WO2019208113A1 - 計算装置、計算方法及びプログラム - Google Patents

計算装置、計算方法及びプログラム Download PDF

Info

Publication number
WO2019208113A1
WO2019208113A1 PCT/JP2019/014460 JP2019014460W WO2019208113A1 WO 2019208113 A1 WO2019208113 A1 WO 2019208113A1 JP 2019014460 W JP2019014460 W JP 2019014460W WO 2019208113 A1 WO2019208113 A1 WO 2019208113A1
Authority
WO
WIPO (PCT)
Prior art keywords
function
calculation unit
proximity point
calculation
functions
Prior art date
Application number
PCT/JP2019/014460
Other languages
English (en)
French (fr)
Inventor
直貴 丸茂
具治 岩田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/050,760 priority Critical patent/US20210232656A1/en
Publication of WO2019208113A1 publication Critical patent/WO2019208113A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/17Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound

Definitions

  • the present invention relates to a technique for solving an optimization problem.
  • Non-Patent Document 1 is a method for obtaining a solution of an optimization function expressed by the sum of two terms, and is useful even when the optimization function is ill-conditioned. It is not possible to find a solution for an optimization problem under a complex structure with two required structures.
  • the methods of Non-Patent Documents 2 to 4 can handle optimization problems under a composite structure, but if the function to be minimized is ill-conditioned, it takes a long time to obtain a solution. .
  • an object of the present invention is to provide a method capable of obtaining a solution for an optimization problem under a composite structure at high speed even when a function to be minimized is ill-conditioned.
  • one aspect of the present invention is a computing device that calculates an optimal solution of an optimization function f + g + h expressed by the sum of three functions f, g, and h.
  • the second calculation unit Based on the first calculation unit, the second calculation unit calculating the approximate proximity point of the function F, the proximity point calculated by the first calculation unit, and the approximate proximity point calculated by the second calculation unit A convergence determination unit that determines whether a predetermined end condition is satisfied and causes the first calculation unit and the second calculation unit to repeatedly calculate the proximity point and the approximate proximity point until the predetermined end condition is satisfied. And a computing device having
  • the solution to the optimization problem under the composite structure can be obtained at high speed even when the function to be minimized is ill-conditioned.
  • a computing device for calculating an optimal solution of an optimization problem under a composite structure has three functions:
  • an optimum solution can be obtained at high speed even when the function f (Ax) + g (x) + h (x) to be minimized is ill-conditioned.
  • FIG. 1 is a block diagram showing a functional configuration of a computing device according to an embodiment of the present invention.
  • the computing device 100 includes a storage unit 110, an initialization unit 120, a first calculation unit 130, a second calculation unit 140, and a convergence determination unit 150.
  • the storage unit 110 stores parameters for specifying the target optimization problem. Specifically, the storage unit 110 includes three functions constituting the optimization function.
  • f is a function that should be minimized
  • g and h are functions that impose constraints or regularization on the function f that should be minimized, that is, a function that represents the structure required for the solution. It is.
  • the function to be optimized is expressed as follows.
  • the initialization unit 120 sets the value of the first point z 1 of the point sequence ⁇ z t ⁇ (t is an index and represents the number of repetitions) used for calculating the proximity point in the subsequent processing.
  • z 1 is a real d-dimensional vector, and the initialization unit 120 sets the value of each element of the vector z 1 to any appropriate real number.
  • the first calculation unit 130 calculates a proximity point prox y H of z t about functions h (z t). Specifically, the first calculation unit 130
  • the termination condition may be that a predetermined evaluation function representing the accuracy of the current solution x t has reached a predetermined threshold, or that the number of repetitions t has reached a predetermined threshold.
  • the evaluation function reaches a predetermined threshold when, for example, the reduction amount f (x t-1 ) -f (x t ) of the training error is smaller than the predetermined threshold, or the reduction amount of the validation error is the predetermined threshold.
  • the minimum value of the validation error calculated from the solutions x 1 ,..., X t may not be updated for a predetermined number of iterations.
  • the computing device 100 may typically be realized by a computing device such as a server, for example, a drive device, an auxiliary storage device, a memory device, a processor, an interface device, and the like that are interconnected via the bus B. You may comprise from a communication apparatus.
  • Various computer programs including programs for realizing various functions and processes in the computing device 100 may be provided by a recording medium such as a CD-ROM (Compact Disk-Read Only Memory), a DVD (Digital Versatile Disk), or a flash memory. .
  • a recording medium such as a CD-ROM (Compact Disk-Read Only Memory), a DVD (Digital Versatile Disk), or a flash memory.
  • the recording medium storing the program is set in the drive device, the program is installed from the recording medium to the auxiliary storage device via the drive device.
  • the auxiliary storage device stores the installed program and also stores necessary files and data.
  • the processor executes various functions and processes of the computing device 100 described above according to various data such as a program stored in the memory device and parameters necessary for executing the program.
  • the interface device is used as a communication interface for connecting to a network or an external device.
  • the communication device executes various communication processes for communicating with a network such as the Internet.
  • computing device 100 is not limited to the hardware configuration described above, and may be realized by any other appropriate hardware configuration.
  • FIG. 2 is a flowchart showing an optimal solution calculation process according to an embodiment of the present invention.
  • step S101 the storage unit 110 stores three functions f, g, h, a matrix A, and a parameter ⁇ that constitute the optimization function input to the computing device 100.
  • step S103 first calculating unit 130, proximity point prox y H of z t about functions h a (z t) calculated by Douglas-Rachford method, it is substituted into x t.
  • step S104 second calculating unit 140, an approximation proximity points of the function f, which is the sum of g f + g about u t calculated by the main dual method, it is substituted into y t.
  • step S105 the convergence determination unit 150 calculates z t + y t ⁇ x t and substitutes it in z t + 1 .
  • step S106 the convergence determination unit 150 determines whether a predetermined end condition is satisfied. If the end condition is satisfied (S106: Yes), the process proceeds to step S107, and the computing device 100 calculates the solution x t . Output. On the other hand, when the termination condition is not satisfied (S106: No), the convergence determination unit 150 increments the index t by 1, returns to step S103, and repeats steps S103 to S106 described above.
  • FIG. 3 is a flowchart showing the main dual processing according to an embodiment of the present invention.
  • the dual solution ⁇ t is calculated simultaneously in addition to the approximate proximity point y t .
  • step S201 second calculating unit 140 initializes the y t and beta t. Specifically, the second calculation unit 140 uses y t-1 and ⁇ t-1 ,
  • the beta t is initialized by using the further initialized beta t,
  • ⁇ f represents the gradient of f
  • ⁇ (0, 1) is a parameter determined by backtracking.
  • step S202 the second calculation unit 140
  • step S203 the second calculation unit 140
  • step S204 the second calculation unit 140
  • f * represents a convex conjugate function of the function f
  • the symbols ⁇ •, •> represent standard inner products in the Euclidean space.
  • step S205 the second calculation unit 140 determines that the current (y t , ⁇ t ) is based on the main dual gap.
  • the second calculator 140 increments the index t by 1 and returns to the update process of ⁇ t in step S202. In this way, the second calculation unit 140 repeatedly updates y t and ⁇ t until a predetermined termination condition is satisfied, that is, until the main dual gap becomes equal to or smaller than a predetermined error.
  • FIG. 4 is a diagram showing a comparison of the convergence time between the optimum solution calculation process according to an embodiment of the present invention and the conventional technique.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Operations Research (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Complex Calculations (AREA)

Abstract

複合構造下での最適化問題の解を、最小化すべき関数が悪条件な場合にも高速に得ることができる手法が開示される。本発明の一態様は、3つの関数f, g, hの和で表される最適化関数f+g+hの最適解を計算する計算装置であって、2つの関数f, gの和で表される関数F=f+gと関数hとの和の関数F+hによって前記最適化関数f+g+hを表し、前記関数F+hの近接点を計算する第1計算部と、前記関数Fの近似近接点を計算する第2計算部と、前記第1計算部によって計算された近接点と前記第2計算部によって計算された近似近接点とに基づき所定の終了条件が充足されたか判定し、前記所定の終了条件が充足されるまで前記第1計算部と前記第2計算部とに前記近接点と前記近似近接点とを繰り返し計算させる収束判定部と、を有する計算装置に関する。

Description

計算装置、計算方法及びプログラム
 本発明は、最適化問題を解くための技術に関する。
 通常、最適化問題では、ある関数の値を最小化する解を計算する。解のうち、ある良い構造を持った解を求めたい場合には、最小化すべき関数に制約や正則化を課す項を付け加え、二つの項の和を最小化する解を計算する。例えば、統計学でしばしば用いられるリッジ回帰やスパースロジスティック回帰では、二つの項の和の最小化問題を解く。二つの項の和を最小化する解を計算する方法としては、Douglas-Rachford法が知られている(非特許文献1)。
 さらに、解に要請する構造が二つある場合は、三つの項の和の最小化問題を解く。このような複合構造下での最適化問題は、サポートベクターマシンや圧縮センシング、スパース共分散行列推定などで現れる。複合構造下での最適化問題を解くために、いくつかの手法が提案されている(非特許文献2~4)。
Damek Davis and Wotao Yin. Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions. Mathematics of Operations Research, 2017. Radu Ioan Bot and Erno Robert Csetnek. On the convergence rate of a forward-backward type primal-dual splitting algorithm for convex optimization problems. Optimization, 64(1):5-23, 2015. Laurent Condat. A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. Journal of Optimization Theory and Applications, 158(2):460-479, 2013. Damek Davis and Wotao Yin. A three-operator splitting scheme and its optimization applications. Set-Valued and Variational Analysis, pages 1-30, 2015.
 しかしながら、非特許文献1の手法は2項の和で表現される最適化関数の解を求める手法であり、最適化関数が悪条件(ill-conditioned)である場合でも有用であるが、解に要請する構造が二つある複合構造下での最適化問題の解を求めることはできない。また、非特許文献2~4の手法は複合構造下での最適化問題を扱うことができるが、最小化すべき関数が悪条件な場合、解を得るために長時間かかってしまうという問題がある。
 上述した問題点を鑑み、本発明の課題は、複合構造下での最適化問題の解を、最小化すべき関数が悪条件な場合にも高速に得ることができる手法を提供することである。
 上記課題を解決するため、本発明の一態様は、3つの関数f, g, hの和で表される最適化関数f+g+hの最適解を計算する計算装置であって、2つの関数f, gの和で表される関数F=f+gと関数hとの和の関数F+hによって前記最適化関数f+g+hを表し、前記関数F+hの近接点を計算する第1計算部と、前記関数Fの近似近接点を計算する第2計算部と、前記第1計算部によって計算された近接点と前記第2計算部によって計算された近似近接点とに基づき所定の終了条件が充足されたか判定し、前記所定の終了条件が充足されるまで前記第1計算部と前記第2計算部とに前記近接点と前記近似近接点とを繰り返し計算させる収束判定部と、を有する計算装置に関する。
 本発明によると、複合構造下での最適化問題の解を、最小化すべき関数が悪条件な場合にも高速に得ることができる。
本発明の一実施例による計算装置の機能構成を示すブロック図である。 本発明の一実施例による最適解計算処理を示すフローチャートである。 本発明の一実施例による主双対法の処理を示すフローチャートである。 本発明の一実施例による最適解計算処理と従来技術との収束時間の比較を示す図である。
 以下の実施例では、複合構造下での最適化問題の最適解を計算する計算装置が開示される。より詳細には、以下の実施例による計算装置は、3つの関数
Figure JPOXMLDOC01-appb-M000001



と行列
Figure JPOXMLDOC01-appb-M000002
により定まる最適化問題
Figure JPOXMLDOC01-appb-M000003
の最適解を計算する。以下の実施例による計算装置によると、最小化すべき関数f(Ax)+g(x)+h(x)が悪条件な場合にも、最適解を高速に取得することができる。
 まず、図1を参照して、本発明の一実施例による計算装置を説明する。図1は、本発明の一実施例による計算装置の機能構成を示すブロック図である。
 図1に示されるように、計算装置100は、記憶部110、初期化部120、第1計算部130、第2計算部140及び収束判定部150を有する。
 記憶部110は、対象とする最適化問題を特定するパラメータを格納する。具体的には、記憶部110は、最適化関数を構成する3つの関数
Figure JPOXMLDOC01-appb-M000004
と、行列
Figure JPOXMLDOC01-appb-M000005


と、後述の計算過程で用いられるパラメータ
Figure JPOXMLDOC01-appb-M000006
を格納する。ここで、γは正の実数であり、任意に設定することができる。例えば、γ=1であってもよい。これらの各関数、行列、パラメータ等は予め外部から入力され、記憶部110に記憶されるものとする。
 上記の3つの関数f, g, hのうち、fは最小化すべき関数であり、g, hは最小化すべき関数fに制約や正則化を課す関数、すなわち、解に要請する構造を表す関数である。最適化の対象となる関数は以下のように表される。
Figure JPOXMLDOC01-appb-M000007
 初期化部120は、以降の処理で近接点の計算に用いる点列{zt}(tはインデックスであり、繰り返し回数を表す)の先頭の点z1の値を設定する。z1は実d次元ベクトルであり、初期化部120は、ベクトルz1の各要素の値を何れか適当な実数に設定する。また、初期化部120は、繰り返し回数tをt=1に設定する。
 第1計算部130は、関数hに関するztの近接点proxγh(zt)を計算する。具体的には、第1計算部130は、
Figure JPOXMLDOC01-appb-M000008
とし、最小化の対象となる関数である式(1)をF(x)とh(x)との2つの関数の和
Figure JPOXMLDOC01-appb-M000009
とみなし、Douglas-Rachford法により近接点proxγh(zt)を求め、これをxtとする。
 第2計算部140は、第1計算部130において求められた近接点xtを用いて点ut(ここで、ut=2xt-zt)を計算し、上記関数F(x)に関するutの近似近接点yt、すなわち、近接点proxγF(ut)に近い点ytを計算する。当該計算について、本実施例では、第2計算部140は、主双対法を用いる。主双対法の処理の詳細については後述する。
 収束判定部150は、第1計算部130において求められたxt、第2計算部140において求められたyt及び現在のztを用いて次の点zt+1(ここで、zt+1=zt+yt-xt)を計算し、予め定めた終了条件を満たす場合、当該処理を終了し、解xtを出力する。予め定めた終了条件を満たさない場合、収束判定部150は、tに1を加算し、第1計算部130に近接点の計算を繰り返させる。例えば、終了条件としては、現在の解xtの精度を表す所定の評価関数が所定の閾値に達したこと、あるいは、繰り返し回数tが所定の閾値に到達したこと等を用いてもよい。評価関数が所定の閾値に到達するとは、例えば、訓練誤差の減少量 f(xt-1)-f(xt)が予め定めた閾値より小さいこと、バリデーション誤差の減少量が予め定めた閾値より小さいこと、解x1,...,xtから計算されるバリデーション誤差の最小値が予め定めた回数の反復の間更新されないこと、などであってもよい。
 ここで、計算装置100は、典型的には、サーバなどの計算装置により実現されてもよく、例えば、バスBを介し相互接続されるドライブ装置、補助記憶装置、メモリ装置、プロセッサ、インタフェース装置及び通信装置から構成されてもよい。計算装置100における各種機能及び処理を実現するプログラムを含む各種コンピュータプログラムは、CD-ROM(Compact Disk-Read Only Memory)、DVD(Digital Versatile Disk)、フラッシュメモリなどの記録媒体によって提供されてもよい。プログラムを記憶した記録媒体がドライブ装置にセットされると、プログラムが記録媒体からドライブ装置を介して補助記憶装置にインストールされる。但し、プログラムのインストールは必ずしも記録媒体により行う必要はなく、ネットワークなどを介し何れかの外部装置からダウンロードするようにしてもよい。補助記憶装置は、インストールされたプログラムを格納すると共に、必要なファイルやデータなどを格納する。メモリ装置、プログラムの起動指示があった場合に、補助記憶装置からプログラムやデータを読み出して格納する。プロセッサは、メモリ装置に格納されたプログラムやプログラムを実行するのに必要なパラメータなどの各種データに従って、上述した計算装置100の各種機能及び処理を実行する。インタフェース装置は、ネットワーク又は外部装置に接続するための通信インタフェースとして用いられる。通信装置は、インターネットなどのネットワークと通信するための各種通信処理を実行する。
 しかしながら、計算装置100は、上述したハードウェア構成に限定されるものでなく、他の何れか適切なハードウェア構成により実現されてもよい。
 次に、図2を参照して、本発明の一実施例による最適解計算処理を説明する。図2は、本発明の一実施例による最適解計算処理を示すフローチャートである。
 ステップS101において、記憶部110は、計算装置100に入力された最適化関数を構成する3つの関数f, g, h、行列A及びパラメータγを格納する。
 ステップS102において、初期化部120は、点列{zt}について、インデックスtをt=1に設定すると共に、z1を零ベクトルに初期化する。
 ステップS103において、第1計算部130は、関数hに関するztの近接点proxγh(zt)をDouglas-Rachford法によって計算し、xtに代入する。
 ステップS104において、第2計算部140は、関数f, gの和であるf+gに関するutの近似近接点を主双対法によって計算し、ytに代入する。
 ステップS105において、収束判定部150は、zt+yt-xtを計算し、zt+1に代入する。
 ステップS106において、収束判定部150は、所定の終了条件が充足されたか判定し、終了条件が充足されている場合(S106:Yes)、ステップS107に移行し、計算装置100は、解xtを出力する。他方、終了条件が充足されていない場合(S106:No)、収束判定部150は、インデックスtを1だけインクリメントし、ステップS103に戻って、上述したステップS103~S106が繰り返される。
 次に、図3を参照して、本発明の一実施例によるステップS104における主双対法の処理の詳細を説明する。図3は、本発明の一実施例による主双対法の処理を示すフローチャートである。すなわち、図3では、第2計算部140において主双対法によって関数F(F=f+g)に関するut(ここで、ut=2xt-zt)の近似近接点ytを計算するステップS103の詳細が示される。本実施例による主双対法では、近似近接点ytの他に双対解βtも同時に計算される。
 図3に示されるように、ステップS201において、第2計算部140は、yt及びβtを初期化する。具体的には、第2計算部140は、yt-1及びβt-1を用いて、
Figure JPOXMLDOC01-appb-M000010
によりβtを初期化し、さらに初期化されたβtを用いて、
Figure JPOXMLDOC01-appb-M000011
をytを初期化する。ここで、∇fはfの勾配を表し、θ∈(0, 1)はバックトラッキングにより定められるパラメータである。
 ステップS202において、第2計算部140は、
Figure JPOXMLDOC01-appb-M000012
によってβtを更新する。
 ステップS203において、第2計算部140は、
Figure JPOXMLDOC01-appb-M000013
によってytを更新する。
 ステップS204において、第2計算部140は、
Figure JPOXMLDOC01-appb-M000014
によって主双対ギャップG(yt, βt)を計算する。ここで、f*は関数fの凸共役関数を表し、記号〈・,・〉はユークリッド空間上の標準内積を表す。
 ステップS205において、第2計算部140は、現在の(yt, βt)が主双対ギャップに基づく終了条件
Figure JPOXMLDOC01-appb-M000015
を満たしていたら(S205:Yes)、当該処理を終了し、現在のytを収束判定部150にわたす。他方、満たしていなければ(S205:No)、第2計算部140は、インデックスtに1だけインクリメントし、ステップS202のβtの更新処理に戻る。このようにして、所定の終了条件を満たすまで、つまり、主双対ギャップが所定の誤差以下となるまで、第2計算部140は、yt及びβtを繰り返し更新する。
 次に、図4を参照して、本発明と従来技術との数値実験結果を説明する。図4は、本発明の一実施例による最適解計算処理と従来技術との収束時間の比較を示す図である。
 図4に示される6つの実データセットを用いて、カーネルサポートベクターマシンの最適化問題を各手法で解いた。従来技術としては、非特許文献4に示されるDavis-Yin法(DYS)と、非特許文献2,3に示されるprimal-dual proximal splitting(PDPS)を用いた。
 図4では、各手法が収束するまでの時間が比較され、最適解との相対誤差が10-1以下である解が得られたとき、収束したとみなした。カーネル関数にはガウシアンカーネルを用い、計算を簡単にするためNystrom近似を用いた。この図から、多くの場合で本発明は従来技術より100倍程度以上高速であることが分かる。
 以上、本発明の実施例について詳述したが、本発明は上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
100 計算装置
110 記憶部
120 初期化部
130 第1計算部
140 第2計算部
150 収束判定部

Claims (8)

  1.  3つの関数f, g, hの和で表される最適化関数f+g+hの最適解を計算する計算装置であって、
     2つの関数f, gの和で表される関数F=f+gと関数hとの和の関数F+hによって前記最適化関数f+g+hを表し、前記関数F+hの近接点を計算する第1計算部と、
     前記関数Fの近似近接点を計算する第2計算部と、
     前記第1計算部によって計算された近接点と前記第2計算部によって計算された近似近接点とに基づき所定の終了条件が充足されたか判定し、前記所定の終了条件が充足されるまで前記第1計算部と前記第2計算部とに前記近接点と前記近似近接点とを繰り返し計算させる収束判定部と、
    を有する計算装置。
  2.  前記第1計算部は、Douglas-Rachford法によって前記関数F+hの近接点を計算する、請求項1記載の計算装置。
  3.  前記第2計算部は、主双対法によって前記関数Fの近似近接点を計算する、請求項1又は2記載の計算装置。
  4.  前記第2計算部は、双対解を利用することによって前記近似近接点を計算する、請求項1乃至3何れか一項記載の計算装置。
  5.  前記終了条件は、現在の近接点の精度を表す所定の評価関数が所定の閾値に達したこと、あるいは、繰り返し回数が所定の閾値に到達したことである、請求項1乃至4何れか一項記載の計算装置。
  6.  前記関数fは最適化の対象となる関数であり、前記関数g, hは前記関数fに制約を課す関数である、請求項1乃至5何れか一項記載の計算装置。
  7.  3つの関数f, g, hの和で表される最適化関数f+g+hの最適解を計算する計算装置によって実行される方法であって、
     2つの関数f, gの和で表される関数F=f+gと関数hとの和の関数F+hによって前記最適化関数f+g+hを表し、前記関数F+hの近接点を計算するステップと、
     前記関数Fの近似近接点を計算するステップと、
     前記計算された近接点と前記計算された近似近接点とに基づき所定の終了条件が充足されたか判定し、前記所定の終了条件が充足されるまで前記近接点と前記近似近接点とを繰り返し計算するステップと、
    を有する計算方法。
  8.  請求項1乃至6何れか一項記載の計算装置の各部としてプロセッサを機能させるプログラム。
PCT/JP2019/014460 2018-04-27 2019-04-01 計算装置、計算方法及びプログラム WO2019208113A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/050,760 US20210232656A1 (en) 2018-04-27 2019-04-01 Calculation apparatus, calculation method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-087056 2018-04-27
JP2018087056A JP7070051B2 (ja) 2018-04-27 2018-04-27 計算装置、計算方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2019208113A1 true WO2019208113A1 (ja) 2019-10-31

Family

ID=68295230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014460 WO2019208113A1 (ja) 2018-04-27 2019-04-01 計算装置、計算方法及びプログラム

Country Status (3)

Country Link
US (1) US20210232656A1 (ja)
JP (1) JP7070051B2 (ja)
WO (1) WO2019208113A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102062157B1 (ko) * 2019-04-29 2020-01-03 오케스트로 주식회사 가상 머신 배치 방법 및 이를 구현하는 가상 머신 배치 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOMODAKIS, N. ET AL.: "Playing with Duality : An overview of recent primal-dual approaches for solving large-scale optimization problems", IEEE SIGNAL PROCESSING MAGAZINE, vol. 32, no. 6, 14 October 2015 (2015-10-14), pages 31 - 54, XP011586928, ISSN: 1053-5888, DOI: 10.1109/MSP.2014.2377273 *
MING YAN: "A PRIMAL-DUAL THREE-OPERATOR SPLITTING SCHEME", ARXIV:1611.09805V1, 29 November 2016 (2016-11-29), pages 1 - 15, XP080735300 *

Also Published As

Publication number Publication date
JP7070051B2 (ja) 2022-05-18
US20210232656A1 (en) 2021-07-29
JP2019192125A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
Koblents et al. A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models
Bibby et al. Estimating functions for discretely sampled diffusion-type models
JP7513804B2 (ja) 強化学習を用いたデータ評価
Proinov et al. On the convergence of high-order Ehrlich-type iterative methods for approximating all zeros of a polynomial simultaneously
US11593697B2 (en) Method for amplitude estimation with noisy intermediate-scale quantum computers
US20230153631A1 (en) Method and apparatus for transfer learning using sample-based regularization
WO2020071187A1 (ja) 秘密シグモイド関数計算システム、秘密ロジスティック回帰計算システム、秘密シグモイド関数計算装置、秘密ロジスティック回帰計算装置、秘密シグモイド関数計算方法、秘密ロジスティック回帰計算方法、プログラム
US20210090552A1 (en) Learning apparatus, speech recognition rank estimating apparatus, methods thereof, and program
JP2012208924A (ja) 適応的重み付けを用いた様々な文書間類似度計算方法に基づいた文書比較方法および文書比較システム
Xu et al. Fixed-point iteration Gaussian sum filtering estimator with unknown time-varying non-Gaussian measurement noise
Chikin et al. Channel balancing for accurate quantization of winograd convolutions
WO2019208113A1 (ja) 計算装置、計算方法及びプログラム
Mondal et al. Equivariant adaptation of large pretrained models
Krampe et al. Sparsity concepts and estimation procedures for high‐dimensional vector autoregressive models
JP2020126441A (ja) 非負値行列分解最適化装置、非負値行列分解最適化方法、プログラム
Liu et al. Some modified fast iterative shrinkage thresholding algorithms with a new adaptive non-monotone stepsize strategy for nonsmooth and convex minimization problems
Gunawardena et al. DCCNMF: Deep Complementary and Consensus Non-negative Matrix Factorization for multi-view clustering
Zhang et al. Faster nonconvex low-rank matrix learning for image low-level and high-level vision: A unified framework
US20230409929A1 (en) Methods and apparatuses for training prediction model
CN111630530A (zh) 数据处理系统和数据处理方法
Salem et al. Recurrent Neural Networks (RNN)
CN111400512B (zh) 一种筛选多媒体资源的方法及装置
CN115700615A (zh) 计算机实现的方法、设备和计算机程序产品
Conni et al. AAA rational approximation for time domain model order reduction
WO2021053781A1 (ja) 変数最適化装置、変数最適化方法、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19794033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19794033

Country of ref document: EP

Kind code of ref document: A1