WO2019207765A1 - Wireless remote monitoring system - Google Patents

Wireless remote monitoring system Download PDF

Info

Publication number
WO2019207765A1
WO2019207765A1 PCT/JP2018/017203 JP2018017203W WO2019207765A1 WO 2019207765 A1 WO2019207765 A1 WO 2019207765A1 JP 2018017203 W JP2018017203 W JP 2018017203W WO 2019207765 A1 WO2019207765 A1 WO 2019207765A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
monitoring
access point
wireless remote
lte
Prior art date
Application number
PCT/JP2018/017203
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 濱田
豊 松枝
Original Assignee
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to JP2018540169A priority Critical patent/JP6486568B1/en
Priority to CN201880092473.5A priority patent/CN111989908A/en
Priority to PCT/JP2018/017203 priority patent/WO2019207765A1/en
Priority to KR1020207028817A priority patent/KR102415099B1/en
Publication of WO2019207765A1 publication Critical patent/WO2019207765A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/007Telephonic communication systems specially adapted for combination with other electrical systems with remote control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings

Definitions

  • the present invention relates to a structure of an elevator wireless remote monitoring system using an LTE network.
  • the remote monitoring system for elevators is used to exchange data between the elevator monitoring device and the monitoring center by wireless communication.
  • Patent Documents 1 and 2 Has been proposed (see, for example, Patent Documents 1 and 2).
  • JP 2016-208296 A Japanese Patent No. 6153902
  • the LTE terminal on the elevator monitoring device side is always connected to one access point, and therefore, between the LTE terminal and one access point. If a connection failure occurs, communication between the LTE terminal and the monitoring center cannot be performed, and remote monitoring of the elevator cannot be performed.
  • an object of the present invention is to perform remote monitoring backup by a simple method when an abnormality occurs in the LTE line in the remote monitoring system using the LTE line network.
  • the wireless remote monitoring system of the present invention is connected to an elevator and monitors the operation state of the elevator, is connected to the elevator monitoring device, and is always connected to one access point in the LTE network.
  • An LTE terminal and one monitoring center connected to the one access point of the LTE line network and transferring data to and from the elevator monitoring device, and the elevator terminal via the LTE line network
  • a wireless remote monitoring system that performs remote monitoring, wherein the elevator monitoring device determines whether to always connect the LTE terminal from the one access point to another when the connection with the one monitoring center cannot be established. Switch to another access point to which the monitoring center is connected, and connect to the other monitoring center. In that for exchanging data, characterized by.
  • the elevator monitoring device maintains a constant connection with the other access point for a predetermined period when the constant connection destination of the LTE terminal is switched to the other access point. That's good.
  • the access point of the connection destination is always switched, the state is maintained for a predetermined period, so that access to the elevator monitoring device from another monitoring center can be secured and the remote monitoring backup state can be prevented from being released.
  • the elevator monitoring device switches between the LTE terminal and the one access point at a predetermined interval after switching the constant connection destination of the LTE terminal to the other access point.
  • the connection state is confirmed, and when the connection with the one access point is established, the permanent connection destination of the LTE terminal may be returned to the one access point.
  • the remote monitoring load of other monitoring centers can be reduced to the normal state.
  • the elevator monitoring device switches the constant connection destination of the LTE terminal when the LTE terminal fails to establish a connection with the one monitoring center a predetermined number of times. It is good.
  • the elevator monitoring device is configured when the LTE terminal fails to establish a connection with the one monitoring center in a state where passengers are confined in the elevator car. , The permanent connection destination of the LTE terminal may be switched.
  • the elevator monitoring device when the earthquake occurs, the elevator monitoring device is different from the one access point and the other access points without switching the permanent connection destination of the LTE terminal. It is good also as transmitting the elevator state signal at the time of an earthquake to the data reception server at the time of an earthquake via an access point.
  • the one monitoring center transmits a short mail of a constant connection destination switching command to the LTE terminal by SMS, and
  • the elevator monitoring device switches the always-connected destination of the LTE terminal from the one access point to another access point to which the other monitoring center is connected, Data may be exchanged with the other monitoring center.
  • the wireless remote monitoring system of the present invention is connected to an elevator installed in a first country and monitors the operation state of the elevator, and is connected to the elevator monitoring device and is connected to one of the LTE network.
  • An LTE terminal that is always connected to an access point, and a monitoring center that is installed in the first country and that is connected to the first access point of the LTE network and exchanges data with the elevator monitoring device
  • a wireless remote monitoring system for remotely monitoring the elevator via the LTE network, wherein the elevator monitoring device cannot establish a connection with the one monitoring center,
  • the other end of the LTE terminal is connected from the one access point to another monitoring center installed in a second country different from the first country.
  • the other monitoring center may be connected to the LTE network via the second country telephone communication network.
  • the present invention can perform remote monitoring backup by a simple method when an abnormality occurs in the LTE line in the remote monitoring system using the LTE line network.
  • a wireless remote monitoring system 100 for remotely monitoring the first and second elevators 11 and 21 includes first and second elevator monitoring devices 12 and 22 (hereinafter referred to as MOP1 and MOP2), 1, second LTE terminals 13 and 23 (hereinafter referred to as LTE 1 and LTE 2), LTE network 30, first and second monitoring centers 41 and 42, first and second earthquake data receiving servers 43 and 44, Is included.
  • the first and second monitoring centers 41 and 42 installed in the first area and the second area respectively monitor the first and second elevators 11 and 21 installed in the first area and the second area, respectively.
  • the first and second monitoring centers 41 and 42 may monitor a plurality of elevators 11 and 21, respectively.
  • the first region and the second region may be, for example, eastern Japan and western Japan.
  • remote monitoring of elevators installed in eastern Japan is performed by a monitoring center installed in eastern Japan
  • remote monitoring of elevators installed in western Japan is performed by a monitoring center installed in western Japan.
  • the first and second monitoring centers 41 and 42 may be configured by a server that stores data of the first and second elevators 11 and 21, an operation panel, and the like.
  • MOP1 and NOP2 are connected to the first and second elevators 11 and 21, respectively, and the data indicating the operation status of the first and second elevators 11 and 21 from the control devices of the first and second elevators 11 and 21, or Acquire and store failure signals.
  • LTE1 and LTE2 are connected to MOP1 and MOP2, respectively.
  • the MOP1 and MOP2 may be configured by a computer including a CPU that performs information processing and a memory therein.
  • the LTE network 30 includes four access points APN1 to APN4.
  • LTE1 is always connected to APN1, which is one access point, and LTE2 is always connected to APN2, which is another access point.
  • the first monitoring center 41 and the second monitoring center 42 are connected to APN1 and APN2, respectively.
  • the first and second monitoring centers 41 and 42 are each provided with a short mail system (hereinafter referred to as SMS) that transmits a short mail to LTE1 and LTE2.
  • SMS short mail system
  • the first earthquake data receiving server 43 and the second earthquake data receiving server 44 installed in the first area and the second area are connected to APN3 and APN4, respectively.
  • the MOP 1 acquires data indicating the operation state of the first elevator 11 or a failure signal from the control device of the elevator 11, The data is stored and the data is transmitted to the first monitoring center 41 via the LTE 1 and the APN 1.
  • the first monitoring center 41 accesses MOP1 via APN1 and LTE1 by polling, and acquires operation data and the like of the first elevator 11 from MOP1.
  • the 1st monitoring center 41 connects with the intercom in the cage
  • the MOP 2 exchanges data with the second monitoring center 42 via the APN 2 as indicated by a one-dot chain line 92 in FIG.
  • the MOP 1 When an earthquake occurs, the MOP 1 connects the LTE 1 to the APN 4 as shown by a two-dot chain line 93 in FIG. 1, and sends the second earthquake data reception server 44 at the time of the earthquake as shown by a broken line 94 in FIG. Elevator status signals such as driving data and failure signals are output.
  • the MOP 2 connects the LTE 2 to the APN 3 as indicated by a two-dot chain line 95 in FIG. 1, and the operation data or failure at the time of the earthquake occurs in the first earthquake data receiving server 43 as indicated by the broken line 96 in FIG. Elevator status signals such as signals are output.
  • MOP1 and MOP2 transmit data to an earthquake data receiving server installed in an area different from the area where the first and second elevators 11 and 21 are installed.
  • APN3 and APN4 correspond to a third access point.
  • MOP1 sets the always-connected destination of LTE1 to APN1 when it is activated.
  • MOP1 restarts LTE1 with the always-connected destination of LTE1 as APN1, and sets the always-connected destination of LTE to LTE1.
  • MOP1 determines whether or not the connection between LTE1 and APN1 has been established. If the connection with APN1 is established, it is determined that no connection failure has occurred, and the process proceeds to step S103 in FIG. 2 to maintain a constant connection between LTE1 and APN1, and as shown in step S104, Data is exchanged with the first monitoring center 41 which is one monitoring center.
  • step S105 for example, the MOP 1 has a state in which the intercom button of the first elevator 11 is kept pressed or the passenger is trapped in the car so that the door open button is kept pressed. If it is determined, the process proceeds to step S108 in FIG. 2 to switch the constant connection destination of LTE1 from APN1 to APN2. Thereby, as shown in FIG. 3, LTE1 is always connected with APN2. The MOP1 proceeds to step S109 in FIG. 2, and exchanges data with the second monitoring center 42, which is another monitoring center connected to the APN 2, as indicated by a one-dot chain line 91a in FIG.
  • step S105 in FIG. 2 determines NO in step S105 in FIG. 2 if the MOP 1 determines NO in step S105 in FIG. 2, the process proceeds to step S106 in FIG. 2 to confirm whether or not the connection recovery operation has been performed a predetermined number of times. If NO is determined in step S106 of FIG. 2, the process proceeds to step S107 of FIG. 2 to cause LTE1 to perform the connection operation with APN1, and the process returns to step S102 of FIG. 2 to establish the connection with APN1. Check if you did.
  • the predetermined number of times can be set freely, but may be set to three times, five times, ten times, or the like.
  • the MOP 1 determines YES in step S102 in FIG. 2 and proceeds to steps S103 and S104 in FIG. 2, and the first monitoring center 41 via the APN 1 Send and receive data between.
  • the MOP 1 determines YES in steps S102 and S106 in FIG. Proceeding to step S108, the constant connection destination of LTE1 is switched from APN1 to APN2 as shown in FIG. 3, and proceeding to step S109 of FIG. Data is exchanged with the second monitoring center 42 which is a monitoring center.
  • the MOP 1 When the MOP 1 exchanges data with the second monitoring center 42 in step S109 in FIG. 2, as shown in step S110 in FIG. 2, the MOP 1 always connects the LTE 1 and the APN 2 until a predetermined period elapses. Keep state.
  • the predetermined period can be set to 30 minutes or 1 hour, for example.
  • connection failure continues even if the connection recovery operation is performed a predetermined number of times, the access point of the connection destination is always switched and the switching state is maintained for a predetermined period of time, so that the access point of the connection destination is always complicated. Can be prevented from occurring. Further, it is possible to reliably access the MOP 1 from the second monitoring center 42 when the access point is switched to the APN 2.
  • step S111 in FIG. 2 executes the connection operation between LTE1 and APN1.
  • step S112 of FIG. 2 executes the connection operation between LTE1 and APN1.
  • step S113 of FIG. 2 the LTE1 constant connection destination is returned from APN2 to APN1, and the process proceeds to step S103 of FIG. Connect always.
  • the wireless remote monitoring system 100 returns to the system configuration shown in FIG.
  • the MOP 1 proceeds to step S104 in FIG. 2 to exchange data with the first monitoring center 41.
  • the MOP1 proceeds to step S113 in FIG. 2 and waits for a predetermined interval.
  • the predetermined interval can be set to about 10 minutes or 30 minutes, for example.
  • MOP1 repeats the operations from step S111 to step S113 in FIG. 2 until the connection between LTE1 and APN1 is established.
  • the constant connection destination of LTE1 is changed to APN2 in step S113 in FIG. 2 to return to APN1 and proceed to steps S103 and S104 in FIG. 2 to connect LTE 1 to APN1 at all times and exchange data with first monitoring center 41.
  • MOP1 continuously performs an operation of establishing a connection with APN1 after a predetermined period of LTE1 at a predetermined interval, and when a connection between LTE1 and APN1 is established, the connection destination is always returned from APN2 to APN1. Since data is exchanged with the first monitoring center 41, the load on the second monitoring center 42, which has been high due to the remote monitoring backup, can be reduced to return to the normal state.
  • the first monitoring center 41 transmits a polling signal to the MOP 1 as shown in step S201 of FIG. 4, and causes the MOP 1 to transmit the operation data of the first elevator 11 and the like. Therefore, as shown in FIG. 5, when the connection between the first monitoring center 41 and the APN 1 becomes defective, the MOP 1 does not receive a polling signal from the first monitoring center 41 and does not transmit data. In some cases, it may not be possible to detect that a connection failure has occurred with the first monitoring center 41. In this case, MOP1 does not always switch the connection destination. On the other hand, the first monitoring center 41 cannot directly access the LTE 1 to switch the permanent connection destination of the LTE 1. For this reason, a state where data cannot be exchanged between the MOP 1 and the first monitoring center 41 may continue.
  • step S204 in FIG. 4 determines whether the polling operation has failed a predetermined number of times. If the polling operation has failed a predetermined number of times, YES is determined in step S204 in FIG. 4, and the process proceeds to step S205 in FIG. 4, where communication backup is performed in the LTE network as shown in FIG.
  • the SMS 45 always sends a short mail of a connection destination switching command to the LTE 1. When LTE1 receives this short mail, it outputs a predetermined signal to MOP1. When this predetermined signal is input, MOP1 executes steps S108 and S109 of FIG. 2, and switches the access point to be always connected from APN1 to APN2 as shown in FIG. It takes about 1 to 2 minutes to change the access point of the constant connection destination.
  • step S206 of FIG. 2 when the first monitoring center 41 completes the switching of the access point to which it is always connected two to three minutes after sending the short mail to the LTE 1 by SMS.
  • a polling operation to the MOP 1 is performed, and operation data and the like of the first elevator 11 are acquired from the MOP 1 as shown in steps S207 and S208 of FIG. 2 and the one-dot chain line 91a of FIG.
  • the second monitoring center 42 performs data exchange with the MOP1 for a predetermined period, and then proceeds to step S209 in FIG. 4 to exchange data with the MOP1.
  • the process is stopped, and the process returns to step 201 in FIG. 4 to perform the polling operation from the first monitoring center 41 to the MOP 1.
  • step S203 of FIG. 4 the connection with MOP1 is established in step S202 of FIG. 4, the process proceeds to step S203 of FIG. 4, and data is exchanged between the first monitoring center 41 and MOP1.
  • the access point to which the LTE 1 is always connected can be switched from the first monitoring center 41. Therefore, even if a connection failure occurs between the first monitoring center 41 and the APN 1, remote monitoring can be performed. Backup can be done.
  • MOP1 sends an elevator status signal at the time of the earthquake via APN4 without switching the permanent connection destination of LTE1 from APN1 to APN2. 2 Transmit to the data receiving server 44 at the time of earthquake. Thereby, it is suppressed that the function of the whole radio
  • the operation of MOP2 during an earthquake is the same as that of MOP1.
  • a wireless remote monitoring system 200 according to another embodiment will be described with reference to FIGS. 6 and 7. Components similar to those of the wireless remote monitoring system 100 described above with reference to FIG.
  • the first elevator 11 and the first monitoring center 41 are installed in the first country, and the second elevator 21 and the second monitoring center 42 are different from the first country. It is installed in the second country. Normally, the first elevator 11 installed in the first country is remotely monitored by the first monitoring center 41 installed in the first country, and the second elevator 21 installed in the second country is remotely monitored. The monitoring is performed by the second monitoring center 42 in the second country.
  • MOP1 switches the access point that is always connected to LTE1 to APN2 to which the second monitoring center 42 is connected. And the remote monitoring of the 1st elevator 11 installed in the 1st country is performed by the 2nd monitoring center 42 installed in the 2nd country.
  • the second monitoring center 42 may be configured to be connected to the LTE network 30 via the telephone communication network of the second country.

Abstract

A wireless remote monitoring system (100) for remotely monitoring a first elevator (11) via an LTE line network (30) includes: an elevator monitoring device (12); an LTE terminal (13) that is constantly connected to an APN1 of the LTE line network (30); and a first monitoring center (41) that is connected to the APN 1 and performs data exchange with the elevator monitoring device (12). When a connection to the first monitoring center (41) cannot be established, the elevator monitoring device (12) switches the constant connection destination of the LTE terminal (13) from the APN1 to an APN2 to which a second monitoring center (42) is connected, and performs data exchange with the second monitoring center (42). Thus, when an abnormality occurs in an LTE line, the remote monitoring can be backed up in a simple way.

Description

無線遠隔監視システムWireless remote monitoring system
 本発明は、LTE回線網を用いたエレベーターの無線遠隔監視システムの構造に関する。 The present invention relates to a structure of an elevator wireless remote monitoring system using an LTE network.
 エレベーターの遠隔監視システムは、無線通信によってエレベーター監視装置と監視センターとの間のデータ授受を行うものが用いられている。無線通信回線としてはLTE回線と3G回線とを併用して用い、電波強度或いは基地局障害等により、LTE回線の接続が確立できない場合にはLTE回線を3G回線に切換えてデータの授受を行う方法が提案されている(例えば、特許文献1,2参照)。 The remote monitoring system for elevators is used to exchange data between the elevator monitoring device and the monitoring center by wireless communication. A method in which an LTE line and a 3G line are used in combination as a wireless communication line, and when the connection of the LTE line cannot be established due to radio field strength or a base station failure, the LTE line is switched to a 3G line to exchange data. Has been proposed (see, for example, Patent Documents 1 and 2).
特開2016-208296号公報JP 2016-208296 A 特許第6153902号明細書Japanese Patent No. 6153902
 ところで、LTE回線網を通じて監視センターとエレベーター監視装置との間の通信を行う場合、エレベーター監視装置側のLTE端末は1つのアクセスポイントに常時接続されるので、LTE端末と1つのアクセスポイントとの間で接続障害が発生すると、LTE端末と監視センターとの間の通信を行うことができなくなってしまい、エレベーターの遠隔監視を行うことができなくなってしまう。 By the way, when communication is performed between the monitoring center and the elevator monitoring device through the LTE network, the LTE terminal on the elevator monitoring device side is always connected to one access point, and therefore, between the LTE terminal and one access point. If a connection failure occurs, communication between the LTE terminal and the monitoring center cannot be performed, and remote monitoring of the elevator cannot be performed.
 この場合、複数のアクセスポイントを用いてLTE端末と監視センターとの通信のバックアップを行うことが考えられる。しかし、LTE端末は、常時接続しているアクセスポイント以外のアクセスポイントからの信号を受信できないので、他のアクセスポイントを用いて通信のバックアップを行うことが難しかった。 In this case, it is conceivable to back up communication between the LTE terminal and the monitoring center using a plurality of access points. However, since the LTE terminal cannot receive a signal from an access point other than the access point that is always connected, it is difficult to backup communication using another access point.
 また、エレベーター監視装置に複数のLTE端末を接続し、監視センターとの間の通信回線を二重化して通信のバックアップを行うことが考えられるが、システムが複雑になってしまうという問題があった。 In addition, it is conceivable to connect a plurality of LTE terminals to the elevator monitoring device and duplicate the communication line with the monitoring center to perform communication backup, but there is a problem that the system becomes complicated.
 そこで、本発明は、LTE回線網を用いた遠隔監視システムにおいて、LTE回線に異常が発生した場合に、簡便な方法で遠隔監視のバックアップを行うことを目的とする。 Therefore, an object of the present invention is to perform remote monitoring backup by a simple method when an abnormality occurs in the LTE line in the remote monitoring system using the LTE line network.
 本発明の無線遠隔監視システムは、エレベーターに接続されて前記エレベーターの運行状態を監視するエレベーター監視装置と、前記エレベーター監視装置に接続され、LTE回線網の中の1のアクセスポイントに常時接続されるLTE端末と、前記LTE回線網の前記1のアクセスポイントに接続されて前記エレベーター監視装置との間でデータの授受を行う1の監視センターと、を含み、前記LTE回線網を介して前記エレベーターの遠隔監視を行う無線遠隔監視システムであって、前記エレベーター監視装置は、前記1の監視センターとの間の接続が確立できない場合に、前記LTE端末の常時接続先を前記1のアクセスポイントから他の監視センターが接続されている他のアクセスポイントに切換えて、前記他の監視センターとの間でデータの授受を行うこと、を特徴とする。 The wireless remote monitoring system of the present invention is connected to an elevator and monitors the operation state of the elevator, is connected to the elevator monitoring device, and is always connected to one access point in the LTE network. An LTE terminal and one monitoring center connected to the one access point of the LTE line network and transferring data to and from the elevator monitoring device, and the elevator terminal via the LTE line network A wireless remote monitoring system that performs remote monitoring, wherein the elevator monitoring device determines whether to always connect the LTE terminal from the one access point to another when the connection with the one monitoring center cannot be established. Switch to another access point to which the monitoring center is connected, and connect to the other monitoring center. In that for exchanging data, characterized by.
 これにより、LTE端末と常時接続先のアクセスポイントとの間の接続障害の発生によりエレベーター監視装置と1の監視センターとの間のデータ授受ができない場合でも、常時接続先のアクセスポイントを切換えることにより、エレベーター監視装置と他の監視センターとの間でデータ授受が可能となり、他の監視センターによりエレベーターの遠隔監視をバックアップすることができる。 As a result, even when data cannot be exchanged between the elevator monitoring apparatus and one monitoring center due to the occurrence of a connection failure between the LTE terminal and the always-connected access point, by switching the always-connected access point Data can be exchanged between the elevator monitoring device and another monitoring center, and remote monitoring of the elevator can be backed up by the other monitoring center.
 本発明の無線遠隔遠視システムにおいて、前記エレベーター監視装置は、前記LTE端末の常時接続先を前記他のアクセスポイントに切換えた場合には、前記他のアクセスポイントとの常時接続を所定期間だけ保持すること、としてもよい。 In the wireless remote hyperopia system of the present invention, the elevator monitoring device maintains a constant connection with the other access point for a predetermined period when the constant connection destination of the LTE terminal is switched to the other access point. That's good.
 常時接続先のアクセスポイントを切換えたら所定期間その状態を保持することにより、他の監視センターからエレベーター監視装置へのアクセスを確保し、遠隔監視のバックアップ状態が解除されることを抑制できる。 If the access point of the connection destination is always switched, the state is maintained for a predetermined period, so that access to the elevator monitoring device from another monitoring center can be secured and the remote monitoring backup state can be prevented from being released.
 本発明の無線遠隔遠視システムにおいて、前記エレベーター監視装置は、前記LTE端末の常時接続先を前記他のアクセスポイントに切換えた後、所定のインターバルで前記LTE端末と前記1のアクセスポイントとの間の接続状態を確認し、前記1のアクセスポイントとの間の接続が確立できた場合には、前記LTE端末の常時接続先を前記1のアクセスポイントに戻すこと、としてもよい。 In the wireless remote hyperopia system of the present invention, the elevator monitoring device switches between the LTE terminal and the one access point at a predetermined interval after switching the constant connection destination of the LTE terminal to the other access point. The connection state is confirmed, and when the connection with the one access point is established, the permanent connection destination of the LTE terminal may be returned to the one access point.
 このように、通常の監視センターからの遠隔監視に戻すことにより、他の監視センターの遠隔監視の負荷を通常状態に下げることができる。 Thus, by returning to the remote monitoring from the normal monitoring center, the remote monitoring load of other monitoring centers can be reduced to the normal state.
 本発明の無線遠隔監視システムにおいて、前記エレベーター監視装置は、前記LTE端末が所定回数だけ前記1の監視センターとの間の接続の確立に失敗した場合、前記LTE端末の常時接続先を切換えること、としてもよい。 In the wireless remote monitoring system of the present invention, the elevator monitoring device switches the constant connection destination of the LTE terminal when the LTE terminal fails to establish a connection with the one monitoring center a predetermined number of times. It is good.
 これにより、煩雑に常時接続先のアクセスポイントの切換えが発生することを抑制できる。 This makes it possible to prevent troublesome switching of the access point to be connected constantly.
 本発明の無線遠隔監視システムにおいて、前記エレベーター監視装置は、前記エレベーターのかごの中に乗客が閉じ込められた状態で、前記LTE端末が前記1の監視センターとの間の接続の確立に失敗した場合、前記LTE端末の常時接続先を切換えること、としてもよい。 In the wireless remote monitoring system of the present invention, the elevator monitoring device is configured when the LTE terminal fails to establish a connection with the one monitoring center in a state where passengers are confined in the elevator car. , The permanent connection destination of the LTE terminal may be switched.
 これにより、閉じ込めの発生とLTE端末と常時接続先のアクセスポイントとの間の接続障害の発生とが重なった場合に、エレベーター監視装置と監視センターとの間のデータの授受を短時間で回復させることができる。 As a result, when the occurrence of confinement and the occurrence of a connection failure between the LTE terminal and the always-on access point overlap, data exchange between the elevator monitoring device and the monitoring center can be recovered in a short time. be able to.
 本発明の無線遠隔監視システムにおいて、前記エレベーター監視装置は、地震が発生した際には、前記LTE端末の常時接続先を切換えずに、前記1のアクセスポイントおよび前記他のアクセスポイントと異なる第3アクセスポイントを介して地震時のエレベーター状態信号を地震時データ受信サーバに送信すること、としてもよい。 In the wireless remote monitoring system of the present invention, when the earthquake occurs, the elevator monitoring device is different from the one access point and the other access points without switching the permanent connection destination of the LTE terminal. It is good also as transmitting the elevator state signal at the time of an earthquake to the data reception server at the time of an earthquake via an access point.
 地震発生の場合には多くのLTE端末とアクセスポイントとの間の接続障害が発生することが想定される。この場合、多くのLTE端末のアクセスポイントを一度に切換えてしまうと他の監視センターの監視能力を超えてしまう場合がある。このため、地震時にはアクセスポイントの切換を行わずに第3のアクセスポイントを介してデータを地震時データ受信サーバに送信し、無線遠隔監視システム全体の機能が低下することを抑制できる。 In the event of an earthquake, it is assumed that connection failures between many LTE terminals and access points will occur. In this case, if the access points of many LTE terminals are switched at once, the monitoring capability of other monitoring centers may be exceeded. For this reason, it is possible to suppress the deterioration of the function of the entire wireless remote monitoring system by transmitting data to the earthquake data reception server via the third access point without switching the access point during an earthquake.
 本発明の無線遠隔監視システムにおいて、前記1の監視センターは、前記エレベーター監視装置との間の接続が確立できない場合に、SMSで常時接続先切換え指令のショートメールを前記LTE端末に発信し、前記エレベーター監視装置は、前記LTE端末が前記ショートメールを受信した場合に、前記LTE端末の常時接続先を前記1のアクセスポイントから前記他の監視センターが接続されている他のアクセスポイントに切換えて、前記他の監視センターとの間でデータの授受を行うこと、としてもよい。 In the wireless remote monitoring system of the present invention, when the connection with the elevator monitoring apparatus cannot be established, the one monitoring center transmits a short mail of a constant connection destination switching command to the LTE terminal by SMS, and When the LTE terminal receives the short mail, the elevator monitoring device switches the always-connected destination of the LTE terminal from the one access point to another access point to which the other monitoring center is connected, Data may be exchanged with the other monitoring center.
 通常、LTE端末の常時接続先の切換えは、エレベーター監視装置が行い、監視センターから直接切換えることができないが、これにより、監視センターからアクセスポイントの切換えを行うことが可能となる。 Ordinarily, switching of the permanent connection destination of the LTE terminal is performed by the elevator monitoring device and cannot be switched directly from the monitoring center, but this makes it possible to switch the access point from the monitoring center.
 本発明の無線遠隔監視システムは、第1国に設置されたエレベーターに接続されて前記エレベーターの運行状態を監視するエレベーター監視装置と、前記エレベーター監視装置に接続され、LTE回線網の中の1のアクセスポイントに常時接続されるLTE端末と、前記第1国に設置され、前記LTE回線網の前記1のアクセスポイントに接続されて前記エレベーター監視装置との間でデータの授受を行う1の監視センターと、を含み、前記LTE回線網を介して前記エレベーターの遠隔監視を行う無線遠隔監視システムであって、前記エレベーター監視装置は、前記1の監視センターとの間の接続が確立できない場合に、前記LTE端末の常時接続先を前記1のアクセスポイントから、前記第1国と異なる第2国に設置された他の監視センターが接続されている他のアクセスポイントに切換えて、前記第2国の前記他の監視センターとの間でデータの授受を行うこと、を特徴とする。また、本発明の無線遠隔監視システムにおいて、前記他の監視センターは、前記第2国の電話通信網を介して前記LTE回線網に接続されていること、としてもよい。 The wireless remote monitoring system of the present invention is connected to an elevator installed in a first country and monitors the operation state of the elevator, and is connected to the elevator monitoring device and is connected to one of the LTE network. An LTE terminal that is always connected to an access point, and a monitoring center that is installed in the first country and that is connected to the first access point of the LTE network and exchanges data with the elevator monitoring device And a wireless remote monitoring system for remotely monitoring the elevator via the LTE network, wherein the elevator monitoring device cannot establish a connection with the one monitoring center, The other end of the LTE terminal is connected from the one access point to another monitoring center installed in a second country different from the first country. It is switched to other access points terpolymer is connected, characterized in that, for exchanging data with the other monitoring centers of the second country. In the wireless remote monitoring system of the present invention, the other monitoring center may be connected to the LTE network via the second country telephone communication network.
 これにより、他の国に設置された監視センターでエレベーターの遠隔監視のバックアップを行うことができる。 This enables backup of remote monitoring of elevators at monitoring centers installed in other countries.
 本発明は、LTE回線網を用いた遠隔監視システムにおいて、LTE回線に異常が発生した場合に、簡便な方法で遠隔監視のバックアップを行うことができる。 The present invention can perform remote monitoring backup by a simple method when an abnormality occurs in the LTE line in the remote monitoring system using the LTE line network.
実施形態の無線遠隔監視システムの構成を示す系統図である。It is a systematic diagram showing the configuration of the wireless remote monitoring system of the embodiment. 実施形態の無線遠隔監視システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the wireless remote monitoring system of embodiment. アクセスポイントの切換え後の無線遠隔監視システムを示す系統図である。It is a systematic diagram which shows the radio | wireless remote monitoring system after the switching of an access point. 実施形態の無線遠隔監視システムの他の動作を示すフローチャートである。It is a flowchart which shows other operation | movement of the wireless remote monitoring system of embodiment. 他の動作によるアクセスポイントの切換え後の無線遠隔遠視システムを示す系統図である。It is a systematic diagram which shows the radio | wireless remote hyperopia system after the switching of the access point by another operation | movement. 他の実施形態の無線遠隔監視システムの構成を示す系統図である。It is a systematic diagram which shows the structure of the radio | wireless remote monitoring system of other embodiment. アクセスポイント切換え後の他の無線遠隔監視システムを示す系統図である。It is a systematic diagram which shows the other radio | wireless remote monitoring system after access point switching.
 <無線遠隔監視システムの構成>
 以下、図面を参照しながら実施形態の無線遠隔監視システム100について説明する。図1に示すように、第1、第2エレベーター11,21の遠隔監視を行う無線遠隔監視システム100は、第1、第2エレベーター監視装置12,22(以下、MOP1,MOP2という)と、第1、第2LTE端末13,23(以下、LTE1、LTE2という)と、LTE回線網30と、第1、第2監視センター41、42と、第1、第2地震時データ受信サーバ43,44とを含んでいる。
<Configuration of wireless remote monitoring system>
Hereinafter, a wireless remote monitoring system 100 according to an embodiment will be described with reference to the drawings. As shown in FIG. 1, a wireless remote monitoring system 100 for remotely monitoring the first and second elevators 11 and 21 includes first and second elevator monitoring devices 12 and 22 (hereinafter referred to as MOP1 and MOP2), 1, second LTE terminals 13 and 23 (hereinafter referred to as LTE 1 and LTE 2), LTE network 30, first and second monitoring centers 41 and 42, first and second earthquake data receiving servers 43 and 44, Is included.
 第1地域、第2地域に設置されている第1、第2監視センター41,42は、それぞれ、第1地域、第2地域に設置されている第1、第2エレベーター11,21の監視を行う。なお、第1、第2監視センター41,42は、それぞれ複数台のエレベーター11,21を監視してもよい。ここで、第1地域、第2地域とは、例えば、東日本と西日本とであってもよい。この場合、東日本に設置されているエレベーターの遠隔監視は東日本に設置されている監視センターが行い、西日本に設置されているエレベーターの遠隔監視は西日本に設置されている監視センターが行う。第1、第2監視センター41,42は、第1、第2エレベーター11,21の各データを格納するサーバと操作盤などで構成されてもよい。 The first and second monitoring centers 41 and 42 installed in the first area and the second area respectively monitor the first and second elevators 11 and 21 installed in the first area and the second area, respectively. Do. The first and second monitoring centers 41 and 42 may monitor a plurality of elevators 11 and 21, respectively. Here, the first region and the second region may be, for example, eastern Japan and western Japan. In this case, remote monitoring of elevators installed in eastern Japan is performed by a monitoring center installed in eastern Japan, and remote monitoring of elevators installed in western Japan is performed by a monitoring center installed in western Japan. The first and second monitoring centers 41 and 42 may be configured by a server that stores data of the first and second elevators 11 and 21, an operation panel, and the like.
 MOP1,NOP2は、それぞれ第1、第2エレベーター11、21に接続されて第1、第2エレベーター11,21の各制御装置から第1、第2エレベーター11,21の運行状態を示すデータ、或いは故障信号等を取得し、格納する。MOP1,MOP2には、それぞれLTE1、LTE2が接続されている。MOP1,MOP2は内部に情報処理を行うCPUとメモリとを含むコンピュータで構成してもよい。 MOP1 and NOP2 are connected to the first and second elevators 11 and 21, respectively, and the data indicating the operation status of the first and second elevators 11 and 21 from the control devices of the first and second elevators 11 and 21, or Acquire and store failure signals. LTE1 and LTE2 are connected to MOP1 and MOP2, respectively. The MOP1 and MOP2 may be configured by a computer including a CPU that performs information processing and a memory therein.
 LTE回線網30は、APN1~APN4の4つのアクセスポイントを含んでいる。LTE1は1のアクセスポイントであるAPN1に、LTE2は他のアクセスポイントであるAPN2に常時接続されている。第1監視センター41、第2監視センター42は、それぞれ、APN1,APN2に接続されている。また、第1、第2監視センター41,42には、それぞれ、LTE1、LTE2にショートメールを発信するショートメールシステム(以下、SMSという)が取付けられている。 The LTE network 30 includes four access points APN1 to APN4. LTE1 is always connected to APN1, which is one access point, and LTE2 is always connected to APN2, which is another access point. The first monitoring center 41 and the second monitoring center 42 are connected to APN1 and APN2, respectively. The first and second monitoring centers 41 and 42 are each provided with a short mail system (hereinafter referred to as SMS) that transmits a short mail to LTE1 and LTE2.
 第1地域、第2地域に設置されている第1地震時データ受信サーバ43、第2地震時データ受信サーバ44は、それぞれ、APN3、APN4に接続されている。 The first earthquake data receiving server 43 and the second earthquake data receiving server 44 installed in the first area and the second area are connected to APN3 and APN4, respectively.
 LTE回線の接続状態が正常の場合には、図1の一点鎖線91に示すように、MOP1は、第1エレベーター11の運行状態を示すデータ或いは故障信号等をエレベーター11の制御装置から取得し、格納すると共に、そのデータをLTE1、APN1を介して第1監視センター41に送信する。また、第1監視センター41は、ポーリングによってAPN1、LTE1を介してMOP1にアクセスし、MOP1から第1エレベーター11の運転データ等を取得する。また、第1監視センター41は、APN1、LTE1を介して第1エレベーター11のかごの中のインターホンに接続し、かごの中の乗客と通話する。このように、MOP1と第1監視センター41とは、APN1を介してデータの授受を行う。 When the connection state of the LTE line is normal, as shown by the one-dot chain line 91 in FIG. 1, the MOP 1 acquires data indicating the operation state of the first elevator 11 or a failure signal from the control device of the elevator 11, The data is stored and the data is transmitted to the first monitoring center 41 via the LTE 1 and the APN 1. In addition, the first monitoring center 41 accesses MOP1 via APN1 and LTE1 by polling, and acquires operation data and the like of the first elevator 11 from MOP1. Moreover, the 1st monitoring center 41 connects with the intercom in the cage | basket | car of the 1st elevator 11 via APN1 and LTE1, and talks with the passenger in a cage | basket | car. In this way, the MOP 1 and the first monitoring center 41 exchange data via the APN 1.
 同様に、MOP2は、図1の一点鎖線92に示すようにAPN2を介して第2監視センター42とデータの授受を行う。 Similarly, the MOP 2 exchanges data with the second monitoring center 42 via the APN 2 as indicated by a one-dot chain line 92 in FIG.
 地震が発生した場合には、MOP1は、図1の二点鎖線93に示すようにLTE1をAPN4に接続し、図1の破線94に示すように第2地震時データ受信サーバ44に地震発生時の運転データや故障信号などのエレベーター状態信号を出力する。同様に、MOP2は、図1の二点鎖線95に示すようにLTE2をAPN3に接続し、図1の破線96に示すように第1地震時データ受信サーバ43に地震発生時の運転データや故障信号などのエレベーター状態信号を出力する。このように、MOP1,MOP2は地震発生時には、第1、第2エレベーター11,21が設置されている地域と異なる地域に設置されている地震時データ受信サーバにデータを送信する。なお、APN3,APN4は第3アクセスポイントに相当する。 When an earthquake occurs, the MOP 1 connects the LTE 1 to the APN 4 as shown by a two-dot chain line 93 in FIG. 1, and sends the second earthquake data reception server 44 at the time of the earthquake as shown by a broken line 94 in FIG. Elevator status signals such as driving data and failure signals are output. Similarly, the MOP 2 connects the LTE 2 to the APN 3 as indicated by a two-dot chain line 95 in FIG. 1, and the operation data or failure at the time of the earthquake occurs in the first earthquake data receiving server 43 as indicated by the broken line 96 in FIG. Elevator status signals such as signals are output. As described above, when an earthquake occurs, MOP1 and MOP2 transmit data to an earthquake data receiving server installed in an area different from the area where the first and second elevators 11 and 21 are installed. APN3 and APN4 correspond to a third access point.
 <MOP1の動作>
 次に、図2、図3を参照しながらLTE1とAPN1との間の接続障害が発生した場合の無線遠隔監視システム100の動作について説明する。なお、以下の説明では、MOP1の動作について説明する。なお、MOP2の動作はMOP1の動作と同様である。
<Operation of MOP1>
Next, the operation of the wireless remote monitoring system 100 when a connection failure between the LTE 1 and the APN 1 occurs will be described with reference to FIGS. In the following description, the operation of MOP1 will be described. The operation of MOP2 is the same as that of MOP1.
 図2のステップS101に示すように、MOP1は起動時にLTE1の常時接続先をAPN1とする。MOP1は,起動時にLTE1の常時接続先がAPN1となっていない場合には、LTE1の常時接続先をAPN1としてLTE1を再起動してLTEの常時接続先をLTE1とする。 As shown in step S101 of FIG. 2, MOP1 sets the always-connected destination of LTE1 to APN1 when it is activated. When the always-connected destination of LTE1 is not APN1 at the time of activation, MOP1 restarts LTE1 with the always-connected destination of LTE1 as APN1, and sets the always-connected destination of LTE to LTE1.
 図2のステップS102に示すように、MOP1は、LTE1とAPN1との接続が確立しているかどうかを判断する。APN1との接続が確立している場合には接続障害が発生していないと判断して、図2のステップS103に進み、LTE1とAPN1との常時接続を保持し、ステップS104に示すように、1の監視センターである第1監視センター41との間でデータの授受を行う。 As shown in step S102 of FIG. 2, MOP1 determines whether or not the connection between LTE1 and APN1 has been established. If the connection with APN1 is established, it is determined that no connection failure has occurred, and the process proceeds to step S103 in FIG. 2 to maintain a constant connection between LTE1 and APN1, and as shown in step S104, Data is exchanged with the first monitoring center 41 which is one monitoring center.
 一方、MOP1は、図2のステップS102で、LTE1とAPN1との接続が確立できない場合には通信障害が発生していると判断して、図2のステップS105に進む。ステップS105において、MOP1は、例えば、第1エレベーター11のインターホンボタンが押し続けられている、或いは、戸開ボタンが押し続けられているようにかごの中に乗客が閉じ込められている状態が発生していると判断した場合には、図2のステップS108に進んでLTE1の常時接続先をAPN1からAPN2に切換える。これにより、図3に示すように、LTE1はAPN2と常時接続される。MOP1は図2のステップS109に進んで、図3の一点鎖線91aに示すようにAPN2に接続されている他の監視センターである第2監視センター42との間でデータの授受を行う。 On the other hand, if the connection between LTE1 and APN1 cannot be established in step S102 of FIG. 2, MOP1 determines that a communication failure has occurred, and proceeds to step S105 of FIG. In step S105, for example, the MOP 1 has a state in which the intercom button of the first elevator 11 is kept pressed or the passenger is trapped in the car so that the door open button is kept pressed. If it is determined, the process proceeds to step S108 in FIG. 2 to switch the constant connection destination of LTE1 from APN1 to APN2. Thereby, as shown in FIG. 3, LTE1 is always connected with APN2. The MOP1 proceeds to step S109 in FIG. 2, and exchanges data with the second monitoring center 42, which is another monitoring center connected to the APN 2, as indicated by a one-dot chain line 91a in FIG.
 これにより、かごの中の乗客は、インターホンを通じて第2監視センター42の監視員と通話することができるようになる。このように、閉じ込めが発生とAPN1と接続障害の発生とが重なった場合に、MOP1と監視センターとの間のデータの授受を短時間で回復させることができる。 This allows passengers in the car to talk to the monitor at the second monitoring center 42 through the intercom. As described above, when the confinement occurs and the APN1 and the connection failure overlap, the data exchange between the MOP1 and the monitoring center can be recovered in a short time.
 また、MOP1は、図2のステップS105でNOと判断した場合には、図2のステップS106に進んで、所定回数だけ接続回復動作をしたかどうかを確認する。そして、図2のステップS106でNOと判断した場合には、図2のステップS107に進んで、LTE1にAPN1との接続動作を行わせ、図2のステップS102に戻ってAPN1との接続が確立したかどうか確認する。ここで、所定回数は、自由に設定できるが、例えば、3回、5回、10回等に設定してもよい。 Further, if the MOP 1 determines NO in step S105 in FIG. 2, the process proceeds to step S106 in FIG. 2 to confirm whether or not the connection recovery operation has been performed a predetermined number of times. If NO is determined in step S106 of FIG. 2, the process proceeds to step S107 of FIG. 2 to cause LTE1 to perform the connection operation with APN1, and the process returns to step S102 of FIG. 2 to establish the connection with APN1. Check if you did. Here, the predetermined number of times can be set freely, but may be set to three times, five times, ten times, or the like.
 MOP1は、接続回復動作でAPN1との接続が確立された場合には、図2のステップS102でYESと判断して図2のステップS103、S104に進み、APN1を介して第1監視センター41との間でデータの授受を行う。 If the connection with the APN 1 is established by the connection recovery operation, the MOP 1 determines YES in step S102 in FIG. 2 and proceeds to steps S103 and S104 in FIG. 2, and the first monitoring center 41 via the APN 1 Send and receive data between.
 一方、所定回数だけ接続回復動作を行ってもAPN1との接続を確立できず、接続障害の状態が続く場合には、MOP1は、図2のステップS102、S106でYESと判断して図2のステップS108に進んでLTE1の常時接続先を図3に示すようにAPN1からAPN2に切換え、図2のステップS109に進んで図3の一点鎖線91aに示すように、APN2に接続されている他の監視センターである第2監視センター42との間でデータの授受を行う。 On the other hand, if the connection with the APN 1 cannot be established even if the connection recovery operation is performed a predetermined number of times, and the connection failure state continues, the MOP 1 determines YES in steps S102 and S106 in FIG. Proceeding to step S108, the constant connection destination of LTE1 is switched from APN1 to APN2 as shown in FIG. 3, and proceeding to step S109 of FIG. Data is exchanged with the second monitoring center 42 which is a monitoring center.
 MOP1は、図2のステップS109で第2監視センター42との間でデータの授受を行ったら、図2のステップS110に示すように、所定の期間が経過するまで、LTE1とAPN2との常時接続状態を保持する。ここで、所定の期間は、例えば、30分、或いは、1時間などに設定することができる。 When the MOP 1 exchanges data with the second monitoring center 42 in step S109 in FIG. 2, as shown in step S110 in FIG. 2, the MOP 1 always connects the LTE 1 and the APN 2 until a predetermined period elapses. Keep state. Here, the predetermined period can be set to 30 minutes or 1 hour, for example.
 このように、所定回数だけ接続回復動作を行っても接続障害が継続する場合に常時接続先のアクセスポイントの切換えを行い、所定期間だけ切換え状態を保持するので、煩雑に常時接続先のアクセスポイントの切換えが発生することを抑制できる。また、アクセスポイントをAPN2に切換えた際の第2監視センター42からMOP1へのアクセスを確実に行うことができる。 In this way, if the connection failure continues even if the connection recovery operation is performed a predetermined number of times, the access point of the connection destination is always switched and the switching state is maintained for a predetermined period of time, so that the access point of the connection destination is always complicated. Can be prevented from occurring. Further, it is possible to reliably access the MOP 1 from the second monitoring center 42 when the access point is switched to the APN 2.
 MOP1は、所定期間が経過し図2のステップS110でYESと判断したら、図2のステップS111に進んでLTE1とAPN1との接続動作を実行する。そして、図2のステップS112でLTE1とAPN1との接続が確立したら、図2のステップS113に進み、LTE1の常時接続先をAPN2からAPN1に戻し、図2のステップS103に進んでLTE1をAPN1と常時接続する。すると、無線遠隔監視システム100は、図1に示す系統構成にもどる。そして、MOP1は、図2のステップS104に進んで第1監視センター41との間でデータの授受を行う。 When the predetermined period has elapsed and YES is determined in step S110 in FIG. 2, the MOP1 proceeds to step S111 in FIG. 2 and executes the connection operation between LTE1 and APN1. When the connection between LTE1 and APN1 is established in step S112 of FIG. 2, the process proceeds to step S113 of FIG. 2, the LTE1 constant connection destination is returned from APN2 to APN1, and the process proceeds to step S103 of FIG. Connect always. Then, the wireless remote monitoring system 100 returns to the system configuration shown in FIG. Then, the MOP 1 proceeds to step S104 in FIG. 2 to exchange data with the first monitoring center 41.
 一方、MOP1は、図2のステップS112でLTE1とAPN1との接続が確立できない場合には、図2のステップS113に進んで、所定のインターバルだけ待機し、所定のインターバルだけ時間が経過したら、図2のステップS111に戻ってLTE1とAPN1との接続動作を実行する。ここで、所定のインターバルは、例えば、10分、或いは30分程度とすることができる。 On the other hand, if the connection between LTE1 and APN1 cannot be established in step S112 in FIG. 2, the MOP1 proceeds to step S113 in FIG. 2 and waits for a predetermined interval. Returning to step S111 of 2, the connection operation between LTE1 and APN1 is executed. Here, the predetermined interval can be set to about 10 minutes or 30 minutes, for example.
 MOP1は、LTE1とAPN1との接続が確立するまで、図2のステップS111からステップS113の動作を繰り返し、LTE1とAPN1との接続が確立したら、図2のステップS113でLTE1の常時接続先をAPN2からAPN1に戻し、図2のステップS103、S104に進んでLTE1をAPN1と常時接続して第1監視センター41との間でデータの授受を行う。 MOP1 repeats the operations from step S111 to step S113 in FIG. 2 until the connection between LTE1 and APN1 is established. When the connection between LTE1 and APN1 is established, the constant connection destination of LTE1 is changed to APN2 in step S113 in FIG. 2 to return to APN1 and proceed to steps S103 and S104 in FIG. 2 to connect LTE 1 to APN1 at all times and exchange data with first monitoring center 41.
 このように、MOP1はLTE1の所定期間経過後にAPN1との接続を確立する動作を所定のインターバルで継続して行い、LTE1とAPN1との接続が確立したら、常時接続先をAPN2からAPN1に戻して第1監視センター41との間でデータの授受を行うので、遠隔監視のバックアップで高くなっていた第2監視センター42の負荷を下げて、通常の状態に戻すことができる。 As described above, MOP1 continuously performs an operation of establishing a connection with APN1 after a predetermined period of LTE1 at a predetermined interval, and when a connection between LTE1 and APN1 is established, the connection destination is always returned from APN2 to APN1. Since data is exchanged with the first monitoring center 41, the load on the second monitoring center 42, which has been high due to the remote monitoring backup, can be reduced to return to the normal state.
 <第1、第2監視センターの動作>
 次に図4、図5を参照しながら第1監視センター41の動作について説明する。なお、第2監視センター42の動作は、第1監視センター41の動作と同様である。
<Operation of the first and second monitoring centers>
Next, the operation of the first monitoring center 41 will be described with reference to FIGS. The operation of the second monitoring center 42 is the same as the operation of the first monitoring center 41.
 第1監視センター41は、図4のステップS201に示すようにMOP1にポーリング信号を発信し、MOP1に第1エレベーター11の運転データ等を発信させる。従って、図5に示すように、第1監視センター41とAPN1との間の接続が不良となった場合、MOP1は第1監視センター41からポーリング信号を受信せず、データの発信を行わないので、第1監視センター41との間に接続障害が発生していること検知できない場合がある。この場合、MOP1は常時接続先の切換えを行わない。一方、第1監視センター41は、直接、LTE1にアクセスしてLTE1の常時接続先を切換えることはできない。このため、MOP1と第1監視センター41との間のデータ授受ができない状態が継続してしまう場合がある。 The first monitoring center 41 transmits a polling signal to the MOP 1 as shown in step S201 of FIG. 4, and causes the MOP 1 to transmit the operation data of the first elevator 11 and the like. Therefore, as shown in FIG. 5, when the connection between the first monitoring center 41 and the APN 1 becomes defective, the MOP 1 does not receive a polling signal from the first monitoring center 41 and does not transmit data. In some cases, it may not be possible to detect that a connection failure has occurred with the first monitoring center 41. In this case, MOP1 does not always switch the connection destination. On the other hand, the first monitoring center 41 cannot directly access the LTE 1 to switch the permanent connection destination of the LTE 1. For this reason, a state where data cannot be exchanged between the MOP 1 and the first monitoring center 41 may continue.
 そこで、第1監視センター41は、図4のステップS201のMOP1へのポーリング動作の際にポーリング信号の送受信を行えない場合には、図4のステップS202でMOP1との接続が確立していないと判断して図4のステップS204に進んで所定回数だけポーリング動作に失敗したかどうかを判断する。そして、所定の回数だけポーリング動作に失敗した場合には、図4のステップS204でYESと判断して図4のステップS205に進み、図5に示すように、LTE回線網において通信のバックアップを行うには、SMS45からLTE1に常時接続先切換え指令のショートメールを送信する。LTE1は、このショートメールを受信したら所定の信号をMOP1に出力する。MOP1は、この所定の信号が入力されたら、図2のステップS108、S109を実行し、図5に示すように常時接続先のアクセスポイントをAPN1からAPN2に切換える。この常時接続先のアクセスポイントの切換えには1~2分程度の時間がかかる。 Therefore, if the first monitoring center 41 cannot transmit or receive a polling signal during the polling operation to MOP1 in step S201 in FIG. 4, it is assumed that the connection with MOP1 has not been established in step S202 in FIG. The process proceeds to step S204 in FIG. 4 to determine whether the polling operation has failed a predetermined number of times. If the polling operation has failed a predetermined number of times, YES is determined in step S204 in FIG. 4, and the process proceeds to step S205 in FIG. 4, where communication backup is performed in the LTE network as shown in FIG. The SMS 45 always sends a short mail of a connection destination switching command to the LTE 1. When LTE1 receives this short mail, it outputs a predetermined signal to MOP1. When this predetermined signal is input, MOP1 executes steps S108 and S109 of FIG. 2, and switches the access point to be always connected from APN1 to APN2 as shown in FIG. It takes about 1 to 2 minutes to change the access point of the constant connection destination.
 第1監視センター41がSMSでLTE1にショートメールを発信した2~3分後で常時接続先のアクセスポイントの切換えが終了した頃に、第2監視センター42は、図2のステップS206に示すように、MOP1へのポーリング動作を行い、図2のステップS207、S208、図5の一点鎖線91aに示すように、MOP1から第1エレベーター11の運転データ等を取得する。第2監視センター42は、図4のステップS207、S208に示すように、所定期間だけMOP1との間のデータ授受を行った後、図4のステップS209に進んでMOP1との間のデータ授受を停止し、図4のステップ201に戻って第1監視センター41からMOP1へのポーリング動作を行う。そして、図4のステップS202で、MOP1との接続が確立したら図4のステップS203に進み、第1監視センター41とMOP1との間でデータの授受を行う。 As shown in step S206 of FIG. 2, when the first monitoring center 41 completes the switching of the access point to which it is always connected two to three minutes after sending the short mail to the LTE 1 by SMS. In addition, a polling operation to the MOP 1 is performed, and operation data and the like of the first elevator 11 are acquired from the MOP 1 as shown in steps S207 and S208 of FIG. 2 and the one-dot chain line 91a of FIG. As shown in steps S207 and S208 in FIG. 4, the second monitoring center 42 performs data exchange with the MOP1 for a predetermined period, and then proceeds to step S209 in FIG. 4 to exchange data with the MOP1. The process is stopped, and the process returns to step 201 in FIG. 4 to perform the polling operation from the first monitoring center 41 to the MOP 1. When the connection with MOP1 is established in step S202 of FIG. 4, the process proceeds to step S203 of FIG. 4, and data is exchanged between the first monitoring center 41 and MOP1.
 以上のような動作により、第1監視センター41からLTE1の常時接続先のアクセスポイントを切換えることができるので、第1監視センター41とAPN1との間で接続障害が発生した場合でも、遠隔監視のバックアップを行うことができる。 Through the operation as described above, the access point to which the LTE 1 is always connected can be switched from the first monitoring center 41. Therefore, even if a connection failure occurs between the first monitoring center 41 and the APN 1, remote monitoring can be performed. Backup can be done.
 <地震発生の場合の動作>
 地震発生の場合には多くのLTE1とAPN1との間の接続障害が発生することが想定される。この場合、多くのLTE1のアクセスポイントをAPN1からAPN2一度に切換えてしまうと第2監視センター42の監視能力を超えてしまう場合がある。そこで、MOP1は、地震が発生によりLTE1とAPN1との間に接続障害が発生した場合には、LTE1の常時接続先をAPN1からAPN2に切換えずにAPN4を介して地震時のエレベーター状態信号を第2地震時データ受信サーバ44に送信する。これにより、無線遠隔監視システム100全体の機能が低下することを抑制する。地震時のMOP2の動作は、MOP1の動作と同様である。
<Operation when an earthquake occurs>
In the event of an earthquake, it is assumed that many connection failures between LTE1 and APN1 will occur. In this case, if many LTE 1 access points are switched from APN 1 to APN 2 at once, the monitoring capability of the second monitoring center 42 may be exceeded. Therefore, when a connection failure occurs between LTE1 and APN1 due to the occurrence of an earthquake, MOP1 sends an elevator status signal at the time of the earthquake via APN4 without switching the permanent connection destination of LTE1 from APN1 to APN2. 2 Transmit to the data receiving server 44 at the time of earthquake. Thereby, it is suppressed that the function of the whole radio | wireless remote monitoring system 100 falls. The operation of MOP2 during an earthquake is the same as that of MOP1.
 <他の実施形態の無線遠隔監視システム>
 図6、図7を参照しながら、他の実施形態の無線遠隔監視システム200について説明する。先に図1を参照して説明した無線遠隔監視システム100と同様の部分には、同様の符号を付して説明は省略する。
<Wireless Remote Monitoring System of Other Embodiment>
A wireless remote monitoring system 200 according to another embodiment will be described with reference to FIGS. 6 and 7. Components similar to those of the wireless remote monitoring system 100 described above with reference to FIG.
 無線遠隔監視システム200は、図6に示すように、第1エレベーター11、第1監視センター41が第1国に設置されており、第2エレベーター21、第2監視センター42が第1国と異なる第2国に設置されているものである。通常は、第1国に設置されている第1エレベーター11の遠隔監視は第1国に設置されている第1監視センター41が行い、第2国に設置とされている第2エレベーター21の遠隔監視は、第2国の第2監視センター42が行っている。 As shown in FIG. 6, in the wireless remote monitoring system 200, the first elevator 11 and the first monitoring center 41 are installed in the first country, and the second elevator 21 and the second monitoring center 42 are different from the first country. It is installed in the second country. Normally, the first elevator 11 installed in the first country is remotely monitored by the first monitoring center 41 installed in the first country, and the second elevator 21 installed in the second country is remotely monitored. The monitoring is performed by the second monitoring center 42 in the second country.
 図7に示すようにLTE1とAPN1との間の接続が確立できいな場合には、MOP1は,LTE1の常時接続先のアクセスポイントを第2監視センター42が接続されているAPN2に切換える。そして、第1国に設置されている第1エレベーター11の遠隔監視を第2国に設置されている第2監視センター42によって実行する。 As shown in FIG. 7, when the connection between LTE1 and APN1 cannot be established, MOP1 switches the access point that is always connected to LTE1 to APN2 to which the second monitoring center 42 is connected. And the remote monitoring of the 1st elevator 11 installed in the 1st country is performed by the 2nd monitoring center 42 installed in the 2nd country.
 これにより、より広範囲に設置されている多くのエレベーターの遠隔監視のバックアップを行うことができる。 This makes it possible to back up remote monitoring of many elevators installed in a wider area.
 なお、第2監視センター42は、第2国の電話通信網を介してLTE回線網30に接続されているように構成してもよい。 Note that the second monitoring center 42 may be configured to be connected to the LTE network 30 via the telephone communication network of the second country.
 11,21 エレベーター、12,22 エレベーター監視装置(MOP1,MOP2)、13,23 LTE端末(LTE1,LTE2)、30 LTE回線網、41,42 監視センター、43,44 地震時データ受信サーバ、45,45 SMS 100,200 無線遠隔監視システム。 11, 21 elevator, 12, 22 elevator monitoring device (MOP1, MOP2), 13, 23 LTE terminal (LTE1, LTE2), 30 LTE network, 41, 42 monitoring center, 43, 44 earthquake data receiving server, 45, 45 SMS 100, 200 wireless remote monitoring system.

Claims (9)

  1.  エレベーターに接続されて前記エレベーターの運行状態を監視するエレベーター監視装置と、
     前記エレベーター監視装置に接続され、LTE回線網の中の1のアクセスポイントに常時接続されるLTE端末と、
     前記LTE回線網の前記1のアクセスポイントに接続されて前記エレベーター監視装置との間でデータの授受を行う1の監視センターと、を含み、
     前記LTE回線網を介して前記エレベーターの遠隔監視を行う無線遠隔監視システムであって、
     前記エレベーター監視装置は、前記1の監視センターとの間の接続が確立できない場合に、前記LTE端末の常時接続先を前記1のアクセスポイントから他の監視センターが接続されている他のアクセスポイントに切換えて、前記他の監視センターとの間でデータの授受を行うこと、
     を特徴とする無線遠隔監視システム。
    An elevator monitoring device connected to the elevator and monitoring the operation state of the elevator;
    An LTE terminal connected to the elevator monitoring device and always connected to one access point in the LTE network;
    A monitoring center connected to the one access point of the LTE network and transferring data to and from the elevator monitoring device,
    A wireless remote monitoring system for remotely monitoring the elevator via the LTE network;
    When the elevator monitoring device cannot establish a connection with the one monitoring center, the elevator terminal always connects the LTE terminal from the one access point to another access point to which another monitoring center is connected. Switching and transferring data to and from the other monitoring center,
    A wireless remote monitoring system.
  2.  請求項1に記載の無線遠隔監視システムであって、
     前記エレベーター監視装置は、前記LTE端末の常時接続先を前記他のアクセスポイントに切換えた場合には、前記他のアクセスポイントとの常時接続を所定期間だけ保持すること、
     を特徴とする無線遠隔監視システム。
    The wireless remote monitoring system according to claim 1,
    The elevator monitoring device holds a constant connection with the other access point only for a predetermined period when the constant connection destination of the LTE terminal is switched to the other access point.
    A wireless remote monitoring system.
  3.  請求項2に記載の無線遠隔監視システムであって、
     前記エレベーター監視装置は、前記LTE端末の常時接続先を前記他のアクセスポイントに切換えた後、所定のインターバルで前記LTE端末と前記1のアクセスポイントとの間の接続状態を確認し、前記1のアクセスポイントとの間の接続が確立できた場合には、前記LTE端末の常時接続先を前記1のアクセスポイントに戻すこと、
     を特徴とする無線遠隔監視システム。
    The wireless remote monitoring system according to claim 2,
    The elevator monitoring device switches a constant connection destination of the LTE terminal to the other access point, and then confirms a connection state between the LTE terminal and the one access point at a predetermined interval. When the connection with the access point can be established, the permanent connection destination of the LTE terminal is returned to the one access point;
    A wireless remote monitoring system.
  4.  請求項1から3のいずれか1項に記載の無線遠隔監視システムにおいて、
     前記エレベーター監視装置は、前記LTE端末が所定回数だけ前記1の監視センターとの間の接続の確立に失敗した場合、前記LTE端末の常時接続先を切換えること、
     を特徴とする無線遠隔監視システム。
    The wireless remote monitoring system according to any one of claims 1 to 3,
    The elevator monitoring device switches the permanent connection destination of the LTE terminal when the LTE terminal fails to establish a connection with the one monitoring center a predetermined number of times.
    A wireless remote monitoring system.
  5.  請求項1から3のいずれか1項に記載の無線遠隔監視システムであって、
     前記エレベーター監視装置は、前記エレベーターのかごの中に乗客が閉じ込められた状態で、前記LTE端末が前記1の監視センターとの間の接続の確立に失敗した場合、前記LTE端末の常時接続先を切換えること、
     を特徴とする無線遠隔監視システム。
    The wireless remote monitoring system according to any one of claims 1 to 3,
    When the LTE terminal fails to establish a connection with the one monitoring center in a state where passengers are confined in the elevator car, the elevator monitoring device determines the permanent connection destination of the LTE terminal. Switching,
    A wireless remote monitoring system.
  6.  請求項1から3のいずれか1項に記載の無線遠隔監視システムであって、
     前記エレベーター監視装置は、地震が発生した際には、前記LTE端末の常時接続先を切換えずに、前記1のアクセスポイントおよび前記他のアクセスポイントと異なる第3アクセスポイントを介して地震時のエレベーター状態信号を地震時データ受信サーバに送信すること、
     を特徴とする無線遠隔監視システム。
    The wireless remote monitoring system according to any one of claims 1 to 3,
    When the earthquake occurs, the elevator monitoring device does not switch the permanent connection destination of the LTE terminal, and the elevator at the time of the earthquake via the third access point different from the one access point and the other access points. Sending status signals to the earthquake data receiving server;
    A wireless remote monitoring system.
  7.  請求項1から3のいずれか1項に記載の無線遠隔監視システムであって、
     前記1の監視センターは、前記エレベーター監視装置との間の接続が確立できない場合に、SMSで常時接続先切換え指令のショートメールを前記LTE端末に発信し、
     前記エレベーター監視装置は、前記LTE端末が前記ショートメールを受信した場合に、前記LTE端末の常時接続先を前記1のアクセスポイントから前記他の監視センターが接続されている他のアクセスポイントに切換えて、前記他の監視センターとの間でデータの授受を行うこと、
     を特徴とする無線遠隔監視システム。
    The wireless remote monitoring system according to any one of claims 1 to 3,
    When the connection between the monitoring center and the elevator monitoring device cannot be established, the monitoring center of 1 sends a short mail of a constant connection destination switching command to the LTE terminal by SMS,
    When the LTE terminal receives the short mail, the elevator monitoring device switches the constant connection destination of the LTE terminal from the one access point to another access point to which the other monitoring center is connected. Exchanging data with the other monitoring centers;
    A wireless remote monitoring system.
  8.  第1国に設置されたエレベーターに接続されて前記エレベーターの運行状態を監視するエレベーター監視装置と、
     前記エレベーター監視装置に接続され、LTE回線網の中の1のアクセスポイントに常時接続されるLTE端末と、
     前記第1国に設置され、前記LTE回線網の前記1のアクセスポイントに接続されて前記エレベーター監視装置との間でデータの授受を行う1の監視センターと、を含み、
     前記LTE回線網を介して前記エレベーターの遠隔監視を行う無線遠隔監視システムであって、
     前記エレベーター監視装置は、前記1の監視センターとの間の接続が確立できない場合に、前記LTE端末の常時接続先を前記1のアクセスポイントから、前記第1国と異なる第2国に設置された他の監視センターが接続されている他のアクセスポイントに切換えて、前記第2国の前記他の監視センターとの間でデータの授受を行うこと、
     を特徴とする無線遠隔監視システム。
    An elevator monitoring device connected to an elevator installed in the first country and monitoring the operation state of the elevator;
    An LTE terminal connected to the elevator monitoring device and always connected to one access point in the LTE network;
    A monitoring center installed in the first country and connected to the one access point of the LTE network to transfer data to and from the elevator monitoring device;
    A wireless remote monitoring system for remotely monitoring the elevator via the LTE network;
    The elevator monitoring device is installed in the second country different from the first country from the first access point, when the connection to the first monitoring center cannot be established, the LTE terminal always connected to Switching to another access point to which another monitoring center is connected to exchange data with the other monitoring center in the second country;
    A wireless remote monitoring system.
  9.  請求項8に記載の無線遠隔監視システムであって、
     前記他の監視センターは、前記第2国の電話通信網を介して前記LTE回線網に接続されていること、
     を特徴とする無線遠隔監視システム。
    The wireless remote monitoring system according to claim 8,
    The other monitoring center is connected to the LTE network via the telephone communication network of the second country;
    A wireless remote monitoring system.
PCT/JP2018/017203 2018-04-27 2018-04-27 Wireless remote monitoring system WO2019207765A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018540169A JP6486568B1 (en) 2018-04-27 2018-04-27 Wireless remote monitoring system
CN201880092473.5A CN111989908A (en) 2018-04-27 2018-04-27 Wireless remote monitoring system
PCT/JP2018/017203 WO2019207765A1 (en) 2018-04-27 2018-04-27 Wireless remote monitoring system
KR1020207028817A KR102415099B1 (en) 2018-04-27 2018-04-27 Wireless remote monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017203 WO2019207765A1 (en) 2018-04-27 2018-04-27 Wireless remote monitoring system

Publications (1)

Publication Number Publication Date
WO2019207765A1 true WO2019207765A1 (en) 2019-10-31

Family

ID=65802994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017203 WO2019207765A1 (en) 2018-04-27 2018-04-27 Wireless remote monitoring system

Country Status (4)

Country Link
JP (1) JP6486568B1 (en)
KR (1) KR102415099B1 (en)
CN (1) CN111989908A (en)
WO (1) WO2019207765A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3305705B1 (en) * 2016-10-05 2021-02-24 KONE Corporation Connection establishment in elevator system, escalator system or autowalk system
WO2022195857A1 (en) * 2021-03-19 2022-09-22 三菱電機ビルテクノサービス株式会社 Elevator remote monitoring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194879A (en) * 1995-01-20 1996-07-30 Hitachi Building Syst Eng & Service Co Ltd Remote monitoring device
JP2009141724A (en) * 2007-12-07 2009-06-25 Sanyo Electric Co Ltd Remote monitoring system, remote monitoring terminal, and, control method of remote monitoring terminal
JP2017013936A (en) * 2015-06-30 2017-01-19 東芝エレベータ株式会社 Remote monitoring system for elevator, remote monitoring device and communication device
WO2017042858A1 (en) * 2015-09-07 2017-03-16 三菱電機株式会社 Elevator signal transmission device and elevator signal transmission method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836070A (en) 1981-08-26 1983-03-02 Omron Tateisi Electronics Co Optical reader
JP2000330815A (en) * 1999-05-24 2000-11-30 Matsushita Electric Ind Co Ltd Duplexed switching control device and method
JP2012104939A (en) * 2010-11-08 2012-05-31 Olympus Corp Imaging device
JP5639502B2 (en) * 2011-02-23 2014-12-10 株式会社Nttドコモ Communication service providing system, communication service control node, and communication service providing method
JP5878081B2 (en) * 2012-06-08 2016-03-08 セイコーソリューションズ株式会社 Fault detection device, fault detection system, fault detection method, and program
JP5797175B2 (en) * 2012-09-12 2015-10-21 北越紀州製紙株式会社 Air filter media
JP6448080B2 (en) * 2014-09-26 2019-01-09 株式会社日立国際電気 Wireless communication system, communication method, and wireless communication module
WO2016106740A1 (en) * 2014-12-31 2016-07-07 华为技术有限公司 Wireless communication method, apparatus and system
JP6601607B2 (en) * 2015-02-25 2019-11-06 Toto株式会社 Solid oxide fuel cell device
JP2016187126A (en) * 2015-03-27 2016-10-27 株式会社日立ビルシステム Remote monitoring system
JP2016208296A (en) 2015-04-23 2016-12-08 株式会社日立ビルシステム Processing system in abnormality of radio communication
JP6810547B2 (en) * 2016-07-22 2021-01-06 サンデン・リテールシステム株式会社 Communications system
CN106973093B (en) * 2017-03-23 2019-11-19 北京奇艺世纪科技有限公司 A kind of service switch method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194879A (en) * 1995-01-20 1996-07-30 Hitachi Building Syst Eng & Service Co Ltd Remote monitoring device
JP2009141724A (en) * 2007-12-07 2009-06-25 Sanyo Electric Co Ltd Remote monitoring system, remote monitoring terminal, and, control method of remote monitoring terminal
JP2017013936A (en) * 2015-06-30 2017-01-19 東芝エレベータ株式会社 Remote monitoring system for elevator, remote monitoring device and communication device
WO2017042858A1 (en) * 2015-09-07 2017-03-16 三菱電機株式会社 Elevator signal transmission device and elevator signal transmission method

Also Published As

Publication number Publication date
CN111989908A (en) 2020-11-24
KR20200129144A (en) 2020-11-17
JP6486568B1 (en) 2019-03-20
JPWO2019207765A1 (en) 2020-04-30
KR102415099B1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP2008099137A (en) Line detour system using vendor specific area of common public radio interface(cpri)
CN112543468B (en) Disaster recovery method for gateway equipment and communication equipment
JP6486568B1 (en) Wireless remote monitoring system
CN101208912A (en) Communication network system
JP6973181B2 (en) Communication system and method
JP2003188905A (en) System and method for multiplexing tcp/ip communication for server/client system
JP2006253748A (en) Radio communication system
JP4475018B2 (en) Communication system, communication method, and wireless terminal for relay
JP3378463B2 (en) Mobile communication system
JP2007161463A (en) Elevator remote monitoring system
US7577135B2 (en) IP telephone system
JP2015050645A (en) Relay device, method for reestablishing bearer, and communication system
JP2004363986A (en) Wireless information communication system, program for terminal, and program for server
WO2023002602A1 (en) Communication system, communication method, and communication device
JP5459117B2 (en) Data transmission apparatus and data transmission method
KR100629117B1 (en) Circuit error monitoring method for mobile communication network system
JPS60113550A (en) Abnormal terminal detection system
JP4916670B2 (en) IP phone system
JPH10327215A (en) Monitor and control system
JP2002016540A (en) Wireless base station, slave station and wireless communication method
JP2966579B2 (en) One-way call detection in packet-switched networks
KR101549282B1 (en) Method and apparatus for detecting state of a base station in a wireless communication system
CN113300921A (en) Information transmission method and equipment
KR20070098110A (en) Short message service center for providing of continual short message service and method using the same
JP2002009785A (en) Monitor system for communication system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540169

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207028817

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915966

Country of ref document: EP

Kind code of ref document: A1