WO2019203252A1 - Storage method and storage device for produce - Google Patents

Storage method and storage device for produce Download PDF

Info

Publication number
WO2019203252A1
WO2019203252A1 PCT/JP2019/016408 JP2019016408W WO2019203252A1 WO 2019203252 A1 WO2019203252 A1 WO 2019203252A1 JP 2019016408 W JP2019016408 W JP 2019016408W WO 2019203252 A1 WO2019203252 A1 WO 2019203252A1
Authority
WO
WIPO (PCT)
Prior art keywords
vegetables
humidity
storage
fruits
operation mode
Prior art date
Application number
PCT/JP2019/016408
Other languages
French (fr)
Japanese (ja)
Inventor
直也 比留間
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Publication of WO2019203252A1 publication Critical patent/WO2019203252A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Definitions

  • the present disclosure relates to a method and apparatus for storing fruits and vegetables.
  • the yield of fruits and vegetables stored decreases due to three main causes: atrophy due to drying, deterioration due to bruises and physiological disorders, and decay by microorganisms such as mold and bacteria.
  • Refrigerators that have only a temperature control function and no humidity control function dry out after a storage period of several weeks, and the stored fruits and vegetables dries and shrinks, resulting in a decrease in yield.
  • a storage technique in which a humidifier or a high humidity cooler is provided in a storage, a refrigerator, or the like, and the storage space is maintained at high humidity.
  • the present applicant has previously proposed an energy-saving air generator that can be applied to such storage technology and can stably supply high-humidity and low-temperature air to a storage, a refrigerator, or the like (Patent Literature). 1 and 2).
  • Mold generation time varies depending on the fruits and vegetables. For example, it appears prominently after 2 months for cabbage and lemon and after 2 weeks for tomato. Damaged fruits and vegetables are rich in nutrients and rapidly rot under high humidity.
  • a high-humidity environment is suitable for preventing drying of fruits and vegetables and maintaining freshness, but conversely, fruits and vegetables with reduced resistance tend to have a very high risk of spoilage. In this way, maintaining the freshness of fruits and vegetables is contradictory to suppressing spoilage caused by microorganisms such as mold and bacteria.
  • One embodiment is intended to enable long-term storage by suppressing spoilage caused by microorganisms such as mold and bacteria while maintaining freshness of fruits and vegetables.
  • the method for storing fruits and vegetables is as follows: A high-humidity storage process for keeping fruits and vegetables in a high-humidity state in the storage space of the storage; In the high-humidity storage step, a rot inspection step for inspecting the presence or absence of rot occurring in the fruits and vegetables, A low-humidity storage step for storing the fruits and vegetables at a lower humidity than the high-humidity state when the rot is detected in the rot inspection step; Is provided.
  • the above method (1) when the fruits and vegetables are kept in a high humidity state in the storage during the storage period, the freshness of the fruits and vegetables is maintained, and the occurrence of spoilage caused by microorganisms such as mold and bacteria is detected. Uses a low humidity storage space to prevent spoilage. As a result, it is possible to suppress spoilage while maintaining the freshness of fruits and vegetables for a long time.
  • the relative humidity of the storage space is controlled to be 95% or more.
  • the freshness of the fruits and vegetables can be maintained by maintaining the relative humidity of the storage space at 95% or more in the high humidity storage step.
  • the relative humidity of the storage space is controlled to be 80% or more and 95% or less. According to the above method (3), by setting the relative humidity of the storage space to 80 to 95% in the low-humidity storage step, it is possible to suppress the growth of mold, bacteria, etc., thereby suppressing the progress of decay. .
  • any one of the methods (1) to (3) In the rot inspection step, an operator visually inspects the presence or absence of rot. According to the method (4), since the worker visually inspects the presence or absence of corruption in the corruption inspection step, the presence or absence of occurrence of corruption can be accurately detected.
  • the presence or absence of rot is inspected using a rot sensor capable of detecting rot generated in the fruits and vegetables. According to the method (5) above, since the presence or absence of corruption is inspected using the corruption sensor, the monitoring burden on the worker can be reduced.
  • the rot sensor irradiates the fruits and vegetables with light having a wavelength of 220 nm to 800 nm and analyzes the reflected light reflected from the fruits and vegetables to determine the presence or absence of rot.
  • the presence or absence of corruption is detected by spectral analysis using light in the above wavelength region extending from the ultraviolet light region to the visible light region as the decay detection means, protein absorption in the ultraviolet light region The occurrence of decay can be detected automatically and accurately from the characteristics and the difference in color between the fruits and vegetables in the visible light region and the resulting decay.
  • the relative humidity of the storage space is maintained at 100% or less.
  • the relative humidity of the storage space is maintained at 100% or less, so that the occurrence of condensation in the storage space can be suppressed. As a result, it is possible to suppress the occurrence of rot in the fruits and vegetables due to the condensation adhering to the fruits and vegetables.
  • the wound is healed by holding it at a temperature range higher than the temperature of the storage space in the high-humidity storage step and the low-humidity storage step at the time of warehousing and capable of healing the wound.
  • a healing process is provided. According to the method (8), by performing the healing step, it is possible to heal wounds that have occurred in fruits and vegetables at the time of harvesting, and thereby it is possible to suppress spoilage that starts from the wounds.
  • the fruit and vegetable storage device includes: A storage for storing fruits and vegetables; An air conditioner capable of controlling the humidity of the storage space of the storage; and Receiving an operation mode selection signal indicating whether to select a high humidity operation mode and a low humidity operation mode having a lower humidity than the high humidity operation mode so as to suppress the growth of rot occurring in the fruits and vegetables; A controller configured to control operation of the air conditioner in a selected operation mode; Is provided.
  • the air conditioner is normally operated by the control unit in a high humidity operation mode in which the storage space is maintained in a high humidity state. Since it is controlled to operate in the humidity operation mode, it is possible to suppress the progress of decay while keeping the freshness of the fruits and vegetables. Thereby, the freshness of fruits and vegetables can be maintained over a long period of time, and the progress of decay can be suppressed.
  • an operation terminal that sends the operation mode selection signal to the control unit comprising the operation terminal including an operation mode changeover switch that is operated when the fruit or vegetable is detected to be rotten
  • the controller is Based on the operation mode selection signal sent from the operation terminal, the air conditioner is configured to switch to either the high humidity operation mode or the low humidity operation mode.
  • the worker can send an air conditioner operation mode selection signal from the operation terminal. Therefore, the worker can set the operation mode of the air conditioner to an appropriate operation mode while visually observing the fruits and vegetables in the storage. Further, when the worker detects that the fruits and vegetables have been spoiled, the worker can switch to the low-humidity operation mode with the operation mode changeover switch.
  • a rotting sensor configured to be able to detect rotting that has occurred in the fruits and vegetables and to transmit a rotting detection signal to the control unit when the rotting is detected;
  • the controller is configured to operate the air conditioner in the low-humidity operation mode when the corruption detection signal is sent from the corruption sensor.
  • the control unit switches the air conditioner to the low humidity operation mode, so detection of rot and switching to the low humidity operation mode. And can be done automatically.
  • the corruption sensor is A light emitter for irradiating the fruits and vegetables; A light receiver for receiving the reflected light reflected by the surface of the fruits and vegetables, and A spectroscope for obtaining a spectrum of the reflected light received by the light receiver; With It is configured to detect a component derived from a microorganism in the second derivative value of the spectrum.
  • the rot sensor is configured to detect a component derived from microorganisms by spectrally analyzing the reflected light of the light irradiated to the fruits and vegetables, so that the occurrence of rot is automatically and accurately detected. It can be detected.
  • the high humidity operation mode is to operate the air conditioner so that the relative humidity of the storage space is 95% or more
  • the air conditioner is operated such that the relative humidity of the storage space is 80% or more and 95% or less.
  • the method of (13) in the high humidity storage process the freshness of the fruits and vegetables can be maintained by controlling the relative humidity of the storage space to be 95% or more.
  • the low humidity storage process By setting the relative humidity of the storage space to 80% to 95%, the progress of decay can be suppressed. As a result, the freshness of the fruits and vegetables can be maintained while suppressing deterioration and decay of the fruits and vegetables over a long period of time.
  • the air conditioner A duct provided in the storage space and capable of forming an air flow; A water storage tank provided in a lower portion of the duct; A cooling coil provided in an air flow path in the duct or the water storage tank; A refrigerator for supplying a refrigerant to the cooling coil; a watering part for watering the cooling coil; Is provided.
  • the configuration of (14) when the temperature of the storage space of the refrigerator is 0 ° C. or higher, the temperature and humidity of the storage space are controlled by controlling the temperature and humidity of the air flow formed inside the duct. Can be controlled. Thereby, spoilage by microorganisms can be suppressed while keeping the freshness of fruits and vegetables for a long period of time.
  • the air conditioner A duct formed therein with an air flow path communicating with the storage space; A cooling coil provided in an air flow path in the duct; A refrigerator for supplying a refrigerant to the cooling coil; an ice / snow zone formed in the air flow path and filled with ice or snow; An ice making machine for supplying the ice or the snow to the ice-snow zone; Is provided.
  • the temperature and humidity of a storage space are controlled by controlling the temperature and humidity of the air flow formed in the inside of the said duct. Can be controlled. Thereby, spoilage by microorganisms can be suppressed while keeping the freshness of fruits and vegetables for a long period of time.
  • spoilage caused by microorganisms can be suppressed while maintaining the freshness of the fruits and vegetables stored in the storage for a long time. Therefore, the yield reduction of fruits and vegetables can be suppressed even if stored for a long time.
  • an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
  • expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.
  • the storage device 10 (10A, 10B) includes a storage 12 for storing fruits and vegetables fv, an air conditioner 14 capable of controlling the humidity of the storage space S of the storage 12, and the operation of the air conditioner 14. And a control unit 16 for controlling.
  • the control unit 16 receives the operation mode selection signal for determining the operation mode of the air conditioner 14, and operates the air conditioner 14 so that the air conditioner 14 is operated in the operation mode specified by the received operation mode selection signal. Control.
  • the operation mode selection signal is a high-humidity operation mode for keeping the storage space in a high-humidity state, and the fruits and vegetables are controlled so as to suppress the progress of the decay when it is detected that the fruits and vegetables fv are spoiled by microorganisms such as mold and bacteria.
  • the operation mode selection signal indicates which of these should be selected.
  • the air conditioner 14 when the fruits and vegetables fv are received, the air conditioner 14 is normally operated by the control unit 16 in a high humidity operation mode in which the storage space S is maintained in a high humidity state. And when it detects that the fruit and vegetables fv have spoiled, it drive
  • the air conditioner 14 is operated in the low humidity operation mode, and the storage space S is kept at the low humidity, so that the progress of the spoilage can be suppressed.
  • the fruits and vegetables fv can be kept fresh for a long time while suppressing wilting due to drying and rot caused by microorganisms.
  • the water required for breeding is called free water and is quantified by water activity Aw.
  • Aw ⁇ 0.9 is required for bacterial growth
  • Aw ⁇ 0.75 is required for mold growth.
  • the water activity Aw can also be expressed as a value obtained by putting pure water in a sealed container and dividing the vapor pressure (p) at the time of equilibrium of the headspace by the vapor pressure (p0) of water at the same temperature. This is the same as the value obtained by dividing the average relative humidity of the head space by 100.
  • An environment with a relative humidity of 100% is optimal for maintaining the freshness of fruits and vegetables, but fruits and vegetables with reduced resistance have an increased risk of spoilage.
  • the storage device 10 (10 ⁇ / b> A) includes an operation terminal 18 that sends an operation mode selection signal to the control unit 16.
  • the control unit 16 switches the air conditioner 14 to either the high humidity operation mode or the low humidity operation mode based on the operation mode selection signal sent from the operation terminal 18.
  • the operation terminal 18 includes an operation mode changeover switch 20 that is operated when the fruits and vegetables fv stored in the storage space S are detected to be spoiled by microorganisms such as mold and bacteria. For example, when the worker discovers that the fruits and vegetables fv have been spoiled, the worker operates the operation mode changeover switch 20 to cause the control unit 16 to change the air conditioner 14 from the high humidity operation mode to the low humidity. An operation mode selection signal for switching to the operation mode can be sent.
  • the operation mode selection signal can be transmitted from the operation terminal 18 to the control unit 16, the operator can send the operation mode selection signal of the air conditioner 14 from the operation terminal 18. Therefore, the worker can set the operation mode of the air conditioner 14 to an appropriate operation mode while visually observing the fruits and vegetables in the storage. In addition, when the worker detects that the fruits and vegetables have been spoiled, the worker can switch to the low-humidity operation mode by the operation mode switch 20.
  • the storage device 10 (10 ⁇ / b> B) includes a rotting sensor 22 that can detect rotting that has occurred in the fruits and vegetables fv.
  • the corruption sensor 22 is configured to be able to transmit a corruption detection signal to the control unit 16 when the occurrence of corruption is detected.
  • the controller 16 is configured to operate the air conditioner 14 in the low-humidity operation mode when a corruption detection signal is sent from the corruption sensor 22.
  • the control unit 16 switches the air conditioner 14 to the low humidity operation mode. Can be done automatically.
  • a healing step S10 is performed as necessary. If the wound is left untreated, there is a risk that it will begin to rot early.
  • the fruit and vegetable fv having a wound at the time of harvest is higher than the temperature of the storage space S in the high-humidity storage step S12 and the low-humidity storage step S18, which will be described later at the time of warehousing. Hold and heal wounds.
  • the storage space S is maintained at a temperature of 25-35 ° C. for 2-4 days.
  • the air conditioner 14 After performing healing process S10 as needed, the air conditioner 14 is controlled to a high humidity operation mode, and the fruits and vegetables fv of the storage space S are kept in a high humidity state (high humidity storage process S12). And the presence or absence of rot which generate
  • an inspection method an operator may enter the inside of the storage 12 and visually inspect the presence or absence of corruption, or may be inspected by the above-described corruption sensor 22 capable of detecting corruption.
  • the air conditioner 14 is switched to the low humidity operation mode, and the storage space S stores the fruits and vegetables fv at a lower humidity than the high humidity state in the high humidity storage process S12 ( Low humidity storage step S18).
  • the high humidity storage step S12 is continued.
  • the storage space S at a low humidity and storing the fruits and vegetables fv, the progress of decay can be suppressed. Accordingly, freshness can be maintained without drying the fruits and vegetables fv for a long period of time, and rot can be suppressed. Therefore, it is possible to suppress the yield reduction of the fruits and vegetables fv for a long time.
  • the control unit 16 causes the air conditioner 14 to operate in the high humidity mode, thereby maintaining the relative humidity of the storage space S at 95% or more. According to this embodiment, the freshness of the fruits and vegetables fv can be maintained for a long time by maintaining the relative humidity of the storage space S at 95% or more in the high humidity storage step S12.
  • the relative humidity of the storage space S is controlled to be 80% to 95% in the low humidity storage step S18.
  • the control unit 16 causes the air conditioner 14 to operate in the low humidity mode, thereby maintaining the relative humidity of the storage space S at 80% to 95%.
  • the relative humidity of the storage space S is set to 80% to 95%, so that the progress of decay due to growth of mold, bacteria, etc. can be suppressed.
  • an operator inspects the presence or absence of rot by visual inspection. According to this method, since the operator visually inspects the presence or absence of corruption, it is not necessary to install the corruption sensor 22, and the presence or absence of corruption can be accurately detected at low cost.
  • the presence or absence of rot is inspected using a rot sensor 22 capable of detecting rot that has occurred in the fruits and vegetables fv. According to this method, since the presence or absence of corruption is inspected using the corruption sensor 22, the monitoring burden on the worker can be reduced.
  • the rot sensor 22 irradiates the fruits and vegetables fv with light having a wavelength of 200 nm to 800 nm, spectrally analyzes the reflected light reflected from the fruits and vegetables fv, and determines the presence or absence of rot from the obtained spectrum. It is configured. Microorganisms such as molds and bacteria are protein aggregates, and proteins have a remarkable absorption peak for ultraviolet light in the wavelength band of 200 to 450 nm, particularly 230 to 300 nm. Therefore, the presence or absence of spoilage by microorganisms can be measured by emitting light including light in this wavelength band from the light emitter, irradiating the fruits and vegetables fv, and performing spectral analysis of the reflected light.
  • the occurrence of corruption can be automatically and accurately detected by using a corruption sensor that detects the presence or absence of corruption by spectral analysis using light in the wavelength band as the corruption detection means.
  • the relative humidity of the storage space S is maintained at 100% or less in the high humidity storage step S12.
  • the relative humidity of the storage space S is maintained at 100% or less, so that the occurrence of condensation in the storage space S can be suppressed. Thereby, it is possible to suppress the occurrence of decay in the fruits and vegetables fv due to the generated condensation adhering to the fruits and vegetables fv.
  • the presence or absence of corruption may be determined from image processing information acquired by performing image processing on an image from a CCD camera or the like as a corruption inspection unit.
  • the method of determining the presence or absence of corruption is used by irradiating the fruits and vegetables fv with light having a specific wavelength and analyzing the reflected light spectrum, the presence or absence of corruption can be accurately determined. it can.
  • the rot sensor 22 receives a light emitter 24 for irradiating the fruits and vegetables fv with the light L and reflected light R reflected by the surface of the fruits and vegetables fv. And a spectroscope 28 for obtaining a spectral spectrum of the reflected light R received by the photoreceiver 26. And the corruption sensor 22 is comprised so that the component derived from microorganisms in the secondary differential value of the obtained spectrum may be detected.
  • the generation of the microorganism M can be automatically and accurately detected.
  • the corruption sensor 22 includes a light emission control unit 30, and the operation of the light emitter 24 is controlled by the light emission control unit 30.
  • the rot sensor 22 includes a calculation unit 32, and the calculation unit 32 is based on the correlation between the spectral spectrum of the reflected light R acquired by the spectroscope 28 and the amount of protein determined in advance, and the fruits and vegetables fv. Calculate the occurrence of corruption.
  • the memory 34 stores a prediction formula (that is, a correlation between the amount of protein and spectral spectrum data) for determining whether or not corruption has occurred from the spectral spectrum.
  • the computing unit 32 determines whether or not corruption has occurred based on the correlation stored in the memory 34.
  • the corruption sensor 22 further includes a display unit 36 that displays spectral data, the presence / absence of corruption, and the like on the display unit 36.
  • the rot sensor 22 is disposed above the fruits and vegetables fv in the storage space S.
  • the light receiver 26 configured to receive light from a specific direction receives reflected light R including multiple reflected light reflected from the fruits and vegetables fv and reflected from the inner wall surface of the storage 12. In this way, when the light receiver 26 receives the reflected light R including the multiple reflected light, the spectroscope 28 does not have the specific fruit and vegetable fv stored in the storage space S, but the average spectral spectrum of the whole fruit and vegetables. Obtainable. Therefore, by arranging one rot sensor 22 above each group of fruits and vegetables fv with different warehousing times, it is possible to measure the average occurrence of rot for each group.
  • FIG. 5 and 6 show examples of an average spectral spectrum of one group of fruits and vegetables fv using the rot sensor 22, respectively.
  • FIG. 5 shows an average spectrum of cabbage
  • FIG. 6 shows an average spectrum of purple cabbage.
  • the vertical axis in these figures is the absorbance second derivative value obtained by converting the raw waveform obtained by the spectrometer 28 into an absorbance spectrum and converting the absorbance spectrum into a second derivative spectrum. This makes it possible to clarify peaks that are difficult to grasp in the raw waveform and to eliminate noise. From these figures, in the ultraviolet light region of 400 nm or less, in the wavelength band of 230 to 300 nm (region A), when the fruits and vegetables are rotted or not rotted, It can be seen that a difference due to the absorption peak appears.
  • region B in the visible light region (region B) of 400 nm or more, it can be seen that the spectral spectrum difference due to the difference between the color tone of the fruits and vegetables before the occurrence of rot and the color tone after the occurrence of rot appears clearly.
  • the high humidity operation mode of the air conditioner 14 is to operate the air conditioner 14 so that the relative humidity of the storage space S is 95% or more
  • the low humidity operation mode is the storage mode S of the storage space S.
  • the air conditioner 14 is operated so that the relative humidity is 80% to 95%.
  • the air conditioner 14 is operated so that the relative humidity is 80% to 95%.
  • the air conditioner 14 (14a, 14b, 14c) includes a duct 40 that communicates with the storage space S and has an air flow path formed therein.
  • An air flow a is formed inside the duct 40 by, for example, a fan 42 or the like.
  • a cooling coil 44 is provided in the air flow path in the duct 40.
  • the cooling coil 44 is supplied with the refrigerant cooled by the refrigerator 46 or the brine cooled by heat exchange with the refrigerant, and cools the air flow a flowing through the air flow path in the duct.
  • the air conditioner 14 (14a to 14c) includes a watering machine 47 for watering the cooling coil 44.
  • the air conditioner 14 (14a to 14c) is used when storing the fruits and vegetables fv by cooling the storage space S of the storage 12 in a temperature range of 0 ° C. or higher.
  • the temperature and humidity of the storage space S are controlled by controlling the temperature and humidity of the air flow a by controlling the refrigerator 46 and the watering amount of the watering machine 47 by the control unit 16.
  • the cooling coil 44 is covered with a film of water sprinkled from the water sprayer 47, and in the low humidity operation mode, the watering is stopped, the cooling coil 44 is exposed, and the water vapor in the air flow a is cooled.
  • the coil 44 cools and condenses, and dehumidifies by being attached to the surface of the cooling coil 44.
  • the humidity of the storage space S reaches the set value, watering is started.
  • the sprinkler 47 is automatically stopped, and the air speed a is increased to increase the cooling rate.
  • the water sprayer 47 includes a water storage tank 48 provided in the lower part of the duct 40, a water spray nozzle 50 provided in the duct 40 above the cooling coil 44, and water accumulated in the water storage tank 48. 50 and a water supply pump 54 provided in the water supply path 52.
  • the heater 56 for heating and adjusting the temperature of the water stored in the water storage tank 48 and the contact between the water jetted from the watering nozzle 50 and the air stream a are made dense, and the air stream a is steamed.
  • the gas-liquid contact zone 58 for increasing the relative humidity of the air stream a and the water droplets contained in the air stream a having become high humidity are removed to make the relative humidity of the air stream a 100% or less.
  • a gas-liquid separation zone 60 is provided as necessary.
  • contact members such as fibers, corrugated plates, flat plates, and punching metal are laminated or arranged side by side in order to lengthen the contact time between the water spray and the air flow a. Further, these contact members may be provided integrally with the cooling coil 44.
  • the inlet 40 a of the air flow a is provided above the water storage tank 48 at the lower part of the duct, and the outlet 40 b of the air flow a is provided at the upper part of the duct 40.
  • the inlet 40a for the air stream a is provided at the upper part of the duct, and the outlet 40b for the air stream a is provided above the water storage tank 48 at the lower part of the duct.
  • the cooling coil 44 is provided in the air flow path, and the air flow a is directly cooled by the cooling coil 44.
  • the cooling coil 44 is provided in the water storage tank 48. First, the water stored in the water storage tank 48 is cooled by the cooling coil 44, and the cooled water is sprinkled from the watering nozzle 50. By doing so, the air flow a is cooled.
  • a dehumidifier 62 is provided separately.
  • the air flow a flowing into the duct 40 is introduced into the dehumidifier 62 via the flow path 64, and the air flow a is dehumidified by the dehumidifier 62, and then the gas-liquid separation zone via the flow path 66.
  • the dehumidifier 62 may be, for example, a desiccant system that dehumidifies using an adsorbent, or may be a system that cools the refrigerant with a refrigerator having a compressor.
  • the water sprayed by the water spray nozzle 50 passes through the cooling coil 44 and the gas-liquid contact zone 58, is collected by the funnel-shaped water collecting pan 68, and returns to the water storage tank 48. .
  • the air flow a enters the duct 40 from the inlet 40 a near the fan 42, passes through the watering nozzle 50, the cooling coil 44, the gas-liquid contact zone 58, and the gas-liquid separation zone 60, and exits the duct 40.
  • the air flow path in which the water spray nozzle 50, the cooling coil 44, and the gas-liquid contact zone 58 are provided has a positive pressure because the water collecting pan 68 serves as a wall and the fan 42 pushes air. Thereby, high-humidity air can be generated efficiently.
  • the cooling coil 44 and the gas-liquid contact zone 58 can be integrated.
  • the air conditioner 14 (14 d) is used when storing the fruits and vegetables fv by cooling the storage space S of the storage 12 in a temperature range of 0 ° C. or higher.
  • the air conditioner 14 (14 d) includes a duct 40, a cooling coil 44, and a refrigerator 46, and further, an ice / snow zone 70 in which an air flow path formed in the duct 40 is filled with ice or snow. Is formed.
  • the air flow a returns to the storage space S as saturated water vapor having a temperature of 0 ° C. or less and a relative humidity of 100% while passing through the ice / snow zone 70, so that the storage space S can be in a high humidity state. Ice or snow is supplied to the ice / snow zone 70 from an ice maker 72 provided separately via a shooter 74.
  • the cooling coil 44 is also provided in the ice / snow zone 70, when the air conditioner 14 (14d) is operated in the high-humidity operation mode, the refrigerator 46 is stopped and the ice / snow zone 70 and the air flow a are heat-exchanged.
  • the refrigerator 46 is operated and water vapor in the air stream a is cooled and condensed by the cooling coil 44. The air flow a is dehumidified by adhering to the surface of the cooling coil 44.
  • the fan 42 attracts air from the air flow path of the duct 40, and supplies the interior of the duct 40 to the storage space S with a negative pressure. Consists of attracting fans.
  • the fan 42 pushes air from the storage space S, and supplies the air flow a to the storage space S with a positive pressure inside the duct 40. You may comprise an extrusion type fan.
  • the air conditioner 14 (14 c) in the duct 40, the gas-liquid separation zone 60 is disposed below the cooling coil 44, and the gas-liquid separation zone 60 is disposed below the gas-liquid contact zone 58.
  • a reefer container capable of controlling only the temperature inside and a high humidity container capable of controlling the temperature and humidity inside were prepared, and a comparative test was conducted in which fruits and vegetables were stored in the following three types of storage methods.
  • Cabbage was used as fruits and vegetables, and the storage temperature was all set to 2.5 ° C.
  • Refrigerated storage no humidity adjustment
  • High humidity storage relative humidity 95% or more
  • Humidity adjusted storage one embodiment
  • refrigerated storage (1) a leafer container was used and the humidity was stored.
  • refrigerated storage (1) the relative humidity in the reefer container was kept at 70-80% during the storage period.
  • High-humidity storage (2) uses a high-humidity container and stores it at a relative humidity of 95% or more for 3 months after storage. Next, store it in cardboard in a high-humidity container and store the relative humidity in the cardboard. It was kept at 100% and stored for another 3 months.
  • the humidity-controlled storage (3) uses a high-humidity container and stores it at a relative humidity of 95% or more after warehousing. After three months, the rot sensor detects the occurrence of rot on the cabbage surface. Humidity was reduced to 90% and stored.
  • the detection of rot of fruits and vegetables was performed by the following method. First, the surface of normal fruit and vegetables is scanned to make a blank. Next, the surface of the fruits and vegetables being stored is scanned and the two spectral spectra are compared. As shown in FIG. 5, the change in the spectroscopic spectrum peculiar to rot appears at any of the wavelengths of 260 nm ⁇ 10 nm, 280 nm ⁇ 10 nm, 400 nm ⁇ 10 nm, 460 nm ⁇ 10 nm, and 700 nm ⁇ 10 nm. The presence or absence of is determined.
  • the corruption sensor 22 is configured to output an off signal in a state where no corruption occurs, and to output an on signal when corruption occurs. When the rot sensor 22 outputs an off signal, the high humidity state where the relative humidity is 95% or more is maintained. When the rot sensor 22 gives an ON signal, the operation of the sprinkler 47 is stopped and the relative humidity is lowered to 80 to 95%.
  • the presence or absence of rot is determined from the transition of the spectral spectrum of the reflected light reflected from the fruits and vegetables fv. It may be.
  • the relative humidity during storage it is possible to suppress spoilage caused by microorganisms such as mold and bacteria while maintaining the freshness of fruits and vegetables, thereby reducing the yield over a long period of time.
  • Storage that can be controlled becomes possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Storage Of Harvested Produce (AREA)

Abstract

A produce storage method according to one embodiment comprises: a high-humidity storage step in which produce is held in a high-humidity state in a storage space in a storage container; a mold inspection step in which an inspection is carried out for the presence of mold generated on the produce in the high-humidity storage step; and a low-humidity storage step in which, when mold has been detected in the mold inspection step, the produce is stored in the storage space at a lower humidity than in the high-humidity state.

Description

青果物の貯蔵方法及び貯蔵装置Method and apparatus for storing fruits and vegetables
 本開示は、青果物の貯蔵方法及び貯蔵装置に関する。 The present disclosure relates to a method and apparatus for storing fruits and vegetables.
 現在、需要が拡大している加工用の青果物は、栽培、予冷、貯蔵、加工等の工程を経て、消費者の手に渡る。最終製品が年間を通した供給品となる加工食品においては、原料となる青果物も安定した品質で年間を通した安定供給が必要になる。ところが、天候不順による品不足や価格の高騰によって収穫直後の生鮮な野菜の確保が不安定となる場合があるため、数か月以上の長期に亘る保管が必要となっている。 Currently, the fruits and vegetables for processing, whose demand is increasing, pass through the process of cultivation, pre-cooling, storage, processing, etc. to the hands of consumers. In processed foods in which the final product is a year-round supply, it is necessary to provide a stable supply throughout the year with stable quality for the fruits and vegetables used as raw materials. However, it may be unstable to secure fresh vegetables immediately after harvesting due to lack of goods due to unseasonable weather or rising prices, so it is necessary to store for a long period of several months.
 貯蔵される青果物は、乾燥による萎縮、打撲や生理障害による劣化、及びカビや細菌等の微生物による腐敗、の3つの主な原因で歩留まりが下がる。温度管理機能のみで湿度管理機能をもたない冷蔵庫は、数週間の保管期間を過ぎると乾燥が進み、貯蔵された青果物が乾燥して萎縮し、歩留まりが低下する。
 これを解決する手段として、保管庫や冷蔵庫等に加湿器や高湿度クーラを備え、貯蔵空間を高湿度に保つ貯蔵技術がある。本出願人は、先に、かかる貯蔵技術に適用可能で、保管庫や冷蔵庫等に高湿度かつ低温度の空気を安定して供給可能な省エネ型の空気発生装置を提案している(特許文献1及び2)。
The yield of fruits and vegetables stored decreases due to three main causes: atrophy due to drying, deterioration due to bruises and physiological disorders, and decay by microorganisms such as mold and bacteria. Refrigerators that have only a temperature control function and no humidity control function dry out after a storage period of several weeks, and the stored fruits and vegetables dries and shrinks, resulting in a decrease in yield.
As a means for solving this, there is a storage technique in which a humidifier or a high humidity cooler is provided in a storage, a refrigerator, or the like, and the storage space is maintained at high humidity. The present applicant has previously proposed an energy-saving air generator that can be applied to such storage technology and can stably supply high-humidity and low-temperature air to a storage, a refrigerator, or the like (Patent Literature). 1 and 2).
 しかし、青果物を高湿度環境で長期間貯蔵すると、収穫時に発生した傷などからカビが発生する。カビ発生時期は青果物によって異なり、例えば、キャベツやレモンで2か月以降、トマトで2週間以降に顕著に表れる。傷んだ青果物は栄養素が豊富であり、高湿度下で急速に腐敗が進行する。 However, when fruits and vegetables are stored in a high humidity environment for a long period of time, mold is generated due to scratches and the like that occur during harvesting. Mold generation time varies depending on the fruits and vegetables. For example, it appears prominently after 2 months for cabbage and lemon and after 2 weeks for tomato. Damaged fruits and vegetables are rich in nutrients and rapidly rot under high humidity.
実用新案登録第3192991号公報Utility Model Registration No. 3192991 特開昭63-091474号公報JP 63-091474 A
 前述のように、高湿度環境は青果物の乾燥を防ぎ瑞々しさを保つためには好適であるが、逆に、抵抗力が落ちた青果物は腐敗のリスクが非常に高くなる傾向にある。このように、青果物の瑞々しさを保つこととカビや細菌等の微生物による腐敗を抑えることとは相反する関係にある。 As described above, a high-humidity environment is suitable for preventing drying of fruits and vegetables and maintaining freshness, but conversely, fruits and vegetables with reduced resistance tend to have a very high risk of spoilage. In this way, maintaining the freshness of fruits and vegetables is contradictory to suppressing spoilage caused by microorganisms such as mold and bacteria.
 一実施形態は、青果物の瑞々しさを保ちながらカビや細菌等の微生物による腐敗を抑えることで、長期貯蔵を可能にすることを目的とする。 One embodiment is intended to enable long-term storage by suppressing spoilage caused by microorganisms such as mold and bacteria while maintaining freshness of fruits and vegetables.
 (1)一実施形態に係る青果物の貯蔵方法は、
 貯蔵庫の貯蔵空間に青果物を高湿度状態に保持する高湿度保管工程と、
 前記高湿度保管工程において、前記青果物に発生する腐敗の有無を検査する腐敗検査工程と、
 前記腐敗検査工程で腐敗を検出したとき、前記貯蔵空間を前記高湿度状態より低湿度で前記青果物を保管する低湿度保管工程と、
 を備える。
 上記(1)の方法によれば、貯蔵期間中、貯蔵庫内で青果物を高湿度状態に保持することで、青果物の瑞々しさを保ち、カビや細菌等の微生物による腐敗の発生を検出したときは、貯蔵空間を低湿度にすることで、腐敗を抑えるようにしている。これによって、長期間青果物の瑞々しさを保ちながら腐敗を抑制できる。
(1) The method for storing fruits and vegetables according to one embodiment is as follows:
A high-humidity storage process for keeping fruits and vegetables in a high-humidity state in the storage space of the storage;
In the high-humidity storage step, a rot inspection step for inspecting the presence or absence of rot occurring in the fruits and vegetables,
A low-humidity storage step for storing the fruits and vegetables at a lower humidity than the high-humidity state when the rot is detected in the rot inspection step;
Is provided.
According to the above method (1), when the fruits and vegetables are kept in a high humidity state in the storage during the storage period, the freshness of the fruits and vegetables is maintained, and the occurrence of spoilage caused by microorganisms such as mold and bacteria is detected. Uses a low humidity storage space to prevent spoilage. As a result, it is possible to suppress spoilage while maintaining the freshness of fruits and vegetables for a long time.
 (2)一実施形態では、前記(1)の方法において、
 前記高湿度保管工程において、前記貯蔵空間の相対湿度が95%以上となるように制御する。
 上記(2)の方法によれば、高湿度保管工程では、貯蔵空間の相対湿度を95%以上に保つことで、青果物の瑞々しさを保持できる。
(2) In one embodiment, in the method of (1),
In the high-humidity storage process, the relative humidity of the storage space is controlled to be 95% or more.
According to the method (2), the freshness of the fruits and vegetables can be maintained by maintaining the relative humidity of the storage space at 95% or more in the high humidity storage step.
 (3)一実施形態では、前記(1)又は(2)の方法において、
 前記低湿度保管工程において、前記貯蔵空間の相対湿度が80%以上95%以下となるように制御する。
 上記(3)の方法によれば、低湿度保管工程では貯蔵空間の相対湿度を80~95%とすることで、カビや細菌等の増殖を抑え、これによって、腐敗の進行を抑えることができる。
(3) In one embodiment, in the method of (1) or (2),
In the low humidity storage step, the relative humidity of the storage space is controlled to be 80% or more and 95% or less.
According to the above method (3), by setting the relative humidity of the storage space to 80 to 95% in the low-humidity storage step, it is possible to suppress the growth of mold, bacteria, etc., thereby suppressing the progress of decay. .
 (4)一実施形態では、前記(1)~(3)の何れかの方法において、
 前記腐敗検査工程は、作業員が目視により腐敗の有無を検査するものである。
 上記(4)の方法によれば、腐敗検査工程において、作業員が目視で腐敗の有無を検査するので、正確に腐敗発生の有無を検出できる。
(4) In one embodiment, in any one of the methods (1) to (3),
In the rot inspection step, an operator visually inspects the presence or absence of rot.
According to the method (4), since the worker visually inspects the presence or absence of corruption in the corruption inspection step, the presence or absence of occurrence of corruption can be accurately detected.
 (5)一実施形態では、前記(1)~(3)の何れかの方法において、
 前記腐敗検査工程は、前記青果物に発生した腐敗を検出可能な腐敗センサを用いて腐敗の有無を検査するものである。
 上記(5)の方法によれば、腐敗センサを用いて腐敗の有無を検査するので、作業員の監視負担を軽減できる。
(5) In one embodiment, in any one of the methods (1) to (3),
In the rot inspection step, the presence or absence of rot is inspected using a rot sensor capable of detecting rot generated in the fruits and vegetables.
According to the method (5) above, since the presence or absence of corruption is inspected using the corruption sensor, the monitoring burden on the worker can be reduced.
 (6)一実施形態では、前記(5)の方法において、
 前記腐敗センサは、前記青果物に波長が220nm以上800nm以下の光を照射し、前記青果物から反射した反射光をスペクトル分析して腐敗の有無を判定するものである。
 上記(6)の方法によれば、腐敗検出手段として、紫外光領域から可視光領域にまたがる上記波長領域の光を用いたスペクトル分析により腐敗の有無を検出するので、紫外光領域におけるタンパク質の吸収特性と、可視光領域における青果物と発生した腐敗との色調の違いから、腐敗の発生を自動的かつ正確に検出できる。
(6) In one embodiment, in the method of (5),
The rot sensor irradiates the fruits and vegetables with light having a wavelength of 220 nm to 800 nm and analyzes the reflected light reflected from the fruits and vegetables to determine the presence or absence of rot.
According to the method of (6) above, since the presence or absence of corruption is detected by spectral analysis using light in the above wavelength region extending from the ultraviolet light region to the visible light region as the decay detection means, protein absorption in the ultraviolet light region The occurrence of decay can be detected automatically and accurately from the characteristics and the difference in color between the fruits and vegetables in the visible light region and the resulting decay.
 (7)一実施形態では、前記(1)~(6)の何れかの方法において、
 前記高湿度保管工程において、前記貯蔵空間の相対湿度が100%以下に保持される。
 上記(7)の方法によれば、高湿度保管工程において、貯蔵空間の相対湿度を100%以下に保持することで、貯蔵空間で結露の発生を抑制できる。これによって、結露が青果物に付着することが原因で青果物に腐敗が発生するのを抑制できる。
(7) In one embodiment, in any one of the methods (1) to (6),
In the high humidity storage step, the relative humidity of the storage space is maintained at 100% or less.
According to the method (7), in the high-humidity storage step, the relative humidity of the storage space is maintained at 100% or less, so that the occurrence of condensation in the storage space can be suppressed. As a result, it is possible to suppress the occurrence of rot in the fruits and vegetables due to the condensation adhering to the fruits and vegetables.
 (8)一実施形態では、前記(1)~(7)の何れかの構成において、
 収穫時の傷口を有する前記青果物に対して、入庫時に前記高湿度保管工程および前記低湿度保管工程における前記貯蔵空間の温度より高く前記傷口の治癒が可能な温度域に保持して前記傷口を治癒する治癒工程を備える。
 上記(8)の方法によれば、上記治癒工程を行うことで、収穫時に青果物に発生した傷口を治癒でき、これによって、上記傷口を起点として発生する腐敗を抑制できる。
(8) In one embodiment, in any one of the configurations (1) to (7),
For the fruits and vegetables having a wound at the time of harvest, the wound is healed by holding it at a temperature range higher than the temperature of the storage space in the high-humidity storage step and the low-humidity storage step at the time of warehousing and capable of healing the wound. A healing process is provided.
According to the method (8), by performing the healing step, it is possible to heal wounds that have occurred in fruits and vegetables at the time of harvesting, and thereby it is possible to suppress spoilage that starts from the wounds.
 (9)一実施形態に係る青果物の貯蔵装置は、
 青果物を貯蔵するための貯蔵庫と、
 前記貯蔵庫の貯蔵空間の湿度を制御可能な空調機と、
 高湿度運転モードと、前記青果物に発生した腐敗の成長を抑制するように該高湿度運転モードより低湿度の低湿度運転モードとの何れかを選択すべきかを示す運転モード選択信号を受け取り、前記空調機を選択された運転モードで運転制御するように構成された制御部と、
 を備える。
(9) The fruit and vegetable storage device according to one embodiment includes:
A storage for storing fruits and vegetables;
An air conditioner capable of controlling the humidity of the storage space of the storage; and
Receiving an operation mode selection signal indicating whether to select a high humidity operation mode and a low humidity operation mode having a lower humidity than the high humidity operation mode so as to suppress the growth of rot occurring in the fruits and vegetables; A controller configured to control operation of the air conditioner in a selected operation mode;
Is provided.
 上記(9)の構成によれば、上記空調機は、上記制御部によって、通常は、貯蔵空間を高湿度状態に保持する高湿度運転モードで運転され、青果物に腐敗が発生したときは、低湿度運転モードで運転されるように制御されるので、青果物の瑞々しさを保ちながら腐敗の進行を抑制できる。これによって、長期に亘り青果物の新鮮さを維持し、かつ腐敗の進行を抑制できる。 According to the configuration of (9) above, the air conditioner is normally operated by the control unit in a high humidity operation mode in which the storage space is maintained in a high humidity state. Since it is controlled to operate in the humidity operation mode, it is possible to suppress the progress of decay while keeping the freshness of the fruits and vegetables. Thereby, the freshness of fruits and vegetables can be maintained over a long period of time, and the progress of decay can be suppressed.
 (10)一実施形態では、前記(9)の構成において、
 前記制御部に前記運転モード選択信号を送る操作端末であって、前記青果物に腐敗を検出したときに操作される運転モード切替えスイッチを含む前記操作端末を備え、
 前記制御部は、
 前記操作端末から送られる前記運転モード選択信号に基づいて、前記空調機を前記高湿度運転モード又は前記低湿度運転モードのどちらかに切り替えるように構成される。
 上記(10)の構成によれば、作業員は、上記操作端末から、空調機の運転モード選択信号を送ることができる。従って、作業員は、貯蔵庫内の青果物を目視で観察しながら、空調機の運転モードを適切な運転モードに設定できる。また、作業員は、青果物に腐敗が発生したことを検知したときは、上記運転モード切替えスイッチによって低湿度運転モードへの切り替えができる。
(10) In one embodiment, in the configuration of (9),
An operation terminal that sends the operation mode selection signal to the control unit, comprising the operation terminal including an operation mode changeover switch that is operated when the fruit or vegetable is detected to be rotten,
The controller is
Based on the operation mode selection signal sent from the operation terminal, the air conditioner is configured to switch to either the high humidity operation mode or the low humidity operation mode.
According to the configuration of (10) above, the worker can send an air conditioner operation mode selection signal from the operation terminal. Therefore, the worker can set the operation mode of the air conditioner to an appropriate operation mode while visually observing the fruits and vegetables in the storage. Further, when the worker detects that the fruits and vegetables have been spoiled, the worker can switch to the low-humidity operation mode with the operation mode changeover switch.
 (11)一実施形態では、前記(9)の構成において、
 前記青果物に発生した腐敗を検出可能であり、かつ、前記腐敗を検出したとき腐敗検出信号を前記制御部に送信可能に構成された腐敗センサを備え、
 前記制御部は、前記腐敗センサから前記腐敗検出信号が送られたとき、前記空調機を前記低湿度運転モードで運転させるように構成される。
 上記(11)の構成によれば、上記腐敗センサが青果物に発生した腐敗を検出したとき、制御部は、空調機を低湿度運転モードに切り替えるので、腐敗の検出と低湿度運転モードへの切り替えとを自動的に行うことができる。
(11) In one embodiment, in the configuration of (9),
A rotting sensor configured to be able to detect rotting that has occurred in the fruits and vegetables and to transmit a rotting detection signal to the control unit when the rotting is detected;
The controller is configured to operate the air conditioner in the low-humidity operation mode when the corruption detection signal is sent from the corruption sensor.
According to the configuration of (11) above, when the rot sensor detects rot occurring in the fruits and vegetables, the control unit switches the air conditioner to the low humidity operation mode, so detection of rot and switching to the low humidity operation mode. And can be done automatically.
 (12)一実施形態では、前記(11)の構成において、
 前記腐敗センサは、
 前記青果物に光を照射するための発光器と、
 前記照射された光が前記青果物の表面で反射した反射光を受光するための受光器と、
 前記受光器で受光した前記反射光の分光スペクトルを得るための分光器と、
 を備え、
 前記分光スペクトルの二次微分値における微生物由来の成分を検出するように構成される。
 上記(12)の構成によれば、腐敗センサは、青果物に照射した光の反射光をスペクトル分析して微生物由来の成分を検出するように構成されるため、腐敗の発生を自動的かつ正確に検出できる。 
(12) In one embodiment, in the configuration of (11),
The corruption sensor is
A light emitter for irradiating the fruits and vegetables;
A light receiver for receiving the reflected light reflected by the surface of the fruits and vegetables, and
A spectroscope for obtaining a spectrum of the reflected light received by the light receiver;
With
It is configured to detect a component derived from a microorganism in the second derivative value of the spectrum.
According to the configuration of (12) above, the rot sensor is configured to detect a component derived from microorganisms by spectrally analyzing the reflected light of the light irradiated to the fruits and vegetables, so that the occurrence of rot is automatically and accurately detected. It can be detected.
 (13)一実施形態では、前記(9)~(12)の何れかの構成において、
 前記高湿度運転モードは、前記貯蔵空間を相対湿度が95%以上となるように前記空調機を運転させるものであり、
 前記低湿度運転モードは、前記貯蔵空間を相対湿度が80%以上95%以下になるように前記空調機を運転させるものである。
 上記(13)の方法によれば、高湿度保管工程において、貯蔵空間の相対湿度が95%以上となるように制御することで、青果物の瑞々しさを保持可能になり、低湿度保管工程では貯蔵空間の相対湿度を80%~95%とすることで、腐敗の進行を抑えることができる。これによって、長期に亘り青果物の劣化や腐敗を抑制しつつ青果物の瑞々しさ保つことができる。
(13) In one embodiment, in any one of the configurations (9) to (12),
The high humidity operation mode is to operate the air conditioner so that the relative humidity of the storage space is 95% or more,
In the low humidity operation mode, the air conditioner is operated such that the relative humidity of the storage space is 80% or more and 95% or less.
According to the method of (13), in the high humidity storage process, the freshness of the fruits and vegetables can be maintained by controlling the relative humidity of the storage space to be 95% or more. In the low humidity storage process, By setting the relative humidity of the storage space to 80% to 95%, the progress of decay can be suppressed. As a result, the freshness of the fruits and vegetables can be maintained while suppressing deterioration and decay of the fruits and vegetables over a long period of time.
 (14)一実施形態では、前記(9)~(13)の何れかの構成において、
 前記空調機は、
 前記貯蔵空間に設けられ空気流を形成可能なダクトと、
 前記ダクトの下部に設けられた貯水タンクと、
 前記ダクト内の空気流路又は前記貯水タンクに設けられた冷却コイルと、
 前記冷却コイルに冷媒を供給するための冷凍機と
 前記冷却コイルに散水するための散水部と、
 を備える。
 上記(14)の構成によれば、冷蔵庫の貯蔵空間の温度が0℃以上のとき、上記ダクトの内部に形成された空気流の温度及び湿度を制御することで、貯蔵空間の温度及び湿度を制御できる。これによって、長期に亘り青果物の瑞々しさを保ちつつ、微生物による腐敗を抑制できる。
(14) In one embodiment, in any one of the configurations (9) to (13),
The air conditioner
A duct provided in the storage space and capable of forming an air flow;
A water storage tank provided in a lower portion of the duct;
A cooling coil provided in an air flow path in the duct or the water storage tank;
A refrigerator for supplying a refrigerant to the cooling coil; a watering part for watering the cooling coil;
Is provided.
According to the configuration of (14), when the temperature of the storage space of the refrigerator is 0 ° C. or higher, the temperature and humidity of the storage space are controlled by controlling the temperature and humidity of the air flow formed inside the duct. Can be controlled. Thereby, spoilage by microorganisms can be suppressed while keeping the freshness of fruits and vegetables for a long period of time.
 (15)一実施形態では、前記(9)~(13)の何れかの構成において、
 前記空調機は、
 前記貯蔵空間に連通する空気流路を内部に形成したダクトと、
 前記ダクト内の空気流路に設けられた冷却コイルと、
 前記冷却コイルに冷媒を供給するための冷凍機と
 前記空気流路に形成され氷又は雪が充填された氷雪ゾーンと、
 前記氷雪ゾーンに前記氷又は前記雪を供給するための製氷機と、
 を備える。
 上記(15)の構成によれば、冷蔵庫の貯蔵空間の温度が0℃以下のとき、上記ダクトの内部に形成された空気流の温度及び湿度を制御することで、貯蔵空間の温度及び湿度を制御できる。これによって、長期に亘り青果物の瑞々しさを保ちつつ、微生物による腐敗を抑制できる。
(15) In one embodiment, in any one of the configurations (9) to (13),
The air conditioner
A duct formed therein with an air flow path communicating with the storage space;
A cooling coil provided in an air flow path in the duct;
A refrigerator for supplying a refrigerant to the cooling coil; an ice / snow zone formed in the air flow path and filled with ice or snow;
An ice making machine for supplying the ice or the snow to the ice-snow zone;
Is provided.
According to the structure of said (15), when the temperature of the storage space of a refrigerator is 0 degrees C or less, the temperature and humidity of a storage space are controlled by controlling the temperature and humidity of the air flow formed in the inside of the said duct. Can be controlled. Thereby, spoilage by microorganisms can be suppressed while keeping the freshness of fruits and vegetables for a long period of time.
 幾つかの実施形態によれば、長期に亘り貯蔵庫に貯蔵される青果物の瑞々しさを保ちながら微生物による腐敗を抑えることができる。従って、長期貯蔵しても青果物の歩留まり低下を抑制できる。 According to some embodiments, spoilage caused by microorganisms can be suppressed while maintaining the freshness of the fruits and vegetables stored in the storage for a long time. Therefore, the yield reduction of fruits and vegetables can be suppressed even if stored for a long time.
一実施形態に係る青果物の貯蔵装置を概略的な模式図である。It is a schematic diagram showing a fruit and vegetable storage device according to an embodiment. 一実施形態に係る青果物の貯蔵装置を概略的な模式図である。It is a schematic diagram showing a fruit and vegetable storage device according to an embodiment. 一実施形態に係る青果物の貯蔵方法の工程図である。It is process drawing of the storage method of the fruits and vegetables concerning one Embodiment. 一実施形態に係る腐敗センサの構成図である。It is a block diagram of the corruption sensor which concerns on one Embodiment. 腐敗センサにより得られた分光スペクトルの一例を示す線図である。It is a diagram which shows an example of the spectrum obtained by the corruption sensor. 腐敗センサにより得られた分光スペクトルの一例を示す線図である。It is a diagram which shows an example of the spectrum obtained by the corruption sensor. 一実施形態に係る空調機の構成図である。It is a block diagram of the air conditioner which concerns on one Embodiment. 一実施形態に係る空調機の構成図である。It is a block diagram of the air conditioner which concerns on one Embodiment. 一実施形態に係る空調機の構成図である。It is a block diagram of the air conditioner which concerns on one Embodiment. 一実施形態に係る空調機の構成図である。It is a block diagram of the air conditioner which concerns on one Embodiment. 試験により青果物の重量歩留まりの貯蔵中の推移を得た結果を示す線図である。It is a diagram which shows the result of having obtained the transition in storage of the weight yield of fruit and vegetables by the test. 試験により青果物の腐敗率の貯蔵中の推移を得た結果を示す線図である。It is a diagram which shows the result of having acquired the transition in storage of the decay rate of fruit and vegetables by a test. 試験により青果物の製品歩留まりの貯蔵中の推移を得た結果を示す線図である。It is a diagram which shows the result of having obtained the transition in storage of the product yield of fruit and vegetables by the test.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
For example, expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.
 図1及び図2は、幾つかの実施形態に係る青果物の貯蔵装置10(10A、10B)を示す。
 図1及び図2において、貯蔵装置10(10A、10B)は、青果物fvを貯蔵するための貯蔵庫12と、貯蔵庫12の貯蔵空間Sの湿度を制御可能な空調機14と、空調機14の運転を制御するための制御部16と、を備える。制御部16は、空調機14の運転モードを決定する運転モード選択信号を受け取り、受け取った運転モード選択信号によって指定された運転モードで空調機14が運転されるように、空調機14の運転を制御する。運転モード選択信号は、貯蔵空間を高湿度状態に保つ高湿度運転モードと、青果物fvにカビや細菌等の微生物による腐敗が発生したことを検知したとき、腐敗の進行を抑制するように、青果物fvを該高湿度運転モードより低湿度で保管する低湿度運転モードとがある。運転モード選択信号はこれらの何れかを選択すべきかを示すものである。
1 and 2 show a fruit and vegetable storage device 10 (10A, 10B) according to some embodiments.
1 and 2, the storage device 10 (10A, 10B) includes a storage 12 for storing fruits and vegetables fv, an air conditioner 14 capable of controlling the humidity of the storage space S of the storage 12, and the operation of the air conditioner 14. And a control unit 16 for controlling. The control unit 16 receives the operation mode selection signal for determining the operation mode of the air conditioner 14, and operates the air conditioner 14 so that the air conditioner 14 is operated in the operation mode specified by the received operation mode selection signal. Control. The operation mode selection signal is a high-humidity operation mode for keeping the storage space in a high-humidity state, and the fruits and vegetables are controlled so as to suppress the progress of the decay when it is detected that the fruits and vegetables fv are spoiled by microorganisms such as mold and bacteria. There is a low humidity operation mode in which fv is stored at a lower humidity than the high humidity operation mode. The operation mode selection signal indicates which of these should be selected.
 上記構成において、青果物fvが入庫したとき、通常、空調機14は、制御部16によって、貯蔵空間Sを高湿度状態に保持する高湿度運転モードで運転される。そして、青果物fvに腐敗が発生したことを検知したときは、高湿度運転モードより低湿度状態を保つ低湿度運転モードで運転される。このように、通常は、空調機14が高湿度運転モードで運転されるので、青果物fvの乾燥を防ぎ青果物fvの瑞々しさを保つことができる。また、青果物fvに腐敗が発生していることを検知したとき、空調機14は低湿度運転モードで運転され、貯蔵空間Sは低湿度に保持されるので、腐敗の進行を抑制できる。これによって、長期に亘って青果物fvを乾燥によるしおれや微生物による腐敗を抑制しながら新鮮な状態を保つことができる。 In the above configuration, when the fruits and vegetables fv are received, the air conditioner 14 is normally operated by the control unit 16 in a high humidity operation mode in which the storage space S is maintained in a high humidity state. And when it detects that the fruit and vegetables fv have spoiled, it drive | operates by the low humidity operation mode which maintains a low humidity state rather than a high humidity operation mode. Thus, since the air conditioner 14 is normally operated in the high humidity operation mode, it is possible to prevent the fruits and vegetables fv from being dried and to maintain the freshness of the fruits and vegetables fv. Further, when it is detected that the fruits and vegetables fv have been spoiled, the air conditioner 14 is operated in the low humidity operation mode, and the storage space S is kept at the low humidity, so that the progress of the spoilage can be suppressed. As a result, the fruits and vegetables fv can be kept fresh for a long time while suppressing wilting due to drying and rot caused by microorganisms.
 腐敗の原因となるカビや細菌の微生物等の繁殖には、温度、水分及び栄養の3要素が必須であるため、逆に、これらの要素の1つでも欠くと、カビや細菌の繁殖を抑えることができる。水分を例に取ると、繁殖に必要な水は自由水と呼ばれ、水分活性Awで定量化されている。例えば、細菌の繁殖にはAw≧0.9が必要であり、カビの繁殖にはAw≧0.75が必要である。水分活性Awは、密閉された容器に純水を入れ、ヘッドスペースの平衡時蒸気圧(p)を同じ温度の水の蒸気圧(p0)で割った値で示すこともできる。これはヘッドスペースの平均相対湿度を100で割った値と同じであり、相対湿度100%はAw=1、相対湿度80%はAw=0.8と示すことができる。
 相対湿度100%の環境は青果物の瑞々しさを保つために最適であるが、抵抗力が低下した青果物には腐敗のリスクが高くなる。
Three elements of temperature, moisture, and nutrition are essential for the growth of mold and bacteria that cause spoilage. On the contrary, if one of these elements is missing, the growth of mold and bacteria is suppressed. be able to. Taking moisture as an example, the water required for breeding is called free water and is quantified by water activity Aw. For example, Aw ≧ 0.9 is required for bacterial growth, and Aw ≧ 0.75 is required for mold growth. The water activity Aw can also be expressed as a value obtained by putting pure water in a sealed container and dividing the vapor pressure (p) at the time of equilibrium of the headspace by the vapor pressure (p0) of water at the same temperature. This is the same as the value obtained by dividing the average relative humidity of the head space by 100. A relative humidity of 100% can be expressed as Aw = 1, and a relative humidity of 80% can be expressed as Aw = 0.8.
An environment with a relative humidity of 100% is optimal for maintaining the freshness of fruits and vegetables, but fruits and vegetables with reduced resistance have an increased risk of spoilage.
 一方、相対湿度が低い環境では、カビや細菌等は繁殖しにくいが、青果物の乾燥が進み、歩留まりが低下する。
 また、収穫間もない青果物は抵抗力があり、傷があっても腐敗しない。ところが、時間が経つと老化が進み抵抗力が下がってくる。貯蔵期間が長いほど抵抗力が下がり腐敗による廃棄率が増加する。このように、長期貯蔵において青果物の瑞々しさを保つことと腐敗を抑えることは相反する関係にある。
On the other hand, in an environment where the relative humidity is low, mold, bacteria, and the like are difficult to propagate, but the fruits and vegetables are dried and the yield is lowered.
Freshly harvested fruits and vegetables are resistant and will not rot even if scratched. However, as time passes, aging progresses and resistance decreases. The longer the storage period, the lower the resistance and the higher the disposal rate due to decay. In this way, maintaining the freshness of fruits and vegetables in long-term storage and suppressing rot are in conflict.
 一実施形態では、図1に示すように、貯蔵装置10(10A)は、制御部16に運転モード選択信号を送る操作端末18を備える。制御部16は、操作端末18から送られる運転モード選択信号に基づいて、空調機14を高湿度運転モード又は低湿度運転モードのどちらかに切り替える。
 一実施形態では、操作端末18は、貯蔵空間Sに貯蔵された青果物fvにカビや細菌等の微生物による腐敗が検出されたときに、操作される運転モード切替えスイッチ20を有する。例えば、作業員が青果物fvに腐敗が発生しているのを発見したとき、作業員が運転モード切替えスイッチ20を操作することで、制御部16に、空調機14を高湿度運転モードから低湿度運転モードに切り替える運転モード選択信号を送ることができる。 
In one embodiment, as illustrated in FIG. 1, the storage device 10 (10 </ b> A) includes an operation terminal 18 that sends an operation mode selection signal to the control unit 16. The control unit 16 switches the air conditioner 14 to either the high humidity operation mode or the low humidity operation mode based on the operation mode selection signal sent from the operation terminal 18.
In one embodiment, the operation terminal 18 includes an operation mode changeover switch 20 that is operated when the fruits and vegetables fv stored in the storage space S are detected to be spoiled by microorganisms such as mold and bacteria. For example, when the worker discovers that the fruits and vegetables fv have been spoiled, the worker operates the operation mode changeover switch 20 to cause the control unit 16 to change the air conditioner 14 from the high humidity operation mode to the low humidity. An operation mode selection signal for switching to the operation mode can be sent.
 この実施形態によれば、操作端末18から制御部16に運転モード選択信号を送信可能に構成されているので、作業員は操作端末18から空調機14の運転モード選択信号を送ることができる。従って、作業員は、貯蔵庫内の青果物を目視で観察しながら、空調機14の運転モードを適切な運転モードに設定できる。また、作業員は、青果物に腐敗が発生したことを検知したときは、運転モード切替えスイッチ20によって低湿度運転モードへの切り替えができる。 According to this embodiment, since the operation mode selection signal can be transmitted from the operation terminal 18 to the control unit 16, the operator can send the operation mode selection signal of the air conditioner 14 from the operation terminal 18. Therefore, the worker can set the operation mode of the air conditioner 14 to an appropriate operation mode while visually observing the fruits and vegetables in the storage. In addition, when the worker detects that the fruits and vegetables have been spoiled, the worker can switch to the low-humidity operation mode by the operation mode switch 20.
 一実施形態では、図2に示すように、貯蔵装置10(10B)は、青果物fvに発生した腐敗を検出可能な腐敗センサ22を備える。腐敗センサ22は、腐敗の発生を検出したとき腐敗検出信号を制御部16に送信可能に構成されている。制御部16は、腐敗センサ22から腐敗検出信号が送られたとき、空調機14を低湿度運転モードで運転させるように構成される。
 この実施形態によれば、腐敗センサ22が青果物fvに発生した腐敗を検出したとき、制御部16は、空調機14を低湿度運転モードに切り替えるので、腐敗検出と低湿度運転モードへの切り替えとを自動的に行うことができる。
In one embodiment, as shown in FIG. 2, the storage device 10 (10 </ b> B) includes a rotting sensor 22 that can detect rotting that has occurred in the fruits and vegetables fv. The corruption sensor 22 is configured to be able to transmit a corruption detection signal to the control unit 16 when the occurrence of corruption is detected. The controller 16 is configured to operate the air conditioner 14 in the low-humidity operation mode when a corruption detection signal is sent from the corruption sensor 22.
According to this embodiment, when the rotting sensor 22 detects rotting that has occurred in the fruits and vegetables fv, the control unit 16 switches the air conditioner 14 to the low humidity operation mode. Can be done automatically.
 一実施形態に係る青果物の貯蔵方法は、図3に示すように、まず、入庫した青果物fvに収穫時の傷口があるときは、必要に応じて治癒工程S10を行う。傷口は放っておくと早期に腐敗が始まる虞がある。治癒工程S10は、収穫時の傷口を有する青果物fvに対して、入庫時に後述する高湿度保管工程S12及び低湿度保管工程S18における貯蔵空間Sの温度より高く、傷口の治癒が可能な温度域に保持して傷口を治癒する。
 一実施形態では、貯蔵空間Sを2~4日間25~35℃の温度に保持する。
 治癒工程S10を行うことで、収穫時に青果物fvに発生した傷口を治癒でき、これによって、傷口から発生する腐敗を抑制できる。
In the method for storing fruits and vegetables according to one embodiment, as shown in FIG. 3, first, when the harvested fruits and vegetables fv has a wound at the time of harvest, a healing step S10 is performed as necessary. If the wound is left untreated, there is a risk that it will begin to rot early. In the healing step S10, the fruit and vegetable fv having a wound at the time of harvest is higher than the temperature of the storage space S in the high-humidity storage step S12 and the low-humidity storage step S18, which will be described later at the time of warehousing. Hold and heal wounds.
In one embodiment, the storage space S is maintained at a temperature of 25-35 ° C. for 2-4 days.
By performing healing process S10, the wound which generate | occur | produced in the fruits and vegetables fv at the time of a harvest can be cured, and this can suppress the corruption which generate | occur | produces from a wound.
 必要に応じて治癒工程S10を行った後、空調機14を高湿度運転モードに制御し、貯蔵空間Sの青果物fvを高湿度状態に保持する(高湿度保管工程S12)。そして、高湿度状態に保持しながら、青果物fvに発生する腐敗の有無を検査する(腐敗検査工程S14)。検査方法として、作業員が貯蔵庫12の内部に入り、目視で腐敗発生の有無を検査してもよいし、あるいは腐敗を検出可能な前述の腐敗センサ22で検査してもよい。
 そして、腐敗検査工程S14で腐敗を検出したとき(S16)、空調機14を低湿度運転モードに切り替え、貯蔵空間Sを高湿度保管工程S12における高湿度状態より低湿度で青果物fvを保管する(低湿度保管工程S18)。腐敗検査工程S14で腐敗を検出しないとき、引き続き高湿度保管工程S12を継続する。
After performing healing process S10 as needed, the air conditioner 14 is controlled to a high humidity operation mode, and the fruits and vegetables fv of the storage space S are kept in a high humidity state (high humidity storage process S12). And the presence or absence of rot which generate | occur | produces in fruit and vegetables fv is test | inspected, maintaining at a high humidity state (rotation inspection process S14). As an inspection method, an operator may enter the inside of the storage 12 and visually inspect the presence or absence of corruption, or may be inspected by the above-described corruption sensor 22 capable of detecting corruption.
And when corruption is detected by the corruption test process S14 (S16), the air conditioner 14 is switched to the low humidity operation mode, and the storage space S stores the fruits and vegetables fv at a lower humidity than the high humidity state in the high humidity storage process S12 ( Low humidity storage step S18). When no rot is detected in the rot inspection step S14, the high humidity storage step S12 is continued.
 上記方法によれば、貯蔵期間中、貯蔵庫内で青果物fvを高湿度状態に保持することで、青果物fvの瑞々しさを保ち、高湿度保管工程中に、腐敗の発生を検出したときは、貯蔵空間Sを低湿度にして青果物fvを保管することで、腐敗の進行を抑えることができる。これによって、長期間青果物fvを乾燥させずに瑞々しさを保ち、かつ腐敗を抑制できる。従って、長期間青果物fvの歩留まり低下を抑制できる。 According to the above method, when the fruits and vegetables fv are kept in a high humidity state in the storage during the storage period, the freshness of the fruits and vegetables fv is maintained, and when the occurrence of rot is detected during the high humidity storage process, By keeping the storage space S at a low humidity and storing the fruits and vegetables fv, the progress of decay can be suppressed. Accordingly, freshness can be maintained without drying the fruits and vegetables fv for a long period of time, and rot can be suppressed. Therefore, it is possible to suppress the yield reduction of the fruits and vegetables fv for a long time.
 一実施形態では、高湿度保管工程S12において、貯蔵空間Sの相対湿度が95%以上となるように制御する。図1及び図2に示す貯蔵装置10(10A、10B)では、制御部16によって空調機14を高湿度モードで運転させることで、貯蔵空間Sの相対湿度を95%以上に保持する。
 この実施形態によれば、高湿度保管工程S12で、貯蔵空間Sの相対湿度を95%以上に保持することで、青果物fvの瑞々しさを長期間保つことができる。
In one embodiment, in high humidity storage process S12, it controls so that the relative humidity of storage space S may be 95% or more. In the storage device 10 (10A, 10B) shown in FIGS. 1 and 2, the control unit 16 causes the air conditioner 14 to operate in the high humidity mode, thereby maintaining the relative humidity of the storage space S at 95% or more.
According to this embodiment, the freshness of the fruits and vegetables fv can be maintained for a long time by maintaining the relative humidity of the storage space S at 95% or more in the high humidity storage step S12.
 一実施形態では、低湿度保管工程S18において、貯蔵空間Sの相対湿度が80%~95%となるように制御する。図1及び図2に示す貯蔵装置10(10A、10B)では、制御部16によって空調機14を低湿度モードで運転させることで、貯蔵空間Sの相対湿度を80%~95%に保持する。
 この実施形態によれば、低湿度保管工程S18では貯蔵空間Sの相対湿度を80%~95%とすることで、カビや細菌等の増殖による腐敗の進行を抑えることができる。
In one embodiment, the relative humidity of the storage space S is controlled to be 80% to 95% in the low humidity storage step S18. In the storage device 10 (10A, 10B) shown in FIGS. 1 and 2, the control unit 16 causes the air conditioner 14 to operate in the low humidity mode, thereby maintaining the relative humidity of the storage space S at 80% to 95%.
According to this embodiment, in the low-humidity storage step S18, the relative humidity of the storage space S is set to 80% to 95%, so that the progress of decay due to growth of mold, bacteria, etc. can be suppressed.
 一実施形態では、腐敗検査工程S14において、作業員が目視により腐敗の有無を検査する。
 この方法によれば、作業員が目視で腐敗の有無を検査するので、腐敗センサ22の設置が不要になり、低コストでかつ正確に腐敗発生の有無を検出できる。
In one embodiment, in the rot inspection step S14, an operator inspects the presence or absence of rot by visual inspection.
According to this method, since the operator visually inspects the presence or absence of corruption, it is not necessary to install the corruption sensor 22, and the presence or absence of corruption can be accurately detected at low cost.
 一実施形態では、腐敗検査工程S14において、図2に示すように、青果物fvに発生した腐敗を検出可能な腐敗センサ22を用いて腐敗の有無を検査する。
 この方法によれば、腐敗センサ22を用いて腐敗の有無を検査するので、作業員の監視負担を軽減できる。
In one embodiment, in the rot inspection step S14, as shown in FIG. 2, the presence or absence of rot is inspected using a rot sensor 22 capable of detecting rot that has occurred in the fruits and vegetables fv.
According to this method, since the presence or absence of corruption is inspected using the corruption sensor 22, the monitoring burden on the worker can be reduced.
 一実施形態では、腐敗センサ22は、青果物fvに波長が200nm~800nmの光を照射し、青果物fvから反射した反射光をスペクトル分析し、得られた分光スペクトルから腐敗の有無を判定するように構成されている。
 カビや細菌等の微生物はタンパク質の凝集体であり、タンパク質は、200~450nm、特に230~300nmの波長帯の紫外光に対し顕著な吸収ピークを有する。従って、この波長帯の光を含む光を発光器から発光させて青果物fvに照射し、その反射光をスペクトル分析することで、微生物による腐敗の発生有無を測定できる。
 また、400~800nmの波長帯を有する可視光を青果物fvに照射し、その反射光をスペクトル分析することで、腐敗発生による青果物表面の色調の変化から腐敗発生の有無を測定できる。
 この実施形態によれば、腐敗検出手段として、上記波長帯の光を用いたスペクトル分析により腐敗の有無を検出する腐敗センサを用いることで、腐敗の発生を自動的かつ正確に検出できる。
In one embodiment, the rot sensor 22 irradiates the fruits and vegetables fv with light having a wavelength of 200 nm to 800 nm, spectrally analyzes the reflected light reflected from the fruits and vegetables fv, and determines the presence or absence of rot from the obtained spectrum. It is configured.
Microorganisms such as molds and bacteria are protein aggregates, and proteins have a remarkable absorption peak for ultraviolet light in the wavelength band of 200 to 450 nm, particularly 230 to 300 nm. Therefore, the presence or absence of spoilage by microorganisms can be measured by emitting light including light in this wavelength band from the light emitter, irradiating the fruits and vegetables fv, and performing spectral analysis of the reflected light.
Further, by irradiating the fruits and vegetables fv with visible light having a wavelength band of 400 to 800 nm and performing spectral analysis of the reflected light, it is possible to measure the presence or absence of spoilage from the change in the color tone of the fruits and vegetables due to spoilage.
According to this embodiment, the occurrence of corruption can be automatically and accurately detected by using a corruption sensor that detects the presence or absence of corruption by spectral analysis using light in the wavelength band as the corruption detection means.
 一実施形態では、高湿度保管工程S12において、貯蔵空間Sの相対湿度が100%以下に保持される。
 この実施形態によれば、高湿度保管工程S12において、貯蔵空間Sの相対湿度を100%以下に保持することで、貯蔵空間Sで結露の発生を抑制できる。これによって、発生した結露が青果物fvに付着することが原因で青果物fvに腐敗が発生するのを抑制できる。
In one embodiment, the relative humidity of the storage space S is maintained at 100% or less in the high humidity storage step S12.
According to this embodiment, in the high humidity storage step S12, the relative humidity of the storage space S is maintained at 100% or less, so that the occurrence of condensation in the storage space S can be suppressed. Thereby, it is possible to suppress the occurrence of decay in the fruits and vegetables fv due to the generated condensation adhering to the fruits and vegetables fv.
 一実施形態では、腐敗検査手段として、CCDカメラなどの画像を画像処理して取得した画像処理情報から腐敗発生の有無を判定してもよい。しかし、前述のように、青果物fvに特定の波長を有する光を照射し、その反射光をスペクトル分析することで、腐敗発生の有無を判定する方法を用いれば、腐敗発生の有無を精度良く判定できる。 In one embodiment, the presence or absence of corruption may be determined from image processing information acquired by performing image processing on an image from a CCD camera or the like as a corruption inspection unit. However, as described above, if the method of determining the presence or absence of corruption is used by irradiating the fruits and vegetables fv with light having a specific wavelength and analyzing the reflected light spectrum, the presence or absence of corruption can be accurately determined. it can.
 一実施形態では、図4に示すように、腐敗センサ22は、青果物fvに光Lを照射するための発光器24と、照射された光が青果物fvの表面で反射した反射光Rを受光するための受光器26と、受光器26で受光した反射光Rの分光スペクトルを得るための分光器28と、を備える。そして、腐敗センサ22は、得られた分光スペクトルの二次微分値における微生物由来の成分を検出するように構成される。
 この腐敗センサ22によれば、青果物fvに照射した照射光Lの反射光Rをスペクトル分析することで、微生物Mの有無を検出するので、微生物Mの発生を自動的かつ正確に検出できる。
In one embodiment, as shown in FIG. 4, the rot sensor 22 receives a light emitter 24 for irradiating the fruits and vegetables fv with the light L and reflected light R reflected by the surface of the fruits and vegetables fv. And a spectroscope 28 for obtaining a spectral spectrum of the reflected light R received by the photoreceiver 26. And the corruption sensor 22 is comprised so that the component derived from microorganisms in the secondary differential value of the obtained spectrum may be detected.
According to the rot sensor 22, since the presence or absence of the microorganism M is detected by spectrally analyzing the reflected light R of the irradiation light L irradiated to the fruits and vegetables fv, the generation of the microorganism M can be automatically and accurately detected.
 一実施形態では、図4に示すように、腐敗センサ22は、発光制御部30を備え、発光器24は発光制御部30によってその作動が制御される。また、腐敗センサ22は演算部32を備え、演算部32は、分光器28により取得された反射光Rの分光スペクトルと、予め求めておいたタンパク質の量との相関関係に基づいて、青果物fvの腐敗発生の有無を算出する。メモリ34には、分光スペクトルから腐敗発生の有無を求める予測式(即ち、タンパク質量と分光スペクトルデータとの相関関係)が記憶されている。演算部32は、メモリ34に記憶された該相関関係に基づいて腐敗発生の有無を判定する。
 一実施形態では、腐敗センサ22はさらに表示部36を備え、表示部36に分光スペクトルデータや腐敗発生の有無等を表示する。
In one embodiment, as shown in FIG. 4, the corruption sensor 22 includes a light emission control unit 30, and the operation of the light emitter 24 is controlled by the light emission control unit 30. In addition, the rot sensor 22 includes a calculation unit 32, and the calculation unit 32 is based on the correlation between the spectral spectrum of the reflected light R acquired by the spectroscope 28 and the amount of protein determined in advance, and the fruits and vegetables fv. Calculate the occurrence of corruption. The memory 34 stores a prediction formula (that is, a correlation between the amount of protein and spectral spectrum data) for determining whether or not corruption has occurred from the spectral spectrum. The computing unit 32 determines whether or not corruption has occurred based on the correlation stored in the memory 34.
In one embodiment, the corruption sensor 22 further includes a display unit 36 that displays spectral data, the presence / absence of corruption, and the like on the display unit 36.
 一実施形態では、腐敗センサ22は貯蔵空間Sで青果物fvの上方に配置される。特定方向から光を受光するように構成された受光器26は、青果物fvから反射し、さらに貯蔵庫12の内壁面で反射した多重反射光を含む反射光Rを受光する。このように、受光器26が多重反射光を含む反射光Rを受光することで、分光器28では、貯蔵空間Sに貯蔵された特定の青果物fvではなく、青果物全体の平均的な分光スペクトルを得ることができる。
 従って、入庫時期が異なる青果物fvのグループ毎に、これらグループの上方に1個の腐敗センサ22を配置することで、グループ毎の平均的な腐敗発生の有無を測定できる。
In one embodiment, the rot sensor 22 is disposed above the fruits and vegetables fv in the storage space S. The light receiver 26 configured to receive light from a specific direction receives reflected light R including multiple reflected light reflected from the fruits and vegetables fv and reflected from the inner wall surface of the storage 12. In this way, when the light receiver 26 receives the reflected light R including the multiple reflected light, the spectroscope 28 does not have the specific fruit and vegetable fv stored in the storage space S, but the average spectral spectrum of the whole fruit and vegetables. Obtainable.
Therefore, by arranging one rot sensor 22 above each group of fruits and vegetables fv with different warehousing times, it is possible to measure the average occurrence of rot for each group.
 図5及び図6は、夫々腐敗センサ22を用いて青果物fvの1グループの平均的な分光スペクトルの例を示す。図5は、キャベツの平均的な分光スペクトルであり、図6は、紫キャベツの平均的な分光スペクトルを示す。なお、これら図の縦軸は、分光器28で得られた生波形を吸光度スペクトルに変換し、この吸光度スペクトルを二次微分スペクトに変換した吸光度二次微分値である。これによって、生波形では把握しにくいピークを明確にしたり、ノイズを除去できる。
 これらの図から、400nm以下の紫外光の領域においては、230~300nmの波長帯(領域A)において、青果物に腐敗が発生している場合と、腐敗が発生してない場合とで、タンパク質の吸収ピークによる差が表れていることがわかる。また、400nm以上の可視光の領域(領域B)においては、腐敗発生前の青果物の色調と腐敗発生後の色調との違いによる分光スペクトルの差がはっきりと表れていることがわかる。
5 and 6 show examples of an average spectral spectrum of one group of fruits and vegetables fv using the rot sensor 22, respectively. FIG. 5 shows an average spectrum of cabbage, and FIG. 6 shows an average spectrum of purple cabbage. The vertical axis in these figures is the absorbance second derivative value obtained by converting the raw waveform obtained by the spectrometer 28 into an absorbance spectrum and converting the absorbance spectrum into a second derivative spectrum. This makes it possible to clarify peaks that are difficult to grasp in the raw waveform and to eliminate noise.
From these figures, in the ultraviolet light region of 400 nm or less, in the wavelength band of 230 to 300 nm (region A), when the fruits and vegetables are rotted or not rotted, It can be seen that a difference due to the absorption peak appears. In addition, in the visible light region (region B) of 400 nm or more, it can be seen that the spectral spectrum difference due to the difference between the color tone of the fruits and vegetables before the occurrence of rot and the color tone after the occurrence of rot appears clearly.
 一実施形態では、空調機14の高湿度運転モードとは、貯蔵空間Sの相対湿度が95%以上となるように空調機14を運転させるものであり、低湿度運転モードは、貯蔵空間Sの相対湿度が80%~95%になるように空調機14を運転させるものである。
 これによって、青果物fvに腐敗が発生してないとき、貯蔵空間Sの相対湿度が95%以上となるように空調機14を高湿度運転モードで運転することで、青果物fvの瑞々しさを保持可能になり、青果物fvに腐敗が発生したときは、貯蔵空間Sの相対湿度が90%~95%となるように空調機14を低湿度運転モードで運転することで、腐敗の進行を抑えることができる。これによって、長期に亘り青果物fvの劣化や腐敗を抑制しつつ、青果物fvの瑞々しさを保つことができる。
In one embodiment, the high humidity operation mode of the air conditioner 14 is to operate the air conditioner 14 so that the relative humidity of the storage space S is 95% or more, and the low humidity operation mode is the storage mode S of the storage space S. The air conditioner 14 is operated so that the relative humidity is 80% to 95%.
As a result, when the fruits and vegetables fv are not spoiled, the freshness of the fruits and vegetables fv is maintained by operating the air conditioner 14 in the high humidity operation mode so that the relative humidity of the storage space S is 95% or more. When the rot occurs in the fruits and vegetables fv, the progress of the rot is suppressed by operating the air conditioner 14 in the low-humidity operation mode so that the relative humidity of the storage space S becomes 90% to 95%. Can do. Thereby, the freshness of the fruits and vegetables fv can be maintained while suppressing deterioration and decay of the fruits and vegetables fv over a long period of time.
 幾つかの実施形態では、図7~図9に示すように、空調機14(14a、14b、14c)は、貯蔵空間Sに連通し内部に空気流路を形成したダクト40を備える。ダクト40の内部には、例えば、ファン42などによって空気流aが形成される。ダクト40内の空気流路には、冷却コイル44が設けられる。冷却コイル44には、冷凍機46で冷却された冷媒、あるいは該冷媒と熱交換して冷却されたブラインが供給され、ダクト内の空気流路を流れる空気流aを冷却する。また、空調機14(14a~14c)は、冷却コイル44に散水するための散水機47を備える。
 空調機14(14a~14c)は、貯蔵庫12の貯蔵空間Sを0℃以上の温度帯で冷却して青果物fvを貯蔵するときに用いられる。制御部16によって、冷凍機46を制御し、かつ散水機47の散水量を制御することで、空気流aの温度及び湿度を制御することで、貯蔵空間Sの温度及び湿度を制御する。
In some embodiments, as shown in FIGS. 7 to 9, the air conditioner 14 (14a, 14b, 14c) includes a duct 40 that communicates with the storage space S and has an air flow path formed therein. An air flow a is formed inside the duct 40 by, for example, a fan 42 or the like. A cooling coil 44 is provided in the air flow path in the duct 40. The cooling coil 44 is supplied with the refrigerant cooled by the refrigerator 46 or the brine cooled by heat exchange with the refrigerant, and cools the air flow a flowing through the air flow path in the duct. The air conditioner 14 (14a to 14c) includes a watering machine 47 for watering the cooling coil 44.
The air conditioner 14 (14a to 14c) is used when storing the fruits and vegetables fv by cooling the storage space S of the storage 12 in a temperature range of 0 ° C. or higher. The temperature and humidity of the storage space S are controlled by controlling the temperature and humidity of the air flow a by controlling the refrigerator 46 and the watering amount of the watering machine 47 by the control unit 16.
 例えば、高湿度運転モードでは、冷却コイル44を散水機47から散水した水の膜で覆い、低湿度運転モードでは、散水を停止し、冷却コイル44を露出させ、空気流a中の水蒸気を冷却コイル44で冷却して凝縮させ、冷却コイル44の表面に付着させることで除湿する。貯蔵空間Sの湿度が設定値になったら散水を開始する。
 一実施形態では、高い温度の青果物が入庫したとき、散水機47を自動的に停止させ、かつ空気流aの風速を増加させることで、冷却速度を増加させるようにする。
For example, in the high humidity operation mode, the cooling coil 44 is covered with a film of water sprinkled from the water sprayer 47, and in the low humidity operation mode, the watering is stopped, the cooling coil 44 is exposed, and the water vapor in the air flow a is cooled. The coil 44 cools and condenses, and dehumidifies by being attached to the surface of the cooling coil 44. When the humidity of the storage space S reaches the set value, watering is started.
In one embodiment, when high-temperature fruits and vegetables are received, the sprinkler 47 is automatically stopped, and the air speed a is increased to increase the cooling rate.
 一実施形態では、散水機47は、ダクト40の下部に設けられた貯水タンク48と、冷却コイル44より上部のダクト40に設けられた散水ノズル50と、貯水タンク48に溜まった水を散水ノズル50に供給する給水路52及び給水路52に設けられた給水ポンプ54と、を含んで構成される。
 一実施形態では、貯水タンク48に溜まった水を加温して温度調整するためのヒータ56と、散水ノズル50から噴射された水と空気流aとの接触を密にし、空気流aに水蒸気を混合させ、空気流aの相対湿度を増加させるための気液接触ゾーン58と、高湿度となった空気流aに含まれる水滴を除去して空気流aの相対湿度を100%以下にする気液分離ゾーン60と、が夫々必要に応じて設けられる。
In one embodiment, the water sprayer 47 includes a water storage tank 48 provided in the lower part of the duct 40, a water spray nozzle 50 provided in the duct 40 above the cooling coil 44, and water accumulated in the water storage tank 48. 50 and a water supply pump 54 provided in the water supply path 52.
In one embodiment, the heater 56 for heating and adjusting the temperature of the water stored in the water storage tank 48 and the contact between the water jetted from the watering nozzle 50 and the air stream a are made dense, and the air stream a is steamed. And the gas-liquid contact zone 58 for increasing the relative humidity of the air stream a and the water droplets contained in the air stream a having become high humidity are removed to make the relative humidity of the air stream a 100% or less. A gas-liquid separation zone 60 is provided as necessary.
 気液接触ゾーン58は、例えば、散水と空気流aとの接触時間を長くするため、繊維、波板、平板、パンチングメタル等の接触部材を積層させるか、あるいは並べて配置する。また、これらの接触部材を冷却コイル44と一体に設けるようにしてもよい。
 一実施形態では、図7及び図8に示すように、空気流aの入口40aはダクト下部で貯水タンク48の上方に設けられ、空気流aの出口40bはダクト40の上部に設けられる。一実施形態では、図9に示すように、空気流aの入口40aはダクト上部に設けられ、空気流aの出口40bはダクト下部の貯水タンク48の上方に設けられる。
In the gas-liquid contact zone 58, for example, contact members such as fibers, corrugated plates, flat plates, and punching metal are laminated or arranged side by side in order to lengthen the contact time between the water spray and the air flow a. Further, these contact members may be provided integrally with the cooling coil 44.
In one embodiment, as shown in FIGS. 7 and 8, the inlet 40 a of the air flow a is provided above the water storage tank 48 at the lower part of the duct, and the outlet 40 b of the air flow a is provided at the upper part of the duct 40. In one embodiment, as shown in FIG. 9, the inlet 40a for the air stream a is provided at the upper part of the duct, and the outlet 40b for the air stream a is provided above the water storage tank 48 at the lower part of the duct.
 図7及び図9に示す空調機14(14a、14c)では、冷却コイル44は空気流路に設けられ、空気流aを冷却コイル44で直接冷却するようにしている。
 図8に示す空調機14(14b)では、冷却コイル44は貯水タンク48に設けられ、まず、冷却コイル44で貯水タンク48に溜まった水を冷却し、冷却された水を散水ノズル50から散水することで、空気流aを冷却するようにしている。
In the air conditioners 14 (14 a, 14 c) shown in FIGS. 7 and 9, the cooling coil 44 is provided in the air flow path, and the air flow a is directly cooled by the cooling coil 44.
In the air conditioner 14 (14 b) shown in FIG. 8, the cooling coil 44 is provided in the water storage tank 48. First, the water stored in the water storage tank 48 is cooled by the cooling coil 44, and the cooled water is sprinkled from the watering nozzle 50. By doing so, the air flow a is cooled.
 図8に示す空調機14(14b)では、冷却コイル44が貯水タンク48に設けられるため、冷却コイル44で除湿ができない。そのため、別途除湿器62を設けている。除湿を行うときは、ダクト40に流入した空気流aを流路64を介して除湿器62に導入し、除湿器62で空気流aを除湿した後、流路66を介して気液分離ゾーン60に戻すようにする。除湿器62は、例えば、吸着材を用いて除湿するデシカント方式であってもよく、あるいは冷媒を圧縮機を有する冷凍機で冷却する方式であってもよい。 In the air conditioner 14 (14b) shown in FIG. 8, since the cooling coil 44 is provided in the water storage tank 48, the cooling coil 44 cannot perform dehumidification. Therefore, a dehumidifier 62 is provided separately. When dehumidification is performed, the air flow a flowing into the duct 40 is introduced into the dehumidifier 62 via the flow path 64, and the air flow a is dehumidified by the dehumidifier 62, and then the gas-liquid separation zone via the flow path 66. Return to 60. The dehumidifier 62 may be, for example, a desiccant system that dehumidifies using an adsorbent, or may be a system that cools the refrigerant with a refrigerator having a compressor.
 図9に示す空調機14(14c)では、散水ノズル50で散水された水は、冷却コイル44及び気液接触ゾーン58を通り、ロート状の集水パン68で集められ、貯水タンク48に戻る。空気流aは、ファン42近傍の入口40aからダクト40に入り、散水ノズル50、冷却コイル44、気液接触ゾーン58及び気液分離ゾーン60を通り、ダクト40から出ていく。このとき、散水ノズル50、冷却コイル44及び気液接触ゾーン58が設けられた空気流路は、集水パン68が壁となり、ファン42が空気を押し込むため、陽圧となる。これによって、効率良く高湿度の空気を生成できる。
 一実施形態では、図7及び図9に示す空調機14(14a、14c)において、冷却コイル44及び気液接触ゾーン58は一体型に構成することができる。
In the air conditioner 14 (14 c) shown in FIG. 9, the water sprayed by the water spray nozzle 50 passes through the cooling coil 44 and the gas-liquid contact zone 58, is collected by the funnel-shaped water collecting pan 68, and returns to the water storage tank 48. . The air flow a enters the duct 40 from the inlet 40 a near the fan 42, passes through the watering nozzle 50, the cooling coil 44, the gas-liquid contact zone 58, and the gas-liquid separation zone 60, and exits the duct 40. At this time, the air flow path in which the water spray nozzle 50, the cooling coil 44, and the gas-liquid contact zone 58 are provided has a positive pressure because the water collecting pan 68 serves as a wall and the fan 42 pushes air. Thereby, high-humidity air can be generated efficiently.
In one embodiment, in the air conditioner 14 (14 a, 14 c) shown in FIGS. 7 and 9, the cooling coil 44 and the gas-liquid contact zone 58 can be integrated.
 一実施形態では、図10に示すように、空調機14(14d)は、貯蔵庫12の貯蔵空間Sを0℃以上の温度帯で冷却して青果物fvを貯蔵するときに用いられる。空調機14(14d)は、ダクト40と、冷却コイル44と、冷凍機46とを備えるほかに、さらに、ダクト40の内部に形成される空気流路に、氷又は雪が充填された氷雪ゾーン70が形成される。空気流aは氷雪ゾーン70を通る間に温度が0℃以下で相対湿度が100%の飽和水蒸気となって貯蔵空間Sに戻り、貯蔵空間Sを高湿度状態とすることができる。氷雪ゾーン70には、別途設けられる製氷機72からシュータ74を介して氷又は雪が供給される。 In one embodiment, as shown in FIG. 10, the air conditioner 14 (14 d) is used when storing the fruits and vegetables fv by cooling the storage space S of the storage 12 in a temperature range of 0 ° C. or higher. The air conditioner 14 (14 d) includes a duct 40, a cooling coil 44, and a refrigerator 46, and further, an ice / snow zone 70 in which an air flow path formed in the duct 40 is filled with ice or snow. Is formed. The air flow a returns to the storage space S as saturated water vapor having a temperature of 0 ° C. or less and a relative humidity of 100% while passing through the ice / snow zone 70, so that the storage space S can be in a high humidity state. Ice or snow is supplied to the ice / snow zone 70 from an ice maker 72 provided separately via a shooter 74.
 氷雪ゾーン70には冷却コイル44も設けられるが、空調機14(14d)を高湿度運転モードで運転させるときは、冷凍機46を停止し、氷雪ゾーン70と空気流aとを熱交換させる。空調機14(14d)を低湿度運転モードで運転させるときは、氷雪ゾーン70に氷雪を供給する代わりに、冷凍機46を稼働させ、空気流a中の水蒸気を冷却コイル44で冷却して凝縮させ、冷却コイル44の表面に付着させることで、空気流aを除湿する。 Although the cooling coil 44 is also provided in the ice / snow zone 70, when the air conditioner 14 (14d) is operated in the high-humidity operation mode, the refrigerator 46 is stopped and the ice / snow zone 70 and the air flow a are heat-exchanged. When operating the air conditioner 14 (14d) in the low-humidity operation mode, instead of supplying ice / snow to the ice / snow zone 70, the refrigerator 46 is operated and water vapor in the air stream a is cooled and condensed by the cooling coil 44. The air flow a is dehumidified by adhering to the surface of the cooling coil 44.
 一実施形態では、図7に示す空調機14(14a)のように、ファン42は、ダクト40の空気流路から空気を誘引し、ダクト40の内部を負圧にして貯蔵空間Sに供給する誘引式ファンで構成される。
 一実施形態では、図9に示す空調機14(14c)のように、ファン42は、貯蔵空間Sから空気を押し込み、ダクト40の内部を陽圧にして空気流aを貯蔵空間Sに供給する押出し式ファンで構成してもよい。空調機14(14c)では、ダクト40において、気液分離ゾーン60は冷却コイル44の下方に配置され、気液分離ゾーン60は気液接触ゾーン58の下方に配置される。
In one embodiment, like the air conditioner 14 (14 a) illustrated in FIG. 7, the fan 42 attracts air from the air flow path of the duct 40, and supplies the interior of the duct 40 to the storage space S with a negative pressure. Consists of attracting fans.
In one embodiment, like the air conditioner 14 (14 c) shown in FIG. 9, the fan 42 pushes air from the storage space S, and supplies the air flow a to the storage space S with a positive pressure inside the duct 40. You may comprise an extrusion type fan. In the air conditioner 14 (14 c), in the duct 40, the gas-liquid separation zone 60 is disposed below the cooling coil 44, and the gas-liquid separation zone 60 is disposed below the gas-liquid contact zone 58.
 内部を温度のみ制御可能なリーファコンテナと、内部の温度及び湿度を制御可能な高湿度コンテナを用意し、青果物を次の3種類の貯蔵方式で貯槽する比較試験を行った。青果物としてキャベツを使用し、貯蔵温度はすべて2.5℃とした。
(1)冷蔵貯蔵(湿度無調整)
(2)高湿度貯蔵(相対湿度95%以上)
(3)湿度調整貯蔵(一実施形態)
 冷蔵貯蔵(1)はリーファコンテナを使い、湿度成り行きで貯蔵した。冷蔵貯蔵(1)では、貯蔵期間中リーファコンテナ内の相対湿度は70~80%に保たれた。
 高湿度貯蔵(2)は、高湿度コンテナを使い、入庫後最初相対湿度95%以上で3か月貯蔵し、次に、高湿度コンテナ内で段ボールの中に収納し、段ボールの中を相対湿度100%に保ってさらに3か月貯蔵した。
 一実施形態に係る湿度調整貯蔵(3)は、高湿度コンテナを使い、入庫後最初相対湿度95%以上で保管し、3か月後にキャベツ表面の腐敗の発生を腐敗センサで感知した後、相対湿度を90%に下げて貯蔵した。
A reefer container capable of controlling only the temperature inside and a high humidity container capable of controlling the temperature and humidity inside were prepared, and a comparative test was conducted in which fruits and vegetables were stored in the following three types of storage methods. Cabbage was used as fruits and vegetables, and the storage temperature was all set to 2.5 ° C.
(1) Refrigerated storage (no humidity adjustment)
(2) High humidity storage (relative humidity 95% or more)
(3) Humidity adjusted storage (one embodiment)
In refrigerated storage (1), a leafer container was used and the humidity was stored. In refrigerated storage (1), the relative humidity in the reefer container was kept at 70-80% during the storage period.
High-humidity storage (2) uses a high-humidity container and stores it at a relative humidity of 95% or more for 3 months after storage. Next, store it in cardboard in a high-humidity container and store the relative humidity in the cardboard. It was kept at 100% and stored for another 3 months.
The humidity-controlled storage (3) according to one embodiment uses a high-humidity container and stores it at a relative humidity of 95% or more after warehousing. After three months, the rot sensor detects the occurrence of rot on the cabbage surface. Humidity was reduced to 90% and stored.
 青果物の腐敗の感知は、以下の方法で行った。初めに正常な青果物の表面をスキャンしてブランクとする。次に、保管中の青果物の表面をスキャンし、2つの分光スペクトルを比較する。図5に示すように、腐敗特有の分光スペクトルの変化が、260nm±10nm、280nm±10nm、400nm±10nm、460nm±10nm、700nm±10nmのいずれかの波長に現れるため、これらの変化で腐敗発生の有無を判定する。
 一実施形態では、腐敗センサ22は、例えば、腐敗が発生しない状態でオフ信号を出し、腐敗が発生するとオン信号を出すように構成する。腐敗センサ22がオフ信号を出す場合、そのまま相対湿度が95%以上の高湿度状態を保つ。腐敗センサ22がオン信号を出すと、散水機47の作動を停止し、相対湿度を80~95%に下げる。
The detection of rot of fruits and vegetables was performed by the following method. First, the surface of normal fruit and vegetables is scanned to make a blank. Next, the surface of the fruits and vegetables being stored is scanned and the two spectral spectra are compared. As shown in FIG. 5, the change in the spectroscopic spectrum peculiar to rot appears at any of the wavelengths of 260 nm ± 10 nm, 280 nm ± 10 nm, 400 nm ± 10 nm, 460 nm ± 10 nm, and 700 nm ± 10 nm. The presence or absence of is determined.
In one embodiment, for example, the corruption sensor 22 is configured to output an off signal in a state where no corruption occurs, and to output an on signal when corruption occurs. When the rot sensor 22 outputs an off signal, the high humidity state where the relative humidity is 95% or more is maintained. When the rot sensor 22 gives an ON signal, the operation of the sprinkler 47 is stopped and the relative humidity is lowered to 80 to 95%.
 なお、前述のように、腐敗が発生しないときと腐敗が発生したときの2つの分光スペクトルを比較する代わりに、青果物fvから反射する反射光の分光スペクトルの推移から腐敗発生の有無を判定するようにしてもよい。 As described above, instead of comparing the two spectral spectra when no rot occurs and when rot occurs, the presence or absence of rot is determined from the transition of the spectral spectrum of the reflected light reflected from the fruits and vegetables fv. It may be.
 上記試験の結果を図11~図13に示す。冷蔵貯蔵(1)の場合、重量歩留まりが3か月で75%に低下した。腐敗の発生は見られなかったが、乾燥が進みすぎ、その後歩留まりが極端に低下したため、ここで試験を終了した。総合評価の製品歩留まりは0%であった。
 高湿度貯蔵(2)の場合、重量歩留まりが3か月で95%、6か月で90%であった。また、貯蔵3か月で腐敗が発生した。貯蔵3か月後段ボールに移し、相対湿度100%の高湿度状態で保管したらさらに腐敗が進み、貯蔵6か月で8割以上が腐敗した。総合評価の製品歩留まりは20%であった。
 湿度調整貯蔵(3)の場合、重量歩留まりが3か月で95%であり、貯蔵3か月で腐敗が発生した。これを腐敗センサで感知し、相対湿度を90%に下げて貯蔵を続けた。その結果、腐敗の繁殖が遅くなり、貯蔵6か月で腐敗は2割程度に留まった。重量歩留まりも85%と高い値を示した。総合評価の製品歩留まりは80%であった。
The results of the above test are shown in FIGS. In the case of refrigerated storage (1), the weight yield dropped to 75% in 3 months. Although no spoilage was observed, the test was terminated here because the drying progressed too much and the yield was extremely reduced. The overall product yield was 0%.
In the case of high humidity storage (2), the weight yield was 95% in 3 months and 90% in 6 months. In addition, rot occurred after 3 months of storage. After 3 months of storage, the product was transferred to corrugated cardboard and stored in a high humidity state with a relative humidity of 100%. The product yield of comprehensive evaluation was 20%.
In the case of humidity adjusted storage (3), the weight yield was 95% in 3 months, and rot occurred in 3 months of storage. This was detected by a rot sensor, and storage was continued with the relative humidity lowered to 90%. As a result, spoilage of spoilage was slow, and spoilage remained at about 20% after 6 months of storage. The weight yield was as high as 85%. The product yield of comprehensive evaluation was 80%.
 一実施形態によれば、貯蔵中の相対湿度を制御することで、青果物の瑞々しさを保ちながらカビや細菌等の微生物による腐敗を抑えることができ、これによって、長期に亘り歩留まりの低下を抑制できる貯蔵が可能になる。 According to one embodiment, by controlling the relative humidity during storage, it is possible to suppress spoilage caused by microorganisms such as mold and bacteria while maintaining the freshness of fruits and vegetables, thereby reducing the yield over a long period of time. Storage that can be controlled becomes possible.
 10(10A、10B)  貯蔵装置
 12  貯蔵庫
 14(14a、14b、14c、14d)  空調機
 16  制御部
 18  操作端末
 20  運転モード切替えスイッチ
 22  腐敗センサ
 40  ダクト
 42  ファン
 44  冷却コイル
 46  冷凍機
 47  散水機
 48  貯水タンク
 50  散水ノズル
 52  給水路
 54  給水ポンプ
 56  ヒータ
 58  気液接触ゾーン
 60  気液分離ゾーン
 62  除湿器
 64、66  流路
 68  集水パン
 70  氷雪ゾーン
 72  製氷機
 74  シュータ
 L   照射光
 M   微生物
 R   反射光
 S   貯蔵空間
 a   空気流
 fv  青果物
10 (10A, 10B) Storage device 12 Storage 14 (14a, 14b, 14c, 14d) Air conditioner 16 Control unit 18 Operation terminal 20 Operation mode changeover switch 22 Rotation sensor 40 Duct 42 Fan 44 Cooling coil 46 Refrigerator 47 Sprinkler 48 Water storage tank 50 Water spray nozzle 52 Water supply channel 54 Water supply pump 56 Heater 58 Gas-liquid contact zone 60 Gas-liquid separation zone 62 Dehumidifier 64, 66 Channel 68 Water collecting pan 70 Ice / snow zone 72 Ice machine 74 Shutter L Irradiation light M Microorganism R Reflection Light S Storage space a Air flow fv Fruit and vegetables

Claims (15)

  1.  貯蔵庫の貯蔵空間に青果物を高湿度状態に保持する高湿度保管工程と、
     前記高湿度保管工程において、前記青果物に発生する腐敗の有無を検査する腐敗検査工程と、
     前記腐敗検査工程で腐敗を検出したとき、前記貯蔵空間を前記高湿度状態より低湿度で前記青果物を保管する低湿度保管工程と、
     を備えることを特徴とする青果物の貯蔵方法。
    A high-humidity storage process for keeping fruits and vegetables in a high-humidity state in the storage space of the storage;
    In the high-humidity storage step, a rot inspection step for inspecting the presence or absence of rot occurring in the fruits and vegetables,
    A low-humidity storage step for storing the fruits and vegetables at a lower humidity than the high-humidity state when the rot is detected in the rot inspection step;
    A method for storing fruits and vegetables characterized by comprising:
  2.  前記高湿度保管工程において、前記貯蔵空間の相対湿度が95%以上となるように制御することを特徴とする請求項1に記載の青果物の貯蔵方法。 The method for storing fruits and vegetables according to claim 1, wherein, in the high humidity storage step, the storage space is controlled so that the relative humidity is 95% or more.
  3.  前記低湿度保管工程において、前記貯蔵空間の相対湿度が80%以上95%以下となるように制御することを特徴とする請求項1又は2に記載の青果物の貯蔵方法。 The method for storing fruits and vegetables according to claim 1 or 2, wherein in the low humidity storage step, the storage space is controlled so that the relative humidity is 80% or more and 95% or less.
  4.  前記カビ検査工程は、作業員が目視により腐敗の有無を検査するものであることを特徴とする請求項1乃至3の何れか一項に記載の青果物の貯蔵方法。 The method for storing fruits and vegetables according to any one of claims 1 to 3, wherein in the mold inspection step, an operator visually inspects the presence or absence of corruption.
  5.  前記腐敗検査工程は、前記青果物に発生した腐敗を検出可能な腐敗センサを用いて腐敗の有無を検査するものであることを特徴とする請求項1乃至3の何れか一項に記載の青果物の貯蔵方法。 4. The fruit or vegetable according to claim 1, wherein the rot inspection step is to inspect the presence or absence of rot by using a rot sensor capable of detecting rot occurring in the fruit or vegetable. 5. Storage method.
  6.  前記腐敗センサは、前記青果物に波長が220nm以上800nm以下の光を照射し、前記青果物から反射した反射光をスペクトル分析して腐敗の有無を判定するものであることを特徴とする請求項5に記載の青果物の貯蔵方法。 The said rot sensor irradiates the said fruits and vegetables with light with a wavelength of 220 nm or more and 800 nm or less, and spectrum-analyzes the reflected light reflected from the said fruits and vegetables and determines the presence or absence of rot. The storage method of fruit and vegetables as described.
  7.  前記高湿度保管工程において、前記貯蔵空間の相対湿度が100%以下に保持されることを特徴とする請求項1乃至6の何れか一項に記載の青果物の貯蔵方法。 The method for storing fruits and vegetables according to any one of claims 1 to 6, wherein in the high humidity storage step, the relative humidity of the storage space is maintained at 100% or less.
  8.  収穫時の傷口を有する前記青果物に対して、入庫時に前記高湿度保管工程および前記低湿度保管工程における前記貯蔵空間の温度より高く前記傷口の治癒が可能な温度域に保持して前記傷口を治癒する治癒工程を備えることを特徴とする請求項1乃至7の何れか一項に記載の青果物の貯蔵方法。 For the fruits and vegetables having a wound at the time of harvest, the wound is healed by holding it at a temperature range higher than the temperature of the storage space in the high-humidity storage step and the low-humidity storage step at the time of warehousing. The method for storing fruits and vegetables according to any one of claims 1 to 7, further comprising a healing step.
  9.  青果物を貯蔵するための貯蔵庫と、
     前記貯蔵庫の貯蔵空間の湿度を制御可能な空調機と、
     高湿度運転モードと、前記青果物に発生した腐敗の成長を抑制するように該高湿度運転モードより低湿度の低湿度運転モードとの何れかを選択すべきかを示す運転モード選択信号を受け取り、前記空調機を選択された運転モードで運転制御するように構成された制御部と、
     を備えることを特徴とする青果物の貯蔵装置。
    A storage for storing fruits and vegetables;
    An air conditioner capable of controlling the humidity of the storage space of the storage; and
    Receiving an operation mode selection signal indicating whether to select a high humidity operation mode and a low humidity operation mode having a lower humidity than the high humidity operation mode so as to suppress the growth of rot occurring in the fruits and vegetables; A controller configured to control operation of the air conditioner in a selected operation mode;
    A storage device for fruits and vegetables.
  10.  前記制御部に前記運転モード選択信号を送る操作端末であって、前記青果物に腐敗を検出したときに操作される運転モード切替えスイッチを含む前記操作端末を備え、
     前記制御部は、
     前記操作端末から送られる前記運転モード選択信号に基づいて、前記空調機を前記高湿度運転モード又は前記低湿度運転モードのどちらかに切り替えるように構成されることを特徴とする請求項9に記載の青果物の貯蔵装置。
    An operation terminal that sends the operation mode selection signal to the control unit, comprising the operation terminal including an operation mode changeover switch that is operated when the fruit or vegetable is detected to be rotten,
    The controller is
    10. The air conditioner is configured to switch to either the high humidity operation mode or the low humidity operation mode based on the operation mode selection signal sent from the operation terminal. Fruit and vegetable storage equipment.
  11.  前記青果物に発生した腐敗を検出可能であり、かつ、前記腐敗を検出したとき腐敗検出信号を前記制御部に送信可能に構成された腐敗センサを備え、
     前記制御部は、前記腐敗センサから前記腐敗検出信号が送られたとき、前記空調機を前記低湿度運転モードで運転させるように構成されることを特徴とする請求項9に記載の青果物の貯蔵装置。
    A rotting sensor configured to be able to detect rotting that has occurred in the fruits and vegetables and to transmit a rotting detection signal to the control unit when the rotting is detected;
    The fruit and vegetables storage according to claim 9, wherein the controller is configured to operate the air conditioner in the low-humidity operation mode when the corruption detection signal is sent from the corruption sensor. apparatus.
  12.  前記腐敗センサは、
     前記青果物に光を照射するための発光器と、
     前記照射された光が前記青果物の表面で反射した反射光を受光するための受光器と、
     前記受光器で受光した前記反射光の分光スペクトルを得るための分光器と、
     を備え、
     前記分光スペクトルの二次微分値における微生物由来の成分を検出するように構成されることを特徴とする請求項11に記載の青果物の貯蔵装置。
    The corruption sensor is
    A light emitter for irradiating the fruits and vegetables;
    A light receiver for receiving the reflected light reflected by the surface of the fruits and vegetables, and
    A spectroscope for obtaining a spectrum of the reflected light received by the light receiver;
    With
    The fruit and vegetable storage device according to claim 11, wherein the device is configured to detect a component derived from a microorganism in a second derivative value of the spectrum.
  13.  前記高湿度運転モードは、前記貯蔵空間を相対湿度が95%以上となるように前記空調機を運転させるものであり、
     前記低湿度運転モードは、前記貯蔵空間を相対湿度が80%以上95%以下になるように前記空調機を運転させるものであることを特徴とする請求項9乃至12の何れか一項に記載の青果物の貯蔵装置。
    The high humidity operation mode is to operate the air conditioner so that the relative humidity of the storage space is 95% or more,
    The low-humidity operation mode is to operate the air conditioner so that the relative humidity of the storage space is 80% or more and 95% or less. Fruit and vegetable storage equipment.
  14.  前記空調機は、
     前記貯蔵空間に連通する空気流路を内部に形成したダクトと、
     前記ダクトの下部に設けられた貯水タンクと、
     前記ダクト内の空気流路又は前記貯水タンクに設けられた冷却コイルと、
     前記冷却コイルに冷媒を供給するための冷凍機と
     前記冷却コイルに散水するための散水部と、
     を備えることを特徴とする請求項9乃至13の何れか一項に記載の青果物の貯蔵装置。
    The air conditioner
    A duct formed therein with an air flow path communicating with the storage space;
    A water storage tank provided in a lower portion of the duct;
    A cooling coil provided in an air flow path in the duct or the water storage tank;
    A refrigerator for supplying a refrigerant to the cooling coil; a watering part for watering the cooling coil;
    The fruit and vegetable storage device according to any one of claims 9 to 13, further comprising:
  15.  前記空調機は、
     前記貯蔵空間に連通する空気流路を内部に形成したダクトと、
     前記ダクト内の空気流路に設けられた冷却コイルと、
     前記冷却コイルに冷媒を供給するための冷凍機と
     前記空気流路に形成され氷又は雪が充填された氷雪ゾーンと、
     前記氷雪ゾーンに前記氷又は前記雪を供給するための製氷機と、
     を備えることを特徴とする請求項9乃至13の何れか一項に記載の青果物の貯蔵装置。
    The air conditioner
    A duct formed therein with an air flow path communicating with the storage space;
    A cooling coil provided in an air flow path in the duct;
    A refrigerator for supplying a refrigerant to the cooling coil; an ice / snow zone formed in the air flow path and filled with ice or snow;
    An ice making machine for supplying the ice or the snow to the ice-snow zone;
    The fruit and vegetable storage device according to any one of claims 9 to 13, further comprising:
PCT/JP2019/016408 2018-04-20 2019-04-17 Storage method and storage device for produce WO2019203252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-081046 2018-04-20
JP2018081046A JP7075807B2 (en) 2018-04-20 2018-04-20 Fruit and vegetable storage method and storage device

Publications (1)

Publication Number Publication Date
WO2019203252A1 true WO2019203252A1 (en) 2019-10-24

Family

ID=68238831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016408 WO2019203252A1 (en) 2018-04-20 2019-04-17 Storage method and storage device for produce

Country Status (2)

Country Link
JP (1) JP7075807B2 (en)
WO (1) WO2019203252A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166870A1 (en) * 2020-02-18 2021-08-26

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102262500B1 (en) * 2020-01-03 2021-06-09 김봉석 Agricultural product cold water storage device
CN118042924A (en) * 2021-07-15 2024-05-14 大金工业株式会社 Management device and method for controlling environment in repository
JP2024009657A (en) * 2022-07-11 2024-01-23 株式会社デンソー Freshness preserving system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579746A (en) * 1991-09-19 1993-03-30 Orion Mach Co Ltd Method and device for humidity detection in high humidity refrigerator and humidity controller
JP2007228817A (en) * 2006-02-27 2007-09-13 Koito Ind Ltd Method and device for maintaining function of fresh product
JP2013235014A (en) * 2009-04-21 2013-11-21 Univ Of Tokyo Method and device for measuring number or quantity of microorganism
JP2016024153A (en) * 2014-07-24 2016-02-08 株式会社前川製作所 Measurement device and measurement method for protein amount

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579746A (en) * 1991-09-19 1993-03-30 Orion Mach Co Ltd Method and device for humidity detection in high humidity refrigerator and humidity controller
JP2007228817A (en) * 2006-02-27 2007-09-13 Koito Ind Ltd Method and device for maintaining function of fresh product
JP2013235014A (en) * 2009-04-21 2013-11-21 Univ Of Tokyo Method and device for measuring number or quantity of microorganism
JP2016024153A (en) * 2014-07-24 2016-02-08 株式会社前川製作所 Measurement device and measurement method for protein amount

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166870A1 (en) * 2020-02-18 2021-08-26
WO2021166870A1 (en) * 2020-02-18 2021-08-26 株式会社前川製作所 Cooling device and cooling method
JP7364777B2 (en) 2020-02-18 2023-10-18 株式会社前川製作所 Cooling device and cooling method

Also Published As

Publication number Publication date
JP7075807B2 (en) 2022-05-26
JP2019190681A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
WO2019203252A1 (en) Storage method and storage device for produce
CA3157460A1 (en) Method and apparatus for autonomous indoor farming
CN102871201A (en) Drying device suitable for food and food drying method thereof
US20090211274A1 (en) Process and apparatus for pretreatment of fresh food products
WO2019015306A1 (en) Fruit and vegetable phase temperature pre-cooling-compatible multi-coupling anti-aging treatment technology and equipment
JP6843325B2 (en) Fruit and vegetable storage device and fruit and vegetable storage method
CN205106213U (en) Fruit vegetables store atmosphere preservation device of usefulness
US20240049735A9 (en) Vapor pressure control system for drying and curing products
CN110050826A (en) A kind of biology suspend mode fresh-keeping system and method
CN103315051A (en) Air-conditioned cold store
CN208515461U (en) A kind of intelligent multifunctional gas molecule cold chain vehicle
Mengeş et al. The effects of drying parameters on drying characteristics, colorimetric differences, antioxidant capacity and total phenols of sliced kiwifruit
US11549696B2 (en) Dehumidification system with variable capacity
JP2013034454A (en) Method of maturing fruit and vegetable
US20110123698A1 (en) Process and apparatus for pretreatment of fresh food products
CN115046346B (en) Control method and control device of refrigerator, refrigerator and storage medium
KR101162245B1 (en) A pre-cooling and keeping system for agriculture
Lomeiko et al. Vacuum cooling technology for pre-cooling of cherry fruits
EP3745869B1 (en) Vapor pressure control system for drying and curing products
JPH04330269A (en) Storage of wine and equipment therefor
JP2017108680A (en) Garden stuff preservation apparatus and preservation method
CN111006430A (en) Food is with fresh-keeping cold storage plant
CN105103823B (en) Stocking system with automatic air regulation
US20240196913A1 (en) Method of controlling the environment in a grow room
Fadanelli et al. Analysis and Control Systems in Postharvest Operations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788853

Country of ref document: EP

Kind code of ref document: A1