WO2019205175A1 - 一种脉搏波传导参数测量方法和脉搏波传导参数处理设备 - Google Patents

一种脉搏波传导参数测量方法和脉搏波传导参数处理设备 Download PDF

Info

Publication number
WO2019205175A1
WO2019205175A1 PCT/CN2018/085203 CN2018085203W WO2019205175A1 WO 2019205175 A1 WO2019205175 A1 WO 2019205175A1 CN 2018085203 W CN2018085203 W CN 2018085203W WO 2019205175 A1 WO2019205175 A1 WO 2019205175A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
vibration
feature point
wave conduction
information
Prior art date
Application number
PCT/CN2018/085203
Other languages
English (en)
French (fr)
Inventor
庄少春
叶飞
Original Assignee
深圳市大耳马科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大耳马科技有限公司 filed Critical 深圳市大耳马科技有限公司
Priority to US17/051,335 priority Critical patent/US20210127991A1/en
Priority to PCT/CN2018/085203 priority patent/WO2019205175A1/zh
Publication of WO2019205175A1 publication Critical patent/WO2019205175A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0238Optical sensor arrangements for performing transmission measurements on body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • A61B2562/0266Optical strain gauges

Definitions

  • the invention relates to the field of measurement of pulse wave conduction parameters, in particular to a non-invasive pulse wave conduction parameter measurement method, system, computer readable storage medium and pulse wave conduction parameter processing device.
  • cardiovascular and cerebrovascular diseases are an important cause of morbidity and mortality, and the incidence and mortality of cardiovascular and cerebrovascular diseases are related to arterial vascular lesions.
  • angina pectoris myocardial infarction is associated with coronary artery disease
  • stroke is associated with cerebral artery disease
  • intermittent claudication is associated with lower extremity arterial disease.
  • the two main forms of arterial disease include structural lesions and functional lesions.
  • Structural lesions manifest as vascular occlusion, such as atherosclerosis
  • functional lesions manifest as changes in vascular function, such as hardening of the arteries.
  • the change of arterial wall elasticity is the basis of the occurrence and development of various cardiovascular events.
  • Pulse Wave Velocity is related to arterial elasticity. Generally, the greater the blood vessel hardness, the faster the pulse wave velocity. Therefore, the degree of elasticity of the artery can be evaluated by measuring the pulse wave velocity.
  • the present invention provides a method for measuring pulse wave conduction parameters, the method comprising:
  • first feature point is a point related to an opening time of the subject aortic valve
  • second feature point is a point related to the arrival time of the pulse wave of the subject
  • a pulse wave transit time of the subject is determined based on the first feature point and the second feature point.
  • the present invention provides a computer readable storage medium storing a computer program that, when executed by a processor, implements the steps of a pulse wave conduction parameter measurement method as described above.
  • the present invention provides a pulse wave conduction parameter processing apparatus comprising: one or more processors; a memory; and one or more computer programs, wherein the one or more computer programs are stored in the And wherein the memory is configured to be executed by the one or more processors, the processor performing the computer program to implement the steps of the pulse wave conduction parameter measurement method as described above.
  • the present invention provides a pulse wave conduction parameter measurement system, the system comprising:
  • One or more vibration sensitive sensors configured to be placed at predetermined locations to acquire vibration information of the object
  • a vibration sensitive sensor such as the pulse wave conduction parameter processing device described above.
  • the aorta of the human body travels through the chest and abdomen of the human body, not the superficial superficial artery.
  • the traditional method of measuring the pulse wave conduction parameters of the superficial superficial artery is not suitable for the measurement of the pulse wave conduction parameter of the aorta.
  • the present invention acquires vibration information of an object from one or more vibration sensitive sensors configured to be placed at a predetermined position; generates hemodynamic related information based on the vibration information; and determines a number in the hemodynamic related information a feature point and a second feature point, wherein the first feature point is a point related to an opening time of the subject aortic valve, and the second feature point is a point related to a time of arrival of the pulse wave of the subject, A pulse wave transit time of the subject may be determined based on the first feature point and the second feature point, thereby determining a pulse wave conduction velocity to evaluate a degree of elasticity of the artery.
  • the tester only needs to lie on the measuring device or wear the measuring device to perform the measurement, and is measured without direct contact with the human body, and has high measurement precision.
  • the advantages of simple operation can improve the comfort of the tester and can be applied to scenes such as hospitals and homes.
  • FIG. 1 is a schematic diagram of a pulse wave conduction parameter measurement system in accordance with some embodiments of the present invention.
  • FIG. 2 is a schematic diagram showing the principle of generation of a pulse wave
  • FIG. 3 is a schematic diagram showing the principle of measuring aortic pulse wave conduction parameters
  • FIG. 4 is a block diagram showing the structure of a computing device in accordance with some embodiments of the present invention.
  • FIG. 5a is a schematic structural view of a sensing device according to some embodiments of the present invention.
  • FIG. 5b is a schematic diagram of a placement position of a sensing device according to some embodiments of the present invention.
  • FIG. 5c is a schematic view showing a placement position of a sensing device according to another embodiment of the present invention.
  • FIG. 5d is a schematic view showing a placement position of a sensing device according to another embodiment of the present invention.
  • 5e is a schematic view showing a placement position of a sensing device according to another embodiment of the present invention.
  • 5f is a schematic view showing the arrangement of the annular structure of the optical fiber 501 according to some embodiments of the present invention.
  • FIG. 6 is a flow chart of a method for measuring pulse wave conduction parameters in accordance with some embodiments of the present invention.
  • FIG. 7 is a signal waveform diagram of an object in accordance with some embodiments of the present invention.
  • Figure 8 is an enlarged view of a signal waveform in the area 800 of Figure 7;
  • FIG. 10 is an enlarged view showing a curve of the area 1000 in FIG. 9.
  • FIG. 11 is a block diagram showing a specific structure of a pulse wave parameter processing device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a pulse wave conduction parameter measurement system 100 in accordance with some embodiments of the present invention. As shown in FIG. 1, the pulse wave conduction parameter measurement system 100 and the pulse wave conduction parameter processing device 105 connected to the sensing device 101, the pulse wave conduction parameter processing device 105 can be specifically connected to the sensing device 101 via the network 103 or a signal transmission line. .
  • the sensing device 101 can be configured to acquire vibration information of the object 102.
  • the sensing device 101 can be a vibration sensitive sensor, such as an acceleration sensor, a speed sensor, a displacement sensor, a pressure sensor, a strain sensor, a stress sensor, or a physical quantity based on acceleration, velocity, displacement, or pressure.
  • a vibration sensitive sensor such as an acceleration sensor, a speed sensor, a displacement sensor, a pressure sensor, a strain sensor, a stress sensor, or a physical quantity based on acceleration, velocity, displacement, or pressure.
  • the equivalent conversion sensors eg, static charge sensitive sensors, pneumatic micro sensors, radar sensors, etc.
  • the strain sensor can be a fiber strain sensor.
  • the sensing device 101 can also include a temperature sensitive sensor, such as an infrared sensor, to obtain body temperature information for the subject.
  • the sensing device 101 can be provided with a growth cube, for example, having a thickness of 3 mm, a length of 45 cm, a width of 8 cm, or other suitable dimensions.
  • the sensing device 101 can be configured to be placed on a bed of various models such as a medical bed in which the subject 102 is located, a care bed, and the like.
  • the object 102 can be a living body that performs vital sign signal monitoring.
  • the subject 102 can be a hospital patient or a caretaker, such as an elderly person, a detainee, or others.
  • the sensing device 101 can transmit the acquired vibration information of the object 102 to the pulse wave conduction parameter processing device 105 through the network 103 or the signal transmission line for subsequent processing.
  • the vibration information acquired by the sensing device 101 can be processed to calculate a vital sign signal of the subject 102, such as a heart rate, a respiratory rate, a body temperature, and the like.
  • a vital sign signal of the subject 102 such as a heart rate, a respiratory rate, a body temperature, and the like.
  • the pulse wave conduction parameters of the subject such as Pulse Wave Transit Time (PTT) and pulse wave velocity PWV, can be calculated.
  • PTT Pulse Wave Transit Time
  • PWV pulse wave velocity
  • the pulse wave parameter measuring system 100 provided by the embodiment of the present invention may further include an output device 109 connected to the sensing device 101 and/or the pulse wave parameter processing device 105, and the sensing device 101 may also transmit the acquired vibration information.
  • the output is output to the output device 109, for example, a waveform diagram of the vibration information is displayed on the display.
  • the pulse wave conduction parameter measurement system 100 may further include a storage device 107 connected to the sensing device 101 and/or the pulse wave conduction parameter processing device 105, and the sensing device 101 may also acquire the acquired object 102.
  • the vibration information is transmitted to the storage device 107 through the network 103 for storage.
  • the system 100 may include a plurality of sensing devices, and the vibration information of the plurality of objects acquired by the plurality of sensing devices may be transmitted to the storage device 107 for storage as a client. Part of the data.
  • Network 103 can implement the exchange of information.
  • components of the pulse wave conduction parameter measurement system 100 ie, sensing device 101, network 103, pulse wave conduction parameter processing device 105, storage device 107, output device 109 may be inter-networked through network 103.
  • Information is sent and received.
  • the sensing device 101 can store the acquired vital sign related signals of the object 102 to the storage device 107 via the network 103.
  • network 103 can be a single network, such as a wired network or a wireless network, or can be a combination of multiple networks.
  • Network 103 may include, but is not limited to, a local area network, a wide area network, a shared network, a private network, and the like.
  • Network 103 may include a variety of network access points, such as wireless or wired access points, base stations, or network access points through which other components of pulse wave conduction parameter measurement system 100 may be connected to network 103 and through the network Send information.
  • the pulse wave conduction parameter processing device 105 is configured to process information.
  • the pulse wave conduction parameter processing device 105 can receive vibration information of the object 102 from the sensing device 101, and extract a hemodynamic related signal from the vibration information, and further process the hemodynamic related signal to obtain the object 102.
  • Pulse wave conduction parameters can be a single server or a group of servers.
  • the server group can be clustered or distributed (i.e., the pulse wave parameter processing device 105 can be a distributed system).
  • the pulse wave conduction parameter processing device 105 can be local or remote.
  • the pulse wave conduction parameter processing device 105 can access data stored in the storage device 107, the sensing device 101, and/or the output device 109 via the network 103.
  • the pulse wave conduction parameter processing device 105 can be directly coupled to the sensing device 101, the storage device 107, and/or the output device 109 for data storage.
  • the pulse wave parameter processing device 105 can also be deployed on a cloud platform, which can include, but is not limited to, a public cloud, a private cloud, a hybrid cloud, and the like.
  • Storage device 107 is configured to store data and instructions.
  • storage device 107 can include, but is not limited to, a random access memory, a read only memory, a programmable read only memory, and the like.
  • the storage device 107 may be a device that stores information using an electric energy method, a magnetic energy method, an optical method, or the like, such as a hard disk, a floppy disk, a magnetic core memory, a CD, a DVD, or the like.
  • the storage device mentioned above is merely an example, and the storage device used by the storage device 107 is not limited thereto.
  • the storage device 107 can store the vibration information of the object 102 acquired by the sensor device 101, and can also store data processed by the pulse wave conduction parameter processing device 105 for the vibration information, such as vital sign information (respiratory rate, heart rate) of the subject 102.
  • storage device 107 can be an integral part of pulse wave conduction parameter processing device 105.
  • Output device 109 is configured to output data.
  • the output device 109 may output the vital sign signals generated by the pulse wave conduction parameter processing device 105, including but not limited to graphics, text, data, voice, or physical forms such as vibration or electric waves.
  • graphics, text, data, voice, or physical forms such as vibration or electric waves.
  • the output device 109 can be one or more of a display, a cell phone, a tablet, a projector, a wearable device (watch, earphone, glasses, etc.), a braille display, and the like.
  • the output device 109 can display vital sign signals (eg, respiration rate, heart rate, etc.) of the subject 102 in real time, and in other embodiments, the output device 109 can display a report in non-real time, the report being the subject 102.
  • the measurement results in the preset time period for example, the heart rate monitoring result per minute of the user during the sleep period and the respiratory rate monitoring result per minute.
  • the output device 109 can also output an alert prompt, including but not limited to an audible alert, a vibrating alert, a screen display alert, and the like.
  • the object 102 can be a monitored patient
  • the output device 109 can be a display screen within the nurse station
  • the output device 109 can display a real-time heart rate, real-time respiration rate, etc., when the heart rate breathing rate is abnormal (eg, exceeding a threshold or at When a large change occurs in the preset time period, the output device 109 can issue an alarm sound to prompt the medical staff, and the medical staff can promptly rescue the patient.
  • the output device 109 can be a communication device (eg, a cell phone) carried by the physician.
  • the vital signs of the subject 102 are abnormal
  • one or more of the output devices 109 carried by the one or more doctors can receive an alert.
  • the information and the manner in which the warning information is pushed may be pushed in accordance with the distance between the output device 109 and the object 102.
  • the pulse wave conduction parameter measurement system 100 described in the present invention can be applied to different scenarios, such as hospitals, health service centers, or homes.
  • the pulse wave conduction parameter measurement system 100 is used in a home scene, and the sensing device 100 can be placed in an ordinary family bed when the subject 102 (eg, an elderly elder, a person with cardiovascular disease, a post-operative recovery person)
  • the sensing device 101 can acquire the vibration information of the object to be tested continuously or in a predetermined or required manner, and then transmit the vibration information of the object through the network 103 (can be sent in real time, or at a predetermined time, for example, The data of the previous night is sent twice a day) to the pulse wave conduction parameter processing device 105, and the pulse wave conduction parameter processing device 105 can process the processed information (for example, heart rate per minute, respiratory rate per minute, aortic PWV).
  • the terminal 109 can be sent to the terminal 109, which can be the computer of the family doctor of the subject 102.
  • the component pulse wave conduction parameter processing device 105, the storage device 107, and the output device 109 of the pulse wave conduction parameter measurement system 100 may be disposed in the same device or may be disposed in different devices.
  • pulse wave conduction parameter measurement system 100 includes a sensing device 101 and a computer (such as computing device 400 shown in FIG. 4).
  • the sensing device 101 can be directly connected to the computer through a transmission line, or can be connected to the computer through a network, and the computer can implement all functions of the pulse wave conduction parameter processing device 105, the storage device 107, and the output device 109, and perform data processing, Storage, display and other functions.
  • the pulse wave conduction parameter processing device 105, the output device 109, and the storage device 107 can be integrated.
  • the sensing device 101, the pulse wave conduction parameter processing device 105, the output device 109, and the storage device 107 can also be integrated into a mat.
  • Fig. 2 is a schematic diagram showing the principle of generation of a pulse wave.
  • the left ventricle 201 is connected to the aorta 203 through the aortic valve 205.
  • the aortic valve opening (AVO) is opened, and blood is injected into the aorta 203 from the left ventricle 201.
  • the blood vessel is an elastic tube, the blood expands when it is injected into the aorta. In the arterial wall, this pulsation propagates along the wall of the aorta, forming a pulse wave 207.
  • Hemodynamics studies the mechanics of blood flow in the cardiovascular system, and studies the deformation and flow of blood and blood vessels.
  • the generation and conduction of pulse waves are related to blood flow and blood vessel deformation, and are the subject of hemodynamic studies.
  • the conduction velocity of the pulse wave 207 along the aorta is related to the blood vessel elasticity of the aorta 203, and thus the degree of vascular stiffness can be evaluated by the pulse wave velocity PWV.
  • Fig. 3 is a schematic diagram showing the principle of measurement of aortic pulse wave conduction parameters.
  • the aorta can be divided into ascending aorta, aortic arch and descending aorta, wherein the ascending aorta starts from the left ventricle aortic port, obliquely to the right anterior and posterior to the aortic arch, and the aortic arch emits the brachiocephalic artery.
  • the left common carotid artery, and the left subclavian artery, the brachial artery of the forearm are divided into the right common carotid artery and the right subclavian artery behind the right sternocleidal joint.
  • the aortic arch continues to ascend the aorta, bowing to the left posterior to the posterior aspect of the sternum, and bowing to the left to the lower edge of the fourth thoracic vertebrae.
  • the descending aorta is the longest segment of the aorta and is divided into the left and right common iliac arteries at the fourth lumbar vertebral body.
  • the pulse wave of the aortic segment starts from the aortic origin 301 and is transmitted along the aorta to the aorta and the left and right common iliac bifurcation 303, thus the aortic origin 301 and the aorta and the left and right common iliac bifurcation 303
  • the distance along the aortic path is used as the aortic pulse wave conduction distance, and the time when the pulse wave is transmitted from the point 301 to the point 303 as the aortic pulse wave transit time, the ratio of the aortic pulse wave conduction distance to the conduction time as the aorta Pulse wave velocity (aortic PWV, aPWV).
  • pulse wave conduction parameter processing device 105 can be implemented on computing device 400.
  • pulse wave conduction parameter processing device 105 can be implemented on computing device 400 and configured to perform the functions of pulse wave conduction parameter processing device 105 described herein.
  • computing device 400 can be a special purpose computer. For convenience of description, only one pulse wave conduction parameter processing device 105 is depicted in FIG. 1, and those of ordinary skill in the art will appreciate that pulse wave conduction parameter processing device 105 The functionality may also be implemented on a plurality of computing devices 400 having similar functionality to distribute computing load.
  • Computing device 400 can include a communication port 401, a central processing unit (CPU) 403, a memory 405, and a bus 407.
  • the communication port 401 is configured to perform data transmission with other devices through a network or a transmission line.
  • Processor 403 is configured to perform data processing.
  • the memory 405 is configured to perform data and instruction storage, and the memory 405 may be a read only memory ROM, a random read memory RAM, a hard disk Disk, or the like in various forms of memory.
  • Bus 407 is configured to perform data communication between computing devices 400.
  • computing device 400 can also include an input and output port 409 that is configured to support data input and output. For example, other personnel may input data to computing device 400 through input and output port 409 using an input device, such as a keyboard. Computing device 400 can also output data to an output device, such as a display or the like, via input and output port 409.
  • computing device 400 can include multiple processors, and that operations or methods performed by one processor 403 can be combined by multiple processors or Execute separately.
  • a processor 403 described in the present invention may perform steps A and B.
  • step A and step B may be performed by a plurality of processors in common or separately, for example, step A is performed by the first processor and The second processor executes step B, or step A and step B are performed jointly by the first processor and the second processor.
  • FIG. 5a is a block diagram of a fiber optic sensing device 500 in accordance with some embodiments of the present invention.
  • fiber optic sensing device 500 is a fiber optic strain sensor that includes a fiber 501, a mesh layer 503, a lower cover 505, and an upper cover 507.
  • One end of the optical fiber 501 is connected to the light source 509, the light source 509 may be an LED light source, and the light source 509 is connected to the light source driver 511.
  • the light source driver 511 is configured to control the switch and the energy level of the light source.
  • the other end of the optical fiber 501 is connected to the receiver 513, the receiver 513 is configured to receive an optical signal transmitted through the optical fiber 501, the receiver 513 is connected to the amplifier 515, the amplifier 515 is connected to the analog-to-digital converter 517, and the analog-to-digital converter 517 can The received optical signal is analog-to-digital converted and converted into a digital signal.
  • the light source driver 511 and the analog to digital converter 517 are connected to the control processing module 519.
  • the control processing module 519 is configured to perform signal control and signal processing.
  • the control processing module 519 can control the light source driver 511 to operate to drive the light source 509 to emit light, and the control processing module 519 can also receive data from the analog to digital converter 517 to perform data processing.
  • Control processing module 519 can also control the sampling rate of analog to digital converter 517 to have different sampling rates depending on the requirements.
  • light source driver 511, receiver 513, amplifier 515, analog to digital converter 517, and control processing module 519 can be implemented in a single module to perform all functions.
  • the optical fiber 501 can be a multimode fiber and can be a single mode fiber.
  • the arrangement of the fibers can be of a different shape, such as a serpentine structure, as shown by 501 in Figure 5a.
  • the fibers 501 can also be arranged in a U-shaped configuration.
  • the arrangement of the optical fibers 501 may also be an annular structure.
  • the annular structure 521 is formed by arranging a plurality of equal-sized rings substantially in one plane. Each ring within the annular structure overlaps and is laterally offset from the adjacent ring portion.
  • Each of the fiber loops can form a parallelogram structure (e.g., rectangular, square, etc.) having substantially circular edges without sharp bends.
  • the looped fiber structure can include a circular or elliptical structure.
  • the annular structure may also form an irregular shape without sharp bending.
  • Mesh layer 503 is constructed of any suitable material having a repeating pattern of through-holes, and in some embodiments, the mesh is comprised of interwoven fibers, such as polymeric fibers, natural woven fibers, composite woven fibers, or other fibers.
  • interwoven fibers such as polymeric fibers, natural woven fibers, composite woven fibers, or other fibers.
  • the optical fiber 501 is slightly bent, causing a change in parameters (e.g., light intensity) of light transmitted by the optical fiber 501, the receiver 513 can receive the changed light, and the control processing module 519 performs processing and determination of the amount of light change.
  • the amount of bending of the optical fiber 510 under the application of external force depends on the external force, the diameter of the fiber, the diameter of the mesh fiber, and the size of the mesh opening. By setting the different parameters of the fiber diameter, the mesh fiber diameter, and the mesh opening size, it can be made When the external force is applied, the amount of bending of the optical fibers is different, so that the sensing device 500 has different sensitivity to external forces.
  • the lower cover 505 and the upper cover 507 may be made of a silicone material, and are disposed around the optical fiber 501 and the mesh layer 503 to protect the optical fiber 501, and may also disperse an external force to disperse the external force along the force application point.
  • the lower cover 505, the optical fiber 501, the mesh layer 503, and the upper cover 507 may be integrally bonded, for example, bonded together by a silicone adhesive, so that the optical fiber sensing device 500 forms a sensing pad.
  • the width and/or length of the sensing pad may vary depending on the arrangement of the optical fibers. When the annular structure is arranged, the width of the sensing pad may be at least 6 cm, or may be other suitable dimensions, for example, 8 cm.
  • the length may be between 30 cm and 80 cm, for example a length of 45 cm may be suitable for most people.
  • the sensing pad can have a thickness of 5 mm, preferably, a thickness of 3 mm.
  • the width and length of the sensing pad can be other sizes, and different sizes of sensors can be selected according to different test objects.
  • the test object can be divided into groups according to age, height, and weight, and different groups. Corresponding to sensors with different sizes.
  • the sensing pad may have a width of 1 cm when the fiber is U-shaped.
  • the fiber sensing device 500 can also have a jacket (not shown in FIG. 5a).
  • the jacket encloses the lower cover 505, the mesh layer 503, the optical fiber 501, and the upper cover 507.
  • the outer casing can be waterproof and oil resistant. Material, for example, made of hard plastic.
  • the fiber sensing device 500 may further have a support structure (not shown in FIG. 5a), and the support structure may be a rigid structure such as cardboard, hard plastic plate, wood board, etc., and the support structure may be placed Between the optical fiber 501 and the upper cover 507, the optical fiber 501 is supported. When an external force is applied to the optical fiber 501, the support structure can make the deformation of the optical fiber layer rebound faster and the rebound time is shorter, so that the optical fiber layer can capture more. High frequency signal.
  • the optical fiber sensing device 500 When an external force is applied to the optical fiber sensing device 500, for example, when the optical fiber sensing device 500 is placed under the lying human body, when the object is in a resting state, the human body's breathing, heartbeat, etc. may cause the human body to vibrate, the human body
  • the vibration of the body can cause bending of the optical fiber 501, and the bending of the optical fiber changes the parameters of the light passing through the optical fiber, for example, the light intensity changes. Changes in light intensity can be used to characterize the body's vibrations.
  • the sampling frequency of the optical fiber sensing device 500 can also be adjusted, and can be adjusted according to the vibration information that needs to be captured. For example, when the sampling frequency is 1 k, relatively high frequency vibration information can be obtained.
  • Figure 5b is a schematic illustration of the placement of a sensing device in accordance with some embodiments of the present invention.
  • the fiber sensing device 500 can be placed on the support bed 531.
  • the mattress 533 is also placed over the support bed 531, and the fiber sensing device 500 can be placed on the mattress 533.
  • the fiber sensing device 500 can be placed on the mattress 533.
  • the human anatomical coordinate system is introduced here, and the standard body position of the human body is divided into a straight stereo position and a supine position.
  • the X axis is the median transverse axis
  • the Y axis is the median sagittal axis
  • the Z axis is the median vertical axis
  • the origin O is at the midpoint of the upper edge of the phalangeal joint, where the YZ plane is positive
  • the human body is divided into two parts
  • the XZ plane is the median coronal plane
  • the human body is divided into two parts
  • the XY plane is the origin cross section
  • the human body is divided into upper and lower parts.
  • the front, the back, the upper part, the lower part, the left part, and the right part of the human body described in the present invention are described on the basis of an anatomical coordinate system.
  • the fiber optic sensing device 500 can be placed anywhere under the entire body posterior region (including the back, waist) corresponding to the aorta of the subject 102, preferably the entire posterior body region corresponding to the descending aorta (including the back, waist) Any position below the arbitrary position, that is, the entire posterior region of the body between the fourth thoracic body and the fourth lumbar vertebral body, further preferably the waist position corresponding to the bifurcation of the descending aorta and the left and right common iliac crest.
  • the shape and size of the fiber sensing device 500 can be varied.
  • the fiber sensing device 500 can be a square having a side length of 10 cm and a thickness of 3 mm. Other suitable dimensions are also possible.
  • the fiber optic sensing device 500 can be integrated with the mattress.
  • the fiber optic sensing device 500 can be attached to a particular location on the mattress, and the mattress can have significant indicators (eg, different colors, Body contours, indicator lights, raised depressions, and the like, are indicative of the patient's lying position such that the waist is positioned above the fiber optic sensing device 500 when the patient is lying down.
  • the posture of the object 102 can be supine, the hands naturally hang down beside the body or the abdomen, the arms naturally hang down, the legs are naturally stretched, the head is placed right, the spirit is relaxed, and the breathing is natural.
  • the subject 102 can also be a prone. After the object 102 is in a resting state, the fiber sensing device 500 can begin to continuously acquire the vibration signal.
  • Figure 5c is a schematic illustration of the placement of the sensing device in accordance with further embodiments of the present invention.
  • the subject 102 has other diseases (eg, asthma, cough, etc.) that are not suitable for taking a flat lying posture for measurement of pulse wave conduction parameters, in which case the support bed 531 can be used in a hospital shaker bed, the upper half When the height is raised, the upper body of the object 102 is raised, and the inclination angle of the bed is ⁇ .
  • the force of the optical fiber sensing device 500 is different due to the gravity of the human body, and thus the waveform of the vibration information of the acquired object 102 is also different.
  • the preferred angle of the tilt angle of the bed is 0 degrees, that is, the measured position of the preferred pulse wave conduction parameter when the subject is in a lying supine state.
  • FIG. 5d is a schematic illustration of the placement of the sensing device in accordance with further embodiments of the present invention.
  • two or more vibration sensitive sensors can be placed in the same position, as shown in Figure 5d, two identical fiber sensing devices 500 (500-1,500-2) can be stacked and placed on the supine object.
  • the descending aorta is below the waist position corresponding to the bifurcation of the left and right common iliac artery.
  • the size of the two or more vibration sensitive sensors may not be exactly the same, for example, one is an acceleration sensor, the size is small, and the other is a fiber strain sensor, the size is large, and the two positions are approximately the same.
  • the position, that is, the vibration information measured by the two sensors may include vibration information of the same body part of the subject.
  • FIG. 5e is a schematic illustration of the placement of a sensing device in accordance with further embodiments of the present invention.
  • the vibration sensitive sensor can also be fabricated into an adult body wearable device, such as a waistband.
  • the wearable vibration sensitive sensor 540 can be a fiber optic strain sensor, as shown in Figure 5a, wherein The cover 507 and the lower cover 505 may be made of a soft, bendable material (e.g., silicone), and the shape of the vibration sensitive sensor 540 may be the same as that of a conventional waistband.
  • the vibration sensitive sensor may also be an acceleration sensor, which may be a square body having a side length of 2 cm and a thickness of 1 mm.
  • the wearing portion of the vibration sensitive sensor may be any position of the entire body rear region (including the back and the waist) corresponding to the aorta, preferably any position of the entire body rear region (including the back and the waist) corresponding to the descending aorta. That is, any position of the entire body region between the fourth thoracic vertebral body and the fourth lumbar vertebral body, and further preferably the position of the posterior lumbar region of the lower aorta corresponding to the bifurcation of the left and right common iliac crest, that is, the fourth lumbar vertebral body around.
  • the sensing device 101 may not be limited to the form of the optical fiber sensing device 500 and the wearable vibration sensitive sensor 540, and may be embodied in other forms such as clothes, mattresses, etc., so as to be applicable to other scenes.
  • FIG. 6 is a flow diagram of a pulse wave conduction parameter measurement method 600 in accordance with some embodiments of the present invention.
  • method 600 can be implemented by pulse wave conduction parameter measurement system 100 shown in FIG.
  • method 600 can be stored in storage device 107 as a set of instructions and executed by pulse wave conduction parameter processing device 105, which can be implemented on computing device 400.
  • Step 611 acquiring vibration information of the object from one or more vibration sensitive sensors configured to be placed at predetermined positions.
  • Step 611 is performed by processor 403.
  • the subject can be a hospital patient or a caregiver, etc., the subject taking a supine posture, as shown in Figure 5b.
  • the vibration sensitive sensor may be a fiber optic sensor, such as the fiber optic sensing device 500 shown in Figure 5a, a 3 mm thick mat having a width of 8 cm and a length of 45 cm. This size may be suitable for objects in which the body is within the normal range.
  • the predetermined position of the vibration-sensitive sensor may be any position of the entire body rear region (including the back, the waist) corresponding to the aorta, preferably any position of the entire body rear region (including the back, the waist) corresponding to the descending aorta. That is, any position of the entire body region between the fourth thoracic body and the fourth lumbar vertebral body, and further preferably the waist position corresponding to the bifurcation of the descending aorta and the left and right common iliac crest, around the fourth lumbar vertebral body.
  • the size of the fiber optic sensing device 500 can be adjusted when the subject's body is outside the normal range, such as over-fat or too thin.
  • the length of the mat can be shortened to at least equal to the body width of the subject, or a certain distance, for example, about 5 cm.
  • the length of the mat can be lengthened for people who are obese.
  • the optical fiber sensing device 500 can acquire the vibration signal of the object in real time and continuously.
  • the vibration sensitive sensor that can be obtained at the waist position of the posterior region of the human body corresponding to the bifurcation of the descending aorta and the left and right common iliac artery may include: human vibration caused by breathing, Human body vibration caused by systolic relaxation, human vibration caused by blood vessel deformation, and body movement information.
  • the human body vibration caused by systolic relaxation may include human body vibration caused by systolic relaxation of the heart, and human vibration caused by blood flow caused by systolic relaxation of the heart, for example, human blood vibration caused by blood ejection caused by blood ejection of the aortic arch.
  • the vibration of the human body caused by the deformation of the blood vessel may be that the blood of the aorta causes the aortic wall to expand to form a pulse wave, and the pulse wave is transmitted along the blood vessel to cause vibration of the human body.
  • Body motion information can include flexing legs, lifting legs, turning over, shaking, and the like.
  • the human body when the human body breathes, it will drive the whole body, especially the body part of the chest cavity, to have a rhythmic vibration.
  • the contraction and relaxation of the human heart will also drive the whole body, especially the body around the heart, and the left ventricle to the aorta.
  • the instantaneous blood will impact the aortic arch, and the heart itself and its connected large blood vessels as a whole will also undergo a series of movements.
  • the pulse wave will propagate along the blood vessel and cause the blood vessel to be located.
  • the body part vibrates, and the thinner the blood vessels, the farther away from the heart, the weaker the body vibration here.
  • the aorta is the thickest artery in the human body, starting from the left ventricle and located in the abdominal cavity of the thoracic cavity. Therefore, when the vibration-sensitive sensor is located below the back and waist of the human body corresponding to the bifurcation of the descending aorta and the left and right common iliac artery, the breathing is caused by breathing. Human vibration, human body vibration caused by systolic relaxation, and human vibration information caused by blood vessel deformation are more easily captured. As shown in FIG.
  • a curve 721 is a fiber optic sensing device 500 placed at the waist position of the posterior region of the human body corresponding to the bifurcation of the descending aorta and the left and right common iliac artery in accordance with one embodiment of the present invention.
  • a waveform diagram of vibration information of an acquired object wherein the horizontal axis represents time and the vertical axis represents vibration information of the object subjected to the normalization process, and is dimensionless.
  • the processor 403 can acquire vibration information of the supine object from two vibration sensitive sensors placed at predetermined positions.
  • two fiber sensing devices 500 can be stacked in the same position, and the thickness of the single fiber sensing device 500 can be only 3 mm, so that the two fiber sensing devices 500 do not increase the discomfort of the tester after being superimposed.
  • the predetermined position of the vibration-sensitive sensor may be any position of the entire body rear region (including the back, the waist) corresponding to the aorta, preferably any position of the entire body rear region (including the back, the waist) corresponding to the descending aorta.
  • a plurality of vibration sensitive sensors may be stacked and placed in the same location to obtain vibration information of the supine object.
  • a plurality of optical fiber sensing devices 500 may be placed one on top of the other, or may be stacked with an optical fiber sensing device and an acceleration sensing device.
  • a plurality of vibration sensitive sensors can be divided into two groups, each group including one or more sensors.
  • Step 613 generating hemodynamic related information based on the vibration information.
  • Step 613 is performed by processor 403.
  • the sensing device 500 when the subject is in a supine resting state, there is no body movement, and the sensing device 500 is placed under the waist position corresponding to the bifurcation of the descending aorta and the left and right common iliac artery.
  • the vibration information acquired by the device 500 includes vibration caused by breathing, vibration caused by contraction of the heart, and vibration caused by propagation of the pulse wave along the blood vessel.
  • Hemodynamics study the mechanics of blood flow in the cardiovascular system, and study the deformation and flow of blood and blood vessels.
  • Hemodynamic related information refers to any hemodynamic-related information, which may include, but is not limited to, information related to blood flow production (eg, systolic diastole of the heart results in ejection), and blood flow.
  • Flow-related information such as cardiac output (COC), left ventricular ejection, aortic arch
  • information related to blood flow pressure eg, arterial systolic pressure, diastolic blood pressure, mean arterial pressure
  • blood vessel-related information For example, one or more of blood vessel elasticity.
  • Pulse wave conduction parameters are not only related to vascular elasticity, but also to cardiac contraction and relaxation, left ventricular ejection blood impact aortic arch, so measurement of pulse wave conduction parameters involves acquisition of hemodynamic related information.
  • the hemodynamic related information to be generated by the processor 403 includes vibration caused by blood impacting the aortic arch and vibration information caused by vascular deformation during left ventricular ejection. (ie, the vibration caused by the propagation of the pulse wave along the blood vessel).
  • a Ballistocardiogram (BCG) signal can be used to characterize a series of periodic motions of the human body caused by the beating of the heart.
  • BCG Ballistocardiogram
  • the vibration caused by the contraction and relaxation of the heart It can also be expressed as a BCG signal.
  • the hemodynamic related information described herein also includes BCG signals.
  • processor 403 can perform a series of processing on the acquired vibration information to generate hemodynamic related information.
  • the vibration information acquired by the processor 403 includes a plurality of sub-vibration information (breathing-induced vibration, vibration caused by cardiac contraction, vibration caused by blood vessel deformation), and the processor 403 can perform filtering processing of different frequency bands for different sub-vibration information.
  • the processor 403 may set the filtering frequency band of the vibration information caused by the breathing to be 1hz or less, and the filtering method used by the processor 403 may include, but is not limited to, low-pass filtering, band-pass filtering, IIR (Infinite Impulse Response) filtering, and FIR (Finite).
  • Impulse Response One or more of filtering, wavelet filtering, zero-phase bidirectional filtering, and polynomial fitting smoothing filtering, which can filter the vibration information at least once. If the vibration information carries the power frequency interference signal, the power frequency filter can also be designed to filter the power frequency noise.
  • the processor 403 can filter the vibration information in the time domain as well as in the frequency domain. The processor 403 can also scale the filtered denoised vibration information according to the signal dynamic range to obtain hemodynamic related information.
  • a curve 723 in FIG. 7 is a time-domain waveform diagram of hemodynamic related information generated by the processor 403 after processing the vibration signal waveform 721 in one embodiment of the present invention, and the horizontal axis represents time.
  • Step 615 determining a first feature point and a second feature point in the hemodynamic related information.
  • Step 615 is performed by processor 403.
  • the first feature point can be used to characterize the event of aortic valve opening. That is, after the left ventricular contraction reaches a certain pressure, the aortic valve is opened, blood is injected into the aorta and impacts the aortic arch, and the time point corresponding to the first characteristic point of the pulse wave propagating along the artery can be used as the starting time point of the pulse wave conduction.
  • the second feature point can be used to characterize the arrival of the pulse wave.
  • the second feature point can characterize the pulse wave along the main
  • the event that the artery is transmitted to the bifurcation, the corresponding time point can be used as the pulse wave arrival time point.
  • the hemodynamic related information generated by the processor 403 in step 613 can include vibrations caused by blood flow impinging on the aortic arch during left ventricular ejection, and vibrations caused by pulse wave propagation along the blood vessel.
  • the aortic valve is open, the left ventricle is ejected, and the time when blood enters the aorta is considered to be the time point at which the pulse wave is generated.
  • the blood flow from the left ventricle will impact the aortic arch, causing the heart itself and its connected large blood vessel portion as a A series of movements occur in the whole, causing displacement of the body's body movement.
  • the displacement of the human body is also a cyclical change.
  • This vibration information can be transmitted through the bones, muscles, etc. of the human body.
  • the vibration sensitive sensor can capture this vibration information, because the aortic valve opens.
  • the time delay between the event and the event that the sensor captures the corresponding body vibration information is usually small, about 10ms. This time delay can be neglected in the subsequent measurement of pulse wave parameters, and can also be selected for actual measurement.
  • the resulting aortic valve opening time is given a correction factor to correct.
  • the first feature point is the point associated with the aortic valve opening time and can be used to characterize the event of aortic valve opening.
  • the pulse wave is transmitted along the blood vessel, and the vibration is also transmitted along with the blood vessel, causing vibration of the human body. Therefore, when the pulse wave is transmitted to a certain position on the blood vessel, the vibration sensitive sensor at the body position where the blood vessel is located can capture the vibration information, similarly.
  • the time interval between the pulse wave arrival time and the vibration sensitive sensor capturing the corresponding body vibration information is small. This time delay can be neglected in the subsequent pulse wave conduction parameter measurement, and can also be selected to actually measure the pulse wave arrival. Time is given a correction factor to correct.
  • the second feature point is the point associated with the arrival time of the pulse wave and can be used to characterize the arrival of the pulse wave at that location.
  • the processor 403 can identify the first feature point and the second feature point by a preset algorithm. For example, the processor 403 can perform the following steps to identify the first feature point and the second feature point.
  • the processor 403 can process the hemodynamic related information to obtain an acceleration signal of the hemodynamic related information.
  • the vibration-sensitive sensor is a fiber-optic strain sensor that is placed under the body of the supine object to force a small deformation of the fiber.
  • the fiber deformation causes a change in the parameters of the light propagating in the fiber, such as The change in light intensity. Therefore, the vibration signal captured by the fiber strain sensor corresponds to the small displacement of the human body, and the second-order differential operation can be used to obtain the acceleration signal of the body vibration, and the second-order differential operation of the hemodynamic related information can be specifically performed. Acquire acceleration signals for hemodynamic related information.
  • the vibration sensitive sensor can be an acceleration sensor, and the signal it captures is itself an acceleration signal.
  • curve 725 is a time domain waveform curve after curve 723 undergoes a second order differential operation, and the horizontal axis represents time.
  • step B the processor 403 performs a feature search on the acceleration signal to determine the first feature point and the second feature point.
  • Features in the feature search may include, but are not limited to, peaks, troughs, wave widths, amplitudes, maxima, minima, maxima, minima, and the like.
  • An enlarged display of the signal waveform in the area 800 shown in Fig. 7 is shown in Fig. 8.
  • the feature search for curve 725 may employ a peak search with each cardiac cycle being a search range and the highest peak searched within a cardiac cycle as the first feature point, such as point 802. The secondary peak searched during a cardiac cycle is taken as the second feature point, such as point 804.
  • the first feature point determined by the feature search method during the second cardiac cycle is shown as point 806, and the second feature point is shown as point 808.
  • the waveforms of the acquired vibration signals are different, resulting in a secondary peak in a cardiac cycle.
  • the two feature points do not correspond. Therefore, when the processor 403 uses the feature search method to determine the first feature point and the second feature point, the PTT confidence interval can also be utilized to assist the determination.
  • the optical fiber sensing device 500 placed at the waist position of the rear region of the human body corresponding to the bifurcation of the descending aorta of the subject B and the left and right common iliac crests.
  • the waveform of the vibration information of a certain object the horizontal axis represents time, and the vertical axis represents vibration information after normalization, and is dimensionless.
  • An enlarged display of the curve in the area 1000 in Fig. 9 is shown in Fig. 10.
  • the highest peak is 1002 as the first feature point in one cardiac cycle, and there are two peaks 1004 and 1010 when searching for the secondary peak.
  • the two peaks and peaks are similar, causing interference, and it is necessary to eliminate an interference.
  • the second feature point is determined after the peak.
  • the highest peak is 1006, there are two approximate secondary peaks of 1008 and 1012.
  • the time interval T1 between the secondary peak 1010 and the highest peak 1002, and the time interval T2 between the secondary peak 1004 and the highest peak 1002, respectively, and then T1 are respectively calculated.
  • the secondary peaks with time intervals outside the PTT confidence interval are excluded as interference peaks.
  • the PTT confidence interval describes the normal range of aortic pulse wave transit time.
  • the confidence interval can be divided into multiple groups, which are grouped according to factors such as gender, age, height, weight, and various heart diseases.
  • Each group corresponds to one PTT. Confidence interval. Therefore, the secondary peak 1010 is excluded as the interference peak, and the secondary peak 1004 is determined as the second characteristic point.
  • the first feature point may not correspond to the highest peak in one cardiac cycle, and the second feature point may not be in the vibration information continuously captured by the vibration sensitive sensor due to the difference in physical fitness or mood of the tester. Corresponds to the secondary peak. In this case, the data of the cardiac cycle can be discarded, and the feature search can be performed by using the wave group to determine the first feature point and the second feature point.
  • processor 403 may obtain information equivalent to performing a second order differential operation by other substantially equivalent digital signal processing methods, such as polynomial fit smoothing filtering.
  • the processor 403 can acquire vibration information of the object from the two vibration sensitive sensors placed at the predetermined position in step 611.
  • the vibration information acquired by one of the vibration sensitive sensors can be used to identify the first feature point, and the vibration information acquired by the other vibration sensitive sensor can be used to identify the second feature point.
  • the processor 403 may identify the first feature point and the second feature point with the vibration information acquired by each vibration sensitive sensor, and then use the vibration information acquired by the two vibration sensitive sensors to mutually authenticate to identify each other. And exclude some unreasonable information.
  • processor 403 can receive user input from one or more input devices to determine a first feature point and a second feature point in the hemodynamic related information.
  • the external input parameters may be input to the computing device 400 via the input and output port 409 by a healthcare professional using an input device (eg, a mouse, keyboard).
  • Medical personnel are trained to have the ability to determine feature points from vibration signal waveforms.
  • curve 725 is shown in an enlarged view in FIG. 8. The medical staff can manually perform waveform analysis by first selecting the highest peak in one cycle, marking it as the first feature point, and then searching for the same period after the time corresponding to the highest peak.
  • the secondary peak labeled as the second feature point, is calibrated using an input device, such as using a mouse to select a feature point, so the processor 403 can determine the input of the healthcare professional as the first feature point and the second feature point.
  • the medical staff can calibrate these secondary peaks, and then the processor 403 uses the PTT confidence interval to exclude and determine the second feature point.
  • the medical staff can also select the marker points directly in two or more peaks by their own medical knowledge, and then the processor as a second feature point for subsequent processing.
  • Step 617 determining a pulse wave transit time based on the first feature point and the second feature point.
  • Step 617 is performed by processor 403.
  • the time point corresponding to the first feature point determined in step 615 is considered to be the aortic valve opening time (AVOT), and the time point corresponding to the second feature point is regarded as the pulse arrival time PAT (Pulse Arriving Time) .
  • the first feature point and the second feature point may be located in the same cardiac cycle, so the processor 403 may select a period with a relatively stable waveform, between the pulse wave arrival time PAT and the aortic valve opening time AVOT. The difference is used as the pulse wave transit time.
  • the processor 403 may select consecutive cycles, for example, 20 cardiac cycles, calculate the pulse wave transit time (ie, PTT1, PTT2, ... PTT20) in each cardiac cycle, and find the average. The value is used as the pulse wave transit time.
  • the processor 403 can select a fixed duration, for example, 60 seconds, calculate the pulse wave transit time (ie, PTT1, PTT2, ...) in each cardiac cycle during the time, and find the average value as the pulse. Wave conduction time.
  • the processor 403 can also automatically reject data whose pulse wave transit time is out of a reasonable range and use the average of the remaining other data as the pulse wave transit time.
  • the processor 403 can also calculate the pulse wave transit time in all cycles collected during the test and average the pulse transit time.
  • Step 619 Obtain a distance along the aortic path between the vibration sensitive sensor and the aorta starting point of the supine object as a pulse wave conduction distance, and determine pulse wave conduction based on the pulse wave conduction distance and the pulse wave conduction time. speed. Step 619 is performed by processor 403.
  • the pulse wave conduction distance may be determined manually. For example, the medical staff first determines the frontal surface position of the aorta and the descending aorta corresponding to the bifurcation of the left and right common iliac crest by auscultation or clinical experience, and then utilizes Measuring tools such as a soft ruler, a ruler, and a scaled line measure the pulse wave conduction distance.
  • the support bed or the mattress shown in FIG. 5b and FIG. 5c may be provided with a tick mark, which may be set along the height direction of the human body, as shown in the Z-axis direction in FIG. 5b, or in the opposite direction of the Z-axis.
  • the scale mark can be used to read the distance along the Z axis between the fourth thoracic body and the fourth lumbar body of the subject as an approximation of the pulse wave aorta pulse wave conduction distance of the subject.
  • the medical staff can manually determine the position of the frontal surface of the human body corresponding to the bifurcation of the aorta and the descending aorta and the left and right common iliac crests, and directly take the reading according to the scale mark as the pulse wave conduction distance of the test object.
  • the healthcare professional can then make data input through the input device of system 100, which can therefore obtain this pulse wave conduction distance.
  • the pulse wave conduction distance can be estimated according to a formula.
  • the height, weight, age, and the like of the test object can be input through the input device of the system 100, and the processor 403 can estimate the test according to the formula.
  • L is the length of the aorta, in centimeters, age is in years, height is in centimeters, and body weight is in kilograms.
  • a is a constant
  • b, c, and d are coefficients
  • the values of a, b, c, and d can be obtained by fitting calculation according to the actual artificially measured length of the aorta and the age, height, and weight of each tester, for example,
  • a can be assigned a value of -21.3
  • b can be assigned a value of 0.18
  • c can be assigned a value of 0.32
  • d can be assigned a value of 0.08.
  • Step 621 Send at least one of the pulse wave transit time and the pulse wave conduction speed to one or more output devices.
  • Step 621 is performed by processor 403.
  • the pulse wave transit time can be sent to output device 109 in system 100 for output.
  • the output device 109 can be a display device, such as a cell phone, that can display pulse wave transit time in graphics or text.
  • the output device 109 may be a printing device that prints a measurement report of pulse wave conduction parameters.
  • the output device 109 may be a voice broadcast device that performs voice output on the pulse wave conduction parameters.
  • the processor 403 can transmit the pulse wave transit time and/or the pulse wave conduction velocity to the output device over a wireless network, for example, the output device is a cell phone.
  • the processor 403 can transmit the pulse wave transit time and/or the pulse wave conduction velocity directly to the output device via a cable, for example, the output device is a display that can be connected to the sensing device via a cable.
  • the steps of method 600 may be performed in sequence, and in other embodiments, the steps of method 600 may be performed out of order, or concurrently.
  • step 617 determines that the pulse wave transit time is completed based on the first feature point and the second feature point
  • step 619 the distance between the vibration sensitive sensor and the aortic starting point of the subject along the aortic path is obtained as a pulse.
  • the wave conducts a distance and determines a pulse wave conduction velocity based on the pulse wave conduction distance and the pulse wave conduction time, and step 621, transmitting the pulse wave conduction time to one or more output devices, which may be performed simultaneously.
  • method 600 can remove one or more of the steps, for example, step 619 and step 621 may not be performed, and in other embodiments, other operational steps may also be added to method 600.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, the pulse wave parameter measurement method provided by the above embodiment is implemented. step.
  • FIG. 11 is a block diagram showing a specific structure of a pulse wave parameter processing device according to an embodiment of the present invention.
  • a pulse wave parameter processing device 900 includes: one or more processors 901, a memory 902, and one or more computers. a program, wherein the processor 901 and the memory 902 are connected by a bus, the one or more computer programs being stored in the memory 902 and configured to be executed by the one or more processors 901, The processor 901 implements the steps of the pulse wave parameter measurement method as provided in the above embodiments when the computer program is executed.
  • the aorta of the human body travels through the chest and abdomen of the human body, not the superficial superficial artery.
  • the traditional method of measuring the pulse wave conduction parameters of the superficial superficial artery is not suitable for the measurement of the pulse wave conduction parameter of the aorta.
  • the present invention acquires vibration information of an object from one or more vibration sensitive sensors configured to be placed at a predetermined position; generates hemodynamic related information based on the vibration information; and determines a number in the hemodynamic related information a feature point and a second feature point, wherein the first feature point is a point related to an opening time of the subject aortic valve, and the second feature point is a point related to a time of arrival of the pulse wave of the subject, A pulse wave transit time of the subject may be determined based on the first feature point and the second feature point, thereby determining a pulse wave conduction velocity to evaluate a degree of elasticity of the artery.
  • the tester only needs to lie on the measuring device or wear the measuring device to perform the measurement, and is measured without direct contact with the human body, and has high measurement precision.
  • the advantages of simple operation can improve the comfort of the tester and can be applied to scenes such as hospitals and homes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本发明提供了一种脉搏波传导参数测量方法和脉搏波传导参数处理设备。所述方法包括:从被配置为放置于预定位置的一个或多个振动敏感传感器获取对象的振动信息;基于所述振动信息生成血流动力学相关信息;确定所述血流动力学相关信息中的第一特征点和第二特征点,其中,所述第一特征点是与所述对象主动脉瓣打开时间相关的点,所述第二特征点是与所述对象脉搏波到达时间相关的点;和基于所述第一特征点和所述第二特征点确定所述对象的脉搏波传导时间。

Description

一种脉搏波传导参数测量方法和脉搏波传导参数处理设备 技术领域
本发明涉及一种脉搏波传导参数测量领域,尤其涉及一种非侵入式脉搏波传导参数测量方法、系统、计算机可读存储介质和脉搏波传导参数处理设备。
背景技术
此处的陈述仅提供与本发明有关的背景信息,而不必然地构成现有技术。
在世界范围内,心脑血管疾病是导致发病与死亡的重要原因,而心脑血管疾病的发病率与死亡率与动脉血管的病变有关。例如,心绞痛、心肌梗死与冠状动脉病变相关,脑卒中与脑动脉病变相关,间歇性跛行与下肢动脉病变相关。动脉病变的两种主要形态包括结构性病变和功能性病变,结构性病变表现为血管阻塞,例如动脉粥样硬化,功能性病变表现为血管功能的变化,例如血管硬化。其中,动脉血管壁弹性的改变是各种心血管事件发生和发展的基础。
心脏周期性的收缩和舒张,不仅可以引起动脉血管中血流流速和流量的改变,还可以产生沿血管壁传播的脉搏波。脉搏波传导速度(Pulse Wave Velocity,PWV)与动脉血管弹性相关,通常血管硬度越大脉搏波传导速度也越快,因此可以通过测量脉搏波传导速度来评估动脉的弹性程度。
技术问题
本发明的目的在于提供一种能测量对象脉搏波传导时间的脉搏波传导参数测量方法、系统、计算机可读存储介质和脉搏波传导参数处理设备。
技术解决方案
第一方面,本发明提供了一种脉搏波传导参数测量方法,所述方法包括:
从被配置为放置于预定位置的一个或多个振动敏感传感器获取对象的振动信息;
基于所述振动信息生成血流动力学相关信息;
确定所述血流动力学相关信息中的第一特征点和第二特征点,其中,所述第一特征点是与所述对象主动脉瓣打开时间相关的点,所述第二特征点是与所述对象脉搏波到达时间相关的点;和
基于所述第一特征点和所述第二特征点确定所述对象的脉搏波传导时间。
第二方面,本发明提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述的脉搏波传导参数测量方法的步骤。
第三方面,本发明提供了一种脉搏波传导参数处理设备,包括:一个或多个处理器;存储器;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,所述处理器执行所述计算机程序时实现如上述的脉搏波传导参数测量方法的步骤。
第四方面,本发明提供了一种脉搏波传导参数测量系统,所述系统包括:
一个或多个振动敏感传感器,被配置为放置于预定位置以获取对象的振动信息;和
与振动敏感传感器连接的,如上述的脉搏波传导参数处理设备。
有益效果
人体的主动脉穿行于人体的胸腔、腹腔中,不是体表浅动脉,传统的测量体表浅动脉的脉搏波传导参数的方法并不适用于主动脉的脉搏波传导参数的测量。本发明由于从被配置为放置于预定位置的一个或多个振动敏感传感器获取对象的振动信息;基于所述振动信息生成血流动力学相关信息;确定所述血流动力学相关信息中的第一特征点和第二特征点,其中,所述第一特征点是与所述对象主动脉瓣打开时间相关的点,所述第二特征点是与所述对象脉搏波到达时间相关的点,基于所述第一特征点和所述第二特征点可以确定所述对象的脉搏波传导时间,从而确定脉搏波传导速度,以评估动脉的弹性程度。因此采用本发明提供的测量人体主动脉脉搏波传导参数的方法,测试者只需要躺在测量设备上或者穿戴测量设备即可进行测量,在无需直接接触人体的情况下测量,并且具有测量精度高、操作简单的优点,能提高测试者的舒适性,可以适用于医院和家庭等场景。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领 域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本发明应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构和操作。
图1是依据本发明一些实施例的一种脉搏波传导参数测量系统的示意图;
图2是脉搏波的产生原理示意图;
图3是主动脉脉搏波传导参数的测定原理示意图;
图4是依据本发明一些实施例的计算装置的结构框图;
图5a是依据本发明一些实施例的传感装置的结构示意图;
图5b是依据本发明一些实施例的传感装置的放置位置示意图
图5c是依据本发明另一些实施例的传感装置的放置位置示意图;
图5d是依据本发明另一些实施例的传感装置的放置位置示意图;
图5e是依据本发明另一些实施例的传感装置的放置位置示意图;
图5f是依据本发明一些实施例的光纤501的环状结构排列方式示意图;
图6是依据本发明一些实施例的一种脉搏波传导参数测量方法的流程图;
图7是依据本发明一些实施例的一个对象的信号波形图;
图8是图7中的区域800中的信号波形的放大显示图;
图9是依据本发明一些实施例的另一个对象的信号波形图;和
图10是图9中的区域1000的曲线的放大显示图。
图11是本发明实施例提供的脉搏波传导参数处理设备的具体结构框图。
本发明的实施方式
如本发明和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
图1是依据本发明一些实施例的一种脉搏波传导参数测量系统100的示意图。如图1所示,脉搏波传导参数测量系统100和与传感装置101连接的脉搏波传导参数处理设备105,脉搏波传导参数处理设备105具体可以通过网络103或者信号传输线与传感装置101连接。
传感装置101可以被配置为获取对象102的振动信息。在一些实施例中,传感装置101可以是振动敏感传感器,例如加速度传感器、速度传感器、位移传感器、压力传感器、应变传感器、应力传感器、或者是以加速度、速度、位移、或压力为基础将物理量等效性转换的传感器(例如静电荷敏感传感器、充气式微动传感器、雷达传感器等)中的一种或多种。在一些实施例中,应变传感器可以是光纤应变传感器。在一些实施例中,传感装置101还可以包括温度敏感传感器,例如红外传感器,来获取对象的体温信息。在一些实施例中,传感装置101可以设置成长方体,例如,厚度是3mm,长度是45cm,宽度是8cm,也可以是其它适用尺寸。传感装置101可以配置为放置于对象102所在的医疗床、护理床等各种型号的床上。对象102可以是进行生命体征信号监测的生命体。在一些实施例中,对象102可以是医院患者也可以是被看护人员,例如年老者、被监禁者或其他人等。传感装置101可以将获取到的对象102的振动信息通过网络103或者信号传输线传输到脉搏波传导参数处理设备105进行后续处理。在一些实施例中,传感装置101获取的振动信息经过处理后可以计算得到对象102的生命体征信号,例如心跳率、呼吸率、体温等。在一些实施例中,传感装置101获取的振动信息经过处理后,可以计算得到对象的脉搏波传导参数,例如脉搏波传导时间(Pulse Wave Transit Time,PTT)、脉搏波传导速度PWV。
本发明实施例提供的脉搏波传导参数测量系统100还可以包括与传感装置101和/或脉搏波传导参数处理设备105连接的输出装置109,传感装置101还可以将获取到的振动信息传输到输出装置109进行输出,例如利用显示器显示振动信息的波形图。
本发明实施例提供的脉搏波传导参数测量系统100还可以包括与传感装置101和/或脉搏波传导参数处理设备105连接的存储装置107,传感装置101也可以将获取到的对象102的振动信息通过网络103传输到存储装置107进行存储,例如,系统100中可以包括多个传感装置,多个传感装置获取的多个对象的振动信息可以传输到存储装置107进行存储,作为客户数据的一部分。
网络103可以实现信息的交换。在一些实施例中,脉搏波传导参数测量系统100的组成部分(即传感装置101,网络103,脉搏波传导参数处理设备105,存储装置107,输出装置109)可以通过网络103进行相互间的信息收发。例如,传感装置101可以通过网络103将获取到的对象102的生命体征相关信号存储至存储装置107。在一些实施例中,网络103可以是单一网络,例如有线网络或无线网络,还可以是多种网络的组合。网络103可以包括但不限于局域网、广域网、共用网络、专用网络等。网络103可以包括多种网络接入 点,例如无线或有线接入点、基站或网络接入点,通过以上接入点使脉搏波传导参数测量系统100的其他组成部分可以连接网络103并通过网络传送信息。
脉搏波传导参数处理设备105被配置为处理信息。例如,脉搏波传导参数处理设备105可以从传感装置101接收对象102的振动信息,并且从振动信息中提取血流动力学相关信号,进一步对血流动力学相关信号进行处理后获得对象102的脉搏波传导参数。在一些实施例中,脉搏波传导参数处理设备105可以是单一服务器,也可以是一个服务器群组。服务器群组可以是集群式的,也可以是分布式的(也就是脉搏波传导参数处理设备105可以是一个分布式系统)。在一些实施例中,脉搏波传导参数处理设备105可以是本地的或者是远程的。例如,脉搏波传导参数处理设备105可以通过网络103存取存储在存储装置107、传感装置101、和/或输出装置109中的数据。再如,脉搏波传导参数处理设备105可以直接与传感装置101、存储装置107、和/或输出装置109连接来进行数据存储。在一些实施例中,脉搏波传导参数处理设备105还可以部署在云平台上,云平台可以包括但不限于公有云、私有云、混合云等。
存储装置107被配置为存储数据和指令。在一些实施例中,存储装置107可以包括但不限于随机存储器、只读存储器、可编程只读存储器等。存储装置107可以是利用电能方式、磁能方式、光学方式等存储信息的设备,例如硬盘、软盘、磁芯存储器、CD、DVD等。以上提及的存储设备只是列举了一些例子,存储装置107使用的存储设备并不局限于此。存储装置107可以存储传感装置101获取的对象102的振动信息,还可以存储脉搏波传导参数处理设备105对振动信息经过处理后的数据,例如对象102的生命体征信息(呼吸率、心率)。在一些实施例中,存储装置107可以是脉搏波传导参数处理设备105的一个组成部分。
输出装置109被配置为输出数据。在一些实施例中,输出装置109可以将脉搏波传导参数处理设备105处理后生成的生命体征信号进行输出,输出方式包括但不限于图形、文字、数据、语音或物理形式如振动或电波等,例如图形显示、数字显示、语音播报、盲文显示等中的一种或多种。输出装置109可以是显示器、手机、平板电脑、投影仪、可穿戴设备(手表、耳机、眼镜等)、盲文显示器等中的一种或多种。在一些实施例中,输出装置109可以实时显示对象102的生命体征信号(例如呼吸率、心率等),在另一些实施例中,输出装置109可以非实时显示一份报告,该报告是对象102在预设时间段内的测量结果,例如用户在入睡时间段内的每分钟心率监测结果和每分钟呼吸率监测结果。在一些实施例中,输出装置109还可以输出预警提示,提示方式包括但不限于声音警报、振动警报、画面显示警报 等方式。例如,对象102可以是被监护的病人,输出装置109可以是护士站内的显示屏,输出装置109显示的结果可以是实时心率、实时呼吸率等,当心率呼吸率出现异常(例如超过阈值或者在预设时间段内发生大幅度变化)时,输出装置109可以发出警报声音来提示医护人员,医护人员可以对病人进行及时抢救等。在另一些实施例中,输出装置109可以是医生随身携带的通信设备(例如手机),当对象102的生命体征异常时,一个或多个医生携带的一个或多个输出装置109可以收到预警信息,预警信息的推送方式可以是按照输出装置109与对象102间的距离远近来进行推送。
本发明描述的脉搏波传导参数测量系统100可应用于不同场景,例如医院、健康服务中心或家庭等。例如,脉搏波传导参数测量系统100在家庭场景中使用,传感装置100可以置于普通家庭床上,当对象102(例如年长的长辈、患有心血管疾病的人、术后康复期的人)在晚间处于睡眠状态时,传感装置101可以连续地或按预定或需要的方式获取待测对象的振动信息,然后通过网络103发送对象的振动信息(可以实时发送,也可以在预定时刻例如第二天早上发送前一晚的全部数据)到脉搏波传导参数处理设备105上进行处理,脉搏波传导参数处理设备105可以将处理后的信息(例如每分钟心率、每分钟呼吸率、主动脉PWV)发送到终端109,终端109可以是对象102的家庭医生的计算机,家庭医生可以依据对象102经过处理后的信息评估对象102的身体状况、康复情况等。
在一些实施例中,脉搏波传导参数测量系统100的组成部分脉搏波传导参数处理设备105,存储装置107和输出装置109可以设置在同一设备中,也可以设置在不同设备中。例如,脉搏波传导参数测量系统100包括一个传感装置101和一台计算机(如图4所示的计算设备400)。其中,传感装置101可以通过传输线直接与计算机相连,也可以通过网络与计算机相连,该计算机可以实现上述脉搏波传导参数处理设备105、存储装置107和输出装置109的所有功能,执行数据处理、存储、显示等功能。在另一些实施例中,脉搏波传导参数处理设备105、输出装置109和存储装置107可以集成为一体。传感装置101、脉搏波传导参数处理设备105、输出装置109和存储装置107还可以集成在一垫子内。
图2是脉搏波的产生原理示意图。如图2所示,左心室201与主动脉203通过主动脉瓣205相连。左心室201收缩达到一定压力值后主动脉瓣205打开(Aortic Valve Opening,AVO),血液从左心室201射入主动脉203中,由于血管是弹性管道,血液在射入主动脉时会扩张主动脉壁,这一搏动会沿着主动脉管壁传播,形成脉搏波207。血流动力学(Hemodynamics)研究的是血液在心血管系统中流动的力学,是以血液与血管的变形和流动为研究对象。脉搏波的产生与传导与血液流动和血管变形有关,属于血流动力学研究的对象。 脉搏波207沿主动脉的传导速度与主动脉203的血管弹性相关,因此可以通过脉搏波传导速度PWV来评估血管僵硬程度。
图3是主动脉脉搏波传导参数的测定原理示意图。如图3所示,主动脉可以分为升主动脉、主动脉弓和降主动脉,其中升主动脉起自左心室主动脉口,向右前上方斜行续于主动脉弓,主动脉弓处发出头臂干动脉、左颈总动脉、和左锁骨下动脉,头臂干动脉在右胸锁关节后方分为右颈总动脉和右锁骨下动脉。主动脉弓接续升主动脉,于胸骨柄的后方作弓状弯向左后方,弓行向左后至第四胸椎体下缘移行为降主动脉。降主动脉是主动脉最长的一段,在第四腰椎体处分为左、右髂总动脉。可见,主动脉节段的脉搏波起自主动脉起点301,沿主动脉传导至主动脉与左右髂总动脉分叉处303,因此将主动脉起点301与主动脉与左右髂总动脉分叉处303之间的沿主动脉路径的距离作为主动脉脉搏波传导距离,脉搏波从点301传导至点303的时间作为主动脉脉搏波传导时间,主动脉脉搏波传导距离与传导时间的比值作为主动脉脉搏波传导速度(aortic PWV,aPWV)。
图4是依据本发明一些实施例的计算设备400的结构框图。在一些实施例中,图1的脉搏波传导参数处理设备105、存储装置107、和/或输出装置109可以在计算设备400上实施。例如,脉搏波传导参数处理设备105可以在计算设备400上实施并且被配置为执行本发明描述的脉搏波传导参数处理设备105的功能。在一些实施例中,计算设备400可以是专用计算机,为了描述方便,图1中只描述了一个脉搏波传导参数处理设备105,本领域普通技术人员应当理解的是,脉搏波传导参数处理设备105的功能也可以实施在多个具有相似功能的计算设备400上以分散运算负载。
计算设备400可以包括一个通信端口401,一个处理器(Central Processing Unit,CPU)403,一个存储器405,和一个总线407。通信端口401被配置为通过网络或传输线与其他设备进行数据传输。处理器403被配置为进行数据处理。存储器405被配置为进行数据和指令存储,存储器405可以是只读存储器ROM,随机读取存储器RAM,硬盘Disk等各种形式的存储器。总线407被配置为进行计算设备400内部间的数据通信。在一些实施例中,计算设备400还可以包括输入输出端口409,输入输出端口409被配置为支持数据输入和输出。例如,其他人员可以利用输入设备(例如键盘)通过输入输出端口409输入数据至计算设备400。计算设备400也可以通过输入输出端口409将数据输出到输出设备例如显示器等。
应当理解的是,为了描述方便此处只描述了一个处理器403,应当理解的是计算设备400可以包括多个处理器,由一个处理器403执行的操作或方法可以由多个处理器联合或 分别执行。例如,本发明描述的一个处理器403可以执行步骤A和步骤B,应当理解的是,步骤A和步骤B可以由多个处理器共同或分别执行,例如由第一处理器执行步骤A和由第二处理器执行步骤B,或者是由第一处理器和第二处理器共同执行步骤A和步骤B。
图5a是依据本发明一些实施例的光纤传感装置500的结构示意图。如图5a所示,光纤传感装置500是光纤应变传感器,包括一根光纤501,一个网格层503,一个下盖505,和一个上盖507。其中,光纤501的一端连接光源509,光源509可以是LED光源,光源509与光源驱动器511连接,光源驱动器511被配置为控制光源的开关和能级。光纤501的另一端与接收器513连接,接收器513被配置为接收经过光纤501传输的光信号,接收器513与放大器515连接,放大器515与模数转换器517连接,模数转换器517可以将接收到的光信号进行模数转换,转换为数字信号。光源驱动器511、模数转换器517与控制处理模块519相连。控制处理模块519被配置为进行信号控制和信号处理,例如,控制处理模块519可以控制光源驱动器511工作以驱动光源509发光,控制处理模块519还可以从模数转换器517接收数据,对数据进行处理后使数据符合各种无线或有线网络数据传输的要求,以通过无线或有线网络传输给其他设备,例如图1中的脉搏波传导参数处理设备105、存储装置107、和/或输出装置109。控制处理模块519还可以控制模数转换器517的采样率使其根据不同需求具有不同的采样率。在一些实施例中,光源驱动器511、接收器513、放大器515、模数转换器517、和控制处理模块519可以合并实施为一个模块来执行所有功能。
光纤501可以是多模光纤,可以是单模光纤。光纤的排列方式可以是不同形状的,例如蛇形结构,如图5a中501所示形状。在一些实施例中,光纤501的排列方式还可以是U形结构。在一些实施例中光纤501的排列方式还可以是环状结构,如图5f所示,该环状结构521由一根光纤排列成基本上位于一个平面内的多个大小相等的环形成,其中,环状结构内的每个环与相邻环部分重叠且横向偏移。每一个光纤环可以形成基本上是具有圆形边缘的平行四边形的结构(例如长方形、正方形等),没有急剧的弯曲。在一些实施例中,环状光纤结构可以包括圆形或椭圆形结构。在另一些实施例中,所述环状结构也可形成没有急剧弯曲的不规则形状。
网格层503由具有贯通孔的重复图案的任何合适的材料构成,在一些实施例中,网格由交织的纤维构成,例如,聚合纤维、天然织物纤维、复合织物纤维或其他纤维。当光纤传感装置500置于对象身体下方,对象将对光纤传感装置500施加外力,网格层503可以使原本会施加于光纤上某一作用点的外力分散从而分布到该作用点周围的光纤上。光纤501发生微弯,导致光纤501传输的光的参数(如光强)发生变化,接收器513可以接收发生变化 后的光,并且由控制处理模块519进行光变化量的处理和确定。光纤510在外力施加下产生的弯曲量依赖于外力、光纤直径、网格纤维的直径、网格开口尺寸,通过设置光纤直径、网格纤维直径、网格开口尺寸的不同参数组合,可以使得当外力施加时光纤的弯曲量不同,使传感装置500具有对外力的不同的灵敏度。
下盖505和上盖507可以采用硅胶材质,被配置为围绕光纤501和网格层503的周围,可以保护光纤501,同时也可以分散外力使得外力沿力作用点分散。下盖505、光纤501、网格层503以及上盖507可以贴合为一个整体,例如利用硅胶粘合剂粘合为一体,从而使光纤传感装置500形成一片传感垫。传感垫的宽度和/或长度可以依据光纤不同的排列方式而改变,当采用环状结构排列时,传感垫的宽度可以至少是6cm,,也可以是其他合适的尺寸,例如可以是8cm,长度可以是30cm到80cm之间,例如45cm的长度可以适用于大多数人。在一些实施例中,传感垫的厚度可以为5mm,优选的,厚度为3mm。在一些实施例中,传感垫的宽度和长度可以是其他尺寸,可以根据不同的测试对象选取不同尺寸的传感器,例如测试对象可以按照年龄段、身高、体重来划分组别,不同的组别对应有不同尺寸的传感器。在一些实施例中,当光纤采用U形结构时,传感垫的宽度可以是1cm。
在一些实施例中,光纤传感装置500还可以具有一个外套(图5a中未示出),外套将下盖505、网格层503、光纤501以及上盖507包裹,外套可以采用防水防油材质,例如采用硬质塑料。在另一些实施例中,光纤传感装置500还可以具有一个支撑结构(图5a中未示出),支撑结构可以是刚性结构,例如硬纸板、硬塑料板、木板等,支撑结构可以置于光纤501与上盖507之间,给光纤501提供支撑,当外力施加于光纤501之上时,支撑结构可以使光纤层的变形回弹更快,回弹时间更短,因此光纤层可以捕获更高频率的信号。
当外力施加于光纤传感装置500上时,例如将光纤传感装置500置于平躺的人体下方时,当对象处于静息状态时,人体的呼吸、心跳等会导致人体身体产生震动,人体的身体振动可以造成光纤501的弯曲,光纤弯曲使经过光纤的光的参数发生变化,例如光强度发生变化。光强度的变化经过处理后可以用来表征人体的身体振动。光纤传感装置500的采样频率也可以调节,可以按照所需捕获的振动信息进行调整,例如采样频率是1k时,可以获取较为高频的振动信息。
图5b是依据本发明一些实施例的传感装置的放置位置示意图。如图5b所示,光纤传感装置500可以放置于支撑床531之上,在另一些实施例中,支撑床531之上还有床垫533,则光纤传感装置500可以置于床垫533之上。
为了在本发明中清楚方便地阐明人体各部位的位置、相互关系以及传感装置的放置位置与人体各部位间的关系,此处引入人体解剖学坐标系,人体标准体位分为直立体位和仰卧体位,以仰卧体位为例,如图5b所示,X轴是正中横轴,Y轴是正中矢状轴,Z轴是正中垂直轴,原点O位于趾骨联合上缘的中点,其中YZ平面是正中矢状面,将人体分为左右两部分,XZ平面是正中冠状面,将人体分为前后两部分,XY平面是原点横切面,将人体分为上下两部分。本发明描述的人体前部、后部、上部、下部、左部、右部即以解剖学坐标系为基准进行描述。
光纤传感装置500可以放置在对象102的主动脉对应的整个身体后部区域(包括背部、腰部)的任意位置之下,优选地是降主动脉对应的整个身体后部区域(包括背部、腰部)的任意位置之下,即第四胸椎体到第四腰椎体之间的整个身体后部区域的任意位置,进一步优选地是降主动脉与左右髂总动脉分叉处对应的腰部位置,在第四腰椎体周围。在一些实施例中,光纤传感装置500的形状和大小可以改变,例如,光纤传感装置500可以是边长为10cm,厚度为3mm的正方体也可以其他合适的尺寸。在一些实施例中,光纤传感装置500可以与床垫结合为一个整体,例如,光纤传感装置500可以固定在床垫上的特定位置,床垫上可以有明显指示标志(例如不同颜色、身体轮廓线、指示灯、凸起凹陷等形状等)指示患者的躺卧位置,使患者躺卧时腰部位于光纤传感装置500之上。对象102的姿势可以是仰卧,双手自然下垂置于身旁也可以是置于腹部,双臂自然下垂,双腿呈自然伸直状态,头部放正,放松精神,自然呼吸。在一些实施例中,对象102还可以是俯卧。待对象102呈静息状态后光纤传感装置500可以开始连续采集振动信号。
图5c是依据本发明另一些实施例的传感装置的放置位置示意图。在一些实施例中,对象102患有其他疾病(例如哮喘、咳嗽等)不适宜采取平躺仰卧姿势进行脉搏波传导参数的测量,此时支撑床531可以采用医院摇升床,将上半部分调高,这时对象102上半身升高,床的倾斜角为α。对象102处于平躺仰卧状态和上半身倾斜状态时,由于人体重力的作用,光纤传感装置500的受力情况不同,因此获取的对象102的振动信息的波形也不同。当床的倾斜角α在0度到60度之间时,虽然获取的振动波形不同,但是对后续的脉搏波传导参数的计算影响较小,可以忽略不计或者采用赋予修正系数来进行修正,其中,床的倾斜角的优选的角度是0度,也即对象处于平躺仰卧状态时是较佳的脉搏波传导参数的测量体位。
图5d是依据本发明另一些实施例的传感装置的放置位置示意图。在一些实施例中,两个或多个振动敏感传感器可以放置于同一位置,如图5d所示,两个相同的光纤传感装置500(500-1,500-2)可以叠加后放置于仰卧对象的降主动脉与左右髂总动脉分叉处对应的腰 部位置下方。在另一些实施例中,两个或多个振动敏感传感器的尺寸可以不完全相同,例如,一个是加速度传感器,尺寸较小,一个是光纤应变传感器,尺寸较大,两者放置位置近似是同一位置,也即两个传感器测得的振动信息可以包括对象同一身体部位的振动信息。
图5e是依据本发明另一些实施例的传感装置的放置位置示意图。在一些实施例中,振动敏感传感器也可以制作成人体可穿戴的设备,例如腰带,如图5e所示,可穿戴的振动敏感传感器540可以是光纤应变传感器,结构如图5a所示,其中上盖507和下盖505可以采用柔软、可弯折材质(例如硅胶),振动敏感传感器540的外形可以与常用腰带尺寸相同。在一些实施例中,振动敏感传感器也可以是加速度传感器,可以是一个边长2cm,厚度1mm的正方体,可以贴附在腰带上或者包覆于腰带内,由测试者佩戴,测试者佩戴后使得振动敏感传感器的佩戴部位可以是主动脉对应的整个身体后部区域(包括背部、腰部)的任意位置,优选地是降主动脉对应的整个身体后部区域(包括背部、腰部)的任意位置,即第四胸椎体到第四腰椎体之间的整个身体区域的任意位置,进一步优选地是降主动脉与左右髂总动脉分叉处对应的身体后部腰部位置,也即第四腰椎体周围。
传感装置101可以不局限于光纤传感装置500以及可穿戴的振动敏感传感器540的形态,以衣服、床垫等其他形态体现,从而适用于其他场景。
图6是依据本发明一些实施例的脉搏波传导参数测量方法600的流程图。在一些实施例中,方法600可以由图1所示的脉搏波传导参数测量系统100实施。例如,方法600可以存储在存储装置107中作为指令集,并且由脉搏波传导参数处理设备105执行,脉搏波传导参数处理设备105可以在计算设备400上实施。
步骤611,从被配置为放置于预定位置的一个或多个振动敏感传感器获取对象的振动信息。步骤611是由处理器403来执行。在一些实施例中,对象可以是医院病人或被看护人员等,该对象采取仰卧姿势,如图5b所示。振动敏感传感器可以是光纤传感器,例如图5a所示的光纤传感装置500,一块厚度为3mm的垫子,其宽度为8cm,长度为45cm,这一尺寸可以适用于身材处于正常范围内的对象。振动敏感传感器的放置预定位置可以是主动脉对应的整个身体后部区域(包括背部、腰部)的任意位置,优选地是降主动脉对应的整个身体后部区域(包括背部、腰部)的任意位置,即第四胸椎体到第四腰椎体之间的整个身体区域的任意位置,进一步优选地是降主动脉与左右髂总动脉分叉处对应的腰部位置,在第四腰椎体周围。当对象的身材超出正常范围内时,例如过肥或过瘦时,光纤传感装置500的尺寸可以进行调整。例如,针对身材较瘦的人垫子长度可以缩短,缩短到至少与对象的身体宽度相等,或者多一定的距离,例如5cm左右。对应的,针对身材肥胖的人可以将垫子长度进 行加长。光纤传感装置500可以实时、连续地获取对象的振动信号。当对象处于仰卧静息状态时,在降主动脉与左右髂总动脉分叉处对应的人体后部区域的腰部位置的振动敏感传感器,可以获取到的振动信息可以包括:呼吸引起的人体振动、心脏收缩舒张引起的人体振动、血管形变引起的人体振动、和人体身体运动信息。其中心脏收缩舒张引起的人体振动可以包括心脏收缩舒张本身引起的人体振动,还包括心脏收缩舒张导致的血流流动引起的人体振动,例如心脏射血导致血液冲击主动脉弓引起的人体振动。血管形变引起的人体振动可以是心脏射血导致主动脉壁扩张形成脉搏波,脉搏波沿血管传导引起的人体振动。人体身体运动信息可以包括屈腿、抬腿、翻身、抖动等。具体来说,人体呼吸时会带动整个身体尤其是胸腔腹腔为主的身体部分进行有节律的振动,人体心脏收缩舒张也会带动整个身体尤其是心脏周围的身体振动,左心室向主动脉射血的瞬间血液会冲击主动脉弓,心脏本身及其连接的大血管部分作为一个整体也会发生一系列的运动,距离心脏越远的身体部分的振动会越弱,脉搏波沿血管传播会引起血管所在的身体部分振动,血管越细、离心脏越远则此处的身体振动越弱。主动脉是人体最粗的动脉,起自左心室,位于胸腔腹腔区域,因此当振动敏感传感器位于降主动脉与左右髂总动脉分叉处对应的人体背部和腰部位置之下时,呼吸引起的人体振动、心脏收缩舒张引起的人体振动、血管形变引起的人体振动信息都较容易被捕获。如图7所示,曲线721是依据本发明一个实施例中,放置于某个对象A降主动脉与左右髂总动脉分叉处对应的人体后部区域的腰部位置的一个光纤传感装置500获取的某对象的振动信息的波形图,其中,横轴表示时间,纵轴表示进行归一化处理后的对象的振动信息,无量纲。
在一些实施例中,处理器403可以从置于预定位置的两个振动敏感传感器获取仰卧对象的振动信息。例如,两个光纤传感装置500可以叠加放置于同一位置,单个光纤传感装置500厚度可以仅有3mm,因此两个光纤传感装置500叠加后不会增加测试者的不适感。振动敏感传感器的放置预定位置可以是主动脉对应的整个身体后部区域(包括背部、腰部)的任意位置,优选地是降主动脉对应的整个身体后部区域(包括背部、腰部)的任意位置,即第四胸椎体到第四腰椎体之间的整个身体区域的任意位置,进一步优选地是降主动脉与左右髂总动脉分叉处对应的腰部位置,在第四腰椎体周围。在另一些实施例中,多个振动敏感传感器可以叠加后放置于同一位置来获取仰卧对象的振动信息。例如,多个光纤传感装置500叠加放置,也可以是光纤传感装置和加速度传感装置叠加放置。其中,多个振动敏感传感器可以分为两组,每组包括一个或多个传感器。
步骤613,基于所述振动信息生成血流动力学相关信息。步骤613是由处理器403来执行。在一些实施例中,步骤611中,对象处于仰卧静息状态时,没有人体身体运动,传 感装置500置于人体降主动脉与左右髂总动脉分叉处对应的腰部位置之下,传感装置500获取的振动信息包括呼吸引起的振动、心脏收缩引起的振动、脉搏波沿血管传播引起的振动。血流动力学(hemodynamics)研究的是血液在心血管系统中流动的力学,是以血液与血管的变形和流动为研究对象。本发明描述的“血流动力学相关信息”指任何与血流动力学相关的信息,可以包括但不限于,与血流产生相关的信息(例如心脏的收缩舒张导致射血)、与血流流动相关的信息(例如心排量CO(cardiac output)、左心室射血冲击主动脉弓)、与血流压力相关的信息(例如动脉收缩压、舒张压、平均动脉压)、与血管相关的信息(例如血管弹性)中的一种或几种。脉搏波传导参数,例如脉搏波传导速度,不仅与血管弹性相关,还与心脏的收缩和舒张、左心室射血血液冲击主动脉弓相关,因此脉搏波传导参数的测量涉及血流动力学相关信息的获取。在一些实施例中,步骤611中传感装置500获取的振动信息中,处理器403要生成的血流动力学相关信息包括左心室射血时血液冲击主动脉弓引起的振动和血管形变引起的振动信息(即脉搏波沿血管传播引起的振动)。现有技术中可以采用心冲击(Ballistocardiogram,BCG)信号来表征心脏的搏动引起的人体一系列的周期性运动,本发明描述的振动敏感传感器获取的人体的振动信息中,心脏收缩舒张引起的振动也可以被表示为BCG信号。本发明描述的血流动力学相关信息也包括BCG信号。
在一些实施例中,处理器403可以将获取的振动信息进行一系列处理从而生成血流动力学相关信息。处理器403获取的振动信息中包括多种子振动信息(呼吸引起的振动、心脏收缩引起的振动、血管形变引起的振动),处理器403可以针对不同的子振动信息进行不同频段的滤波处理。例如,处理器403可以设置呼吸引起的振动信息的滤波频段是1hz以下,处理器403采用的滤波方法可以包括但不限于低通滤波、带通滤波、IIR(Infinite Impulse Response)滤波、FIR(Finite Impulse Response)滤波、小波滤波、零相位双向滤波、多项式拟合平滑滤波中的一种或多种,可以对振动信息进行至少一次滤波处理。如果振动信息中携带工频干扰信号,则还可设计工频滤波器滤除工频噪声。处理器403可以在时域也可以在频域对振动信息进行滤波处理。处理器403还可以根据信号动态范围对滤波去噪后的振动信息进行缩放得到血流动力学相关信息。图7中曲线723所示是本发明一个实施例中,处理器403对振动信号波形721进行处理后生成的血流动力学相关信息的时域波形图,横轴表示时间。
步骤615,确定所述血流动力学相关信息中的第一特征点和第二特征点。步骤615是由处理器403来执行。其中,第一特征点可以用来表征主动脉瓣开这一事件。即左心室收缩达到一定压力后,主动脉瓣打开,血液射入主动脉并冲击主动脉弓,产生沿动脉传播的脉 搏波第一特征点对应的时间点可以作为脉搏波传导的起始时间点。第二特征点可以用来表征脉搏波到达这一事件,当振动敏感传感器置于测试对象降主动脉与左右髂总动脉分叉处对应的腰部位置下方,第二特征点可以表征脉搏波沿主动脉传导至分叉处这一事件,其对应的时间点可以作为脉搏波到达时间点。在一些实施例中,步骤613中处理器403生成的血流动力学相关信息可以包括左心室射血时血流冲击主动脉弓引起的振动,和脉搏波沿血管传播引起的振动。其中,主动脉瓣打开,左心室射血,血液进入主动脉的时刻认为是脉搏波的产生时间点,此刻左心室射出的血流会冲击主动脉弓,引起心脏本身及其连接的大血管部分作为一个整体发生一系列的运动,从而引起人体身躯运动产生位移。由于心脏周期性的收缩舒张,因此人体位移也是周期性的变化,这种振动信息可以通过人体的骨骼、肌肉等进行传导,振动敏感传感器可以捕获到这种振动信息,由于主动脉瓣打开这一事件和传感器捕获到对应的身体振动信息这一事件之间的时间延迟通常较小,大约在10ms之内,这个时间延迟在后续脉搏波传导参数测量中可以选择忽略不计,也可以选择给实际测得的主动脉瓣打开时间赋予一个修正系数来进行修正。因此第一特征点是与主动脉瓣打开时间相关的点,可以用来表征主动脉瓣打开这一事件。脉搏波沿血管传导,振动也随着血管传导,引起人体的振动,因此当脉搏波传导到达血管上某位置后,该血管所在的身体位置处的振动敏感传感器便可以捕获到振动信息,同样地,脉搏波到达时间和振动敏感传感器捕获到对应的身体振动信息间的时间延迟较小,这个时间延迟在后续脉搏波传导参数测量中可以选择忽略不计,也可以选择给实际测得的脉搏波到达时间赋予一个修正系数来进行修正。因此第二特征点是与脉搏波到达时间相关的点,可以用来表征该位置上脉搏波到达这一事件。在同一个心动周期内,左心室收缩至一定压力后主动脉瓣打开,血液冲击主动脉弓产生脉搏波并引起身体振动,此振动可以沿着骨骼、肌肉进行传导,随后脉搏波传导引起的振动沿着血管传导,两种振动可以被振动敏感传感器先后捕获。
在一些实施例中,处理器403可以通过预设的算法来识别第一特征点和第二特征点,例如处理器403可以执行以下步骤来识别第一特征点和第二特征点。
步骤A,处理器403可以对血流动力学相关信息进行处理来获取血流动力学相关信息的加速度信号。在一些实施例中,振动敏感传感器是光纤应变传感器,该光纤应变传感器放置于仰卧对象身体下方时会受力使光纤发生微小形变,光纤形变会导致在光纤里传播的光的参数发生变化,例如光强度的变化。因此,光纤应变传感器捕获的振动信号与人体身体的微小位移相对应,可以通过对其进行二阶微分运算来获取身体振动的加速度信号,具体地对血流动力学相关信息进行二阶微分运算可以获取血流动力学相关信息的加速度信号。在一些 实施例中,振动敏感传感器可以是加速度传感器,则其捕获的信号本身即属于加速度信号。如图7所示,曲线725是曲线723经过二阶微分运算后的时域波形曲线,横轴表示时间。
步骤B,处理器403对加速度信号进行特征搜索来确定第一特征点和第二特征点。特征搜索中的特征可以包括但不限于波峰、波谷、波宽、波幅、极大值、极小值、最大值、最小值等。图7所示的区域800中的信号波形的放大显示如图8所示。在一些实施例中,对曲线725进行特征搜索可以采用波峰搜索,以每个心动周期为一个搜索范围,在一个心动周期内搜索到的最高峰作为第一特征点,如点802。在一个心动周期内搜索到的次高峰作为第二特征点,如点804。第二个心动周期内利用特征搜索法确定的第一特征点如点806所示,第二特征点如点808所示。在一些实施例中,由于每个测试对象的身体条件不同,例如身高、体重、年龄、胖瘦等,导致获取的振动信号的波形各有不同,导致在一个心动周期内的次高峰可能与第二特征点并不对应。因此处理器403运用特征搜索法来确定第一特征点和第二特征点时还可以利用PTT置信区间来辅助确定。例如,图9所示曲线921是本发明另一个实施例中,放置于某个对象B降主动脉与左右髂总动脉分叉处对应的人体后部区域的腰部位置的光纤传感装置500获取的某对象的振动信息的波形图,横轴表示时间,纵轴表示进行归一化处理后的振动信息,无量纲。图9中的区域1000中的曲线的放大显示图如图10所示。对曲线925进行特征搜索时,在一个心动周期内,最高峰是1002作为第一特征点,搜索次高峰时存在1004和1010两个峰,这两个峰峰值相近,造成干扰,需要排除一个干扰峰后确定第二特征点。在后一个周期内,也存在相似的情况,最高峰是1006,存在1008和1012两个近似的次高峰。以第一个周期为例,在需要排除干扰峰时,首先可以分别计算次高峰1010与最高峰1002之间的时间间隔T1,次高峰1004与最高峰1002之间的时间间隔T2,然后将T1与T2与PTT置信区间相比,将时间间隔落在PTT置信区间外的次高峰作为干扰峰排除。PTT置信区间描述了主动脉脉搏波传导时间的正常范围,置信区间可以分为多个,按照性别、年龄、身高、体重、各种心脏疾病的有无等因素来进行分组,每组对应一个PTT置信区间。因此次高峰1010作为干扰峰被排除,次高峰1004被确定为第二特征点。在一些实施例中,由于测试者身体素质或者情绪的不同,振动敏感传感器连续捕获的振动信息中,第一特征点可以与一个心动周期内的最高峰并不对应,第二特征点也可以不与次高峰对应。此种情况下可以舍弃该心动周期的数据,也可以利用波群进行特征搜索来确定第一特征点和第二特征点。
在一些实施例中,处理器403可以通过其它本质等同的数字信号处理方法,例如采用多项式拟合平滑滤波,获得与进行二阶微分运算等同效果的信息。
在一些实施例中,步骤611中处理器403可以从放置于预定位置的两个振动敏感传感器获取对象的振动信息。其中一个振动敏感传感器获取的振动信息可以用来识别第一特征点,另一个振动敏感传感器获取的振动信息可以用来识别第二特征点。在另一些实施例中,处理器403可以用每个振动敏感传感器获取的振动信息来识别第一特征点和第二特征点,然后利用两个振动敏感传感器获取的振动信息来相互验证,以鉴别并排除一些不合理信息。
在一些实施例中,处理器403可以从一个或多个输入装置接收用户输入以确定所述血流动力学相关信息中的第一特征点和第二特征点。例如,外部输入参数可以是医护人员利用输入设备(例如鼠标、键盘)通过输入输出端口409输入到计算设备400。医护人员是经过培训具有从振动信号波形中判断特征点的能力。例如,曲线725在图8中的放大显示,医护人员可以人工进行波形分析,首先选取一个周期内的最高峰,标记为第一特征点,然后往最高峰对应的时间之后的同一个周期内寻找次高峰,标记为第二特征点,并利用输入设备进行标定,例如利用鼠标选定特征点,因此处理器403可以将医护人员的输入确定为第一特征点和第二特征点。在同一个在周期内存在两个或以上次高峰时,医护人员可以将这些次高峰全部标定,然后处理器403利用PTT置信区间进行排除后确定第二特征点。医护人员也可以凭借自身医学知识直接在两个或以上次高峰中选定标记点,然后处理器作为第二特征点进行后续处理。
步骤617,基于所述第一特征点和第二特征点确定脉搏波传导时间。步骤617是由处理器403来执行。步骤615中确定的第一特征点对应的时间点被认为是主动脉瓣开时间AVOT(Aortic Valve Opening Time),第二特征点对应的时间点被认为是脉搏波到达时间PAT(Pulse Arriving Time)。在一些实施例中,第一特征点和第二特征点可以位于同一个心动周期内,因此处理器403可以选取一个波形较为稳定的周期,将脉搏波到达时间PAT与主动脉瓣开时间AVOT间的差值作为脉搏波传导时间。在另一些实施例中,处理器403可以选取连续的数个周期,例如20个心动周期,计算每一个心动周期内的脉搏波传导时间(即PTT1、PTT2...PTT20),并求其平均值作为脉搏波传导时间。在一些实施例中,处理器403可以选取固定时长,例如60秒钟,计算该时间内每一个心动周期内的脉搏波传导时间(即PTT1、PTT2...),并求其平均值作为脉搏波传导时间。在另一些实施例中,处理器403还可以自动剔除脉搏波传导时间不在合理范围内的数据并将剩余其他数据的平均值作为脉搏波传导时间。在另一些实施例中,处理器403还可以将测试中采集的所有周期内的脉搏波传导时间都进行计算,并求其平均值作为脉搏波传导时间。
步骤619,获取所述振动敏感传感器和所述仰卧对象的主动脉起点间沿主动脉路径的距离作为脉搏波传导距离,并基于所述脉搏波传导距离与所述脉搏波传导时间确定脉搏波传导速度。步骤619是由处理器403来执行。在一些实施例中,脉搏波传导距离可以采用人工测定,例如医护人员通过听诊或临床经验首先确定主动脉起点和降主动脉与左右髂总动脉分叉处对应的人体正面体表位置,然后利用软尺、直尺、带刻度的线等测距工具进行测量得到脉搏波传导距离。再如,图5b和图5c所示的支撑床或床垫上可以带有刻度标记,该刻度标记可以设置沿人体身高方向,如图5b中的Z轴方向,或者是沿Z轴反方向,利用该刻度标记可以读出对象第四胸椎体到第四腰椎体之间沿Z轴的距离作为对象脉搏波主动脉脉搏波传导距离的近似值。医护人员可以人工确定主动脉起点和降主动脉与左右髂总动脉分叉处对应的人体正面体表位置后,直接依据刻度标记进行读数作为测试对象的脉搏波传导距离。然后医护人员可以通过系统100的输入设备进行数据输入,处理器403因此可以获得此脉搏波传导距离。在另一些实施例中,脉搏波传导距离可以根据公式进行估算,例如,可以将测试对象的身高、体重、年龄等参数通过系统100的输入设备进行数据输入,处理器403便可以根据公式估算测试对象的脉搏波传导距离。例如,处理器403可以依据以下公式估算测试对象的主动脉长度,也就是主动脉脉搏波传导距离:L=a+b*(年龄)+c*(身高)+d*(体重)
其中,L表示主动脉长度,以厘米为单位,年龄以年为单位,身高以厘米为单位,体重以千克为单位。a表述常数,b、c、d是系数,可以根据实际人工测得的主动脉长度和各个测试者的年龄、身高、体重等,进行拟合计算得到a、b、c、d的数值,例如在一些实施例中,a可以赋值为-21.3,b可以赋值为0.18,c可以赋值为0.32,d可以赋值为0.08。
步骤621,发送所述脉搏波传导时间和所述脉搏波传导速度中的至少一个到一个或多个输出装置。步骤621是由处理器403来执行。例如,脉搏波传导时间可以发送到系统100中的输出装置109进行输出。输出装置109可以是显示设备,例如手机,可以以图形或文字显示脉搏波传导时间。输出装置109可以是打印设备,将脉搏波传导参数的测量报告进行打印。输出装置109可以是语音播报设备,将脉搏波传导参数进行语音输出。在一些实施例中,处理器403可以通过无线网络将脉搏波传导时间和/或脉搏波传导速度发送至输出装置,例如输出装置是手机。在另一些实施例中,处理器403可以通过线缆将脉搏波传导时间和/或脉搏波传导速度直接发送至输出装置,例如输出装置是显示器,可以通过线缆与传感装置相连。
在一些实施例中,方法600的步骤可以是按顺序执行的,在另一些实施例中,方法600的步骤可以是不按顺序执行的,或者是同时执行的。例如,步骤617基于所述第一特征 点和第二特征点确定脉搏波传导时间完成后,步骤619,获取所述振动敏感传感器和所述对象的主动脉起点间沿主动脉路径的距离作为脉搏波传导距离,并基于所述脉搏波传导距离和所述脉搏波传导时间确定脉搏波传导速度,和步骤621,发送所述脉搏波传导时间到一个或多个输出装置,可以是同时执行的。另外,在一些实施例中,方法600可以移除其中一个或多个步骤,例如,步骤619和步骤621可以不执行,在另一些实施例中,其他操作步骤还可以被添加到方法600中。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述实施例提供的脉搏波传导参数测量方法的步骤。
图11示出了本发明实施例提供的脉搏波传导参数处理设备的具体结构框图,一种脉搏波传导参数处理设备900包括:一个或多个处理器901、存储器902、以及一个或多个计算机程序,其中所述处理器901和所述存储器902通过总线连接,所述一个或多个计算机程序被存储在所述存储器902中,并且被配置成由所述一个或多个处理器901执行,所述处理器901执行所述计算机程序时实现如上述实施例提供的脉搏波传导参数测量方法的步骤。
人体的主动脉穿行于人体的胸腔、腹腔中,不是体表浅动脉,传统的测量体表浅动脉的脉搏波传导参数的方法并不适用于主动脉的脉搏波传导参数的测量。本发明由于从被配置为放置于预定位置的一个或多个振动敏感传感器获取对象的振动信息;基于所述振动信息生成血流动力学相关信息;确定所述血流动力学相关信息中的第一特征点和第二特征点,其中,所述第一特征点是与所述对象主动脉瓣打开时间相关的点,所述第二特征点是与所述对象脉搏波到达时间相关的点,基于所述第一特征点和所述第二特征点可以确定所述对象的脉搏波传导时间,从而确定脉搏波传导速度,以评估动脉的弹性程度。因此采用本发明提供的测量人体主动脉脉搏波传导参数的方法,测试者只需要躺在测量设备上或者穿戴测量设备即可进行测量,在无需直接接触人体的情况下测量,并且具有测量精度高、操作简单的优点,能提高测试者的舒适性,可以适用于医院和家庭等场景。
需要注意的是,以上的描述仅仅是本发明的具体实施例,不应被视为是唯一的实施例。显然,对于本领域的专业人员来说,在了解本发明的内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些修正和改变仍在本发明的权利要求保护范围之内。

Claims (19)

  1. 一种脉搏波传导参数测量方法,其特征在于,所述方法包括:
    从被配置为放置于预定位置的一个或多个振动敏感传感器获取对象的振动信息;
    基于所述振动信息生成血流动力学相关信息;
    确定所述血流动力学相关信息中的第一特征点和第二特征点,其中,所述第一特征点是与所述对象主动脉瓣打开时间相关的点,所述第二特征点是与所述对象脉搏波到达时间相关的点;和
    基于所述第一特征点和所述第二特征点确定所述对象的脉搏波传导时间。
  2. 如权利要求1所述的方法,其特征在于,所述振动敏感传感器是加速度传感器、速度传感器、位移传感器、压力传感器、应变传感器、应力传感器、或者是以加速度、速度、压力、或位移为基础将物理量等效性转换的传感器中的一种或多种。
  3. 如权利要求2所述的方法,其特征在于,所述应变传感器是光纤应变传感器。
  4. 如权利要求3所述的方法,其特征在于,所述光纤应变传感器包括:
    一根光纤,排列成基本上位于一个平面内的结构;
    光源,与所述一根光纤的一端耦合;
    接收器,与所述一根光纤的另一端耦合,被配置为感知通过所述光纤的光强度的变化;和
    一个网格层,由设置有开口的网眼组成,其中,所述网格层与所述光纤表面接触。
  5. 如权利要求1、3或4所述的方法,其特征在于,所述对象呈仰卧姿势,所述预定位置是所述对象的第四胸椎体到第四腰椎体之间的整个背部和腰部身体区域的任意位置下方。
  6. 如权利要求5所述的方法,其特征在于,所述预定位置是所述对象降主动脉与左右髂总动脉分叉处对应的腰部位置下方。
  7. 如权利要求1所述的方法,其特征在于,所述振动信息包括呼吸引起的振动、心脏收缩舒张引起的振动、脉搏波传导引起的振动、或者人体身体运动中的至少一种。
  8. 如权利要求1所述的方法,其特征在于,所述基于所述振动信息生成所述血流动力学相关信息,进一步包括:
    对所述振动信息进行滤波、缩放以生成所述血流动力学相关信息。
  9. 如权利要求3所述的方法,其特征在于,所述确定所述血流动力学相关信息中的第一特征点和第二特征点,进一步包括:
    对所述血流动力学相关信息进行二阶微分运算;和
    对二阶微分运算后的血流动力学相关信息进行特征搜索确定所述第一特征点和所述第二 特征点;
    其中,所述第一特征点是所述二阶微分运算后的血流动力学相关信息波形的一个心动周期内的最高峰,所述第二特征点是所述二阶微分运算后的血流动力学相关信息波形的一个心动周期内的次高峰。
  10. 如权利要求1所述的方法,其特征在于,所述确定所述血流动力学相关信息中的第一特征点和第二特征点具体为:从一个或多个输入装置接收用户输入的所述血流动力学相关信息中的第一特征点和第二特征点。
  11. 如权利要求1所述的方法,其特征在于,所述方法进一步包括:
    获取所述振动敏感传感器和所述对象的主动脉起点间沿主动脉路径的距离作为脉搏波传导距离;和
    基于所述脉搏波传导距离和所述脉搏波传导时间,确定脉搏波传导速度。
  12. 如权利要求11所述的方法,其特征在于,所述方法进一步包括:发送所述脉搏波传导时间和/或所述脉搏波传导速度到一个或多个输出装置。
  13. 如权利要求1所述的方法,其特征在于,被配置为放置于预定位置的振动敏感传感器是两个,其中一个振动敏感传感器获取的振动信息用来识别第一特征点,另一个振动敏感传感器获取的振动信息用来识别第二特征点,或者用每个振动敏感传感器获取的振动信息来识别第一特征点和第二特征点,然后利用两个振动敏感传感器获取的振动信息来相互验证。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至13任一项所述的脉搏波传导参数测量方法的步骤。
  15. 一种脉搏波传导参数处理设备,包括:一个或多个处理器;存储器;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至13任一项所述的脉搏波传导参数测量方法的步骤。
  16. 一种脉搏波传导参数测量系统,其特征在于,所述系统包括:
    一个或多个振动敏感传感器,被配置为放置于预定位置以获取对象的振动信息;和
    与振动敏感传感器连接的,如权利要求15所述的脉搏波传导参数处理设备。
  17. 如权利要求16所述的系统,其特征在于,所述脉搏波传导参数测量系统还包括:
    与振动敏感传感器和/或脉搏波传导参数处理设备连接的输出装置,振动敏感传感器将获取到的振动信息和脉搏波传导参数传输到输出装置进行输出。
  18. 如权利要求16或17所述的系统,其特征在于,所述脉搏波传导参数测量系统还包括:与振动敏感传感器和/或脉搏波传导参数处理设备连接的存储装置,振动敏感传感器将获取到的对象的振动信息和脉搏波传导参数传输到存储装置进行存储。
  19. 如权利要求18所述的系统,其特征在于,所述脉搏波传导参数处理设备、输出装置和存储装置集成为一体。
PCT/CN2018/085203 2018-04-28 2018-04-28 一种脉搏波传导参数测量方法和脉搏波传导参数处理设备 WO2019205175A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/051,335 US20210127991A1 (en) 2018-04-28 2018-04-28 Pulse wave conduction parameter measuring method and pulse wave conduction parameter processing device
PCT/CN2018/085203 WO2019205175A1 (zh) 2018-04-28 2018-04-28 一种脉搏波传导参数测量方法和脉搏波传导参数处理设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085203 WO2019205175A1 (zh) 2018-04-28 2018-04-28 一种脉搏波传导参数测量方法和脉搏波传导参数处理设备

Publications (1)

Publication Number Publication Date
WO2019205175A1 true WO2019205175A1 (zh) 2019-10-31

Family

ID=68294730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085203 WO2019205175A1 (zh) 2018-04-28 2018-04-28 一种脉搏波传导参数测量方法和脉搏波传导参数处理设备

Country Status (2)

Country Link
US (1) US20210127991A1 (zh)
WO (1) WO2019205175A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112890796A (zh) * 2021-01-28 2021-06-04 武汉理工大学 基于光纤传感的脉搏波监测装置与方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101849819A (zh) * 2010-06-01 2010-10-06 浙江大学 一种实时获得脉搏波下降支面积比的方法及其应用
CN105916439A (zh) * 2014-01-21 2016-08-31 加州理工学院 便携式电子血液动力传感器系统
CN107072538A (zh) * 2014-09-08 2017-08-18 苹果公司 将脉搏传导时间(ptt)测量系统电耦接到心脏以用于血压测量
CN107106054A (zh) * 2014-09-08 2017-08-29 苹果公司 使用多功能腕戴式设备进行血压监测
CN107126201A (zh) * 2017-03-31 2017-09-05 悦享趋势科技(北京)有限责任公司 非入侵式的连续血压检测方法、设备和装置
WO2017211866A1 (en) * 2016-06-07 2017-12-14 Aalborg Universitet Method and system for measuring aortic pulse wave velocity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7396331B2 (en) * 2003-10-27 2008-07-08 Home Guardian, Llc System and process for non-invasive collection and analysis of physiological signals
EP3232918A1 (en) * 2014-12-16 2017-10-25 Leman Micro Devices SA Personal health data collection
JP6683367B2 (ja) * 2015-03-30 2020-04-22 国立大学法人東北大学 生体情報計測装置、生体情報計測方法及び生体情報計測プログラム
US11627884B2 (en) * 2017-04-24 2023-04-18 Health Sensing Co., Ltd. Blood pressure calculation method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101849819A (zh) * 2010-06-01 2010-10-06 浙江大学 一种实时获得脉搏波下降支面积比的方法及其应用
CN105916439A (zh) * 2014-01-21 2016-08-31 加州理工学院 便携式电子血液动力传感器系统
CN107072538A (zh) * 2014-09-08 2017-08-18 苹果公司 将脉搏传导时间(ptt)测量系统电耦接到心脏以用于血压测量
CN107106054A (zh) * 2014-09-08 2017-08-29 苹果公司 使用多功能腕戴式设备进行血压监测
WO2017211866A1 (en) * 2016-06-07 2017-12-14 Aalborg Universitet Method and system for measuring aortic pulse wave velocity
CN107126201A (zh) * 2017-03-31 2017-09-05 悦享趋势科技(北京)有限责任公司 非入侵式的连续血压检测方法、设备和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112890796A (zh) * 2021-01-28 2021-06-04 武汉理工大学 基于光纤传感的脉搏波监测装置与方法

Also Published As

Publication number Publication date
US20210127991A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
CA2922364C (en) Heart monitoring system
CN100518638C (zh) 被动式生理监视(p2m)系统
CN110403580B (zh) 一种脉搏波传导参数测量方法和脉搏波传导参数处理设备
JP5984088B2 (ja) 非侵襲的連続血圧モニタリング方法及び装置
CN102811659B (zh) 用于测量连续无创血压(cNIBP)的体佩式系统
JP2021513895A (ja) ワイヤレス医療センサおよび方法
CN108366749A (zh) 动态血压与生命体征监测装置、系统和方法
JP5791624B2 (ja) 血流および血行動態パラメータを検知するための装置
CN106572804A (zh) 用于使用声学信号来测量血压的方法和装置
JP2020513892A (ja) 血液の流れ及び呼吸の流れを監視するための装置
CN105595983A (zh) 一种血压测量装置及提高血压测量准确度的方法
CN103610454B (zh) 一种血压测量方法及系统
CN110403579B (zh) 一种脉搏波传导参数测量系统和方法
JP7138363B2 (ja) 脈波伝導パラメータの測定システム、測定方法及び測定装置
JPWO2020092786A5 (zh)
WO2019205175A1 (zh) 一种脉搏波传导参数测量方法和脉搏波传导参数处理设备
Lee et al. Heart sounds measurement using PVDF film sensor and their comparison with RR intervals of ECG signals
TWI618528B (zh) 測量個體血壓的方法及裝置
US20240197188A1 (en) Physiological parameter sensing systems and methods
Anchan Estimating pulse wave velocity using mobile phone sensors
Tu et al. Optimal design of a new strain-type sensor for cuff-less blood pressure measurement via finite element modeling and Taguchi method
CN110833402A (zh) 一种生理参数测量系统和方法
Lee Mechanoacoustic Sensing at Suprasternal Notch
JP2024018876A (ja) 情報処理システム、サーバ、情報処理方法、プログラム及び学習モデル
WO2020000268A1 (zh) 心脏生理参数测量方法、设备、终端及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.3.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916997

Country of ref document: EP

Kind code of ref document: A1