WO2019203170A1 - Directional coupler and microwave heating device provided with same - Google Patents

Directional coupler and microwave heating device provided with same Download PDF

Info

Publication number
WO2019203170A1
WO2019203170A1 PCT/JP2019/016074 JP2019016074W WO2019203170A1 WO 2019203170 A1 WO2019203170 A1 WO 2019203170A1 JP 2019016074 W JP2019016074 W JP 2019016074W WO 2019203170 A1 WO2019203170 A1 WO 2019203170A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
opening
transmission line
microwave
directional coupler
Prior art date
Application number
PCT/JP2019/016074
Other languages
French (fr)
Japanese (ja)
Inventor
昌之 久保
吉野 浩二
貞平 匡史
中村 秀樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020514361A priority Critical patent/JP7178563B2/en
Priority to CN201980003790.XA priority patent/CN111033889B/en
Priority to EP19788616.1A priority patent/EP3783736B1/en
Publication of WO2019203170A1 publication Critical patent/WO2019203170A1/en
Priority to JP2022169563A priority patent/JP7454770B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • H05B6/708Feed lines using waveguides in particular slotted waveguides

Definitions

  • the present disclosure relates to a directional coupler that detects a power level of a microwave propagating through a waveguide, and a microwave heating apparatus including the directional coupler.
  • a directional coupler is known as a device for detecting the power level of a microwave propagating through a waveguide.
  • the directional coupler separates the traveling wave and the reflected wave that propagate through the waveguide and detects each of them.
  • a directional coupler described in Patent Document 1 As a conventional directional coupler, for example, a directional coupler described in Patent Document 1 is known.
  • the directional coupler of Patent Document 1 includes an opening disposed on a wall surface of a waveguide and a coupling line disposed outside the waveguide.
  • the opening is arranged at a position that does not intersect the tube axis of the waveguide in plan view, and is formed so as to radiate circularly polarized microwaves.
  • the coupled line includes a first transmission line and a second transmission line that cross the opening in a plan view.
  • the first transmission line and the second transmission line are disposed so as to face each other with the central portion of the opening interposed therebetween, and are connected to each other at a position deviated from the region vertically above the opening.
  • the rotational direction of the circularly polarized traveling wave radiated from the opening is opposite to that of the circularly polarized reflected wave. Utilizing such a difference in the rotation direction of the circularly polarized microwave, the traveling wave and the reflected wave can be separated and detected.
  • the conventional directional coupler described above still has room for improvement in terms of separating and detecting the traveling wave and the reflected wave more accurately.
  • an object of the present disclosure is to provide a directional coupler that can separate and detect a traveling wave and a reflected wave and a microwave heating apparatus including the directional coupler.
  • a directional coupler includes an opening disposed on a wall surface of a waveguide and a coupling line disposed outside the waveguide, and a traveling wave and a reflection propagating through the waveguide Separate and detect waves.
  • the opening has a first long hole and a second long hole that are arranged at positions not intersecting with the tube axis of the waveguide in plan view.
  • the coupled line includes a first transmission line and a second transmission line.
  • the first transmission line has a first intersecting line portion.
  • the first intersecting line portion extends from one end of the tube axis in plan view through an opening intersecting portion where the first elongated hole and the second elongated hole intersect, and away from the tube axis as approaching a perpendicular perpendicular to the tube axis. And intersects the first slot at a position farther from the tube axis than the opening intersection.
  • the second transmission line has a second intersection line portion.
  • the second intersecting line portion extends away from the tube axis as it approaches the perpendicular from the other end of the tube axis in plan view, and intersects the second elongated hole at a position further away from the tube axis than the opening intersecting portion. .
  • One end of the first transmission line is connected to one end of the second transmission line at a position deviating from the opening region in plan view.
  • the traveling wave and the reflected wave can be separated and detected with higher accuracy.
  • FIG. 1 is a perspective view of a directional coupler according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of the directional coupler according to the embodiment with the printed board removed.
  • FIG. 3 is a plan view of the waveguide according to the embodiment.
  • FIG. 4 is a circuit configuration diagram of a printed circuit board provided in the directional coupler according to the embodiment.
  • FIG. 5 is a diagram for explaining the principle that circularly polarized microwaves are radiated from the cross aperture.
  • FIG. 6 is a diagram for explaining the direction and amount of the microwave propagating through the microstrip line and changing with time.
  • FIG. 7 is a diagram for explaining the direction and amount of the microwave that propagates through the microstrip line and changes with time.
  • FIG. 1 is a perspective view of a directional coupler according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of the directional coupler according to the embodiment with the printed board removed.
  • FIG. 3 is a plan view of
  • FIG. 8A is a plan view showing a first modification of the microstrip line.
  • FIG. 8B is a plan view showing a second modification of the microstrip line.
  • FIG. 8C is a plan view showing a third modification of the microstrip line.
  • FIG. 8D is a plan view showing a fourth modification of the microstrip line.
  • FIG. 8E is a plan view showing a fifth modification of the microstrip line.
  • FIG. 8F is a plan view showing a sixth modification of the microstrip line.
  • FIG. 9 is a schematic diagram of the microwave heating apparatus according to the embodiment.
  • the present inventors have earnestly studied to detect and detect traveling waves and reflected waves more accurately, and as a result, have obtained the following knowledge.
  • a coupling line is configured by connecting a plurality of lines parallel to the tube axis in a plan view and a plurality of lines perpendicular to the tube axis in a plan view as a single line. Is done.
  • the inventors of the present invention concentrate the magnetic field at a point where the coupled line bends at a right angle (or an acute angle), obstructs the flow of current (microwave) in the coupled line, and separates the traveling wave from the reflected wave. It has been found that it affects.
  • the present inventors have found that in the conventional directional coupler, there are many portions where the coupled line is bent at a right angle, which greatly affects the degree of separation between the traveling wave and the reflected wave.
  • the inventors of the present invention have suppressed the current flow in the coupled line from being hindered by moving the portion where the coupled line is bent away from the vertical region of the opening that is strongly affected by the magnetic field. I found out.
  • the present inventors have found the following invention.
  • the present inventors have confirmed that the directivity (separation between traveling wave and reflected wave) is improved by 5 dB or more (about 3 times or more) by these inventions as compared with the conventional directional coupler.
  • a directional coupler includes an opening disposed on a wall surface of a waveguide, and a traveling wave propagating through the waveguide, including a coupling line disposed outside the waveguide. And the reflected wave are detected separately.
  • the opening has a first long hole and a second long hole that are arranged at positions not intersecting with the tube axis of the waveguide in plan view.
  • the coupled line includes a first transmission line and a second transmission line.
  • the first transmission line has a first intersecting line portion.
  • the first intersecting line portion extends from one end of the tube axis in plan view through an opening intersecting portion where the first elongated hole and the second elongated hole intersect, and away from the tube axis as approaching a perpendicular perpendicular to the tube axis. And intersects the first slot at a position farther from the tube axis than the opening intersection.
  • the second transmission line has a second intersection line portion.
  • the second intersecting line portion extends away from the tube axis as it approaches the perpendicular from the other end of the tube axis in plan view, and intersects the second elongated hole at a position further away from the tube axis than the opening intersecting portion. .
  • One end of the first transmission line is connected to one end of the second transmission line at a position deviating from the opening region in plan view.
  • the first transmission line and the second transmission line are outside a rectangular region circumscribing the opening in a plan view, and They are connected to each other at a position farther from the tube axis than the rectangular area.
  • At least one of the first intersecting line part or the second intersecting line part corresponds to the first long hole or the second corresponding in plan view. It intersects the long hole at a position closer to the opening tip than the opening intersection.
  • At least one of the first intersecting line part or the second intersecting line part corresponds to the first long hole or the second corresponding in plan view. Orthogonal to the long hole.
  • the coupled line includes a plurality of straight line portions including a first intersecting line portion and a second intersecting line portion. Two straight portions adjacent to each other among the plurality of straight portions are connected to form an obtuse angle.
  • the plurality of linear portions includes a linear portion that connects the other end of the first intersecting line portion and the first output portion, A straight line portion connecting the two intersecting line portions and the second output portion.
  • a first coupling point and a second intersecting line portion that are intersections of the first intersecting line portion and the first oblong hole in plan view.
  • the total distance between the first transmission line and the second transmission line that are further away from the tube axis than the virtual straight line that passes through the second coupling point that is the intersection of the second long hole and the second long hole is set to 1/4 of the effective length.
  • the first in addition to the first aspect, the first that is farther from the tube axis than a parallel line that passes through the opening intersection and is parallel to the tube axis in plan view.
  • the total distance between the transmission line and the second transmission line is set to 1 ⁇ 2 of the effective length.
  • the microwave heating device includes the directional coupler according to the first aspect.
  • FIG. 1 is a perspective view of a directional coupler 5 according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of the directional coupler 5 with the printed circuit board 12 removed.
  • FIG. 3 is a plan view of the waveguide 3.
  • FIG. 4 is a circuit configuration diagram of the printed circuit board 12 provided in the directional coupler 5.
  • the directional coupler 5 is disposed on the wall surface of the waveguide 3 that transmits microwaves.
  • the waveguide 3 is a rectangular waveguide.
  • the cross section orthogonal to the tube axis L1 of the waveguide 3 has a rectangular shape.
  • the tube axis L1 is the central axis of the waveguide 3 in the width direction.
  • the directional coupler 5 includes a cross opening 11, a printed board 12, and a support portion 14.
  • the cross opening 11 is an X-shaped opening disposed on the wide surface (Wide Plane) 3 a of the waveguide 3.
  • the printed circuit board 12 is disposed outside the waveguide 3 so as to face the cross opening 11.
  • the support unit 14 supports the printed circuit board 12 on the outer surface of the waveguide 3.
  • the cross opening 11 is disposed at a position that does not intersect the tube axis L1 of the waveguide 3 in plan view.
  • the opening center portion 11c of the cross opening 11 is disposed away from the tube axis L1 of the waveguide 3 by a dimension D1 in plan view.
  • the dimension D1 is, for example, 1 ⁇ 4 of the width of the waveguide 3.
  • the cross opening 11 radiates the microwave propagating through the waveguide 3 toward the printed circuit board 12 as a circularly polarized microwave.
  • the opening shape of the cross opening 11 includes the width and height of the waveguide 3, the power level and frequency band of the microwave propagating through the waveguide 3, and the power level of the circularly polarized microwave radiated from the cross opening 11. It is determined according to conditions such as.
  • the width of the waveguide 3 is 100 mm
  • the height is 30 mm
  • the thickness of the wall surface of the waveguide 3 is 0.6 mm
  • the maximum power level of the microwave propagating through the waveguide 3 is 1000 W
  • the frequency band is 2450 MHz.
  • the maximum power level of the circularly polarized microwave radiated from the cross opening 11 is about 10 mW
  • the length 11w and the width 11d of the cross opening 11 are set to 20 mm and 2 mm, respectively.
  • the cross opening 11 includes a first long hole 11e and a second long hole 11f that intersect each other.
  • the opening center part 11c of the cross opening 11 coincides with the opening intersection where the first long hole 11e and the second long hole 11f intersect.
  • the cross opening 11 is formed symmetrically with respect to the perpendicular L2.
  • the perpendicular L2 is orthogonal to the tube axis L1 and passes through the opening center portion 11c.
  • first long hole 11e and the second long hole 11f intersect at an angle of 90 degrees.
  • first long hole 11e and the second long hole 11f may intersect at an angle of 60 degrees or 120 degrees.
  • the electric field reciprocates along the microwave transmission direction without rotating.
  • the cross opening 11 radiates linearly polarized microwaves.
  • the opening center portion 11c is slightly deviated from the tube axis L1, the electric field rotates. However, when the opening center portion 11c is close to the tube axis L1 (as the dimension D1 is close to 0 mm), an distorted electric field is generated. In this case, the cross opening 11 radiates elliptically polarized microwaves.
  • the dimension D1 is set to about 1 ⁇ 4 of the width of the waveguide 3.
  • a substantially circular electric field is generated.
  • the cross opening 11 emits a substantially circularly polarized microwave. For this reason, the rotation direction of the circularly polarized microwave becomes clearer. As a result, the traveling wave and the reflected wave can be separated and detected with high accuracy.
  • the printed circuit board 12 has a substrate back surface 12b facing the cross opening 11 and a substrate surface 12a opposite to the substrate back surface 12b.
  • the substrate surface 12a has a copper foil (not shown) formed as an example of a microwave reflecting member so as to cover the entire substrate surface 12a. This copper foil prevents the circularly polarized microwave radiated from the cross opening 11 from passing through the printed circuit board 12.
  • a microstrip line 13 which is an example of a coupled line is disposed on the back surface 12b of the substrate.
  • the microstrip line 13 is constituted by a transmission line having a characteristic impedance of approximately 50 ⁇ , for example.
  • the microstrip line 13 is arranged so as to surround the opening center portion 11 c of the cross opening 11.
  • the effective length ⁇ re of the microstrip line 13 will be described.
  • the width of the microstrip line 13 is w
  • the thickness of the printed circuit board 12 is h
  • the speed of light is c
  • the frequency of electromagnetic waves is f
  • the relative dielectric constant of the printed circuit board is ⁇ r
  • the effective length ⁇ of the microstrip line 13 re is expressed by the following equation.
  • the effective length ⁇ re is the wavelength of the electromagnetic wave propagating through the microstrip line 13.
  • the microstrip line 13 includes a first transmission line 13a and a second transmission line 13b.
  • the 1st transmission line 13a has the 1st straight part 13aa which is an example of the 1st crossing line part.
  • the first straight portion 13aa intersects the first long hole 11e at a position farther from the tube axis L1 than the opening center portion 11c in plan view.
  • the first straight portion 13aa extends away from the tube axis L1 as it approaches the vertical line L2.
  • the second transmission line 13b has a second straight line portion 13ba which is an example of a second crossing line portion.
  • the second straight portion 13ba intersects the second long hole 11f at a position farther from the tube axis L1 than the opening center portion 11c in plan view.
  • the second straight portion 13ba extends away from the tube axis L1 as it approaches the vertical line L2.
  • the first straight part 13aa and the second straight part 13ba are arranged symmetrically with respect to the perpendicular L2.
  • the first transmission line 13a and the second transmission line 13b are connected to each other outside the rectangular area E1 in a plan view and at a position farther from the tube axis L1 than the rectangular area E1.
  • the first straight portion 13aa intersects the first long hole 11e at a position closer to the opening tip portion 11ea than to the opening center portion 11c in plan view.
  • the first straight portion 13aa is orthogonal to the first long hole 11e in plan view.
  • the second straight portion 13ba intersects the second elongated hole 11f at a position closer to the opening tip portion 11fa than the opening center portion 11c in plan view.
  • the second straight portion 13ba is orthogonal to the second long hole 11f in plan view.
  • One end of the first transmission line 13a and one end of the second transmission line 13b are connected to each other outside a region overlapping the cross opening 11 in plan view.
  • One end of the first straight portion 13aa is connected to one end of the second straight portion 13ba outside the rectangular region E1 circumscribing the cross opening 11.
  • the first coupling point P1 is a point where the first straight portion 13aa and the first long hole 11e intersect each other in plan view.
  • the second coupling point P2 is a point where the second straight portion 13ba and the second long hole 11f intersect each other in plan view.
  • a straight line connecting the first coupling point P1 and the second coupling point P2 is defined as a virtual straight line L3.
  • the total distance between the first transmission line 13a and the second transmission line 13b that are further away from the tube axis L1 than the virtual straight line L3 is set to 1 ⁇ 4 of the effective length ⁇ re .
  • a line passing through the opening center 11c and parallel to the tube axis L1 in plan view is defined as a parallel line L4.
  • the total distance between the first transmission line 13a and the second transmission line 13b that are further from the tube axis L1 than the parallel line L4 is set to 1 ⁇ 2 of the effective length ⁇ re .
  • the first transmission line 13a includes a third straight part 13ab that connects the other end of the first straight part 13aa and the first output part 131.
  • the first straight part 13aa and the third straight part 13ab are connected to form an obtuse angle (for example, 135 degrees).
  • the second transmission line 13b includes a fourth straight line portion 13bb that connects the other end of the second straight line portion 13ba and the second output portion 132.
  • the second straight portion 13ba and the fourth straight portion 13bb are connected to form an obtuse angle (for example, 135 degrees).
  • the third straight portion 13ab and the fourth straight portion 13bb are disposed in parallel to the perpendicular line L2.
  • the first output part 131 and the second output part 132 are arranged outside the support part 14 (see FIGS. 1 and 2) in plan view.
  • the first detection circuit 15 is connected to the first output unit 131.
  • the first detection circuit 15 detects the level of the microwave signal and outputs the detected level of the microwave signal as a control signal.
  • the second detection circuit 16 is connected to the second output unit 132.
  • the second detection circuit 16 detects the level of the microwave signal and outputs the detected level of the microwave signal as a control signal.
  • each of the first detection circuit 15 and the second detection circuit 16 includes a smoothing circuit (not shown) configured by a chip resistor and a Schottky diode.
  • the first detection circuit 15 rectifies the microwave signal from the first output unit 131 and converts the rectified microwave signal into a DC voltage.
  • the converted DC voltage is output to the first detection output unit 18.
  • the second detection circuit 16 rectifies the microwave signal from the second output unit 132 and converts the rectified microwave signal into a DC voltage.
  • the converted DC voltage is output to the second detection output unit 19.
  • the printed circuit board 12 has four holes (holes 20a, 20b, 20c, 20d) for attaching the printed circuit board 12 to the waveguide 3.
  • a copper foil serving as a ground is formed around the holes 20a, 20b, 20c, and 20d on the substrate back surface 12b.
  • the portion where the copper foil is formed has the same potential as the substrate surface 12a.
  • the printed circuit board 12 is fixed to the waveguide 3 by being screwed to the support portion 14 with screws 201a, 201b, 201c, 201d (see FIG. 1) through the holes 20a, 20b, 20c, 20d.
  • the support portion 14 has screw portions 202a, 202b, 202c, 202d for screwing screws 201a, 201b, 201c, 201d, respectively.
  • the screw portions 202a, 202b, 202c, and 202d are formed on a flange portion provided on the support portion 14.
  • the support portion 14 has conductivity and is disposed so as to surround the cross opening 11 in a plan view.
  • the support portion 14 functions as a shield that prevents the circularly polarized microwave radiated from the cross opening 11 from leaking out of the support portion 14.
  • the support portion 14 has a groove 141 and a groove 142 through which the third straight portion 13ab and the fourth straight portion 13bb of the microstrip line 13 pass.
  • the grooves 141 and 142 function as an extraction unit for extracting the microwave signal propagating through the microstrip line 13 to the outside of the support unit 14.
  • the grooves 141 and 142 can be formed by recessing the flange portion of the support portion 14 so as to be separated from the printed circuit board 12.
  • FIG. 1 and 2 illustrate a connector 18a and a connector 19a respectively connected to the first detection output unit 18 and the second detection output unit 19 shown in FIG.
  • the magnetic field distribution 3d generated in the waveguide 3 is indicated by a dotted concentric ellipse.
  • the direction of the magnetic field of the magnetic field distribution 3d is indicated by an arrow.
  • the magnetic field distribution 3d moves in the waveguide 3 in the microwave transmission direction A1 with time.
  • microwave rotation direction 32 By repeating these states sequentially, circularly polarized microwaves rotating counterclockwise (microwave rotation direction 32) are radiated from the cross opening 11 to the outside of the waveguide 3.
  • the microwave propagating along the arrow 30 shown in FIG. 3 is a traveling wave and the microwave propagating along the arrow 31 is a reflected wave
  • the traveling wave is in the same direction as the transmission direction A1 shown in FIG. Propagate. Therefore, as described above, the circularly polarized microwave rotating counterclockwise is radiated out of the waveguide 3 from the cross opening 11.
  • the reflected wave propagates in the direction opposite to the transmission direction A1 shown in FIG. For this reason, the circularly polarized microwave rotating clockwise is radiated out of the waveguide 3 from the cross opening 11.
  • the circularly polarized microwave radiated out of the waveguide 3 is coupled to the microstrip line 13 facing the cross opening 11.
  • the microstrip line 13 outputs most of the microwave radiated from the cross opening 11 by the traveling wave propagating along the arrow 30 to the first output unit 131.
  • the microstrip line 13 outputs most of the microwave radiated from the cross opening 11 by the reflected wave propagating along the arrow 31 to the second output unit 132. Thereby, a traveling wave and a reflected wave can be separated and detected with higher accuracy. This will be described in more detail with reference to FIG.
  • FIG. 6 is a diagram for explaining the direction and amount of the microwave that propagates through the microstrip line 13 and changes over time. There is a gap between the microstrip line 13 and the cross opening 11. Originally, the time required for the microwave to reach the microstrip line 13 is delayed by the time for the microwave to propagate through the gap. However, for the sake of convenience, it is assumed here that there is no time delay.
  • the first coupling point P1 is substantially the center of the coupling region where the first long hole 11e and the microstrip line 13 intersect.
  • the second coupling point P2 is substantially the center of the coupling region where the second long hole 11f and the microstrip line 13 intersect.
  • the amount of microwave propagating through the microstrip line 13 (current flowing through the linkage of magnetic fields) is expressed by the thickness of the solid arrow line. That is, the line is thick when the amount of microwave propagating through the microstrip line 13 is large, and the line is thin when the amount of microwave propagating through the microstrip line 13 is small.
  • the magnetic field indicated by the broken line arrow B1 excites the first long hole 11e of the cross opening 11, and the microwave indicated by the thick solid line arrow M1 is generated at the first coupling point P1. Arise. This microwave propagates through the microstrip line 13 toward the second coupling point P2.
  • the effective propagation time of the microwaves by the microstrip line 13 between the first coupling point P1 and the second coupling point P2 is set to time t1, it occurs at the first coupling point P1 at the time shown in FIG.
  • the microwave propagates to the second coupling point P2 at the time shown in FIG. That is, at the time shown in FIG. 6B, the microwave indicated by the solid line arrow M1 and the microwave indicated by the solid line arrow M2 are generated at the second coupling point P2.
  • the two microwaves are added and propagated through the microstrip line 13 toward the second output unit 132, and are output to the second output unit 132 after a predetermined time has elapsed.
  • the effective propagation time is set to time t1
  • the total distance between the first transmission line 13a and the second transmission line 13b that are further from the tube axis L1 than the virtual straight line L3 is the effective length ⁇ re Is set to 1/4.
  • the magnetic field indicated by the broken line arrow B3 excites the first long hole 11e of the cross opening 11, and the first coupling point P1 has a micro indicated by a thin solid line arrow M3.
  • a wave is generated.
  • the microwave propagates through the microstrip line 13 toward the first output unit 131, and is output to the first output unit 131 after a predetermined time has elapsed.
  • the reason why the thickness of the solid line arrow M3 is thinner than the thickness of the solid line arrow M1 is as follows. As described above, circularly polarized microwaves rotating counterclockwise (microwave rotation direction 32) are radiated from the cross opening 11.
  • the microwave indicated by the solid arrow M1 generated at the first coupling point P1 propagates in substantially the same direction as the rotation direction of the microwave radiated from the cross opening 11. For this reason, the energy of the microwave indicated by the solid line arrow M1 is not reduced.
  • the microwave indicated by the solid arrow M3 generated at the first coupling point P1 propagates in a direction almost opposite to the rotation direction of the microwave radiated from the cross opening 11. For this reason, the energy of the coupled microwave is reduced. Therefore, the amount of microwave indicated by the solid line arrow M3 is smaller than the amount of microwave indicated by the solid line arrow M1.
  • the magnetic field indicated by the broken line arrow B4 excites the second long hole 11f of the cross opening 11, and the second coupling point P2 has the micro indicated by the thin solid line arrow M4.
  • a wave is generated. This microwave propagates toward the first coupling point P1.
  • the reason for reducing the thickness of the solid line arrow M4 is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
  • the microwave indicated by the thin solid line arrow M4 propagates in the opposite direction to the microwave indicated by the thick solid line arrow M1. For this reason, the microwave indicated by the solid line arrow M ⁇ b> 4 is canceled and disappears, and is not output to the first output unit 131.
  • the amount of microwaves (M1 + M2 ⁇ M4) output to the second output unit 132 is much larger than the amount of microwaves (M3) output to the first output unit 131. Therefore, the microstrip line 13 outputs most of the microwaves radiated counterclockwise from the cross opening 11 by the reflected wave propagating along the arrow 31 to the second output unit 132. On the other hand, the microstrip line 13 outputs most of the microwaves radiated clockwise from the cross opening 11 by the traveling wave propagating along the arrow 30 to the first output unit 131.
  • the amount of microwave radiated from the cross opening 11 relative to the amount of microwave propagating through the waveguide 3 is determined by the shape and dimensions of the waveguide 3 and the cross opening 11. For example, when the shape and size are set as described above, the amount of microwave radiated from the cross opening 11 with respect to the amount of microwave propagating through the waveguide 3 is about 1/100000 (about ⁇ 50 dB).
  • FIG. 7 is a diagram for explaining the direction and amount of the microwave propagating through the microstrip line 13 and changing with time.
  • (A) to (d) of FIG. 7 are diagrams showing a state in which time t1 / 2 has elapsed from (a) to (d) of FIG.
  • the magnetic field distribution 3d moves in the waveguide 3 in the microwave transmission direction A1 with time. For this reason, as shown in FIGS. 7A to 7D, the magnetic fields indicated by the broken arrows B12, B23, B34, and B41 excite the first long hole 11e and the second long hole 11f. As a result, the circularly polarized microwave radiated out of the waveguide 3 is coupled to the microstrip line 13.
  • a region where the perpendicular line L2 and the parallel line L4 intersect with the microstrip line 13 in plan view is referred to as a coupling region.
  • the third coupling point P3 is substantially the center of the coupling region where the perpendicular line L2 and the microstrip line 13 intersect.
  • the fourth coupling point P4 is substantially the center of the coupling region where the parallel line L4 and the first transmission line 13a intersect.
  • the fifth coupling point P5 is substantially the center of the coupling region where the parallel line L4 and the second transmission line 13b intersect.
  • the magnetic field indicated by the broken-line arrow B23 excites the cross opening 11.
  • a microwave indicated by a thick solid arrow M12a is generated at the fifth coupling point P5
  • a microwave indicated by a thin solid arrow M12b is generated at the fourth coupling point P4.
  • the reason for reducing the thickness of the solid line arrow M12b is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
  • the effective propagation time of the microwaves by the microstrip line 13 between the third coupling point P3 and the fifth coupling point P5 is set to time t1, it occurs at the third coupling point P3 at the time shown in FIG.
  • the microwave propagates to the fifth coupling point P5 at the time shown in FIG. That is, at the time shown in FIG. 7B, the microwave indicated by the thick solid arrow M11 and the microwave indicated by the thick solid arrow M12a are generated at the fifth coupling point P5.
  • the two microwaves are added and propagated through the microstrip line 13 toward the second output unit 132, and are output to the second output unit 132 after a predetermined time has elapsed.
  • the distance of the first transmission line 13a that is further from the tube axis L1 than the parallel line L4 is set to 1 ⁇ 4 of the effective length ⁇ re. .
  • the microwave indicated by the thin solid arrow M12b generated at the fourth coupling point P4 propagates through the microstrip line 13 toward the first output unit 131, and is output to the first output unit 131 after a predetermined time has elapsed.
  • the magnetic field indicated by the broken arrow B34 excites the cross opening 11, and the microwave indicated by the thin solid arrow M13b is generated at the third coupling point P3.
  • This microwave propagates along the microstrip line 13 toward the first output unit 131.
  • the reason for reducing the thickness of the solid line arrow M13b is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
  • the magnetic field indicated by the dashed arrow B41 excites the cross opening 11.
  • a microwave indicated by a thin solid arrow M14b is generated at the fifth connection point P5
  • a microwave indicated by a thick solid line arrow M14a is generated at the fourth connection point P4.
  • the microwave indicated by the thin solid arrow M14b propagates through the microstrip line 13 toward the third coupling point P3.
  • the reason for reducing the thickness of the solid line arrow M14b is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
  • the microwave indicated by the thick solid line arrow M14a propagates through the microstrip line 13 toward the third coupling point P3.
  • the effective propagation time of the microwaves by the microstrip line 13 between the third coupling point P3 and the fourth coupling point P4 is set to time t1, it occurs at the third coupling point P3 at the time shown in FIG.
  • the microwave propagates to the fourth coupling point P4 at the time shown in FIG.
  • the microwave indicated by the thin solid arrow M13b and the microwave indicated by the thick solid arrow M14a are generated at the fourth coupling point P4.
  • the distance of the second transmission line 13b that is further away from the tube axis L1 than the parallel line L4 is set to 1 ⁇ 4 of the effective length ⁇ re. .
  • the total distance between the first transmission line 13a and the second transmission line 13b that are further away from the tube axis L1 than the parallel line L4 is set to 1 ⁇ 2 of the effective length ⁇ re .
  • the microwave indicated by the thin solid line arrow M13b propagates in the opposite direction to the microwave indicated by the thick solid line arrow M14a. For this reason, the microwave indicated by the thin solid arrow M13b is canceled and disappears, and is not output to the first output unit 131.
  • the microwave indicated by the thin solid line arrow M14b propagates in the opposite direction to the microwave indicated by the thick solid line arrow M11 and the thick solid line arrow M14a. For this reason, the microwave indicated by the thin solid arrow M ⁇ b> 14 b is canceled and disappears, and is not output to the first output unit 131.
  • the microstrip line 13 outputs most of the microwave radiated counterclockwise from the cross opening 11 to the second output unit 132 by the reflected wave propagating in the direction of the arrow 31.
  • the microstrip line 13 outputs most of the microwaves radiated clockwise from the cross opening 11 by the traveling wave propagating in the direction of the arrow 30 to the first output unit 131.
  • the directional coupler 5 has a cross opening 11 that radiates a circularly polarized microwave, which is disposed at a position not intersecting with the tube axis L1 of the waveguide 3 in plan view. With this configuration, the rotational direction of the circularly polarized microwave radiated from the cross opening 11 is reversed between the traveling wave and the reflected wave. The traveling wave and the reflected wave can be separated and detected by utilizing the difference in the rotation direction of the circularly polarized microwave.
  • the first transmission line 13a includes a first straight line portion 13aa
  • the second transmission line 13b includes a second straight line portion 13ba.
  • the first transmission line 13a and the second transmission line 13b are connected to each other at a position outside the rectangular region E1 and away from the tube axis L1 in plan view.
  • the portion where the microstrip line 13 is bent can be further separated from the vertical region of the cross opening 11.
  • the first straight part 13aa and the second straight part 13ba can be made longer, and the current flow in the microstrip line 13 can be prevented from being hindered. As a result, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
  • the first straight portion 13aa intersects the first long hole 11e at a position closer to the opening tip portion 11ea than the opening center portion 11c in plan view.
  • the second straight portion 13ba intersects the second long hole 11f at a position closer to the opening tip portion 11fa than the opening center portion 11c in plan view.
  • a stronger magnetic field is generated around the opening tip portions 11ea and 11fa than around the opening center portion 11c.
  • a stronger magnetic field is coupled to the microstrip line 13. For this reason, more current flows through the microstrip line 13. As a result, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
  • the first straight portion 13aa is orthogonal to the first long hole 11e in plan view.
  • the transmission direction of the microwave indicated by the solid line arrow M1 generated at the first coupling point P1 is made the same as the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M1 can be further increased.
  • the transmission direction of the microwave indicated by the solid arrow M3 generated at the first coupling point P1 is reversed to the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M3 can be further reduced. As a result, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
  • the second straight portion 13ba is orthogonal to the second long hole 11f in plan view.
  • the transmission direction of the microwave indicated by the solid arrow M ⁇ b> 2 generated at the second coupling point P ⁇ b> 2 is made the same as the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M2 can be further increased.
  • the transmission direction of the microwave indicated by the solid arrow M4 generated at the second coupling point P2 is reversed to the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M4 can be further reduced. As a result, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
  • the microstrip line 13 includes a first straight portion 13aa, a second straight portion 13ba, a third straight portion 13ab, and a fourth straight portion 13bb.
  • the first straight line portion 13aa and the third straight line portion 13ab that are adjacent to each other are connected to form an obtuse angle.
  • the second straight portion 13ba and the fourth straight portion 13bb adjacent to each other are connected so as to form an obtuse angle.
  • This configuration can reduce the number of portions that are bent at right angles in the microstrip line 13. Thereby, it can suppress that the flow of the electric current in a coupling line is inhibited. As a result, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
  • the total distance between the first transmission line 13a and the second transmission line 13b that are further from the tube axis L1 than the virtual straight line L3 is set to 1 ⁇ 4 of the effective length ⁇ re .
  • traveling waves and reflected waves can be separated and detected with higher accuracy.
  • the total distance if it is set to approximately 1/4 of the effective length lambda re, need not necessarily be set to 1/4 of the effective length lambda re.
  • the total distance between the first transmission line 13a and the second transmission line 13b that are further away from the tube axis L1 than the parallel line L4 is set to 1 ⁇ 2 of the effective length ⁇ re .
  • traveling waves and reflected waves can be separated and detected with higher accuracy.
  • the total distance is not necessarily set to 1 ⁇ 2 of the effective length ⁇ re as long as the total distance is set to approximately 1 ⁇ 2 of the effective length ⁇ re .
  • one end of the first transmission line 13a and one end of the second transmission line 13b are connected to form a right angle.
  • the present disclosure is not limited to this.
  • One end of the first transmission line 13a only needs to be connected to one end of the second transmission line 13b at a position deviated from the region of the cross opening 11 in plan view. In this region, the influence of the magnetic field is large.
  • FIG. 8A to 8D are plan views showing first to sixth modified examples of the microstrip line 13, respectively.
  • the first transmission line 13a and the second transmission line 13b are bent so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b is away from the opening center portion 11c. You may do it.
  • the first transmission line 13a and the second transmission line 13b are bent so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b approaches the opening center portion 11c. You may do it.
  • the first transmission line 13a and the second transmission line 13b are curved so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b approaches the opening center portion 11c. You may do it.
  • first straight line portion 13aa and the second straight line portion 13ba correspond to the first intersecting line portion and the second intersecting line portion, respectively.
  • first intersecting line part and the second intersecting line part may be an arcuate part 13ac and an arcuate part 13bc, respectively.
  • the third straight portion 13ab and the fourth straight portion 13bb are parallel to the perpendicular L2.
  • the present disclosure is not limited to this.
  • the third straight portion 13ab and the fourth straight portion 13bb may be parallel to the parallel line L4.
  • first transmission line 13a and the second transmission line 13b have a plurality of linear portions.
  • present disclosure is not limited to this.
  • each of the first transmission line 13a and the second transmission line 13b may be composed of a single straight line portion.
  • the cross opening 11 is formed symmetrically with respect to the perpendicular L2.
  • the perpendicular L2 is orthogonal to the tube axis L1 and passes through the opening center portion 11c.
  • the cross opening 11 may not be formed symmetrically with respect to the perpendicular L2.
  • the 1st long hole 11e and the 2nd long hole 11f may cross
  • the length of the first long hole 11e and the length of the second long hole 11f may be different from each other.
  • the opening intersection where the first elongated hole 11e and the second elongated hole 11f intersect is displaced from the opening center portion 11c.
  • the cross opening 11 may be formed in line symmetry with respect to a straight line slightly inclined with respect to the perpendicular L2 in plan view.
  • the microwave heating apparatus 10 includes a heating chamber 1, a microwave generation unit 2, a waveguide 3, and a microwave radiation unit 4.
  • the heating chamber 1 accommodates an object to be heated.
  • the microwave generator 2 generates a microwave.
  • the waveguide 3 propagates the microwave generated by the microwave generator 2.
  • the microwave radiating unit 4 is disposed below the bottom surface 1 a of the heating chamber 1 and radiates the microwave propagating through the waveguide 3 to the heating chamber 1.
  • a directional coupler 5 is disposed on the wide surface 3 a (see FIGS. 1 and 2) of the waveguide 3 between the microwave generation unit 2 and the microwave radiation unit 4.
  • the directional coupler 5 detects the detection signal 5 a according to the traveling wave propagating through the waveguide 3 from the microwave generation unit 2 toward the microwave radiation unit 4.
  • the directional coupler 5 detects the detection signal 5 b in accordance with the reflected wave propagating through the waveguide 3 from the microwave radiating unit 4 toward the microwave generating unit 2.
  • the directional coupler 5 transmits detection signals 5 a and 5 b to the control unit 6.
  • Control unit 6 receives signal 8 in addition to detection signals 5a and 5b.
  • the signal 8 includes a heating condition set by an input unit (not shown) of the microwave heating apparatus 10, a weight of an object to be heated, and an amount of steam detected by a sensor (not shown).
  • the control unit 6 controls the drive power supply 7 and the motor 9 based on the detection signals 5a and 5b and the signal 8.
  • the drive power supply 7 supplies power for generating a microwave to the microwave generation unit 2.
  • the motor 9 rotates the microwave radiation unit 4.
  • the microwave heating apparatus 10 heats the object to be heated accommodated in the heating chamber 1 by the microwave supplied to the heating chamber 1.
  • the microwave heating apparatus 10 can grasp the progress of heating of the object to be heated.
  • the microwave heating apparatus 10 can also grasp the state change in the object to be heated and the type and amount of the object to be heated. Therefore, according to the present embodiment, a highly convenient microwave heating apparatus can be provided.
  • the directional coupler according to the present disclosure can be applied to consumer or commercial microwave heating devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

This directional coupler is provided with an opening part and a coupling line. The opening part has a first long hole and a second long hole which, in a planar view, are disposed at positions not intersecting with the tube axis of a waveguide tube but which themselves intersect with each other. The coupling line is provided with a first transmission line and a second transmission line. The first transmission line has a first intersection-line part. The first intersection-line part is formed, in a planar view, from one end of the tubular axis, passes an opening intersection part where the first and second long holes intersect with each other, extends in such a manner as to increasingly separate from the tubular axis with a decrease in distance to a perpendicular line orthogonal to the tubular axis, and intersects with the first long hole at a position further apart from the tubular axis as compared with the opening intersection part. The second transmission line has a second intersection-line part. The second intersection-line part, in a planar view, extends in such a manner as to increasingly separate from the tubular axis with a decrease in distance from the other end of the tubular axis toward the perpendicular line, and intersects with the second long hole at a position further apart from the tubular axis as compared with the opening intersection part. The first transmission line and the second transmission line are connected to each other, in a planar view, at a position outside the range of the opening part.

Description

方向性結合器およびそれを備えたマイクロ波加熱装置Directional coupler and microwave heating apparatus including the same
 本開示は、導波管を伝搬するマイクロ波の電力レベルを検出する方向性結合器およびそれを備えたマイクロ波加熱装置に関する。 The present disclosure relates to a directional coupler that detects a power level of a microwave propagating through a waveguide, and a microwave heating apparatus including the directional coupler.
 導波管を伝搬するマイクロ波の電力レベルを検出する装置として、方向性結合器が知られている。方向性結合器は、導波管を伝搬する進行波と反射波とを分離して、それぞれを検出する。 A directional coupler is known as a device for detecting the power level of a microwave propagating through a waveguide. The directional coupler separates the traveling wave and the reflected wave that propagate through the waveguide and detects each of them.
 従来の方向性結合器として、例えば、特許文献1に記載の方向性結合器が知られている。特許文献1の方向性結合器は、導波管の壁面に配置された開口部と、導波管の外側に配置された結合線路とを備える。開口部は、平面視において導波管の管軸と交差しない位置に配置され、円偏波のマイクロ波を放射するように形成される。結合線路は、平面視において開口部を横切る第1伝送線路および第2伝送線路を備える。第1伝送線路と第2伝送線路とは、開口部の中央部を挟んで対向するように配置され、開口部の鉛直上方の領域から外れた位置で互いに接続される。 As a conventional directional coupler, for example, a directional coupler described in Patent Document 1 is known. The directional coupler of Patent Document 1 includes an opening disposed on a wall surface of a waveguide and a coupling line disposed outside the waveguide. The opening is arranged at a position that does not intersect the tube axis of the waveguide in plan view, and is formed so as to radiate circularly polarized microwaves. The coupled line includes a first transmission line and a second transmission line that cross the opening in a plan view. The first transmission line and the second transmission line are disposed so as to face each other with the central portion of the opening interposed therebetween, and are connected to each other at a position deviated from the region vertically above the opening.
 特許文献1の方向性結合器によれば、開口部から放射される円偏波の進行波の回転方向が円偏波の反射波のそれと逆になる。このような円偏波のマイクロ波の回転方向の違いを利用して、進行波と反射波とを分離してそれぞれを検出することができる。 According to the directional coupler of Patent Document 1, the rotational direction of the circularly polarized traveling wave radiated from the opening is opposite to that of the circularly polarized reflected wave. Utilizing such a difference in the rotation direction of the circularly polarized microwave, the traveling wave and the reflected wave can be separated and detected.
特許第6176540号公報Japanese Patent No. 6176540
 しかしながら、上記従来の方向性結合器では、進行波と反射波とをより精度よく分離して検出するという観点において、未だ改善の余地がある。 However, the conventional directional coupler described above still has room for improvement in terms of separating and detecting the traveling wave and the reflected wave more accurately.
 従って、本開示は、進行波と反射波とをより精度よく分離して検出することができる方向性結合器およびそれを備えたマイクロ波加熱装置を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a directional coupler that can separate and detect a traveling wave and a reflected wave and a microwave heating apparatus including the directional coupler.
 本開示の一態様の方向性結合器は、導波管の壁面に配置された開口部と、導波管の外側に配置された結合線路とを備え、導波管を伝搬する進行波と反射波とを分離して検出する。 A directional coupler according to an aspect of the present disclosure includes an opening disposed on a wall surface of a waveguide and a coupling line disposed outside the waveguide, and a traveling wave and a reflection propagating through the waveguide Separate and detect waves.
 開口部は、平面視において導波管の管軸と交差しない位置に配置された、互いに交差する第1長孔と第2長孔とを有する。結合線路は、第1伝送線路と第2伝送線路とを備える。 The opening has a first long hole and a second long hole that are arranged at positions not intersecting with the tube axis of the waveguide in plan view. The coupled line includes a first transmission line and a second transmission line.
 第1伝送線路は第1交差線部を有する。第1交差線部は、平面視において管軸の一端から第1長孔と第2長孔とが交差する開口交差部を通り、管軸に直交する垂線に近づくにつれて管軸から離れるように延在し、開口交差部よりも管軸から離れた位置で第1長孔と交差する。 The first transmission line has a first intersecting line portion. The first intersecting line portion extends from one end of the tube axis in plan view through an opening intersecting portion where the first elongated hole and the second elongated hole intersect, and away from the tube axis as approaching a perpendicular perpendicular to the tube axis. And intersects the first slot at a position farther from the tube axis than the opening intersection.
 第2伝送線路は第2交差線部を有する。第2交差線部は、平面視において管軸の他端から上記垂線に近づくにつれて管軸から離れるように延在し、開口交差部よりも管軸から離れた位置で第2長孔と交差する。 The second transmission line has a second intersection line portion. The second intersecting line portion extends away from the tube axis as it approaches the perpendicular from the other end of the tube axis in plan view, and intersects the second elongated hole at a position further away from the tube axis than the opening intersecting portion. .
 第1伝送線路の一端は、平面視で開口部の領域から外れた位置で第2伝送線路の一端に接続される。 One end of the first transmission line is connected to one end of the second transmission line at a position deviating from the opening region in plan view.
 本態様の方向性結合器によれば、進行波と反射波とをより精度よく分離して検出することができる。 According to the directional coupler of this aspect, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
図1は、本開示の実施の形態に係る方向性結合器の斜視図である。FIG. 1 is a perspective view of a directional coupler according to an embodiment of the present disclosure. 図2は、実施の形態に係る方向性結合器の、プリント基板を取り外した状態の斜視図である。FIG. 2 is a perspective view of the directional coupler according to the embodiment with the printed board removed. 図3は、実施の形態に係る導波管の平面図である。FIG. 3 is a plan view of the waveguide according to the embodiment. 図4は、実施の形態に係る方向性結合器に設けられたプリント基板の回路構成図である。FIG. 4 is a circuit configuration diagram of a printed circuit board provided in the directional coupler according to the embodiment. 図5は、クロス開口から円偏波のマイクロ波が放射される原理を説明するための図である。FIG. 5 is a diagram for explaining the principle that circularly polarized microwaves are radiated from the cross aperture. 図6は、マイクロストリップ線路を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。FIG. 6 is a diagram for explaining the direction and amount of the microwave propagating through the microstrip line and changing with time. 図7は、マイクロストリップ線路を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。FIG. 7 is a diagram for explaining the direction and amount of the microwave that propagates through the microstrip line and changes with time. 図8Aは、マイクロストリップ線路の第1変形例を示す平面図である。FIG. 8A is a plan view showing a first modification of the microstrip line. 図8Bは、マイクロストリップ線路の第2変形例を示す平面図である。FIG. 8B is a plan view showing a second modification of the microstrip line. 図8Cは、マイクロストリップ線路の第3変形例を示す平面図である。FIG. 8C is a plan view showing a third modification of the microstrip line. 図8Dは、マイクロストリップ線路の第4変形例を示す平面図である。FIG. 8D is a plan view showing a fourth modification of the microstrip line. 図8Eは、マイクロストリップ線路の第5変形例を示す平面図である。FIG. 8E is a plan view showing a fifth modification of the microstrip line. 図8Fは、マイクロストリップ線路の第6変形例を示す平面図である。FIG. 8F is a plan view showing a sixth modification of the microstrip line. 図9は、実施の形態に係るマイクロ波加熱装置の概略図である。FIG. 9 is a schematic diagram of the microwave heating apparatus according to the embodiment.
 本発明者らは、進行波と反射波とをより精度良く分離して検出するために鋭意検討した結果、以下の知見を得た。 The present inventors have earnestly studied to detect and detect traveling waves and reflected waves more accurately, and as a result, have obtained the following knowledge.
 従来の方向性結合器において、結合線路は、平面視で管軸に平行な複数の線路と、平面視で管軸に垂直な複数の線路とを一本の線路として直角に連結することで構成される。この構成により、導波管に接続された負荷のインピーダンスの影響を緩和して、進行波と反射波とを精度よく分離することができる。 In a conventional directional coupler, a coupling line is configured by connecting a plurality of lines parallel to the tube axis in a plan view and a plurality of lines perpendicular to the tube axis in a plan view as a single line. Is done. With this configuration, the influence of the impedance of the load connected to the waveguide can be relaxed, and the traveling wave and the reflected wave can be accurately separated.
 本発明者らは、結合線路が直角(または鋭角)に屈曲する箇所において、磁界が集中して、結合線路内の電流(マイクロ波)の流れが阻害され、進行波と反射波との分離度に影響することを知見した。本発明者らは、従来の方向性結合器では結合線路が直角に屈曲する箇所が多く、それらが進行波と反射波との分離度に大きく影響することを知見した。本発明者らは、結合線路が屈曲する箇所を、磁界から受ける影響が強くなる開口部の鉛直方向の領域から遠ざけることで、結合線路内の電流の流れが阻害されるのを抑制することを知見した。 The inventors of the present invention concentrate the magnetic field at a point where the coupled line bends at a right angle (or an acute angle), obstructs the flow of current (microwave) in the coupled line, and separates the traveling wave from the reflected wave. It has been found that it affects. The present inventors have found that in the conventional directional coupler, there are many portions where the coupled line is bent at a right angle, which greatly affects the degree of separation between the traveling wave and the reflected wave. The inventors of the present invention have suppressed the current flow in the coupled line from being hindered by moving the portion where the coupled line is bent away from the vertical region of the opening that is strongly affected by the magnetic field. I found out.
 これらの知見に基づき、本発明者らは以下の発明を見出した。本発明者らは、これらの発明により、従来の方向性結合器に比べて、方向性(進行波と反射波との分離度)が5dB以上(約3倍以上)向上することを確認した。 Based on these findings, the present inventors have found the following invention. The present inventors have confirmed that the directivity (separation between traveling wave and reflected wave) is improved by 5 dB or more (about 3 times or more) by these inventions as compared with the conventional directional coupler.
 本開示の第1の態様の方向性結合器は、導波管の壁面に配置された開口部と、導波管の外側に配置された結合線路とを備え、導波管を伝搬する進行波と反射波とを分離して検出する。 A directional coupler according to a first aspect of the present disclosure includes an opening disposed on a wall surface of a waveguide, and a traveling wave propagating through the waveguide, including a coupling line disposed outside the waveguide. And the reflected wave are detected separately.
 開口部は、平面視において導波管の管軸と交差しない位置に配置された、互いに交差する第1長孔と第2長孔とを有する。結合線路は、第1伝送線路と第2伝送線路とを備える。 The opening has a first long hole and a second long hole that are arranged at positions not intersecting with the tube axis of the waveguide in plan view. The coupled line includes a first transmission line and a second transmission line.
 第1伝送線路は第1交差線部を有する。第1交差線部は、平面視において管軸の一端から第1長孔と第2長孔とが交差する開口交差部を通り、管軸に直交する垂線に近づくにつれて管軸から離れるように延在し、開口交差部よりも管軸から離れた位置で第1長孔と交差する。 The first transmission line has a first intersecting line portion. The first intersecting line portion extends from one end of the tube axis in plan view through an opening intersecting portion where the first elongated hole and the second elongated hole intersect, and away from the tube axis as approaching a perpendicular perpendicular to the tube axis. And intersects the first slot at a position farther from the tube axis than the opening intersection.
 第2伝送線路は第2交差線部を有する。第2交差線部は、平面視において管軸の他端から上記垂線に近づくにつれて管軸から離れるように延在し、開口交差部よりも管軸から離れた位置で第2長孔と交差する。 The second transmission line has a second intersection line portion. The second intersecting line portion extends away from the tube axis as it approaches the perpendicular from the other end of the tube axis in plan view, and intersects the second elongated hole at a position further away from the tube axis than the opening intersecting portion. .
 第1伝送線路の一端は、平面視で開口部の領域から外れた位置で第2伝送線路の一端に接続される。 One end of the first transmission line is connected to one end of the second transmission line at a position deviating from the opening region in plan view.
 本開示の第2の態様の方向性結合器において、第1の態様に加えて、第1伝送線路と第2伝送線路とが、平面視において開口部に外接する矩形領域の外で、かつ、矩形領域よりも管軸から離れた位置で互いに接続される。 In the directional coupler according to the second aspect of the present disclosure, in addition to the first aspect, the first transmission line and the second transmission line are outside a rectangular region circumscribing the opening in a plan view, and They are connected to each other at a position farther from the tube axis than the rectangular area.
 本開示の第3の態様の方向性結合器において、第1の態様に加えて、第1交差線部または第2交差線部の少なくとも一方が、平面視において対応する第1長孔または第2長孔に開口交差部よりも開口先端部に近い位置で交差する。 In the directional coupler according to the third aspect of the present disclosure, in addition to the first aspect, at least one of the first intersecting line part or the second intersecting line part corresponds to the first long hole or the second corresponding in plan view. It intersects the long hole at a position closer to the opening tip than the opening intersection.
 本開示の第4の態様の方向性結合器において、第1の態様に加えて、第1交差線部または第2交差線部の少なくとも一方が、平面視において対応する第1長孔または第2長孔に直交する。 In the directional coupler according to the fourth aspect of the present disclosure, in addition to the first aspect, at least one of the first intersecting line part or the second intersecting line part corresponds to the first long hole or the second corresponding in plan view. Orthogonal to the long hole.
 本開示の第5の態様の方向性結合器において、第1の態様に加えて、結合線路が、第1交差線部と第2交差線部とを含む複数の直線部を有する。複数の直線部のうちの互いに隣接する二つの直線部が鈍角を成すように接続される。 In the directional coupler according to the fifth aspect of the present disclosure, in addition to the first aspect, the coupled line includes a plurality of straight line portions including a first intersecting line portion and a second intersecting line portion. Two straight portions adjacent to each other among the plurality of straight portions are connected to form an obtuse angle.
 本開示の第6の態様の方向性結合器において、第5の態様に加えて、複数の直線部が、第1交差線部の他端と第1出力部とを接続する直線部と、第2交差線部と第2出力部とを接続する直線部とを含む。 In the directional coupler according to the sixth aspect of the present disclosure, in addition to the fifth aspect, the plurality of linear portions includes a linear portion that connects the other end of the first intersecting line portion and the first output portion, A straight line portion connecting the two intersecting line portions and the second output portion.
 本開示の第7の態様の方向性結合器において、第1の態様に加えて、平面視において第1交差線部と第1長孔との交差点である第1結合点と第2交差線部と第2長孔との交差点である第2結合点とを通る仮想直線よりも管軸から離れた第1伝送線路と第2伝送線路との合計距離が、実効長の1/4に設定される。 In the directional coupler according to the seventh aspect of the present disclosure, in addition to the first aspect, a first coupling point and a second intersecting line portion that are intersections of the first intersecting line portion and the first oblong hole in plan view. The total distance between the first transmission line and the second transmission line that are further away from the tube axis than the virtual straight line that passes through the second coupling point that is the intersection of the second long hole and the second long hole is set to 1/4 of the effective length. The
 本開示の第8の態様の方向性結合器において、第1の態様に加えて、平面視において開口交差部を通り、かつ、管軸に平行である平行線よりも管軸から離れた第1伝送線路と第2伝送線路との合計距離が、実効長の1/2に設定される。 In the directional coupler according to the eighth aspect of the present disclosure, in addition to the first aspect, the first that is farther from the tube axis than a parallel line that passes through the opening intersection and is parallel to the tube axis in plan view. The total distance between the transmission line and the second transmission line is set to ½ of the effective length.
 本開示の第9の態様のマイクロ波加熱装置は、第1の態様の方向性結合器を備える。 The microwave heating device according to the ninth aspect of the present disclosure includes the directional coupler according to the first aspect.
 以下、本開示の実施の形態に係る方向性結合器およびそれを備えたマイクロ波加熱装置について、図面を参照しながら説明する。 Hereinafter, a directional coupler according to an embodiment of the present disclosure and a microwave heating apparatus including the directional coupler will be described with reference to the drawings.
 図1は、本開示の実施の形態に係る方向性結合器5の斜視図である。図2は、方向性結合器5の、プリント基板12を取り外した状態の斜視図である。図3は、導波管3の平面図である。図4は、方向性結合器5に設けられたプリント基板12の回路構成図である。 FIG. 1 is a perspective view of a directional coupler 5 according to an embodiment of the present disclosure. FIG. 2 is a perspective view of the directional coupler 5 with the printed circuit board 12 removed. FIG. 3 is a plan view of the waveguide 3. FIG. 4 is a circuit configuration diagram of the printed circuit board 12 provided in the directional coupler 5.
 図1~図3に示すように、方向性結合器5は、マイクロ波を伝送する導波管3の壁面に配置される。導波管3は方形導波管である。導波管3の管軸L1に直交する断面は長方形形状を有する。管軸L1は、幅方向の導波管3の中心軸である。 As shown in FIGS. 1 to 3, the directional coupler 5 is disposed on the wall surface of the waveguide 3 that transmits microwaves. The waveguide 3 is a rectangular waveguide. The cross section orthogonal to the tube axis L1 of the waveguide 3 has a rectangular shape. The tube axis L1 is the central axis of the waveguide 3 in the width direction.
 方向性結合器5は、クロス開口11とプリント基板12と支持部14とを備える。クロス開口11は、導波管3の幅広面(Wide Plane)3aに配置されたX形状の開口部である。プリント基板12は、クロス開口11と対向するように導波管3の外側に配置される。支持部14は、導波管3の外面上でプリント基板12を支持する。 The directional coupler 5 includes a cross opening 11, a printed board 12, and a support portion 14. The cross opening 11 is an X-shaped opening disposed on the wide surface (Wide Plane) 3 a of the waveguide 3. The printed circuit board 12 is disposed outside the waveguide 3 so as to face the cross opening 11. The support unit 14 supports the printed circuit board 12 on the outer surface of the waveguide 3.
 図3に示すように、クロス開口11は、平面視において導波管3の管軸L1と交差しない位置に配置される。クロス開口11の開口中央部11cは、平面視において導波管3の管軸L1から寸法D1だけ離れて配置される。寸法D1は、例えば、導波管3の幅の1/4である。クロス開口11は、導波管3を伝搬するマイクロ波を円偏波のマイクロ波としてプリント基板12に向けて放射する。 As shown in FIG. 3, the cross opening 11 is disposed at a position that does not intersect the tube axis L1 of the waveguide 3 in plan view. The opening center portion 11c of the cross opening 11 is disposed away from the tube axis L1 of the waveguide 3 by a dimension D1 in plan view. The dimension D1 is, for example, ¼ of the width of the waveguide 3. The cross opening 11 radiates the microwave propagating through the waveguide 3 toward the printed circuit board 12 as a circularly polarized microwave.
 クロス開口11の開口形状は、導波管3の幅および高さ、導波管3を伝搬するマイクロ波の電力レベルおよび周波数帯域、クロス開口11から放射される円偏波のマイクロ波の電力レベルなどの条件に応じて決定される。 The opening shape of the cross opening 11 includes the width and height of the waveguide 3, the power level and frequency band of the microwave propagating through the waveguide 3, and the power level of the circularly polarized microwave radiated from the cross opening 11. It is determined according to conditions such as.
 例えば、導波管3の幅が100mm、高さが30mm、導波管3の壁面の厚さが0.6mm、導波管3を伝搬するマイクロ波の最大電力レベルが1000W、周波数帯域が2450MHz、クロス開口11から放射される円偏波のマイクロ波の最大電力レベルが約10mWである場合、クロス開口11の長さ11wおよび幅11dは20mm、2mmにそれぞれ設定される。 For example, the width of the waveguide 3 is 100 mm, the height is 30 mm, the thickness of the wall surface of the waveguide 3 is 0.6 mm, the maximum power level of the microwave propagating through the waveguide 3 is 1000 W, and the frequency band is 2450 MHz. When the maximum power level of the circularly polarized microwave radiated from the cross opening 11 is about 10 mW, the length 11w and the width 11d of the cross opening 11 are set to 20 mm and 2 mm, respectively.
 図4に示すように、クロス開口11は、互いに交差する第1長孔11eと第2長孔11fとを含む。クロス開口11の開口中央部11cは、第1長孔11eと第2長孔11fとが交差する開口交差部と一致する。クロス開口11は、垂線L2に対して線対称に形成される。垂線L2は管軸L1に直交し、開口中央部11cを通る。 As shown in FIG. 4, the cross opening 11 includes a first long hole 11e and a second long hole 11f that intersect each other. The opening center part 11c of the cross opening 11 coincides with the opening intersection where the first long hole 11e and the second long hole 11f intersect. The cross opening 11 is formed symmetrically with respect to the perpendicular L2. The perpendicular L2 is orthogonal to the tube axis L1 and passes through the opening center portion 11c.
 本実施の形態において、第1長孔11eと第2長孔11fとは90度の角度で交差する。しかし、本開示はこれに限定されるものではない。第1長孔11eと第2長孔11fとが60度または120度の角度で交差してもよい。 In the present embodiment, the first long hole 11e and the second long hole 11f intersect at an angle of 90 degrees. However, the present disclosure is not limited to this. The first long hole 11e and the second long hole 11f may intersect at an angle of 60 degrees or 120 degrees.
 クロス開口11の開口中央部11cを平面視において管軸L1と重なる位置に配置した場合、電界は回転せずにマイクロ波の伝送方向に沿って往復する。この場合、クロス開口11は直線偏波のマイクロ波を放射する。 When the opening central portion 11c of the cross opening 11 is arranged at a position overlapping the tube axis L1 in a plan view, the electric field reciprocates along the microwave transmission direction without rotating. In this case, the cross opening 11 radiates linearly polarized microwaves.
 開口中央部11cが管軸L1から少しでもずれていれば、電界は回転する。しかし、開口中央部11cが管軸L1に近いと(寸法D1が0mmに近いほど)、いびつな回転の電界が発生する。この場合、クロス開口11は楕円偏波のマイクロ波を放射する。 If the opening center portion 11c is slightly deviated from the tube axis L1, the electric field rotates. However, when the opening center portion 11c is close to the tube axis L1 (as the dimension D1 is close to 0 mm), an distorted electric field is generated. In this case, the cross opening 11 radiates elliptically polarized microwaves.
 本実施の形態において、寸法D1は導波管3の幅の約1/4に設定される。この場合、ほぼ真円状の回転の電界が発生する。クロス開口11はほぼ真円状の円偏波のマイクロ波を放射する。このため、円偏波のマイクロ波の回転方向がより明確になる。その結果、進行波と反射波とを精度よく分離して検出することができる。 In the present embodiment, the dimension D1 is set to about ¼ of the width of the waveguide 3. In this case, a substantially circular electric field is generated. The cross opening 11 emits a substantially circularly polarized microwave. For this reason, the rotation direction of the circularly polarized microwave becomes clearer. As a result, the traveling wave and the reflected wave can be separated and detected with high accuracy.
 プリント基板12は、クロス開口11に対向する基板裏面12bと、基板裏面12bとは反対側の基板表面12aを有する。基板表面12aは、マイクロ波反射部材の一例として基板表面12a全体を覆うように形成された銅箔(図示せず)を有する。この銅箔が、クロス開口11から放射された円偏波のマイクロ波がプリント基板12を透過するのを防止する。 The printed circuit board 12 has a substrate back surface 12b facing the cross opening 11 and a substrate surface 12a opposite to the substrate back surface 12b. The substrate surface 12a has a copper foil (not shown) formed as an example of a microwave reflecting member so as to cover the entire substrate surface 12a. This copper foil prevents the circularly polarized microwave radiated from the cross opening 11 from passing through the printed circuit board 12.
 図4に示すように、基板裏面12bには、結合線路の一例であるマイクロストリップ線路13が配置される。マイクロストリップ線路13は、例えば、ほぼ50Ωの特性インピーダンスを有する伝送線路で構成される。マイクロストリップ線路13は、クロス開口11の開口中央部11cを取り囲むように配置される。 As shown in FIG. 4, a microstrip line 13 which is an example of a coupled line is disposed on the back surface 12b of the substrate. The microstrip line 13 is constituted by a transmission line having a characteristic impedance of approximately 50Ω, for example. The microstrip line 13 is arranged so as to surround the opening center portion 11 c of the cross opening 11.
 以下、マイクロストリップ線路13の実効長λreについて説明する。マイクロストリップ線路13の幅をw、プリント基板12の厚さをh、光の速度をc、電磁波の周波数をf、プリント基板の比誘電率をεとすると、マイクロストリップ線路13の実効長λreは次式で表される。実効長λreとは、マイクロストリップ線路13を伝搬する電磁波の波長である。 Hereinafter, the effective length λ re of the microstrip line 13 will be described. When the width of the microstrip line 13 is w, the thickness of the printed circuit board 12 is h, the speed of light is c, the frequency of electromagnetic waves is f, and the relative dielectric constant of the printed circuit board is ε r , the effective length λ of the microstrip line 13 re is expressed by the following equation. The effective length λ re is the wavelength of the electromagnetic wave propagating through the microstrip line 13.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 具体的には、マイクロストリップ線路13は、第1伝送線路13aと第2伝送線路13bとを備える。第1伝送線路13aは、第1交差線部の一例である第1直線部13aaを有する。第1直線部13aaは、平面視において開口中央部11cよりも管軸L1から離れた位置で第1長孔11eと交差する。第1直線部13aaは、垂線L2に近づくにつれて管軸L1から離れるように延在する。 Specifically, the microstrip line 13 includes a first transmission line 13a and a second transmission line 13b. The 1st transmission line 13a has the 1st straight part 13aa which is an example of the 1st crossing line part. The first straight portion 13aa intersects the first long hole 11e at a position farther from the tube axis L1 than the opening center portion 11c in plan view. The first straight portion 13aa extends away from the tube axis L1 as it approaches the vertical line L2.
 第2伝送線路13bは、第2交差線部の一例である第2直線部13baを有する。第2直線部13baは、平面視において開口中央部11cよりも管軸L1から離れた位置で第2長孔11fと交差する。第2直線部13baは、垂線L2に近づくにつれて管軸L1から離れるように延在する。第1直線部13aaと第2直線部13baとは、垂線L2に対して線対称に配置される。 The second transmission line 13b has a second straight line portion 13ba which is an example of a second crossing line portion. The second straight portion 13ba intersects the second long hole 11f at a position farther from the tube axis L1 than the opening center portion 11c in plan view. The second straight portion 13ba extends away from the tube axis L1 as it approaches the vertical line L2. The first straight part 13aa and the second straight part 13ba are arranged symmetrically with respect to the perpendicular L2.
 第1伝送線路13aと第2伝送線路13bとは、平面視において矩形領域E1の外、かつ、矩形領域E1よりも管軸L1から離れた位置で互いに接続される。第1直線部13aaは、平面視において開口中央部11cよりも開口先端部11eaに近い位置で第1長孔11eと交差する。 The first transmission line 13a and the second transmission line 13b are connected to each other outside the rectangular area E1 in a plan view and at a position farther from the tube axis L1 than the rectangular area E1. The first straight portion 13aa intersects the first long hole 11e at a position closer to the opening tip portion 11ea than to the opening center portion 11c in plan view.
 第1直線部13aaは、平面視において第1長孔11eに直交する。第2直線部13baは、平面視において開口中央部11cよりも開口先端部11faに近い位置で第2長孔11fと交差する。第2直線部13baは、平面視において第2長孔11fに直交する。 The first straight portion 13aa is orthogonal to the first long hole 11e in plan view. The second straight portion 13ba intersects the second elongated hole 11f at a position closer to the opening tip portion 11fa than the opening center portion 11c in plan view. The second straight portion 13ba is orthogonal to the second long hole 11f in plan view.
 第1伝送線路13aの一端と第2伝送線路13bの一端とは、平面視においてクロス開口11と重なる領域の外で互いに接続される。第1直線部13aaの一端は、クロス開口11に外接する矩形領域E1の外で第2直線部13baの一端に接続される。 One end of the first transmission line 13a and one end of the second transmission line 13b are connected to each other outside a region overlapping the cross opening 11 in plan view. One end of the first straight portion 13aa is connected to one end of the second straight portion 13ba outside the rectangular region E1 circumscribing the cross opening 11.
 第1結合点P1は、平面視において第1直線部13aaと第1長孔11eとが互いに交差する点である。第2結合点P2は、平面視において第2直線部13baと第2長孔11fとが互いに交差する点である。第1結合点P1と第2結合点P2とを結ぶ直線を仮想直線L3とする。本実施の形態では、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/4に設定される。 The first coupling point P1 is a point where the first straight portion 13aa and the first long hole 11e intersect each other in plan view. The second coupling point P2 is a point where the second straight portion 13ba and the second long hole 11f intersect each other in plan view. A straight line connecting the first coupling point P1 and the second coupling point P2 is defined as a virtual straight line L3. In the present embodiment, the total distance between the first transmission line 13a and the second transmission line 13b that are further away from the tube axis L1 than the virtual straight line L3 is set to ¼ of the effective length λ re .
 平面視において開口中央部11cを通り、かつ、管軸L1に平行な線を平行線L4とする。本実施の形態では、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。 A line passing through the opening center 11c and parallel to the tube axis L1 in plan view is defined as a parallel line L4. In the present embodiment, the total distance between the first transmission line 13a and the second transmission line 13b that are further from the tube axis L1 than the parallel line L4 is set to ½ of the effective length λ re .
 第1伝送線路13aは、第1直線部13aaの他端と第1出力部131とを接続する第3直線部13abを備える。第1直線部13aaと第3直線部13abとは、鈍角(例えば135度)を成すように接続される。 The first transmission line 13a includes a third straight part 13ab that connects the other end of the first straight part 13aa and the first output part 131. The first straight part 13aa and the third straight part 13ab are connected to form an obtuse angle (for example, 135 degrees).
 第2伝送線路13bは、第2直線部13baの他端と第2出力部132とを接続する第4直線部13bbを備える。第2直線部13baと第4直線部13bbとは、鈍角(例えば135度)を成すように接続される。第3直線部13abと第4直線部13bbとは、垂線L2に平行に配置される。 The second transmission line 13b includes a fourth straight line portion 13bb that connects the other end of the second straight line portion 13ba and the second output portion 132. The second straight portion 13ba and the fourth straight portion 13bb are connected to form an obtuse angle (for example, 135 degrees). The third straight portion 13ab and the fourth straight portion 13bb are disposed in parallel to the perpendicular line L2.
 第1出力部131および第2出力部132は、平面視において支持部14(図1、図2参照)の外に配置される。第1出力部131には第1検波回路15が接続される。第1検波回路15は、マイクロ波信号のレベルを検出し、検出したマイクロ波信号のレベルを制御信号として出力する。第2出力部132には第2検波回路16が接続される。第2検波回路16は、マイクロ波信号のレベルを検出し、検出したマイクロ波信号のレベルを制御信号として出力する。 The first output part 131 and the second output part 132 are arranged outside the support part 14 (see FIGS. 1 and 2) in plan view. The first detection circuit 15 is connected to the first output unit 131. The first detection circuit 15 detects the level of the microwave signal and outputs the detected level of the microwave signal as a control signal. The second detection circuit 16 is connected to the second output unit 132. The second detection circuit 16 detects the level of the microwave signal and outputs the detected level of the microwave signal as a control signal.
 本実施の形態において、第1検波回路15および第2検波回路16は、いずれもチップ抵抗およびショットキーダイオードにより構成された平滑回路(図示せず)を備える。第1検波回路15は、第1出力部131からのマイクロ波信号を整流し、整流されたマイクロ波信号を直流電圧に変換する。変換された直流電圧は第1検波出力部18に出力される。 In the present embodiment, each of the first detection circuit 15 and the second detection circuit 16 includes a smoothing circuit (not shown) configured by a chip resistor and a Schottky diode. The first detection circuit 15 rectifies the microwave signal from the first output unit 131 and converts the rectified microwave signal into a DC voltage. The converted DC voltage is output to the first detection output unit 18.
 同様に、第2検波回路16は、第2出力部132からのマイクロ波信号を整流し、整流されたマイクロ波信号を直流電圧に変換する。変換された直流電圧は第2検波出力部19に出力される。 Similarly, the second detection circuit 16 rectifies the microwave signal from the second output unit 132 and converts the rectified microwave signal into a DC voltage. The converted DC voltage is output to the second detection output unit 19.
 プリント基板12は、プリント基板12を導波管3に取り付けるための四つの穴(穴20a、20b、20c、20d)を有する。基板裏面12bにおける穴20a、20b、20c、20dの周辺には、グランドとなる銅箔が形成される。この銅箔が形成された部分は、基板表面12aと同じ電位を有する。 The printed circuit board 12 has four holes ( holes 20a, 20b, 20c, 20d) for attaching the printed circuit board 12 to the waveguide 3. A copper foil serving as a ground is formed around the holes 20a, 20b, 20c, and 20d on the substrate back surface 12b. The portion where the copper foil is formed has the same potential as the substrate surface 12a.
 プリント基板12は、穴20a、20b、20c、20dを通してネジ201a、201b、201c、201d(図1参照)で支持部14にねじ止めすることによって、導波管3に固定される。 The printed circuit board 12 is fixed to the waveguide 3 by being screwed to the support portion 14 with screws 201a, 201b, 201c, 201d (see FIG. 1) through the holes 20a, 20b, 20c, 20d.
 図2に示すように、支持部14は、ネジ201a、201b、201c、201dをそれぞれねじ止めするためのネジ部202a、202b、202c、202dを有する。ネジ部202a、202b、202c、202dは、支持部14に設けられたフランジ部に形成される。 As shown in FIG. 2, the support portion 14 has screw portions 202a, 202b, 202c, 202d for screwing screws 201a, 201b, 201c, 201d, respectively. The screw portions 202a, 202b, 202c, and 202d are formed on a flange portion provided on the support portion 14.
 支持部14は、導電性を有し、平面視においてクロス開口11を取り囲むように配置される。支持部14は、クロス開口11から放射された円偏波のマイクロ波が支持部14の外に漏洩するのを防ぐシールドとして機能する。 The support portion 14 has conductivity and is disposed so as to surround the cross opening 11 in a plan view. The support portion 14 functions as a shield that prevents the circularly polarized microwave radiated from the cross opening 11 from leaking out of the support portion 14.
 支持部14は、マイクロストリップ線路13の第3直線部13abおよび第4直線部13bbが通る溝141、溝142を有する。この構成により、マイクロストリップ線路13の第1出力部131および第2出力部132を支持部14の外に配置することができる。溝141、142は、マイクロストリップ線路13を伝搬するマイクロ波信号を支持部14の外に取り出すための取出し部として機能する。溝141、142は、プリント基板12から離れるように支持部14のフランジ部を凹ませることにより形成することができる。 The support portion 14 has a groove 141 and a groove 142 through which the third straight portion 13ab and the fourth straight portion 13bb of the microstrip line 13 pass. With this configuration, the first output unit 131 and the second output unit 132 of the microstrip line 13 can be disposed outside the support unit 14. The grooves 141 and 142 function as an extraction unit for extracting the microwave signal propagating through the microstrip line 13 to the outside of the support unit 14. The grooves 141 and 142 can be formed by recessing the flange portion of the support portion 14 so as to be separated from the printed circuit board 12.
 図1、図2は、図4に示す第1検波出力部18、第2検波出力部19にそれぞれ接続されたコネクタ18a、コネクタ19aを図示する。 1 and 2 illustrate a connector 18a and a connector 19a respectively connected to the first detection output unit 18 and the second detection output unit 19 shown in FIG.
 次に、方向性結合器5の動作および作用について説明する。 Next, the operation and action of the directional coupler 5 will be described.
 まず、図5を参照して、クロス開口11から円偏波のマイクロ波が放射される原理について説明する。図5において、導波管3内に生じる磁界分布3dを点線の同心楕円で示す。磁界分布3dの磁界の向きを矢印で示す。磁界分布3dは、導波管3内を時間の経過とともにマイクロ波の伝送方向A1に移動する。 First, the principle of circularly polarized microwaves being radiated from the cross opening 11 will be described with reference to FIG. In FIG. 5, the magnetic field distribution 3d generated in the waveguide 3 is indicated by a dotted concentric ellipse. The direction of the magnetic field of the magnetic field distribution 3d is indicated by an arrow. The magnetic field distribution 3d moves in the waveguide 3 in the microwave transmission direction A1 with time.
 図5の(a)に示す時刻t=t0において、磁界分布3dが形成される。このとき、破線矢印B1で示す磁界が、クロス開口11の第1長孔11eを励起する。図5の(b)に示す時刻t=t0+t1において、破線矢印B2で示す磁界が、クロス開口11の第2長孔11fを励起する。 The magnetic field distribution 3d is formed at time t = t0 shown in FIG. At this time, the magnetic field indicated by the broken-line arrow B1 excites the first long hole 11e of the cross opening 11. At time t = t0 + t1 shown in FIG. 5B, the magnetic field indicated by the broken line arrow B2 excites the second long hole 11f of the cross opening 11.
 図5の(c)に示す時刻t=t0+T/2(Tはマイクロ波の管内波長の周期)において、破線矢印B3で示す磁界が、クロス開口11の第1長孔11eを励起する。図5の(d)に示す時刻t=t0+T/2+t1において、破線矢印B4で示す磁界が、クロス開口11の第2長孔11fを励起する。時刻t=t0+Tにおいて、時刻t=t0と同様に、破線矢印B1で示す磁界が、クロス開口11の第1長孔11eを励起する。 At time t = t0 + T / 2 (T is the period of the in-tube wavelength of the microwave) shown in FIG. 5C, the magnetic field indicated by the dashed arrow B3 excites the first long hole 11e of the cross opening 11. At time t = t0 + T / 2 + t1 shown in FIG. 5D, the magnetic field indicated by the broken line arrow B4 excites the second long hole 11f of the cross opening 11. At time t = t0 + T, similarly to time t = t0, the magnetic field indicated by the broken-line arrow B1 excites the first long hole 11e of the cross opening 11.
 これらの状態が順次繰り返されることで、反時計回り(マイクロ波の回転方向32)に回転する円偏波のマイクロ波が、クロス開口11から導波管3の外に放射される。 By repeating these states sequentially, circularly polarized microwaves rotating counterclockwise (microwave rotation direction 32) are radiated from the cross opening 11 to the outside of the waveguide 3.
 ここで、図3に示す矢印30に沿って伝搬するマイクロ波を進行波とし、矢印31に沿って伝搬するマイクロ波を反射波とすると、進行波は図5に示す伝送方向A1と同じ向きに伝搬する。このため、上述のように、反時計回りに回転する円偏波のマイクロ波が、クロス開口11から導波管3の外に放射される。 Here, if the microwave propagating along the arrow 30 shown in FIG. 3 is a traveling wave and the microwave propagating along the arrow 31 is a reflected wave, the traveling wave is in the same direction as the transmission direction A1 shown in FIG. Propagate. Therefore, as described above, the circularly polarized microwave rotating counterclockwise is radiated out of the waveguide 3 from the cross opening 11.
 一方、反射波は図5に示す伝送方向A1と逆向きに伝搬する。このため、時計回りに回転する円偏波のマイクロ波が、クロス開口11から導波管3の外に放射される。 On the other hand, the reflected wave propagates in the direction opposite to the transmission direction A1 shown in FIG. For this reason, the circularly polarized microwave rotating clockwise is radiated out of the waveguide 3 from the cross opening 11.
 導波管3の外に放射された円偏波のマイクロ波は、クロス開口11に対向するマイクロストリップ線路13に結合する。マイクロストリップ線路13は、矢印30に沿って伝搬する進行波によりクロス開口11から放射されるマイクロ波の大部分を、第1出力部131に出力する。 The circularly polarized microwave radiated out of the waveguide 3 is coupled to the microstrip line 13 facing the cross opening 11. The microstrip line 13 outputs most of the microwave radiated from the cross opening 11 by the traveling wave propagating along the arrow 30 to the first output unit 131.
 一方、マイクロストリップ線路13は、矢印31に沿って伝搬する反射波によりクロス開口11から放射されるマイクロ波の大部分を、第2出力部132に出力する。これにより、進行波と反射波とをより精度よく分離して検出することができる。このことについて、図6を参照してより詳しく説明する。 On the other hand, the microstrip line 13 outputs most of the microwave radiated from the cross opening 11 by the reflected wave propagating along the arrow 31 to the second output unit 132. Thereby, a traveling wave and a reflected wave can be separated and detected with higher accuracy. This will be described in more detail with reference to FIG.
 図6は、マイクロストリップ線路13を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。マイクロストリップ線路13とクロス開口11との間には隙間がある。本来、マイクロ波がマイクロストリップ線路13に到達するのに要する時間は、マイクロ波がこの隙間を伝搬する時間だけ遅れる。しかし、便宜上、ここではこの時間遅れが無いものとする。 FIG. 6 is a diagram for explaining the direction and amount of the microwave that propagates through the microstrip line 13 and changes over time. There is a gap between the microstrip line 13 and the cross opening 11. Originally, the time required for the microwave to reach the microstrip line 13 is delayed by the time for the microwave to propagate through the gap. However, for the sake of convenience, it is assumed here that there is no time delay.
 ここで、平面視においてクロス開口11とマイクロストリップ線路13とが交差する領域を結合領域という。第1結合点P1は、第1長孔11eとマイクロストリップ線路13とが交差する結合領域のほぼ中心である。第2結合点P2は、第2長孔11fとマイクロストリップ線路13とが交差する結合領域のほぼ中心である。 Here, a region where the cross opening 11 and the microstrip line 13 intersect in plan view is referred to as a coupling region. The first coupling point P1 is substantially the center of the coupling region where the first long hole 11e and the microstrip line 13 intersect. The second coupling point P2 is substantially the center of the coupling region where the second long hole 11f and the microstrip line 13 intersect.
 図6において、マイクロストリップ線路13を伝搬するマイクロ波の量(磁界の鎖交によって流れる電流)を実線矢印の線の太さで表現する。すなわち、マイクロストリップ線路13を伝搬するマイクロ波の量が多い場合には線が太く、マイクロストリップ線路13を伝搬するマイクロ波の量が少ない場合には線が細い。 In FIG. 6, the amount of microwave propagating through the microstrip line 13 (current flowing through the linkage of magnetic fields) is expressed by the thickness of the solid arrow line. That is, the line is thick when the amount of microwave propagating through the microstrip line 13 is large, and the line is thin when the amount of microwave propagating through the microstrip line 13 is small.
 図6の(a)に示す時刻t=t0において、破線矢印B1で示す磁界がクロス開口11の第1長孔11eを励起し、第1結合点P1には太い実線矢印M1で示すマイクロ波が生じる。このマイクロ波は、第2結合点P2に向かってマイクロストリップ線路13を伝搬する。 At time t = t0 shown in FIG. 6A, the magnetic field indicated by the broken line arrow B1 excites the first long hole 11e of the cross opening 11, and the microwave indicated by the thick solid line arrow M1 is generated at the first coupling point P1. Arise. This microwave propagates through the microstrip line 13 toward the second coupling point P2.
 図6の(b)に示す時刻t=t0+t1において、破線矢印B2で示す磁界がクロス開口11の第2長孔11fを励起し、第2結合点P2には太い実線矢印M2で示すマイクロ波が生じる。 At time t = t0 + t1 shown in FIG. 6B, the magnetic field indicated by the broken line arrow B2 excites the second long hole 11f of the cross opening 11, and the microwave indicated by the thick solid line arrow M2 is generated at the second coupling point P2. Arise.
 第1結合点P1と第2結合点P2との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設定すると、図6の(a)に示す時刻に第1結合点P1に生じたマイクロ波は、図6の(b)に示す時刻に第2結合点P2に伝搬する。すなわち、図の6(b)に示す時刻に、第2結合点P2には、実線矢印M1で示すマイクロ波と実線矢印M2で示すマイクロ波とが生じる。 When the effective propagation time of the microwaves by the microstrip line 13 between the first coupling point P1 and the second coupling point P2 is set to time t1, it occurs at the first coupling point P1 at the time shown in FIG. The microwave propagates to the second coupling point P2 at the time shown in FIG. That is, at the time shown in FIG. 6B, the microwave indicated by the solid line arrow M1 and the microwave indicated by the solid line arrow M2 are generated at the second coupling point P2.
 このため、二つのマイクロ波は加算されてマイクロストリップ線路13を第2出力部132に向けて伝搬し、所定時間経過後、第2出力部132に出力される。本実施の形態では、上記実効伝搬時間を時間t1に設定するため、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/4に設定される。この構成により、マイクロストリップ線路13の設計を容易に行うことができる。 Therefore, the two microwaves are added and propagated through the microstrip line 13 toward the second output unit 132, and are output to the second output unit 132 after a predetermined time has elapsed. In the present embodiment, since the effective propagation time is set to time t1, the total distance between the first transmission line 13a and the second transmission line 13b that are further from the tube axis L1 than the virtual straight line L3 is the effective length λ re Is set to 1/4. With this configuration, the microstrip line 13 can be easily designed.
 図6の(c)に示す時刻t=t0+T/2において、破線矢印B3で示す磁界がクロス開口11の第1長孔11eを励起し、第1結合点P1には細い実線矢印M3で示すマイクロ波が生じる。このマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬し、所定時間経過後、第1出力部131に出力される。 At time t = t0 + T / 2 shown in FIG. 6C, the magnetic field indicated by the broken line arrow B3 excites the first long hole 11e of the cross opening 11, and the first coupling point P1 has a micro indicated by a thin solid line arrow M3. A wave is generated. The microwave propagates through the microstrip line 13 toward the first output unit 131, and is output to the first output unit 131 after a predetermined time has elapsed.
 実線矢印M3の太さを実線矢印M1の太さに比べて細くした理由は、以下の通りである。クロス開口11から、上述したように反時計回り(マイクロ波の回転方向32)に回転する円偏波のマイクロ波が放射される。 The reason why the thickness of the solid line arrow M3 is thinner than the thickness of the solid line arrow M1 is as follows. As described above, circularly polarized microwaves rotating counterclockwise (microwave rotation direction 32) are radiated from the cross opening 11.
 図6の(a)に示す時刻に、第1結合点P1に生じる実線矢印M1で示すマイクロ波は、クロス開口11から放射されるマイクロ波の回転方向とほぼ同じ方向に伝搬する。このため、実線矢印M1で示すマイクロ波のエネルギは縮減されない。 At the time shown in FIG. 6 (a), the microwave indicated by the solid arrow M1 generated at the first coupling point P1 propagates in substantially the same direction as the rotation direction of the microwave radiated from the cross opening 11. For this reason, the energy of the microwave indicated by the solid line arrow M1 is not reduced.
 一方、図6の(c)に示す時刻に、第1結合点P1に生じる実線矢印M3で示すマイクロ波は、クロス開口11から放射されるマイクロ波の回転方向とはほぼ逆方向に伝搬する。このため、結合したマイクロ波のエネルギは縮減される。従って、実線矢印M3で示すマイクロ波の量は、実線矢印M1で示すマイクロ波の量よりも少ない。 On the other hand, at the time shown in FIG. 6C, the microwave indicated by the solid arrow M3 generated at the first coupling point P1 propagates in a direction almost opposite to the rotation direction of the microwave radiated from the cross opening 11. For this reason, the energy of the coupled microwave is reduced. Therefore, the amount of microwave indicated by the solid line arrow M3 is smaller than the amount of microwave indicated by the solid line arrow M1.
 図6の(d)に示す時刻t=t0+T/2+t1において、破線矢印B4で示す磁界がクロス開口11の第2長孔11fを励起し、第2結合点P2には細い実線矢印M4で示すマイクロ波が生じる。このマイクロ波は第1結合点P1に向かって伝搬する。実線矢印M4の太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。 At time t = t0 + T / 2 + t1 shown in FIG. 6 (d), the magnetic field indicated by the broken line arrow B4 excites the second long hole 11f of the cross opening 11, and the second coupling point P2 has the micro indicated by the thin solid line arrow M4. A wave is generated. This microwave propagates toward the first coupling point P1. The reason for reducing the thickness of the solid line arrow M4 is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
 時刻t=t0+Tにおいて、図6の(a)に示す時刻t=t0と同様に、破線矢印B1で示す磁界がクロス開口11の第1長孔11eを励起する。この場合、図6の(a)に示す時刻の場合には説明しなかった細い実線矢印M4で示すマイクロ波がマイクロストリップ線路13上に存在する。 At time t = t0 + T, similarly to the time t = t0 shown in FIG. 6A, the magnetic field indicated by the broken-line arrow B1 excites the first long hole 11e of the cross opening 11. In this case, a microwave indicated by a thin solid arrow M4 not described in the case of the time shown in FIG.
 細い実線矢印M4で示すマイクロ波は、時刻t=t0+T(すなわちt=t0)において、第1結合点P1に伝搬する。細い実線矢印M4で示すマイクロ波は、太い実線矢印M1で示すマイクロ波とは逆向きに伝搬する。このため、実線矢印M4で示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。 The microwave indicated by the thin solid arrow M4 propagates to the first coupling point P1 at time t = t0 + T (that is, t = t0). The microwave indicated by the thin solid line arrow M4 propagates in the opposite direction to the microwave indicated by the thick solid line arrow M1. For this reason, the microwave indicated by the solid line arrow M <b> 4 is canceled and disappears, and is not output to the first output unit 131.
 厳密には、時刻t=t0において第1結合点P1から伝搬するマイクロ波の量は、太い実線矢印M1で示すマイクロ波の量から細い実線矢印M4で示すマイクロ波の量を差分した量(M1-M4)となる。従って、第2出力部132に出力されるマイクロ波の量は、第2結合点P2から伝搬するマイクロ波の量に太い実線矢印M2で示すマイクロ波の量を加算した量(M1+M2-M4)となる。 Strictly speaking, the amount of microwave propagating from the first coupling point P1 at time t = t0 is the amount obtained by subtracting the amount of microwave indicated by the thin solid arrow M4 from the amount of microwave indicated by the thick solid arrow M1 (M1). -M4). Therefore, the amount of microwaves output to the second output unit 132 is the amount (M1 + M2-M4) obtained by adding the amount of microwaves indicated by the thick solid arrow M2 to the amount of microwaves propagating from the second coupling point P2. Become.
 このことを考慮しても、第2出力部132に出力されるマイクロ波の量(M1+M2-M4)は、第1出力部131に出力されるマイクロ波の量(M3)よりはるかに多い。従って、マイクロストリップ線路13は、矢印31に沿って伝搬する反射波によりクロス開口11から反時計回りに放射されるマイクロ波の大部分を第2出力部132に出力する。一方、マイクロストリップ線路13は、矢印30に沿って伝搬する進行波によりクロス開口11から時計回りに放射されるマイクロ波の大部分を第1出力部131に出力する。 Even in consideration of this, the amount of microwaves (M1 + M2−M4) output to the second output unit 132 is much larger than the amount of microwaves (M3) output to the first output unit 131. Therefore, the microstrip line 13 outputs most of the microwaves radiated counterclockwise from the cross opening 11 by the reflected wave propagating along the arrow 31 to the second output unit 132. On the other hand, the microstrip line 13 outputs most of the microwaves radiated clockwise from the cross opening 11 by the traveling wave propagating along the arrow 30 to the first output unit 131.
 導波管3を伝搬するマイクロ波の量に対するクロス開口11から放射されるマイクロ波の量は、導波管3およびクロス開口11の形状および寸法によって決まる。例えば、上述の形状および寸法に設定した場合、導波管3を伝搬するマイクロ波の量に対するクロス開口11から放射されるマイクロ波の量は、約1/100000(約-50dB)である。 The amount of microwave radiated from the cross opening 11 relative to the amount of microwave propagating through the waveguide 3 is determined by the shape and dimensions of the waveguide 3 and the cross opening 11. For example, when the shape and size are set as described above, the amount of microwave radiated from the cross opening 11 with respect to the amount of microwave propagating through the waveguide 3 is about 1/100000 (about −50 dB).
 次に、本実施の形態において、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離を、実効長λreの1/2に設定した理由について説明する。 Next, in the present embodiment, the reason why the total distance between the first transmission line 13a and the second transmission line 13b that are further away from the tube axis L1 than the parallel line L4 is set to ½ of the effective length λ re. explain.
 図7は、マイクロストリップ線路13を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。図7の(a)~(d)は、図6の(a)~(d)からそれぞれt1/2の時間が経過した状態を示す図である。 FIG. 7 is a diagram for explaining the direction and amount of the microwave propagating through the microstrip line 13 and changing with time. (A) to (d) of FIG. 7 are diagrams showing a state in which time t1 / 2 has elapsed from (a) to (d) of FIG.
 上記では説明を省略したが、磁界分布3dは、時間経過とともに導波管3内をマイクロ波の伝送方向A1に移動する。このため、図7の(a)~(d)に示すように、破線矢印B12、B23、B34、B41で示す磁界が、第1長孔11eおよび第2長孔11fを励起する。これにより、導波管3の外に放射された円偏波のマイクロ波は、マイクロストリップ線路13に結合する。 Although the description is omitted above, the magnetic field distribution 3d moves in the waveguide 3 in the microwave transmission direction A1 with time. For this reason, as shown in FIGS. 7A to 7D, the magnetic fields indicated by the broken arrows B12, B23, B34, and B41 excite the first long hole 11e and the second long hole 11f. As a result, the circularly polarized microwave radiated out of the waveguide 3 is coupled to the microstrip line 13.
 ここで、平面視において垂線L2および平行線L4とマイクロストリップ線路13とが交差する領域を結合領域という。第3結合点P3は、垂線L2とマイクロストリップ線路13とが交差する結合領域のほぼ中心である。第4結合点P4は、平行線L4と第1伝送線路13aとが交差する結合領域のほぼ中心である。第5結合点P5は、平行線L4と第2伝送線路13bとが交差する結合領域のほぼ中心である。 Here, a region where the perpendicular line L2 and the parallel line L4 intersect with the microstrip line 13 in plan view is referred to as a coupling region. The third coupling point P3 is substantially the center of the coupling region where the perpendicular line L2 and the microstrip line 13 intersect. The fourth coupling point P4 is substantially the center of the coupling region where the parallel line L4 and the first transmission line 13a intersect. The fifth coupling point P5 is substantially the center of the coupling region where the parallel line L4 and the second transmission line 13b intersect.
 図7の(a)に示す時刻t=t0+t1/2において、破線矢印B12で示す磁界がクロス開口11を励起し、第3結合点P3には太い実線矢印M11で示すマイクロ波が生じる。このマイクロ波は、第5結合点P5に向かってマイクロストリップ線路13を伝搬する。 At time t = t0 + t1 / 2 shown in FIG. 7A, the magnetic field indicated by the broken line arrow B12 excites the cross opening 11, and the microwave indicated by the thick solid line arrow M11 is generated at the third coupling point P3. This microwave propagates through the microstrip line 13 toward the fifth coupling point P5.
 図7の(b)に示す時刻t=t0+t1+t1/2において、破線矢印B23で示す磁界がクロス開口11を励起する。第5結合点P5には太い実線矢印M12aで示すマイクロ波が生じ、第4結合点P4には細い実線矢印M12bで示すマイクロ波が生じる。実線矢印M12bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。 At time t = t0 + t1 + t1 / 2 shown in FIG. 7B, the magnetic field indicated by the broken-line arrow B23 excites the cross opening 11. A microwave indicated by a thick solid arrow M12a is generated at the fifth coupling point P5, and a microwave indicated by a thin solid arrow M12b is generated at the fourth coupling point P4. The reason for reducing the thickness of the solid line arrow M12b is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
 第3結合点P3と第5結合点P5との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設定すると、図7の(a)に示す時刻に第3結合点P3に生じたマイクロ波は、図7の(b)に示す時刻に第5結合点P5に伝搬する。すなわち、図7の(b)に示す時刻に、第5結合点P5には、太い実線矢印M11で示すマイクロ波と太い実線矢印M12aで示すマイクロ波とが生じる。 When the effective propagation time of the microwaves by the microstrip line 13 between the third coupling point P3 and the fifth coupling point P5 is set to time t1, it occurs at the third coupling point P3 at the time shown in FIG. The microwave propagates to the fifth coupling point P5 at the time shown in FIG. That is, at the time shown in FIG. 7B, the microwave indicated by the thick solid arrow M11 and the microwave indicated by the thick solid arrow M12a are generated at the fifth coupling point P5.
 このため、二つのマイクロ波は加算されてマイクロストリップ線路13を第2出力部132に向けて伝搬し、所定時間経過後、第2出力部132に出力される。上記実効伝搬時間を時間t1に設定するため、本実施の形態では、平行線L4よりも管軸L1から離れた第1伝送線路13aの距離が、実効長λreの1/4に設定される。第4結合点P4に生じた細い実線矢印M12bで示すマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬し、所定時間経過後、第1出力部131に出力される。 Therefore, the two microwaves are added and propagated through the microstrip line 13 toward the second output unit 132, and are output to the second output unit 132 after a predetermined time has elapsed. In order to set the effective propagation time to time t1, in the present embodiment, the distance of the first transmission line 13a that is further from the tube axis L1 than the parallel line L4 is set to ¼ of the effective length λ re. . The microwave indicated by the thin solid arrow M12b generated at the fourth coupling point P4 propagates through the microstrip line 13 toward the first output unit 131, and is output to the first output unit 131 after a predetermined time has elapsed.
 図7の(c)に示す時刻t=t0+T/2+t1/2において、破線矢印B34で示す磁界がクロス開口11を励起し、第3結合点P3には細い実線矢印M13bで示すマイクロ波が生じる。このマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬する。実線矢印M13bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。 At time t = t0 + T / 2 + t1 / 2 shown in FIG. 7 (c), the magnetic field indicated by the broken arrow B34 excites the cross opening 11, and the microwave indicated by the thin solid arrow M13b is generated at the third coupling point P3. This microwave propagates along the microstrip line 13 toward the first output unit 131. The reason for reducing the thickness of the solid line arrow M13b is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
 図7の(d)に示す時刻t=t0+T/2+t1+t1/2において、破線矢印B41で示す磁界がクロス開口11を励起する。第5結合点P5には細い実線矢印M14bで示すマイクロ波が生じ、第4結合点P4には太い実線矢印M14aで示すマイクロ波が生じる。細い実線矢印M14bで示すマイクロ波は、第3結合点P3に向かってマイクロストリップ線路13を伝搬する。実線矢印M14bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。 At time t = t0 + T / 2 + t1 + t1 / 2 shown in FIG. 7 (d), the magnetic field indicated by the dashed arrow B41 excites the cross opening 11. A microwave indicated by a thin solid arrow M14b is generated at the fifth connection point P5, and a microwave indicated by a thick solid line arrow M14a is generated at the fourth connection point P4. The microwave indicated by the thin solid arrow M14b propagates through the microstrip line 13 toward the third coupling point P3. The reason for reducing the thickness of the solid line arrow M14b is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
 太い実線矢印M14aで示すマイクロ波は、第3結合点P3に向かってマイクロストリップ線路13を伝搬する。第3結合点P3と第4結合点P4との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設定すると、図7の(c)に示す時刻に第3結合点P3に生じたマイクロ波は、図7の(d)に示す時刻に第4結合点P4に伝搬する。 The microwave indicated by the thick solid line arrow M14a propagates through the microstrip line 13 toward the third coupling point P3. When the effective propagation time of the microwaves by the microstrip line 13 between the third coupling point P3 and the fourth coupling point P4 is set to time t1, it occurs at the third coupling point P3 at the time shown in FIG. The microwave propagates to the fourth coupling point P4 at the time shown in FIG.
 すなわち、図7の(d)に示す時刻に、第4結合点P4には、細い実線矢印M13bで示すマイクロ波と太い実線矢印M14aで示すマイクロ波とが生じる。上記実効伝搬時間を時間t1に設定するため、本実施の形態では、平行線L4よりも管軸L1から離れた第2伝送線路13bの距離が、実効長λreの1/4に設定される。 That is, at the time shown in FIG. 7D, the microwave indicated by the thin solid arrow M13b and the microwave indicated by the thick solid arrow M14a are generated at the fourth coupling point P4. In order to set the effective propagation time to time t1, in the present embodiment, the distance of the second transmission line 13b that is further away from the tube axis L1 than the parallel line L4 is set to ¼ of the effective length λ re. .
 すなわち、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。細い実線矢印M13bで示すマイクロ波は、太い実線矢印M14aで示すマイクロ波とは逆向きに伝搬する。このため、細い実線矢印M13bで示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。 That is, the total distance between the first transmission line 13a and the second transmission line 13b that are further away from the tube axis L1 than the parallel line L4 is set to ½ of the effective length λre . The microwave indicated by the thin solid line arrow M13b propagates in the opposite direction to the microwave indicated by the thick solid line arrow M14a. For this reason, the microwave indicated by the thin solid arrow M13b is canceled and disappears, and is not output to the first output unit 131.
 時刻t=t0+T+t1/2において、図7の(a)に示す時刻t=t0+t1/2と同様に、破線矢印B12で示す磁界がクロス開口11を励起する。この場合、図7の(a)に示す時刻の場合には説明しなかった細い実線矢印M14bで示すマイクロ波がマイクロストリップ線路13上に存在する。 At time t = t0 + T + t1 / 2, similarly to time t = t0 + t1 / 2 shown in FIG. 7A, the magnetic field indicated by the broken line arrow B12 excites the cross opening 11. In this case, a microwave indicated by a thin solid arrow M14b that has not been described in the case of the time shown in FIG.
 細い実線矢印M14bで示すマイクロ波は、時刻t=t0+T+t1/2において、第3結合点P3に伝搬する。細い実線矢印M14bで示すマイクロ波は、太い実線矢印M11および太い実線矢印M14aで示すマイクロ波とは逆向きに伝搬する。このため、細い実線矢印M14bで示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。 The microwave indicated by the thin solid arrow M14b propagates to the third coupling point P3 at time t = t0 + T + t1 / 2. The microwave indicated by the thin solid line arrow M14b propagates in the opposite direction to the microwave indicated by the thick solid line arrow M11 and the thick solid line arrow M14a. For this reason, the microwave indicated by the thin solid arrow M <b> 14 b is canceled and disappears, and is not output to the first output unit 131.
 厳密には、時刻t=t0+t1/2において第3結合点P3から伝搬するマイクロ波の量は、太い実線矢印M11、M14aで示すマイクロ波の量から細い実線矢印M14bで示すマイクロ波の量を差分した量(M11+M14a-M14b)となる。従って、第2出力部132に出力されるマイクロ波の量は、第3結合点P3から伝搬するマイクロ波の量に太い実線矢印M12aで示すマイクロ波の量を加算した量(M11+M12a+M14a-M14b)となる。 Strictly speaking, the amount of microwave propagating from the third coupling point P3 at the time t = t0 + t1 / 2 is the difference between the amount of microwave indicated by the thick solid arrows M11 and M14a and the amount of microwave indicated by the thin solid arrows M14b. (M11 + M14a−M14b). Accordingly, the amount of microwaves output to the second output unit 132 is the amount obtained by adding the amount of microwaves indicated by the thick solid arrow M12a to the amount of microwaves propagating from the third coupling point P3 (M11 + M12a + M14a−M14b). Become.
 このことを考慮しても、第2出力部132に出力されるマイクロ波の量(M11+M12a+M14a-M14b)は、第1出力部131に出力されるマイクロ波の量(M12b)よりはるかに多い。従って、マイクロストリップ線路13は、矢印31の方向に伝搬する反射波によりクロス開口11から反時計回りに放射されるマイクロ波の大部分を第2出力部132に出力する。一方、マイクロストリップ線路13は、矢印30の方向に伝搬する進行波によりクロス開口11から時計回りに放射されるマイクロ波の大部分を第1出力部131に出力する。 Considering this, the amount of microwaves (M11 + M12a + M14a−M14b) output to the second output unit 132 is much larger than the amount of microwaves (M12b) output to the first output unit 131. Therefore, the microstrip line 13 outputs most of the microwave radiated counterclockwise from the cross opening 11 to the second output unit 132 by the reflected wave propagating in the direction of the arrow 31. On the other hand, the microstrip line 13 outputs most of the microwaves radiated clockwise from the cross opening 11 by the traveling wave propagating in the direction of the arrow 30 to the first output unit 131.
 方向性結合器5は、平面視において導波管3の管軸L1と交差しない位置に配置された、円偏波のマイクロ波を放射するクロス開口11を有する。この構成により、クロス開口11から放射される円偏波のマイクロ波の回転方向が進行波と反射波とで互いに逆になる。この円偏波のマイクロ波の回転方向の違いを利用して、進行波と反射波とを分離して検出することができる。 The directional coupler 5 has a cross opening 11 that radiates a circularly polarized microwave, which is disposed at a position not intersecting with the tube axis L1 of the waveguide 3 in plan view. With this configuration, the rotational direction of the circularly polarized microwave radiated from the cross opening 11 is reversed between the traveling wave and the reflected wave. The traveling wave and the reflected wave can be separated and detected by utilizing the difference in the rotation direction of the circularly polarized microwave.
 方向性結合器5では、第1伝送線路13aが第1直線部13aaを備えるとともに、第2伝送線路13bが第2直線部13baを備える。この構成により、従来よりも、マイクロストリップ線路13が屈曲する箇所を少なくすることができる。マイクロストリップ線路13を直角に屈曲させる必要性を無くすことができる。マイクロストリップ線路13が屈曲する箇所をクロス開口11の鉛直方向の領域から離すことができる。その結果、進行波と反射波とをより精度よく分離して検出することができる。 In the directional coupler 5, the first transmission line 13a includes a first straight line portion 13aa, and the second transmission line 13b includes a second straight line portion 13ba. With this configuration, the number of portions where the microstrip line 13 bends can be reduced as compared with the conventional case. The need to bend the microstrip line 13 at a right angle can be eliminated. The location where the microstrip line 13 bends can be separated from the vertical region of the cross opening 11. As a result, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
 方向性結合器5では、第1伝送線路13aと第2伝送線路13bとが、平面視において矩形領域E1の外で、かつ、管軸L1から離れた位置で互いに接続される。この構成により、マイクロストリップ線路13が屈曲する箇所をクロス開口11の鉛直方向の領域からより一層離すことができる。第1直線部13aaおよび第2直線部13baをより長くすることができ、マイクロストリップ線路13内の電流の流れが阻害されるのを抑制することができる。その結果、進行波と反射波とをより一層精度よく分離して検出することができる。 In the directional coupler 5, the first transmission line 13a and the second transmission line 13b are connected to each other at a position outside the rectangular region E1 and away from the tube axis L1 in plan view. With this configuration, the portion where the microstrip line 13 is bent can be further separated from the vertical region of the cross opening 11. The first straight part 13aa and the second straight part 13ba can be made longer, and the current flow in the microstrip line 13 can be prevented from being hindered. As a result, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
 方向性結合器5では、第1直線部13aaが、平面視において開口中央部11cよりも開口先端部11eaに近い位置で第1長孔11eと交差する。第2直線部13baが、平面視において開口中央部11cよりも開口先端部11faに近い位置で第2長孔11fに交差する。通常、開口中央部11cの周辺に比べて開口先端部11ea、11faの周辺には、より強い磁界が発生する。上記構成により、より強い磁界がマイクロストリップ線路13に結合する。このため、マイクロストリップ線路13を流れる電流がより多くなる。その結果、進行波と反射波とをより一層精度よく分離して検出することができる。 In the directional coupler 5, the first straight portion 13aa intersects the first long hole 11e at a position closer to the opening tip portion 11ea than the opening center portion 11c in plan view. The second straight portion 13ba intersects the second long hole 11f at a position closer to the opening tip portion 11fa than the opening center portion 11c in plan view. Usually, a stronger magnetic field is generated around the opening tip portions 11ea and 11fa than around the opening center portion 11c. With the above configuration, a stronger magnetic field is coupled to the microstrip line 13. For this reason, more current flows through the microstrip line 13. As a result, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
 方向性結合器5では、第1直線部13aaが、平面視において第1長孔11eに直交する。この構成により、第1結合点P1に生じる実線矢印M1で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と同じにする。これにより、実線矢印M1で示すマイクロ波の量をより大きくすることができる。 In the directional coupler 5, the first straight portion 13aa is orthogonal to the first long hole 11e in plan view. With this configuration, the transmission direction of the microwave indicated by the solid line arrow M1 generated at the first coupling point P1 is made the same as the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M1 can be further increased.
 第1結合点P1に生じる実線矢印M3で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と逆にする。これにより、実線矢印M3で示すマイクロ波の量をより小さくすることができる。その結果、進行波と反射波とをより一層精度よく分離して検出することができる。 The transmission direction of the microwave indicated by the solid arrow M3 generated at the first coupling point P1 is reversed to the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M3 can be further reduced. As a result, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
 方向性結合器5では、第2直線部13baが、平面視において第2長孔11fに直交する。この構成により、第2結合点P2に生じる実線矢印M2で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と同じにする。これにより、実線矢印M2で示すマイクロ波の量をより大きくすることができる。 In the directional coupler 5, the second straight portion 13ba is orthogonal to the second long hole 11f in plan view. With this configuration, the transmission direction of the microwave indicated by the solid arrow M <b> 2 generated at the second coupling point P <b> 2 is made the same as the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M2 can be further increased.
 第2結合点P2に生じる実線矢印M4で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と逆にする。これにより、実線矢印M4で示すマイクロ波の量をより小さくすることができる。その結果、進行波と反射波とをより一層精度よく分離して検出することができる。 The transmission direction of the microwave indicated by the solid arrow M4 generated at the second coupling point P2 is reversed to the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M4 can be further reduced. As a result, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
 方向性結合器5では、マイクロストリップ線路13が、第1直線部13aaと第2直線部13baと第3直線部13abと第4直線部13bbと有する。互いに隣接する第1直線部13aaと第3直線部13abとは、鈍角を成すように接続される。互いに隣接する第2直線部13baと第4直線部13bbは、鈍角を成すように接続される。 In the directional coupler 5, the microstrip line 13 includes a first straight portion 13aa, a second straight portion 13ba, a third straight portion 13ab, and a fourth straight portion 13bb. The first straight line portion 13aa and the third straight line portion 13ab that are adjacent to each other are connected to form an obtuse angle. The second straight portion 13ba and the fourth straight portion 13bb adjacent to each other are connected so as to form an obtuse angle.
 この構成により、マイクロストリップ線路13において直角に屈曲する箇所を少なくすることができる。これにより、結合線路内の電流の流れが阻害されるのを抑制することができる。その結果、進行波と反射波とをより一層精度よく分離して検出することができる。 This configuration can reduce the number of portions that are bent at right angles in the microstrip line 13. Thereby, it can suppress that the flow of the electric current in a coupling line is inhibited. As a result, the traveling wave and the reflected wave can be separated and detected with higher accuracy.
 方向性結合器5では、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/4に設定される。この構成により、進行波と反射波とをより一層精度よく分離して検出することができる。上記合計距離は、実効長λreのほぼ1/4に設定されていれば、必ずしも実効長λreの1/4に設定される必要はない。 In the directional coupler 5, the total distance between the first transmission line 13a and the second transmission line 13b that are further from the tube axis L1 than the virtual straight line L3 is set to ¼ of the effective length λ re . With this configuration, traveling waves and reflected waves can be separated and detected with higher accuracy. The total distance, if it is set to approximately 1/4 of the effective length lambda re, need not necessarily be set to 1/4 of the effective length lambda re.
 方向性結合器5では、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。この構成により、進行波と反射波とをより一層精度よく分離して検出することができる。上記合計距離は、実効長λreのほぼ1/2に設定されていれば、必ずしも実効長λreの1/2に設定される必要はない。 In the directional coupler 5, the total distance between the first transmission line 13a and the second transmission line 13b that are further away from the tube axis L1 than the parallel line L4 is set to ½ of the effective length λ re . With this configuration, traveling waves and reflected waves can be separated and detected with higher accuracy. The total distance is not necessarily set to ½ of the effective length λ re as long as the total distance is set to approximately ½ of the effective length λ re .
 図4に示すように、本実施の形態では、第1伝送線路13aの一端と第2伝送線路13bの一端とが、直角を成すように接続される。しかし、本開示はこれに限定されない。第1伝送線路13aの一端が、平面視でクロス開口11の領域から外れた位置で第2伝送線路13bの一端と接続されていればよい。この領域では、磁界による影響が大きい。 As shown in FIG. 4, in the present embodiment, one end of the first transmission line 13a and one end of the second transmission line 13b are connected to form a right angle. However, the present disclosure is not limited to this. One end of the first transmission line 13a only needs to be connected to one end of the second transmission line 13b at a position deviated from the region of the cross opening 11 in plan view. In this region, the influence of the magnetic field is large.
 図8A~図8Dはそれぞれ、マイクロストリップ線路13の第1変形例~第6変形例を示す平面図である。図8Aに示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が開口中央部11cから離れるように、第1伝送線路13aと第2伝送線路13bとが屈曲していてもよい。 8A to 8D are plan views showing first to sixth modified examples of the microstrip line 13, respectively. As shown in FIG. 8A, the first transmission line 13a and the second transmission line 13b are bent so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b is away from the opening center portion 11c. You may do it.
 図8Bに示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が開口中央部11cに近づくように、第1伝送線路13aと第2伝送線路13bとが屈曲していてもよい。図8Cに示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が開口中央部11cに近づくように、第1伝送線路13aと第2伝送線路13bとが湾曲していてもよい。 As shown in FIG. 8B, the first transmission line 13a and the second transmission line 13b are bent so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b approaches the opening center portion 11c. You may do it. As shown in FIG. 8C, the first transmission line 13a and the second transmission line 13b are curved so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b approaches the opening center portion 11c. You may do it.
 本実施の形態では、第1直線部13aa、第2直線部13baがそれぞれ第1交差線部、第2交差線部に対応する。しかし、本開示はこれに限定されない。図8Dに示すように、第1交差線部、第2交差線部がそれぞれ、円弧状部13ac、円弧状部13bcであってもよい。 In the present embodiment, the first straight line portion 13aa and the second straight line portion 13ba correspond to the first intersecting line portion and the second intersecting line portion, respectively. However, the present disclosure is not limited to this. As shown in FIG. 8D, the first intersecting line part and the second intersecting line part may be an arcuate part 13ac and an arcuate part 13bc, respectively.
 本実施の形態では、第3直線部13abおよび第4直線部13bbが垂線L2に平行である。しかし、本開示はこれに限定されない。図8Eに示すように、第3直線部13abおよび第4直線部13bbが平行線L4に平行であってもよい。 In the present embodiment, the third straight portion 13ab and the fourth straight portion 13bb are parallel to the perpendicular L2. However, the present disclosure is not limited to this. As shown in FIG. 8E, the third straight portion 13ab and the fourth straight portion 13bb may be parallel to the parallel line L4.
 本実施の形態では、第1伝送線路13aおよび第2伝送線路13bが複数の直線部を有する。しかし、本開示はこれに限定されない。図8Fに示すように、第1伝送線路13aおよび第2伝送線路13bが、いずれも一本の直線部で構成されてもよい。 In the present embodiment, the first transmission line 13a and the second transmission line 13b have a plurality of linear portions. However, the present disclosure is not limited to this. As shown in FIG. 8F, each of the first transmission line 13a and the second transmission line 13b may be composed of a single straight line portion.
 本実施の形態では、クロス開口11は、垂線L2に対して線対称に形成される。垂線L2は、管軸L1に直交し、かつ、開口中央部11cを通る。しかし、本開示はこれに限定されない。クロス開口11は、垂線L2に対して線対称に形成されなくてもよい。例えば、第1長孔11eと第2長孔11fとが、それぞれの長手方向の中央部からずれた位置で交差してもよい。第1長孔11eの長さと第2長孔11fの長さとが互いに異なってもよい。 In the present embodiment, the cross opening 11 is formed symmetrically with respect to the perpendicular L2. The perpendicular L2 is orthogonal to the tube axis L1 and passes through the opening center portion 11c. However, the present disclosure is not limited to this. The cross opening 11 may not be formed symmetrically with respect to the perpendicular L2. For example, the 1st long hole 11e and the 2nd long hole 11f may cross | intersect in the position which shifted | deviated from the center part of each longitudinal direction. The length of the first long hole 11e and the length of the second long hole 11f may be different from each other.
 これらの場合、第1長孔11eと第2長孔11fとが交差する開口交差部は、開口中央部11cからずれる。クロス開口11は、平面視において垂線L2に対して僅かに傾斜する直線に対して線対称に形成されてもよい。 In these cases, the opening intersection where the first elongated hole 11e and the second elongated hole 11f intersect is displaced from the opening center portion 11c. The cross opening 11 may be formed in line symmetry with respect to a straight line slightly inclined with respect to the perpendicular L2 in plan view.
 以下、図9を参照して、本実施の形態に係るマイクロ波加熱装置10の構成について説明する。図9に示すように、マイクロ波加熱装置10は、加熱室1とマイクロ波発生部2と導波管3とマイクロ波放射部4とを備える。 Hereinafter, the configuration of the microwave heating apparatus 10 according to the present embodiment will be described with reference to FIG. As shown in FIG. 9, the microwave heating apparatus 10 includes a heating chamber 1, a microwave generation unit 2, a waveguide 3, and a microwave radiation unit 4.
 加熱室1は被加熱物を収容する。マイクロ波発生部2はマイクロ波を発生させる。導波管3は、マイクロ波発生部2が発生させるマイクロ波を伝搬させる。マイクロ波放射部4は、加熱室1の底面1aの下方に配置され、導波管3を伝搬するマイクロ波を加熱室1に放射する。マイクロ波発生部2とマイクロ波放射部4との間の導波管3の幅広面3a(図1、図2参照)に、方向性結合器5が配置される。 The heating chamber 1 accommodates an object to be heated. The microwave generator 2 generates a microwave. The waveguide 3 propagates the microwave generated by the microwave generator 2. The microwave radiating unit 4 is disposed below the bottom surface 1 a of the heating chamber 1 and radiates the microwave propagating through the waveguide 3 to the heating chamber 1. A directional coupler 5 is disposed on the wide surface 3 a (see FIGS. 1 and 2) of the waveguide 3 between the microwave generation unit 2 and the microwave radiation unit 4.
 方向性結合器5は、マイクロ波発生部2からマイクロ波放射部4に向けて導波管3を伝搬する進行波に応じて検出信号5aを検出する。方向性結合器5は、マイクロ波放射部4からマイクロ波発生部2に向けて導波管3を伝搬する反射波に応じて検出信号5bを検出する。方向性結合器5は、検出信号5a、5bを制御部6に送信する。 The directional coupler 5 detects the detection signal 5 a according to the traveling wave propagating through the waveguide 3 from the microwave generation unit 2 toward the microwave radiation unit 4. The directional coupler 5 detects the detection signal 5 b in accordance with the reflected wave propagating through the waveguide 3 from the microwave radiating unit 4 toward the microwave generating unit 2. The directional coupler 5 transmits detection signals 5 a and 5 b to the control unit 6.
 制御部6は、検出信号5a、5bに加えて信号8を受信する。信号8は、マイクロ波加熱装置10の入力部(図示せず)により設定された加熱条件と、センサ(図示せず)により検出された被加熱物の重量、蒸気の量とを含む。制御部6は、検出信号5a、5bと信号8とに基づいて、駆動電源7とモータ9とを制御する。駆動電源7は、マイクロ波を発生させるための電力をマイクロ波発生部2に供給する。モータ9はマイクロ波放射部4を回転させる。このようにして、マイクロ波加熱装置10は、加熱室1に供給されたマイクロ波により、加熱室1に収容された被加熱物を加熱する。 Control unit 6 receives signal 8 in addition to detection signals 5a and 5b. The signal 8 includes a heating condition set by an input unit (not shown) of the microwave heating apparatus 10, a weight of an object to be heated, and an amount of steam detected by a sensor (not shown). The control unit 6 controls the drive power supply 7 and the motor 9 based on the detection signals 5a and 5b and the signal 8. The drive power supply 7 supplies power for generating a microwave to the microwave generation unit 2. The motor 9 rotates the microwave radiation unit 4. Thus, the microwave heating apparatus 10 heats the object to be heated accommodated in the heating chamber 1 by the microwave supplied to the heating chamber 1.
 被加熱物が加熱されるにつれて、被加熱物は物理的に変化する。この物理的変化に応じて、反射波の量が変化する。方向性結合器5を用いて反射波の量の変化を検出することにより、マイクロ波加熱装置10は、被加熱物の加熱の進行状況を把握することができる。マイクロ波加熱装置10は、被加熱物内の状態の変化、被加熱物の種類および量を把握することもできる。従って、本実施の形態によれば、利便性の高いマイクロ波加熱装置を提供することができる。 As the object to be heated is heated, the object to be heated changes physically. The amount of reflected waves changes according to this physical change. By detecting a change in the amount of the reflected wave using the directional coupler 5, the microwave heating apparatus 10 can grasp the progress of heating of the object to be heated. The microwave heating apparatus 10 can also grasp the state change in the object to be heated and the type and amount of the object to be heated. Therefore, according to the present embodiment, a highly convenient microwave heating apparatus can be provided.
 本開示に係る方向性結合器は、民生用または業務用のマイクロ波加熱装置に適用可能である。 The directional coupler according to the present disclosure can be applied to consumer or commercial microwave heating devices.
 1 加熱室
 1a 底面
 2 マイクロ波発生部
 3 導波管
 3a 幅広面
 3d 磁界分布
 4 マイクロ波放射部
 5 方向性結合器
 5a、5b 検出信号
 6 制御部
 7 駆動電源
 8 信号
 9 モータ
 10 マイクロ波加熱装置
 11 クロス開口
 11c 開口中央部
 11d 幅
 11e 第1長孔
 11ea、11fa 開口先端部
 11f 第2長孔
 11w 長さ
 12 プリント基板
 12a 基板表面
 12b 基板裏面
 13 マイクロストリップ線路
 13a 第1伝送線路
 13aa 第1直線部
 13ab 第3直線部
 13ac、13bc 円弧状部
 13b 第2伝送線路
 13ba 第2直線部
 13bb 第4直線部
 14 支持部
 15 第1検波回路
 16 第2検波回路
 18 第1検波出力部
 18a、19a コネクタ
 19 第2検波出力部
 20a 穴
 30 矢印
 31 矢印
 131 第1出力部
 132 第2出力部
 141、142 溝
 201a ネジ
 202a ネジ部
 E1 矩形領域
 L1 管軸
 L2 垂線
 L3 仮想直線
 L4 平行線
 P1 第1結合点
 P2 第2結合点
 P3 第3結合点
 P4 第4結合点
 P5 第5結合点
DESCRIPTION OF SYMBOLS 1 Heating chamber 1a Bottom surface 2 Microwave generation part 3 Waveguide 3a Wide surface 3d Magnetic field distribution 4 Microwave radiation part 5 Directional coupler 5a, 5b Detection signal 6 Control part 7 Drive power supply 8 Signal 9 Motor 10 Microwave heating apparatus DESCRIPTION OF SYMBOLS 11 Cross opening 11c Opening center part 11d Width 11e 1st long hole 11ea, 11fa Opening front-end | tip part 11f 2nd long hole 11w Length 12 Printed circuit board 12a Board | substrate surface 12b Substrate back surface 13 Microstrip line 13a 1st transmission line 13aa 1st straight Part 13ab Third straight line part 13ac, 13bc Arc-shaped part 13b Second transmission line 13ba Second straight line part 13bb Fourth straight line part 14 Support part 15 First detection circuit 16 Second detection circuit 18 First detection output part 18a, 19a Connector 19 2nd detection output part 20a Hole 30 Arrow 31 Arrow 131 1st Force part 132 Second output part 141, 142 Groove 201a Screw 202a Screw part E1 Rectangular area L1 Pipe axis L2 Perpendicular L3 Virtual straight line L4 Parallel line P1 First connection point P2 Second connection point P3 Third connection point P4 Fourth connection point P5 5th attachment point

Claims (9)

  1.  導波管の壁面に配置された開口部と、前記導波管の外側に配置された結合線路とを備え、前記導波管を伝搬する進行波と反射波とを分離して検出する方向性結合器であって、
     前記開口部は、平面視において前記導波管の管軸と交差しない位置に配置された、互いに交差する第1長孔と第2長孔とを有し、
     前記結合線路は、第1伝送線路と第2伝送線路とを備え、
     前記第1伝送線路は第1交差線部を有し、第1交差線部は、平面視において前記管軸の一端から前記第1長孔と前記第2長孔とが交差する開口交差部を通り、前記管軸に直交する垂線に近づくにつれて前記管軸から離れるように延在し、前記開口交差部よりも前記管軸から離れた位置で前記第1長孔と交差し、
     前記第2伝送線路は第2交差線部を有し、第2交差線部は、平面視において前記管軸の他端から前記垂線に近づくにつれて前記管軸から離れるように延在し、前記開口交差部よりも前記管軸から離れた位置で前記第2長孔と交差し、
     前記第1伝送線路の一端は、平面視で前記開口部の領域から外れた位置でと前記第2伝送線路の一端に接続された、方向性結合器。
    Directionality for detecting separately a traveling wave and a reflected wave propagating through the waveguide, comprising an opening disposed on a wall surface of the waveguide and a coupling line disposed outside the waveguide. A combiner,
    The opening has a first elongated hole and a second elongated hole that intersect with each other and are disposed at positions that do not intersect with the tube axis of the waveguide in plan view,
    The coupling line includes a first transmission line and a second transmission line,
    The first transmission line has a first intersecting line portion, and the first intersecting line portion has an opening intersecting portion where the first elongated hole and the second elongated hole intersect from one end of the tube axis in plan view. And extending away from the tube axis as approaching a perpendicular perpendicular to the tube axis, intersecting the first slot at a position farther from the tube axis than the opening intersection,
    The second transmission line has a second intersecting line portion, and the second intersecting line portion extends away from the tube axis as it approaches the perpendicular from the other end of the tube shaft in plan view, and the opening Intersects the second oblong hole at a position farther from the tube axis than the intersection,
    One end of the first transmission line is a directional coupler connected to one end of the second transmission line at a position deviating from the opening region in plan view.
  2.  前記第1伝送線路と前記第2伝送線路とが、平面視において前記開口部に外接する矩形領域の外で、かつ、前記矩形領域よりも前記管軸から離れた位置で互いに接続された、請求項1に記載の方向性結合器。 The first transmission line and the second transmission line are connected to each other outside a rectangular region circumscribing the opening in a plan view and at a position farther from the tube axis than the rectangular region. Item 4. A directional coupler according to item 1.
  3.  前記第1交差線部または前記第2交差線部の少なくとも一方が、平面視において対応する前記第1長孔または前記第2長孔に前記開口交差部よりも開口先端部に近い位置で交差する、請求項1に記載の方向性結合器。 At least one of the first intersecting line portion or the second intersecting line portion intersects the corresponding first elongated hole or the second elongated hole in a plan view at a position closer to the opening tip than the opening intersecting portion. The directional coupler according to claim 1.
  4.  前記第1交差線部または前記第2交差線部の少なくとも一方が、平面視において対応する前記第1長孔または前記第2長孔に直交する、請求項1に記載の方向性結合器。 The directional coupler according to claim 1, wherein at least one of the first intersecting line portion or the second intersecting line portion is orthogonal to the corresponding first elongated hole or the second elongated hole in a plan view.
  5.  前記結合線路が、前記第1交差線部と前記第2交差線部とを含む複数の直線部を有し、前記複数の直線部のうちの互いに隣接する二つの直線部が鈍角を成すように接続された、請求項1に記載の方向性結合器。 The coupling line has a plurality of linear portions including the first intersecting line portion and the second intersecting line portion, and two adjacent linear portions among the plurality of linear portions form an obtuse angle. The directional coupler according to claim 1, which is connected.
  6.  前記複数の直線部が、前記第1交差線部の他端と第1出力部とを接続する直線部と、前記第2交差線部と第2出力部とを接続する直線部とを含む、請求項5に記載の方向性結合器。 The plurality of straight line portions include a straight line portion that connects the other end of the first intersecting line portion and the first output portion, and a straight line portion that connects the second intersecting line portion and the second output portion. The directional coupler according to claim 5.
  7.  平面視において前記第1交差線部と前記第1長孔との交差点である第1結合点と前記第2交差線部と前記第2長孔との交差点である第2結合点とを通る仮想直線よりも前記管軸から離れた前記第1伝送線路と前記第2伝送線路との合計距離が、実効長の1/4に設定された、請求項1に記載の方向性結合器。 In plan view, it passes through a first coupling point that is an intersection between the first intersecting line portion and the first elongated hole, and a second coupling point that is an intersection between the second intersecting line portion and the second elongated hole. 2. The directional coupler according to claim 1, wherein a total distance between the first transmission line and the second transmission line which are further away from the tube axis than a straight line is set to ¼ of an effective length.
  8.  平面視において前記開口交差部を通り、かつ、前記管軸に平行である平行線よりも前記管軸から離れた前記第1伝送線路と前記第2伝送線路との合計距離が、実効長の1/2に設定された、請求項1に記載の方向性結合器。 The total distance between the first transmission line and the second transmission line that passes through the opening intersection in a plan view and is further away from the tube axis than a parallel line that is parallel to the tube axis is 1 in effective length. The directional coupler according to claim 1, wherein the directional coupler is set to / 2.
  9.  請求項1に記載の方向性結合器を備えたマイクロ波加熱装置。 A microwave heating device comprising the directional coupler according to claim 1.
PCT/JP2019/016074 2018-04-20 2019-04-15 Directional coupler and microwave heating device provided with same WO2019203170A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020514361A JP7178563B2 (en) 2018-04-20 2019-04-15 Directional coupler and microwave heating device with same
CN201980003790.XA CN111033889B (en) 2018-04-20 2019-04-15 Directional coupler and microwave heating device with same
EP19788616.1A EP3783736B1 (en) 2018-04-20 2019-04-15 Directional coupler and microwave heating device provided with same
JP2022169563A JP7454770B2 (en) 2018-04-20 2022-10-24 Directional coupler and microwave heating device equipped with it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018081499 2018-04-20
JP2018-081499 2018-04-20

Publications (1)

Publication Number Publication Date
WO2019203170A1 true WO2019203170A1 (en) 2019-10-24

Family

ID=68239453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016074 WO2019203170A1 (en) 2018-04-20 2019-04-15 Directional coupler and microwave heating device provided with same

Country Status (4)

Country Link
EP (1) EP3783736B1 (en)
JP (2) JP7178563B2 (en)
CN (1) CN111033889B (en)
WO (1) WO2019203170A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170923A1 (en) * 2019-02-22 2020-08-27 パナソニックIpマネジメント株式会社 Microwave heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288705A (en) * 1995-03-31 1996-11-01 Daewoo Electron Co Ltd Circularly polarized wave signal receiver
WO2014119333A1 (en) * 2013-01-31 2014-08-07 パナソニック株式会社 Directional coupler and microwave heating device equipped with same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848362A (en) * 1986-12-15 1989-07-18 Larsen Lawrence E Apparatus and method for diathermy treatment and control
SU1548818A1 (en) * 1987-12-03 1990-03-07 Предприятие П/Я А-1845 Directional coupler
DE10202824A1 (en) * 2002-01-24 2003-07-31 Marconi Comm Gmbh Waveguide coupling device
CN102315507B (en) * 2011-07-07 2014-08-13 中国科学院等离子体物理研究所 High-power waveguide directional coupler
CN102773055B (en) * 2012-05-22 2015-01-07 北京众诚汇微能源科技有限公司 Microwave heating device and application thereof
CN104676670A (en) * 2014-05-28 2015-06-03 广东美的厨房电器制造有限公司 Semiconductor microwave oven and semiconductor microwave source thereof
US10176431B2 (en) * 2016-03-02 2019-01-08 University Of Maryland, College Park Low-noise, ultra-low temperature dissipative devices
JP7386398B2 (en) 2018-04-20 2023-11-27 パナソニックIpマネジメント株式会社 microwave heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288705A (en) * 1995-03-31 1996-11-01 Daewoo Electron Co Ltd Circularly polarized wave signal receiver
WO2014119333A1 (en) * 2013-01-31 2014-08-07 パナソニック株式会社 Directional coupler and microwave heating device equipped with same
JP6176540B2 (en) 2013-01-31 2017-08-09 パナソニックIpマネジメント株式会社 Directional coupler and microwave heating apparatus including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170923A1 (en) * 2019-02-22 2020-08-27 パナソニックIpマネジメント株式会社 Microwave heating device

Also Published As

Publication number Publication date
EP3783736B1 (en) 2023-11-22
JP7454770B2 (en) 2024-03-25
EP3783736A4 (en) 2021-06-16
JP2022189917A (en) 2022-12-22
JP7178563B2 (en) 2022-11-28
JPWO2019203170A1 (en) 2021-05-13
CN111033889A (en) 2020-04-17
CN111033889B (en) 2021-10-08
EP3783736A1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6176540B2 (en) Directional coupler and microwave heating apparatus including the same
JP6469842B2 (en) Folding radiation slot for short wall waveguide radiation
JP6392563B2 (en) Suppression modes in antenna feeds with coaxial waveguides.
JP7454770B2 (en) Directional coupler and microwave heating device equipped with it
JPWO2007013354A1 (en) Dielectric Leaky Wave Antenna
JP2015043562A5 (en)
JP7386398B2 (en) microwave heating device
WO2020170923A1 (en) Microwave heating device
WO2019203172A1 (en) Microwave heating device
WO2016103588A1 (en) Microwave heating device
KR102146465B1 (en) Dual polarized waveguide antenna with adjustment part designed asymmetrically
JP2002033612A (en) Beam scanning antenna
US10403952B2 (en) Surface wave launcher comprising a waveguide with a planar conducting layer having one or more slots disposed therein
JP4871201B2 (en) Dielectric Leaky Wave Antenna
JP2684902B2 (en) Antenna device and power supply unit
RU2514128C2 (en) Mirror-horn antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019788616

Country of ref document: EP