WO2019206104A1 - 一种水力发电装置 - Google Patents

一种水力发电装置 Download PDF

Info

Publication number
WO2019206104A1
WO2019206104A1 PCT/CN2019/083751 CN2019083751W WO2019206104A1 WO 2019206104 A1 WO2019206104 A1 WO 2019206104A1 CN 2019083751 W CN2019083751 W CN 2019083751W WO 2019206104 A1 WO2019206104 A1 WO 2019206104A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
water flow
generating apparatus
power generating
hydroelectric power
Prior art date
Application number
PCT/CN2019/083751
Other languages
English (en)
French (fr)
Inventor
王武生
Original Assignee
Wang Wusheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Wusheng filed Critical Wang Wusheng
Publication of WO2019206104A1 publication Critical patent/WO2019206104A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to hydroelectric power generation technology, and more particularly to a hydroelectric power generation apparatus.
  • the principle of hydropower generation is mainly to use the kinetic energy of the powerful water flow generated by the water level difference to drive the turbine to drive the generator set to generate electricity.
  • the propeller blades are basically used for hydroelectric power generation.
  • the United States installs a propeller power of 70 meters in diameter in the water, and uses the water flow to propel the propeller to rotate and drive the generator to generate electricity.
  • a propeller rotation power generation method has the disadvantage of high manufacturing cost, in particular, the blade line has a high linear velocity, a large resistance, and a low water energy conversion rate.
  • a propeller with a diameter of 70 m and a rotational speed of 10 r/m is used: the edge speed of the blade reaches 36.6 m/s, which is equivalent to a water resistance of 121 km/h.
  • the presence of such water resistance greatly consumes the kinetic energy of the water flow itself, resulting in a reduction in power generation.
  • impellers to generate electricity Because when the impeller rotates under the hydraulic force, the rotation direction of the upper blade and the lower blade of the axle is opposite, the opposite rotation will cancel the driving force, resulting in high energy consumption, low power generation efficiency, high power generation cost, and no Practical value.
  • an object of the present invention is to provide a hydropower generating device that realizes hydroelectric power generation with low cost, low energy consumption, and high efficiency to promote large-scale application of hydraulic resources.
  • the present invention adopts the following technical solutions:
  • a hydroelectric power generating apparatus comprising an impeller and an impeller shaft, the impeller comprising a vane, wherein the impeller is installed such that a portion of the vanes constituting the impeller are in the air while the remaining vane is in the water flow.
  • the present invention places the upper blade opposite to the water flow in the air, since the specific gravity of the air is only one-eighth of the water, and the air is relatively stationary, so that when the upper blade rotates in the reverse direction, the air received
  • the resistance is far less than the resistance generated by the water flow, which can greatly reduce the loss of water energy and improve the efficiency of water flow generation.
  • the vanes in the air are distributed symmetrically with the vanes in the water stream. This symmetrical distribution allows the blades in the water to be immersed in the water as much as possible and to be subjected to maximum water energy.
  • the vanes are curved vanes.
  • the curved vanes are opposite to the direction of the water flow, a greater impulsive force can be obtained.
  • baffles are provided at both ends of the curved blade.
  • a baffle is arranged at both ends of the curved blade to lock the water flow at both ends, thereby improving the utilization of water energy.
  • a transmission wheel is disposed on the baffle, and the transmission wheel is coupled to the generator.
  • the curved blade is provided with at least one partitioning plate, so that the curved blade is divided into a plurality of segments.
  • the water flow can be locked in the isolation zone to prevent the water flow from spreading and improve the utilization efficiency of the water energy.
  • the hydropower generating device further comprises a U-shaped beam sink, the impeller being located in the U-shaped beam sink.
  • the water flow can be prevented from being diffused in other directions when the blade is pushed, so that the power of the water flow is limited to the rotation direction of the impeller, thereby further improving the utilization efficiency of the water energy.
  • a guide shroud is disposed at a front end of the impeller, and the diameter of the shroud is reduced from large to large, with a large diameter at the water inlet and a small diameter at the front end of the impeller.
  • the inlet of the impeller is 5m ⁇ 20m.
  • the size of the inlet of the shroud is 15m ⁇ 20m through the function of the shroud.
  • the width is the same as the original, but the height is three times the original;
  • the outlet of the flow hood is still 5 m ⁇ 20 m, which is the same as the inlet of the impeller and is connected to it.
  • an opening and closing door is provided on the shroud.
  • the amount of water inflow can be continuously adjusted, so that the flow rate is relatively stable, thereby ensuring the quality of power generation.
  • the rear end of the shroud is integrally connected with the front end of the U-shaped water tank. This connection ensures that the two are combined into one, which increases the ease of installation and reduces manufacturing costs.
  • At least one output wheel is mounted on the impeller shaft, the output wheel having a clutch function.
  • the size of the water flow is constantly changing.
  • the power transmission wheels are connected to increase the power generation load, thereby fully utilizing the water flow to generate electricity and ensure the power generation quality.
  • a water flow direction adjusting shaft is vertically disposed in a middle portion of the impeller shaft, and the water flow direction adjusting shaft can automatically adjust the impeller shaft to be perpendicular to the water flow direction according to the water flow direction change, thereby improving the hydroelectric power generation efficiency.
  • a guide rudder is provided on the impeller or on the impeller shaft or on the water flow direction adjusting shaft. Once the direction of the water flow changes, the guiding rudder will adjust the direction of the blade to be perpendicular to the direction of the water flow under the action of the water flow, thereby improving the hydropower generation efficiency.
  • the present invention has the following beneficial effects:
  • the invention makes the part of the blades constituting the impeller in the air, and the remaining blades are in the water flow, so that the blades whose rotation direction is opposite to the direction of the water flow are no longer subjected to the reverse resistance of the water flow but only the air resistance, since the air resistance is much smaller than The resistance generated by the water flow, and thus the invention can greatly reduce the loss of water energy and improve the power generation efficiency of the water flow.
  • the power generation efficiency can be at least doubled compared with the existing propeller power generation; in particular, when at the front end of the impeller When the shroud is installed, the water energy utilization rate can be increased to more than twice as much as the existing one; therefore, the invention can realize high-quality hydropower generation with low cost, low energy consumption and high efficiency, and has a large-scale application for promoting water flow resources. Important value.
  • FIG. 1 is a schematic structural view of a hydroelectric power generation apparatus provided in Embodiment 1;
  • FIG. 2 is a schematic structural view of a hydroelectric power generation device provided in Embodiment 2;
  • Embodiment 3 is a schematic structural view of a blade provided in Embodiment 3;
  • FIG. 4 is a schematic structural view of a hydroelectric power generation device provided in Embodiment 4.
  • Figure 5 is a schematic structural view of a hydroelectric power generation device provided in Embodiment 5;
  • Fig. 6 is a schematic structural view of a hydroelectric power generating apparatus provided in the sixth embodiment.
  • a hydraulic power generation device provided by the present embodiment includes an impeller 1 and an impeller shaft 2, and the impeller 1 includes a blade 3, wherein the impeller 1 is installed such that a portion constituting the impeller 1 is required.
  • the blade 3A is in the air while the remaining blade 3B is in the water stream.
  • the center of the impeller shaft 2 is located on the horizontal plane 4 such that the vanes 3A in the air and the vanes 3B in the flow of water form a centrally symmetric distribution.
  • the blade 3B drives the impeller shaft 2 to rotate, generating rotational power, which can be used for power generation.
  • the blade 3A in the air produces synchronous rotation, it is only subjected to air resistance during the rotation, and the air is static.
  • the specific gravity of the air is only one-eighth of that of water, and thus the air received by the blade 3A.
  • the resistance is much smaller than the resistance generated by the water flow, so compared with the prior art (the blades are all in the water flow), the loss of water energy can be greatly reduced, and the power generation efficiency of the water flow can be improved.
  • the hydroelectric power generating apparatus provided in this embodiment is different from the hydroelectric power generating apparatus provided in Embodiment 1 in that the vane 3 is a curved vane, so that the vane 3B in the water flow is curved.
  • the grooves are provided in an upstream direction, and the arcuate grooves of the blades 3A in the air are provided in a backflow, so that the blades 3B in the water flow can receive a larger water flow with respect to the straight blades.
  • the blade 3A in the air is less resistant, so that the water energy loss is smaller, and the utilization of water energy can be further improved than in the first embodiment.
  • the hydroelectric power generating apparatus provided in this embodiment is different from the second embodiment in that a baffle 6 is disposed at both ends of the curved vane 3, and a plurality of baffles are provided between the two baffles.
  • a block (three blocks are shown in Fig. 3) is divided into panels 7, which are divided into four sections, each of which has only a quarter of the original space.
  • the hydroelectric power generating apparatus provided in this embodiment is different from the third embodiment in that a flat bearing 10 is disposed at a lower end of the water flow direction adjusting shaft 9 vertically fixed to the supporting surface 8, and the planar bearing 10 is provided.
  • An impeller 1 is symmetrically disposed on both sides thereof, and a baffle 6 is disposed at both ends of the vane 3 of the impeller 1, and a plurality of partition plates 7 (three blocks are shown in FIG. 4) are disposed between the two baffles.
  • the blades 3 are each divided into four segments; a guide rudder 11 is disposed below the planar bearing 10, and the guide rudder 11 is perpendicular to the blade 3, and the guide rudder 11 drives the blade 3 to rotate horizontally in synchronization.
  • the guide rudder 11 is rotated by the action of the water flow, and when the rotation is performed, the blade 3 is also rotated by the plane bearing 10, so as to always rotate perpendicularly to the water flow direction to obtain the maximum water energy.
  • the hydroelectric power generating apparatus provided in this embodiment is different from the hydroelectric power generating apparatus provided in the first embodiment in that a shroud 12 is attached to the front end of the impeller 1, and the shroud 12 is shrunk.
  • the shape of the horn is a large diameter at the water inlet, and a small diameter at the front end of the impeller 1.
  • the hydroelectric power generating apparatus provided in this embodiment is different from that of the second embodiment in that a U-shaped water tank 13 is provided on the outer circumference of the vane 3B in the water flow, and the open end of the U-shaped water tank 13 is provided.
  • the U-shaped water tank 13 can restrain the water flow directed to the blade 3B in the water flow in the U-shaped water tank 13, avoiding the water flow spreading to the surrounding and losing, thereby further improving the water energy utilization rate.
  • the U-shaped beam sink 13 can be integrally formed with the shroud 12 (not shown in the figure) for processing and installation, reducing manufacturing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种水力发电装置,包括叶轮(1)和叶轮轴(2),叶轮(1)包括叶片(3),叶轮(1)的安装需使构成叶轮(1)的部分叶片(3A)处在空气中,而余下叶片(3B)处在水流中。通过将构成叶轮的部分叶片(3A)处在空气中,使旋转方向与水流方向相反的叶片不再受到水流的反向阻力而只是空气阻力,由于空气阻力远远小于水流所产生的阻力,因而本发明可大幅度降低水能的损耗,提高水流发电效率,可实现低成本、低能耗、高效率的水力发电。

Description

一种水力发电装置 技术领域
本发明是涉及水力发电技术,具体说,是涉及一种水力发电装置。
背景技术
众所周知,水资源是宝贵的清洁可再生资源,可以作为解决能源制约的长效手段。目前水力发电的原理主要是利用水位差产生的强大水流所具有的动能推动水轮机带动发电机组而发电。现在基本上都是采用螺旋桨叶式进行水力发电,如:美国在水里安装直径达70米的螺旋浆发电,利用水流推动螺旋浆旋转,带动发电机发电。但这种螺旋浆旋转的发电方法具有制造成本高的缺点,特别是桨叶边缘的线速度高、阻力大,存在水能转化率低的难题。以直径为70米、转速为10r/m的螺旋浆为例:桨叶的边缘线速度达到36.6米/秒,相当于121公里/小时的水阻力。这种水阻力的存在会极大地消耗水流自身的动能,导致发电量减少。为什么不用叶轮发电?因为当叶轮在水力推动下旋转时,轮轴的上方叶片与下方叶片的旋转方向是相反的,这种相反旋转就会相互抵销推动力,导致能耗大、发电效率低、发电成本高,没有实用价值。
发明内容
针对现有技术存在的上述问题,本发明的目的是提供一种水力发电装置,以低成本、低能耗、高效率实现水力发电,以促使水力资源的规模化应用。
为实现上述目的,本发明采用如下技术方案:
一种水力发电装置,包括叶轮和叶轮轴,所述叶轮包括叶片,其特征在于:所述叶轮的安装需使构成叶轮的部分叶片处在空气中,而余下叶片处在水流中。
本发明将与水流方向相反的上部叶片放置在空气中,由于空气的比重只有水的八百分之一,并且空气是相对静止的,这样,当上部叶片进行反向旋转时,所受的空气阻力远远小于水流所产生的阻力,从而可大幅度降低水能的损耗,提高水流发电效率。
作为优选方案,使处在空气中的叶片与处在水流中的叶片成中心对称分布。这种对称分布可以使水里的叶片尽量浸没在水流中,能受到最大水能作用。
作为优选方案,所述叶片为弧形叶片。当弧形叶片与水流方向相对时,可获得更大的水流推动力。
作为进一步优选方案,在弧形叶片的两端设有挡板。在弧形叶片的两端设置挡板,可将两端的水流锁住,提高水能的利用率。
作为进一步优选方案,在所述挡板上设置传动轮,所述传动轮与发电机相连接。
作为进一步优选方案,所述弧形叶片上设有至少一块分隔板,使所述弧形叶片被分隔为多段。通过分隔板的阻挡作用,可将水流锁住在隔离区内,防止水流扩散,提高水能的利用效率。
作为优选方案,所述水力发电装置还包括U形束水槽,叶轮位于所述U形束水槽内。通过束水槽的束流作用,可以防止水流在推动叶片时,不会向其它方向扩散,以致水流的动力仅限于叶轮的旋转方向,从而进一步提高水能的利用效率。
作为优选方案,在所述叶轮的前端设有导流罩,所述导流罩的口径由大变小,在进水口处为大口径,在叶轮的前端处是小口径。通过导流罩的导流作用,将更多的水流引入到水力发电机里,从而可提高水力发电机的工作效率。如:叶轮的进水口是5米×20米,现在通过导流罩的作用,导流罩的进水口的尺寸是15米×20米,宽度与原来一样,但高度是原来的三倍;导流罩的出水口仍然是5米×20米,与叶轮的进水口相同,并与之相接。通过导流罩的导流作用,将15米×20米的水能引入到5米×20米,进水量增加了三倍,从而大大提高了可发电的水能。
作为进一步优选方案,在所述导流罩上设有开合门。通过开合门的开启或关闭作用,可不断调整进水量的大小,使流量处于相对稳定的状态,从而保证所发电的品质。
作为进一步优选方案,所述导流罩的后端与U形束水槽的前端连接为一体。这种连接可以保证两者合二为一,可增加安装的方便性和降低制造成本。
作为优选方案,在所述叶轮轴上安装有至少一个输出轮,所述输出轮具有离合功能。水流的大小是不断变化的,通过在叶轮轴上安装一个或一个以上的动力传输轮,当水流变小时,通过离合连接功能使其中的部分动力传输轮分离,从而减少发电负荷,保证发电品质;同样,当水流变大时,使其中的动力传输轮连接上,增加发电负荷,从而充分利用水流发电,并保证发电品质。
作为优选方案,在所述叶轮轴的中部垂直设有水流方向调节轴,所述水流方向调节轴能根据水流方向变化自动调节叶轮轴与水流方向保持垂直,从而提高水力发电效率。
作为优选方案,在所述叶轮上或叶轮轴上或水流方向调节轴上设有导向舵。一旦水流方向改变,导向舵会在水流作用下,调节叶片方向与水流方向保持垂直,从而提高水力发电效率。
与现有技术相比,本发明具有如下有益效果:
本发明通过使构成叶轮的部分叶片处在空气中,余下叶片处在水流中,从而使旋转方向与水流方向相反的叶片不再受到水流的反向阻力而只是空气阻力,由于空气阻力远远小于水流所产生的阻力,因而本发明可大幅度降低水能的损耗,提高水流发电效率,经计算,发电效率相对于现有的螺旋桨发电,至少可提高一倍以上;尤其是,当在叶轮前端设置导流罩时,可将水能利用率提高到现有的二倍以上;因此,本发明可低成本、低能耗、高效率实现高品质的水力发电,对促使水流资源的规模化应用具有重要价值。
附图说明
图1是实施例1提供的一种水力发电装置的结构示意图;
图2是实施例2提供的一种水力发电装置的结构示意图;
图3是实施例3提供的一种叶片结构示意图;
图4是实施例4提供的一种水力发电装置的结构示意图;
图5是本实施例5提供的一种水力发电装置的结构示意图;
图6是本实施例6提供的一种水力发电装置的结构示意图。
图中:1、叶轮;2、叶轮轴;3、叶片;3A、空气中的叶片;3B、水流中的叶片;4、水平面;5、水流;6、挡板;7、分隔板;8、支撑面;9、水流方向调节轴;10、平面轴承;11、导向舵;12、导流罩;13、U形束水槽。
具体实施方式
下面结合实施例和附图对本发明的技术方案作进一步详细阐述:
实施例1
如图1所示,本实施例提供的一种水力发电装置,包括叶轮1和叶轮轴2,所述叶轮1包括叶片3,其特征在于:所述叶轮1的安装需使构成叶轮1的部分叶片3A处在空气中,而余下叶片3B处在水流中。
作为优选方案,使叶轮轴2的中心位于水平面4上,从而使处在空气中的叶片3A与处在水流中的叶片3B构成中心对称分布。
当水流5推动处在水流中的叶片3B时,叶片3B带动叶轮轴2旋转,产生旋转动力,可用于发电。虽然处在空气中的叶片3A会产生同步旋转,但在旋转过程中只受空气阻力,而空气是静态,尤其是,空气的比重只有水的八百分之一,因而叶片3A所受的空气阻力远远 小于水流所产生的阻力,因而相对于现有技术(叶片全部处于水流中),可大幅度降低水能的损耗,提高水流发电效率。
实施例2
如图2所示,本实施例提供的水力发电装置,与实施例1提供的水力发电装置的不同之处在于:所述叶片3为弧形叶片,使处在水流中的叶片3B的弧形凹槽是迎流而设,而处在空气中的叶片3A的弧形凹槽是背流而设,这样可使处在水流中的叶片3B相对于直形叶片能接受更大的水流作用,而处在空气中的叶片3A所受阻力更小,从而水能损失更小,可比实施例1进一步提高水能的利用率。
实施例3
如图3所示,本实施例提供的水力发电装置,与实施例2的不同之处在于:在所述弧形叶片3的两端设有挡板6,在两挡板之间设有多块(图3中示出了3块)分隔板7,所述弧形叶片3被分隔成四段,每段的空间只有原来的四分之一。当水流冲向弧形叶片3时,不仅在挡板6的作用下,可将两端的水流锁住,而且通过分隔板7的作用,将横向扩散的水流也进行了锁定,从而相对于实施例2,本实施例可进一步提高水能的利用率。
实施例4
如图4所示,本实施例提供的水力发电装置,与实施例3的不同之处在于:在垂直固定于支撑面8的水流方向调节轴9的下端设有平面轴承10,在平面轴承10的两侧对称设有叶轮1,在所述叶轮1的叶片3两端设有挡板6,在两挡板之间设有多块(图4中示出了3块)分隔板7,所述叶片3均被分隔成四段;在所述平面轴承10的下方设有导向舵11,导向舵11与叶片3垂直,导向舵11在转动时会带动叶片3水平同步转动。当水流方向发生改变时,导向舵11会受到水流作用产生旋转,在旋转时会通过平面轴承10带动叶片3也同步旋转,从而始终保持与水流方向垂直旋转,获得最大的水能。
实施例5
如图5所示,本实施例提供的水力发电装置,与实施例1提供的水力发电装置的不同之处在于:在叶轮1的前端安装了导流罩12,所述导流罩12呈收缩式喇叭形状,在进水口处为大口径,在叶轮1的前端处是小口径,当水流5进入导流罩12后,随着导流罩12的面积逐渐缩小,水流5的水能会逐渐变大,从而可提高水力发电的效率。如:当导流罩12的面积缩小一倍时,水能会提高一倍,一个水力发电机的发电效率相当于原来两个水力发电机的发电效率。
实施例6
如图6所示,本实施例提供的水力发电装置,与实施例2的不同之处在于:在处在水流中的叶片3B的外周设置U形束水槽13,U形束水槽13的开口端为进水端,U形束水槽13可使冲向处在水流中的叶片3B的水流被束缚在U形束水槽13内,避免水流向四周扩散而损失,从而可进一步提高水能的利用率。
当然,U形束水槽13可以与导流罩12(本图中未画出)连接成一个整体,以便加工和安装,降低制造成本。
最后需要在此指出的是:以上仅是本发明的部分优选应用例,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (12)

  1. 一种水力发电装置,包括叶轮和叶轮轴,所述叶轮包括叶片,其特征在于:所述叶轮的安装需使构成叶轮的部分叶片处在空气中,而余下叶片处在水流中。
  2. 根据权利要求1所述的水力发电装置,其特征在于:处在空气中的叶片与处在水流中的叶片成中心对称分布。
  3. 根据权利要求1所述的水力发电装置,其特征在于:所述叶片为弧形叶片。
  4. 根据权利要求3所述的水力发电装置,其特征在于:在弧形叶片的两端设有挡板。
  5. 根据权利要求4所述的水力发电装置,其特征在于:在所述挡板上设置传动轮,所述传动轮与发电机相连接。
  6. 根据权利要求3所述的水力发电装置,其特征在于:所述弧形叶片上设有至少一块分隔板,使所述弧形叶片被分隔为多段。
  7. 根据权利要求1所述的水力发电装置,其特征在于:所述水力发电装置还包括U形束水槽,叶轮位于所述U形束水槽内。
  8. 根据权利要求1所述的水力发电装置,其特征在于:在所述叶轮的前端设有导流罩,所述导流罩的口径由大变小,在进水口处为大口径,在叶轮的前端处是小口径。
  9. 根据权利要求8所述的水力发电装置,其特征在于:在所述导流罩上设有开合门。
  10. 根据权利要求1所述的水力发电装置,其特征在于:在所述叶轮轴上安装有至少一个输出轮,所述输出轮具有离合功能。
  11. 根据权利要求1所述的水力发电装置,其特征在于:在所述叶轮轴的中部垂直设有水流方向调节轴,所述水流方向调节轴能根据水流方向变化自动调节叶轮轴与水流方向保持垂直。
  12. 根据权利要求11所述的水力发电装置,其特征在于:在叶轮上或叶轮轴上或水流方向调节轴上设有导向舵。
PCT/CN2019/083751 2018-04-24 2019-04-22 一种水力发电装置 WO2019206104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810371501.9 2018-04-24
CN201810371501.9A CN110397543A (zh) 2018-04-24 2018-04-24 一种水力发电装置

Publications (1)

Publication Number Publication Date
WO2019206104A1 true WO2019206104A1 (zh) 2019-10-31

Family

ID=68294387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083751 WO2019206104A1 (zh) 2018-04-24 2019-04-22 一种水力发电装置

Country Status (2)

Country Link
CN (1) CN110397543A (zh)
WO (1) WO2019206104A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060138A (zh) * 1990-09-17 1992-04-08 张迪仁 一种浮在水面上的水力发电站
CN2921347Y (zh) * 2006-06-15 2007-07-11 马俊 简易水力发电装置
CN101418562A (zh) * 2008-11-28 2009-04-29 中国农业大学 一种水电站可调节进水口装置
CN201448178U (zh) * 2009-04-29 2010-05-05 李德国 一种具有环保功能的自然流水轴流式转桨水力发电机组
CN102650260A (zh) * 2011-02-28 2012-08-29 上海奇谋能源技术开发有限公司 一种风力发电方法
CN102926912A (zh) * 2012-11-28 2013-02-13 河海大学 一种升力型垂直轴水轮机
CN103993587A (zh) * 2013-12-18 2014-08-20 朱华 桥式江河潮汐水力风力联合发电长廊
WO2014200622A1 (en) * 2013-06-12 2014-12-18 Differential Dynamics Corporation Run-of-the-river or ocean current turbine
CN106523250A (zh) * 2016-11-30 2017-03-22 陈祥洪 水浮式水力发电机
CN107061115A (zh) * 2017-05-22 2017-08-18 陈永远 超大型水力发电站

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020024044A (ko) * 2002-01-22 2002-03-29 경종만 동력(에너지) 증폭장치
CN101457730B (zh) * 2008-12-30 2013-04-10 全龙浩 低落差水位水力发电装置
CN102032089A (zh) * 2009-09-29 2011-04-27 沈永林 串联式多次水力发电系统
CN101915198B (zh) * 2010-08-10 2012-06-06 刘忠龙 自然水流式水力发电方法及其叶轮发电装置
CN203383971U (zh) * 2013-03-19 2014-01-08 柳联营 一种兆瓦级相逆转传送带式叶轮水力发电系统
CN104863787B (zh) * 2015-05-04 2017-03-08 上海海洋大学 一种浪流耦合发电装置
CN105422363A (zh) * 2015-12-07 2016-03-23 陈云桥 双轴组合履带式直流水力发电机
CN105484930A (zh) * 2015-12-31 2016-04-13 长沙理工大学 一种阻力型水轮机及水力发电系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060138A (zh) * 1990-09-17 1992-04-08 张迪仁 一种浮在水面上的水力发电站
CN2921347Y (zh) * 2006-06-15 2007-07-11 马俊 简易水力发电装置
CN101418562A (zh) * 2008-11-28 2009-04-29 中国农业大学 一种水电站可调节进水口装置
CN201448178U (zh) * 2009-04-29 2010-05-05 李德国 一种具有环保功能的自然流水轴流式转桨水力发电机组
CN102650260A (zh) * 2011-02-28 2012-08-29 上海奇谋能源技术开发有限公司 一种风力发电方法
CN102926912A (zh) * 2012-11-28 2013-02-13 河海大学 一种升力型垂直轴水轮机
WO2014200622A1 (en) * 2013-06-12 2014-12-18 Differential Dynamics Corporation Run-of-the-river or ocean current turbine
CN103993587A (zh) * 2013-12-18 2014-08-20 朱华 桥式江河潮汐水力风力联合发电长廊
CN106523250A (zh) * 2016-11-30 2017-03-22 陈祥洪 水浮式水力发电机
CN107061115A (zh) * 2017-05-22 2017-08-18 陈永远 超大型水力发电站

Also Published As

Publication number Publication date
CN110397543A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
CA2683450C (en) Hydroelectric power device
CN107642448B (zh) 低水头大流量川渠水轮机
WO2017000555A1 (zh) 模块化双向潮流能发电装置
CN201705564U (zh) 变风速筒式风力发电机
KR101196357B1 (ko) 에너지 집약형 자력가동식 수직축 수류수차 장치
CN107237718A (zh) 一种吸收潮汐能的多级叶轮转动装置
WO2016023351A1 (zh) 全方位导流无轴风力发电装置
JP6168269B2 (ja) 流体機械および流体プラント
CN109441691B (zh) 一种尾水管带整流板混流式水轮机
EP3085954A1 (en) Wind power generating unit and vertically stacked wind power generation system
CN104612884A (zh) 水力发电机、水力发电系统及并网发电方法
WO2019206103A1 (zh) 一种流水发电装置
KR20040077825A (ko) 풍력과 유체흐름 발전시스템
WO2019206104A1 (zh) 一种水力发电装置
Kanemoto et al. Counter rotating type hydroelectric unit suitable for tidal power station
KR20150070696A (ko) 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템
WO2019206102A1 (zh) 一种高效风力发电装置
CN203130361U (zh) 风力发电机组中防止叶片结冰的机构
US1748892A (en) Hydraulic process and apparatus
Kasahara et al. Counter-rotating type axial flow pump unit in turbine mode for micro grid system
CN103590962A (zh) 一种用于微水头的水泵水轮机机组
KR101590070B1 (ko) 수력 발전장치 및 수력 발전장치용 수차
KR102337146B1 (ko) 소수력 발전장치
CN108590955A (zh) 风力机叶片及风力机
CN107420257A (zh) 一种双涡轮风力发电机结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19792985

Country of ref document: EP

Kind code of ref document: A1