WO2019205006A1 - 超声成像方法以及超声成像设备 - Google Patents

超声成像方法以及超声成像设备 Download PDF

Info

Publication number
WO2019205006A1
WO2019205006A1 PCT/CN2018/084413 CN2018084413W WO2019205006A1 WO 2019205006 A1 WO2019205006 A1 WO 2019205006A1 CN 2018084413 W CN2018084413 W CN 2018084413W WO 2019205006 A1 WO2019205006 A1 WO 2019205006A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
target object
ultrasound
interventional
ultrasound image
Prior art date
Application number
PCT/CN2018/084413
Other languages
English (en)
French (fr)
Inventor
刘杰
朱建光
李雷
李庆鹏
何绪金
邹耀贤
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201880058105.9A priority Critical patent/CN111093512A/zh
Priority to PCT/CN2018/084413 priority patent/WO2019205006A1/zh
Publication of WO2019205006A1 publication Critical patent/WO2019205006A1/zh
Priority to US17/079,274 priority patent/US20210038197A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0223Magnetic field sensors

Definitions

  • the present application relates to the field of medical devices, and in particular to an ultrasound imaging method and an ultrasound imaging device.
  • the obtained puncture needle image may not be optimal. Therefore, the puncture needle image needs to be optimized to make the puncture needle image display more clearly and accurately. In front of them.
  • the operator needs to manually adjust a series of parameters to optimize the image of the puncture needle, which not only requires the operator to be familiar with the machine itself, but also increases the operation steps of the operator during the operation, and reduces the operation. s efficiency.
  • Embodiments of the present application provide an ultrasound imaging method and an ultrasound imaging apparatus for improving operational efficiency.
  • a first aspect of the present application provides an ultrasound imaging method, including: acquiring location information of an interventional object inserted into a target object; determining a target imaging parameter according to the location information; and following the target imaging parameter along the at least one first angle
  • the interventional object emits a first ultrasonic wave, receives a first ultrasonic echo returned by the interventional object to obtain first ultrasonic echo data; generates an ultrasound image of the interventional object according to the first ultrasonic echo data; An ultrasound image of the target object and synthesizing the ultrasound image of the target object with the ultrasound image of the interventional object to obtain a composite image.
  • a second aspect of the embodiments of the present application provides an ultrasound imaging method, comprising: transmitting a first ultrasonic wave to an interventional object inserted into a target object along at least one first angle according to the first imaging parameter, and receiving a first return of the interventional object Acoustic echo to obtain first ultrasonic echo data; generate a first ultrasonic image of the interventional object according to the first ultrasonic echo data; receive a first operation instruction; and determine a second imaging parameter according to the first operation instruction; Transmitting, according to the second imaging parameter, the second ultrasonic wave to the interventional object along the at least one first angle, and receiving the second ultrasonic echo returned by the interventional object to obtain second ultrasonic echo data;
  • a third aspect of the embodiments of the present application provides an ultrasound imaging apparatus, including: a processor that acquires position information of an interventional object inserted into a target object, and determines a target imaging parameter according to the position information; a probe; a transmitting circuit, The transmitting circuit energizes the probe to emit a first ultrasonic wave to the interventional object along the at least one first angle according to the target imaging parameter; the receiving circuit controls the probe to receive the first ultrasonic echo returned by the interventional object, Obtaining first ultrasonic echo data; the processor further generates an ultrasound image of the interventional object according to the first ultrasound echo data; acquiring an ultrasound image of the target object, and imaging the ultrasound image of the target object with the interventional object The ultrasound image is synthesized to obtain a composite image.
  • a fourth aspect of the embodiments of the present application provides an ultrasound imaging apparatus, comprising: a probe; a transmitting circuit that excites the probe to emit the first intervening object inserted into the target object along the at least one first angle according to the first imaging parameter.
  • An ultrasonic circuit ; a receiving circuit that controls the probe to receive a first ultrasonic echo returned by the interventional object to obtain first ultrasonic echo data; and a processor that generates the intervention according to the first ultrasonic echo data a first ultrasound image of the sexual object; the processor receiving the first operational command and determining a second imaging parameter based on the first operational command; the transmitting circuit energizing the probe along the at least one first angle in accordance with the second imaging parameter
  • the interventional object emits a second ultrasonic wave; the receiving circuit controls the probe to receive a second ultrasonic echo returned by the interventional object to obtain second ultrasonic echo data; the processor generates the second ultrasonic echo data according to the second ultrasonic echo data a second ultrasound image of the interventional object
  • a fifth aspect of an embodiment of the present application provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform the ultrasonic imaging method provided by the first aspect above.
  • a sixth aspect of an embodiment of the present application provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform the ultrasonic imaging method provided by the second aspect above.
  • the embodiment of the present application has the following advantages: after obtaining the position information of the interventional object, determining the target imaging parameter according to the position information, and transmitting the first ultrasonic wave to the interventional object according to the target imaging parameter to obtain The first ultrasonic echo data, and generate an ultrasound image of the interventional object, thereby synthesizing the ultrasound image of the interventional object and the ultrasound image of the target object to obtain a composite image, which solves the problem that the operator needs to manually adjust the parameters to optimize the ultrasound image, thereby causing The problem of reduced surgical efficiency, thus improving operational efficiency.
  • FIG. 1 is a block diagram showing the structure of a possible ultrasound imaging apparatus according to an embodiment of the present application
  • FIG. 2 is a flowchart of a possible ultrasound imaging method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a possible probe provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram showing an initial display of a possible puncture needle according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a possible puncture needle optimization display according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram showing another possible puncture needle initial display according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram showing another possible puncture needle optimization display according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a possible focus initial display according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a possible focus adjustment provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a possible ultrasonic reflection according to an embodiment of the present application.
  • FIG. 11 is another schematic diagram of ultrasonic reflection provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another possible ultrasonic reflection provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a possible image synthesis based on wavelet transform according to an embodiment of the present application.
  • FIG. 14 is a schematic flow chart of another possible ultrasonic imaging method provided by an embodiment of the present application.
  • Embodiments of the present application provide an ultrasound imaging method and an ultrasound imaging apparatus for improving operational efficiency.
  • FIG. 1 is a block diagram showing the structure of an ultrasonic imaging apparatus 10 in an embodiment of the present application.
  • the ultrasound imaging apparatus 10 may include a probe 100, a transmitting circuit 101, a transmit/receive selection switch 102, a receiving circuit 103, a beam combining circuit 104, a processor 105, and a display 106.
  • the transmitting circuit 101 can excite the probe 100 to emit ultrasonic waves to a target object.
  • the receiving circuit 103 can receive the ultrasonic echoes returned from the target object through the probe 100, thereby obtaining ultrasonic echo signals/data.
  • the ultrasonic echo signal/data is subjected to beam combining processing by the beam combining circuit 104, and then sent to the processor 105.
  • the processor 105 processes the ultrasonic echo signals/data to obtain an ultrasound image of the target object or an ultrasound image of the interventional object.
  • the ultrasound image obtained by the processor 105 can be stored in the memory 107. These ultrasound images can be displayed on display 106.
  • the display 106 of the ultrasonic imaging device 10 may be a touch display screen, a liquid crystal display, or the like, or may be an independent display device such as a liquid crystal display or a television independent of the ultrasonic imaging device 10 . It can also be a display on electronic devices such as mobile phones and tablets, and so on.
  • the aforementioned memory 107 of the ultrasonic imaging apparatus 10 may be a flash memory card, a solid state memory, a hard disk, or the like.
  • a computer readable storage medium is further provided, where the computer readable storage medium stores a plurality of program instructions, which are executed by the processor 105 to execute various implementations of the present application. Some or all of the steps in the ultrasound imaging method in the examples or any combination of the steps therein.
  • the computer readable storage medium can be a memory 107, which can be a non-volatile storage medium such as a flash memory card, solid state memory, hard disk, or the like.
  • the processor 105 of the aforementioned ultrasound imaging apparatus 10 may be implemented by software, hardware, firmware, or a combination thereof, and may use a circuit, a single or multiple application specific integrated circuits (ASICs), Single or multiple general purpose integrated circuits, single or multiple microprocessors, single or multiple programmable logic devices, or a combination of the foregoing circuits or devices, or other suitable circuits or devices such that the processor 105 can execute the present Corresponding steps of the ultrasound imaging method in various embodiments of the application.
  • ASICs application specific integrated circuits
  • the ultrasonic imaging method provided by the embodiment of the present application can be applied to an application scenario in which an operator places a probe 100 on a body surface to be pierced.
  • the puncture needle is inserted from the side of the probe 100, and the operator can see the tissue structure and the like through the display 106, and at the same time, the position of the needle of the puncture needle and the puncture needle in the tissue structure can be seen, so the operator can clearly know The path through which the needle travels and the position to be reached. Therefore, under the guidance of the image, the operator is more intuitive and efficient in performing the puncture operation.
  • an ultrasound imaging method is provided in an embodiment of the present application.
  • the method is applied to an ultrasound imaging apparatus 10.
  • the ultrasound imaging method embodiment includes:
  • the processor 105 may acquire location information of an interventional object inserted into the target object, and determine a target imaging parameter according to the location information.
  • the ultrasound imaging apparatus 10 positions the interventional object to acquire positional information of the interventional object.
  • the interventional object is taken as an example, and correspondingly, the position information of the interventional object may include the position of the needle tip of the puncture needle.
  • the interventional object may be other objects, which is not limited herein.
  • the positional information of the interventional object can be obtained by magnetic field inductive positioning techniques.
  • the acquiring the positional information of the interventional object inserted into the target object includes: the processor 105 detecting the magnetic induction intensity generated after the puncture needle is magnetized; and determining the needle tip position of the puncture needle according to the magnetic induction intensity.
  • the so-called magnetic field sensing positioning technology can be understood as realizing the real-time positioning technology in the non-visible state by utilizing the penetration of the magnetic field on the unshielded object.
  • the process of determining the tip position of the puncture needle based on the magnetic field inductive positioning technique includes: the operator can magnetize the puncture needle through the magnetization cylinder to obtain the magnetized puncture needle.
  • the magnetized puncture needle is close to the probe 100 of the ultrasonic imaging device 10, since the magnetized puncture needle generates a magnetic field, and as shown in FIG. 3, the inside of the probe 100 in the embodiment of the present application may be integrated with a magnetic sensitive material.
  • the magnetic field sensor array 201 is such that the magnetized puncture needle affects the magnetic field around the magnetic field sensor array 201. Therefore, the magnetic field sensor array detects the magnetic induction intensity of the magnetic field generated by the puncture needle, so that the ultrasonic imaging device 10 determines the change value of the magnetic field around the magnetic field sensor array according to the change value of the magnetic induction intensity, and calculates the puncture needle in real time based on the change value of the magnetic field.
  • the coordinate information and orientation information of the needle tip determine the needle tip position of the needle.
  • the positional information of the interventional object can be obtained by image pattern recognition techniques.
  • the ultrasonic imaging apparatus 10 transmits ultrasonic waves through the probe 100 to obtain a B-type ultrasonic image (hereinafter referred to as a B-ultrasound image) with a puncture needle and a tissue structure, and image enhancement is performed on the B-ultrasound image.
  • image enhancement is performed on the B-ultrasound image.
  • the positional information of the interventional object can be obtained by infrared or laser techniques.
  • the depth, displacement, etc. of the interventional object intervention can be detected by infrared or agitation to determine the tip position of the puncture needle in the ultrasound image.
  • the target object may be a face, a spine, a heart, a uterus or a pelvic floor, or other parts of the human tissue, such as a brain, a bone, a liver or a kidney, etc. Make a limit.
  • the processor 105 may determine the target imaging parameter according to the position information of the interventional object to emit the first ultrasonic wave to the interventional object according to the target imaging parameter.
  • the target imaging parameter includes at least one of the following parameters: a scanning range of the ultrasonic wave, a scanning depth of the ultrasonic wave, and an emission focusing position of the ultrasonic wave. The manner in which different target imaging parameters are determined will be described below.
  • the scanned range of imaging can be determined based on the positional information of the interventional object.
  • Determining the target imaging parameter according to the position information of the interventional object includes: the processor 105 determining the scanning range of the first ultrasonic wave according to the needle tip position of the puncture needle such that the needle tip position of the puncture needle reaches the longitudinal boundary of the display region of the ultrasound image of the target object The distance satisfies the first preset condition.
  • determining the longitudinal boundary distance of the needle tip position of the puncture needle to the display area of the ultrasound image of the target object for ease of understanding, please refer to FIG. 4 , which is a schematic diagram of an initial display of a possible puncture needle according to an embodiment of the present application.
  • the tip position of the puncture needle (showing the position in the figure o) to the longitudinal boundary distance of the display area of the ultrasonic image is l 1 and l 2 , respectively, when the first preset condition is l 1 is not greater than the first preset value When r1, and l 2 is not greater than the second preset value r2, the ultrasound imaging apparatus 10 determines whether the longitudinal boundary distance of the needle tip position of the puncture needle to the display area of the ultrasound image satisfies the first preset condition, and if not, adjusts The scanning range of the first ultrasonic wave is such that the longitudinal boundary distance of the needle tip position of the puncture needle to the display area of the ultrasonic image of the target object satisfies the first preset condition, as shown in FIG.
  • the ultrasonic imaging apparatus 10 determines the scanning range of the ultrasound image of the target object as the target imaging parameter.
  • the first preset condition may further be that the value of l 1 is within the first preset interval [a, b], or the value of l 2 is within the second preset interval [c, d], Where a, b, c, and d are all positive numbers, so the content of the first preset condition is not limited herein.
  • the depth of imaging of the imaging can be determined based on the positional information of the interventional object.
  • Determining the target imaging parameter according to the positional information of the interventional object includes: the processor 105 determining the scanning depth of the first ultrasonic wave according to the needle tip position of the puncture needle such that the needle tip position of the puncture needle reaches a lateral boundary distance of the display region of the ultrasound image of the target object The second preset condition is satisfied. Specifically, the distance between the tip position of the puncture needle and the display area of the ultrasound image of the target object is determined.
  • FIG. 6 is another schematic diagram of an initial display of the puncture needle provided by the embodiment of the present application.
  • the ultrasonic imaging device 10 determines the tip of the puncture needle Whether the distance to the lateral boundary of the display area of the ultrasound image satisfies the second preset condition, and if not, adjusts the scanning depth of the first ultrasonic wave so that the needle tip position of the puncture needle reaches the display area of the ultrasound image of the target object The lateral boundary distance satisfies the second preset condition, as shown in FIG.
  • the second preset condition may further be that the value of l 3 is in the third preset interval [e, f], wherein e and f are both positive numbers, so the content of the second preset condition is specific. There is no limit here.
  • the imaged ultrasound emission focus position can be determined based on the positional information of the interventional object. Determining the target imaging parameter according to the position information of the interventional object includes: the processor 105 determining the emission focus position of the first ultrasonic wave according to the needle tip position of the puncture needle such that the needle tip position of the puncture needle is within the range of the emission focus position of the first ultrasonic wave .
  • FIG. 8 is a schematic diagram of a possible initial focus display of the embodiment of the present application. The position of the needle tip position o of the puncture needle is not at the emission focus position of the ultrasonic wave emitted by the probe 100, resulting in the needle tip position of the puncture needle.
  • the ultrasound imaging apparatus can determine whether the needle tip position of the puncture needle is within the focus range of the focus of the ultrasound image of the target object, that is, whether the focus position of the current ultrasound is emitted, and if not, adjust the focus position of the ultrasound image of the target object. Or increase the focus range of the ultrasound image of the target object. For example, assuming that the coordinates of the tip position o of the puncture needle are (20 mm, 15 mm), the coordinates of the focus of the ultrasonic image of the target object are (20 mm, 25 mm), and the focus of the ultrasonic image can be adjusted every 10 mm, the ultrasound is performed.
  • the imaging device 10 can adjust the focus of the ultrasound image of the target object to (20 mm, 15 mm); or, if the focus of the ultrasound image can be adjusted every 20 mm, see FIG. 9, which is a possible focus adjustment diagram.
  • the ultrasonic imaging apparatus 10 can add a focus B at (20 mm, 5 mm), so that the needle tip position of the puncture needle is between the original focus A and the position depth of the newly added focus B, so that the needle tip of the puncture needle is more clearly displayed. .
  • the ultrasound imaging apparatus 10 may determine the emission focus position of the current ultrasound as the target imaging parameter.
  • the first ultrasonic wave is transmitted to the interventional object along the at least one first angle according to the target imaging parameter, and the first ultrasonic echo returned by the interventional object is received to obtain the first ultrasonic echo data.
  • the transmitting probe 101 is used to excite the probe 100 to transmit the first ultrasonic wave to the interventional object along at least one first angle according to the target imaging parameter; and the receiving probe 103 controls the probe 100 to receive the first ultrasonic echo returned by the interventional object. To obtain the first ultrasonic echo data.
  • the puncture needle and the surface of the probe penetrate into the tissue at a certain angle. Because the acoustic impedance of the puncture needle is large, it is difficult for the ultrasonic wave to penetrate the puncture needle, and the ultrasonic echo is obtained after the ultrasonic reflection. A puncture needle image is generated.
  • the first angle is an angle that facilitates receiving an ultrasound echo of the interventional object obliquely inserted into the target object.
  • FIG. 10 and FIG. 11 are schematic diagrams of an exemplary ultrasonic reflection provided by an embodiment of the present application.
  • the angle ⁇ is an angle between the ultrasonic wave and the puncture needle
  • the angle ⁇ is an angle at which the probe emits ultrasonic waves.
  • the probe vertically emits the ultrasonic wave 1, that is, the angle ⁇ is 90°
  • the angle ⁇ is an acute angle, so that the reflection direction of the ultrasonic wave 1 on the surface of the puncture needle is inconsistent with the emission direction of the ultrasonic wave 1, that is, the ultrasonic wave which can return to the probe becomes less.
  • the development of the puncture needle on the image of the puncture needle is weakened; in Fig.
  • the ultrasonic wave 2 emitted by the probe is perpendicular to the incident direction of the puncture needle, that is, the angle ⁇ is 90°, and the angle ⁇ is an acute angle, so the ultrasonic wave 1 is on the puncture needle surface.
  • the direction of reflection coincides with the direction of emission of the ultrasonic wave 1, that is, more ultrasonic waves are reflected back to the probe 100, so that the development of the puncture needle on the image of the puncture needle is the strongest.
  • the ultrasound imaging apparatus 10 after determining the target imaging parameter, emits the first ultrasonic wave to the puncture needle, ie, the interventional object, according to the target imaging parameter along at least one first angle, wherein along at least one The first ultrasonic wave emitted at an angle is perpendicular to the incident direction of the puncture needle.
  • the 45° angle transmits the first ultrasonic wave to the puncture needle, so the first angle can be 45°.
  • the probe may also emit the first ultrasonic wave multiple times along the 45° angle, or may emit the first ultrasonic wave at different angles such as 44.5°, 44.7°, 45°, and 45.2°, respectively.
  • the first angle at which the ultrasonic imaging device 10 transmits the first ultrasonic wave through the probe 100 is not limited herein.
  • the emission waveform of the first ultrasonic wave may be a sine wave, a square wave or a triangular wave.
  • the frequency of the first ultrasonic wave may be a low frequency to obtain a stronger ultrasonic echo.
  • the ultrasound imaging apparatus 10 receives the first ultrasound echo returned by the interventional object after the first ultrasound is transmitted to the interventional object along the at least one first angle according to the target imaging parameter to obtain the first ultrasound echo data.
  • the processor 105 generates an ultrasound image of the interventional object based on the first ultrasound echo data.
  • a pulse echo detection technique can be used to obtain an ultrasonic image, which is a phenomenon of reflection and transmission due to the propagation of ultrasonic waves to an interface formed by different media, and different human tissues or organs.
  • an ultrasonic image which is a phenomenon of reflection and transmission due to the propagation of ultrasonic waves to an interface formed by different media, and different human tissues or organs.
  • the ultrasonic waves entering the human body will be reflected at the interface where different tissues or organs are handed over, and the reflected echo data is received by the probe and processed to generate ultrasonic images.
  • the processor 105 After the ultrasound imaging device 10 obtains the first ultrasound echo data by the probe 100, the processor 105 generates an ultrasound image of the interventional object according to the first ultrasound echo data, and may include: the processor 105 transmits the first ultrasound echo The data is subjected to detection, amplification, and de-interference processing to generate an ultrasound image of the interventional object. It should be noted that the ultrasound image of the interventional object may be a two-dimensional or three-dimensional image, etc., and is not limited herein.
  • the ultrasonic imaging apparatus 10 can also perform denoising, analysis, and inversion processing on the obtained first ultrasonic echo data according to a preset mathematical model, and then use computer image processing technology to process and interpret the image.
  • the first ultrasonic echo data is visualized to generate an ultrasound image of the interventional object.
  • the first ultrasonic echo data to generate an ultrasound image of the interventional object, which is not limited herein.
  • the processor 105 acquires an ultrasound image of the target object and synthesizes the ultrasound image of the target object with the ultrasound image of the interventional object to obtain a composite image.
  • the ultrasound imaging apparatus 10 acquires an ultrasound image of the target object.
  • the manner of acquiring the ultrasound image of the target object may include the following steps:
  • Step 1 Send a third ultrasonic wave to the target object along at least one second angle, and receive a third ultrasonic echo returned by the target object to obtain third ultrasonic echo data.
  • the ultrasonic imaging apparatus 10 excites the probe 100 to emit a third ultrasonic wave to the target object along at least one second angle through the transmitting circuit 101; and controls the probe 100 to receive the third ultrasonic echo returned by the target object through the receiving circuit 103 to obtain a third ultrasonic echo. data.
  • the ultrasound imaging apparatus 10 transmits the third ultrasonic wave to the target object along the at least one second angle according to the target imaging parameter or the preset imaging parameter, and receives the third ultrasonic echo returned by the target object to obtain the third ultrasonic echo.
  • the ultrasonic imaging device 10 transmits the first ultrasonic wave to the interventional object along the target imaging parameter according to the target imaging parameter, and receives the first return of the interventional object.
  • the ultrasonic echo is obtained to obtain the relevant description of the first ultrasonic echo data, and details are not described herein again.
  • the second angle is an angle that facilitates receiving ultrasound echoes of tissue within the target subject.
  • the second angle may be an angle formed by the direction in which the probe emits the ultrasonic beam to the target object and the direction perpendicular to the surface of the probe. It should be understood that the angle may be 0 degrees (ie, the ultrasonic beam emitted by the probe is perpendicular to the target object) or an acute angle.
  • Step 2 Generate a B-type ultrasound image of the target object according to the third ultrasound echo data.
  • the processor 105 generates a B-type ultrasound image of the target object based on the third ultrasound echo data.
  • the ultrasound imaging apparatus 10 In the step 2, the ultrasound imaging apparatus 10 generates a B-mode image of the target object according to the third ultrasound echo data. Referring to step 204 in FIG. 2, the ultrasound imaging apparatus 10 generates the interventionality according to the first ultrasound echo data.
  • the related description of the ultrasonic image of the object is understood, and details are not described herein.
  • the ultrasound imaging apparatus 10 obtains an ultrasound image of the interventional object by step 204, and obtains an ultrasound image of the target object by step 205.
  • the two processes do not have a sequence of steps, that is, the interventional object can be obtained first.
  • the ultrasound image, or the ultrasound image of the target object is obtained first, or at the same time, which is not limited in the application.
  • the ultrasound imaging apparatus 10 After acquiring the ultrasound image of the target object and the ultrasound image of the interventional object, the ultrasound imaging apparatus 10 synthesizes the ultrasound image of the target object and the ultrasound image of the interventional object to obtain a composite image.
  • the wavelet transform method can be used to realize the synthesis of the ultrasound image of the target object and the ultrasound image of the interventional object.
  • the so-called wavelet transform method is a time-scale analysis method of the signal in the time domain and the frequency domain. Both have the ability to characterize the local features of the signal to obtain wavelet coefficients that characterize the similarity of the signal to the wavelet. It is a localized analysis in which the window size is fixed, but its shape can be changed, and both the time window and the frequency domain window can be changed. method.
  • FIG. 13 is a schematic diagram of a possible image synthesis based on wavelet transform according to an embodiment of the present application, which may include the following steps: 1) ultrasound image of the target object and The ultrasonic image of the interventional object is subjected to discrete wavelet transformation (DWT) to obtain the low-frequency component a1 and the high-frequency component b1 of the ultrasound image corresponding to the target object, and the low-frequency component a2 of the ultrasound image corresponding to the interventional object.
  • DWT discrete wavelet transformation
  • the composite image is post-processed, wherein the post-processing includes adjusting the uniformity of the entire field of the composite image, enhancing the contrast of the composite image, highlighting the boundary, and suppressing noise of the composite image.
  • a transform domain fusion method, or a pyramid method may be used to obtain a composite image of an ultrasound image of an interventional object and an ultrasound image of the target object; and an ultrasound image of the interventional object may also be used.
  • a superimposed image of the ultrasound image of the target object or a weighted summation or the like is used to obtain a composite image of the ultrasound image of the interventional object and the ultrasound image of the target object. This is not limited here.
  • the processor 105 determines the target imaging parameter according to the position information, and transmits the first ultrasonic wave to the interventional object according to the target imaging parameter to obtain the first ultrasonic echo data.
  • An ultrasound image of the interventional object is generated, and the ultrasound image of the interventional object and the ultrasound image of the target object are combined to obtain a composite image, which solves the problem that the operator needs to manually adjust the parameters to optimize the ultrasound image, thereby reducing the surgical efficiency.
  • the ultrasound imaging method embodiment includes:
  • the first ultrasonic wave is transmitted to the interventional object inserted into the target object along the at least one first angle according to the first imaging parameter, and the first ultrasonic echo returned by the interventional object is received to obtain the first ultrasonic echo data.
  • the ultrasound imaging apparatus 10 excites the probe 100 to transmit the first ultrasonic wave to the interventional object inserted into the target object along the first imaging parameter according to the first imaging parameter according to the first imaging parameter; and the control probe 103 receives the intervention through the receiving circuit 103.
  • the ultrasonic imaging apparatus 10 described in step 1401 transmits a first ultrasonic wave to the interventional object inserted into the target object along at least one first angle according to the first imaging parameter, and receives the first ultrasonic echo returned by the interventional object.
  • the manner of obtaining the first ultrasonic echo data can be understood by referring to the related description in step 203 shown in FIG. 2 , and details are not described herein again.
  • the first imaging parameter may be an initial imaging parameter or a preset imaging parameter, etc., which is not limited herein.
  • the processor 105 generates a first ultrasound image of the interventional object based on the first ultrasound echo data.
  • the step 1402 can be understood by referring to the related description in the step 204 shown in FIG. 2, and details are not described herein again.
  • the processor 105 receives the first operation instruction.
  • the first operation instruction may be an instruction generated by the user to operate the ultrasound imaging apparatus 10 by a button or a touch, etc., corresponding to the first operation.
  • the first operational command is for triggering the ultrasound imaging device to optimize display of the interventional object based on location information of the interventional object. It should be noted that the first operational command may be sent by the operator by clicking a physical button on the ultrasound imaging device 10, or the operator may send by clicking a display button on the touch display of the ultrasound imaging device.
  • the processor 105 determines the second imaging parameter according to the first operation governance.
  • the processor 105 obtains position information of the interventional object in response to the first operation instruction, and determines a second imaging parameter according to the positional information of the interventional object.
  • the interventional object is taken as an example, and the position information of the puncture needle includes the position of the needle tip of the puncture needle.
  • the second imaging parameter is determined according to the needle tip position of the puncture needle.
  • the manner in which the ultrasound imaging apparatus 10 acquires the position information of the interventional object in the step 1404 can be understood by referring to the related description of the manner in which the ultrasound imaging apparatus 10 acquires the position information of the interventional object in step 201 shown in FIG. 2, where No longer.
  • the ultrasonic imaging apparatus 10 obtains positional information of the interventional object, including the position of the needle tip of the puncture needle, and determines the second imaging parameter according to the position of the needle tip of the puncture needle. It should be noted that, in step 1404, the ultrasonic imaging device 10 determines the second imaging parameter according to the tip position of the puncture needle. Referring to step 202 shown in FIG. 2, the ultrasound imaging device 10 determines the target imaging parameter according to the position information of the interventional object. The relevant description of the way is understood, and will not be described here.
  • the second ultrasonic wave is transmitted to the interventional object along the at least one first angle according to the second imaging parameter, and the second ultrasonic echo returned by the interventional object is received to obtain the second ultrasonic echo data.
  • the ultrasound imaging apparatus 10 excites the probe 100 to transmit a second ultrasonic wave to the interventional object along the at least one first angle according to the second imaging parameter by the transmitting circuit 101; and controls the probe to receive the second return of the interventional object by the receiving circuit 103. Ultrasound echoes to obtain second ultrasound echo data.
  • the processor 105 generates a second ultrasound image of the interventional object based on the second ultrasound echo data.
  • the steps 1405 to 1406 can be understood by referring to the related descriptions in the steps 203 to 204 shown in FIG. 2 , and details are not described herein again.
  • the processor 105 acquires an ultrasound image of the target object and synthesizes the ultrasound image of the target object with the second ultrasound image of the interventional object to obtain a composite image.
  • the manner in which the processor 105 acquires the ultrasound image of the target object includes: the processor 105, by the transmitting circuit 101, excites the probe 100 to transmit a third ultrasonic wave to the target object along at least one second angle, and controls the probe 100 to receive through the receiving circuit 103. a third ultrasound echo returned by the target object to obtain third ultrasound echo data; and an ultrasound image of the target object is generated from the third ultrasound echo data.
  • the ultrasound image of the target object may be a B-mode ultrasound image.
  • the processor 105 is configured to excite the probe 100 to transmit the third ultrasonic wave to the target object along the at least one second angle by the transmitting circuit 101.
  • the processor 105 excites the probe 100 by the transmitting circuit 101 according to the second imaging parameter or according to the preset.
  • the imaging parameter transmits a third ultrasonic wave to the target object along at least one second angle.
  • the manner in which the ultrasound imaging apparatus 10 acquires the ultrasound image of the target object in this step can be understood by referring to the related description of the manner in which the ultrasound imaging apparatus 10 acquires the ultrasound image of the target object in step 205 shown in FIG.
  • the ultrasound imaging apparatus 10 synthesizes the ultrasound image of the target object and the second ultrasound image of the interventional object to obtain a composite image.
  • the ultrasound imaging apparatus 10 may perform an ultrasound image of the target image in step 205 shown in FIG.
  • the description of the manner of synthesizing the ultrasound image of the interventional object to obtain a composite image is understood, and details are not described herein again.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声成像方法以及超声成像设备(10),该设备包括:探头(100)、发射电路(101)、接收电路(103)和处理器(105),该成像方法包括:获取插入目标对象的介入性物体的位置信息(201);根据位置信息确定目标成像参数(202);按照目标成像参数沿至少一个第一角度向介入性物体发射第一超声波、接收介入性物体返回的第一超声回波,以获得第一超声回波数据(203);根据第一超声回波数据生成介入性物体的超声图像(204);获取目标对象的超声图像,并将目标对象的超声图像与介入性物体的超声图像合成,以获得合成图像(205)。

Description

超声成像方法以及超声成像设备 技术领域
本申请涉及医疗器械领域,尤其涉及一种超声成像方法以及超声成像设备。
背景技术
在临床中,实时超声成像已经广泛地应用于引导穿刺针,医生结合穿刺针图像进行穿刺,能够有效提高穿刺手术的成功率,减小创伤。
由于病人体型、穿刺位置、操作手法等差异因素的影响,得到的穿刺针图像极有可能并非最优状态,故需要对穿刺针图像进行优化,以让穿刺针图像更加清晰、准确的显示在操作者面前。
然而,在实际过程中,需要操作者手动的调节一系列参数来对穿刺针图像进行优化,不仅要求操作者本身比较熟悉机器,而且还增加了操作者在手术过程中的操作步骤,降低了手术的效率。
发明内容
本申请实施例提供了一种超声成像方法以及超声成像设备,用于提高操作效率。
本申请实施例的第一方面提供一种超声成像方法,包括:获取插入目标对象的介入性物体的位置信息;根据该位置信息确定目标成像参数;按照该目标成像参数沿至少一个第一角度向该介入性物体发射第一超声波、接收该介入性物体返回的第一超声回波,以获得第一超声回波数据;根据该第一超声回波数据生成该介入性物体的超声图像;获取该目标对象的超声图像,并将该目标对象的超声图像与该介入性物体的超声图像合成,以获得合成图像。
本申请实施例的第二方面提供一种超声成像方法,包括:按照第一成像参数沿至少一个第一角度向插入目标对象的介入性物体发射第一超声波、接收该介入性物体返回的第一超声回波,以获得第一超声回波数据;根据该第一超声回波数据生成该介入性物体的第一超声图像;接收第一操作指令;根据该第一操作指令确定第二成像参数;按照该第二成像参数沿该至少一个第一角度向该介入性物体发射第二超声波、接收该介入性物体返回的第二超声回波,以获得第二超声回波数据;
根据该第二超声回波数据生成该介入性物体的第二超声图像;
获取该目标对象的超声图像,并将该目标对象的超声图像与该介入性物体的第二超声图像合成,以获得合成图像。
本申请实施例的第三方面提供一种超声成像设备,包括:处理器,该处理器获取插入目标对象的介入性物体的位置信息,并根据该位置信息确定目标成像参数;探头;发射电路,该发射电路激励该探头按照该目标成像参数沿至少一个第一角度向该介入性物体发射第一超声波;接收电路,该接收电路控制该探头接收该介入性物体返回的第一超声回波,以获得第一超声回波数据;该处理器还根据该第一超声回波数据生成该介入性物体的超声图像;获取该目标对象的超声图像,并将该目标对象的超声图像与该介入性物体的超声图像合成,以获得合成图像。
本申请实施例的第四方面提供一种超声成像设备,包括:探头;发射电路,该发射电路激励该探头按照第一成像参数沿至少一个第一角度向插入目标对象的介入性物体发射第一超声波;接收电路,该接收电路控制该探头接收该介入性物体返回的第一超声回波,以获得第一超声回波数据;处理器,该处理器根据该第一超声回波数据生成该介入性物体的第一超声图像;该处理器接收第一操作指令,并根据该第一操作指令确定第二成像参数;该发射电路激励该探头按照该第二成像参数沿该至少一个第一角度向该介入性物体发射第二超声波;该接收电路控制该探头接收该介入性物体返回的第二超声回波,以获得第二超声回波数据;该处理器根据该第二超声回波数据生成该介入性物体的第二超声图像;获取该目标对象的超声图像,并将该目标对象的超声图像与该介入性物体的第二超声图像合成,以获得合成图像。
本申请实施例的第五方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面提供的超声成像方法。
本申请实施例的第六方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面提供的超声成像方法。
从以上技术方案可以看出,本申请实施例具有以下优点:获得介入性物体 的位置信息后,根据该位置信息确定目标成像参数,并根据该目标成像参数向介入性物体发射第一超声波以得到第一超声回波数据,并生成介入性物体的超声图像,进而将介入性物体的超声图像和目标对象的超声图像合成得到合成图像,解决了需要操作者人为调节参数以优化超声图像,而导致的手术效率降低的问题,因此提高了操作效率。
附图说明
图1为本申请实施例提供的一种可能的超声成像设备的结构框图示意图;
图2为本申请实施例提供的一种可能的超声成像方法的流程图;
图3为本申请实施例提供的一种可能的探头示意图;
图4为本申请实施例提供的一种可能的穿刺针初始显示示意图;
图5为本申请实施例提供的一种可能的穿刺针优化显示示意图;
图6为本申请实施例提供的另一可能的穿刺针初始显示示意图;
图7为本申请实施例提供的另一可能的穿刺针优化显示示意图;
图8为本申请实施例提供的一种可能的焦点初始显示示意图;
图9为本申请实施例提供的一种可能的焦点调节示意图;
图10为本申请实施例提供的一种可能的超声波反射示意图;
图11为本申请实施例提供的另一可能的超声波反射示意图;
图12为本申请实施例提供的另一可能的超声波反射示意图;
图13为本申请实施例提供的一种可能的基于小波变换的图像合成示意图;
图14为本申请实施例提供的另一可能的超声成像方法的流程示意图。
具体实施方式
本申请实施例提供了一种超声成像方法以及超声成像设备,用于提高操作效率。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包 括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1为本申请实施例中的超声成像设备10的结构框图示意图。该超声成像设备10可以包括探头100、发射电路101、发射/接收选择开关102、接收电路103、波束合成电路104、处理器105和显示器106。发射电路101可以激励探头100向目标对象发射超声波。接收电路103可以通过探头100接收从目标对象返回的超声回波,从而获得超声回波信号/数据。该超声回波信号/数据经过波束合成电路104进行波束合成处理后,送入处理器105。处理器105对该超声回波信号/数据进行处理,以获得目标对象的超声图像或者介入性物体的超声图像。处理器105获得的超声图像可以存储于存储器107中。这些超声图像可以在显示器106上显示。
本申请的一个实施例中,前述的超声成像设备10的显示器106可为触摸显示屏、液晶显示屏等,也可以是独立于超声成像设备10之外的液晶显示器、电视机等独立显示设备,也可为手机、平板电脑等电子设备上的显示屏,等等。
本申请的一个实施例中,前述的超声成像设备10的存储器107可为闪存卡、固态存储器、硬盘等。
本申请的一个实施例中,还提供一种计算机可读存储介质,该计算机可读存储介质存储有多条程序指令,该多条程序指令被处理器105调用执行后,可执行本申请各个实施例中的超声成像方法中的部分步骤或全部步骤或其中步骤的任意组合。
一个实施例中,该计算机可读存储介质可为存储器107,其可以是闪存卡、固态存储器、硬盘等非易失性存储介质。
本申请的一个实施例中,前述的超声成像设备10的处理器105可以通过软件、硬件、固件或者其组合实现,可以使用电路、单个或多个专用集成电路(application specific integrated circuits,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路或器件的组合、或者其他适合的电路或器件,从而使得该处理器105可以执行本申请的各个实 施例中的超声成像方法的相应步骤。
下面对本申请中的超声成像方法进行详细描述。
需要说明的是,结合图1所示的超声成像设备10的结构框图示意图,本申请实施例提供的超声成像方法可应用于如下应用场景:操作人员将探头100放在待穿刺部位的体表,从探头100的侧面插入穿刺针,操作人员通过显示器106,可以看到组织结构等,同时也可以看到穿刺针与穿刺针的针尖在组织结构内所处的位置,故操作人员可以清楚地知道穿刺针行进的路径以及将要达到的位置。因此在图像引导下,操作人员进行穿刺操作时更加直观高效。
基于此,请参阅图2,本申请实施例提供的一种超声成像方法,该方法应用于超声成像设备10,超声成像方法实施例包括:
201、获取插入目标对象的介入性物体的位置信息。
本实施例中,处理器105可获取插入目标对象的介入性物体的位置信息,并根据该位置信息确定目标成像参数。
在临床操作中,当介入性物体插入目标对象时,超声成像设备10对该介入性物体进行定位,以获取该介入性物体的位置信息。
为便于描述,本申请实施例中,以介入性物体为穿刺针为例进行说明,对应的,介入性物体的位置信息可包括穿刺针的针尖位置。实际应用中,该介入性物体可以为其他物体,具体此处不做限定。
需要说明的是,实际应用中,获取该介入性物体的位置信息的方式有多种,包括通过磁场感应定位技术、图像模式识别技术、红外或者激光技术等,具体此处不做限定。
在一个实施例中,可通过磁场感应定位技术得到该介入性物体的位置信息。该获取插入目标对象的介入性物体的位置信息包括:处理器105检测该穿刺针磁化后产生的磁感应强度;根据该磁感应强度确定该穿刺针的针尖位置。
所谓磁场感应定位技术,可以理解为利用磁场对非屏蔽物体的穿透性来实现非可视状态下的实时定位技术。示例性地,基于磁场感应定位技术确定穿刺针的针尖位置的过程包括:操作人员可通过磁化筒将穿刺针磁化,得到磁化后的穿刺针。当磁化后的穿刺针靠近超声成像设备10的探头100时,由于该磁化后的穿刺针会产生磁场,且如图3所示,本申请实施例中探头100的内部可 集成有磁敏材料组成的磁场传感器阵列201,故磁化后的穿刺针会影响磁场传感器阵列201周围的磁场。因此磁场传感器阵列检测出穿刺针产生的磁场的磁感应强度,使得超声成像设备10根据该磁感应强度的变化值确定磁场传感器阵列周围的磁场的变化值,并基于该磁场的变化值实时计算穿刺针的针尖的坐标信息和方位信息,以确定该穿刺针的针尖位置。
在一个实施例中,可通过图像模式识别技术得到该介入性物体的位置信息。例如,当穿刺针插入目标对象后,超声成像设备10通过探头100发射超声波,得到带有穿刺针和组织结构等的B型超声图像(以下简称B超图像),对该B超图像进行图像增强和均衡化处理,并在该B超图像中通过图像模式识别的方式确定穿刺针的针尖位置。
在一个实施例中,可通过红外或者激光技术得到该介入性物体的位置信息。例如,可通过红外或者激动探测该介入性物体介入的深度、位移等等,以确定在超声图像中穿刺针的针尖位置。
综上,本申请实施例中,定位介入性物体的方式有多种,此处不再一一赘述。
需要说明的是,实际应用中,该目标对象可以为面部、脊柱、心脏、子宫或者盆底等,也可以是人体组织的其他部位,如脑部、骨骼、肝脏或者肾脏等,具体此处不做限定。
202、根据介入性物体的位置信息确定目标成像参数。
在获取到该介入性物体的位置信息后,处理器105可根据该介入性物体的位置信息确定目标成像参数,以按照该目标成像参数向介入性物体发射第一超声波。其中,该目标成像参数包括以下参数中的至少一种:超声波的扫描范围、超声波的扫描深度和超声波的发射聚焦位置。以下将分别对不同的目标成像参数的确定方式进行说明。
一个实施例中,可根据介入性物体的位置信息确定成像的扫描范围。根据介入性物体的位置信息确定目标成像参数包括:处理器105根据穿刺针的针尖位置确定第一超声波的扫描范围,以使该穿刺针的针尖位置到目标对象的超声图像的显示区域的纵向边界距离满足第一预置条件。具体地,确定该穿刺针的针尖位置到目标对象的超声图像的显示区域的纵向边界距离,为便于理解,请 参阅图4,为本申请实施例提供的一种可能的穿刺针初始显示示意图,其中,穿刺针的针尖位置(以图示o示意该位置)到超声图像的显示区域的纵向边界距离分别为l 1和l 2,当第一预置条件为l 1不大于第一预设值r1,且l 2不大于第二预设值r2时,超声成像设备10确定穿刺针的针尖位置到超声图像的显示区域的纵向边界距离是否满足该第一预置条件,若不满足,则调整该第一超声波的扫描范围,使得穿刺针的针尖位置到目标对象的超声图像的显示区域的纵向边界距离满足第一预置条件,如图5所示,为本申请实施例提供的一种可能的穿刺针优化显示示意图,其中,穿刺针的针尖位置o到超声图像的显示区域的纵向边界距离分别为l 1=r1和l 2=r2;若满足,则超声成像设备10将目标对象的超声图像的扫描范围确定为目标成像参数。
一个实施例中,第一预置条件还可以为l 1的取值在第一预设区间[a,b]内,或者l 2的取值在第二预设区间[c,d]内,其中,a,b,c,d均为正数,因此第一预置条件的内容具体此处不做限定。
一个实施例中,可根据介入性物体的位置信息确定成像的扫描深度。根据介入性物体的位置信息确定目标成像参数包括:处理器105根据穿刺针的针尖位置确定第一超声波的扫描深度,以使穿刺针的针尖位置到目标对象的超声图像的显示区域的横向边界距离满足第二预置条件。具体地,确定该穿刺针的针尖位置到目标对象的超声图像的显示区域的横向边界距离,为便于理解,请参阅图6,为本申请实施例提供的另一可能的穿刺针初始显示示意图,其中,穿刺针的针尖位置o到超声图像的显示区域的横向边界距离为l 3,当第二预置条件为l 3不大于第三预设值r3时,超声成像设备10确定穿刺针的针尖位置到超声图像的显示区域的横向边界距离是否满足该第二预置条件,若不满足,则调整该第一超声波的扫描深度,使得穿刺针的针尖位置到目标对象的超声图像的显示区域的横向边界距离满足第二预置条件,如图7所示,为本申请实施例提供的另一可能的穿刺针优化显示示意图,其中,穿刺针的针尖位置o到超声图像的显示区域的横向边界距离分别为l 3=r3;若满足,则超声成像设备10将目标对象的超声图像的扫描深度确定为目标成像参数。
一个实施例中,第二预置条件还可以为l 3的取值在第三预设区间[e,f]内,其中,e,f均为正数,因此第二预置条件的内容具体此处不做限定。
一个实施例中,可根据介入性物体的位置信息确定成像的超声波发射聚焦位置。根据介入性物体的位置信息确定目标成像参数包括:处理器105根据穿刺针的针尖位置确定第一超声波的发射聚焦位置,以使得该穿刺针的针尖位置位于第一超声波的发射聚焦位置的范围内。为便于理解,请参阅图8,为本申请实施例提供的一种可能的焦点初始显示示意图,穿刺针的针尖位置o的位置不在探头100发射的超声波的发射聚焦位置,导致穿刺针的针尖位置o在超声图像中的显示较模糊。鉴于此,超声成像设备可确定穿刺针的针尖位置是否在目标对象的超声图像的焦点的聚焦范围内,即是否在当前超声波的发射聚焦位置,若不在,则调整目标对象的超声图像的焦点位置,或者增大该目标对象的超声图像的聚焦范围。例如,假设穿刺针的针尖位置o的坐标为(20mm,15mm),目标对象的超声图像的焦点的坐标为(20mm,25mm),且超声图像的焦点的可每间隔10mm来进行调节,则超声成像设备10可调节目标对象的超声图像的焦点至(20mm,15mm);或者,若超声图像的焦点的可每间隔20mm来进行调节,则可参见图9,为一种可能的焦点调节示意图,其中,超声成像设备10可在(20mm,5mm)处新增一个焦点B,使得穿刺针的针尖位置在原焦点A和新增的焦点B的位置深度之间,使得穿刺针的针尖显的更加清晰。
另外,若穿刺针的针尖位置在目标对象的超声图像的焦点的聚焦范围内,则超声成像设备10可将当前超声波的发射聚焦位置确定为目标成像参数。
203、按照目标成像参数沿至少一个第一角度向介入性物体发射第一超声波、接收介入性物体返回的第一超声回波,以获得第一超声回波数据。
本实施例中,通过发射电路101激励探头100按照目标成像参数沿至少一个第一角度向该介入性物体发射第一超声波;通过接收电路103控制探头100接收介入性物体返回的第一超声回波,以获得第一超声回波数据。
需要说明的是,在进行穿刺操作时,穿刺针和探头表面呈一定的角度刺入组织,由于穿刺针的声阻抗大,超声波穿透穿刺针的难度较大,超声波反射后得到超声回波以生成穿刺针图像。其中,该第一角度为有利于接收倾斜插入目标对象的介入性物体的超声回波的角度。为便于理解,请参阅图10和图11,为本申请实施例提供的示例性的超声波反射示意图。其中,角度θ为超声波与穿刺针之间的夹角,角度β为探头发射超声波的角度。在图10中,探头垂直 发射超声波1,即角度β为90°,角度θ为锐角,故超声波1在穿刺针表面的反射方向与超声波1的发射方向不一致,即能回到探头的超声波变少,导致穿刺针图像上穿刺针的显影变弱;在图11中,探头发射的超声波2与穿刺针的入射方向垂直,即角度θ为90°,角度β为锐角,故超声波1在穿刺针表面的反射方向与超声波1的发射方向重合,即实现更多的超声波反射回探头100,使得穿刺针图像上穿刺针的显影最强。因此,为了让穿刺针的显示更强,超声成像设备10在确定目标成像参数后,按照目标成像参数沿至少一个第一角度向穿刺针即介入性物体发射第一超声波,其中,沿至少一个第一角度发射的第一超声波与穿刺针的入射方向垂直。例如,如图12所示,当穿刺针的入射方向与探头表面的夹角α为45°时,为使得探头发射的第一超声波与穿刺针的入射方向尽量垂直,则探头可沿着β=45°角向穿刺针发射第一超声波,故该第一角度可以为45°。需要说明的是,探头也可以沿着45°角多次发射第一超声波,也可以分别沿着不同的角度如44.5°、44.7°、45°和45.2°等角度来发射第一超声波,因此,超声成像设备10通过探头100发射第一超声波的第一角度具体此处不做限定。
一个实施例中,该第一超声波的发射波形可以为正弦波、方波或者三角波等,另外,由于低频波衰减小,故第一超声波的频率可以为低频,以得到更强的超声回波。
超声成像设备10按照目标成像参数沿至少一个第一角度向介入性物体发射第一超声波后,接收介入性物体返回的第一超声回波,以获得第一超声回波数据。
204、根据第一超声回波数据生成介入性物体的超声图像。
本实施例中,处理器105根据第一超声回波数据生成介入性物体的超声图像。
本申请实施例中,可采用脉冲回波检测技术来获得超声图像,所谓脉冲回波检测技术,即由于超声波在传播到不同介质形成的界面时会发生反射和透射现象,且不同人体组织或器官具有不同的声速和声阻抗,进入人体的超声波在不同组织或器官交接的界面处就会发生反射,反射的回波数据被探头接收并处理后生成超声图像的技术。
因此,超声成像设备10通过探头100获得第一超声回波数据后,处理器105根据该第一超声回波数据生成介入性物体的超声图像,可以包括:处理器105对该第一超声回波数据进行检波、放大和去干扰处理等,以生成介入性物体的超声图像。需要说明的是,该介入性物体的超声图像可以为二维或者三维图像等,具体此处不做限定。
一个实施例中,超声成像设备10还可根据预置的数学模型,对获得的第一超声回波数据进行消噪、分析和反演处理等,再利用计算机图像处理技术,对经过加工和解释的第一超声回波数据进行可视化处理,以生成介入性物体的超声图像。
故实际应用中,第一超声回波数据生成介入性物体的超声图像的方式有多种,具体此处不做限定。
205、获取目标对象的超声图像,并将目标图像的超声图像与介入性物体的超声图像合成,以获得合成图像。
本实施例中,处理器105获取目标对象的超声图像,并将目标对象的超声图像与介入性物体的超声图像合成,以获得合成图像。
为获得目标对象的组织结构,超声成像设备10获取目标对象的超声图像。其中,获取目标对象的超声图像的方式可包括以下步骤:
步骤1、沿至少一个第二角度向目标对象发射第三超声波、接收目标对象返回的第三超声回波,以获得第三超声回波数据。
超声成像设备10通过发射电路101激励探头100沿至少一个第二角度向目标对象发射第三超声波;通过接收电路103控制探头100接收目标对象返回的第三超声回波,以获得第三超声回波数据。
需要说明的是,该步骤1中,超声成像设备10按照目标成像参数或者预设成像参数沿至少一个第二角度向目标对象发射第三超声波、接收目标对象返回的第三超声回波,以获得第三超声回波数据的方式,可参考图2中的步骤203中,超声成像设备10按照目标成像参数沿至少一个第一角度向介入性物体发射第一超声波、接收介入性物体返回的第一超声回波,以获得第一超声回波数据的相关说明进行理解,具体此处不再赘述。该第二角度为有利于接收目标对象内部组织的超声回波的角度。该第二角度可以是探头向目标对象发射超 声波束的方向与垂直于探头表面的方向所形成的夹角。应理解,该夹角可以为0度(即探头发射的超声波束垂直于目标对象),也可以为一锐角。
步骤2、根据第三超声回波数据生成目标对象的B型超声图像。
处理器105根据第三超声回波数据生成目标对象的B型超声图像。
该步骤2中,超声成像设备10根据第三超声回波数据生成目标对象的B超图像的方式,可参考图2中的步骤204中,超声成像设备10根据第一超声回波数据生成介入性物体的超声图像的相关说明进行理解,具体此处不再赘述。
需要注意的是,超声成像设备10通过步骤204获得介入性物体的超声图像,通过步骤205获得目标对象的超声图像,然而这两个过程不存在步骤的先后顺序,即可以先获得介入性物体的超声图像,或者先获得目标对象的超声图像,或者同时获得,具体本申请不做限定。
超声成像设备10在获取目标对象的超声图像和介入性物体的超声图像后,将目标对象的超声图像与介入性物体的超声图像合成,以获得合成图像。本申请实施例中,可采用小波变换方法来实现目标对象的超声图像和介入性物体的超声图像的合成,所谓小波变换方法,是一种信号的时间-尺度分析方法,在时域和频域上都具有表征信号局部特征的能力,以获得表征信号与小波相似程度的小波系数,是一种窗口大小固定不变,但其形状可以改变,时间窗和频域窗都可以改变的局部化分析方法。故采用小波变换方法得到合成图像包括:请参阅图13,为本申请实施例提供的一种可能的基于小波变换的图像合成示意图,可包括以下几个步骤:1)将目标对象的超声图像和介入性物体的超声图像分别进行离散小波变换(discrete wavelet transformation,DWT),得到对应于目标对象的超声图像的低频分量a1和高频分量b1,以及对应于介入性物体的超声图像的低频分量a2和高频分量b2;2)将低频分量a1和低频分量a2按照低频融合规则融合得到低频小波系数c1;3)将高频分量b1和高频分量b2按照高频融合规则融合得到高频小波系数c2;4)将低频小波系数c1和高频小波系数c2融合得到小波系数,对融合后得到的小波系数进行小波逆变换(inverse diecrete wavelet transformation,IDWT)即进行图像重构,得到融合后的图像即合成图像。获得该合成图像后,对该合成图像进行后处理,其中,该后处理包括:调整合成图像的整场增益均匀性、增强合成图像的对比度、突 出边界并抑制合成图像的噪声等处理。
需要说明的是,本申请实施例中,还可以采用变换域融合方法、或者金字塔方法等方法获得介入性物体的超声图像与目标对象的超声图像的合成图像;也可以将介入性物体的超声图像与目标对象的超声图像进行叠加,或者加权求和等方式得到介入性物体的超声图像与目标对象的超声图像的合成图像。具体此处不做限定。
本申请实施例中,获得介入性物体的位置信息后,处理器105根据该位置信息确定目标成像参数,并根据该目标成像参数向介入性物体发射第一超声波以得到第一超声回波数据,并生成介入性物体的超声图像,进而将介入性物体的超声图像和目标对象的超声图像合成得到合成图像,解决了需要操作者人为调节参数以优化超声图像,而导致的手术效率降低的问题。
请参阅图14,为本申请实施例提供的另一种超声成像方法,该方法应用于超声成像设备10,超声成像方法实施例包括:
1401、按照第一成像参数沿至少一个第一角度向插入目标对象的介入性物体发射第一超声波、接收介入性物体返回的第一超声回波,以获得第一超声回波数据。
本实施例中,超声成像设备10通过发射电路101激励探头100按照第一成像参数沿至少一个第一角度向插入目标对象的介入性物体发射第一超声波;通过接收电路103,控制探头100接收介入性物体返回的第一超声回波,以获得第一超声回波数据。
本申请实施例中,步骤1401描述的超声成像设备10按照第一成像参数沿至少一个第一角度向插入目标对象的介入性物体发射第一超声波、接收介入性物体返回的第一超声回波,以获得第一超声回波数据的方式,可参考图2所示的步骤203中相关说明进行理解,具体此处不再赘述。
其中,该第一成像参数可以为初始成像参数或者预设成像参数等,具体此处不做限定。
1402、根据第一超声回波数据生成介入性物体的第一超声图像。
本实施例中,处理器105根据该第一超声回波数据生成介入性物体的第一超声图像。
本申请实施例中,步骤1402可参考图2所示的步骤204中相关说明进行理解,具体此处不再赘述。
1403、接收第一操作指令。
本实施例中,处理器105接收第一操作指令。该第一操作指令可以是用户通过按键或者触摸等方式操作超声成像设备10所生成的与该第一操作对应的指令。该第一操作指令用于触发超声成像设备根据介入性物体的位置信息来优化介入性物体的显示。需要说明的是,该第一操作指令可以由操作人员通过点击超声成像设备10上的物理按钮来发送,或者操作人员通过点击超声成像设备的触摸显示器上的显示按钮来发送。
1404、根据第一操作指令确定第二成像参数。
本实施例中,处理器105根据该第一操作治理确定第二成像参数。
一个实施例中,处理器105响应于该第一操作指令,获得该介入性物体的位置信息,并根据该介入性物体的位置信息确定第二成像参数。为便于描述,本申请实施例中,以介入性物体为穿刺针为例进行说明,故该穿刺针的位置信息包括穿刺针的针尖位置。在获得穿刺针的位置信息后,根据穿刺针的针尖位置确定第二成像参数。
其中,该步骤1404中超声成像设备10获取介入性物体的位置信息的方式可参考图2所示的步骤201中超声成像设备10获取介入性物体的位置信息的方式的相关说明进行理解,此处不再赘述。
超声成像设备10获得介入性物体的位置信息,包括穿刺针的针尖位置后,根据穿刺针的针尖位置确定第二成像参数。需要说明的是,步骤1404中,超声成像设备10根据穿刺针的针尖位置确定第二成像参数的方式可参考图2所示的步骤202超声成像设备10根据介入性物体的位置信息确定目标成像参数的方式的相关说明进行理解,具体此处不再赘述。
1405、按照第二成像参数沿该至少一个第一角度向介入性物体发射第二超声波、接收介入性物体返回的第二超声回波,以获得第二超声回波数据。
本实施例中,超声成像设备10通过发射电路101激励探头100按照第二成像参数沿至少一个第一角度向介入性物体发射第二超声波;通过接收电路103控制探头接收介入性物体返回的第二超声回波,以获得第二超声回波数据。
1406、根据第二超声回波数据生成介入性物体的第二超声图像。
本实施例中,处理器105根据第二超声回波数据生成介入性物体的第二超声图像。
本申请实施例中,步骤1405至步骤1406可参考图2所示的步骤203至步骤204中相关说明进行理解,具体此处不再赘述。
1407、获取目标对象的超声图像,并将目标对象的超声图像与介入性物体的第二超声图像合成,以获得合成图像。
本实施例中,处理器105获取目标对象的超声图像,并将目标对象的超声图像与介入性物体的第二超声图像合成,以获得合成图像。
一个实施例中,处理器105获取目标对象的超声图像的方式包括:处理器105通过发射电路101激励探头100沿至少一个第二角度向目标对象发射第三超声波,通过接收电路103控制探头100接收目标对象返回的第三超声回波,以获得第三超声回波数据;以及根据第三超声回波数据生成目标对象的超声图像。该目标对象的超声图像可以是B型超声图像。
一个实施例中,处理器105通过发射电路101激励探头100沿至少一个第二角度向该目标对象发射第三超声波包括:处理器105通过发射电路101激励探头100按照第二成像参数或者按照预设成像参数沿至少一个第二角度向目标对象发射第三超声波。
本实施例中,该步骤中超声成像设备10获取目标对象的超声图像的方式可参考图2所示的步骤205中超声成像设备10获取目标对象的超声图像的方式的相关说明进行理解,且步骤1407中超声成像设备10将目标对象的超声图像与介入性物体的第二超声图像合成,以获得合成图像的方式,可参考图2所示的步骤205中超声成像设备10将目标图像的超声图像与介入性物体的超声图像合成,以获得合成图像的方式的相关说明进行理解,具体此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种超声成像方法,其特征在于,包括:
    按照第一成像参数沿至少一个第一角度向插入目标对象的介入性物体发射第一超声波、接收所述介入性物体返回的第一超声回波,以获得第一超声回波数据;
    根据所述第一超声回波数据生成所述介入性物体的第一超声图像;
    接收第一操作指令;
    根据所述第一操作指令确定第二成像参数;
    按照所述第二成像参数沿所述至少一个第一角度向所述介入性物体发射第二超声波、接收所述介入性物体返回的第二超声回波,以获得第二超声回波数据;
    根据所述第二超声回波数据生成所述介入性物体的第二超声图像;
    获取所述目标对象的超声图像,并将所述目标对象的超声图像与所述介入性物体的第二超声图像合成,以获得合成图像。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一操作指令确定第二成像参数包括:
    响应于所述第一操作指令,获得所述介入性物体的位置信息,所述位置信息包括穿刺针的针尖位置;
    根据所述穿刺针的针尖位置确定所述第二成像参数。
  3. 根据权利要求1所述的方法,其特征在于,所述获取所述目标对象的超声图像包括:
    沿至少一个第二角度向所述目标对象发射第三超声波、接收所述目标对象返回的第三超声回波,以获得第三超声回波数据;
    根据所述第三超声回波数据生成所述目标对象的B型超声图像。
  4. 根据权利要求3所述的方法,其特征在于,所述沿至少一个第二角度向所述目标对象发射第三超声波、接收所述目标对象返回的第三超声回波,以 获得第三超声回波数据包括:
    按照所述第二成像参数或者按照预设成像参数沿所述至少一个第二角度向所述目标对象发射第三超声波、接收所述目标对象返回的第三超声回波,以获得第三超声回波数据。
  5. 一种超声成像方法,其特征在于,包括:
    获取插入目标对象的介入性物体的位置信息;
    根据所述位置信息确定目标成像参数;
    按照所述目标成像参数沿至少一个第一角度向所述介入性物体发射第一超声波、接收所述介入性物体返回的第一超声回波,以获得第一超声回波数据;
    根据所述第一超声回波数据生成所述介入性物体的超声图像;
    获取所述目标对象的超声图像,并将所述目标对象的超声图像与所述介入性物体的超声图像合成,以获得合成图像。
  6. 根据权利要求5所述的方法,其特征在于,所述获取所述目标对象的超声图像包括:
    沿至少一个第二角度向所述目标对象发射第三超声波、接收所述目标对象返回的第三超声回波,以获得第三超声回波数据;
    根据所述第三超声回波数据生成所述目标对象的B型超声图像。
  7. 根据权利要求6所述的方法,其特征在于,所述沿至少一个第二角度向所述目标对象发射第三超声波、接收所述目标对象返回的第三超声回波,以获得第三超声回波数据包括:
    按照所述目标成像参数或者按照预设成像参数沿至少一个第二角度向所述目标对象发射第三超声波、接收所述目标对象返回的第三超声回波,以获得第三超声回波数据。
  8. 根据权利要求5至7任一项所述的方法,其特征在于,所述位置信息包括穿刺针的针尖位置。
  9. 根据权利要求8所述的方法,其特征在于,所述获取插入目标对象的介入性物体的位置信息包括:
    检测所述穿刺针磁化后产生的磁感应强度;
    根据所述磁感应强度确定所述穿刺针的针尖位置。
  10. 根据权利要求5至7中任一项所述的方法,其特征在于,所述目标成像参数包括以下参数中的至少一种:超声波的扫描范围、超声波的扫描深度和超声波的发射聚焦位置。
  11. 根据权利要求8所述的方法,其特征在于,所述根据所述位置信息确定目标成像参数包括:
    根据所述穿刺针的针尖位置确定所述第一超声波的发射聚焦位置,以使所述穿刺针的针尖位置位于所述第一超声波的发射聚焦位置的范围内。
  12. 根据权利要求8所述的方法,其特征在于,所述根据所述位置信息确定目标成像参数包括:
    根据所述穿刺针的针尖位置确定所述第一超声波的扫描范围,以使所述穿刺针的针尖位置到所述目标对象的超声图像的显示区域的纵向边界距离满足第一预置条件。
  13. 根据权利要求8所述的方法,其特征在于,所述根据所述位置信息确定目标成像参数包括:
    根据所述穿刺针的针尖位置确定所述第一超声波的扫描深度,以使所述穿刺针的针尖位置到所述目标对象的超声图像的显示区域的横向边界距离满足第二预置条件。
  14. 一种超声成像设备,其特征在于,包括:
    探头;
    发射电路,所述发射电路激励所述探头按照第一成像参数沿至少一个第一角度向插入目标对象的介入性物体发射第一超声波;
    接收电路,所述接收电路控制所述探头接收所述介入性物体返回的第一超声回波,以获得第一超声回波数据;
    处理器,所述处理器根据所述第一超声回波数据生成所述介入性物体的第一超声图像;
    所述处理器接收第一操作指令,并根据所述第一操作指令确定第二成像参数;
    所述发射电路激励所述探头按照所述第二成像参数沿所述至少一个第一角度向所述介入性物体发射第二超声波;
    所述接收电路控制所述探头接收所述介入性物体返回的第二超声回波,以获得第二超声回波数据;
    所述处理器根据所述第二超声回波数据生成所述介入性物体的第二超声图像;获取所述目标对象的超声图像,并将所述目标对象的超声图像与所述介入性物体的第二超声图像合成,以获得合成图像。
  15. 根据权利要求14所述的超声成像设备,其特征在于,所述处理器根据所述第一操作指令确定第二成像参数包括:
    所述处理器响应于所述第一操作指令,获得所述介入性物体的位置信息,所述位置信息包括穿刺针的针尖位置;
    根据所述穿刺针的针尖位置确定所述第二成像参数。
  16. 根据权利要求14所述的超声成像设备,其特征在于,所述处理器获取所述目标对象的超声图像包括:
    所述处理器通过所述发射电路激励所述探头沿至少一个第二角度向所述目标对象发射第三超声波;
    通过所述接收电路控制所述探头接收所述目标对象返回的第三超声回波,以获得第三超声回波数据;
    以及根据所述第三超声回波数据生成所述目标对象的B型超声图像。
  17. 根据权利要求16所述的超声成像设备,其特征在于,所述处理器通过所述发射电路激励所述探头沿至少一个第二角度向所述目标对象发射第三超声波包括:
    按照所述第二成像参数或者按照预设成像参数沿所述至少一个第二角度向所述目标对象发射第三超声波。
  18. 一种超声成像设备,其特征在于,包括:
    处理器,所述处理器获取插入目标对象的介入性物体的位置信息,并根据所述位置信息确定目标成像参数;
    探头;
    发射电路,所述发射电路激励所述探头按照所述目标成像参数沿至少一个第一角度向所述介入性物体发射第一超声波;
    接收电路,所述接收电路控制所述探头接收所述介入性物体返回的第一超声回波,以获得第一超声回波数据;
    所述处理器还根据所述第一超声回波数据生成所述介入性物体的超声图像;获取所述目标对象的超声图像,并将所述目标对象的超声图像与所述介入性物体的超声图像合成,以获得合成图像。
  19. 根据权利要求18所述的超声成像设备,其特征在于,所述处理器获取所述目标对象的超声图像包括:
    所述处理器通过所述发射电路激励所述探头沿至少一个第二角度向所述目标对象发射第三超声波;
    通过所述接收电路控制所述探头接收所述目标对象返回的第二超声回波,以获得第三超声回波数据;
    以及根据所述第三超声回波数据生成所述目标对象的B型超声图像。
  20. 根据权利要求19所述的超声成像设备,其特征在于,所述处理器通过所述发射电路激励所述探头沿至少一个第二角度向所述目标对象发射第三 超声波包括:
    所述处理器通过所述发射电路激励所述探头按照所述目标成像参数或者按照预设成像参数沿至少一个第二角度向所述目标对象发射第三超声波。
  21. 根据权利要求18至20任一项所述的超声成像设备,其特征在于,所述位置信息包括穿刺针的针尖位置。
  22. 根据权利要求21所述的超声成像设备,其特征在于,所述处理器获取插入目标对象的介入性物体的位置信息包括:
    所述处理器检测所述穿刺针磁化后产生的磁感应强度;根据所述磁感应强度确定所述穿刺针的针尖位置。
  23. 根据权利要求18至20中任一项所述的超声成像设备,其特征在于,所述目标成像参数包括以下参数中的至少一种:超声波的扫描范围、超声波的扫描深度和超声波发射聚焦位置。
  24. 根据权利要求21所述的超声成像设备,其特征在于,所述处理器根据所述位置信息确定目标成像参数包括:
    所述处理器根据所述穿刺针的针尖位置确定所述第一超声波的发射聚焦位置,以使所述穿刺针的针尖位置位于所述第一超声波的发射聚焦位置的范围内。
  25. 根据权利要求21所述的超声成像设备,其特征在于,所述处理器根据所述位置信息确定目标成像参数包括:
    所述处理器根据所述穿刺针的针尖位置确定所述第一超声波的扫描范围,以使所述穿刺针的针尖位置到所述目标对象的超声图像的显示区域的纵向边界距离满足第一预置条件。
  26. 根据权利要求21所述的超声成像设备,其特征在于,所述处理器根 据所述位置信息确定目标成像参数包括:
    所述处理器根据所述穿刺针的针尖位置确定所述第一超声波的扫描深度,以使所述穿刺针的针尖位置到所述目标对象的超声图像的显示区域的横向边界距离满足第二预置条件。
PCT/CN2018/084413 2018-04-25 2018-04-25 超声成像方法以及超声成像设备 WO2019205006A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880058105.9A CN111093512A (zh) 2018-04-25 2018-04-25 超声成像方法以及超声成像设备
PCT/CN2018/084413 WO2019205006A1 (zh) 2018-04-25 2018-04-25 超声成像方法以及超声成像设备
US17/079,274 US20210038197A1 (en) 2018-04-25 2020-10-23 Ultrasound imaging method and ultrasound imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/084413 WO2019205006A1 (zh) 2018-04-25 2018-04-25 超声成像方法以及超声成像设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/079,274 Continuation US20210038197A1 (en) 2018-04-25 2020-10-23 Ultrasound imaging method and ultrasound imaging device

Publications (1)

Publication Number Publication Date
WO2019205006A1 true WO2019205006A1 (zh) 2019-10-31

Family

ID=68294373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084413 WO2019205006A1 (zh) 2018-04-25 2018-04-25 超声成像方法以及超声成像设备

Country Status (3)

Country Link
US (1) US20210038197A1 (zh)
CN (1) CN111093512A (zh)
WO (1) WO2019205006A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7313446B2 (ja) * 2019-07-25 2023-07-24 富士フイルム株式会社 超音波診断装置および超音波診断装置の制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102342850A (zh) * 2010-08-03 2012-02-08 富士胶片株式会社 超声波图像生成设备
CN102727250A (zh) * 2011-04-01 2012-10-17 株式会社东芝 超声波诊断装置以及控制方法
CN103179907A (zh) * 2011-09-27 2013-06-26 株式会社东芝 超声波诊断装置及超声波扫描方法
CN103889337A (zh) * 2012-10-23 2014-06-25 株式会社东芝 超声波诊断装置以及超声波诊断装置控制方法
US20150005621A1 (en) * 2013-06-27 2015-01-01 Ge Medical Systems Global Technology Company, Llc Ultrasonic diagnostic device and control program for the same
CN105581813A (zh) * 2015-12-22 2016-05-18 汕头市超声仪器研究所有限公司 一种基于编码器的全自动穿刺针显影增强方法
WO2017179195A1 (ja) * 2016-04-15 2017-10-19 株式会社ソシオネクスト 超音波プローブ制御方法及びプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929368B2 (ja) * 2012-03-16 2016-06-01 コニカミノルタ株式会社 超音波画像診断装置
JP2016507288A (ja) * 2013-01-17 2016-03-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 超音波ガイド医療処置において焦点ゾーンを調整する方法及びその方法を採用するシステム
US10674995B2 (en) * 2013-08-19 2020-06-09 Bk Medical Holding Company, Inc. Ultrasound imaging instrument visualization
JP6309282B2 (ja) * 2014-01-22 2018-04-11 キヤノンメディカルシステムズ株式会社 医用画像診断装置
JP6629031B2 (ja) * 2015-10-05 2020-01-15 キヤノンメディカルシステムズ株式会社 超音波診断装置及び医用画像診断装置
CN105496515B (zh) * 2015-12-04 2018-07-17 深圳华声医疗技术股份有限公司 穿刺增强方法及系统
JP6668817B2 (ja) * 2016-02-26 2020-03-18 コニカミノルタ株式会社 超音波診断装置、及び制御プログラム
WO2018052093A1 (ja) * 2016-09-14 2018-03-22 富士フイルム株式会社 光音響画像生成装置
CN106308895A (zh) * 2016-09-20 2017-01-11 深圳华声医疗技术有限公司 穿刺增强方法、装置及系统
EP3517045A4 (en) * 2016-09-21 2019-10-02 FUJIFILM Corporation PHOTOACOUS IMAGE GENERATING DEVICE
US10786226B2 (en) * 2017-02-09 2020-09-29 Clarius Mobile Health Corp. Ultrasound systems and methods for optimizing multiple imaging parameters using a single user interface control
JP6880958B2 (ja) * 2017-04-12 2021-06-02 コニカミノルタ株式会社 超音波診断装置および超音波探触子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102342850A (zh) * 2010-08-03 2012-02-08 富士胶片株式会社 超声波图像生成设备
CN102727250A (zh) * 2011-04-01 2012-10-17 株式会社东芝 超声波诊断装置以及控制方法
CN103179907A (zh) * 2011-09-27 2013-06-26 株式会社东芝 超声波诊断装置及超声波扫描方法
CN103889337A (zh) * 2012-10-23 2014-06-25 株式会社东芝 超声波诊断装置以及超声波诊断装置控制方法
US20150005621A1 (en) * 2013-06-27 2015-01-01 Ge Medical Systems Global Technology Company, Llc Ultrasonic diagnostic device and control program for the same
CN105581813A (zh) * 2015-12-22 2016-05-18 汕头市超声仪器研究所有限公司 一种基于编码器的全自动穿刺针显影增强方法
WO2017179195A1 (ja) * 2016-04-15 2017-10-19 株式会社ソシオネクスト 超音波プローブ制御方法及びプログラム

Also Published As

Publication number Publication date
CN111093512A (zh) 2020-05-01
US20210038197A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
JP6000569B2 (ja) 超音波診断装置及び制御プログラム
CN107613881B (zh) 用于校正脂肪引起的像差的方法和系统
Lieu Ultrasound physics and instrumentation for pathologists
US20160113620A1 (en) Method for Monitoring of Medical Treatment Using Pulse-Echo Ultrasound
KR102396008B1 (ko) 정반사체를 트래킹하기 위한 초음파 이미징 시스템 및 방법
US20140121502A1 (en) Object-pose-based initialization of an ultrasound beamformer
KR20150070859A (ko) 전단파를 이용하여 관심 영역에 대한 탄성 정보를 획득하는 방법 및 장치.
JP7239275B2 (ja) 超音波診断装置及び穿刺支援プログラム
JP2012120747A (ja) 超音波診断装置及び超音波画像生成方法
CN113229846B (zh) 超声成像方法与设备
KR102114414B1 (ko) 초음파 트랜스듀서를 이용한 전단파의 전파를 관측하는 방법, 장치 및 시스템
US11337673B2 (en) Using reflected shear waves for monitoring lesion growth in thermal ablations
WO2020113397A1 (zh) 一种超声成像方法以及超声成像系统
JP6305718B2 (ja) 超音波診断装置及び制御プログラム
US20100125199A1 (en) Ultrasound system and method providing acoustic radiation force impulse imaging with high frame rate
US8663110B2 (en) Providing an optimal ultrasound image for interventional treatment in a medical system
WO2018195824A1 (zh) 超声成像设备、超声图像增强方法及引导穿刺显示方法
JP2003093389A (ja) 超音波診断装置
WO2019205006A1 (zh) 超声成像方法以及超声成像设备
JP4996141B2 (ja) 超音波診断装置
US20160192898A1 (en) Ultrasonic diagnostic apparatus and method for controlling the same
JP2012245092A (ja) 超音波診断装置
EP3849424B1 (en) Tracking a tool in an ultrasound image
CN111281423A (zh) 一种超声图像优化方法和超声成像设备
KR20200043048A (ko) 초음파 영상 장치 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18915908

Country of ref document: EP

Kind code of ref document: A1