution by repeating Fourier transform shown in FIG. 19 described below. By making the random initial phase given when generating this phase distribution the final phase distribution of the previous frame, the converging phase distribution can be made closer between frames. As a result, voltage fluctuation is reduced, and the quality of the reproduced image 60 is improved.
 図19は、第3の実施の形態に係る表示装置における目的位相分布データの生成手法の第1の例を示している。なお、ここでは、GS法によって目的位相分布データを生成する場合を例に説明するが、位相分布の計算法は、GS法以外であってもよい。位相分布の計算法としては、例えば、位相分布をフレネル領域、またはフラウンフォーファー領域の回折近似式から導く方法と、位相分布を回折ではなく自由曲面レンズとして導く方法とがある。GS法は、位相分布をフラウンフォーファー領域の回折近似式から導く方法であるが、本開示における位相分布の計算法はこれに限定されない。 FIG. 19 shows a first example of a method for generating target phase distribution data in the display device according to the third embodiment. Here, a case where target phase distribution data is generated by the GS method will be described as an example, but the phase distribution calculation method may be other than the GS method. As a calculation method of the phase distribution, for example, there are a method of deriving the phase distribution from a diffraction approximate expression of the Fresnel region or the Fraunhofer region, and a method of deriving the phase distribution as a free-form surface lens instead of diffraction. The GS method is a method of deriving the phase distribution from the diffraction approximate expression of the Fraunhofer region, but the method of calculating the phase distribution in the present disclosure is not limited to this.
 図19に示したように、位相分布演算回路51は、所定の位相分布計算法としてGS法によって目的位相分布データを生成するようにしてもよい。 As shown in FIG. 19, the phase distribution calculation circuit 51 may generate target phase distribution data by a GS method as a predetermined phase distribution calculation method.
 位相分布演算回路51は、再生したい強度分布を持つ目的再生像に対して、初期条件として、ランダム初期位相を与え、逆フーリエ変換を行う(ステップS101)。位相分布演算回路51は、これにより得られた位相と振幅のうち、位相を均一な位相に置換し(ステップS102)、目的位相分布としてもよい。ここで、均一な位相に置換するのは、光位相変調素子1では平行光によって再生を行うことを想定しているためである。 The phase distribution calculation circuit 51 gives a random initial phase as an initial condition to the target reproduction image having the intensity distribution to be reproduced, and performs inverse Fourier transform (step S101). The phase distribution calculation circuit 51 may replace the phase of the phase and amplitude obtained thereby with a uniform phase (step S102) to obtain the target phase distribution. Here, the reason why the phase is replaced with a uniform phase is that it is assumed that the optical phase modulation element 1 performs reproduction using parallel light.
 次に、位相分布演算回路51は、ステップS102で得られた位相と振幅とにフーリエ変換を行うことによって再生計算を行う(ステップS103)。これにより、再生像が計算される。 Next, the phase distribution calculation circuit 51 performs reproduction calculation by performing Fourier transform on the phase and amplitude obtained in step S102 (step S103). Thereby, a reproduced image is calculated.
 次に、位相分布演算回路51は、ステップS103で得られた位相と振幅のうち、振幅を目的再生像の振幅に置換する(ステップS104)。 Next, the phase distribution calculation circuit 51 replaces the amplitude of the phase and amplitude obtained in step S103 with the amplitude of the target reproduction image (step S104).
 次に、位相分布演算回路51は、ステップS104で得られた位相と振幅に対して、逆フーリエ変換を行い(ステップS105)、以降、ステップS102~S105の計算を繰り返す繰り返し演算(イタレーション)を行う。繰り返し演算は、目的再生像として満足する質の再生像が得られるまで行ってもよい。 Next, the phase distribution calculation circuit 51 performs inverse Fourier transform on the phase and amplitude obtained in step S104 (step S105), and thereafter repeats calculation (iteration) that repeats the calculations in steps S102 to S105. Do. The iterative calculation may be performed until a reproduced image having a quality satisfying as the target reproduced image is obtained.
 光位相変調素子1において複数のフレームまたは複数のサブフレームに亘って同一の目的再生像を再生しようとする場合、位相分布演算回路51は、フレームごと、またはサブフレームごとに、以上のGS法による演算のうち、少なくともランダム初期位相を時間的に変化させることによって、目的位相分布データの位相分布を変化させるようにしてもよい(ステップS201)。 When the same target reproduction image is to be reproduced over a plurality of frames or a plurality of subframes in the optical phase modulation element 1, the phase distribution calculation circuit 51 performs the above GS method for each frame or each subframe. Of the calculations, the phase distribution of the target phase distribution data may be changed by changing at least the random initial phase over time (step S201).
 また、同様の場合において、位相分布演算回路51は、以上のGS法による演算のうち、少なくとも繰り返し演算の回数を時間的に変化させることによって、目的位相分布データの位相分布を変化させるようにしてもよい(ステップS202)。 Further, in the same case, the phase distribution calculation circuit 51 changes the phase distribution of the target phase distribution data by changing at least the number of repetitive calculations in time among the calculations by the GS method. It is also possible (step S202).
(第2の例)
 図20は、第3の実施の形態に係る表示装置における目的位相分布データの生成手法の第2の例を示している。この第2の例では、位相分布演算回路51は、テーブル方式で目的位相分布データを生成する。
(Second example)
FIG. 20 shows a second example of a method for generating target phase distribution data in the display device according to the third embodiment. In this second example, the phase distribution calculation circuit 51 generates target phase distribution data by a table method.
 位相変調装置は、それぞれが同一の再生像を再生可能な複数の部分位相分布のデータを記憶する記憶部71を備えてもよい。記憶部71は、図20に示したように、複数の部分位相分布のデータを、位相分布データテーブルとして記憶してもよい。 The phase modulation device may include a storage unit 71 that stores data of a plurality of partial phase distributions each capable of reproducing the same reproduced image. As illustrated in FIG. 20, the storage unit 71 may store a plurality of partial phase distribution data as a phase distribution data table.
 位相分布演算回路51は、記憶部71に記憶された部分位相分布のデータを組み合わせて目的位相分布データを生成するようにしてもよい。位相分布演算回路51は、部分位相分布のデータの組み合わせを時間的にランダムに変えることにより、部分的に目的位相分布データの位相分布を変化させるようにしてもよい。 The phase distribution calculation circuit 51 may generate target phase distribution data by combining partial phase distribution data stored in the storage unit 71. The phase distribution calculation circuit 51 may partially change the phase distribution of the target phase distribution data by randomly changing the combination of the partial phase distribution data in terms of time.
 また、図20に示したように、位相分布演算回路51は、目的再生像を複数の分割領域に分割し、分割領域ごとに部分位相分布のデータを組み合わせて目的位相分布データを生成するようにしてもよい。この場合、例えば、分割領域の数をN、位相分布データテーブルとして保持する部分位相分布のデータの数をMとすると、MN通りの位相分布の組み合わせが可能となる。部分位相分布のデータの数Mが少なくても、分割領域の数を大きく(例えば数千)することで、全体として、ほぼランダムな位相分布を生成することが可能となる。 As shown in FIG. 20, the phase distribution calculation circuit 51 divides the target reproduction image into a plurality of divided regions, and generates the target phase distribution data by combining the partial phase distribution data for each divided region. May be. In this case, for example, assuming that the number of divided regions is N and the number of partial phase distribution data held as a phase distribution data table is M, MN phase distribution combinations are possible. Even if the number M of partial phase distribution data is small, it is possible to generate a substantially random phase distribution as a whole by increasing the number of divided regions (for example, thousands).
 以上の第2の例において、記憶部71に記憶された部分位相分布のデータを、波長ごとに類似するパターン、または同一のパターンとすることが望ましい。これにより、位相分布をフレーム間で近いものとすることができるので、電圧変動が小さくなり、再生像60の画質が向上する。 In the above second example, it is desirable that the partial phase distribution data stored in the storage unit 71 is a similar pattern or the same pattern for each wavelength. As a result, the phase distribution can be made close between frames, so that the voltage fluctuation is reduced and the quality of the reproduced image 60 is improved.
 その他の構成、動作および効果は、上記第1または第2の実施の形態に係る光位相制御装置、および表示装置と略同様であってもよい。 Other configurations, operations, and effects may be substantially the same as those of the optical phase control device and the display device according to the first or second embodiment.
<4.その他の実施の形態>
 本開示による技術は、上記各実施の形態の説明に限定されず種々の変形実施が可能である。
<4. Other Embodiments>
The technology according to the present disclosure is not limited to the description of each of the above embodiments, and various modifications can be made.
 例えば、本技術は以下のような構成を取ることもできる。
 以下の構成の本技術によれば、波長ごとに電圧範囲が異なり、かつ、波長が長いほど電圧範囲の最小値が小さく、最大値が大きくなるようにして、光位相変調素子に印加する波長ごとの複数の印加電圧を生成するようにしたので、光位相変調素子による再生像の画質向上を図ることが可能となる。
(1)
 光位相変調素子によって再生される波長ごとの再生像に対応する波長ごとの複数の位相分布のデータを生成する位相分布演算回路と、
 波長ごとの前記複数の位相分布のデータに基づいて、前記光位相変調素子に印加する波長ごとの複数の印加電圧を生成し、前記光位相変調素子に対して、時分割で入射した互いに波長の異なる複数の光の位相を波長ごとに時分割で変調させる駆動回路と
 を備え、
 前記駆動回路は、
 波長ごとに電圧範囲が異なり、かつ、波長が長いほど前記電圧範囲の最小値が小さく、最大値が大きくなるようにして、前記複数の印加電圧を生成する
 光位相制御装置。
(2)
 前記複数の光は、赤色光、緑色光、および青色光を含み、
 前記複数の印加電圧として、赤色の印加電圧、緑色の印加電圧、および青色の印加電圧を含み、
 前記赤色の印加電圧の最小値をRmin、最大値をRmax、
 前記緑色の印加電圧の最小値をGmin、最大値をGmax、
 前記青色の印加電圧の最小値をBmin、最大値をBmax、
 としたとき、
 前記駆動回路は、以下の条件を満たすように前記複数の印加電圧を生成する
 Rmin<Gmin<Bmin<Bmax<Gmax<Rmax
 上記(1)に記載の光位相制御装置。
(3)
 前記駆動回路は、
 前記複数の印加電圧を、最も長い波長の印加電圧の量子化レベル数が、他の波長の印加電圧の量子化レベル数よりも小さくなるように量子化する
 上記(1)または(2)に記載の光位相制御装置。
(4)
 前記位相分布演算回路は、前記複数の位相分布のデータを波長ごとに順次、生成するようになされ、時間的に1つ前に生成した位相分布のデータに基づいて生成された印加電圧と現在の位相分布のデータに基づいて生成される印加電圧との電圧変化量が最小となるように、前記複数の位相分布のデータを生成する
 上記(1)ないし(3)のいずれか1つに記載の光位相制御装置。
(5)
 前記位相分布演算回路は、前記時間的に1つ前に生成した位相分布のデータを参照して、前記現在の位相分布のデータを生成する
 上記(4)に記載の光位相制御装置。
(6)
 互いに波長の異なる複数の光を時分割で出射する光源と、
 前記光源からの前記複数の光の位相を波長ごとに時分割で変調して、波長ごとの複数の再生像を時分割で再生する光位相変調素子と、
 前記光位相変調素子によって再生される波長ごとの前記複数の再生像に対応する波長ごとの複数の位相分布のデータを生成する位相分布演算回路と、
 波長ごとの前記複数の位相分布のデータに基づいて、前記光位相変調素子に印加する波長ごとの複数の印加電圧を生成し、前記光位相変調素子に対して、前記複数の光の位相を波長ごとに時分割で変調させる駆動回路と
 を備え、
 前記駆動回路は、
 波長ごとに電圧範囲が異なり、かつ、波長が長いほど前記電圧範囲の最小値が小さく、最大値が大きくなるようにして、前記複数の印加電圧を生成する
 表示装置。
(7)
 前記光位相変調素子による前記再生像を照明光とし、前記照明光を強度変調して画像を生成する光強度変調素子、をさらに備えた
 上記(6)に記載の表示装置。
For example, this technique can also take the following structures.
According to the present technology having the following configuration, the voltage range is different for each wavelength, and the longer the wavelength, the smaller the minimum value of the voltage range and the larger the maximum value. Thus, it is possible to improve the image quality of the reproduced image by the optical phase modulation element.
(1)
A phase distribution arithmetic circuit that generates data of a plurality of phase distributions for each wavelength corresponding to a reproduction image for each wavelength reproduced by the optical phase modulation element;
Based on the data of the plurality of phase distributions for each wavelength, a plurality of applied voltages for each wavelength to be applied to the optical phase modulation element are generated, and the wavelength of each wavelength incident on the optical phase modulation element in a time division manner is generated. And a drive circuit that modulates the phase of a plurality of different lights by wavelength for each wavelength,
The drive circuit is
An optical phase control device that generates the plurality of applied voltages in such a manner that the voltage range differs for each wavelength and the longer the wavelength, the smaller the minimum value of the voltage range and the larger the maximum value.
(2)
The plurality of lights includes red light, green light, and blue light,
The plurality of applied voltages include a red applied voltage, a green applied voltage, and a blue applied voltage,
The minimum value of the red applied voltage is Rmin, the maximum value is Rmax,
The minimum value of the green applied voltage is Gmin, the maximum value is Gmax,
The minimum value of the blue applied voltage is Bmin, the maximum value is Bmax,
When
The drive circuit generates the plurality of applied voltages so as to satisfy the following conditions: Rmin <Gmin <Bmin <Bmax <Gmax <Rmax
The optical phase control device according to (1) above.
(3)
The drive circuit is
The plurality of applied voltages are quantized so that the number of quantization levels of the applied voltage with the longest wavelength is smaller than the number of quantization levels of the applied voltages with other wavelengths. (1) or (2) Optical phase control device.
(4)
The phase distribution calculation circuit is configured to sequentially generate data of the plurality of phase distributions for each wavelength. The applied voltage generated based on the phase distribution data generated one time earlier and the current The data of the plurality of phase distributions is generated so that a voltage change amount with the applied voltage generated based on the data of the phase distribution is minimized. The one of the above (1) to (3) Optical phase control device.
(5)
The optical phase control device according to (4), wherein the phase distribution calculation circuit generates the current phase distribution data with reference to the phase distribution data generated one time before.
(6)
A light source that emits a plurality of lights having different wavelengths in a time-sharing manner;
An optical phase modulation element that modulates the phase of the plurality of lights from the light source for each wavelength in a time division manner and reproduces a plurality of reproduction images for each wavelength in a time division manner;
A phase distribution calculation circuit that generates data of a plurality of phase distributions for each wavelength corresponding to the plurality of reproduced images for each wavelength reproduced by the optical phase modulation element;
Based on the data of the plurality of phase distributions for each wavelength, a plurality of applied voltages for each wavelength to be applied to the optical phase modulation element are generated, and the phases of the plurality of lights are converted to wavelengths with respect to the optical phase modulation element. Each with a drive circuit that modulates in a time-sharing manner,
The drive circuit is
A display device that generates the plurality of applied voltages such that the voltage range differs for each wavelength and the minimum value of the voltage range decreases and the maximum value increases as the wavelength increases.
(7)
The display device according to (6), further including: a light intensity modulation element that generates the image by using the reproduced image by the optical phase modulation element as illumination light and modulating the intensity of the illumination light.
 本出願は、日本国特許庁において2018年4月26日に出願された日本特許出願番号第2018-084690号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2018-084690 filed on April 26, 2018 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (7)

  1.  光位相変調素子によって再生される波長ごとの再生像に対応する波長ごとの複数の位相分布のデータを生成する位相分布演算回路と、
     波長ごとの前記複数の位相分布のデータに基づいて、前記光位相変調素子に印加する波長ごとの複数の印加電圧を生成し、前記光位相変調素子に対して、時分割で入射した互いに波長の異なる複数の光の位相を波長ごとに時分割で変調させる駆動回路と
     を備え、
     前記駆動回路は、
     波長ごとに電圧範囲が異なり、かつ、波長が長いほど前記電圧範囲の最小値が小さく、最大値が大きくなるようにして、前記複数の印加電圧を生成する
     光位相制御装置。
    A phase distribution arithmetic circuit that generates data of a plurality of phase distributions for each wavelength corresponding to a reproduction image for each wavelength reproduced by the optical phase modulation element;
    Based on the data of the plurality of phase distributions for each wavelength, a plurality of applied voltages for each wavelength to be applied to the optical phase modulation element are generated, and the wavelength of each wavelength incident on the optical phase modulation element in a time division manner is generated. And a drive circuit that modulates the phase of a plurality of different lights by wavelength for each wavelength,
    The drive circuit is
    An optical phase control device that generates the plurality of applied voltages in such a manner that the voltage range differs for each wavelength and the longer the wavelength, the smaller the minimum value of the voltage range and the larger the maximum value.
  2.  前記複数の光は、赤色光、緑色光、および青色光を含み、
     前記複数の印加電圧として、赤色の印加電圧、緑色の印加電圧、および青色の印加電圧を含み、
     前記赤色の印加電圧の最小値をRmin、最大値をRmax、
     前記緑色の印加電圧の最小値をGmin、最大値をGmax、
     前記青色の印加電圧の最小値をBmin、最大値をBmax、
     としたとき、
     前記駆動回路は、以下の条件を満たすように前記複数の印加電圧を生成する
     Rmin<Gmin<Bmin<Bmax<Gmax<Rmax
     請求項1に記載の光位相制御装置。
    The plurality of lights includes red light, green light, and blue light,
    The plurality of applied voltages include a red applied voltage, a green applied voltage, and a blue applied voltage,
    The minimum value of the red applied voltage is Rmin, the maximum value is Rmax,
    The minimum value of the green applied voltage is Gmin, the maximum value is Gmax,
    The minimum value of the blue applied voltage is Bmin, the maximum value is Bmax,
    When
    The drive circuit generates the plurality of applied voltages so as to satisfy the following conditions: Rmin <Gmin <Bmin <Bmax <Gmax <Rmax
    The optical phase control device according to claim 1.
  3.  前記駆動回路は、
     前記複数の印加電圧を、最も長い波長の印加電圧の量子化レベル数が、他の波長の印加電圧の量子化レベル数よりも小さくなるように量子化する
     請求項1に記載の光位相制御装置。
    The drive circuit is
    The optical phase control device according to claim 1, wherein the plurality of applied voltages are quantized so that the number of quantization levels of the applied voltage having the longest wavelength is smaller than the number of quantization levels of the applied voltages of other wavelengths. .
  4.  前記位相分布演算回路は、前記複数の位相分布のデータを波長ごとに順次、生成するようになされ、時間的に1つ前に生成した位相分布のデータに基づいて生成された印加電圧と現在の位相分布のデータに基づいて生成される印加電圧との電圧変化量が最小となるように、前記複数の位相分布のデータを生成する
     請求項1に記載の光位相制御装置。
    The phase distribution calculation circuit is configured to sequentially generate data of the plurality of phase distributions for each wavelength. The applied voltage generated based on the phase distribution data generated one time earlier and the current The optical phase control device according to claim 1, wherein the plurality of phase distribution data are generated so that a voltage change amount with respect to an applied voltage generated based on the phase distribution data is minimized.
  5.  前記位相分布演算回路は、前記時間的に1つ前に生成した位相分布のデータを参照して、前記現在の位相分布のデータを生成する
     請求項4に記載の光位相制御装置。
    The optical phase control device according to claim 4, wherein the phase distribution calculation circuit generates the current phase distribution data with reference to the phase distribution data generated immediately before in time.
  6.  互いに波長の異なる複数の光を時分割で出射する光源と、
     前記光源からの前記複数の光の位相を波長ごとに時分割で変調して、波長ごとの複数の再生像を時分割で再生する光位相変調素子と、
     前記光位相変調素子によって再生される波長ごとの前記複数の再生像に対応する波長ごとの複数の位相分布のデータを生成する位相分布演算回路と、
     波長ごとの前記複数の位相分布のデータに基づいて、前記光位相変調素子に印加する波長ごとの複数の印加電圧を生成し、前記光位相変調素子に対して、前記複数の光の位相を波長ごとに時分割で変調させる駆動回路と
     を備え、
     前記駆動回路は、
     波長ごとに電圧範囲が異なり、かつ、波長が長いほど前記電圧範囲の最小値が小さく、最大値が大きくなるようにして、前記複数の印加電圧を生成する
     表示装置。
    A light source that emits a plurality of lights having different wavelengths in a time-sharing manner;
    An optical phase modulation element that modulates the phase of the plurality of lights from the light source for each wavelength in a time division manner and reproduces a plurality of reproduction images for each wavelength in a time division manner;
    A phase distribution calculation circuit that generates data of a plurality of phase distributions for each wavelength corresponding to the plurality of reproduced images for each wavelength reproduced by the optical phase modulation element;
    Based on the data of the plurality of phase distributions for each wavelength, a plurality of applied voltages for each wavelength to be applied to the optical phase modulation element are generated, and the phases of the plurality of lights are converted to wavelengths with respect to the optical phase modulation element. Each with a drive circuit that modulates in a time-sharing manner,
    The drive circuit is
    A display device that generates the plurality of applied voltages such that the voltage range differs for each wavelength and the minimum value of the voltage range decreases and the maximum value increases as the wavelength increases.
  7.  前記光位相変調素子による前記再生像を照明光とし、前記照明光を強度変調して画像を生成する光強度変調素子、をさらに備えた
     請求項6に記載の表示装置。
    The display device according to claim 6, further comprising: a light intensity modulation element that uses the reproduced image by the optical phase modulation element as illumination light and modulates the intensity of the illumination light to generate an image.
PCT/JP2019/015457 2018-04-26 2019-04-09 Optical phase control device and display device WO2019208205A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980026796.9A CN112005547B (en) 2018-04-26 2019-04-09 Optical phase control device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018084690 2018-04-26
JP2018-084690 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019208205A1 true WO2019208205A1 (en) 2019-10-31

Family

ID=68293591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015457 WO2019208205A1 (en) 2018-04-26 2019-04-09 Optical phase control device and display device

Country Status (2)

Country Link
CN (1) CN112005547B (en)
WO (1) WO2019208205A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162637A1 (en) * 2022-02-24 2023-08-31 ソニーグループ株式会社 Lighting device and projector device
WO2023223894A1 (en) * 2022-05-19 2023-11-23 ソニーグループ株式会社 Phase modulator
WO2024080083A1 (en) * 2022-10-13 2024-04-18 ソニーセミコンダクタソリューションズ株式会社 Phase modulation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145546A (en) * 2006-12-06 2008-06-26 Olympus Corp Projection apparatus
WO2013094011A1 (en) * 2011-12-20 2013-06-27 Necディスプレイソリューションズ株式会社 Image projection device and control method for same
WO2017059537A1 (en) * 2015-10-06 2017-04-13 Mtt Innovation Incorporated Projection systems and methods

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331060B1 (en) * 1998-10-08 2001-12-18 Sony Corporation Projection-type display device and method of adjustment thereof
US7202917B2 (en) * 2000-06-16 2007-04-10 Sharp Kabushiki Kaisha Projection type image display device
US6577429B1 (en) * 2002-01-15 2003-06-10 Eastman Kodak Company Laser projection display system
JP4910388B2 (en) * 2005-12-22 2012-04-04 株式会社日立製作所 Optical modulation device, optical transmitter, and optical transmission device
JP4923850B2 (en) * 2006-08-21 2012-04-25 ソニー株式会社 Light source device and light source control method
JP4420051B2 (en) * 2007-03-28 2010-02-24 ソニー株式会社 Laser light generator
US8123359B2 (en) * 2007-07-13 2012-02-28 Sanyo Electric Co., Ltd. Illumination apparatus and projection display apparatus
CN101718938B (en) * 2009-11-13 2011-06-29 南京大学 Dispersion control module and wavelength separator
JP5452318B2 (en) * 2010-03-31 2014-03-26 日立コンシューマエレクトロニクス株式会社 Laser projector
JP5874202B2 (en) * 2011-05-30 2016-03-02 富士通株式会社 OPTICAL TRANSMITTER, ITS CONTROL METHOD, AND OPTICAL TRANSMISSION SYSTEM
JP2017112502A (en) * 2015-12-16 2017-06-22 富士通株式会社 Transmission device and phase modulation adjusting method
CN105529608B (en) * 2016-02-01 2018-08-14 中国科学院上海光学精密机械研究所 The frequency-transposition arrangement of automatically controlled tunable wave length
JP6586655B2 (en) * 2016-04-28 2019-10-09 サンテック株式会社 Spatial light modulation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145546A (en) * 2006-12-06 2008-06-26 Olympus Corp Projection apparatus
WO2013094011A1 (en) * 2011-12-20 2013-06-27 Necディスプレイソリューションズ株式会社 Image projection device and control method for same
WO2017059537A1 (en) * 2015-10-06 2017-04-13 Mtt Innovation Incorporated Projection systems and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162637A1 (en) * 2022-02-24 2023-08-31 ソニーグループ株式会社 Lighting device and projector device
WO2023223894A1 (en) * 2022-05-19 2023-11-23 ソニーグループ株式会社 Phase modulator
WO2024080083A1 (en) * 2022-10-13 2024-04-18 ソニーセミコンダクタソリューションズ株式会社 Phase modulation device

Also Published As

Publication number Publication date
CN112005547A (en) 2020-11-27
CN112005547B (en) 2022-09-13

Similar Documents

Publication Publication Date Title
US9918052B2 (en) Multiple stage modulation projector display systems having efficient light utilization
KR100548690B1 (en) Projection display apparatus
US9262995B2 (en) Image projection apparatus and control method therefor
WO2019208205A1 (en) Optical phase control device and display device
JP6237020B2 (en) Image display device and method for controlling image display device
JP6047987B2 (en) Projection type display device and control method thereof
JP2011502272A (en) Image display device
US20070076019A1 (en) Modulating images for display
JP3890968B2 (en) Projection type display device, display device and driving method thereof
JP5104205B2 (en) Image display device
US11796904B2 (en) Phase modulator, lighting system, and projector
US11676546B2 (en) Display apparatus and method of adjusting display apparatus to display a phase distribution pattern
WO2019220841A1 (en) Phase modulation device and display device
JP2004309622A (en) Image display device and its gradation expression method, and projection display device
JP7353307B2 (en) display device
WO2018179996A1 (en) Lighting device and projector
US20190180670A1 (en) Liquid crystal driving apparatus and liquid crystal display apparatus
WO2022196094A1 (en) Projector apparatus, light source apparatus, and light source driving method
JP2012181531A (en) Image display device
WO2020156295A1 (en) Display method, display system and computer storage medium
WO2023002675A1 (en) Lighting device
US20240146886A1 (en) Projector apparatus, light source device, and light source drive method
JP6508277B2 (en) projector
CN116471388A (en) Modulation method for projection device, modulation device, projection device, and storage medium
JP2019053214A (en) Projector and image display method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP