WO2019203234A1 - Method for producing polyether - Google Patents

Method for producing polyether Download PDF

Info

Publication number
WO2019203234A1
WO2019203234A1 PCT/JP2019/016334 JP2019016334W WO2019203234A1 WO 2019203234 A1 WO2019203234 A1 WO 2019203234A1 JP 2019016334 W JP2019016334 W JP 2019016334W WO 2019203234 A1 WO2019203234 A1 WO 2019203234A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyether
organic solvent
producing
polar organic
group
Prior art date
Application number
PCT/JP2019/016334
Other languages
French (fr)
Japanese (ja)
Inventor
優 長岡
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020514396A priority Critical patent/JP7393330B2/en
Publication of WO2019203234A1 publication Critical patent/WO2019203234A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/30Post-polymerisation treatment, e.g. recovery, purification, drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon

Definitions

  • the present invention relates to a method for producing a polyether.
  • the reactive silicon group-containing polyether can be crosslinked even at room temperature by forming a siloxane bond accompanied by a hydrolysis reaction of the reactive silicon group due to moisture or the like. It is known that a reactive silicon group-containing polyether has a property of giving a rubber-like cured product by such a crosslinking reaction.
  • Reactive silicon group-containing polyether has already been industrially produced. Reactive silicon-containing polyethers are widely used in applications such as sealants, adhesives, and paints.
  • a ring-opening polymerization of alkylene oxide is carried out using an alkali metal such as KOH or a double metal cyanide complex as a catalyst to produce a polyether having a hydroxyl group at the terminal.
  • an alkali metal such as KOH or a double metal cyanide complex
  • the method of converting the terminal hydroxyl group which the said polyether has into an olefin, and obtaining the unsaturated group containing polyether which has an unsaturated group at the terminal is known (refer patent document 1).
  • the present invention has been made in view of the above problems, and includes a crude polyether containing a water-soluble compound and an aprotic polar organic solvent, or a crude polyether, a protic polar organic solvent, and a nonpolar organic solvent. And then separating the precipitated solids by stationary separation, centrifugation or filtration, thereby producing a purified polyether that can efficiently remove impurities from the polyether without using water It aims to provide a method.
  • a method for producing a polyether comprising a step of removing the water-soluble compound from a crude polyether containing a water-soluble compound, Step (1) mixing the crude polyether and the organic solvent, and Step (2) a step of removing solids precipitated in the mixed liquid of the crude polyether and the organic solvent, Including A method for producing a polyether, wherein the organic solvent is an aprotic polar organic solvent or a combination of a protic polar organic solvent and a nonpolar organic solvent.
  • Step (1A) a step of mixing the crude unsaturated group-containing polyether and an organic solvent
  • Step (2A) a step of removing the solid matter precipitated in the mixed liquid of the crude unsaturated group-containing polyether and the organic solvent
  • R 1 and R 2 are the same or different alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3.
  • R 3 may be the same or different, X represents a hydroxyl group or a hydrolyzable group, and when two or more X exist, they are the same Or may be different, a represents 0, 1, 2, or 3, b represents 0, 1, or 2, and m — (SiR 2 2-b X b O) — When m is an integer of 2 or more in the group represented by May also be, may be different, m represents an integer of 0 to 19, where, a and b satisfy the a + ⁇ b ⁇ 1.)
  • a method for producing a polyether comprising a step of removing the water-soluble compound from a polyether containing a water-soluble compound (hereinafter referred to as crude polyether), Step (1): A step of mixing an aprotic polar solvent with a crude polyether Step (2): A method for producing a polyether comprising at least a step of removing precipitated solids.
  • a method for producing a polyether comprising a step of removing the water-soluble compound from a polyether containing a water-soluble compound (hereinafter referred to as crude polyether), Step (1): Step of mixing a protic polar solvent (excluding water) and a non-polar solvent with a crude polyether Step (2): A polyether comprising at least a step of removing precipitated solids Production method.
  • the water-soluble compound is removed from the unsaturated group-containing polyether containing the water-soluble compound (hereinafter referred to as crude unsaturated group-containing polyether).
  • Step (1) Step of mixing an aprotic polar solvent with a crude unsaturated group-containing polyether
  • Step (2) At least a step of removing the precipitated solid, and then represented by the following general formula (1)
  • R 1 and R 2 are the same or different alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3 SiO—.
  • R 1 or R 2 When two or more R 1 or R 2 are present, they may be the same or different, where R ′ is a monovalent monovalent carbon having 1 to 20 carbon atoms. And three R's may be the same or different, and X represents a hydroxyl group or a hydrolyzable group, and when two or more Xs are present, they are the same.
  • A may be 0, 1, 2 or 3
  • b may be 0, 1, or 2.
  • Step (1) Step of mixing a polar unsaturated solvent-containing polyether with a protic polar solvent (excluding water) and a nonpolar solvent
  • Step (2) including at least a step of removing a precipitated solid, A method for producing a reactive silicon group-containing polyether obtained by hydrosilylation with a silane compound represented by the general formula (1).
  • R 1 and R 2 are the same or different alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3 SiO—.
  • R ′ is a monovalent monovalent carbon having 1 to 20 carbon atoms.
  • three R's may be the same or different, and X represents a hydroxyl group or a hydrolyzable group, and when two or more Xs are present, they are the same.
  • A may be 0, 1, 2 or 3, and b may be 0, 1, or 2.
  • the crude polyether and the aprotic polar organic solvent are mixed, or the crude polyether and the protic polar organic are mixed.
  • Solvent and nonpolar organic solvent are mixed, and then the precipitated solid is separated by standing separation, centrifugation or filtration, so that water-soluble compounds can be efficiently removed from the polyether without vigorous stirring and use of water.
  • the method for producing the polyether is not particularly limited, and a known method can be used.
  • the crude polyether used in the method for producing a polyether is not particularly limited as long as it is a polyether containing a water-soluble compound as an impurity.
  • a polyether selected from the group consisting of a hydroxyl-terminated polyether, an unsaturated group-containing polyether and a reactive silicon group-containing polyether can be used.
  • the manufacturing method of patent document 1 is preferable, for example.
  • an unsaturated group-containing halide having a carbon-carbon unsaturated group is reacted to form a carbon- Introduce a carbon unsaturated group.
  • the method for producing the hydroxyl-terminated polyether is not particularly limited, and a known method can be used.
  • the main chain structure of the hydroxyl-terminated polyether is preferably a repeating unit represented by —RO—.
  • R is a divalent organic group having 1 to 20 carbon atoms, which may contain heteroatoms such as oxygen, nitrogen, sulfur, silicon, phosphorus and halogen atoms.
  • a plurality of R in the main chain may be the same group or two or more different groups.
  • R is preferably an alkylene group.
  • the number of carbon atoms of the alkylene group is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 4.
  • repeating unit represented by —R—O— —CH 2 CH 2 O—, —CH (CH 3 ) CH 2 O—, —CH (C 2 H 5 ) CH 2 O—, —C (CH 3) 2 CH 2 O-, and -CH 2 CH 2 CH 2 CH2O- like
  • -CH 2 CH 2 O -, - CH (CH 3) CH 2 O- are preferable
  • -CH ( CH 3 ) CH 2 O— is particularly preferred.
  • the main chain of the hydroxyl group-terminated polyether may be branched or crosslinked.
  • the hydroxyl-terminated polyether is preferably produced by ring-opening polymerization of alkylene oxide as an initiator in the presence of a double metal cyanide complex catalyst.
  • alkylene oxide examples include ethylene oxide, propylene oxide, ⁇ -butylene oxide, ⁇ -butylene oxide, hexene oxide, cyclohexene oxide, styrene oxide, and ⁇ -methylstyrene oxide.
  • substituted or unsubstituted glycidyl ethers having 2 to 12 carbon atoms such as methyl glycidyl ether, ethyl glycidyl ether, isopropyl glycidyl ether, butyl glycidyl ether, allyl glycidyl ether, and phenyl glycidyl ether, etc. Can also be used.
  • the initiator examples include methanol, ethanol, 1-propanol, 2-propanol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, Monohydric alcohols such as 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol and 2,2-dimethyl-1-propanol, ethylene glycol, Propylene glycol, butanediol, hexamethylene glycol, methallyl alcohol, hydrogenated bisphenol A, neopentyl glycol, polybutadiene diol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol Le, polypropylene triol, polypropylene tetraol, dipropylene glycol, glycerin, trimethylol methane, may be mentioned
  • hydroxyl-terminated polyether is then converted to a polyether having a terminal group represented by -OM (M is an alkali metal) by reaction with a metal alkoxide (alkoxideation reaction).
  • M is an alkali metal
  • the metal alkoxide is not particularly limited as long as it is a compound that can replace the hydrogen atom in the terminal hydroxyl group (—OH) of the hydroxyl-terminated polyether with an alkali metal atom.
  • an alkali metal alkoxide having 1 to 4 carbon atoms is used as the metal alkoxide.
  • alkali metal alkoxide sodium methoxide, potassium methoxide, sodium ethoxide and potassium ethoxide are preferable, sodium methoxide and potassium methoxide are more preferable, and sodium methoxide is particularly preferable in view of availability.
  • Two or more kinds of metal alkoxides can be used in combination, but it is preferable to use one kind alone.
  • the polyether having a terminal group represented by -OM is converted into an unsaturated group-containing polyether containing metal impurities before purification by reaction with a halide (allylation reaction).
  • R 3 is a divalent organic group having 1 to 20 carbon atoms which may contain heteroatoms such as oxygen, nitrogen, sulfur, silicon, phosphorus and halogen atoms
  • R 4 , R 5 Is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • Y is a halogen atom.
  • allyl chloride and methallyl chloride (3-chloro-2-methyl-1-propene) are preferable from the viewpoint of availability.
  • Two or more kinds of unsaturated group-containing halides can be used in combination, but it is preferable to use one kind alone.
  • the epoxy compound having a carbon-carbon unsaturated bond is preferably allyl glycidyl ether.
  • the metal alkoxide or the alkaline impurity in the metal alkoxide is consumed by reacting with the unsaturated group-containing halide.
  • the solubility of these alkaline components is increased, and the alkaline component and the unsaturated group-containing halide are added. The reaction of is promoted. As a result, the consumption rate of the alkaline component can be increased.
  • Examples of the alcohol having 1 to 3 carbon atoms include methanol, ethanol, 1-propanol, and 2-propanol, and methanol and ethanol are more preferable.
  • methanol is particularly preferred because it is a better solvent for the alkaline component and can dissolve the alkaline component with a small number of added parts.
  • the alcohol is not limited thereto, and the number of hydroxyl groups in the molecule may be two or more, and the molecule may contain atoms other than carbon, hydrogen, and oxygen.
  • an alcohol having 4 or more carbon atoms is used, the solubility of the alkaline component is insufficient and the effect is limited.
  • alcohols having 4 or more carbon atoms have a high boiling point and are difficult to remove after the reaction.
  • Two or more kinds of alcohols having 1 to 3 carbon atoms or water can be used in combination, but one kind is preferably used alone.
  • the number of added alcohol or water having 1 to 3 carbon atoms is not particularly limited, but is preferably 0.05 to 20 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the unsaturated group-containing polyether. preferable. If the number of added parts is too small, the alkali component is not sufficiently dissolved, and the effect of adding alcohol or water may be limited. In addition, if the number of added parts is excessive, an increase in pressure at the time of adding alcohol or water becomes large, which may cause inconveniences such as difficulty in addition.
  • the stirring time after addition of alcohol or water is not particularly limited, but is preferably within 8 hours, and more preferably within 4 hours. Even if the stirring time is excessively long, it is not possible to obtain an alkaline component removal effect that is commensurate with a decrease in production efficiency.
  • the unsaturated group-containing polyether obtained by the above method contains metal impurities and salts.
  • water-soluble compounds to be removed in the subsequent purification step include compounds derived from alkali metal compounds or double metal cyanide complex catalysts such as zinc salts, cobalt salts and / or alkali metal salts.
  • the method for producing the purified polyether is a method including a step of removing the water-soluble compound from the crude polyether containing the water-soluble compound.
  • the above manufacturing method is Step (1) mixing the crude polyether and the organic solvent, and Step (2) a step of removing solids precipitated in the mixed liquid of the crude polyether and the organic solvent, including.
  • the organic solvent used in step (1) and step (2) is an aprotic polar organic solvent or a combination of a protic polar organic solvent and a nonpolar organic solvent.
  • the purification is performed by mixing a crude polyether containing a water-soluble compound and an aprotic polar organic solvent, or a crude polyether, a protic polar organic solvent, and a nonpolar organic solvent, respectively. Thereafter, the precipitated solid is separated by stationary separation, centrifugation or filtration.
  • the aprotic polar organic solvent is an organic solvent having no dissociative H having a relative dielectric constant of 10 or more.
  • the protic polar organic solvent is an organic solvent having a dissociative H having a relative dielectric constant of 10 or more.
  • a nonpolar organic solvent is an organic solvent having a relative dielectric constant of less than 10.
  • the aprotic polar organic solvent is not particularly limited.
  • the aprotic polar organic solvent include ketone solvents such as acetone, acetylacetone, methyl ethyl ketone, and methyl isobutyl ketone; nitrile solvents such as acetonitrile, propionitrile, and benzonitrile; formamide, N, N-dimethylformamide, Amide solvents such as N, N-dimethylacetamide are preferred, ketone solvents such as acetone, acetylacetone, methyl ethyl ketone, and methyl isobutyl ketone; amide solvents such as formamide, N, N-dimethylformamide, and N, N-dimethylacetamide are preferred.
  • ketone solvents such as acetone, acetylacetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • acetone solvent acetone and methyl ethyl ketone are more preferable, and acetone is particularly preferable.
  • the protic polar organic solvent is not particularly limited.
  • the protic polar organic solvent include alcohol solvents such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol, and 1-hexanol; formic acid, acetic acid, phenol and the like are preferable, and methanol, ethanol Alcohol solvents such as propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol and 1-hexanol are particularly preferred.
  • the alcohol solvent is preferably an alcohol having 1 to 3 carbon atoms.
  • Examples of the alcohol having 1 to 3 carbon atoms include methanol, ethanol, 1-propanol, 2-propanol, etc., methanol and ethanol are more preferable, and methanol is particularly preferable.
  • the number of hydroxyl groups in the molecule may be two or more, and atoms other than carbon, hydrogen, and oxygen may be contained in the molecule.
  • the amount of the aprotic polar organic solvent or the protic polar organic solvent mixed with the polyether is preferably 1 to 1000 parts by weight and more preferably 5 to 500 parts by weight with respect to 100 parts by weight of the crude polyether. .
  • the nonpolar organic solvent is not particularly limited.
  • the nonpolar organic solvent include ethers such as diethyl ether; chain or cyclic saturated hydrocarbons such as hexane, octane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; ethyl acetate and butyl acetate.
  • Esters such as propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; aldehydes such as acetaldehyde and propionaldehyde are preferred, chain or cyclic saturated hydrocarbons, aromatic hydrocarbons are more preferred, chain or cyclic Saturated hydrocarbons are particularly preferred.
  • the chain or cyclic saturated hydrocarbon is preferably hexane or cyclohexane.
  • the mixing ratio as a weight ratio of the protic polar organic solvent / non-polar organic solvent is preferably 1/1 to 1/100, more preferably 1/1 to 1/30.
  • a protic polar organic solvent and a nonpolar organic solvent are used at a mixing ratio within such a range, it is easy to obtain the desired effect by the combined use of both, and it is not necessary to use an excessively large apparatus, and after purification It is easy to remove the solvent in a short time.
  • the state after adding the organic solvent is not particularly limited. It is preferable that the polyether and the organic solvent become a homogeneous solution. In addition, what is necessary is just that the polyether and the organic solvent form the uniform solution that it is a uniform solution.
  • the polyether and the organic solvent form a uniform solution in this state.
  • Liquid-liquid phase separation is preferred.
  • the high-concentration water-soluble compound is extracted while extracting the high-concentration water-soluble compound in one of the two liquid phases formed after the liquid-liquid separation.
  • the method of phase separation is preferably temperature change, pH change, and salting out, more preferably temperature change and pH change, and particularly preferably temperature change.
  • a method of phase separation a method of changing the temperature of the homogeneous solution is preferable.
  • the temperature change is not particularly limited as long as liquid-liquid phase separation is possible, and it may be a temperature rise or cooling, and cooling is preferred. More specifically, when the organic solvent is an aprotic polar organic solvent, the liquid-liquid phase separation is separated into a phase mainly composed of polyether and a phase mainly composed of organic solvent.
  • the organic solvent is a combination of a protic polar organic solvent and a nonpolar organic solvent, a phase mainly composed of polyether and aprotic polar organic solvent, and a phase mainly composed of polyether and apolar organic solvent And to separate.
  • the temperature at which the polyether and the organic solvent are mixed is not particularly limited.
  • the temperature at which the polyether and the solvent are mixed is preferably 0 ° C. or higher. However, if the temperature exceeds 140 ° C., the polymer may be deteriorated. In particular, it is preferable to mix the polyether and the organic solvent at a temperature at which a uniform solution is obtained.
  • the method for mixing the polyether and the organic solvent is not particularly limited.
  • a mixing method a method using a shaker or a stirrer is preferable.
  • the temperature at which the solid is precipitated is not particularly limited.
  • the temperature at which the solid is precipitated is preferably 0 ° C. or higher. However, if the temperature exceeds 140 ° C., the polymer may be deteriorated, and therefore 0 to 140 ° C. is preferable for practical use.
  • the temperature is preferably such that the polyether and the organic solvent are phase separated.
  • the operation for separating the solid is not particularly limited.
  • the separation operation is preferably an operation including at least one of stationary separation, centrifugation or filtration, and more preferably centrifugation or filtration.
  • the polyether containing solid matter may be supplied to the filtration device as it is.
  • the filter aid can be dispersed in purified polyether and used as a body feed, but it can also be used by pre-coating it on a filtration device prior to feeding the purified polyether.
  • purified polyether containing impurities can be supplied as it is, and purification with dispersed filter aid Polyether can also be fed in body feed.
  • filter aid known filter aids such as celite and perlite can be used.
  • various grades of filter aid products with different particle sizes are available, such as Radiolite made by Showa Chemical Co., Ltd. and Topco made by Toko Perlite Industry.
  • the filter aid depending on the type of impurities to be removed, it can be used alone or in combination of a plurality of types.
  • filterability filtration rate
  • the average particle diameter (laser method) of the filter aid used in the impurity removal step is preferably about 30 ⁇ m, for example, 20 ⁇ m to 40 ⁇ m.
  • the average particle diameter (scattering intensity) of the precipitated solid is preferably 600 nm or more, more preferably 800 nm or more, and particularly preferably 1000 nm or more from the viewpoint of high impurity removal efficiency in the solid separation step.
  • an inorganic acid When depositing the solid, an inorganic acid, an organic acid, an alkali, an inorganic salt, an organic salt, or the like may or may not be added.
  • a reactive silicon group-containing polyether can be obtained by hydrosilylating the terminal unsaturated group of the unsaturated group-containing polyether after purification by a known method to introduce a reactive silicon group-containing polyether.
  • Hydrosilylation of the unsaturated group-containing polyether is not particularly limited, and a known method can be used.
  • the polyether having an unsaturated group and the silane compound for hydrosilylation may be a compound having one or more Si—H groups in the molecule.
  • Typical examples include compounds represented by the following general formula (1).
  • R 1 and R 2 are the same or different alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3.
  • the three R's may be the same or different, X represents a hydroxyl group or a hydrolyzable group, and when two or more Xs are present, they are the same Or may be different, a represents 0, 1, 2, or 3, b represents 0, 1, or 2.
  • a compound represented by the following general formula (2) is preferable because it is easily available.
  • H-SiR 1 3-c X c (2) (In general formula (2), R 1 and X are the same as described above. C represents 1 , 2 or 3.)
  • halogenated silanes such as trichlorosilane, methyldichlorosilane, dimethylchlorosilane, phenyldichlorosilane, trimethylsiloxymethylchlorosilane; trimethoxysilane, triethoxysilane, methyldiethoxysilane, methyldimethoxysilane Alkoxysilanes such as phenyldimethoxysilane, trimethylsiloxymethylmethoxysilane and trimethylsiloxydiethoxysilane; methyldiacetoxysilane, phenyldiacetoxysilane, triacetoxysilane, trimethylsiloxymethylacetoxysilane, trimethylsiloxydiacetoxysilane and the like
  • Siloxysilanes bis (dimethylketoximate) methylsilane, bis (cyclohexylketoximate) methylsilane, bis (diethylketoxy)
  • the hydrosilylation reaction is usually carried out in the range of usually 10 to 140 ° C., more preferably 20 to 120 ° C., most preferably 40 to 100 ° C.
  • An organic solvent such as benzene, toluene, xylene, tetrahydrofuran, methylene chloride, pentane, hexane, or heptane can be used as needed for adjusting the reaction temperature and adjusting the viscosity of the reaction system.
  • a metal complex catalyst selected from group VIII transition metal elements such as platinum, rhodium and the like is effective.
  • a metal complex catalyst for example, a compound such as H 2 PtCl 6 .6H 2 O, platinum-vinylsiloxane complex, platinum-olefin complex, RhCl (PPh 3 ) 3 , etc. can be used. From the viewpoint of reactivity of the hydrosilylation, H 2 PtCl 6 ⁇ 6H 2 O, platinum - vinylsiloxane complexes, are particularly preferred.
  • the platinum-vinylsiloxane complex here is a general term for compounds in which a siloxane, polysiloxane, or cyclic siloxane is coordinated with a platinum atom as a ligand in the molecule.
  • Specific examples of the ligand include 1,1,3,3-tetramethyl 1,3-divinyldisiloxane.
  • the amount of the catalyst used is not particularly limited, but it is usually preferable to use 10 -1 to 10 -8 mol of platinum catalyst with respect to 1 mol of alkenyl group.
  • the reactive silicon group-containing polyether thus synthesized is cured at room temperature with moisture in the atmosphere in the presence of a curing catalyst, and gives a coating film having good adhesion to metals, glass, etc. It is useful as a coating composition for automobiles, sealing compositions, coating compositions, and adhesive compositions.
  • a conventionally known silanol condensation catalyst can be used as the curing catalyst. These catalysts may be used alone or in combination of two or more.
  • Method for producing reactive silicon group-containing polyether The following method for producing a reactive silicon group-containing polyether is also provided. Specifically, the method for producing a reactive silicon group-containing polyether is as a step of removing the water-soluble compound from the crude unsaturated group-containing polyether containing a water-soluble compound.
  • the organic solvent used in the step (1A) and the step (2A) is an aprotic polar organic solvent or a combination of a protic polar organic solvent and a nonpolar organic solvent.
  • Step (1A) and step (2A) are performed according to the method described above as the method for producing a polyether.
  • Step (3A) is performed according to the method described above for the hydrosilylation of the unsaturated group-containing polyether. According to such a production method, it is possible to produce a purified reaction-molded silicon group-containing polyether that can efficiently remove impurities without using water. Moreover, according to said manufacturing method, inhibition of the hydrosilylation reaction by the water-soluble compound which is an impurity is suppressed.
  • PH measurement The pH of the unsaturated group-containing polyether was measured by the method described in JIS K 1557-5 (test method: pH (reference)). The pH meter used was S220-Kit manufactured by METTLER TOLEDO.
  • the unsaturated group-containing polyether or reactive silicon group-containing polyether is transferred to a spectrophotometer cell (2-478-05, manufactured by ASONE Co., Ltd.) and removed using a pelger (PC-250K, manufactured by Sampleratech Co., Ltd.). Foam treatment was performed. The defoaming treatment was performed using a diaphragm pump to reduce the pressure until the bubbles disappeared visually. A660 (absorbance at 660 nm) was measured for the defoamed cell using a spectrophotometer (U-1800, manufactured by Hitachi High-Tech Science Co., Ltd.). Ion exchange water was used to adjust the zero point of the spectrophotometer.
  • Example 1 50 g of unsaturated group-containing polyether (a1) obtained in Synthesis Example 2 and 50 g of acetone were placed in a glass container. The liquid in the glass container was heated to 60 ° C. and mixed for 10 minutes with a shaker. The temperature after mixing was 15 ° C. Then, it filtered with a 0.5 micrometer membrane filter. The filtered liquid was devolatilized under reduced pressure at 110 ° C. The turbidity (A660) of the unsaturated group-containing polyether obtained after devolatilization was measured. The results are shown in Table 1.
  • Example 2 50 g of unsaturated group-containing polyether (a1) obtained in Synthesis Example 2, 2.5 g of methanol, and 2.5 g of hexane were placed in a glass container. The liquid in the glass container was heated to 60 ° C. and mixed for 10 minutes with a shaker. The temperature after mixing was 15 ° C. Thereafter, solid-liquid separation was performed with a centrifuge. The liquid after solid-liquid separation was devolatilized under reduced pressure at 110 ° C. The turbidity (A660) of the unsaturated group-containing polyether obtained after devolatilization was measured. The results are shown in Table 1.
  • Example 3 50 g of unsaturated group-containing polyether (a1) obtained in Synthesis Example 2, 5 g of methanol, and 45 g of hexane were placed in a glass container. The liquid in the glass container was heated to 60 ° C. and mixed for 10 minutes with a shaker. The temperature after mixing was 15 ° C. Thereafter, solid-liquid separation was performed with a centrifuge. The liquid after solid-liquid separation was devolatilized under reduced pressure at 110 ° C. The turbidity (A660) of the unsaturated group-containing polyether obtained after devolatilization was measured. The results are shown in Table 1.
  • Example 4 50 g of unsaturated group-containing polyether (a1) obtained in Synthesis Example 2, 5 g of methanol, and 45 g of cyclohexane were placed in a glass container. The liquid in the glass container was heated to 60 ° C. and mixed for 10 minutes with a shaker. The temperature after mixing was 15 ° C. Thereafter, solid-liquid separation was performed with a centrifuge. The liquid after solid-liquid separation was devolatilized under reduced pressure at 110 ° C. The turbidity (A660) of the unsaturated group-containing polyether obtained after devolatilization was measured. The results are shown in Table 1.
  • Example 5 50 g of unsaturated group-containing polyether obtained in Example 3, 1 g of hexane, and 0.0225 g of ascorbic acid were added to a 200 mL four-necked flask and devolatilized at 90 ° C. under reduced pressure. Thereafter, the liquid in the flask was stirred for 1 hour. Next, the inside of the flask was replaced with N 2 , 23 ⁇ L of platinum-vinylsiloxane complex (Pt 1 wt% / isopropanol (hereinafter, IPA)) was added and stirred, and 1.2 g of dimethoxymethylsilane was slowly added dropwise. The mixed solution was reacted at 90 ° C.
  • Pt 1 wt% / isopropanol hereinafter, IPA
  • Comparative Example 3 50 g of unsaturated group-containing polyether obtained in Comparative Example 2, 1 g of hexane, and 0.0225 g of ascorbic acid were added to a 200 mL four-necked flask and subjected to vacuum devolatilization at 90 ° C. Thereafter, the liquid in the flask was stirred for 1 hour. Next, the inside of the flask was replaced with N 2 , 23 ⁇ L of platinum-vinylsiloxane complex (Pt 1 wt% / isopropanol (hereinafter, IPA)) was added and stirred, and 1.2 g of dimethoxymethylsilane was slowly added dropwise.
  • Pt 1 wt% / isopropanol hereinafter, IPA
  • the mixed solution was reacted at 90 ° C. for 1 hour, and then devolatilized under reduced pressure at 110 ° C. to obtain a reactive silicon group-containing polyether.
  • the unreacted allyl group ratio was 70%. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyethers (AREA)

Abstract

Provided are a method for producing a purified polyether capable of efficiently removing impurities from the polyether without using water, and a method for producing a reactive silicon group-containing polyether. A crude polyether containing a water-soluble compound and an aprotic polar organic solvent, or a crude polyether and a protic polar organic solvent and a nonpolar organic solvent, are mixed, and the precipitated solid is subsequently separated by standing, centrifugation, or filtration to remove the water-soluble compound which is an impurity.

Description

ポリエーテルの製造方法Method for producing polyether
 本発明は、ポリエーテルの製造方法に関する。 The present invention relates to a method for producing a polyether.
 反応性ケイ素基含有ポリエーテルは、室温においても湿分等による反応性ケイ素基の加水分解反応等を伴うシロキサン結合の形成によって架橋し得る。反応性ケイ素基含有ポリエーテルが、かかる架橋反応によるゴム状硬化物を与える性質を有することが知られている。 The reactive silicon group-containing polyether can be crosslinked even at room temperature by forming a siloxane bond accompanied by a hydrolysis reaction of the reactive silicon group due to moisture or the like. It is known that a reactive silicon group-containing polyether has a property of giving a rubber-like cured product by such a crosslinking reaction.
 反応性ケイ素基含有ポリエーテルは、すでに工業的に生産されている。反応性ケイ素含有ポリエーテルは、シーリング材、接着剤、塗料等の用途に広く使用されている。 Reactive silicon group-containing polyether has already been industrially produced. Reactive silicon-containing polyethers are widely used in applications such as sealants, adhesives, and paints.
 このような反応性ケイ素基含有ポリエーテルを製造する方法の一例として、KOH等のアルカリ金属または複合金属シアン化物錯体を触媒としてアルキレンオキシドの開環重合を行い、末端に水酸基を有するポリエーテルを製造し、当該ポリエーテルが有する末端水酸基をオレフィンへ変換し、末端に不飽和基を有する不飽和基含有ポリエーテルを得る方法が知られている(特許文献1参照)。特許文献1に記載の方法等により得られる不飽和基含有ポリエーテルの末端の不飽和基と、反応性ケイ素基を有するヒドロシラン化合物とのヒドロシリル化反応によって反応性ケイ素基含有ポリエーテルを製造する方法が知られており、すでに工業的に実用化されている。 As an example of a method for producing such a reactive silicon group-containing polyether, a ring-opening polymerization of alkylene oxide is carried out using an alkali metal such as KOH or a double metal cyanide complex as a catalyst to produce a polyether having a hydroxyl group at the terminal. And the method of converting the terminal hydroxyl group which the said polyether has into an olefin, and obtaining the unsaturated group containing polyether which has an unsaturated group at the terminal is known (refer patent document 1). A method for producing a reactive silicon group-containing polyether by hydrosilylation reaction between an unsaturated group at the terminal of an unsaturated group-containing polyether obtained by the method described in Patent Document 1 and a hydrosilane compound having a reactive silicon group Is known and has already been industrially put into practical use.
 しかし、上記方法において、不飽和基含有ポリエーテル中にアルカリ性成分が存在したり、または、複合金属シアン化物錯体および/またはその残渣化合物のような重合触媒由来の金属不純物が存在すると、その後のヒドロシリル化反応が阻害される場合がある。また、不飽和基含有ポリエーテル中に塩が多く存在すると、濁りの原因となる。 However, in the above method, if an alkaline component is present in the unsaturated group-containing polyether or a metal impurity derived from a polymerization catalyst such as a double metal cyanide complex and / or its residue compound is present, the subsequent hydrosilylation The reaction may be inhibited. Further, if a large amount of salt is present in the unsaturated group-containing polyether, it causes turbidity.
 反応阻害や濁りの防止のため、不飽和基含有ポリエーテルと、酸性成分が添加された洗浄水とを激しく撹拌し、水相を取り除くこと、または、不飽和基含有ポリエーテルと有機溶媒と洗浄水とを激しく撹拌し、水相を取り除くことで、不飽和基含有ポリエーテル中のアルカリ性成分、重合触媒由来の金属不純物、および塩を低減させることが可能である。(特許文献2、特許文献3参照) In order to prevent reaction inhibition and turbidity, vigorously stir the unsaturated group-containing polyether and washing water to which an acidic component has been added to remove the aqueous phase, or wash the unsaturated group-containing polyether and organic solvent. By vigorously stirring water and removing the aqueous phase, it is possible to reduce the alkaline component, the metal impurities derived from the polymerization catalyst, and the salt in the unsaturated group-containing polyether. (See Patent Document 2 and Patent Document 3)
 しかし、上記精製方法では、水を使用しているため、排水設備が必要となり、プロセスが煩雑であったり、ポリエーテルと洗浄水を混合するため、激しい撹拌が必要であったり、激しい撹拌を実施すると系が乳化状態になりやすく、撹拌後のポリエーテルと水との分離に長時間を要する可能性があったり、不十分な不純物除去によりヒドロシリル化が阻害される場合があったりする等の問題があった。 However, since the above purification method uses water, drainage facilities are required, the process is complicated, and mixing of polyether and washing water requires vigorous stirring or vigorous stirring. Then, the system tends to be emulsified, and it may take a long time to separate the polyether and water after stirring, and the hydrosilylation may be inhibited by insufficient impurity removal. was there.
特開平4-36312号公報JP-A-4-36312 国際公開第2006/049088号International Publication No. 2006/049088 特開2002-249580号公報JP 2002-249580 A
 本発明は以上の課題を鑑みてなされたものであって、水溶性化合物を含む粗製ポリエーテルと非プロトン性極性有機溶媒と、または、粗製ポリエーテルとプロトン性極性有機溶媒と非極性有機溶媒とを各々混合し、その後、析出した固形物を静置分離、遠心分離またはろ過で分離することで、水を使用しなくても、ポリエーテルから効率良く不純物を除去できる精製されたポリエーテルの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and includes a crude polyether containing a water-soluble compound and an aprotic polar organic solvent, or a crude polyether, a protic polar organic solvent, and a nonpolar organic solvent. And then separating the precipitated solids by stationary separation, centrifugation or filtration, thereby producing a purified polyether that can efficiently remove impurities from the polyether without using water It aims to provide a method.
 本発明者らは、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
 すなわち、本発明は、以下に関する。
[1]水溶性化合物を含有する粗製ポリエーテルから該水溶性化合物を取り除く工程を含むポリエーテルの製造方法であって、
 工程(1)粗製ポリエーテルと有機溶媒とを混合する工程、および、
 工程(2)粗製ポリエーテルと有機溶媒との混合液において析出した固形物を除去する工程、
を含み、
 有機溶媒が、非プロトン性極性有機溶媒であるか、プロトン性極性有機溶媒と非極性有機溶媒との組み合わせである、ポリエーテルの製造方法。
[2]有機溶媒が非プロトン性極性有機溶媒である、[1]に記載のポリエーテルの製造方法。
[3]有機溶媒がプロトン性極性有機溶媒と非極性有機溶媒との組み合わせである、[1]に記載の、ポリエーテルの製造方法。
[4]非プロトン性極性有機溶媒が、ケトン系溶媒およびアミド系溶媒のいずれかである、[1]または[2]に記載のポリエーテルの製造方法。
[5]非プロトン性極性有機溶媒が、ケトン系溶媒である、[4]に記載のポリエーテルの製造方法。
[6]非プロトン性極性有機溶媒が、アセトンである、[5]に記載のポリエーテルの製造方法。
[7]プロトン性極性有機溶媒が、アルコール系溶媒である、[1]または[3]に記載のポリエーテルの製造方法。
[8]プロトン性極性有機溶媒が、炭素数1~3のアルコール系溶媒である、[7]に記載のポリエーテルの製造方法。
[9]プロトン性極性有機溶媒がメタノールである、[8]に記載のポリエーテルの製造方法。
[10]粗製ポリエーテル100重量部と、非プロトン性極性有機溶媒1~1000重量部、またはプロトン性極性有機溶媒1~1000重量部とを混合する、[1]~[9]のいずれか1つに記載のポリエーテルの製造方法。
[11]非極性有機溶媒が、鎖式あるいは環式飽和炭化水素である、[1]、[3]、[7]、[8]、[9]、または[10]に記載のポリエーテルの製造方法。
[12]非極性有機溶媒がヘキサン、および/またはシクロヘキサンである、[11]に記載のポリエーテルの製造方法。
[13]プロトン性極性有機溶媒の重量と非極性有機溶媒との重量比が、プロトン性極性有機溶媒の重量/非極性有機溶媒の重量として、1/1~1/100である、[1]、[3]、[7]、[8]、[9]、[10]、[11]、または[12]に記載のポリエーテルの製造方法。
[14]工程(1)における粗製ポリエーテルと有機溶媒との混合から工程(2)における固形物の除去の間に、ポリエーテルを含む均一溶液を液-液相分離させる、[1]~[13]のいずれか1つに記載のポリエーテルの製造方法。
[15]均一溶液の温度を変化させることにより液-液相分離を生じさせる、[14]に記載のポリエーテルの製造方法。
[16]粗製ポリエーテルと有機溶媒とを混合する時の温度が0~140℃である[1]~[15]のいずれか1つに記載のポリエーテルの製造方法。
[17]混合液において固形物を析出させる温度が0~140℃である、[1]~[16]のいずれか1つに記載のポリエーテルの製造方法。
[18]固形物を除去する操作が静置分離、遠心分離またはろ過の少なくとも1つを含む操作である、[1]~[17]のいずれか1つに記載のポリエーテルの製造方法。
[19]工程(2)が複数回実施される、[1]~[18]のいずれか1つに記載のポリエーテルの製造方法。
[20]粗製ポリエーテルが、水酸基末端ポリエーテル、不飽和基含有ポリエーテルおよび反応性ケイ素基含有ポリエーテルからなる群より選ばれるいずれかである、[1]~[19]のいずれか1つに記載のポリエーテルの製造方法。
[21]水溶性化合物が、アルカリ金属化合物または複合金属シアン化物錯体触媒由来の化合物であることを特徴とする、[1]~[20]のいずれか1つに記載のポリエーテルの製造方法。
[22]水溶性化合物を含有する粗製不飽和基含有ポリエーテルから該水溶性化合物を取り除く工程として
 工程(1A):粗製不飽和基含有ポリエーテルと有機溶媒とを混合する工程、および、
 工程(2A):粗製不飽和基含有ポリエーテルと有機溶媒との混合液において析出した固形物を除去する工程、
を含み、さらに、
 工程(3A):工程(1A)、および工程(2A)を経て得られた精製された不飽和基含有ポリエーテルが有する不飽和基を、下記一般式(1)で示されるシラン化合物によりヒドロシリル化して反応性ケイ素基含有ポリエーテルを得る工程を含み、
 有機溶媒が、非プロトン性極性有機溶媒であるか、プロトン性極性有機溶媒と非極性有機溶媒との組み合わせである、反応性ケイ素基含有ポリエーテルの製造方法。
 H-(SiR 2-bO)-Si(R3-a (1)
(一般式(1)中、RおよびRは同一または異なった炭素数1から20のアルキル基、炭素数6から20のアリール基、炭素数7から20のアラルキル基または(R’)SiO-で示されるトリオルガノシロキシ基を示し、RまたはRが二個以上存在するとき、それらは同一であってもよく、異なっていてもよく、R’は炭素数1から20の一価の炭化水素基であり、3個のR’は同一であってもよく、異なっていてもよく、Xは水酸基または加水分解性基を示し、Xが二個以上存在する時、それらは同一であってもよく、異なっていてもよく、aは0、1、2または3を、bは0、1、または2をそれぞれ示し、m個の-(SiR 2-bO)-で表される基において、mが2以上の整数である場合、二個以上のbは同一であってもよく、異なっていてもよく、mは0から19の整数を示し、但し、aおよびbは、a+Σb≧1を満足する。)
That is, the present invention relates to the following.
[1] A method for producing a polyether comprising a step of removing the water-soluble compound from a crude polyether containing a water-soluble compound,
Step (1) mixing the crude polyether and the organic solvent, and
Step (2) a step of removing solids precipitated in the mixed liquid of the crude polyether and the organic solvent,
Including
A method for producing a polyether, wherein the organic solvent is an aprotic polar organic solvent or a combination of a protic polar organic solvent and a nonpolar organic solvent.
[2] The method for producing a polyether according to [1], wherein the organic solvent is an aprotic polar organic solvent.
[3] The method for producing a polyether according to [1], wherein the organic solvent is a combination of a protic polar organic solvent and a nonpolar organic solvent.
[4] The method for producing a polyether according to [1] or [2], wherein the aprotic polar organic solvent is any one of a ketone solvent and an amide solvent.
[5] The method for producing a polyether according to [4], wherein the aprotic polar organic solvent is a ketone solvent.
[6] The method for producing a polyether according to [5], wherein the aprotic polar organic solvent is acetone.
[7] The method for producing a polyether according to [1] or [3], wherein the protic polar organic solvent is an alcohol solvent.
[8] The method for producing a polyether according to [7], wherein the protic polar organic solvent is an alcohol solvent having 1 to 3 carbon atoms.
[9] The method for producing a polyether according to [8], wherein the protic polar organic solvent is methanol.
[10] Any one of [1] to [9], in which 100 parts by weight of a crude polyether and 1 to 1000 parts by weight of an aprotic polar organic solvent or 1 to 1000 parts by weight of a protic polar organic solvent are mixed. A method for producing the polyether described in 1.
[11] The polyether according to [1], [3], [7], [8], [9], or [10], wherein the nonpolar organic solvent is a chain or cyclic saturated hydrocarbon Production method.
[12] The method for producing a polyether according to [11], wherein the nonpolar organic solvent is hexane and / or cyclohexane.
[13] The weight ratio of the weight of the protic polar organic solvent to the nonpolar organic solvent is 1/1 to 1/100 as the weight of the protic polar organic solvent / the weight of the nonpolar organic solvent. [1] , [3], [7], [8], [9], [10], [11], or [12].
[14] Liquid-liquid phase separation of a homogeneous solution containing a polyether during mixing of the crude polyether and organic solvent in step (1) to removal of solids in step (2), [1]-[ [13] The method for producing a polyether according to any one of [13].
[15] The method for producing a polyether according to [14], wherein liquid-liquid phase separation is caused by changing the temperature of the homogeneous solution.
[16] The method for producing a polyether according to any one of [1] to [15], wherein the temperature at which the crude polyether and the organic solvent are mixed is 0 to 140 ° C.
[17] The method for producing a polyether according to any one of [1] to [16], wherein the temperature at which the solid is precipitated in the mixed solution is 0 to 140 ° C.
[18] The method for producing a polyether according to any one of [1] to [17], wherein the operation for removing the solid matter is an operation including at least one of stationary separation, centrifugation, and filtration.
[19] The method for producing a polyether according to any one of [1] to [18], wherein the step (2) is performed a plurality of times.
[20] Any one of [1] to [19], wherein the crude polyether is any one selected from the group consisting of a hydroxyl group-terminated polyether, an unsaturated group-containing polyether and a reactive silicon group-containing polyether. A method for producing the polyether according to 1.
[21] The method for producing a polyether according to any one of [1] to [20], wherein the water-soluble compound is a compound derived from an alkali metal compound or a double metal cyanide complex catalyst.
[22] As a step of removing the water-soluble compound from the crude unsaturated group-containing polyether containing a water-soluble compound Step (1A): a step of mixing the crude unsaturated group-containing polyether and an organic solvent, and
Step (2A): a step of removing the solid matter precipitated in the mixed liquid of the crude unsaturated group-containing polyether and the organic solvent,
Including,
Step (3A): Hydrosilylation of the unsaturated group of the purified unsaturated group-containing polyether obtained through Step (1A) and Step (2A) with a silane compound represented by the following general formula (1) And obtaining a reactive silicon group-containing polyether,
A method for producing a reactive silicon group-containing polyether, wherein the organic solvent is an aprotic polar organic solvent or a combination of a protic polar organic solvent and a nonpolar organic solvent.
H- (SiR 2 2-b X b O) m -Si (R 1) 3-a X a (1)
(In General Formula (1), R 1 and R 2 are the same or different alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3. Represents a triorganosiloxy group represented by SiO—, and when two or more R 1 or R 2 are present, they may be the same or different, and R ′ is one having 1 to 20 carbon atoms. And R 3 may be the same or different, X represents a hydroxyl group or a hydrolyzable group, and when two or more X exist, they are the same Or may be different, a represents 0, 1, 2, or 3, b represents 0, 1, or 2, and m — (SiR 2 2-b X b O) — When m is an integer of 2 or more in the group represented by May also be, may be different, m represents an integer of 0 to 19, where, a and b satisfy the a + Σb ≧ 1.)
 また、本発明は以下に関する。
[23]水溶性化合物を含有するポリエーテル(以下、粗製ポリエーテルという)から該水溶性化合物を取り除く工程を含むポリエーテルの製造方法であって、
工程(1):粗製ポリエーテルに非プロトン性極性溶媒を混合する工程
工程(2):析出した固形物を除去する工程
を少なくとも含むことを特徴とするポリエーテルの製造方法。
[24]水溶性化合物を含有するポリエーテル(以下、粗製ポリエーテルという)から該水溶性化合物を取り除く工程を含むポリエーテルの製造方法であって、
工程(1):粗製ポリエーテルにプロトン性極性溶媒(水を除く)ならびに非極性溶媒を混合する工程
工程(2):析出した固形物を除去する工程
を少なくとも含むことを特徴とするポリエーテルの製造方法。
[25]水溶性化合物を含有する不飽和基含有ポリエーテル(以下、粗製不飽和基含有ポリエーテルという)から該水溶性化合物を取り除く、
工程(1):粗製不飽和基含有ポリエーテルに非プロトン性極性溶媒を混合する工程
工程(2):析出した固形物を除去する工程
を少なくとも含み、その後、下記一般式(1)で示されるシラン化合物によりヒドロシリル化して得られた、反応性ケイ素基含有ポリエーテルの製造方法。
 H-(SiR 2-bO)-Si(R 3-a)X (1)
(式中、RおよびRは同一または異なった炭素数1から20のアルキル基、炭素数6から20のアリール基、炭素数7から20のアラルキル基または(R’)SiO-で示されるトリオルガノシロキシ基を示し、RまたはRが二個以上存在するとき、それらは同一であってもよく、異なっていてもよい。ここでR’は炭素数1から20の一価の炭化水素基であり、3個のR’は同一であってもよく、異なっていてもよい。Xは水酸基または加水分解性基を示し、Xが二個以上存在する時、それらは同一であってもよく、異なっていてもよい。aは0、1、2または3を、bは0、1、または2をそれぞれ示す。またm個の-(SiR 2-bO)-基におけるbについて、それらは同一であってもよく、異なっていてもよい。mは0から19の整数を示す。但し、a+Σb≧1を満足するものとする。)
[26]水溶性化合物を含有する不飽和基含有ポリエーテル(以下、粗製不飽和基含有ポリエーテルという)から該水溶性化合物を取り除く、
工程(1):粗製不飽和基含有ポリエーテルにプロトン性極性溶媒(水を除く)ならびに非極性溶媒を混合する工程
工程(2):析出した固形物を除去する工程
を少なくとも含み、その後、下記一般式(1)で示されるシラン化合物によりヒドロシリル化して得られた、反応性ケイ素基含有ポリエーテルの製造方法。
 H-(SiR 2-bO)-Si(R 3-a)X (1)
(式中、RおよびRは同一または異なった炭素数1から20のアルキル基、炭素数6から20のアリール基、炭素数7から20のアラルキル基または(R’)SiO-で示されるトリオルガノシロキシ基を示し、RまたはRが二個以上存在するとき、それらは同一であってもよく、異なっていてもよい。ここでR’は炭素数1から20の一価の炭化水素基であり、3個のR’は同一であってもよく、異なっていてもよい。Xは水酸基または加水分解性基を示し、Xが二個以上存在する時、それらは同一であってもよく、異なっていてもよい。aは0、1、2または3を、bは0、1、または2をそれぞれ示す。またm個の-(SiR 2-bO)-基におけるbについて、それらは同一であってもよく、異なっていてもよい。mは0から19の整数を示す。但し、a+Σb≧1を満足するものとする。)
The present invention also relates to the following.
[23] A method for producing a polyether, comprising a step of removing the water-soluble compound from a polyether containing a water-soluble compound (hereinafter referred to as crude polyether),
Step (1): A step of mixing an aprotic polar solvent with a crude polyether Step (2): A method for producing a polyether comprising at least a step of removing precipitated solids.
[24] A method for producing a polyether comprising a step of removing the water-soluble compound from a polyether containing a water-soluble compound (hereinafter referred to as crude polyether),
Step (1): Step of mixing a protic polar solvent (excluding water) and a non-polar solvent with a crude polyether Step (2): A polyether comprising at least a step of removing precipitated solids Production method.
[25] The water-soluble compound is removed from the unsaturated group-containing polyether containing the water-soluble compound (hereinafter referred to as crude unsaturated group-containing polyether).
Step (1): Step of mixing an aprotic polar solvent with a crude unsaturated group-containing polyether Step (2): At least a step of removing the precipitated solid, and then represented by the following general formula (1) A method for producing a reactive silicon group-containing polyether obtained by hydrosilylation with a silane compound.
H- (SiR 2 2-b X b O) m -Si (R 1 3-a ) X a (1)
Wherein R 1 and R 2 are the same or different alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3 SiO—. When two or more R 1 or R 2 are present, they may be the same or different, where R ′ is a monovalent monovalent carbon having 1 to 20 carbon atoms. And three R's may be the same or different, and X represents a hydroxyl group or a hydrolyzable group, and when two or more Xs are present, they are the same. A may be 0, 1, 2 or 3, and b may be 0, 1, or 2. In addition, m — (SiR 2 2-b X b O) — groups They may be the same or different for b in .m is an integer of 0 to 19. However, it is assumed that satisfies a + Σb ≧ 1.)
[26] removing the water-soluble compound from the unsaturated group-containing polyether containing the water-soluble compound (hereinafter referred to as crude unsaturated group-containing polyether).
Step (1): Step of mixing a polar unsaturated solvent-containing polyether with a protic polar solvent (excluding water) and a nonpolar solvent Step (2): including at least a step of removing a precipitated solid, A method for producing a reactive silicon group-containing polyether obtained by hydrosilylation with a silane compound represented by the general formula (1).
H- (SiR 2 2-b X b O) m -Si (R 1 3-a ) X a (1)
Wherein R 1 and R 2 are the same or different alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3 SiO—. When two or more R 1 or R 2 are present, they may be the same or different, where R ′ is a monovalent monovalent carbon having 1 to 20 carbon atoms. And three R's may be the same or different, and X represents a hydroxyl group or a hydrolyzable group, and when two or more Xs are present, they are the same. A may be 0, 1, 2 or 3, and b may be 0, 1, or 2. In addition, m — (SiR 2 2-b X b O) — groups They may be the same or different for b in .m is an integer of 0 to 19. However, it is assumed that satisfies a + Σb ≧ 1.)
 本発明によれば、水溶性化合物を含有する粗製ポリエーテルから水溶性化合物を除去するにあたって、粗製ポリエーテルと非プロトン性極性有機溶媒とを混合するか、または、粗製ポリエーテルとプロトン性極性有機溶媒と非極性有機溶媒とを混合し、その後、析出した固形物を静置分離、遠心分離またはろ過で分離することにより、激しい撹拌や水を使用することなく、ポリエーテルから効率良く水溶性化合物を除去し、また、低濁度のポリエーテルが得られるポリエーテルの製造方法を提供できる。 According to the present invention, in removing the water-soluble compound from the crude polyether containing the water-soluble compound, the crude polyether and the aprotic polar organic solvent are mixed, or the crude polyether and the protic polar organic are mixed. Solvent and nonpolar organic solvent are mixed, and then the precipitated solid is separated by standing separation, centrifugation or filtration, so that water-soluble compounds can be efficiently removed from the polyether without vigorous stirring and use of water. In addition, it is possible to provide a method for producing a polyether from which a polyether with low turbidity can be obtained.
(ポリエーテルの製造方法)
 ポリエーテルの製造方法は特に限定されることはなく、公知の方法を用いることができる。ポリエーテルの製造方法において用いられる粗製ポリエーテルは、水溶性化合物を不純物として含むポリエーテルであれば特に限定されない。粗製ポリエーテルとしては、例えば、水酸基末端ポリエーテル、不飽和基含有ポリエーテルおよび反応性ケイ素基含有ポリエーテルからなる群から選択されるポリエーテルを用いることができる。
(Polyether production method)
The method for producing the polyether is not particularly limited, and a known method can be used. The crude polyether used in the method for producing a polyether is not particularly limited as long as it is a polyether containing a water-soluble compound as an impurity. As the crude polyether, for example, a polyether selected from the group consisting of a hydroxyl-terminated polyether, an unsaturated group-containing polyether and a reactive silicon group-containing polyether can be used.
 ポリエーテルの製造方法としては、例えば、特許文献1に記載の製造方法が好ましい。
 特許文献1に記載の製造方法では、ポリエーテルの末端の水酸基を金属アルコキシドによりアルコキシド化した後に、炭素-炭素不飽和基を有する不飽和基含有ハロゲン化物を反応させてポリエーテルの末端に炭素-炭素不飽和基を導入する。
As a manufacturing method of polyether, the manufacturing method of patent document 1 is preferable, for example.
In the production method described in Patent Document 1, after hydroxylating a terminal hydroxyl group of a polyether with a metal alkoxide, an unsaturated group-containing halide having a carbon-carbon unsaturated group is reacted to form a carbon- Introduce a carbon unsaturated group.
 水酸基末端ポリエーテルの製造方法は、特に限定されることはなく、公知の方法を用いることができる。 The method for producing the hydroxyl-terminated polyether is not particularly limited, and a known method can be used.
 一般的な製造方法としては、例えば、複合金属シアン化物錯体を触媒として用いる重合反応が挙げられる。 As a general production method, for example, a polymerization reaction using a double metal cyanide complex as a catalyst can be mentioned.
 水酸基末端ポリエーテルの主鎖構造は、-R-O-で表される繰り返し単位が好ましい。 The main chain structure of the hydroxyl-terminated polyether is preferably a repeating unit represented by —RO—.
 ここで、Rは、酸素、窒素、硫黄、ケイ素、リン、ハロゲン原子等のヘテロ原子を含んでいてもよい炭素原子数1~20の2価の有機基である。主鎖中の複数のRは、同一の基であってもよく、2種以上の異なった基であってもよい。 Here, R is a divalent organic group having 1 to 20 carbon atoms, which may contain heteroatoms such as oxygen, nitrogen, sulfur, silicon, phosphorus and halogen atoms. A plurality of R in the main chain may be the same group or two or more different groups.
 Rとしてはアルキレン基が好ましい。アルキレン基の炭素原子数は1~10が好ましく、1~6がより好ましく、1~4が特に好ましい。 R is preferably an alkylene group. The number of carbon atoms of the alkylene group is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 4.
 -R-O-で表される繰り返し単位としては、-CHCHO-、-CH(CH)CHO-、-CH(C)CHO-、-C(CHCHO-、および-CHCHCHCH2O-等をあげることができるが、-CHCHO-、-CH(CH)CHO-が好ましく、-CH(CH)CHO-が特に好ましい。 As the repeating unit represented by —R—O—, —CH 2 CH 2 O—, —CH (CH 3 ) CH 2 O—, —CH (C 2 H 5 ) CH 2 O—, —C (CH 3) 2 CH 2 O-, and -CH 2 CH 2 CH 2 CH2O- like can be exemplified, -CH 2 CH 2 O -, - CH (CH 3) CH 2 O- are preferable, -CH ( CH 3 ) CH 2 O— is particularly preferred.
 また、水酸基末端ポリエーテルの主鎖は、分岐していてもよく、架橋していてもよい。 Further, the main chain of the hydroxyl group-terminated polyether may be branched or crosslinked.
 水酸基末端ポリエーテルは、複合金属シアン化物錯体触媒の存在下、開始剤にアルキレンオキサイドを開環重合させて製造されるものが好ましい。 The hydroxyl-terminated polyether is preferably produced by ring-opening polymerization of alkylene oxide as an initiator in the presence of a double metal cyanide complex catalyst.
 アルキレンオキサイドとしては、例えば、エチレンオキサイド、プロピレンオキサイド、α-ブチレンオキサイド、β-ブチレンオキサイド、ヘキセンオキサイド、シクロヘキセンオキサイド、スチレンオキサイド、およびα-メチルスチレンオキシド等を挙げることができる。 Examples of the alkylene oxide include ethylene oxide, propylene oxide, α-butylene oxide, β-butylene oxide, hexene oxide, cyclohexene oxide, styrene oxide, and α-methylstyrene oxide.
 また、上記アルキレンオキサイド以外に、メチルグリシジルエーテル、エチルグリシジルエーテル、イソプロピルグリシジルエーテル、ブチルグリシジルエーテル、アリルグリシジルエーテル、およびフェニルグリシジルエーテル等の炭素原子数2~12の置換または非置換のグリシジルエーテル類等も使用することができる。 In addition to the above alkylene oxides, substituted or unsubstituted glycidyl ethers having 2 to 12 carbon atoms such as methyl glycidyl ether, ethyl glycidyl ether, isopropyl glycidyl ether, butyl glycidyl ether, allyl glycidyl ether, and phenyl glycidyl ether, etc. Can also be used.
 開始剤としては、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノールおよび2,2-ジメチル-1-プロパノール等の1価アルコール、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサメチレングリコール、メタリルアルコール、水素化ビスフェノールA、ネオペンチルグリコール、ポリブタジエンジオール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリプロピレントリオール、ポリプロピレンテトラオール、ジプロピレングリコール、グリセリン、トリメチロールメタン、トリメチロールプロパン、およびペンタエリスリトール等の2価アルコールまたは多価アルコール、および水酸基を有する各種重合体等を挙げることができる。 Examples of the initiator include methanol, ethanol, 1-propanol, 2-propanol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, Monohydric alcohols such as 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol and 2,2-dimethyl-1-propanol, ethylene glycol, Propylene glycol, butanediol, hexamethylene glycol, methallyl alcohol, hydrogenated bisphenol A, neopentyl glycol, polybutadiene diol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol Le, polypropylene triol, polypropylene tetraol, dipropylene glycol, glycerin, trimethylol methane, may be mentioned trimethylolpropane, and divalent or polyhydric alcohols such as pentaerythritol, and the various polymers, etc. having a hydroxyl group.
 このようにして得られる水酸基末端ポリエーテルは、次いで、金属アルコキシドとの反応(アルコキシド化反応)により、-OM(Mはアルカリ金属)で表される末端基を有するポリエーテルに変換される。 The thus obtained hydroxyl-terminated polyether is then converted to a polyether having a terminal group represented by -OM (M is an alkali metal) by reaction with a metal alkoxide (alkoxideation reaction).
 金属アルコキシドとしては、水酸基末端ポリエーテルが有する末端水酸基(-OH)中の水素原子を、アルカリ金属原子に置換可能な化合物であれば特に限定されない。 The metal alkoxide is not particularly limited as long as it is a compound that can replace the hydrogen atom in the terminal hydroxyl group (—OH) of the hydroxyl-terminated polyether with an alkali metal atom.
 金属アルコキシドとしては、炭素原子数1~4のアルカリ金属アルコキシドが用いられる。 As the metal alkoxide, an alkali metal alkoxide having 1 to 4 carbon atoms is used.
 アルカリ金属アルコキシドとしては、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、およびカリウムエトキシドが好ましく、ナトリウムメトキシド、およびカリウムメトキシドがより好ましく、入手性の点でナトリウムメトキシドが特に好ましい。 As the alkali metal alkoxide, sodium methoxide, potassium methoxide, sodium ethoxide and potassium ethoxide are preferable, sodium methoxide and potassium methoxide are more preferable, and sodium methoxide is particularly preferable in view of availability.
 金属アルコキシドは2種類以上を組み合わせて用いることもできるが、1種類を単独で用いることが好ましい。 Two or more kinds of metal alkoxides can be used in combination, but it is preferable to use one kind alone.
 次いで、-OMで表される末端基を有するポリエーテルは、ハロゲン化物との反応(アリル化反応)により、精製前の金属不純物を含む不飽和基含有ポリエーテルに変換される。 Next, the polyether having a terminal group represented by -OM is converted into an unsaturated group-containing polyether containing metal impurities before purification by reaction with a halide (allylation reaction).
 不飽和基含有ハロゲン化物としては、下記式で表される化合物が好ましい。
H(R)C=C(R)-R-Y
(上記式中、Rは酸素、窒素、硫黄、ケイ素、リン、ハロゲン原子等のヘテロ原子を含んでいてもよい炭素原子数1~20の2価の有機基であり、R、Rは、水素原子、または炭素原子数1~10の炭化水素基であり、Yはハロゲン原子である。)
 不飽和基含有ハロゲン化物としては、入手性の点でアリルクロライド、およびメタリルクロライド(3-クロロ-2-メチル-1-プロペン)が好ましい。
As the unsaturated group-containing halide, a compound represented by the following formula is preferred.
H (R 5 ) C═C (R 4 ) —R 3 —Y
(In the above formula, R 3 is a divalent organic group having 1 to 20 carbon atoms which may contain heteroatoms such as oxygen, nitrogen, sulfur, silicon, phosphorus and halogen atoms, and R 4 , R 5 Is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and Y is a halogen atom.)
As the unsaturated group-containing halide, allyl chloride and methallyl chloride (3-chloro-2-methyl-1-propene) are preferable from the viewpoint of availability.
 不飽和基含有ハロゲン化物は2種類以上を組み合わせて用いることもできるが、1種類を単独で用いることが好ましい。 Two or more kinds of unsaturated group-containing halides can be used in combination, but it is preferable to use one kind alone.
 水酸基末端ポリエーテルに、金属アルコキシドを作用(アルコキシド化反応)させた後、炭素-炭素不飽和結合を有するエポキシ化合物と反応させ、さらに上記ハロゲン化物と反応(例えば、アリル化反応)させることで、不飽和基を1つの末端に1個より多く有する不飽和基含有ポリエーテルを得ることもできる。炭素-炭素不飽和結合を有するエポキシ化合物としては、アリルグリシジルエーテルが好ましい。 By allowing a metal alkoxide to act on the hydroxyl-terminated polyether (alkoxideation reaction), reacting with an epoxy compound having a carbon-carbon unsaturated bond, and further reacting with the halide (for example, allylation reaction), It is also possible to obtain unsaturated group-containing polyethers having more than one unsaturated group at one end. The epoxy compound having a carbon-carbon unsaturated bond is preferably allyl glycidyl ether.
 ポリエーテルと不飽和基含有ハロゲン化物との反応完了後も撹拌を継続することで、金属アルコキシド、または金属アルコキシド中のアルカリ性不純物が、不飽和基含有ハロゲン化物と反応することにより消費される。不飽和基含有ハロゲン化物の添加後に、炭素数1~3のアルコールまたは水の中から選ばれる少なくとも一種を添加することにより、これらアルカリ性成分の溶解度が高まり、アルカリ性成分と不飽和基含有ハロゲン化物との反応が促進される。結果として、アルカリ性成分の消費速度を速めることが可能となる。炭素数1~3のアルコールとしては、メタノール、エタノール、1-プロパノール、および2-プロパノール等が挙げられ、メタノール、およびエタノールがより好ましい。これらのアルコールの中では、アルカリ性成分に対してより良い良溶媒であり、少ない添加部数でアルカリ性成分を溶解可能であるため、メタノールが特に好ましい。
 ただし、アルコールはこれらに限定されず、分子内の水酸基の数は2つ以上であってもよく、分子内に炭素、水素、酸素以外の原子を含有していてもよい。炭素数4以上のアルコールを用いると、アルカリ性成分の溶解性が不十分であり効果が限定的である。また、炭素数4以上のアルコールは沸点が高く、反応後の除去が難しい。
By continuing stirring even after the reaction between the polyether and the unsaturated group-containing halide is completed, the metal alkoxide or the alkaline impurity in the metal alkoxide is consumed by reacting with the unsaturated group-containing halide. By adding at least one selected from alcohols having 1 to 3 carbon atoms or water after the addition of the unsaturated group-containing halide, the solubility of these alkaline components is increased, and the alkaline component and the unsaturated group-containing halide are added. The reaction of is promoted. As a result, the consumption rate of the alkaline component can be increased. Examples of the alcohol having 1 to 3 carbon atoms include methanol, ethanol, 1-propanol, and 2-propanol, and methanol and ethanol are more preferable. Among these alcohols, methanol is particularly preferred because it is a better solvent for the alkaline component and can dissolve the alkaline component with a small number of added parts.
However, the alcohol is not limited thereto, and the number of hydroxyl groups in the molecule may be two or more, and the molecule may contain atoms other than carbon, hydrogen, and oxygen. When an alcohol having 4 or more carbon atoms is used, the solubility of the alkaline component is insufficient and the effect is limited. Also, alcohols having 4 or more carbon atoms have a high boiling point and are difficult to remove after the reaction.
 炭素数1~3のアルコールまたは水の中から2種類以上を組み合わせて用いることもできるが、1種類を単独で用いることが好ましい。 Two or more kinds of alcohols having 1 to 3 carbon atoms or water can be used in combination, but one kind is preferably used alone.
 炭素数1~3のアルコールまたは水の添加部数については特に限定しないが、不飽和基含有ポリエーテル100重量部に対し、0.05~20重量部が好ましく、0.1~10重量部がより好ましい。添加部数が過少であるとアルカリ成分が十分に溶解しにくく、アルコールまたは水の添加効果が限定的である場合がある。また、添加部数が過多であると、アルコールまたは水添加時の圧力の上昇が大きくなり、添加が困難である等の不都合が生じる場合がある。 The number of added alcohol or water having 1 to 3 carbon atoms is not particularly limited, but is preferably 0.05 to 20 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the unsaturated group-containing polyether. preferable. If the number of added parts is too small, the alkali component is not sufficiently dissolved, and the effect of adding alcohol or water may be limited. In addition, if the number of added parts is excessive, an increase in pressure at the time of adding alcohol or water becomes large, which may cause inconveniences such as difficulty in addition.
 アルコールまたは水添加後の撹拌時間は特に限定しないが、8時間以内が好ましく、4時間以内がより好ましい。撹拌時間を過度に長くしても、生産効率の低下に見合うだけのアルカリ性成分の除去効果を得られる訳ではない。 The stirring time after addition of alcohol or water is not particularly limited, but is preferably within 8 hours, and more preferably within 4 hours. Even if the stirring time is excessively long, it is not possible to obtain an alkaline component removal effect that is commensurate with a decrease in production efficiency.
 上述の方法により得られる不飽和基含有ポリエーテル中には、金属不純物や塩が含まれる。次ぐ精製工程での除去対象となる水溶性化合物としては、亜鉛塩、コバルト塩および/またはアルカリ金属塩等の、アルカリ金属化合物または複合金属シアン化物錯体触媒由来の化合物等が例示できる。 The unsaturated group-containing polyether obtained by the above method contains metal impurities and salts. Examples of water-soluble compounds to be removed in the subsequent purification step include compounds derived from alkali metal compounds or double metal cyanide complex catalysts such as zinc salts, cobalt salts and / or alkali metal salts.
(ポリエーテルの精製)
 精製されたポリエーテルの製造方法は、水溶性化合物を含有する粗製ポリエーテルから該水溶性化合物を取り除く工程を含む方法である。
 上記製造方法は、
 工程(1)粗製ポリエーテルと有機溶媒とを混合する工程、および、
 工程(2)粗製ポリエーテルと有機溶媒との混合液において析出した固形物を除去する工程、
を含む。工程(1)および工程(2)で使用される有機溶媒は、非プロトン性極性有機溶媒であるか、プロトン性極性有機溶媒と非極性有機溶媒との組み合わせである。
(Purification of polyether)
The method for producing the purified polyether is a method including a step of removing the water-soluble compound from the crude polyether containing the water-soluble compound.
The above manufacturing method is
Step (1) mixing the crude polyether and the organic solvent, and
Step (2) a step of removing solids precipitated in the mixed liquid of the crude polyether and the organic solvent,
including. The organic solvent used in step (1) and step (2) is an aprotic polar organic solvent or a combination of a protic polar organic solvent and a nonpolar organic solvent.
 つまり、ポリエーテルの精製方法において、精製は、水溶性化合物を含有する粗製ポリエーテルと非プロトン性極性有機溶媒と、または、粗製ポリエーテルとプロトン性極性有機溶媒と非極性有機溶媒とを各々混合し、その後、析出した固形物を静置分離、遠心分離またはろ過で分離することで行われる。 That is, in the method for purifying a polyether, the purification is performed by mixing a crude polyether containing a water-soluble compound and an aprotic polar organic solvent, or a crude polyether, a protic polar organic solvent, and a nonpolar organic solvent, respectively. Thereafter, the precipitated solid is separated by stationary separation, centrifugation or filtration.
 本明細書において、非プロトン性極性有機溶媒とは、比誘電率が10以上の解離性のHをもたない有機溶媒である。プロトン性極性有機溶媒とは、比誘電率が10以上の解離性のHをもつ有機溶媒である。非極性有機溶媒とは、比誘電率が10未満の有機溶媒である。 In this specification, the aprotic polar organic solvent is an organic solvent having no dissociative H having a relative dielectric constant of 10 or more. The protic polar organic solvent is an organic solvent having a dissociative H having a relative dielectric constant of 10 or more. A nonpolar organic solvent is an organic solvent having a relative dielectric constant of less than 10.
 非プロトン性極性有機溶媒は特に限定されない。当該非プロトン性極性有機溶媒としては、例えば、アセトン、アセチルアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒;ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒が好ましく、アセトン、アセチルアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒がより好ましく、アセトン、アセチルアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒が特に好ましい。
 さらに、ケトン系溶媒としては、アセトン、メチルエチルケトンがより好ましく、アセトンが特に好ましい。
The aprotic polar organic solvent is not particularly limited. Examples of the aprotic polar organic solvent include ketone solvents such as acetone, acetylacetone, methyl ethyl ketone, and methyl isobutyl ketone; nitrile solvents such as acetonitrile, propionitrile, and benzonitrile; formamide, N, N-dimethylformamide, Amide solvents such as N, N-dimethylacetamide are preferred, ketone solvents such as acetone, acetylacetone, methyl ethyl ketone, and methyl isobutyl ketone; amide solvents such as formamide, N, N-dimethylformamide, and N, N-dimethylacetamide are preferred. More preferred are ketone solvents such as acetone, acetylacetone, methyl ethyl ketone, and methyl isobutyl ketone.
Further, as the ketone solvent, acetone and methyl ethyl ketone are more preferable, and acetone is particularly preferable.
 プロトン性極性有機溶媒は特に限定されない。当該プロトン性極性有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、n-ブチルアルコール、tert-ブチルアルコール、1-ヘキサノール等のアルコール系溶媒;ギ酸、酢酸、フェノール等が好ましく、メタノール、エタノール、プロパノール、イソプロパノール、n-ブチルアルコール、tert-ブチルアルコール、1-ヘキサノール等のアルコール系溶媒が特に好ましい。さらに、アルコール系溶媒としては、炭素数1~3のアルコールが好ましい。炭素数1~3のアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール等があげられ、メタノール、エタノールがより好ましく、メタノールが特に好ましい。分子内の水酸基の数は2つ以上であっても良く、分子内に炭素、水素、酸素以外の原子を含有していてもよい。 The protic polar organic solvent is not particularly limited. Examples of the protic polar organic solvent include alcohol solvents such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol, and 1-hexanol; formic acid, acetic acid, phenol and the like are preferable, and methanol, ethanol Alcohol solvents such as propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol and 1-hexanol are particularly preferred. Further, the alcohol solvent is preferably an alcohol having 1 to 3 carbon atoms. Examples of the alcohol having 1 to 3 carbon atoms include methanol, ethanol, 1-propanol, 2-propanol, etc., methanol and ethanol are more preferable, and methanol is particularly preferable. The number of hydroxyl groups in the molecule may be two or more, and atoms other than carbon, hydrogen, and oxygen may be contained in the molecule.
 ポリエーテルと混合される非プロトン性極性有機溶媒、またはプロトン性極性有機溶媒の量は、粗製ポリエーテル100重量部に対して、それぞれ1~1000重量部が好ましく、5~500重量部がより好ましい。 The amount of the aprotic polar organic solvent or the protic polar organic solvent mixed with the polyether is preferably 1 to 1000 parts by weight and more preferably 5 to 500 parts by weight with respect to 100 parts by weight of the crude polyether. .
 非極性有機溶媒は特に限定されない。当該非極性有機溶媒としては、例えば、ジエチルエーテル等のエーテル類;ヘキサン、オクタン、シクロヘキサン等の鎖式あるいは環式飽和炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のエステル類;アセトアルデヒド、プロピオンアルデヒド等のアルデヒド類が好ましく、鎖式あるいは環式飽和炭化水素、芳香族炭化水素がより好ましく、鎖式あるいは環式飽和炭化水素が特に好ましい。さらに鎖式あるいは環式飽和炭化水素としては、ヘキサン、シクロヘキサンであることが好ましい。 The nonpolar organic solvent is not particularly limited. Examples of the nonpolar organic solvent include ethers such as diethyl ether; chain or cyclic saturated hydrocarbons such as hexane, octane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; ethyl acetate and butyl acetate. , Esters such as propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; aldehydes such as acetaldehyde and propionaldehyde are preferred, chain or cyclic saturated hydrocarbons, aromatic hydrocarbons are more preferred, chain or cyclic Saturated hydrocarbons are particularly preferred. Further, the chain or cyclic saturated hydrocarbon is preferably hexane or cyclohexane.
 プロトン性極性有機溶媒/非極性有機溶媒の重量比としての混合比は、1/1~1/100が好ましく、1/1~1/30がより好ましい。かかる範囲内の混合比でプロトン性極性有機溶媒と非極性有機溶媒とが使用されると、両者の併用による所望する効果を得やすく、また、過度に大きい装置を用いる必要がなく、精製後の溶媒を短時間で除去しやすい。
 有機溶媒を加えた後の状態は、特に限定されない。ポリエーテルと有機溶媒は均一溶液になることが好ましい。なお、均一溶液であるとは、ポリエーテルと有機溶媒とが均一な溶液を形成していればよい。有機溶媒の添加後に固形物が析出している場合であっても、ポリエーテルと有機溶媒とが均一な溶液を形成していれば、かかる状態について、ポリエーテルと有機溶媒とが均一溶液を形成しているとする。
 ポリエーテルと有機溶媒とが均一溶液を形成する場合、工程(1)における粗製ポリエーテルと有機溶媒との混合から工程(2)における固形物の除去の間に、ポリエーテルを含む均一溶液を、液-液相分離させるのが好ましい。
 この場合、ポリエーテルに含まれる不純物である水溶性化合物を、液-液分離後に形成した2つの液相のうちの1つの相に高濃度の水溶性化合物を抽出しつつ、高濃度な水溶性化合物が存在する相において水溶性化合物を固形物として析出させることによって、効率よくポリエーテルを精製することができる。
 相分離させる方法は、特に限定されない。相分離させる方法は、温度変化、pH変化、塩析であることが好ましく、温度変化、pH変化であることがさらに好ましく、温度変化であることが特に好ましい。
 相分離させる方法としては、均一溶液の温度を変化させる方法が好ましい。温度変化は、液-液相分離可能であれば特に限定されず、昇温であっても冷却であってもよく、冷却が好ましい。
 液-液相分離について、より具体的には、有機溶媒が非プロトン性極性有機溶媒である場合、ポリエーテルを主体とする相と、有機溶媒を主体とする相とに分離する。有機溶媒が、プロトン性極性有機溶媒と非極性有機溶媒との組み合わせである場合、ポリエーテルと非プロトン性極性有機溶媒とを主体する相と、ポリエーテルと非極性有機溶媒とを主体とする相とに分離する。
The mixing ratio as a weight ratio of the protic polar organic solvent / non-polar organic solvent is preferably 1/1 to 1/100, more preferably 1/1 to 1/30. When a protic polar organic solvent and a nonpolar organic solvent are used at a mixing ratio within such a range, it is easy to obtain the desired effect by the combined use of both, and it is not necessary to use an excessively large apparatus, and after purification It is easy to remove the solvent in a short time.
The state after adding the organic solvent is not particularly limited. It is preferable that the polyether and the organic solvent become a homogeneous solution. In addition, what is necessary is just that the polyether and the organic solvent form the uniform solution that it is a uniform solution. Even if solids are precipitated after the addition of the organic solvent, if the polyether and the organic solvent form a uniform solution, the polyether and the organic solvent form a uniform solution in this state. Suppose you are.
When the polyether and the organic solvent form a homogeneous solution, during the mixing of the crude polyether and the organic solvent in step (1) to the removal of the solids in step (2), Liquid-liquid phase separation is preferred.
In this case, the high-concentration water-soluble compound is extracted while extracting the high-concentration water-soluble compound in one of the two liquid phases formed after the liquid-liquid separation. By precipitating the water-soluble compound as a solid in the phase in which the compound is present, the polyether can be purified efficiently.
The method of phase separation is not particularly limited. The method of phase separation is preferably temperature change, pH change, and salting out, more preferably temperature change and pH change, and particularly preferably temperature change.
As a method of phase separation, a method of changing the temperature of the homogeneous solution is preferable. The temperature change is not particularly limited as long as liquid-liquid phase separation is possible, and it may be a temperature rise or cooling, and cooling is preferred.
More specifically, when the organic solvent is an aprotic polar organic solvent, the liquid-liquid phase separation is separated into a phase mainly composed of polyether and a phase mainly composed of organic solvent. When the organic solvent is a combination of a protic polar organic solvent and a nonpolar organic solvent, a phase mainly composed of polyether and aprotic polar organic solvent, and a phase mainly composed of polyether and apolar organic solvent And to separate.
 ポリエーテルと有機溶媒とを混合する時の温度は、特に限定されない。ポリエーテルと溶媒とを混合する温度は、0℃以上が好ましい。ただし、140℃を超えると、ポリマーの劣化が懸念されることから、実用上0~140℃が好ましい。特に、ポリエーテルと有機溶媒が均一溶液になる温度で混合することが好ましい。 The temperature at which the polyether and the organic solvent are mixed is not particularly limited. The temperature at which the polyether and the solvent are mixed is preferably 0 ° C. or higher. However, if the temperature exceeds 140 ° C., the polymer may be deteriorated. In particular, it is preferable to mix the polyether and the organic solvent at a temperature at which a uniform solution is obtained.
 ポリエーテルと有機溶媒とを混合する方法は、特に限定されない。混合方法としては、振とう器や撹拌機を使用する方法が好ましい。 The method for mixing the polyether and the organic solvent is not particularly limited. As a mixing method, a method using a shaker or a stirrer is preferable.
 固形物を析出させる時の温度は、特に限定されない。固形物を析出させる温度は、0℃以上が好ましい。ただし、140℃を超えると、ポリマーの劣化が懸念されることから、実用上0~140℃が好ましい。特に、ポリエーテルと有機溶媒とが相分離する温度にすることが好ましい。 The temperature at which the solid is precipitated is not particularly limited. The temperature at which the solid is precipitated is preferably 0 ° C. or higher. However, if the temperature exceeds 140 ° C., the polymer may be deteriorated, and therefore 0 to 140 ° C. is preferable for practical use. In particular, the temperature is preferably such that the polyether and the organic solvent are phase separated.
 固形物を分離する操作も、特に限定されない。分離操作は、静置分離、遠心分離またはろ過の少なくとも1つを含む操作であることが好ましく、遠心分離またはろ過であることがより好ましい。ろ過による不純物の除去に際して、固形物を含むポリエーテルをそのままろ過装置に供給してもよい。ろ過性や、固形物の除去性を高めるためには、固形物を含む精製前ポリエーテルに、ろ過助剤を加えたスラリーを、ろ過装置にボディフィードすることが好ましい。
 ろ過助剤は、精製ポリエーテルに分散させてボディフィードして用いることもできるが、精製ポリエーテルのフィードに先立って、ろ過装置にプレコートして利用することもできる。
 ろ布等への微小な固形物の目詰まりが懸念される場合には、プレコートを行った上で、不純物を含有する精製ポリエーテルをそのまま供給することもでき、ろ過助剤を分散させた精製ポリエーテルをボディフィードで供給することもできる。
 ろ過助剤としては、セライトやパーライト等の周知のろ過助剤を利用できる。例えば、昭和化学製のラヂオライトや、東興パーライト工業製のトプコ等として、粒子径の異なる種々グレードのろ過助剤の製品を入手可能である。
 ろ過助剤としては、除去する不純物の種類に応じて、単独で、または複数の種類を混合して使用することが可能である。
 なお、極端に小さい粒子径のろ過助剤を用いると、ろ過性(ろ過処理速度)が悪くなる場合があり、逆に、極端に大きい粒子径のろ過助剤を用いると、ろ過性が良い一方で、不純物の除去効率が悪化しやすい。
 以上の観点から、不純物除去工程で使用されるろ過助剤の平均粒子径(レーザー法)は、例えば、20μm以上40μm以下のように30μm程度が好ましい。
 析出させた固形物の平均粒子径(散乱強度)は、固形物分離工程における不純物除去効率が高い点から、600nm以上が好ましく、800nm以上がより好ましく、1000nm以上が特に好ましい。
 また、固形物を析出させ分離する操作を複数回含んでもよい。ただし、回数が多いと生産性が悪化する。そのため、固形物を析出させ分離する工程は10回以下であることが好ましく、より好ましくは5回以下であり、特に好ましくは3回以下であり、最も好ましくは1回である。
The operation for separating the solid is not particularly limited. The separation operation is preferably an operation including at least one of stationary separation, centrifugation or filtration, and more preferably centrifugation or filtration. When removing impurities by filtration, the polyether containing solid matter may be supplied to the filtration device as it is. In order to enhance the filterability and the removal of solids, it is preferable to body-feed a slurry obtained by adding a filter aid to a pre-purification polyether containing solids to a filtration device.
The filter aid can be dispersed in purified polyether and used as a body feed, but it can also be used by pre-coating it on a filtration device prior to feeding the purified polyether.
When there is a concern about clogging of fine solids on filter cloth, etc., after pre-coating, purified polyether containing impurities can be supplied as it is, and purification with dispersed filter aid Polyether can also be fed in body feed.
As the filter aid, known filter aids such as celite and perlite can be used. For example, various grades of filter aid products with different particle sizes are available, such as Radiolite made by Showa Chemical Co., Ltd. and Topco made by Toko Perlite Industry.
As the filter aid, depending on the type of impurities to be removed, it can be used alone or in combination of a plurality of types.
In addition, when a filter aid having an extremely small particle size is used, filterability (filtration rate) may be deteriorated. Conversely, when a filter aid having an extremely large particle size is used, filterability is good. Thus, the impurity removal efficiency tends to deteriorate.
From the above viewpoint, the average particle diameter (laser method) of the filter aid used in the impurity removal step is preferably about 30 μm, for example, 20 μm to 40 μm.
The average particle diameter (scattering intensity) of the precipitated solid is preferably 600 nm or more, more preferably 800 nm or more, and particularly preferably 1000 nm or more from the viewpoint of high impurity removal efficiency in the solid separation step.
Moreover, you may include operation | movement which deposits and isolate | separates a solid substance in multiple times. However, productivity increases when the number of times is large. Therefore, the step of depositing and separating the solid is preferably 10 times or less, more preferably 5 times or less, particularly preferably 3 times or less, and most preferably 1 time.
 固形物を析出させる際には、無機酸、有機酸、アルカリ、無機塩、および有機塩等を添加してもしなくてもよい。 When depositing the solid, an inorganic acid, an organic acid, an alkali, an inorganic salt, an organic salt, or the like may or may not be added.
(不飽和基含有ポリエーテルのヒドロシリル化)
 精製後の不飽和基含有ポリエーテルの末端の不飽和基を、公知の方法によりヒドロシリル化することで反応性ケイ素基を導入して、反応性ケイ素基含有ポリエーテルを得ることができる。
(Hydrosilylation of unsaturated group-containing polyether)
A reactive silicon group-containing polyether can be obtained by hydrosilylating the terminal unsaturated group of the unsaturated group-containing polyether after purification by a known method to introduce a reactive silicon group-containing polyether.
 不飽和基含有ポリエーテルのヒドロシリル化は特に限定されることはなく、公知の方法を用いることができる。 Hydrosilylation of the unsaturated group-containing polyether is not particularly limited, and a known method can be used.
 不飽和基を有するポリエーテルとヒドロシリル化を行なうシラン化合物としては、1個以上のSi-H基を分子内に有している化合物であればよい。代表的なものを示すと、例えば下記一般式(1)で表される化合物が挙げられる。 The polyether having an unsaturated group and the silane compound for hydrosilylation may be a compound having one or more Si—H groups in the molecule. Typical examples include compounds represented by the following general formula (1).
 H-(SiR 2-bO)-Si(R3-a (1)
(一般式(1)中、RおよびRは同一または異なった炭素数1から20のアルキル基、炭素数6から20のアリール基、炭素数7から20のアラルキル基または(R’)SiO-で示されるトリオルガノシロキシ基を示し、RまたはRが二個以上存在するとき、それらは同一であってもよく、異なっていてもよく、R’は炭素数1から20の一価の炭化水素基であり、3個のR’は同一であってもよく、異なっていてもよく、Xは水酸基または加水分解性基を示し、Xが二個以上存在する時、それらは同一であってもよく、異なっていてもよく、aは0、1、2または3を、bは0、1、または2をそれぞれ示す。またm個の-(SiR 2-bO)-で表される基において、mが2以上の整数である場合、二個以上のbは同一であってもよく、異なっていてもよく、mは0から19の整数を示し、但し、aおよびbは、a+Σb≧1を満足する。)
 加水分解性基や水酸基は、1個のケイ素原子に1~3個の範囲で結合することができる。上記一般式(1)において、(a+Σb)は1~5個の範囲が好ましい。加水分解性基や水酸基が反応性ケイ素基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。
H- (SiR 2 2-b X b O) m -Si (R 1) 3-a X a (1)
(In General Formula (1), R 1 and R 2 are the same or different alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3. Represents a triorganosiloxy group represented by SiO—, and when two or more R 1 or R 2 are present, they may be the same or different, and R ′ is one having 1 to 20 carbon atoms. The three R's may be the same or different, X represents a hydroxyl group or a hydrolyzable group, and when two or more Xs are present, they are the same Or may be different, a represents 0, 1, 2, or 3, b represents 0, 1, or 2. m- (SiR 2 2-b X b O) In the group represented by-, when m is an integer of 2 or more, 2 or more of b May be the same or different, m represents an integer of 0 to 19, where, a and b satisfy the a + Σb ≧ 1.)
Hydrolyzable groups and hydroxyl groups can be bonded to one silicon atom in the range of 1 to 3. In the general formula (1), (a + Σb) is preferably in the range of 1 to 5. When two or more hydrolyzable groups or hydroxyl groups are bonded to the reactive silicon group, they may be the same or different.
 特に、下記一般式(2)で表される化合物が入手が容易であるので好ましい。
 H-SiR 3-c (2)
(一般式(2)中、R、Xは前記と同じ。cは1、2または3を示す。)
In particular, a compound represented by the following general formula (2) is preferable because it is easily available.
H-SiR 1 3-c X c (2)
(In general formula (2), R 1 and X are the same as described above. C represents 1 , 2 or 3.)
 具体的には、トリクロルシラン、メチルジクロルシラン、ジメチルクロルシラン、フェニルジクロルシラン、トリメチルシロキシメチルクロルシラン等のハロゲン化シラン類;トリメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、メチルジメトキシシラン、フェニルジメトキシシラン、トリメチルシロキシメチルメトキシシラン、トリメチルシロキシジエトキシシラン等のアルコキシシラン類;メチルジアセトキシシラン、フェニルジアセトキシシラン、トリアセトキシシラン、トリメチルシロキシメチルアセトキシシラン、トリメチルシロキシジアセトキシシラン等のアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシラン、ビス(ジエチルケトキシメート)トリメチルシロキシシラン、ビス(メチルエチルケトキシメート)メチルシラン、トリス(アセトキシメート)シラン等のケトキシメートシラン類;メチルイソプロペニルオキシシラン等のアルケニルオキシシラン類等が挙げられる。これらのうち、特にアルコキシシラン類が好ましく、アルコキシ基の中でもメトキシ基が特に好ましい。 Specifically, halogenated silanes such as trichlorosilane, methyldichlorosilane, dimethylchlorosilane, phenyldichlorosilane, trimethylsiloxymethylchlorosilane; trimethoxysilane, triethoxysilane, methyldiethoxysilane, methyldimethoxysilane Alkoxysilanes such as phenyldimethoxysilane, trimethylsiloxymethylmethoxysilane and trimethylsiloxydiethoxysilane; methyldiacetoxysilane, phenyldiacetoxysilane, triacetoxysilane, trimethylsiloxymethylacetoxysilane, trimethylsiloxydiacetoxysilane and the like Siloxysilanes: bis (dimethylketoximate) methylsilane, bis (cyclohexylketoximate) methylsilane, bis (diethylketoxy) Over G) trimethylsiloxy silane, bis (methyl ethyl ketone carboxylate formate) methylsilane, tris (keto carboxylate formate silanes such as acetoxy formate) silane; alkenyloxy silanes such as methyl isopropenyloxy silane and the like. Of these, alkoxysilanes are particularly preferable, and a methoxy group is particularly preferable among the alkoxy groups.
 ヒドロシリル化反応は、通常10~140℃、より好ましくは20~120℃、もっとも好ましくは40~100℃の範囲で行われるのが好適である。反応温度の調節、反応系の粘度の調整等の必要に応じて、ベンゼン、トルエン、キシレン、テトラヒドロフラン、塩化メチレン、ペンタン、ヘキサン、ヘプタン等の有機溶媒を用いることができる。 The hydrosilylation reaction is usually carried out in the range of usually 10 to 140 ° C., more preferably 20 to 120 ° C., most preferably 40 to 100 ° C. An organic solvent such as benzene, toluene, xylene, tetrahydrofuran, methylene chloride, pentane, hexane, or heptane can be used as needed for adjusting the reaction temperature and adjusting the viscosity of the reaction system.
 不飽和結合を導入したポリエーテルと加水分解性ケイ素基を有する化合物とのヒドロシリル化反応において用いる触媒としては、白金、ロジウム、等のVIII族遷移金属元素から選ばれた金属錯体触媒等が有効に使用される。金属錯体触媒としては、例えば、HPtCl・6HO、白金-ビニルシロキサン錯体、白金-オレフィン錯体、RhCl(PPh、等のような化合物が使用できる。ヒドロシリル化の反応性の点から、HPtCl・6HO、白金-ビニルシロキサン錯体、が特に好ましい。ここでいう白金-ビニルシロキサン錯体とは、白金原子に対し、配位子として分子内にビニル基を有する、シロキサン、ポリシロキサン、環状シロキサンが配位している化合物の総称である。上記配位子の具体例としては、1,1,3,3-テトラメチル1,3-ジビニルジシロキサン等が挙げられる。触媒使用量としては特に制限は無いが、通常、アルケニル基1モルに対して白金触媒を10-1から10-8モル使用することが好ましい。 As a catalyst used in a hydrosilylation reaction between a polyether having an unsaturated bond and a compound having a hydrolyzable silicon group, a metal complex catalyst selected from group VIII transition metal elements such as platinum, rhodium and the like is effective. used. As the metal complex catalyst, for example, a compound such as H 2 PtCl 6 .6H 2 O, platinum-vinylsiloxane complex, platinum-olefin complex, RhCl (PPh 3 ) 3 , etc. can be used. From the viewpoint of reactivity of the hydrosilylation, H 2 PtCl 6 · 6H 2 O, platinum - vinylsiloxane complexes, are particularly preferred. The platinum-vinylsiloxane complex here is a general term for compounds in which a siloxane, polysiloxane, or cyclic siloxane is coordinated with a platinum atom as a ligand in the molecule. Specific examples of the ligand include 1,1,3,3-tetramethyl 1,3-divinyldisiloxane. The amount of the catalyst used is not particularly limited, but it is usually preferable to use 10 -1 to 10 -8 mol of platinum catalyst with respect to 1 mol of alkenyl group.
 このようにして合成された反応性ケイ素基含有ポリエーテルは硬化触媒の存在下で、大気中の水分により常温で硬化し、金属、ガラス等に密着性の良い塗膜を与え、建造物、航空機、自動車等の被膜組成物、密封組成物、塗料組成物、接着剤組成物として有用である。硬化触媒としては、従来公知のシラノール縮合触媒を使用することができる。これらの触媒は単独で使用してもよく、2種以上を併用してもよい。 The reactive silicon group-containing polyether thus synthesized is cured at room temperature with moisture in the atmosphere in the presence of a curing catalyst, and gives a coating film having good adhesion to metals, glass, etc. It is useful as a coating composition for automobiles, sealing compositions, coating compositions, and adhesive compositions. As the curing catalyst, a conventionally known silanol condensation catalyst can be used. These catalysts may be used alone or in combination of two or more.
(反応性ケイ素基含有ポリエーテルの製造方法)
 また、以下の反応性ケイ素基含有ポリエーテルの製造方法が提供される。
 反応性ケイ素基含有ポリエーテルの製造方法は、具体的には、水溶性化合物を含有する粗製不飽和基含有ポリエーテルから該水溶性化合物を取り除く工程として
 工程(1A):粗製不飽和基含有ポリエーテルと有機溶媒とを混合する工程、および、
 工程(2A):粗製不飽和基含有ポリエーテルと有機溶媒との混合液において析出した固形物を除去する工程、
を含み、さらに、
 工程(3A):工程(1A)、および工程(2A)を経て得られた精製された不飽和基含有ポリエーテルが有する不飽和基を、前述の一般式(1)で示されるシラン化合物によりヒドロシリル化して反応性ケイ素基含有ポリエーテルを得る工程を含む。
 工程(1A)および工程(2A)において用いられる有機溶媒は、非プロトン性極性有機溶媒であるか、プロトン性極性有機溶媒と非極性有機溶媒との組み合わせである。
 工程(1A)および工程(2A)は、ポリエーテルの製造方法として前述した方法に従って実施される。
 工程(3A)は、不飽和基含有ポリエーテルのヒドロシリル化として前述した方法に従って実施される。
 かかる製造方法によれば、水を使用しなくても、効率良く不純物を除去できる精製された反応成形ケイ素基含有ポリエーテルを製造することができる。
 また、上記の製造方法によれば、不純物である水溶性化合物によるヒドロシリル化反応の阻害が抑制される。
(Method for producing reactive silicon group-containing polyether)
The following method for producing a reactive silicon group-containing polyether is also provided.
Specifically, the method for producing a reactive silicon group-containing polyether is as a step of removing the water-soluble compound from the crude unsaturated group-containing polyether containing a water-soluble compound. Step (1A): Crude unsaturated group-containing polyether Mixing an ether and an organic solvent, and
Step (2A): a step of removing the solid matter precipitated in the mixed liquid of the crude unsaturated group-containing polyether and the organic solvent,
Including,
Step (3A): The unsaturated group of the purified unsaturated group-containing polyether obtained through Step (1A) and Step (2A) is hydrosilylated with the silane compound represented by the above general formula (1). And obtaining a reactive silicon group-containing polyether.
The organic solvent used in the step (1A) and the step (2A) is an aprotic polar organic solvent or a combination of a protic polar organic solvent and a nonpolar organic solvent.
Step (1A) and step (2A) are performed according to the method described above as the method for producing a polyether.
Step (3A) is performed according to the method described above for the hydrosilylation of the unsaturated group-containing polyether.
According to such a production method, it is possible to produce a purified reaction-molded silicon group-containing polyether that can efficiently remove impurities without using water.
Moreover, according to said manufacturing method, inhibition of the hydrosilylation reaction by the water-soluble compound which is an impurity is suppressed.
 以下、本発明をより一層明らかにするために具体的な実施例をあげて説明するが、本発明はこれらに限定されるものではない。 Hereinafter, in order to further clarify the present invention, specific examples will be described. However, the present invention is not limited to these examples.
(pH測定)
 不飽和基含有ポリエーテルのpHはJIS K 1557-5(試験方法:pH(参考))に記載の方法で測定した。
 pH計は、メトラー・トレド(株)製S220-Kitを使用した。
(PH measurement)
The pH of the unsaturated group-containing polyether was measured by the method described in JIS K 1557-5 (test method: pH (reference)).
The pH meter used was S220-Kit manufactured by METTLER TOLEDO.
(濁度測定)
 不飽和基含有ポリエーテルまたは反応性ケイ素基含有ポリエーテルを分光光度計用セル(アズワン(株)製2-478-05)に移してペルジャー((株)サンプラテック製PC-250K)を用いて脱泡処理を行った。脱泡処理はダイヤフラムポンプを用いて減圧し、目視で泡がなくなるまで実施した。脱泡処理したセルを分光光度計((株)日立ハイテクサイエンス製U-1800型)を用いて、A660(660nmの吸光度)を測定した。分光光度計のゼロ点調整には、イオン交換水を使用した。
(Turbidity measurement)
The unsaturated group-containing polyether or reactive silicon group-containing polyether is transferred to a spectrophotometer cell (2-478-05, manufactured by ASONE Co., Ltd.) and removed using a pelger (PC-250K, manufactured by Sampleratech Co., Ltd.). Foam treatment was performed. The defoaming treatment was performed using a diaphragm pump to reduce the pressure until the bubbles disappeared visually. A660 (absorbance at 660 nm) was measured for the defoamed cell using a spectrophotometer (U-1800, manufactured by Hitachi High-Tech Science Co., Ltd.). Ion exchange water was used to adjust the zero point of the spectrophotometer.
(合成例1)
 数平均分子量300のポリプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの開環重合を行い、触媒および/またはその残渣である金属化合物を不純物として含む、数平均分子量約15000の水酸基末端ポリエーテルを得た。
(Synthesis Example 1)
A number average molecular weight of about 15000, comprising polypropylene triol having a number average molecular weight of 300 as an initiator, ring-opening polymerization of propylene oxide with a zinc hexacyanocobaltate glyme complex catalyst, and containing a metal compound as a catalyst and / or its residue as an impurity. To obtain a hydroxyl group-terminated polyether.
(合成例2)
 合成例1で得られた水酸基末端ポリエーテルの水酸基に対して1.0倍当量のナトリウムメトキシドの30%メタノール溶液を添加してメタノールを留去した。その後、水酸基に対して1.8倍当量のアリルクロライドを添加して末端の水酸基をアリル基に変換した。アリルクロライド添加後1時間後にメタノール0.5部を添加し、さらに3時間撹拌した。その後、アリルクロライドとメタノールとを留去し、不飽和基含有ポリエーテル(a1)を得た。不飽和基含有ポリエーテル(a1)のpHを測定したところ、8.4であった。
(Synthesis Example 2)
A 30% methanol solution of sodium methoxide equivalent to 1.0 times the hydroxyl group of the hydroxyl group-terminated polyether obtained in Synthesis Example 1 was added to distill off the methanol. Thereafter, 1.8 times equivalent of allyl chloride was added to the hydroxyl group to convert the terminal hydroxyl group into an allyl group. One hour after the addition of allyl chloride, 0.5 part of methanol was added, and the mixture was further stirred for 3 hours. Thereafter, allyl chloride and methanol were distilled off to obtain an unsaturated group-containing polyether (a1). It was 8.4 when pH of the unsaturated group containing polyether (a1) was measured.
(実施例1)
 合成例2で得られた不飽和基含有ポリエーテル(a1)50gと、アセトン50gとをガラス容器に入れた。ガラス容器内の液を60℃まで加熱し、振とう器で10分間混合した。混合後の温度は15℃であった。その後、0.5μmメンブレンフィルターでろ過を行った。ろ過された液に対して、110℃で減圧脱揮を行った。脱揮後に得られた不飽和基含有ポリエーテルの濁度(A660)を測定した。結果を表1に示す。
Example 1
50 g of unsaturated group-containing polyether (a1) obtained in Synthesis Example 2 and 50 g of acetone were placed in a glass container. The liquid in the glass container was heated to 60 ° C. and mixed for 10 minutes with a shaker. The temperature after mixing was 15 ° C. Then, it filtered with a 0.5 micrometer membrane filter. The filtered liquid was devolatilized under reduced pressure at 110 ° C. The turbidity (A660) of the unsaturated group-containing polyether obtained after devolatilization was measured. The results are shown in Table 1.
(実施例2)
 合成例2で得られた不飽和基含有ポリエーテル(a1)50gと、メタノール2.5gと、ヘキサン2.5gとをガラス容器に入れた。ガラス容器内の液を60℃まで加熱し、振とう器で10分間混合した。混合後の温度は15℃であった。その後、遠心分離機で固液分離を行った。固液分離後の液に対して、110℃で減圧脱揮を行った。脱揮後に得られた不飽和基含有ポリエーテルの濁度(A660)を測定した。結果を表1に示す。
(Example 2)
50 g of unsaturated group-containing polyether (a1) obtained in Synthesis Example 2, 2.5 g of methanol, and 2.5 g of hexane were placed in a glass container. The liquid in the glass container was heated to 60 ° C. and mixed for 10 minutes with a shaker. The temperature after mixing was 15 ° C. Thereafter, solid-liquid separation was performed with a centrifuge. The liquid after solid-liquid separation was devolatilized under reduced pressure at 110 ° C. The turbidity (A660) of the unsaturated group-containing polyether obtained after devolatilization was measured. The results are shown in Table 1.
(実施例3)
 合成例2で得られた不飽和基含有ポリエーテル(a1)50gと、メタノール5gと、ヘキサン45gとをガラス容器に入れた。ガラス容器内の液を60℃まで加熱し、振とう器で10分間混合した。混合後の温度は15℃であった。その後、遠心分離機で固液分離を行った。固液分離後の液に対して、110℃で減圧脱揮を行った。脱揮後に得られた不飽和基含有ポリエーテルの濁度(A660)を測定した。結果を表1に示す。
(Example 3)
50 g of unsaturated group-containing polyether (a1) obtained in Synthesis Example 2, 5 g of methanol, and 45 g of hexane were placed in a glass container. The liquid in the glass container was heated to 60 ° C. and mixed for 10 minutes with a shaker. The temperature after mixing was 15 ° C. Thereafter, solid-liquid separation was performed with a centrifuge. The liquid after solid-liquid separation was devolatilized under reduced pressure at 110 ° C. The turbidity (A660) of the unsaturated group-containing polyether obtained after devolatilization was measured. The results are shown in Table 1.
(実施例4)
 合成例2で得られた不飽和基含有ポリエーテル(a1)50gと、メタノール5gと、シクロヘキサン45gとをガラス容器に入れた。ガラス容器内の液を60℃まで加熱し、振とう器で10分間混合した。混合後の温度は15℃であった。その後、遠心分離機で固液分離を行った。固液分離後の液に対して、110℃で減圧脱揮を行った。脱揮後に得られた不飽和基含有ポリエーテルの濁度(A660)を測定した。結果を表1に示す。
Example 4
50 g of unsaturated group-containing polyether (a1) obtained in Synthesis Example 2, 5 g of methanol, and 45 g of cyclohexane were placed in a glass container. The liquid in the glass container was heated to 60 ° C. and mixed for 10 minutes with a shaker. The temperature after mixing was 15 ° C. Thereafter, solid-liquid separation was performed with a centrifuge. The liquid after solid-liquid separation was devolatilized under reduced pressure at 110 ° C. The turbidity (A660) of the unsaturated group-containing polyether obtained after devolatilization was measured. The results are shown in Table 1.
(比較例1)
 合成例2で得られた不飽和基含有ポリエーテル(a1)50gと、メタノール25gとをガラス容器に入れた。ガラス容器内の液を60℃まで加熱し、振とう器で10分間混合した。混合後の温度は15℃であった。その後、0.5μmメンブレンフィルターでろ過を行った。ろ過された液に対して、110℃で減圧脱揮を行った。脱揮後に得られた不飽和基含有ポリエーテルの濁度(A660)を測定した。結果を表1に示す。
(Comparative Example 1)
50 g of unsaturated group-containing polyether (a1) obtained in Synthesis Example 2 and 25 g of methanol were placed in a glass container. The liquid in the glass container was heated to 60 ° C. and mixed for 10 minutes with a shaker. The temperature after mixing was 15 ° C. Then, it filtered with a 0.5 micrometer membrane filter. The filtered liquid was devolatilized under reduced pressure at 110 ° C. The turbidity (A660) of the unsaturated group-containing polyether obtained after devolatilization was measured. The results are shown in Table 1.
(比較例2)
 合成例2で得られた不飽和基含有ポリエーテル(a1)50gと、ヘキサン25gとをガラス容器に入れた。ガラス容器内の液を60℃まで加熱し、振とう器で10分間混合した。混合後の温度は15℃であった。その後、0.5μmメンブレンフィルターでろ過を行った。ろ過された液に対して、110℃で減圧脱揮を行った。脱揮後に得られた不飽和基含有ポリエーテルの濁度(A660)を測定した。結果を表1に示す。
(Comparative Example 2)
50 g of the unsaturated group-containing polyether (a1) obtained in Synthesis Example 2 and 25 g of hexane were placed in a glass container. The liquid in the glass container was heated to 60 ° C. and mixed for 10 minutes with a shaker. The temperature after mixing was 15 ° C. Then, it filtered with a 0.5 micrometer membrane filter. The filtered liquid was devolatilized under reduced pressure at 110 ° C. The turbidity (A660) of the unsaturated group-containing polyether obtained after devolatilization was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例5)
 実施例3で得られた不飽和基含有ポリエーテル50g、ヘキサン1g、およびアスコルビン酸0.0225gを200mL四つ口フラスコに加え、90℃で減圧脱揮を行った。その後、フラスコ内の液を1時間撹拌した。次いで、フラスコ内をNで置換し、白金-ビニルシロキサン錯体(Pt1wt%/イソプロパノール(以下、IPA))23μLを加え撹拌し、ジメトキシメチルシラン1.2gをゆっくり滴下した。その混合溶液を90℃で1時間反応させ、その後、110℃で減圧脱揮を行って、反応性ケイ素基含有ポリエーテルを得た。NMRにより得られたポリマーの残アリル基率を測定した結果、未反応のアリル基率は1%であった。
(Example 5)
50 g of unsaturated group-containing polyether obtained in Example 3, 1 g of hexane, and 0.0225 g of ascorbic acid were added to a 200 mL four-necked flask and devolatilized at 90 ° C. under reduced pressure. Thereafter, the liquid in the flask was stirred for 1 hour. Next, the inside of the flask was replaced with N 2 , 23 μL of platinum-vinylsiloxane complex (Pt 1 wt% / isopropanol (hereinafter, IPA)) was added and stirred, and 1.2 g of dimethoxymethylsilane was slowly added dropwise. The mixed solution was reacted at 90 ° C. for 1 hour, and then devolatilized under reduced pressure at 110 ° C. to obtain a reactive silicon group-containing polyether. As a result of measuring the residual allyl group ratio of the polymer obtained by NMR, the unreacted allyl group ratio was 1%.
 (比較例3)
 比較例2で得られた不飽和基含有ポリエーテル50g、ヘキサン1g、およびアスコルビン酸0.0225gを200mL四つ口フラスコに加え、90℃で減圧脱揮を行った。その後、フラスコ内の液を1時間撹拌した。次いで、フラスコ内をNで置換し、白金-ビニルシロキサン錯体(Pt1wt%/イソプロパノール(以下、IPA))23μLを加え撹拌し、ジメトキシメチルシラン1.2gをゆっくり滴下した。その混合溶液を90℃で1時間反応させ、その後、110℃で減圧脱揮を行って、反応性ケイ素基含有ポリエーテルを得た。NMRにより得られたポリマーの残アリル基率を測定した結果、未反応のアリル基率は70%であった。結果を表2に示す。
(Comparative Example 3)
50 g of unsaturated group-containing polyether obtained in Comparative Example 2, 1 g of hexane, and 0.0225 g of ascorbic acid were added to a 200 mL four-necked flask and subjected to vacuum devolatilization at 90 ° C. Thereafter, the liquid in the flask was stirred for 1 hour. Next, the inside of the flask was replaced with N 2 , 23 μL of platinum-vinylsiloxane complex (Pt 1 wt% / isopropanol (hereinafter, IPA)) was added and stirred, and 1.2 g of dimethoxymethylsilane was slowly added dropwise. The mixed solution was reacted at 90 ° C. for 1 hour, and then devolatilized under reduced pressure at 110 ° C. to obtain a reactive silicon group-containing polyether. As a result of measuring the residual allyl group ratio of the polymer obtained by NMR, the unreacted allyl group ratio was 70%. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (22)

  1.  水溶性化合物を含有する粗製ポリエーテルから該水溶性化合物を取り除く工程を含むポリエーテルの製造方法であって、
     工程(1)前記粗製ポリエーテルと有機溶媒とを混合する工程、および、
     工程(2)前記粗製ポリエーテルと前記有機溶媒との混合液において析出した固形物を除去する工程、
    を含み、
     前記有機溶媒が、非プロトン性極性有機溶媒であるか、プロトン性極性有機溶媒と非極性有機溶媒との組み合わせである、ポリエーテルの製造方法。
    A method for producing a polyether comprising a step of removing the water-soluble compound from a crude polyether containing a water-soluble compound,
    Step (1) mixing the crude polyether with an organic solvent, and
    Step (2) a step of removing solids precipitated in the mixed liquid of the crude polyether and the organic solvent;
    Including
    A method for producing a polyether, wherein the organic solvent is an aprotic polar organic solvent or a combination of a protic polar organic solvent and a nonpolar organic solvent.
  2.  前記有機溶媒が前記非プロトン性極性有機溶媒である、請求項1に記載のポリエーテルの製造方法。 The method for producing a polyether according to claim 1, wherein the organic solvent is the aprotic polar organic solvent.
  3.  前記有機溶媒が前記プロトン性極性有機溶媒と前記非極性有機溶媒との組み合わせである、請求項1に記載の、ポリエーテルの製造方法。 The method for producing a polyether according to claim 1, wherein the organic solvent is a combination of the protic polar organic solvent and the nonpolar organic solvent.
  4.  前記非プロトン性極性有機溶媒が、ケトン系溶媒およびアミド系溶媒のいずれかである、請求項1または2に記載のポリエーテルの製造方法。 The method for producing a polyether according to claim 1 or 2, wherein the aprotic polar organic solvent is one of a ketone solvent and an amide solvent.
  5.  前記非プロトン性極性有機溶媒が、ケトン系溶媒である、請求項4に記載のポリエーテルの製造方法。 The method for producing a polyether according to claim 4, wherein the aprotic polar organic solvent is a ketone solvent.
  6.  前記非プロトン性極性有機溶媒が、アセトンである、請求項5に記載のポリエーテルの製造方法。 The method for producing a polyether according to claim 5, wherein the aprotic polar organic solvent is acetone.
  7.  前記プロトン性極性有機溶媒が、アルコール系溶媒である、請求項1または3に記載のポリエーテルの製造方法。 The method for producing a polyether according to claim 1 or 3, wherein the protic polar organic solvent is an alcohol solvent.
  8.  前記プロトン性極性有機溶媒が、炭素数1~3のアルコール系溶媒である、請求項7に記載のポリエーテルの製造方法。 The method for producing a polyether according to claim 7, wherein the protic polar organic solvent is an alcohol solvent having 1 to 3 carbon atoms.
  9.  前記プロトン性極性有機溶媒がメタノールである、請求項8に記載のポリエーテルの製造方法。 The method for producing a polyether according to claim 8, wherein the protic polar organic solvent is methanol.
  10.  前記粗製ポリエーテル100重量部と、前記非プロトン性極性有機溶媒1~1000重量部、または前記プロトン性極性有機溶媒1~1000重量部とを混合する、請求項1~9のいずれか1項に記載のポリエーテルの製造方法。 The mixture according to any one of claims 1 to 9, wherein 100 parts by weight of the crude polyether and 1 to 1000 parts by weight of the aprotic polar organic solvent or 1 to 1000 parts by weight of the protic polar organic solvent are mixed. A process for producing the described polyether.
  11.  前記非極性有機溶媒が、鎖式あるいは環式飽和炭化水素である、請求項1、3、7、8、9、または10に記載のポリエーテルの製造方法。 The method for producing a polyether according to claim 1, 3, 7, 8, 9, or 10, wherein the nonpolar organic solvent is a chain or cyclic saturated hydrocarbon.
  12.  前記非極性有機溶媒がヘキサン、および/またはシクロヘキサンである、請求項11に記載のポリエーテルの製造方法。 The method for producing a polyether according to claim 11, wherein the nonpolar organic solvent is hexane and / or cyclohexane.
  13.  前記プロトン性極性有機溶媒の重量と前記非極性有機溶媒との重量比が、プロトン性極性有機溶媒の重量/非極性有機溶媒の重量として、1/1~1/100である、請求項1、3、7、8、9、10、11、または12に記載のポリエーテルの製造方法。 The weight ratio of the weight of the protic polar organic solvent to the nonpolar organic solvent is 1/1 to 1/100 as the weight of the protic polar organic solvent / the weight of the nonpolar organic solvent. The method for producing a polyether according to 3, 7, 8, 9, 10, 11, or 12.
  14.  前記工程(1)における前記粗製ポリエーテルと前記有機溶媒との混合から前記工程(2)における前記固形物の除去の間に、ポリエーテルを含む均一溶液を、液-液相分離させる、請求項1~13のいずれか1項に記載のポリエーテルの製造方法。 The liquid-liquid phase separation is performed on the homogeneous solution containing the polyether during the mixing of the crude polyether and the organic solvent in the step (1) to the removal of the solid in the step (2). 14. The method for producing a polyether according to any one of 1 to 13.
  15.  均一溶液の温度を変化させることにより液-液相分離を生じさせる、請求項14に記載のポリエーテルの製造方法。 15. The method for producing a polyether according to claim 14, wherein liquid-liquid phase separation is caused by changing the temperature of the homogeneous solution.
  16.  前記粗製ポリエーテルと前記有機溶媒とを混合する時の温度が0~140℃である請求項1~15のいずれか1項に記載のポリエーテルの製造方法。 The method for producing a polyether according to any one of claims 1 to 15, wherein a temperature at which the crude polyether and the organic solvent are mixed is 0 to 140 ° C.
  17.  前記混合液において固形物を析出させる温度が0~140℃である、請求項1~16のいずれか1項に記載のポリエーテルの製造方法。 The method for producing a polyether according to any one of claims 1 to 16, wherein a temperature at which the solid matter is precipitated in the mixed solution is 0 to 140 ° C.
  18.  前記固形物を除去する操作が静置分離、遠心分離またはろ過の少なくとも1つを含む操作である、請求項1~17のいずれか1項に記載のポリエーテルの製造方法。 The method for producing a polyether according to any one of claims 1 to 17, wherein the operation for removing the solid matter is an operation including at least one of stationary separation, centrifugation, and filtration.
  19.  前記工程(2)が複数回実施される、請求項1~18のいずれか1項に記載のポリエーテルの製造方法。 The method for producing a polyether according to any one of claims 1 to 18, wherein the step (2) is carried out a plurality of times.
  20.  前記粗製ポリエーテルが、水酸基末端ポリエーテル、不飽和基含有ポリエーテルおよび反応性ケイ素基含有ポリエーテルからなる群より選ばれるいずれかである、請求項1~19のいずれか1項に記載のポリエーテルの製造方法。 The poly ether according to any one of claims 1 to 19, wherein the crude polyether is selected from the group consisting of a hydroxyl group-terminated polyether, an unsaturated group-containing polyether and a reactive silicon group-containing polyether. A method for producing ether.
  21.  前記水溶性化合物が、アルカリ金属化合物または複合金属シアン化物錯体触媒由来の化合物である、請求項1~20のいずれか1項に記載のポリエーテルの製造方法。 The method for producing a polyether according to any one of claims 1 to 20, wherein the water-soluble compound is a compound derived from an alkali metal compound or a double metal cyanide complex catalyst.
  22.  水溶性化合物を含有する粗製不飽和基含有ポリエーテルから該水溶性化合物を取り除く工程として
     工程(1A):前記粗製不飽和基含有ポリエーテルと有機溶媒とを混合する工程、および、
     工程(2A):前記粗製不飽和基含有ポリエーテルと前記有機溶媒との混合液において析出した固形物を除去する工程、
    を含み、さらに、
     工程(3A):前記工程(1A)、および前記工程(2A)を経て得られた精製された不飽和基含有ポリエーテルが有する不飽和基を、下記一般式(1)で示されるシラン化合物によりヒドロシリル化して反応性ケイ素基含有ポリエーテルを得る工程を含み、
     前記有機溶媒が、非プロトン性極性有機溶媒であるか、プロトン性極性有機溶媒と非極性有機溶媒との組み合わせである、反応性ケイ素基含有ポリエーテルの製造方法。
     H-(SiR 2-bO)-Si(R3-a (1)
    (一般式(1)中、RおよびRは同一または異なった炭素数1から20のアルキル基、炭素数6から20のアリール基、炭素数7から20のアラルキル基または(R’)SiO-で示されるトリオルガノシロキシ基を示し、RまたはRが二個以上存在するとき、それらは同一であってもよく、異なっていてもよく、R’は炭素数1から20の一価の炭化水素基であり、3個のR’は同一であってもよく、異なっていてもよく、Xは水酸基または加水分解性基を示し、Xが二個以上存在する時、それらは同一であってもよく、異なっていてもよく、aは0、1、2または3を、bは0、1、または2をそれぞれ示し、m個の-(SiR 2-bO)-で表される基において、mが2以上の整数である場合、二個以上のbは同一であってもよく、異なっていてもよく、mは0から19の整数を示し、但し、aおよびbは、a+Σb≧1を満足する。)
    As a step of removing the water-soluble compound from the crude unsaturated group-containing polyether containing a water-soluble compound Step (1A): a step of mixing the crude unsaturated group-containing polyether and an organic solvent, and
    Step (2A): a step of removing solids precipitated in the mixed liquid of the crude unsaturated group-containing polyether and the organic solvent,
    Including,
    Step (3A): The unsaturated group of the purified unsaturated group-containing polyether obtained through the step (1A) and the step (2A) is converted into a silane compound represented by the following general formula (1). Comprising hydrosilylation to obtain a reactive silicon group-containing polyether,
    A method for producing a reactive silicon group-containing polyether, wherein the organic solvent is an aprotic polar organic solvent or a combination of a protic polar organic solvent and a nonpolar organic solvent.
    H- (SiR 2 2-b X b O) m -Si (R 1) 3-a X a (1)
    (In General Formula (1), R 1 and R 2 are the same or different alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3. Represents a triorganosiloxy group represented by SiO—, and when two or more R 1 or R 2 are present, they may be the same or different, and R ′ is one having 1 to 20 carbon atoms. The three R's may be the same or different, X represents a hydroxyl group or a hydrolyzable group, and when two or more Xs are present, they are the same Or may be different, a represents 0, 1, 2, or 3, b represents 0, 1, or 2, and m — (SiR 2 2-b X b O) — When m is an integer of 2 or more in the group represented by May also be, may be different, m represents an integer of 0 to 19, where, a and b satisfy the a + Σb ≧ 1.)
PCT/JP2019/016334 2018-04-18 2019-04-16 Method for producing polyether WO2019203234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020514396A JP7393330B2 (en) 2018-04-18 2019-04-16 Method for producing polyether

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018079524 2018-04-18
JP2018-079524 2018-04-18

Publications (1)

Publication Number Publication Date
WO2019203234A1 true WO2019203234A1 (en) 2019-10-24

Family

ID=68238880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016334 WO2019203234A1 (en) 2018-04-18 2019-04-16 Method for producing polyether

Country Status (2)

Country Link
JP (1) JP7393330B2 (en)
WO (1) WO2019203234A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504469A (en) * 1999-07-09 2003-02-04 ザ ダウ ケミカル カンパニー Method for fractionating poly (ethylene oxide) produced using metal cyanide catalyst
WO2006049088A1 (en) * 2004-11-01 2006-05-11 Kaneka Corporation Process for production of polyethers and polymers
JP2010254978A (en) * 2009-03-31 2010-11-11 Nof Corp Method for purifying high molecular weight polyoxyalkylene derivative

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105078A (en) 2001-09-28 2003-04-09 Kanegafuchi Chem Ind Co Ltd Method for eliminating metal compound from crude polyether
JP2003313289A (en) 2002-04-19 2003-11-06 Kanegafuchi Chem Ind Co Ltd Process for producing polyether from which metal compound is removed
JP7285248B2 (en) 2018-04-16 2023-06-01 株式会社カネカ Method for producing polyether

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504469A (en) * 1999-07-09 2003-02-04 ザ ダウ ケミカル カンパニー Method for fractionating poly (ethylene oxide) produced using metal cyanide catalyst
WO2006049088A1 (en) * 2004-11-01 2006-05-11 Kaneka Corporation Process for production of polyethers and polymers
JP2010254978A (en) * 2009-03-31 2010-11-11 Nof Corp Method for purifying high molecular weight polyoxyalkylene derivative

Also Published As

Publication number Publication date
JP7393330B2 (en) 2023-12-06
JPWO2019203234A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP4600396B2 (en) Method for producing polyether polymer and composition thereof
US10099211B2 (en) Process for producing compositions comprising platinum
CN113201133B (en) Method for producing high purity hydrosilylation products
EP3689944A1 (en) Polysiloxazane compound, method for producing the same, and composition containing the same and cured product thereof
JP7393330B2 (en) Method for producing polyether
JP7240859B2 (en) Method for producing purified polyether and method for producing curable composition
JP7285248B2 (en) Method for producing polyether
CA3165214A1 (en) Process for producing high-purity hydrosilylation products
JP4122116B2 (en) Method for producing functional group-containing polyoxyalkylene polymer
JP6978369B2 (en) Method for manufacturing polyether
JP6899262B2 (en) Method for Producing an Unsaturated Group-Containing Polyether Polymer
KR102524370B1 (en) Hydrosilylation method
JP4575010B2 (en) Novel functional group-containing polyoxyalkylene polymer and production method
JP7061498B2 (en) Method for manufacturing polyether
JP6868367B2 (en) A method for producing a purified unsaturated group-containing polyether polymer, and a method for producing a hydrolyzable silicon group-containing polyether polymer.
JP6872341B2 (en) A method for producing a purified unsaturated group-containing polyether polymer, and a method for producing a hydrolyzable silicon group-containing polyether polymer.
CN1860156A (en) Functionalisation (epoxidation) of silicones and use of said silicones as non-stick coatings
KR101097570B1 (en) Method for Producing Cyclic Organic Silicon Compound
JP4083887B2 (en) Heat-curable foamable organopolysiloxane composition and method for curing the same
WO2023201138A1 (en) Preparation of polyether-functional organosilicon compounds
EP0690088A2 (en) Fluorine-containing organosilicon compounds and method for preparation
JPH0881564A (en) Production of polymer having hydrolyzable silicon group
JP2013010972A (en) Method for producing organopolysiloxane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514396

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19789351

Country of ref document: EP

Kind code of ref document: A1