WO2016103588A1 - Microwave heating device - Google Patents

Microwave heating device Download PDF

Info

Publication number
WO2016103588A1
WO2016103588A1 PCT/JP2015/006020 JP2015006020W WO2016103588A1 WO 2016103588 A1 WO2016103588 A1 WO 2016103588A1 JP 2015006020 W JP2015006020 W JP 2015006020W WO 2016103588 A1 WO2016103588 A1 WO 2016103588A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
opening
waveguide structure
waveguide
heated
Prior art date
Application number
PCT/JP2015/006020
Other languages
French (fr)
Japanese (ja)
Inventor
吉野 浩二
貞平 匡史
昌之 久保
大森 義治
早川 雄二
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201580064916.6A priority Critical patent/CN107006086B/en
Priority to EP15872165.4A priority patent/EP3240366B1/en
Publication of WO2016103588A1 publication Critical patent/WO2016103588A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • H05B6/708Feed lines using waveguides in particular slotted waveguides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • H05B6/725Rotatable antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/74Mode transformers or mode stirrers

Definitions

  • the present disclosure relates to a microwave heating apparatus such as a microwave oven that heats an object to be heated such as food using microwaves.
  • microwaves generated by a magnetron which is a typical microwave generation unit, are supplied into a metal heating chamber and placed in a heating chamber.
  • the heated object is heated by microwave.
  • Patent Document 1 has a waveguide structure magnetically coupled to a waveguide that propagates microwaves from a magnetron.
  • FIG. 17 is a front sectional view showing the configuration of the microwave oven 100 disclosed in Patent Document 1. As shown in FIG. 17, in the microwave oven 100, the microwave generated by the magnetron 101 propagates through the waveguide 102 and reaches the coupling axis 109.
  • the rotating antenna 103 has a fan shape in plan view from above, is connected to the waveguide 102 by a coupling shaft 109, and is driven by a motor 105 to rotate.
  • the coupling shaft 109 couples the microwave propagating through the waveguide 102 to the waveguide-structured rotating antenna 103 and functions as the rotation center of the rotating antenna 103.
  • the rotating antenna 103 has a radiation port 107 for radiating microwaves and a low impedance portion 106.
  • the microwave radiated from the radiation port 107 is supplied into the heating chamber 104, and the object to be heated (not shown) placed on the placing table 108 of the heating chamber 104 is microwave-heated.
  • the rotating antenna 103 is rotated below the mounting table 108 to make the heating distribution in the heating chamber 104 uniform.
  • a microwave oven that controls the stop position of the rotating antenna based on the temperature distribution in the heating chamber detected by an infrared sensor (see, for example, Patent Document 2).
  • FIG. 18 is a front sectional view showing the configuration of the microwave oven 200 disclosed in Patent Document 2. As shown in FIG. 18, in the microwave oven 200, the microwave generated by the magnetron 201 reaches the rotating antenna 203 having a waveguide structure via the waveguide 202.
  • the rotary antenna 203 has a radiation port 207 that is formed on one side and radiates microwaves in a plan view from above, and a low impedance part 206 that is formed on the other three sides.
  • the microwave radiated from the radiation port 207 is supplied into the heating chamber 204 through the power supply chamber 209, and the object to be heated placed in the heating chamber 204 is heated by microwaves.
  • the microwave oven disclosed in Patent Document 2 has an infrared sensor 210 for detecting the temperature distribution in the heating chamber 204.
  • the control unit 211 controls the rotation and position of the rotating antenna 203 and the direction of the radiation port 207 based on the temperature distribution detected by the infrared sensor 210.
  • a rotating antenna 203 disclosed in Patent Document 2 is configured to move on an arc-shaped track while rotating inside a power feeding chamber 209 formed below a mounting table 208 of a heating chamber 204 by a motor 205.
  • the microwave oven 200 the radiation port 207 of the rotating antenna 203 moves while rotating, and the low temperature portion of the object to be heated detected by the infrared sensor 210 can be heated intensively.
  • the rotating antenna 103 is configured to rotate around a coupling shaft 109 disposed below the mounting table 108.
  • the microwave is radiated from the radiation port 107 at the tip of the rotating antenna 103.
  • the object to be heated placed in the central region of the placing table 108 could not be directly irradiated with microwaves, and uniform heating was not always possible.
  • the present disclosure solves the above-described conventional problems, and an object thereof is to provide a microwave heating apparatus having a simpler structure and capable of uniform heating and local heating.
  • a microwave heating apparatus includes a heating chamber that stores an object to be heated, a microwave generation unit that generates a microwave, a ceiling surface and a side wall surface that define a waveguide structure unit, and a front opening. And a waveguide structure antenna that radiates microwaves from the front opening to the heating chamber.
  • the waveguide structure portion is joined to the ceiling surface and has a coupling portion that couples the microwave to the internal space of the waveguide structure portion.
  • the waveguide structure has at least one microwave suction opening formed on the ceiling surface, and radiates circularly polarized waves from the microwave suction opening into the heating chamber.
  • the at least one microwave suction opening includes at least a pair of microwave suction openings that are symmetrical with respect to the tube axis of the waveguide structure.
  • the waveguide structure has a flat region between a pair of microwave suction openings.
  • uniform heating and local heating can be performed on an object to be heated placed in the heating chamber.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a microwave heating apparatus according to an embodiment of the present disclosure.
  • FIG. 2A is a perspective view showing a power supply chamber in the microwave heating apparatus according to the present embodiment.
  • FIG. 2B is a plan view showing a power supply chamber in the microwave heating apparatus according to the present embodiment.
  • FIG. 3 is an exploded perspective view showing a rotating antenna in the microwave heating apparatus according to the present embodiment.
  • FIG. 4 is a perspective view showing a general rectangular waveguide.
  • FIG. 5A is a plan view showing an H-plane of a waveguide having a rectangular slot-shaped opening that radiates linearly polarized waves.
  • FIG. 5A is a plan view showing an H-plane of a waveguide having a rectangular slot-shaped opening that radiates linearly polarized waves.
  • FIG. 5A is a plan view showing an H-plane of a waveguide having a rectangular slot-shaped opening that radiates linearly polarized
  • FIG. 5B is a plan view showing an H-plane of a waveguide having a cross-slot-shaped opening that radiates circularly polarized waves.
  • FIG. 5C is a front view showing the positional relationship between the waveguide and the object to be heated.
  • FIG. 6A is a characteristic diagram showing experimental results for the waveguide shown in FIG. 5A.
  • FIG. 6B is a characteristic diagram showing an experimental result in the case of the waveguide shown in FIG. 5B.
  • FIG. 7 is a characteristic diagram showing experimental results in the case of “with load”.
  • FIG. 8A is a cross-sectional view schematically showing a suction effect in the present embodiment.
  • FIG. 8B is a cross-sectional view schematically showing the suction effect in the present embodiment.
  • FIG. 9A is a schematic diagram illustrating a planar shape of an example of the rotating antenna used in the experiment.
  • FIG. 9B is a schematic diagram illustrating a planar shape of an example of the rotating antenna used in the experiment.
  • FIG. 9C is a schematic diagram illustrating a planar shape of an example of the rotating antenna used in the experiment.
  • FIG. 10A is a schematic diagram illustrating a planar shape of an example of the rotating antenna used in the experiment.
  • FIG. 10B is a schematic diagram illustrating a planar shape of an example of the rotating antenna used in the experiment.
  • FIG. 11A is a plan view showing a waveguide structure according to the present embodiment.
  • FIG. 11B is a plan view showing a modification of the waveguide structure according to the present embodiment.
  • FIG. 12 is a diagram illustrating a disposition arrangement of two objects to be heated.
  • FIG. 13 is a diagram showing a contact arrangement of two dishes to be heated.
  • FIG. 14 is a diagram showing the location of each part of the microwave suction opening shown in FIG. 11B.
  • FIG. 15 is a graph showing experimental results.
  • FIG. 16A is a plan view showing a modification of the waveguide structure according to the present embodiment.
  • FIG. 16B is a plan view showing another modification of the waveguide structure according to the present embodiment.
  • FIG. 17 is a front sectional view showing the microwave oven disclosed in Patent Document 1.
  • FIG. 18 is a front sectional view showing the microwave oven disclosed in Patent Document 2. As shown in FIG.
  • a microwave heating apparatus includes a heating chamber that houses an object to be heated, a microwave generation unit that generates a microwave, a ceiling surface and a side wall surface that define a waveguide structure, and A waveguide structure antenna having a front opening and radiating microwaves from the front opening to the heating chamber.
  • the waveguide structure portion is joined to the ceiling surface and has a coupling portion that couples the microwave to the internal space of the waveguide structure portion.
  • the waveguide structure has at least one microwave suction opening formed on the ceiling surface, and radiates circularly polarized waves from the microwave suction opening into the heating chamber.
  • the at least one microwave suction opening includes at least a pair of microwave suction openings that are symmetrical with respect to the tube axis of the waveguide structure.
  • the waveguide structure has a flat region between a pair of microwave suction openings.
  • uniform heating and local heating can be performed on an object to be heated placed in the heating chamber.
  • At least one microwave suction opening includes two pairs of microwave suction openings that are symmetrical with respect to the tube axis of the waveguide structure. .
  • the distance between the pair of openings closer to the coupling part is longer than the distance between the pair of openings farther from the coupling part. According to this aspect, it is possible to radiate circularly polarized waves more reliably from the microwave suction opening.
  • the microwave heating apparatus further includes a drive unit that rotates the waveguide structure antenna.
  • the coupling unit is coupled to the driving unit and includes a coupling axis including the rotation center of the waveguide structure antenna, and a flange provided around the coupling axis and constituting a joint portion. A pair of microwave suction openings closer to the coupling portion are arranged close to the edge of the joint portion.
  • the object to be heated placed in the central region of the placement surface can be heated more uniformly.
  • the distance between the pair of microwave suction openings is substantially 1/8 to 1/1 of the width of the waveguide structure. 4. According to this aspect, the directivity of local heating can be increased.
  • a microwave oven is used as an example of a microwave heating apparatus according to the present disclosure, but the present invention is not limited to this, and a heating apparatus, a garbage disposal machine, or a semiconductor manufacture using microwave heating is not limited thereto. Including devices.
  • the present disclosure is not limited to the specific configurations shown in the following embodiments, and includes configurations based on the same technical idea.
  • FIG. 1 is a front sectional view showing a schematic configuration of a microwave oven that is a microwave heating apparatus according to an embodiment of the present disclosure.
  • the left-right direction of the microwave oven means the left-right direction in FIG. 1
  • the front-back direction means the depth direction in FIG.
  • the microwave oven 1 includes a heating chamber 2a, a power feeding chamber 2b, a magnetron 3, a waveguide 4, a rotating antenna 5, and a mounting table 6.
  • the mounting table 6 has a flat upper surface for mounting an object to be heated (not shown) such as food.
  • the heating chamber 2 a is an upper space of the mounting table 6, and the power supply chamber 2 b is a lower space of the mounting table 6.
  • the mounting table 6 covers the power supply chamber 2b provided with the rotating antenna 5, partitions the heating chamber 2a and the power supply chamber 2b, and constitutes the bottom surface of the heating chamber 2a. Since the upper surface (mounting surface 6a) of the mounting table 6 is flat, it is easy to put in and out the object to be heated, and it is easy to wipe off dirt and the like attached to the mounting surface 6a.
  • the mounting table 6 is made of a material that easily transmits microwaves, such as glass and ceramic, the microwave radiated from the rotating antenna 5 passes through the mounting table 6 and is supplied to the heating chamber 2a.
  • the magnetron 3 is an example of a microwave generation unit that generates a microwave.
  • the waveguide 4 is an example of a propagation unit that is provided below the power supply chamber 2 b and transmits the microwave generated by the magnetron 3 to the coupling unit 7.
  • the rotating antenna 5 is provided in the internal space of the power supply chamber 2b, and radiates the microwave transmitted by the waveguide 4 and the coupling portion into the power supply chamber 2b from the front opening 13.
  • the rotating antenna 5 includes a waveguide structure portion 8 having a box-shaped waveguide structure in which microwaves propagate in the internal space, and a microwave in the waveguide 4 and the internal space of the waveguide structure portion 8. It is a waveguide structure antenna having a coupling portion 7 to be coupled.
  • the coupling unit 7 includes a coupling shaft 7 a coupled to the motor 15 that is a driving unit, and a flange 7 b that joins the waveguide structure unit 8 and the coupling unit 7.
  • the motor 15 is driven in accordance with a control signal from the control unit 17 to rotate the rotating antenna 5 around the coupling shaft 7a of the coupling unit 7 and stop it in a desired direction. Thereby, the radiation direction of the microwave from the rotating antenna 5 is changed.
  • a metal such as an aluminum-plated steel plate is used for the coupling portion 7, and, for example, a fluororesin is used for a coupling portion of the motor 15 coupled to the coupling portion 7.
  • the coupling shaft 7a of the coupling portion 7 passes through an opening that communicates the waveguide 4 and the power supply chamber 2b, and the coupling shaft 7a has a predetermined clearance (for example, 5 mm or more) between the penetrating opening.
  • the coupling shaft 7 a couples the waveguide 4 and the internal space of the waveguide structure portion 8 of the rotating antenna 5, so that the microwave propagates efficiently from the waveguide 4 to the waveguide structure portion 8.
  • An infrared sensor 16 is provided on the upper side of the heating chamber 2a.
  • the infrared sensor 16 is an example of a state detection unit that detects the temperature in the heating chamber 2a, that is, the surface temperature of the heated object placed on the mounting table 6 as the state of the heated object.
  • the infrared sensor 16 detects the temperature of each region of the heating chamber 2 a virtually divided into a plurality of parts, and transmits those detection signals to the control unit 17.
  • the control unit 17 performs oscillation control of the magnetron 3 and drive control of the motor 15 based on the detection signal of the infrared sensor 16.
  • This embodiment has the infrared sensor 16 as an example of the state detection unit, but the state detection unit is not limited to this.
  • a weight sensor that detects the weight of the object to be heated or an image sensor that captures an image of the object to be heated may be used as the state detection unit.
  • the control unit 17 may perform the oscillation control of the magnetron 3 and the drive control of the motor 15 in accordance with a program stored in advance and a selection by the user.
  • FIG. 2A is a perspective view showing the power supply chamber 2b in a state where the mounting table 6 is removed.
  • FIG. 2B is a plan view showing the power supply chamber 2b in the same situation as FIG. 2A.
  • a rotating antenna 5 is provided in a power supply chamber 2b that is disposed below the heating chamber 2a and is separated from the heating chamber 2a by the mounting table 6.
  • the rotation center G of the coupling shaft 7a in the rotating antenna 5 is located below the center of the feed chamber 2b in the front-rear direction and the left-right direction, that is, below the center of the mounting table 6 in the front-rear direction and the left-right direction.
  • the feeding chamber 2 b has an internal space constituted by the bottom surface 11 and the lower surface of the mounting table 6.
  • the internal space of the power supply chamber 2b includes the rotation center G of the coupling portion 7 and has a symmetrical shape with respect to the center line J (see FIG. 2B) in the left-right direction of the power supply chamber 2b.
  • a convex portion 18 protruding inward is formed on the side wall surface in the internal space of the power supply chamber 2b.
  • the convex portion 18 includes a convex portion 18a provided on the left side wall surface and a convex portion 18b provided on the right side wall surface.
  • a magnetron 3 is provided below the convex portion 18b.
  • the microwave radiated from the antenna 3 a of the magnetron 3 propagates in the waveguide 4 provided below the feeding chamber 2 b and is transmitted to the waveguide structure 8 by the coupling portion 7.
  • the side wall surface 2c of the feeding chamber 2b has an inclination for reflecting the microwave radiated from the rotating antenna 5 in the horizontal direction toward the upper heating chamber 2a.
  • FIG. 3 is an exploded perspective view showing a specific example of the rotating antenna 5.
  • the waveguide structure 8 has a ceiling surface 9 and side wall surfaces 10a, 10b, and 10c that define its internal space.
  • the ceiling surface 9 includes three linear edges, one arc-shaped edge, and a concave portion 9a to which the coupling portion 7 is joined, and is disposed to face the mounting table 6 (see FIG. 1). ).
  • Side wall surfaces 10a, 10b, and 10c are formed by bending downward from the three linear edges of the ceiling surface 9, respectively.
  • the side wall surface is not provided at the arc-shaped edge, and an opening is formed below the side wall surface.
  • This opening functions as a front opening 13 that radiates the microwave propagated through the internal space of the waveguide structure 8. That is, the side wall surface 10b is provided to face the front opening 13, and the side wall surfaces 10a and 10c are provided to face each other.
  • a low impedance portion 12 extending outwardly of the waveguide structure 8 and in a direction perpendicular to the side wall surface 10a.
  • the low impedance portion 12 is formed in parallel with the bottom surface 11 of the power supply chamber 2b with a slight gap therebetween.
  • the low impedance portion 12 suppresses microwaves that leak in the direction perpendicular to the side wall surface 10a.
  • a holding portion 19 for mounting an insulating resin spacer may be formed on the lower surface of the low impedance portion 12.
  • the low impedance portion 12 is provided with a plurality of slits 12a extending periodically from the side wall surface 10a at regular intervals.
  • the plurality of slits 12a suppress microwave leakage in a direction parallel to the side wall surface 10a.
  • the interval between the slits 12 a is appropriately determined according to the wavelength propagating through the waveguide structure 8.
  • the low impedance portion 12 having a plurality of slits 12a at the lower edge portion is also provided for the side wall surface 10b and the side wall surface 10c.
  • the rotating antenna 5 according to the present embodiment has a front opening 13 formed in an arc shape, but the present disclosure is not limited to this shape, and has a straight or curved front opening 13. Also good.
  • the ceiling surface 9 includes a plurality of microwave suction openings 14, that is, a first opening 14a and a second opening 14b having an opening smaller than the first opening 14a.
  • the microwave that has propagated through the internal space of the waveguide structure 8 is radiated from the front opening 13 and the plurality of microwave suction openings 14.
  • the flange 7b formed in the coupling portion 7 is joined to the lower surface of the ceiling surface 9 of the waveguide structure portion 8 by, for example, caulking, spot welding, screw tightening, or welding, and the rotating antenna 5 is joined to the coupling portion 7. And fixed.
  • the rotating antenna 5 since the rotating antenna 5 has a waveguide structure portion 8 as will be described later, it is possible to uniformly heat the object to be heated mounted on the mounting table 6. In particular, in the central region of the mounting surface 6a located above the rotation center G (see FIGS. 2A and 2B) of the rotating antenna 5, heating can be performed efficiently and uniformly.
  • the waveguide structure in the present embodiment will be described in detail.
  • the simplest and most common waveguide 300 has a rectangular cross section 303 having a width a and a height b, and a square having a depth along the tube axis V of the waveguide 300. It is a waveguide.
  • the tube axis V is the center line of the waveguide 300 that passes through the center of the cross section 303 and extends in the microwave transmission direction Z.
  • the TE10 mode is a transmission mode in the H wave (TE wave; electrical transverse wave transmission (Transverse Electric Wave)) in the waveguide 300 in the microwave transmission direction Z, in which the magnetic field component exists and the electric field component does not exist. Point to.
  • H wave TE wave; electrical transverse wave transmission (Transverse Electric Wave)
  • the wavelength ⁇ 0 of the microwave in free space can be obtained by the equation (1).
  • the speed of light c is about 2.998 ⁇ 10 8 [m / s]
  • the oscillation frequency f is 2.4 to 2.5 [GHz] (ISM band in the case of a microwave oven). ). Since the oscillation frequency f varies depending on variations in magnetron and load conditions, the wavelength ⁇ 0 in free space is between a minimum of 120 [mm] (at 2.5 GHz) and a maximum of 125 [mm] (at 2.4 GHz). fluctuate.
  • the width a of the waveguide 300 is designed in the range of 80 to 100 mm and the height b of 15 to 40 mm in consideration of the range of the wavelength ⁇ 0 in free space. There are many cases.
  • the wide surface 301 that is the upper surface and the lower surface is referred to as the H surface in the sense that the magnetic field vortexes in parallel, and the narrow surface 302 that is the left and right side surfaces. In the sense that it is a plane parallel to the electric field, it is called the E plane.
  • a straight line on the H plane in which the tube axis V is projected on the H plane may be referred to as the tube axis V.
  • ⁇ g When the wavelength of the microwave from the magnetron is defined as the wavelength ⁇ 0 and the wavelength of the microwave when propagating in the waveguide is defined as the wavelength ⁇ g in the tube, ⁇ g can be obtained by Expression (2).
  • the guide wavelength ⁇ g varies depending on the width a of the waveguide 300, but is not related to the height b.
  • the electric field is zero at both ends (E plane) of the waveguide 300 in the width direction W, that is, the narrow surface 302, and the electric field is maximum at the center in the width direction W.
  • the same principle as that of the waveguide 300 shown in FIG. 4 is applied to the rotating antenna 5 shown in FIGS.
  • the ceiling surface 9 and the bottom surface 11 of the power supply chamber 2b are H surfaces
  • the side wall surfaces 10a and 10c are E surfaces.
  • the side wall surface 10 b serves as a reflection end for reflecting all the microwaves in the rotating antenna 5 in the direction of the front opening 13.
  • the width a of the waveguide 300 is 106.5 mm.
  • a plurality of microwave suction openings 14 are formed in the ceiling surface 9.
  • the microwave suction opening 14 includes two first openings 14a and two second openings 14b.
  • the two first openings 14 a are symmetric with respect to the tube axis V of the waveguide structure portion 8 of the rotating antenna 5.
  • the two second openings 14b are symmetric with respect to the tube axis V.
  • the first opening 14a and the second opening 14b are formed so as not to cross the tube axis V.
  • the first opening 14a and the second opening 14b are arranged at positions shifted from the tube axis V of the waveguide structure 8 (more precisely, a straight line on the ceiling surface 9 obtained by projecting the tube axis V onto the ceiling surface 9).
  • circularly polarized waves can be more reliably radiated from the microwave suction opening 14.
  • the central region of the mounting surface 6a can be uniformly heated.
  • the rotation direction of the electric field that is, right-handed polarization (CW: Clockwise) or left-handed polarization (CCW: Counterclockwise) It is determined.
  • each of the microwave suction openings 14 is provided so as not to straddle the tube axis V.
  • the present disclosure is not limited to this, and even in a configuration in which a part of these openings crosses the tube axis V, circularly polarized light can be emitted. In this case, a distorted circularly polarized wave is generated.
  • Circular polarization is a technique widely used in the fields of mobile communications and satellite communications. Examples of familiar use include ETC (Electronic Toll Collection System), that is, a non-stop automatic toll collection system.
  • ETC Electronic Toll Collection System
  • Circular polarization is a microwave in which the polarization plane of an electric field rotates with respect to the direction of travel, and the direction of the electric field continues to change with time, and the magnitude of the electric field strength does not change. .
  • this circularly polarized wave is applied to a microwave heating apparatus, it can be expected that the object to be heated will be heated uniformly, particularly in the circumferential direction of the circularly polarized wave, as compared with the conventional microwave heating by linearly polarized wave.
  • the same effect can be obtained with either right-handed polarization or left-handed polarization.
  • Circular polarization is primarily used in the field of communications, and since it is intended for radiation into open spaces, it is generally discussed as a so-called traveling wave with no reflected wave.
  • a reflected wave is generated in the heating chamber 2a that is a closed space, and the generated reflected wave and the traveling wave may be combined to generate a standing wave.
  • either right-handed polarization or left-handed polarization is used for accurate transmission / reception of information, and a receiving antenna having directivity suitable for it is used on the receiving side.
  • a non-directional object to be heated such as food
  • receives microwaves so that the microwave is irradiated to the entire object to be heated. Is important. Therefore, in the field of microwave heating, whether it is right-handed polarized wave or left-handed polarized wave is not important, and there is no problem even if right-handed polarized wave and left-handed polarized wave are mixed.
  • microwave suction effect means that the microwave in the waveguide structure is sucked out from the microwave suction opening 14 when an object to be heated such as food is nearby.
  • FIG. 5A is a plan view of a waveguide 400 having an H plane provided with an opening for generating linearly polarized waves.
  • FIG. 5B is a plan view of a waveguide 500 having an H plane provided with an opening for generating circularly polarized waves.
  • FIG. 5C is a front view showing the positional relationship between the waveguide 400 or 500 and the object 22 to be heated.
  • the opening 401 is a rectangular slit provided so as to intersect the tube axis V of the waveguide 400.
  • the opening 401 radiates linearly polarized microwaves.
  • each of the two openings 501 is a cross-slot-shaped opening formed by two rectangular slits that intersect at right angles.
  • the two openings 501 are symmetric with respect to the tube axis V of the waveguide 500.
  • Each opening is symmetric with respect to the tube axis V of the waveguide, and has a width of 10 mm and a length of Lmm.
  • the case of “no load” in which the object to be heated 22 is not disposed and the case of “with load” in which the object to be heated 22 is disposed were analyzed using CAE.
  • the height of a constant object to be heated 22 is 30 mm, the bottom areas (100 mm square and 200 mm square) of two kinds of objects to be heated 22, and three kinds of objects to be heated With respect to the material of the object 22 (frozen beef, refrigerated beef, water), the distance D from the waveguides 400 and 500 to the bottom surface of the object to be heated 22 was measured as a parameter.
  • FIG. 6A and FIG. 6B show the relationship between the length of the opening and the radiated power in the case of “no load” in order to use the radiated power from the opening in the case of “no load” as a reference.
  • FIG. 6A shows the characteristics in the case of the opening 401 shown in FIG. 5A
  • FIG. 6B shows the characteristics in the case of the opening 501 shown in FIG. 5B
  • the horizontal axis is the length L [mm] of the opening
  • the vertical axis is emitted from the openings 401 and 501 when the power propagating in the waveguide is 1.0 W.
  • the case where the length L was 46.5 mm was selected.
  • FIG. 7 shows three kinds of foods having two kinds of bottom areas (100 mm square and 200 mm square) when the length L is the above length (45.5 mm, 46.5 mm) and “with load” ( Includes six graphs showing the results of analysis on frozen beef, refrigerated beef, and water).
  • the horizontal axis represents the distance D [mm] from the object to be heated 22 to the waveguide
  • the vertical axis represents the radiated power at “no load” as 1.0. It is the relative radiated power when.
  • the object to be heated 22 indicates how much microwaves are sucked out of the waveguides 400 and 500 in the case of “with load”.
  • the broken line indicates the characteristics (indicated by “I” in the figure) in the case of the opening 401 having a linear shape (I shape), and the solid line has two cross slot shapes (X shape).
  • the characteristic in the case of the opening 501 is shown.
  • the opening 501 has more radiated power than the opening 401.
  • the distance D is 20 mm or less, there is a difference of about twice as much as the actual microwave oven. Can be recognized. Therefore, regardless of the type and bottom area of the object to be heated 22, it is clear that the opening that generates circularly polarized waves has a higher microwave absorption effect than the opening that generates linearly polarized waves.
  • frozen beef having a smaller dielectric constant and dielectric loss has a larger suction effect, and water having a larger dielectric constant and dielectric loss.
  • the suction effect is smaller.
  • the inventors examined the conditions of the aperture that can radiate circularly polarized waves through experiments using various aperture shapes. As a result, the following conclusion was reached.
  • the preferable conditions for generating the circularly polarized wave are that the opening is arranged so as to be shifted from the tube axis V of the waveguide, and that the opening shape includes a cross-slot-shaped opening. It is an opening having a cross slot shape that radiates the circularly polarized microwave most efficiently, that is, has a high suction effect.
  • FIGS. 8A and 8B are cross-sectional views schematically showing the suction effect in the present embodiment.
  • the front opening 13 of the rotating antenna 5 faces leftward in the figure in both FIG. 8A and FIG. 8B.
  • the object to be heated 22 is disposed above the coupling portion 7 in FIG. 8A, and is placed at the left corner of the placement surface 6a in FIG. 8B. That is, in the two states shown in FIGS. 8A and 8B, the distance from the coupling portion 7 to the article to be heated 22 is different.
  • the microwave suction opening 14 increases the radiated power when food is placed in the vicinity of the microwave suction opening 14, and the food is located away from the microwave suction opening 14. This is considered to cause a special phenomenon that the radiated power decreases when the is placed.
  • FIG. 9A, FIG. 9B, and FIG. 9C are schematic views respectively showing the planar shapes of three examples of the rotating antenna used in the experiment.
  • the waveguide structure 600 has two first openings 614a and two second openings 614b.
  • the first opening 614a has a cross slot shape, and each rectangular slit is provided in the vicinity of the coupling portion 7 so as to form an angle of 45 degrees with respect to the tube axis V of the waveguide structure portion 600.
  • the second opening 614 b is smaller than the first opening 614 a and is provided apart from the coupling portion 7.
  • the waveguide structure 700 has one first opening 714a having a cross slot shape similar to the first opening 614a, unlike the waveguide structure 600.
  • the waveguide structure 800 has two first openings 814a having a T-shape unlike the waveguide structure 600. That is, unlike the first opening 614a, the first opening 814a does not have a portion extending from the intersecting portion toward the coupling portion 7 in one of the two rectangular slits.
  • a plurality of cross-slot shaped microwave suction openings are provided, and a first opening having a similar size is provided at a similar location.
  • the second opening having the same size is provided at the same place.
  • the second opening 614b, the second opening 714b, and the second opening 814b are the same.
  • the temperature drop in the vicinity of the coupling portion 7 could be suppressed.
  • the temperature drop in the vicinity of the coupling portion 7 could be suppressed.
  • the waveguide structure in which no opening is provided in the vicinity of the coupling portion 7 or only one opening is provided in the vicinity of the coupling portion 7 suppresses a temperature drop in the vicinity of the coupling portion 7. It was confirmed that uniform heating in the heating chamber 2a was possible.
  • the inventors conducted experiments on the shape of the microwave suction opening and found a waveguide structure capable of further uniforming the heating distribution.
  • the first opening 814a of the waveguide structure 800 shown in FIG. 9C radiates a distorted circularly polarized wave, which is different from the circularly polarized wave formed by the cross-slot shaped opening. From the viewpoint of uniform heating in the chamber 2a, a preferable result was not obtained.
  • the first opening 914a having the shape shown in FIGS. 10A and 10B was examined in order to suppress the interference between the two circularly polarized waves and to form the circularly polarized wave as close to the circle as possible.
  • FIG. 10A and FIG. 10B are schematic views respectively showing the planar shapes of the waveguide structure portion 900A and the waveguide structure portion 900B provided with the first opening 914a.
  • the waveguide structures 900A and 900B both have the same first opening 914a and second opening 914b.
  • the first opening 914a is a cross in which, in one of the two rectangular slits, a portion extending from the intersecting portion in the direction of the coupling portion 7 has a shorter length than a portion extending from the intersecting portion in the opposite direction of the coupling portion 7. It has a slot shape.
  • the length of the portion of the first opening 914a extending from the intersecting portion in the direction of the coupling portion 7 is appropriately set according to the specifications so that interference between the two circularly polarized waves does not occur.
  • the waveguide structure 900A has a flat ceiling surface as a whole.
  • a concave joint region (a concave portion 909a which is a step region) is formed in a joint portion where the flange 7b is joined to the ceiling surface (see, for example, FIG. 3). Therefore, on the ceiling surface of the waveguide structure 900B, the distance between the junction region and the mounting table is longer than that of other portions.
  • the waveguide structure 900A suppresses interference between two circularly polarized waves and generates a circularly polarized wave having a shape close to a circle. I was able to.
  • the first opening 914a increases the suction effect, and can suppress the temperature drop in the vicinity of the coupling portion 7. Moreover, it has been found that the temperature decrease in the vicinity of the coupling portion 7 can be suppressed by the concave joining region formed on the ceiling surface of the waveguide structure portion 900B.
  • FIG. 11A is a plan view showing a rotating antenna having a waveguide structure 8 according to the present embodiment.
  • the waveguide structure 8 has a plurality of microwave suction openings 14 provided on the ceiling surface 9.
  • the plurality of microwave suction openings 14 include a first opening 14a and a second opening 14b having an opening smaller than the first opening 14a.
  • the first opening 14a and the second opening 14b have a substantially cross slot shape.
  • the microwave suction opening 14 is circularly polarized. Can radiate.
  • the center point P1 of the first opening 14a and the center point P2 of the second opening 14b are the center points of the intersecting regions of the two slits forming the first opening 14a and the second opening 14b, respectively.
  • first opening 14 a and the second opening 14 b are arranged so as not to cross the tube axis V of the waveguide structure 8.
  • the longitudinal direction of each rectangular slit of the first opening 14a and the second opening 14b has an inclination of substantially 45 ° C. with respect to the tube axis V.
  • the first opening 14a is formed close to the recess 9a of the ceiling surface 9.
  • the recess 9a is a step region provided so as to protrude from the ceiling surface 9 in a direction (downward) opposite to the traveling direction of the microwave radiated from the first opening 14a (see FIG. 3).
  • the two first openings 14a are symmetric with respect to the tube axis V.
  • the second opening 14b is formed in the vicinity of the front opening 13 at a distance from the coupling portion 7 than the first opening 14a. Similar to the first opening 14a, the two second openings 14b are symmetric with respect to the tube axis V.
  • the length of the portion extending in the direction from the center point P1 toward the tube axis V is shorter than the length of the portion extending in the direction from the center point P1 to the side wall surface 10a.
  • the flange 7 b provided in the coupling portion 7 has a shape in which the length in the microwave transmission direction Z is shorter than the length in the width direction W of the waveguide structure portion 8. That is, in the coupling unit 7, the length of the microwave transmission direction Z is shorter than the length in the direction orthogonal to the transmission direction Z. According to the flange 7b, the tip of the slit extending from the central point P1 toward the coupling portion 7 can be formed closer to the coupling portion 7.
  • the recess 9a is formed on the front side of the recess 9a by joining the flange 7b such as a protrusion of TOX caulking, a welding mark, a screw, a nut head, or the like. It is comprised so that it may become deeper than the height of the protrusion which arises. According to the present embodiment, there is no problem such that the protrusion contacts the lower surface of the mounting table 6.
  • the waveguide structure portion 8 shown in FIG. 11A has a recess 9a provided on the ceiling surface 9 above the coupling portion 7, and has the same configuration as the waveguide structure portion 900B shown in FIG. 10B. According to the waveguide structure portion 8 shown in FIG. 11A, a temperature drop in the vicinity of the coupling portion 7 can be suppressed similarly to the waveguide structure portion 900B. There are two possible reasons for this.
  • the internal space of the waveguide structure portion 8 where the recess 9a is formed is narrower than the other portions.
  • the first opening 14a is caused by the suction effect.
  • the object to be heated radiated from the surface and placed in the central region of the placement surface 6a is strongly heated.
  • the first opening 14a includes slits 20a and 20b, and has a cross slot shape in which these intersect at the center point P1.
  • the major axis of each slit of the first opening 14a has an angle of 45 degrees with respect to the tube axis V.
  • the slit 20a extends from the lower right to the upper left of the center point P1, and has a first length A from the center point P1 to the lower right tip and a third length C from the center point P1 to the upper left tip. Have.
  • the lower right tip of the slit 20a is directed toward the coupling portion 7 and close to the recess 9a.
  • the slit 20b extends from the lower left to the upper right of the center point P1, and has a second length B from the center point P1 to the lower left tip and a fourth length D from the center point P1 to the upper right tip. That is, the first length A is the length from the center point P1 to the tips closest to the coupling portion 7 among the lengths from the center point P1 to the tips of the slits 20a and 20b.
  • the third length C and the fourth length D are the same, and these correspond to substantially 1 ⁇ 4 of the wavelength of the microwave propagating in the waveguide structure 8.
  • the second length B is shorter than the third length C and the fourth length D, and the first length A is the shortest of these.
  • the distance X between the slit 20a and the tube axis V is longer than the distance Y between the slit 20b and the tube axis V. That is, the distance between the pair of slits 20a closer to the coupling part 7 among the two pairs of slits constituting the pair of microwave suction openings 14 is between the pair of slits 20b farther from the coupling part 7. Longer than distance. For this reason, the area
  • a turbulent electromagnetic field is generated in the waveguide structure 8 and adversely affects the formation of circularly polarized waves. It is preferable to provide a wider flat area between them. According to the present embodiment, a circular polarization with less disturbance is formed by a wider flat region provided between the two first openings 14a, and a high suction effect is obtained.
  • the second opening 14b has a cross slot shape in which two slits having the same length are orthogonal to each other at the center.
  • the major axis of each slit of the second opening 14b has an angle of 45 degrees with respect to the tube axis V.
  • the length of the major axis of each slit of the second opening 14b is equal to the third length C and the fourth length D of the first opening 14a.
  • the connecting portion 7 has the flange 7b having the above-mentioned shape, but the shape of the flange 7b is not limited to this, and can be changed as appropriate according to the specifications.
  • the first opening 14a can be provided closer to the coupling portion 7. It is also possible to provide the first opening 14a closer to the coupling portion 7 depending on the shape of the flange 7b, such as using a flange 7b having a notch with the first opening 14a.
  • the shape of the flange 7b is devised, it is possible to reinforce the joining between the coupling portion 7 and the waveguide structure portion 8 without reducing the area of the joining portion, thereby suppressing variations in products.
  • the microwave suction opening has a cross slot shape, but the microwave suction opening of the present disclosure is not limited to this. Even if the microwave suction opening has a shape other than the cross slot shape, it may have a shape capable of generating circularly polarized waves.
  • the essential condition for generating the circularly polarized wave from the waveguide structure part is that the two generally elongated openings are combined at a position shifted from the tube axis.
  • the slit constituting the microwave suction opening 14 is not limited to a rectangle. For example, even in the case of an opening having a rounded corner or an elliptical opening, it is possible to generate circularly polarized waves.
  • the corners of the opening are preferably rounded.
  • the slits included in the first opening 14a and the second opening 14b are rounded at the tip and the intersection. Has a cracked corner. That is, the two slits included in the microwave suction opening 14 have a width near the intersection that is wider than the width near the end.
  • the concave portion 9a is formed above the coupling portion 7 of the ceiling surface 9, but the waveguide structure portion 8 of the present disclosure is not limited to this.
  • a recess 9 a may be provided between the microwave suction opening 14 and the rotation center of the waveguide structure 8.
  • a convex portion projecting into the internal space of the waveguide structure 8 may be provided on the ceiling surface 9 closer to the rotation center of the waveguide structure 8 than the microwave suction opening 14.
  • the waveguide structure portion 8 is provided in a part of the ceiling surface 9 closer to the coupling portion 7 than the microwave suction opening 14 and has a step region whose height is lower than other portions of the ceiling surface 9. Good.
  • the waveguide structure 28 has a microwave suction opening 24 provided in the ceiling surface 29.
  • the microwave suction opening 24 includes a first opening 24a and a second opening 14b.
  • the first opening 24a is different only in the angular shape of the intersection of the two slits of the first opening 24a shown in FIG. 11A.
  • the first opening 24a has four corners C1, C2, C3, and C4 at the intersection of the slit 20c and the slit 20d.
  • the corner C1 is located farthest from the tube axis V.
  • the corner C ⁇ b> 2 is provided on the most upstream side in the microwave transmission direction Z and is located closest to the coupling portion 7.
  • the corner C3 is located closest to the tube axis V.
  • the corner C4 is provided on the most downstream side in the microwave transmission direction Z and is located farthest from the coupling portion 7.
  • the corners C1 to C4 have a curved shape having the same curvature, while the corner C4 has a curved shape having a smaller curvature than the corners C1 to C3.
  • the corner C4 has a shape such that the portion indicated by the dotted line in FIG. 11B is cut substantially linearly.
  • the distance D1 is the distance from the center point P1 to the corner C1
  • the distance D2 is the distance from the center point P1 to the corner C2
  • the distance D3 is the distance from the center point P1 to the corner C3
  • the distances D1 to D3 are the same.
  • the distance D4 from the center point P1 to the corner C4 is larger than the distances D1 to D3. That is, the two slits included in the first opening 24a have a width near the intersection that is wider than the width near the end.
  • the electric field at the slit is maximum at the center and zero at the end.
  • the two electric fields are combined at the intersection, so that the electric field at the intersection becomes strong.
  • the waveguide structure 28 includes the first opening 24a having the above-described shape, thereby suppressing excessive electric field concentration at the intersection.
  • the inventors of the present invention among the corners C1 to C4 of the intersecting portion of the first opening 24a, have the corner C4 located on the most downstream side in the microwave transmission direction Z, that is, the farthest from the coupling portion 7. It has been found that the effect of suppressing electric field concentration is remarkable when the curved shape has the smallest curvature. According to this structure, a more reliable waveguide structure part can be comprised.
  • Such a phenomenon occurs because the electric field generated around the second opening 14b is in contrast to the electric field generated around the corner C4 of the first opening 24a, particularly the first opening 24a closest to the second opening 14b.
  • the cause is thought to be some effect.
  • the shape of the corner at the intersection of the first openings 24a is not limited to the curved shape as shown in FIG. 11B.
  • the first opening 24a only needs to have a cross slot shape formed by a slit having a width near the intersection that is wider than the width near the end.
  • a substantially curved corner composed of a plurality of straight lines may be formed at the cross slot-shaped intersection.
  • the corners C1 to C3 may have the same shape as the corner C4.
  • the corner of the intersecting portion in the second opening 14b, in particular, the most upstream side in the microwave transmission direction Z, that is, the corner located closest to the coupling portion 7, is the same as the corner C4 of the first opening 24a shown in FIG. 11B. Even if it has this shape, the same effect can be obtained.
  • a flat region between the two first openings 14 a extends along the tube axis V from the coupling portion 7 toward the front opening 13 and becomes a path for microwaves radiated from the front opening 13.
  • the inventors conducted the following first to third experiments and verified them by CAE in order to investigate the distance L1 that can improve the performance of uniform heating and the performance of local heating.
  • the frozen okonomiyaki placed in the central region of the placement surface 6a was heated using the distance L1 as a parameter in order to investigate the distance L1 for improving the performance of uniform heating.
  • the performance of uniform heating was evaluated.
  • FIG. 12 is a schematic diagram showing a state in which two dishes (plates K1 and K2) placed on the placement surface 6a with an interval are viewed from above in the second experiment.
  • the rotating antenna 5 is also shown for convenience in order to indicate in which direction the rotating antenna 5 is directed below the placement surface 6a.
  • the dishes K1 and K2 are respectively arranged so that the center is located at a distance of 1 ⁇ 4 of the width of the mounting surface 6a from both edges of the mounting surface 6a. That is, among the three one-dot chain lines that divide the placement surface 6a into four in the width direction, the dish K1 is placed on the leftmost one-dot chain line, and the dish K2 is placed on the rightmost one-dot chain line.
  • a spaced arrangement such an arrangement is referred to as a spaced arrangement.
  • the rotating antenna 5 is controlled so that the front opening 13 stops in a state of facing the left side, and the dish K1 is heated intensively, so that the heating directivity and the distance L1 are increased. I investigated the relationship with.
  • the directivity of heating was evaluated based on the ratio of the rising temperature of the heated object on the plate K1 to the rising temperature of the heated object on the plate K2 (hereinafter referred to as the left / right ratio).
  • a larger left / right ratio means higher heating directivity and better local heating performance.
  • the rising temperature refers to a temperature difference between before and after heating the object to be heated.
  • the distance L1 was used as a parameter, and two dishes of frozen shumai placed on the placement surface 6a without heating were heated.
  • two dishes to be heated are brought into contact with each other at the center of the mounting surface 6a and arranged symmetrically with respect to the center line J.
  • a contact arrangement such an arrangement is referred to as a contact arrangement.
  • FIG. 13 is a schematic view showing a state in which two dishes (dish K1, K2) placed in contact with each other and placed on the placing surface 6a are viewed from above in the third experiment.
  • the rotating antenna 5 is also shown for convenience in order to indicate which direction the rotating antenna 5 is facing below the placement surface 6 a.
  • the rotation antenna 5 is controlled so that the front opening 13 stops in the left side and the dish K1 is heated intensively, whereby the relationship between the directivity of heating and the distance L1. I investigated. Similarly in the third experiment, the directivity of heating was evaluated based on the left / right ratio.
  • the left / right ratio in the second experiment means the left / right ratio at the time of distant arrangement
  • the right / left ratio in the third experiment means the right / left ratio at the time of contact arrangement
  • FIG. 14 shows the location of each part of the microwave suction opening 14 shown in FIG. 11B, and Table 1 shows the dimensions of each part under the first condition to the third condition.
  • the second length B of the microwave suction opening 14 is set shorter in order and the distance L1 is set longer in order.
  • the second length is 25.5 mm and the distance L1 is 12 mm.
  • the second length is 23.5 mm and the distance L1 is 15 mm.
  • the second length was 21.5 mm and the distance L1 was 18 mm.
  • FIG. 15 is a diagram showing the results of the first to third experiments using the distance L1 as a parameter.
  • the right vertical axis in FIG. 15 shows the temperature at the center of the okonomiyaki measured in the first experiment.
  • the left vertical axis in FIG. 15 indicates the left / right ratio calculated in the second experiment and the third experiment.
  • the temperature of the central portion of the heated object was about 80 to 92 ° C.
  • the temperature at the center of the object to be heated was 74 ° C.
  • the left-right ratio from the first condition to the third condition was 2.9-4.
  • the left / right ratio from the first condition to the third condition was 4.4 to 5.3.
  • the left-right ratio in the second experiment and the third experiment was 2.3 and 3.2, respectively.
  • the distance L1 is preferably set in a range of 15 to 18 mm where the left / right ratio at the time of separation is 3.5 or more.
  • the heating distribution for uniform heating can be made uniform and the directivity of heating for local heating can be optimized.
  • the distance L1 should be changed according to the dimensions of the microwave heating device.
  • the distance L1 is preferably set to about 1/8 to 1/4 of the distance L2 between the side wall surface 10a and the side wall surface 10c, that is, the width of the waveguide structure 8 (see FIG. 11A).
  • the distance L1 is substantially equal to the shaft diameter of the coupling shaft 7a.
  • the distance L1 is increased by shortening the second length B, but the present invention is not limited to this.
  • the distance L1 may be set to a desired dimension by changing the intersecting angle of the two slits forming the first opening 14a without changing the first length A to the fourth length D.
  • FIGS. 16A and 16B are plan views showing microwave suction openings 34 of other shapes.
  • the waveguide structure 38 has a microwave suction opening 34 provided in the ceiling surface 39.
  • the microwave suction opening 34 includes a first opening 34a and a second opening 14b.
  • the first opening 34a is different from the first opening 14a shown in FIG. 11A and the first opening 24a shown in FIG. 11B in the intersection angle of the two slits.
  • the slit 20e of the first opening 34a has the same length as the slit 20a of the first opening 14a and the slit 20c of the first opening 24a.
  • the major axis of the slit 20e is oriented in the same direction as the major axis of the slit 20a and the major axis of the slit 20c (see FIGS. 11A and 11B).
  • the distance L1 can be set larger even when the second length B is the same.
  • uniform heating and local heating can be performed on an object to be heated.
  • the present disclosure can be used in microwave heating apparatuses for various industrial uses such as a drying apparatus, a heating apparatus for ceramics, a garbage disposal machine, and a semiconductor manufacturing apparatus in addition to a microwave oven.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)

Abstract

A waveguide-structure antenna (5) has a ceiling surface (9), sidewall surfaces (10a, 10b, 10c), and front opening (13) defining a waveguide structure section (8), and emits microwaves from the front opening (13) to an object to be heated. The waveguide structure section (8) has a coupling part (7) which is joined with the ceiling surface (9) and couples microwaves into an internal space of the waveguide structure section (8). The waveguide structure section (8) emits circularly polarized waves into a heating chamber from at least one microwave emission opening (14) that is formed in the ceiling surface (9). The at least one microwave emission opening (14) includes at least a pair of microwave emission openings (14) that are symmetrical with respect to a pipe axis (V) of the waveguide structure section (8). The waveguide structure section (8) has a flat area between the pair of microwave emission openings (14). According to this embodiment, it is possible to perform uniform heating and local heating of an object to be heated set in the heating chamber.

Description

マイクロ波加熱装置Microwave heating device
 本開示は、食品などの被加熱物をマイクロ波によりマイクロ波加熱する電子レンジなどのマイクロ波加熱装置に関するものである。 The present disclosure relates to a microwave heating apparatus such as a microwave oven that heats an object to be heated such as food using microwaves.
 代表的なマイクロ波加熱装置である電子レンジにおいては、代表的なマイクロ波生成部であるマグネトロンにより生成されたマイクロ波を金属製の加熱室の内部に供給し、加熱室内に載置された被加熱物をマイクロ波加熱する。 In a microwave oven, which is a typical microwave heating device, microwaves generated by a magnetron, which is a typical microwave generation unit, are supplied into a metal heating chamber and placed in a heating chamber. The heated object is heated by microwave.
 近年、加熱室内の平坦な底面全体が載置台として利用可能な電子レンジが実用化されている。このような電子レンジにおいては、載置台全体にわたって被加熱物を均一に加熱するために、載置台の下方に回転アンテナが設けられる(例えば、特許文献1参照)。特許文献1に開示された回転アンテナは、マグネトロンからのマイクロ波を伝搬する導波管に磁界結合された導波管構造を有する。 Recently, a microwave oven in which the entire flat bottom surface in the heating chamber can be used as a mounting table has been put into practical use. In such a microwave oven, a rotating antenna is provided below the mounting table in order to uniformly heat the object to be heated over the entire mounting table (see, for example, Patent Document 1). The rotating antenna disclosed in Patent Document 1 has a waveguide structure magnetically coupled to a waveguide that propagates microwaves from a magnetron.
 図17は、特許文献1に開示された電子レンジ100の構成を示す正面断面図である。図17に示すように、電子レンジ100において、マグネトロン101により生成されたマイクロ波は、導波管102を伝搬して結合軸109に到達する。 FIG. 17 is a front sectional view showing the configuration of the microwave oven 100 disclosed in Patent Document 1. As shown in FIG. 17, in the microwave oven 100, the microwave generated by the magnetron 101 propagates through the waveguide 102 and reaches the coupling axis 109.
 回転アンテナ103は、上方からの平面視で扇形状を有し、結合軸109により導波管102と連結され、モータ105に駆動されて回転する。結合軸109は、導波管102内を伝搬してきたマイクロ波を導波管構造の回転アンテナ103に結合するとともに、回転アンテナ103の回転中心として機能する。 The rotating antenna 103 has a fan shape in plan view from above, is connected to the waveguide 102 by a coupling shaft 109, and is driven by a motor 105 to rotate. The coupling shaft 109 couples the microwave propagating through the waveguide 102 to the waveguide-structured rotating antenna 103 and functions as the rotation center of the rotating antenna 103.
 回転アンテナ103は、マイクロ波を放射する放射口107と低インピーダンス部106とを有する。放射口107から放射されたマイクロ波は、加熱室104内に供給され、加熱室104の載置台108上に載置された被加熱物(図示せず)をマイクロ波加熱する。 The rotating antenna 103 has a radiation port 107 for radiating microwaves and a low impedance portion 106. The microwave radiated from the radiation port 107 is supplied into the heating chamber 104, and the object to be heated (not shown) placed on the placing table 108 of the heating chamber 104 is microwave-heated.
 回転アンテナ103を載置台108の下方で回転させて、加熱室104内の加熱分布の均一化が図られている。 The rotating antenna 103 is rotated below the mounting table 108 to make the heating distribution in the heating chamber 104 uniform.
 加熱室内の全体を均一に加熱する機能(均一加熱)とは別に、例えば、冷凍の食品と室温の食品とが加熱室内に載置された場合において、これらの食品に対する加熱を同時に完了させるためには、冷凍食品が載置された領域に対して局所的かつ集中的にマイクロ波を放射する機能(局所加熱)が必要である。 Separately from the function of heating the entire heating chamber uniformly (uniform heating), for example, when frozen food and room temperature food are placed in the heating chamber, to complete heating of these foods simultaneously Needs a function (local heating) to radiate microwaves locally and intensively to the region where the frozen food is placed.
 局所加熱を実現するために、赤外線センサで検出した加熱室内の温度分布に基づき、回転アンテナの停止位置を制御する電子レンジが提案される(例えば、特許文献2参照)。 In order to realize local heating, a microwave oven is proposed that controls the stop position of the rotating antenna based on the temperature distribution in the heating chamber detected by an infrared sensor (see, for example, Patent Document 2).
 図18は、特許文献2に開示された電子レンジ200の構成を示す正面断面図である。図18に示すように、電子レンジ200において、マグネトロン201により生成されたマイクロ波は、導波管202を介して導波管構造の回転アンテナ203に到達する。 FIG. 18 is a front sectional view showing the configuration of the microwave oven 200 disclosed in Patent Document 2. As shown in FIG. 18, in the microwave oven 200, the microwave generated by the magnetron 201 reaches the rotating antenna 203 having a waveguide structure via the waveguide 202.
 回転アンテナ203は、上方からの平面視において、その一辺に形成されてマイクロ波を放射する放射口207と、その他の三辺に形成された低インピーダンス部206とを有する。放射口207から放射されたマイクロ波は、給電室209を経由して加熱室204内に供給され、加熱室204内に載置された被加熱物をマイクロ波加熱する。 The rotary antenna 203 has a radiation port 207 that is formed on one side and radiates microwaves in a plan view from above, and a low impedance part 206 that is formed on the other three sides. The microwave radiated from the radiation port 207 is supplied into the heating chamber 204 through the power supply chamber 209, and the object to be heated placed in the heating chamber 204 is heated by microwaves.
 特許文献2に開示された電子レンジは、加熱室204内の温度分布を検出するために赤外線センサ210を有する。制御部211は、赤外線センサ210により検出された温度分布に基づいて、回転アンテナ203の回転と位置、および、放射口207の向きを制御する。 The microwave oven disclosed in Patent Document 2 has an infrared sensor 210 for detecting the temperature distribution in the heating chamber 204. The control unit 211 controls the rotation and position of the rotating antenna 203 and the direction of the radiation port 207 based on the temperature distribution detected by the infrared sensor 210.
 特許文献2に開示された回転アンテナ203は、モータ205により加熱室204の載置台208の下方に形成された給電室209の内部を回転しながら円弧状の軌道上を移動するように構成される。電子レンジ200によれば、回転アンテナ203の放射口207が回転しつつ移動して、赤外線センサ210により検出された被加熱物の低温部分を集中的に加熱することができる。 A rotating antenna 203 disclosed in Patent Document 2 is configured to move on an arc-shaped track while rotating inside a power feeding chamber 209 formed below a mounting table 208 of a heating chamber 204 by a motor 205. . According to the microwave oven 200, the radiation port 207 of the rotating antenna 203 moves while rotating, and the low temperature portion of the object to be heated detected by the infrared sensor 210 can be heated intensively.
特公昭63-53678号公報Japanese Patent Publication No. 63-53678 特許第2894250号公報Japanese Patent No. 2894250
 特許文献1に開示された電子レンジ100においては、回転アンテナ103が、載置台108の下方に配置された結合軸109を中心に回転するように構成される。マイクロ波は、回転アンテナ103の先端の放射口107から放射される。 In the microwave oven 100 disclosed in Patent Document 1, the rotating antenna 103 is configured to rotate around a coupling shaft 109 disposed below the mounting table 108. The microwave is radiated from the radiation port 107 at the tip of the rotating antenna 103.
 この構成により、載置台108の中央領域に載置された被加熱物に対しては、直接的にマイクロ波を照射することができず、必ずしも均一加熱が可能ではなかった。 With this configuration, the object to be heated placed in the central region of the placing table 108 could not be directly irradiated with microwaves, and uniform heating was not always possible.
 特許文献2に開示された電子レンジ200によれば、被加熱物に対する均一加熱と局所加熱とが可能である。しかしながら、本構成は、回転アンテナ203を載置台208の下方で回転させながら移動させるための機構を必要とするため、構造が複雑になり、装置が大型化するという問題を有していた。 According to the microwave oven 200 disclosed in Patent Document 2, uniform heating and local heating can be performed on an object to be heated. However, this configuration requires a mechanism for moving the rotating antenna 203 while rotating it below the mounting table 208, and thus has a problem that the structure becomes complicated and the apparatus becomes large.
 本開示は、上記従来の問題点を解決するものであり、より簡単な構造を有し、均一加熱と局所加熱とが可能なマイクロ波加熱装置を提供することを目的とする。 The present disclosure solves the above-described conventional problems, and an object thereof is to provide a microwave heating apparatus having a simpler structure and capable of uniform heating and local heating.
 本開示の一態様のマイクロ波加熱装置は、被加熱物を収納する加熱室と、マイクロ波を生成するマイクロ波生成部と、導波管構造部を規定する天井面および側壁面、ならびに前方開口を有し、マイクロ波を前方開口から加熱室に放射する導波管構造アンテナと、を備える。導波管構造部は、天井面と接合され、マイクロ波を導波管構造部の内部空間に結合させる結合部を有する。 A microwave heating apparatus according to one embodiment of the present disclosure includes a heating chamber that stores an object to be heated, a microwave generation unit that generates a microwave, a ceiling surface and a side wall surface that define a waveguide structure unit, and a front opening. And a waveguide structure antenna that radiates microwaves from the front opening to the heating chamber. The waveguide structure portion is joined to the ceiling surface and has a coupling portion that couples the microwave to the internal space of the waveguide structure portion.
 導波管構造部は、天井面に形成された少なくとも一つのマイクロ波吸出し開口を有して、マイクロ波吸出し開口から加熱室内に円偏波を放射する。少なくとも一つのマイクロ波吸出し開口は、導波管構造部の管軸に関して対称な少なくとも一対のマイクロ波吸出し開口を含む。導波管構造部は、一対のマイクロ波吸出し開口の間に平坦な領域を有する。 The waveguide structure has at least one microwave suction opening formed on the ceiling surface, and radiates circularly polarized waves from the microwave suction opening into the heating chamber. The at least one microwave suction opening includes at least a pair of microwave suction openings that are symmetrical with respect to the tube axis of the waveguide structure. The waveguide structure has a flat region between a pair of microwave suction openings.
 本態様によれば、加熱室内に載置された被加熱物に対して均一加熱と局所加熱とを可能とする。 According to this aspect, uniform heating and local heating can be performed on an object to be heated placed in the heating chamber.
図1は、本開示の実施の形態に係るマイクロ波加熱装置の概略構成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a schematic configuration of a microwave heating apparatus according to an embodiment of the present disclosure. 図2Aは、本実施の形態に係るマイクロ波加熱装置における給電室を示す斜視図である。FIG. 2A is a perspective view showing a power supply chamber in the microwave heating apparatus according to the present embodiment. 図2Bは、本実施の形態に係るマイクロ波加熱装置における給電室を示す平面図である。FIG. 2B is a plan view showing a power supply chamber in the microwave heating apparatus according to the present embodiment. 図3は、本実施の形態に係るマイクロ波加熱装置における回転アンテナを示す分解斜視図である。FIG. 3 is an exploded perspective view showing a rotating antenna in the microwave heating apparatus according to the present embodiment. 図4は、一般的な方形導波管を示す斜視図である。FIG. 4 is a perspective view showing a general rectangular waveguide. 図5Aは、直線偏波を放射する長方形スロット形状の開口を有する導波管のH面を示す平面図である。FIG. 5A is a plan view showing an H-plane of a waveguide having a rectangular slot-shaped opening that radiates linearly polarized waves. 図5Bは、円偏波を放射するクロススロット形状の開口を有する導波管のH面を示す平面図である。FIG. 5B is a plan view showing an H-plane of a waveguide having a cross-slot-shaped opening that radiates circularly polarized waves. 図5Cは、導波管と被加熱物との位置関係を示す正面図である。FIG. 5C is a front view showing the positional relationship between the waveguide and the object to be heated. 図6Aは、図5Aに示す導波管の場合の実験結果を示す特性図である。FIG. 6A is a characteristic diagram showing experimental results for the waveguide shown in FIG. 5A. 図6Bは、図5Bに示す導波管の場合の実験結果を示す特性図である。FIG. 6B is a characteristic diagram showing an experimental result in the case of the waveguide shown in FIG. 5B. 図7は、「負荷有り」の場合における実験結果を示す特性図である。FIG. 7 is a characteristic diagram showing experimental results in the case of “with load”. 図8Aは、本実施の形態における吸出し効果を模式的に示す断面図である。FIG. 8A is a cross-sectional view schematically showing a suction effect in the present embodiment. 図8Bは、本実施の形態における吸出し効果を模式的に示す断面図である。FIG. 8B is a cross-sectional view schematically showing the suction effect in the present embodiment. 図9Aは、実験で用いられた回転アンテナの一例の平面形状を示す模式図である。FIG. 9A is a schematic diagram illustrating a planar shape of an example of the rotating antenna used in the experiment. 図9Bは、実験で用いられた回転アンテナの一例の平面形状を示す模式図である。FIG. 9B is a schematic diagram illustrating a planar shape of an example of the rotating antenna used in the experiment. 図9Cは、実験で用いられた回転アンテナの一例の平面形状を示す模式図である。FIG. 9C is a schematic diagram illustrating a planar shape of an example of the rotating antenna used in the experiment. 図10Aは、実験で用いられた回転アンテナの一例の平面形状を示す模式図である。FIG. 10A is a schematic diagram illustrating a planar shape of an example of the rotating antenna used in the experiment. 図10Bは、実験で用いられた回転アンテナの一例の平面形状を示す模式図である。FIG. 10B is a schematic diagram illustrating a planar shape of an example of the rotating antenna used in the experiment. 図11Aは、本実施の形態に係る導波管構造部を示す平面図である。FIG. 11A is a plan view showing a waveguide structure according to the present embodiment. 図11Bは、本実施の形態に係る導波管構造部の変形例を示す平面図である。FIG. 11B is a plan view showing a modification of the waveguide structure according to the present embodiment. 図12は、二皿の被加熱物の離間配置を示す図である。FIG. 12 is a diagram illustrating a disposition arrangement of two objects to be heated. 図13は、二皿の被加熱物の当接配置を示す図である。FIG. 13 is a diagram showing a contact arrangement of two dishes to be heated. 図14は、図11Bに示すマイクロ波吸出し開口の各部分の場所を示す図である。FIG. 14 is a diagram showing the location of each part of the microwave suction opening shown in FIG. 11B. 図15は、実験結果を示すグラフである。FIG. 15 is a graph showing experimental results. 図16Aは、本実施の形態に係る導波管構造部の変形例を示す平面図である。FIG. 16A is a plan view showing a modification of the waveguide structure according to the present embodiment. 図16Bは、本実施の形態に係る導波管構造部の別の変形例を示す平面図である。FIG. 16B is a plan view showing another modification of the waveguide structure according to the present embodiment. 図17は、特許文献1に開示された電子レンジを示す正面断面図である。FIG. 17 is a front sectional view showing the microwave oven disclosed in Patent Document 1. 図18は、特許文献2に開示された電子レンジを示す正面断面図である。FIG. 18 is a front sectional view showing the microwave oven disclosed in Patent Document 2. As shown in FIG.
 本開示の第1の態様のマイクロ波加熱装置は、被加熱物を収納する加熱室と、マイクロ波を生成するマイクロ波生成部と、導波管構造部を規定する天井面および側壁面、ならびに前方開口を有し、マイクロ波を前方開口から加熱室に放射する導波管構造アンテナと、を備える。導波管構造部は、天井面と接合され、マイクロ波を導波管構造部の内部空間に結合させる結合部を有する。 A microwave heating apparatus according to a first aspect of the present disclosure includes a heating chamber that houses an object to be heated, a microwave generation unit that generates a microwave, a ceiling surface and a side wall surface that define a waveguide structure, and A waveguide structure antenna having a front opening and radiating microwaves from the front opening to the heating chamber. The waveguide structure portion is joined to the ceiling surface and has a coupling portion that couples the microwave to the internal space of the waveguide structure portion.
 導波管構造部は、天井面に形成された少なくとも一つのマイクロ波吸出し開口を有して、マイクロ波吸出し開口から加熱室内に円偏波を放射する。少なくとも一つのマイクロ波吸出し開口は、導波管構造部の管軸に関して対称な少なくとも一対のマイクロ波吸出し開口を含む。導波管構造部は、一対のマイクロ波吸出し開口の間に平坦な領域を有する。 The waveguide structure has at least one microwave suction opening formed on the ceiling surface, and radiates circularly polarized waves from the microwave suction opening into the heating chamber. The at least one microwave suction opening includes at least a pair of microwave suction openings that are symmetrical with respect to the tube axis of the waveguide structure. The waveguide structure has a flat region between a pair of microwave suction openings.
 本態様によれば、加熱室内に載置された被加熱物に対する均一加熱と局所加熱とを可能とする。 According to this aspect, uniform heating and local heating can be performed on an object to be heated placed in the heating chamber.
 第2の態様のマイクロ波加熱装置によれば、第1の態様に加えて、少なくとも一つのマイクロ波吸出し開口が、導波管構造部の管軸に関して対称な二対のマイクロ波吸出し開口を含む。二対のマイクロ波吸出し開口のうち、結合部に近い方の開口の対の間の距離が、結合部から遠い方の開口の対の間の距離より長い。本態様によれば、マイクロ波吸出し開口からより確実に円偏波を放射することが可能となる。 According to the microwave heating apparatus of the second aspect, in addition to the first aspect, at least one microwave suction opening includes two pairs of microwave suction openings that are symmetrical with respect to the tube axis of the waveguide structure. . Of the two pairs of microwave suction openings, the distance between the pair of openings closer to the coupling part is longer than the distance between the pair of openings farther from the coupling part. According to this aspect, it is possible to radiate circularly polarized waves more reliably from the microwave suction opening.
 第3の態様のマイクロ波加熱装置によれば、第2の態様に加えて、導波管構造アンテナを回転させる駆動部をさらに備える。結合部は、駆動部に連結され、導波管構造アンテナの回転中心を含む結合軸と、結合軸の周りに設けられ、接合部分を構成するフランジとを有する。結合部に近い方の一対のマイクロ波吸出し開口は、接合部分の縁に近接して配置される。 According to the microwave heating apparatus of the third aspect, in addition to the second aspect, the microwave heating apparatus further includes a drive unit that rotates the waveguide structure antenna. The coupling unit is coupled to the driving unit and includes a coupling axis including the rotation center of the waveguide structure antenna, and a flange provided around the coupling axis and constituting a joint portion. A pair of microwave suction openings closer to the coupling portion are arranged close to the edge of the joint portion.
 本態様によれば、載置面の中央領域に載置された被加熱物をより均一に加熱することが可能となる。 According to this aspect, the object to be heated placed in the central region of the placement surface can be heated more uniformly.
 第4の態様のマイクロ波加熱装置によれば、第3の態様に加えて、一対のマイクロ波吸出し開口の間の距離が、実質的に導波管構造部の幅の1/8~1/4である。本態様によれば、局所加熱の指向性を高めることができる。 According to the microwave heating apparatus of the fourth aspect, in addition to the third aspect, the distance between the pair of microwave suction openings is substantially 1/8 to 1/1 of the width of the waveguide structure. 4. According to this aspect, the directivity of local heating can be increased.
 以下、本開示に係るマイクロ波加熱装置の好適な実施の形態について、添付の図面を参照しながら説明する。 Hereinafter, preferred embodiments of the microwave heating apparatus according to the present disclosure will be described with reference to the accompanying drawings.
 以下の実施の形態において、本開示に係るマイクロ波加熱装置の一例として電子レンジを用いるが、これに限定されるものではなく、マイクロ波加熱を利用した加熱装置、生ゴミ処理機、あるいは半導体製造装置などを含むものである。本開示は、以下の実施の形態に示す具体的な構成に限定されるものではなく、同様の技術的思想に基づく構成を含む。 In the following embodiments, a microwave oven is used as an example of a microwave heating apparatus according to the present disclosure, but the present invention is not limited to this, and a heating apparatus, a garbage disposal machine, or a semiconductor manufacture using microwave heating is not limited thereto. Including devices. The present disclosure is not limited to the specific configurations shown in the following embodiments, and includes configurations based on the same technical idea.
 なお、以下の図面において、同一または同等の箇所には同一の符号を付し、重複する説明を省略することがある。 In the following drawings, the same or equivalent parts are denoted by the same reference numerals, and redundant description may be omitted.
 図1は、本開示の実施の形態に係るマイクロ波加熱装置である電子レンジの概略構成を示す正面断面図である。以下の説明において、電子レンジの左右方向とは図1における左右方向を意味し、前後方向とは図1における奥行き方向を意味する。 FIG. 1 is a front sectional view showing a schematic configuration of a microwave oven that is a microwave heating apparatus according to an embodiment of the present disclosure. In the following description, the left-right direction of the microwave oven means the left-right direction in FIG. 1, and the front-back direction means the depth direction in FIG.
 図1に示すように、本実施の形態に係る電子レンジ1は、加熱室2aと、給電室2bと、マグネトロン3と、導波管4と、回転アンテナ5と、載置台6とを備える。載置台6は、食品などの被加熱物(図示せず)を載置するための平坦な上面を有する。加熱室2aは載置台6の上側空間であり、給電室2bは載置台6の下側空間である。 As shown in FIG. 1, the microwave oven 1 according to the present embodiment includes a heating chamber 2a, a power feeding chamber 2b, a magnetron 3, a waveguide 4, a rotating antenna 5, and a mounting table 6. The mounting table 6 has a flat upper surface for mounting an object to be heated (not shown) such as food. The heating chamber 2 a is an upper space of the mounting table 6, and the power supply chamber 2 b is a lower space of the mounting table 6.
 載置台6は、回転アンテナ5が設けられた給電室2bを覆って、加熱室2aと給電室2bとを区画するとともに加熱室2aの底面を構成する。載置台6の上面(載置面6a)が平坦であるため、被加熱物の出し入れが容易であり、載置面6aに付着した汚れなどがふき取りやすい。 The mounting table 6 covers the power supply chamber 2b provided with the rotating antenna 5, partitions the heating chamber 2a and the power supply chamber 2b, and constitutes the bottom surface of the heating chamber 2a. Since the upper surface (mounting surface 6a) of the mounting table 6 is flat, it is easy to put in and out the object to be heated, and it is easy to wipe off dirt and the like attached to the mounting surface 6a.
 載置台6には、ガラス、セラミックなどのマイクロ波が透過しやすい材料が用いられるため、回転アンテナ5から放射されたマイクロ波は、載置台6を透過して加熱室2aに供給される。 Since the mounting table 6 is made of a material that easily transmits microwaves, such as glass and ceramic, the microwave radiated from the rotating antenna 5 passes through the mounting table 6 and is supplied to the heating chamber 2a.
 マグネトロン3は、マイクロ波を生成するマイクロ波生成部の一例である。導波管4は、給電室2bの下方に設けられ、マグネトロン3により生成されたマイクロ波を結合部7まで伝える伝搬部の一例である。回転アンテナ5は、給電室2bの内部空間に設けられ、導波管4と結合部とにより伝えられたマイクロ波を前方開口13から給電室2b内に放射する。 The magnetron 3 is an example of a microwave generation unit that generates a microwave. The waveguide 4 is an example of a propagation unit that is provided below the power supply chamber 2 b and transmits the microwave generated by the magnetron 3 to the coupling unit 7. The rotating antenna 5 is provided in the internal space of the power supply chamber 2b, and radiates the microwave transmitted by the waveguide 4 and the coupling portion into the power supply chamber 2b from the front opening 13.
 回転アンテナ5は、その内部空間をマイクロ波が伝搬する箱形の導波管構造を有する導波管構造部8と、導波管4内のマイクロ波を導波管構造部8の内部空間と結合させる結合部7とを有する導波管構造アンテナである。結合部7は、駆動部であるモータ15に連結された結合軸7aと、導波管構造部8と結合部7とを接合するフランジ7bとを有する。 The rotating antenna 5 includes a waveguide structure portion 8 having a box-shaped waveguide structure in which microwaves propagate in the internal space, and a microwave in the waveguide 4 and the internal space of the waveguide structure portion 8. It is a waveguide structure antenna having a coupling portion 7 to be coupled. The coupling unit 7 includes a coupling shaft 7 a coupled to the motor 15 that is a driving unit, and a flange 7 b that joins the waveguide structure unit 8 and the coupling unit 7.
 モータ15は、制御部17からの制御信号に応じて駆動され、回転アンテナ5を、結合部7の結合軸7aを中心に回転させ、所望の方向に停止させる。これにより、回転アンテナ5からのマイクロ波の放射方向が変更される。結合部7には、アルミメッキ鋼板などの金属が用いられ、結合部7に連結されるモータ15の連結部分には、例えば、フッ素樹脂が用いられる。 The motor 15 is driven in accordance with a control signal from the control unit 17 to rotate the rotating antenna 5 around the coupling shaft 7a of the coupling unit 7 and stop it in a desired direction. Thereby, the radiation direction of the microwave from the rotating antenna 5 is changed. A metal such as an aluminum-plated steel plate is used for the coupling portion 7, and, for example, a fluororesin is used for a coupling portion of the motor 15 coupled to the coupling portion 7.
 結合部7の結合軸7aは、導波管4と給電室2bとを連通する開口を貫通し、結合軸7aは、貫通する開口との間に所定(例えば、5mm以上)のクリアランスを有する。結合軸7aにより、導波管4と、回転アンテナ5の導波管構造部8の内部空間とが結合され、マイクロ波が導波管4から導波管構造部8に効率よく伝搬する。 The coupling shaft 7a of the coupling portion 7 passes through an opening that communicates the waveguide 4 and the power supply chamber 2b, and the coupling shaft 7a has a predetermined clearance (for example, 5 mm or more) between the penetrating opening. The coupling shaft 7 a couples the waveguide 4 and the internal space of the waveguide structure portion 8 of the rotating antenna 5, so that the microwave propagates efficiently from the waveguide 4 to the waveguide structure portion 8.
 加熱室2aの側面上部には、赤外線センサ16が設けられる。赤外線センサ16は、加熱室2a内の温度、すなわち、載置台6に載置された被加熱物の表面温度を被加熱物の状態として検出する状態検出部の一例である。赤外線センサ16は、仮想的に複数に区分された加熱室2aの各領域の温度を検出し、それらの検出信号を制御部17に送信する。 An infrared sensor 16 is provided on the upper side of the heating chamber 2a. The infrared sensor 16 is an example of a state detection unit that detects the temperature in the heating chamber 2a, that is, the surface temperature of the heated object placed on the mounting table 6 as the state of the heated object. The infrared sensor 16 detects the temperature of each region of the heating chamber 2 a virtually divided into a plurality of parts, and transmits those detection signals to the control unit 17.
 制御部17は、赤外線センサ16の検出信号に基づき、マグネトロン3の発振制御およびモータ15の駆動制御を行う。 The control unit 17 performs oscillation control of the magnetron 3 and drive control of the motor 15 based on the detection signal of the infrared sensor 16.
 本実施の形態は、状態検出部の一例として赤外線センサ16を有するが、状態検出部は、これに限定されるものではない。例えば、被加熱物の重量を検出する重量センサや、被加熱物の画像を撮影する画像センサなどを状態検出部として用いてもよい。状態検出部を設けない構成において、予め記憶されたプログラムと使用者による選択とに応じて、制御部17がマグネトロン3の発振制御およびモータ15の駆動制御を行ってもよい。 This embodiment has the infrared sensor 16 as an example of the state detection unit, but the state detection unit is not limited to this. For example, a weight sensor that detects the weight of the object to be heated or an image sensor that captures an image of the object to be heated may be used as the state detection unit. In the configuration in which the state detection unit is not provided, the control unit 17 may perform the oscillation control of the magnetron 3 and the drive control of the motor 15 in accordance with a program stored in advance and a selection by the user.
 図2Aは、載置台6が取り除かれた状況における給電室2bを示す斜視図である。図2Bは、図2Aと同じ状況における給電室2bを示す平面図である。 FIG. 2A is a perspective view showing the power supply chamber 2b in a state where the mounting table 6 is removed. FIG. 2B is a plan view showing the power supply chamber 2b in the same situation as FIG. 2A.
 図2Aおよび図2Bに示すように、加熱室2aの下方に配置され、載置台6により加熱室2aと区分される給電室2bには、回転アンテナ5が設けられる。回転アンテナ5における結合軸7aの回転中心Gは、給電室2bの前後方向および左右方向の中心、すなわち、載置台6の前後方向および左右方向の中心の下方に位置する。 As shown in FIGS. 2A and 2B, a rotating antenna 5 is provided in a power supply chamber 2b that is disposed below the heating chamber 2a and is separated from the heating chamber 2a by the mounting table 6. The rotation center G of the coupling shaft 7a in the rotating antenna 5 is located below the center of the feed chamber 2b in the front-rear direction and the left-right direction, that is, below the center of the mounting table 6 in the front-rear direction and the left-right direction.
 給電室2bは、その底面11と載置台6の下面とにより構成される内部空間を有する。給電室2bの内部空間は、結合部7の回転中心Gを含み、給電室2bの左右方向の中心線J(図2B参照)に関して対称な形状を有する。給電室2bの内部空間における側壁面には、内側に突出する凸部18が形成される。凸部18は、左側の側壁面に設けられた凸部18aと、右側の側壁面に設けられた凸部18bとを含む。 The feeding chamber 2 b has an internal space constituted by the bottom surface 11 and the lower surface of the mounting table 6. The internal space of the power supply chamber 2b includes the rotation center G of the coupling portion 7 and has a symmetrical shape with respect to the center line J (see FIG. 2B) in the left-right direction of the power supply chamber 2b. On the side wall surface in the internal space of the power supply chamber 2b, a convex portion 18 protruding inward is formed. The convex portion 18 includes a convex portion 18a provided on the left side wall surface and a convex portion 18b provided on the right side wall surface.
 凸部18bの下方には、マグネトロン3が設けられる。マグネトロン3のアンテナ3aから放射されたマイクロ波は、給電室2bの下方に設けられた導波管4内を伝搬し、結合部7により導波管構造部8に伝えられる。 A magnetron 3 is provided below the convex portion 18b. The microwave radiated from the antenna 3 a of the magnetron 3 propagates in the waveguide 4 provided below the feeding chamber 2 b and is transmitted to the waveguide structure 8 by the coupling portion 7.
 給電室2bの側壁面2cは、回転アンテナ5から水平方向に放射されたマイクロ波を、上方の加熱室2aに向けて反射するための傾斜を有する。 The side wall surface 2c of the feeding chamber 2b has an inclination for reflecting the microwave radiated from the rotating antenna 5 in the horizontal direction toward the upper heating chamber 2a.
 図3は、回転アンテナ5の具体例を示す分解斜視図である。図3に示すように、導波管構造部8は、その内部空間を規定する天井面9と側壁面10a、10b、10cとを有する。 FIG. 3 is an exploded perspective view showing a specific example of the rotating antenna 5. As shown in FIG. 3, the waveguide structure 8 has a ceiling surface 9 and side wall surfaces 10a, 10b, and 10c that define its internal space.
 天井面9は、三つの直線状の縁部と、一つの円弧状の縁部と、結合部7が接合された凹部9aとを含み、載置台6に対向して配置される(図1参照)。天井面9の三つの直線状の縁部からは、側壁面10a、10b、10cがそれぞれ下方に折曲して形成される。 The ceiling surface 9 includes three linear edges, one arc-shaped edge, and a concave portion 9a to which the coupling portion 7 is joined, and is disposed to face the mounting table 6 (see FIG. 1). ). Side wall surfaces 10a, 10b, and 10c are formed by bending downward from the three linear edges of the ceiling surface 9, respectively.
 円弧状の縁部には側壁面は設けられず、その下方に開口が形成される。この開口は、導波管構造部8の内部空間を伝搬したマイクロ波を放射する前方開口13として機能する。すなわち、側壁面10bは前方開口13と対向して設けられ、側壁面10a、10cは互いに対向して設けられる。 The side wall surface is not provided at the arc-shaped edge, and an opening is formed below the side wall surface. This opening functions as a front opening 13 that radiates the microwave propagated through the internal space of the waveguide structure 8. That is, the side wall surface 10b is provided to face the front opening 13, and the side wall surfaces 10a and 10c are provided to face each other.
 側壁面10aの下縁部には、導波管構造部8の外方かつ側壁面10aに対して垂直方向に延在する低インピーダンス部12が設けられる。低インピーダンス部12は、給電室2bの底面11と、わずかな間隙を隔てて平行に形成される。低インピーダンス部12により、側壁面10aに対して垂直方向に漏洩するマイクロ波が抑制される。 At the lower edge of the side wall surface 10a, there is provided a low impedance portion 12 extending outwardly of the waveguide structure 8 and in a direction perpendicular to the side wall surface 10a. The low impedance portion 12 is formed in parallel with the bottom surface 11 of the power supply chamber 2b with a slight gap therebetween. The low impedance portion 12 suppresses microwaves that leak in the direction perpendicular to the side wall surface 10a.
 給電室2bの底面11との間の一定の間隙を確保するために、低インピーダンス部12の下面に絶縁樹脂製スペーサ(図示せず)を装着するための保持部19が形成されてもよい。 In order to ensure a certain gap with the bottom surface 11 of the power supply chamber 2b, a holding portion 19 for mounting an insulating resin spacer (not shown) may be formed on the lower surface of the low impedance portion 12.
 低インピーダンス部12には、複数のスリット12aが一定間隔で周期的に側壁面10aから垂直方向に延出するように設けられる。複数のスリット12aにより、側壁面10aに平行な方向のマイクロ波の漏洩が抑制される。スリット12a間の間隔は、導波管構造部8を伝搬する波長に応じて適宜決定される。 The low impedance portion 12 is provided with a plurality of slits 12a extending periodically from the side wall surface 10a at regular intervals. The plurality of slits 12a suppress microwave leakage in a direction parallel to the side wall surface 10a. The interval between the slits 12 a is appropriately determined according to the wavelength propagating through the waveguide structure 8.
 側壁面10bおよび側壁面10cに関しても同様に、下縁部に複数のスリット12aを有する低インピーダンス部12がそれぞれ設けられる。 Similarly, the low impedance portion 12 having a plurality of slits 12a at the lower edge portion is also provided for the side wall surface 10b and the side wall surface 10c.
 本実施の形態に係る回転アンテナ5は、円弧状に形成された前方開口13を有するが、本開示はこの形状に限定されるものではなく、直線状または曲線状の前方開口13を有してもよい。 The rotating antenna 5 according to the present embodiment has a front opening 13 formed in an arc shape, but the present disclosure is not limited to this shape, and has a straight or curved front opening 13. Also good.
 図3に示すように、天井面9は、複数のマイクロ波吸出し開口14、すなわち、第1開口14aと、第1開口14aより小さな開口を有する第2開口14bとを含む。導波管構造部8の内部空間を伝搬してきたマイクロ波は、前方開口13と複数のマイクロ波吸出し開口14から放射される。 As shown in FIG. 3, the ceiling surface 9 includes a plurality of microwave suction openings 14, that is, a first opening 14a and a second opening 14b having an opening smaller than the first opening 14a. The microwave that has propagated through the internal space of the waveguide structure 8 is radiated from the front opening 13 and the plurality of microwave suction openings 14.
 結合部7に形成されたフランジ7bは、導波管構造部8の天井面9の下面に、例えば、カシメ、スポット溶接、ビス締め、または、溶接などにより接合され、回転アンテナ5が結合部7と固着される。 The flange 7b formed in the coupling portion 7 is joined to the lower surface of the ceiling surface 9 of the waveguide structure portion 8 by, for example, caulking, spot welding, screw tightening, or welding, and the rotating antenna 5 is joined to the coupling portion 7. And fixed.
 本実施の形態では、回転アンテナ5が後述するような導波管構造部8を有するため、載置台6に載置された被加熱物に対する均一加熱が可能となる。特に、回転アンテナ5の回転中心G(図2A、図2B参照)の上方に位置する載置面6aの中央領域において、効率よく、かつ、均一に加熱可能である。以下、本実施の形態における導波管構造について詳細に説明する。 In the present embodiment, since the rotating antenna 5 has a waveguide structure portion 8 as will be described later, it is possible to uniformly heat the object to be heated mounted on the mounting table 6. In particular, in the central region of the mounting surface 6a located above the rotation center G (see FIGS. 2A and 2B) of the rotating antenna 5, heating can be performed efficiently and uniformly. Hereinafter, the waveguide structure in the present embodiment will be described in detail.
 [導波管構造]
 まず、導波管構造部8の特徴を理解するために、図4を用いて、一般的な導波管300について説明する。図4に示すように、最も単純で一般的な導波管300は、幅aと高さbとを有する長方形の断面303と、導波管300の管軸Vに沿った奥行きとを有する方形導波管である。管軸Vは、断面303の中心を通り、マイクロ波の伝送方向Zに延在する導波管300の中心線である。
[Waveguide structure]
First, in order to understand the characteristics of the waveguide structure section 8, a general waveguide 300 will be described with reference to FIG. As shown in FIG. 4, the simplest and most common waveguide 300 has a rectangular cross section 303 having a width a and a height b, and a square having a depth along the tube axis V of the waveguide 300. It is a waveguide. The tube axis V is the center line of the waveguide 300 that passes through the center of the cross section 303 and extends in the microwave transmission direction Z.
 自由空間におけるマイクロ波の波長をλとしたときに、幅aおよび高さbを、λ>a>λ/2、および、b<λ/2の範囲内から選択すると、導波管300内をTE10モードでマイクロ波が伝搬することが知られている。 The wavelength of the microwave when the lambda 0 in free space, the width a and height b, λ 0>a> λ 0/2, and, by selecting from a range b <a lambda 0/2, the waveguide It is known that the microwave propagates in the tube 300 in the TE10 mode.
 TE10モードとは、導波管300内においてマイクロ波の伝送方向Zに、磁界成分は存在し電界成分は存在しない、H波(TE波;電気的横波伝送(Transverse Electric Wave))における伝送モードを指す。 The TE10 mode is a transmission mode in the H wave (TE wave; electrical transverse wave transmission (Transverse Electric Wave)) in the waveguide 300 in the microwave transmission direction Z, in which the magnetic field component exists and the electric field component does not exist. Point to.
 自由空間におけるマイクロ波の波長λは、式(1)により求められる。 The wavelength λ 0 of the microwave in free space can be obtained by the equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、光の速度cは約2.998×10[m/s]であり、発振周波数fは、電子レンジの場合には2.4~2.5[GHz](ISMバンド)である。発振周波数fは、マグネトロンのばらつきや負荷条件によって変動するため、自由空間における波長λは、最小120[mm](2.5GHz時)から最大125[mm](2.4GHz時)の間で変動する。 In the formula (1), the speed of light c is about 2.998 × 10 8 [m / s], and the oscillation frequency f is 2.4 to 2.5 [GHz] (ISM band in the case of a microwave oven). ). Since the oscillation frequency f varies depending on variations in magnetron and load conditions, the wavelength λ 0 in free space is between a minimum of 120 [mm] (at 2.5 GHz) and a maximum of 125 [mm] (at 2.4 GHz). fluctuate.
 電子レンジに用いる導波管300の場合、自由空間における波長λの範囲などを考慮して、導波管300の幅aは80~100mm、高さbは15~40mmの範囲で設計されることが多い。 In the case of the waveguide 300 used for the microwave oven, the width a of the waveguide 300 is designed in the range of 80 to 100 mm and the height b of 15 to 40 mm in consideration of the range of the wavelength λ 0 in free space. There are many cases.
 一般的に、図4に示した導波管300において、その上面および下面である幅広面301を、磁界が平行に渦巻く面という意味でH面といい、左右の側面である幅狭面302を、電界に平行な面という意味でE面という。簡単のため、以下に示す平面図において、管軸VがH面上に投影されたH面上の直線を管軸Vと呼ぶことがある。 In general, in the waveguide 300 shown in FIG. 4, the wide surface 301 that is the upper surface and the lower surface is referred to as the H surface in the sense that the magnetic field vortexes in parallel, and the narrow surface 302 that is the left and right side surfaces. In the sense that it is a plane parallel to the electric field, it is called the E plane. For simplicity, in the plan view shown below, a straight line on the H plane in which the tube axis V is projected on the H plane may be referred to as the tube axis V.
 マグネトロンからのマイクロ波の波長を波長λ、導波管内を伝搬するときのマイクロ波の波長を管内波長λgとそれぞれ規定すると、λgは式(2)で求められる。 When the wavelength of the microwave from the magnetron is defined as the wavelength λ 0 and the wavelength of the microwave when propagating in the waveguide is defined as the wavelength λg in the tube, λg can be obtained by Expression (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 従って、管内波長λgは、導波管300の幅aによって変化するが、高さbには無関係である。TE10モードにおいては、導波管300の幅方向Wの両端(E面)、すなわち、幅狭面302で電界が0、幅方向Wの中央で電界が最大となる。 Therefore, the guide wavelength λg varies depending on the width a of the waveguide 300, but is not related to the height b. In the TE10 mode, the electric field is zero at both ends (E plane) of the waveguide 300 in the width direction W, that is, the narrow surface 302, and the electric field is maximum at the center in the width direction W.
 本実施の形態では、図1および図3で示す回転アンテナ5に対して、図4に示す導波管300と同様の原理を適用する。回転アンテナ5において、天井面9と給電室2bの底面11とがH面となり、側壁面10a、10cがE面となる。 In the present embodiment, the same principle as that of the waveguide 300 shown in FIG. 4 is applied to the rotating antenna 5 shown in FIGS. In the rotating antenna 5, the ceiling surface 9 and the bottom surface 11 of the power supply chamber 2b are H surfaces, and the side wall surfaces 10a and 10c are E surfaces.
 側壁面10bは、回転アンテナ5内のマイクロ波を前方開口13の方向へ全て反射させるための反射端となる。本実施の形態では、具体的には、導波管300の幅aは106.5mmである。 The side wall surface 10 b serves as a reflection end for reflecting all the microwaves in the rotating antenna 5 in the direction of the front opening 13. In the present embodiment, specifically, the width a of the waveguide 300 is 106.5 mm.
 天井面9には、複数のマイクロ波吸出し開口14が形成される。マイクロ波吸出し開口14は、二つの第1開口14aと二つの第2開口14bとを含む。二つの第1開口14aは、回転アンテナ5の導波管構造部8の管軸Vに関して対称である。同様に、二つの第2開口14bは管軸Vに関して対称である。第1開口14aおよび第2開口14bは、管軸Vをまたがないように形成される。 A plurality of microwave suction openings 14 are formed in the ceiling surface 9. The microwave suction opening 14 includes two first openings 14a and two second openings 14b. The two first openings 14 a are symmetric with respect to the tube axis V of the waveguide structure portion 8 of the rotating antenna 5. Similarly, the two second openings 14b are symmetric with respect to the tube axis V. The first opening 14a and the second opening 14b are formed so as not to cross the tube axis V.
 第1開口14aおよび第2開口14bが、導波管構造部8の管軸V(正確には、管軸Vを天井面9に投影した天井面9上の直線)からずれた位置に配置された構造により、マイクロ波吸出し開口14からより確実に円偏波を放射することができる。円偏波のマイクロ波が放射されることにより、載置面6aの中央領域に対する均一加熱が可能となる。 The first opening 14a and the second opening 14b are arranged at positions shifted from the tube axis V of the waveguide structure 8 (more precisely, a straight line on the ceiling surface 9 obtained by projecting the tube axis V onto the ceiling surface 9). With this structure, circularly polarized waves can be more reliably radiated from the microwave suction opening 14. By radiating circularly polarized microwaves, the central region of the mounting surface 6a can be uniformly heated.
 なお、第1開口14aおよび第2開口14bを管軸Vの左右いずれの領域に設けるかにより電界の回転方向、すなわち、右旋偏波(CW:Clockwise)または左旋偏波(CCW:Counterclockwise)が決定される。 Depending on whether the first opening 14a and the second opening 14b are provided in the left or right region of the tube axis V, the rotation direction of the electric field, that is, right-handed polarization (CW: Clockwise) or left-handed polarization (CCW: Counterclockwise) It is determined.
 本実施の形態では、マイクロ波吸出し開口14の各々が、管軸Vをまたがないように設けられる。しかし、本開示はこれに限るものではなく、これらの開口の一部分が管軸Vをまたぐ構成においても、円偏波を放出することは可能である。この場合、歪んだ円偏波が発生する。 In the present embodiment, each of the microwave suction openings 14 is provided so as not to straddle the tube axis V. However, the present disclosure is not limited to this, and even in a configuration in which a part of these openings crosses the tube axis V, circularly polarized light can be emitted. In this case, a distorted circularly polarized wave is generated.
 [円偏波]
 次に、円偏波について説明する。円偏波は、移動通信および衛星通信の分野で広く用いられている技術である。身近な使用例としては、例えば、ETC(Electronic Toll Collection System)、すなわち、ノンストップ自動料金収受システムが挙げられる。
[Circularly polarized wave]
Next, circular polarization will be described. Circular polarization is a technique widely used in the fields of mobile communications and satellite communications. Examples of familiar use include ETC (Electronic Toll Collection System), that is, a non-stop automatic toll collection system.
 円偏波は、電界の偏波面が進行方向に対して時間に応じて回転するマイクロ波であり、電界の方向は時間に応じて変化し続け、電界強度の大きさは変化しないという特徴を有する。 Circular polarization is a microwave in which the polarization plane of an electric field rotates with respect to the direction of travel, and the direction of the electric field continues to change with time, and the magnitude of the electric field strength does not change. .
 この円偏波をマイクロ波加熱装置に適用すれば、従来の直線偏波によるマイクロ波加熱と比較して、特に円偏波の周方向に関して、被加熱物を均一に加熱することが期待できる。なお、右旋偏波および左旋偏波のいずれであっても、同様の効果が得られる。 If this circularly polarized wave is applied to a microwave heating apparatus, it can be expected that the object to be heated will be heated uniformly, particularly in the circumferential direction of the circularly polarized wave, as compared with the conventional microwave heating by linearly polarized wave. The same effect can be obtained with either right-handed polarization or left-handed polarization.
 円偏波はもともと通信の分野での利用が主であり、開放空間への放射を対象とすることから、反射波のない、いわゆる進行波で論じられるのが一般的である。一方、本実施の形態では、閉空間である加熱室2a内で反射波が発生し、発生した反射波と進行波とが合成されて定在波が発生する可能性がある。 Circular polarization is primarily used in the field of communications, and since it is intended for radiation into open spaces, it is generally discussed as a so-called traveling wave with no reflected wave. On the other hand, in the present embodiment, a reflected wave is generated in the heating chamber 2a that is a closed space, and the generated reflected wave and the traveling wave may be combined to generate a standing wave.
 しかし、食品がマイクロ波を吸収することで反射波も減少するのに加えて、マイクロ波吸出し開口14からマイクロ波が放射される瞬間に定在波のバランスがくずれ、再び定在波が発生するまでの間は進行波が発生すると考えられる。従って、本実施の形態によれば、前述の円偏波の特長を利用することが可能となり、加熱室2a内の均一加熱が可能となる。 However, in addition to the reduction of reflected waves due to the absorption of microwaves by the food, the balance of standing waves is lost at the moment when the microwaves are radiated from the microwave suction opening 14, and standing waves are generated again. It is considered that a traveling wave is generated until this time. Therefore, according to the present embodiment, it is possible to utilize the above-described features of circularly polarized waves, and uniform heating in the heating chamber 2a is possible.
 ここで、開放空間における通信の分野と、閉空間における誘電加熱の分野とにおける相違点を説明する。 Here, the difference between the field of communication in an open space and the field of dielectric heating in a closed space will be described.
 通信分野では、的確な情報の送受信のため、右旋偏波か左旋偏波のどちらか一方が用いられ、受信側では、それに適した指向性を有する受信アンテナが用いられる。 In the communications field, either right-handed polarization or left-handed polarization is used for accurate transmission / reception of information, and a receiving antenna having directivity suitable for it is used on the receiving side.
 一方、マイクロ波加熱の分野では、指向性を有する受信アンテナの代わりに、食品などの指向性のない被加熱物がマイクロ波を受けるため、マイクロ波が被加熱物全体に対して照射されることが重要となる。従って、マイクロ波加熱の分野においては、右旋偏波か左旋偏波かは重要ではなく、たとえ右旋偏波と左旋偏波とが混在する状態でも問題ない。 On the other hand, in the field of microwave heating, instead of a receiving antenna having directivity, a non-directional object to be heated, such as food, receives microwaves, so that the microwave is irradiated to the entire object to be heated. Is important. Therefore, in the field of microwave heating, whether it is right-handed polarized wave or left-handed polarized wave is not important, and there is no problem even if right-handed polarized wave and left-handed polarized wave are mixed.
 [マイクロ波の吸出し効果]
 ここで、本実施の形態の特徴である回転アンテナからのマイクロ波の吸出し効果について説明する。本実施の形態において、マイクロ波の吸出し効果とは、食品などの被加熱物が近くにある場合、マイクロ波吸出し開口14から導波管構造内のマイクロ波が吸出されることをいう。
[Microwave suction effect]
Here, the microwave suction effect from the rotating antenna, which is a feature of the present embodiment, will be described. In the present embodiment, the microwave suction effect means that the microwave in the waveguide structure is sucked out from the microwave suction opening 14 when an object to be heated such as food is nearby.
 図5Aは、直線偏波を発生するための開口が設けられたH面を有する導波管400の平面図である。図5Bは、円偏波を発生するための開口が設けられたH面を有する導波管500の平面図である。図5Cは、導波管400または500と被加熱物22との位置関係を示す正面図である。 FIG. 5A is a plan view of a waveguide 400 having an H plane provided with an opening for generating linearly polarized waves. FIG. 5B is a plan view of a waveguide 500 having an H plane provided with an opening for generating circularly polarized waves. FIG. 5C is a front view showing the positional relationship between the waveguide 400 or 500 and the object 22 to be heated.
 図5Aに示すように、開口401は、導波管400の管軸Vに交差するように設けられた長方形スリットである。開口401は直線偏波のマイクロ波を放射する。図5Bに示すように、二つの開口501はそれぞれ、直角に交差する二つの長方形スリットで構成されたクロススロット(Cross slot)形状の開口である。二つの開口501は、導波管500の管軸Vに関して対称である。 As shown in FIG. 5A, the opening 401 is a rectangular slit provided so as to intersect the tube axis V of the waveguide 400. The opening 401 radiates linearly polarized microwaves. As shown in FIG. 5B, each of the two openings 501 is a cross-slot-shaped opening formed by two rectangular slits that intersect at right angles. The two openings 501 are symmetric with respect to the tube axis V of the waveguide 500.
 いずれの開口も、導波管の管軸Vに関して対称であり、幅が10mm、長さがLmmである。これらの構成において、被加熱物22が配置されない「負荷無し」の場合と、被加熱物22が配置された「負荷有り」の場合とについて、CAEを用いて解析した。 Each opening is symmetric with respect to the tube axis V of the waveguide, and has a width of 10 mm and a length of Lmm. In these configurations, the case of “no load” in which the object to be heated 22 is not disposed and the case of “with load” in which the object to be heated 22 is disposed were analyzed using CAE.
 「負荷有り」の場合、図5Cに示すように、一定の被加熱物22の高さ30mmと、2種類の被加熱物22の底面積(100mm角、200mm角)と、3種類の被加熱物22の材質(冷凍牛肉、冷蔵牛肉、水)とにおいて、導波管400、500から被加熱物22の底面までの距離Dをパラメータとして測定した。 In the case of “with load”, as shown in FIG. 5C, the height of a constant object to be heated 22 is 30 mm, the bottom areas (100 mm square and 200 mm square) of two kinds of objects to be heated 22, and three kinds of objects to be heated With respect to the material of the object 22 (frozen beef, refrigerated beef, water), the distance D from the waveguides 400 and 500 to the bottom surface of the object to be heated 22 was measured as a parameter.
 「負荷無し」の場合における開口からの放射電力を基準とするために、「負荷無し」の場合における開口の長さと放射電力との関係を、図6Aおよび図6Bに示す。 FIG. 6A and FIG. 6B show the relationship between the length of the opening and the radiated power in the case of “no load” in order to use the radiated power from the opening in the case of “no load” as a reference.
 図6Aは、図5Aに示す開口401の場合の特性を表し、図6Bは、図5Bに示す開口501の場合の特性を表す。図6Aおよび図6Bにおいて、横軸は、開口の長さL[mm]であり、縦軸は、導波管内を伝搬する電力を1.0Wとしたときの、開口401、501からそれぞれ放射されるマイクロ波の電力[W]である。 6A shows the characteristics in the case of the opening 401 shown in FIG. 5A, and FIG. 6B shows the characteristics in the case of the opening 501 shown in FIG. 5B. 6A and 6B, the horizontal axis is the length L [mm] of the opening, and the vertical axis is emitted from the openings 401 and 501 when the power propagating in the waveguide is 1.0 W. The microwave power [W].
 「負荷有り」の場合と比較するために、「負荷無し」の場合に放射電力が0.1Wとなる長さL、すなわち、図6Aに示すグラフにおいては長さLが45.5mmの場合を選択し、図6Bに示すグラフにおいては長さLが46.5mmの場合を選択した。 For comparison with the case of “with load”, the length L at which the radiated power becomes 0.1 W in the case of “without load”, that is, the case where the length L is 45.5 mm in the graph shown in FIG. 6A. In the graph shown in FIG. 6B, the case where the length L was 46.5 mm was selected.
 図7は、長さLが上記長さ(45.5mm、46.5mm)、および、「負荷有り」の場合において、2種類の底面積(100mm角、200mm角)を有する3種類の食品(冷凍牛肉、冷蔵牛肉、水)に対して行った解析結果を示す六つのグラフを含む。 FIG. 7 shows three kinds of foods having two kinds of bottom areas (100 mm square and 200 mm square) when the length L is the above length (45.5 mm, 46.5 mm) and “with load” ( Includes six graphs showing the results of analysis on frozen beef, refrigerated beef, and water).
 図7に含まれた各グラフにおいて、横軸は、被加熱物22から導波管までの距離D[mm]であり、縦軸は、「負荷無し」時の放射電力を1.0としたときの相対的な放射電力である。すなわち、「負荷無し」の場合と比較して、「負荷有り」の場合、被加熱物22がどの程度のマイクロ波を導波管400、500から吸出すかを示すものである。 In each graph included in FIG. 7, the horizontal axis represents the distance D [mm] from the object to be heated 22 to the waveguide, and the vertical axis represents the radiated power at “no load” as 1.0. It is the relative radiated power when. In other words, compared to the case of “no load”, the object to be heated 22 indicates how much microwaves are sucked out of the waveguides 400 and 500 in the case of “with load”.
 図7に示す各グラフにおいて、破線が直線形状(I字形状)の開口401の場合の特性(図中の「I」で示す)を示し、実線が二つのクロススロット形状(X字形状)の開口501の場合の特性(図中の「2X」で示す)を示す。 In each graph shown in FIG. 7, the broken line indicates the characteristics (indicated by “I” in the figure) in the case of the opening 401 having a linear shape (I shape), and the solid line has two cross slot shapes (X shape). The characteristic in the case of the opening 501 (indicated by “2X” in the figure) is shown.
 六つのグラフのいずれにおいても、開口401より開口501の方が放射電力が多く、特に、距離Dが20mm以下という、実際の電子レンジの場合と同等の距離において、2倍程度の差があると認識できる。従って、被加熱物22の種類や底面積に関わらず、円偏波を発生させる開口の方が、直線偏波を発生させる開口よりマイクロ波の吸出し効果が高いことは明らかである。 In any of the six graphs, the opening 501 has more radiated power than the opening 401. In particular, when the distance D is 20 mm or less, there is a difference of about twice as much as the actual microwave oven. Can be recognized. Therefore, regardless of the type and bottom area of the object to be heated 22, it is clear that the opening that generates circularly polarized waves has a higher microwave absorption effect than the opening that generates linearly polarized waves.
 詳細に検討すると、被加熱物22の種類については、特に、距離Dが10mm以下では、誘電率および誘電損失がより小さい冷凍牛肉の方が吸出し効果が大きく、誘電率および誘電損失がより大きい水の方が吸出し効果は小さい。 Examining in detail, with regard to the type of the object to be heated 22, particularly when the distance D is 10 mm or less, frozen beef having a smaller dielectric constant and dielectric loss has a larger suction effect, and water having a larger dielectric constant and dielectric loss. The suction effect is smaller.
 冷蔵牛肉または水の場合、距離Dが大きくなると、特に、直線偏波では放射電力が1以下に落ち込んでいる。これは、被加熱物22からの反射電力により、放射電力が相殺されたことが原因と考えられる。被加熱物22の底面積については、100mm角と200mm角で放射電力がほとんど同じであるため、マイクロ波の吸出し効果に対する影響は少ないと考えられる。 In the case of refrigerated beef or water, when the distance D increases, the radiated power drops to 1 or less particularly in linearly polarized waves. This is considered to be because the radiated power was canceled by the reflected power from the object to be heated 22. About the bottom area of the to-be-heated object 22, since radiation power is almost the same at 100 mm square and 200 mm square, it is thought that there is little influence with respect to the microwave suction effect.
 発明者らは、いろいろな開口形状を用いた実験により、円偏波を放射できる開口の条件について検討した。その結果、以下の結論に至った。円偏波を発生させる好ましい条件は、開口を導波管の管軸Vからずらして配置すること、および、開口形状がクロススロット形状の開口を含むことである。円偏波のマイクロ波を最も効率よく放射する、すなわち、吸出し効果が高いのは、クロススロット形状を有する開口である。 The inventors examined the conditions of the aperture that can radiate circularly polarized waves through experiments using various aperture shapes. As a result, the following conclusion was reached. The preferable conditions for generating the circularly polarized wave are that the opening is arranged so as to be shifted from the tube axis V of the waveguide, and that the opening shape includes a cross-slot-shaped opening. It is an opening having a cross slot shape that radiates the circularly polarized microwave most efficiently, that is, has a high suction effect.
 図8Aおよび図8Bは、本実施の形態における吸出し効果を模式的に示す断面図である。回転アンテナ5の前方開口13は、図8Aおよび図8Bの両方において、図中の左方向を向いている。被加熱物22は、図8Aでは結合部7の上方に配置され、図8Bでは載置面6aの左隅に載置される。つまり、図8Aおよび図8Bに示す二つの状態では、結合部7から被加熱物22までの距離が異なる。 8A and 8B are cross-sectional views schematically showing the suction effect in the present embodiment. The front opening 13 of the rotating antenna 5 faces leftward in the figure in both FIG. 8A and FIG. 8B. The object to be heated 22 is disposed above the coupling portion 7 in FIG. 8A, and is placed at the left corner of the placement surface 6a in FIG. 8B. That is, in the two states shown in FIGS. 8A and 8B, the distance from the coupling portion 7 to the article to be heated 22 is different.
 図8Aに示す状態においては、被加熱物22がマイクロ波吸出し開口14、特に第1開口14aに近接し、第1開口14aからの吸出し効果が発生すると考えられる。その結果、結合部7から前方開口13に向かって進行するマイクロ波の大部分が、第1開口14aから円偏波のマイクロ波となって被加熱物22に対して放射され、被加熱物22を加熱する。 In the state shown in FIG. 8A, it is considered that the object to be heated 22 is close to the microwave suction opening 14, particularly the first opening 14a, and the suction effect from the first opening 14a occurs. As a result, most of the microwave traveling from the coupling portion 7 toward the front opening 13 is radiated to the object to be heated 22 as a circularly polarized microwave from the first opening 14a, and the object to be heated 22 is emitted. Heat.
 一方、図8Bに示す状態においては、被加熱物22がマイクロ波吸出し開口14から離間するため、マイクロ波吸出し開口14からの吸出し効果はあまり発生しないと考えられる。その結果、結合部7から前方開口13に向かって進行するマイクロ波の大部分が、直線偏波のマイクロ波のまま前方開口13から被加熱物22に対して放射され、被加熱物22を加熱する。 On the other hand, in the state shown in FIG. 8B, since the article 22 to be heated is separated from the microwave suction opening 14, it is considered that the suction effect from the microwave suction opening 14 does not occur so much. As a result, most of the microwave traveling from the coupling portion 7 toward the front opening 13 is radiated from the front opening 13 to the object to be heated 22 as a linearly polarized microwave, and heats the object to be heated 22. To do.
 以上のように、本実施の形態に係るマイクロ波吸出し開口14により、マイクロ波吸出し開口14に近接して食品が配置された時には放射電力が多くなり、マイクロ波吸出し開口14から離間した位置に食品が配置された時には放射電力が少なくなるという特殊な現象を引き起こすと考えられる。 As described above, the microwave suction opening 14 according to the present embodiment increases the radiated power when food is placed in the vicinity of the microwave suction opening 14, and the food is located away from the microwave suction opening 14. This is considered to cause a special phenomenon that the radiated power decreases when the is placed.
 [導波管構造部による均一加熱]
 以下、本実施の形態に係る導波管構造部による均一加熱について説明する。発明者らは、各種形状の導波管構造を有する回転アンテナを用いて実験を行い、均一加熱に最適な導波管構造を見出した。
[Uniform heating by the waveguide structure]
Hereinafter, uniform heating by the waveguide structure according to the present embodiment will be described. The inventors have conducted experiments using rotating antennas having waveguide structures of various shapes, and have found an optimal waveguide structure for uniform heating.
 図9A、図9B、図9Cは、実験で用いられた回転アンテナの三つの例の平面形状をそれぞれ示す模式図である。 FIG. 9A, FIG. 9B, and FIG. 9C are schematic views respectively showing the planar shapes of three examples of the rotating antenna used in the experiment.
 図9Aに示すように、導波管構造部600は、二つの第1開口614aと二つの第2開口614bとを有する。第1開口614aは、クロススロット形状を有し、各長方形スリットが、導波管構造部600の管軸Vに対して45度の角度をなすように、結合部7の近傍に設けられる。第2開口614bは、第1開口614aより小さく、結合部7から離間して設けられる。 As shown in FIG. 9A, the waveguide structure 600 has two first openings 614a and two second openings 614b. The first opening 614a has a cross slot shape, and each rectangular slit is provided in the vicinity of the coupling portion 7 so as to form an angle of 45 degrees with respect to the tube axis V of the waveguide structure portion 600. The second opening 614 b is smaller than the first opening 614 a and is provided apart from the coupling portion 7.
 図9Bに示すように、導波管構造部700は、導波管構造部600と異なり、第1開口614aと同様のクロススロット形状を有する一つの第1開口714aを有する。 As shown in FIG. 9B, the waveguide structure 700 has one first opening 714a having a cross slot shape similar to the first opening 614a, unlike the waveguide structure 600.
 図9Cに示すように、導波管構造部800は、導波管構造部600と異なり、T字形状を有する二つの第1開口814aを有する。すなわち、第1開口814aは、第1開口614aと異なり、二つの長方形スリットの一方において交差部分から結合部7の方向に延在する部分を有しない。 As shown in FIG. 9C, the waveguide structure 800 has two first openings 814a having a T-shape unlike the waveguide structure 600. That is, unlike the first opening 614a, the first opening 814a does not have a portion extending from the intersecting portion toward the coupling portion 7 in one of the two rectangular slits.
 図9A~図9Cに示す導波管構造部に共通するのは、複数のクロススロット形状のマイクロ波吸出し開口が設けられること、および、同様の大きさの第1開口が同様の場所に設けられ、同様の大きさの第2開口が同様の場所に設けられることである。特に、第2開口614bと第2開口714bと第2開口814bとは同一である。 Common to the waveguide structure shown in FIGS. 9A to 9C is that a plurality of cross-slot shaped microwave suction openings are provided, and a first opening having a similar size is provided at a similar location. The second opening having the same size is provided at the same place. In particular, the second opening 614b, the second opening 714b, and the second opening 814b are the same.
 図9A~図9Cに示す導波管構造を有する回転アンテナを用いて、載置面6aの中央領域に載置された冷凍お好み焼きを用いて同じ加熱条件下で実験を行い、CAEにより検証した。お好み焼きとは、様々な材料を含んだ練り粉を焼いたパンケーキ状の料理である。 Using the rotating antenna having the waveguide structure shown in FIGS. 9A to 9C, an experiment was performed under the same heating conditions using the frozen okonomiyaki placed in the central region of the placement surface 6a, and verified by CAE. Okonomiyaki is a pancake-like dish made by baking dough containing various ingredients.
 図9Aに示す導波管構造部600の場合、これらの開口から出力される円偏波が干渉して、結合部7上方の載置面6aの中央領域に位置する被加熱物の部分の温度が、その周囲の部分に比べて異常に上がらないという現象(以下、結合部7付近の温度低下という)が起こることが分かった。 In the case of the waveguide structure portion 600 shown in FIG. 9A, the circularly polarized waves output from these openings interfere, and the temperature of the part to be heated located in the central region of the mounting surface 6a above the coupling portion 7 However, it has been found that a phenomenon (hereinafter referred to as a temperature drop in the vicinity of the coupling portion 7) occurs that does not rise abnormally compared to the surrounding portion.
 図9Bに示す導波管構造部700の場合、結合部7付近の温度低下を抑制することができた。図9Cに示す導波管構造部800の場合でも、同様に、結合部7の近傍における温度低下を抑制することができた。 In the case of the waveguide structure 700 shown in FIG. 9B, the temperature drop in the vicinity of the coupling portion 7 could be suppressed. Similarly, in the case of the waveguide structure portion 800 shown in FIG. 9C, the temperature drop in the vicinity of the coupling portion 7 could be suppressed.
 以上のように、結合部7の近傍には開口が設けられない、または、結合部7の近傍に一つの開口のみが設けられた導波管構造により、結合部7付近の温度低下を抑制し、加熱室2a内における均一加熱が可能であることが確認できた。 As described above, the waveguide structure in which no opening is provided in the vicinity of the coupling portion 7 or only one opening is provided in the vicinity of the coupling portion 7 suppresses a temperature drop in the vicinity of the coupling portion 7. It was confirmed that uniform heating in the heating chamber 2a was possible.
 さらに、発明者らは、マイクロ波吸出し開口の形状について実験を行い、加熱分布のさらなる均一化が可能な導波管構造を見出した。 Furthermore, the inventors conducted experiments on the shape of the microwave suction opening and found a waveguide structure capable of further uniforming the heating distribution.
 図9Cに示す導波管構造部800の第1開口814aによれば、クロススロット形状の開口により形成される円形状の円偏波とは異なる、いわば歪んだ円偏波を放射するため、加熱室2aにおける均一加熱という観点では好ましい結果が得られなかった。 The first opening 814a of the waveguide structure 800 shown in FIG. 9C radiates a distorted circularly polarized wave, which is different from the circularly polarized wave formed by the cross-slot shaped opening. From the viewpoint of uniform heating in the chamber 2a, a preferable result was not obtained.
 そこで、二つの円偏波の干渉を抑制するとともに、可能な限り円に近い形状の円偏波を形成するために、図10A、図10Bに示す形状を有する第1開口914aについて検討した。 Therefore, the first opening 914a having the shape shown in FIGS. 10A and 10B was examined in order to suppress the interference between the two circularly polarized waves and to form the circularly polarized wave as close to the circle as possible.
 以下、第1開口914aを有する導波管構造部について、図面を用いて詳述する。 Hereinafter, the waveguide structure having the first opening 914a will be described in detail with reference to the drawings.
 図10A、図10Bは、上述した第1開口914aが設けられた導波管構造部900A、導波管構造部900Bの平面形状をそれぞれ示す模式図である。 FIG. 10A and FIG. 10B are schematic views respectively showing the planar shapes of the waveguide structure portion 900A and the waveguide structure portion 900B provided with the first opening 914a.
 図10A、図10Bに示すように、導波管構造部900A、900Bは、ともに同一の第1開口914aおよび第2開口914bを有する。 As shown in FIGS. 10A and 10B, the waveguide structures 900A and 900B both have the same first opening 914a and second opening 914b.
 第1開口914aは、二つの長方形スリットの一方において、交差部分から結合部7の方向に延在する部分が、交差部分から結合部7の反対方向に延在する部分より短い長さを有するクロススロット形状を有する。検討の結果、第1開口914aによれば、二つの円偏波の干渉を抑制して均一加熱が可能となるのに加えて、図9Cに示す第1開口814aに比べて前述の吸出し効果も高くなることが確認できた。 The first opening 914a is a cross in which, in one of the two rectangular slits, a portion extending from the intersecting portion in the direction of the coupling portion 7 has a shorter length than a portion extending from the intersecting portion in the opposite direction of the coupling portion 7. It has a slot shape. As a result of the examination, according to the first opening 914a, uniform heating can be achieved by suppressing interference between the two circularly polarized waves, and in addition, the above-described suction effect can be obtained as compared with the first opening 814a shown in FIG. 9C. It was confirmed that it was higher.
 第1開口914aにおける、交差部分から結合部7の方向に延在する部分の長さについては、二つの円偏波の干渉が発生しないように、仕様に応じて適宜設定される。 The length of the portion of the first opening 914a extending from the intersecting portion in the direction of the coupling portion 7 is appropriately set according to the specifications so that interference between the two circularly polarized waves does not occur.
 導波管構造部900Aは全体的に平坦な天井面を有する。一方、導波管構造部900Bは、フランジ7bが天井面に接合される接合部分に、下方にへこむ凹形状の接合領域(段差領域である凹部909a)が形成される(例えば図3参照)。そのため、導波管構造部900Bの天井面において、接合領域と載置台との距離は他の部分に比べて長い。 The waveguide structure 900A has a flat ceiling surface as a whole. On the other hand, in the waveguide structure portion 900B, a concave joint region (a concave portion 909a which is a step region) is formed in a joint portion where the flange 7b is joined to the ceiling surface (see, for example, FIG. 3). Therefore, on the ceiling surface of the waveguide structure 900B, the distance between the junction region and the mounting table is longer than that of other portions.
 上記導波管構造を有する回転アンテナを用いて、同様に、載置面6aの中央領域に載置された冷凍お好み焼きを用いて同じ加熱条件下で実験を行い、CAEにより検証した。 Using the rotating antenna having the above-mentioned waveguide structure, an experiment was similarly performed under the same heating conditions using frozen okonomiyaki placed in the central region of the placement surface 6a, and verified by CAE.
 その結果、導波管構造部900Aは、第1開口914aが実質的にクロススロット形状を有するため、二つの円偏波の干渉を抑制するとともに、円に近い形状の円偏波を発生させることができた。 As a result, since the first opening 914a has a substantially cross slot shape, the waveguide structure 900A suppresses interference between two circularly polarized waves and generates a circularly polarized wave having a shape close to a circle. I was able to.
 また、第1開口914aにより、吸出し効果が高くなり、結合部7付近の温度低下を抑制することができた。その上、導波管構造部900Bの天井面に形成された凹形状の接合領域により、結合部7付近の温度低下を抑制できることが分かった。 In addition, the first opening 914a increases the suction effect, and can suppress the temperature drop in the vicinity of the coupling portion 7. Moreover, it has been found that the temperature decrease in the vicinity of the coupling portion 7 can be suppressed by the concave joining region formed on the ceiling surface of the waveguide structure portion 900B.
 [本実施の形態に係る導波管構造部]
 上記のような各種実験からの知見に基づく、本実施の形態に係る回転アンテナについて、以下に説明する。本実施の形態は具体的構成の一例を示すものであり、上記の知見に基づき、マイクロ波加熱装置の仕様などに応じて各種の変形例が利用可能である。
[Waveguide structure according to the present embodiment]
The rotating antenna according to the present embodiment based on knowledge from various experiments as described above will be described below. This embodiment shows an example of a specific configuration, and based on the above knowledge, various modifications can be used according to the specifications of the microwave heating device.
 図11Aは、本実施の形態に係る導波管構造部8を有する回転アンテナを示す平面図である。 FIG. 11A is a plan view showing a rotating antenna having a waveguide structure 8 according to the present embodiment.
 図11Aに示すように、導波管構造部8は、天井面9に設けられた複数のマイクロ波吸出し開口14を有する。複数のマイクロ波吸出し開口14は、第1開口14aと、第1開口14aより小さな開口を有する第2開口14bとを含む。第1開口14aおよび第2開口14bは、実質的にクロススロット形状を有する。 As shown in FIG. 11A, the waveguide structure 8 has a plurality of microwave suction openings 14 provided on the ceiling surface 9. The plurality of microwave suction openings 14 include a first opening 14a and a second opening 14b having an opening smaller than the first opening 14a. The first opening 14a and the second opening 14b have a substantially cross slot shape.
 第1開口14aの中心点P1および第2開口14bの中心点P2が、導波管構造部8の管軸Vからずれた位置に配置された構造により、マイクロ波吸出し開口14は円偏波を放射することができる。ここで、第1開口14aの中心点P1および第2開口14bの中心点P2は、それぞれ第1開口14aおよび第2開口14bを形成する二つのスリットの交差領域の中心点である。 Due to the structure in which the center point P1 of the first opening 14a and the center point P2 of the second opening 14b are arranged at positions shifted from the tube axis V of the waveguide structure 8, the microwave suction opening 14 is circularly polarized. Can radiate. Here, the center point P1 of the first opening 14a and the center point P2 of the second opening 14b are the center points of the intersecting regions of the two slits forming the first opening 14a and the second opening 14b, respectively.
 本実施の形態においては、第1開口14aおよび第2開口14bが、導波管構造部8の管軸Vをまたがないように配置される。第1開口14a、第2開口14bの各長方形スリットの長手方向は、管軸Vに対して実質的に45℃の傾斜を有する。 In the present embodiment, the first opening 14 a and the second opening 14 b are arranged so as not to cross the tube axis V of the waveguide structure 8. The longitudinal direction of each rectangular slit of the first opening 14a and the second opening 14b has an inclination of substantially 45 ° C. with respect to the tube axis V.
 図11Aに示すように、第1開口14aは、天井面9の凹部9aに近接して形成される。凹部9aは、第1開口14aから放射されるマイクロ波の進行方向と反対方向(下方向)に、天井面9から突出するように設けられた段差領域である(図3参照)。二つの第1開口14aは、管軸Vに関して対称である。 As shown in FIG. 11A, the first opening 14a is formed close to the recess 9a of the ceiling surface 9. The recess 9a is a step region provided so as to protrude from the ceiling surface 9 in a direction (downward) opposite to the traveling direction of the microwave radiated from the first opening 14a (see FIG. 3). The two first openings 14a are symmetric with respect to the tube axis V.
 第2開口14bは、第1開口14aより結合部7から離間して、前方開口13の近傍に形成される。第1開口14aと同様、二つの第2開口14bは管軸Vに関して対称である。 The second opening 14b is formed in the vicinity of the front opening 13 at a distance from the coupling portion 7 than the first opening 14a. Similar to the first opening 14a, the two second openings 14b are symmetric with respect to the tube axis V.
 第1開口14aは、二つのスロットにおいて、中心点P1から管軸Vに向かう方向に延在する部分の長さが、中心点P1から側壁面10aの方向に延在する部分の長さより短いという特徴を有する。 In the first opening 14a, in two slots, the length of the portion extending in the direction from the center point P1 toward the tube axis V is shorter than the length of the portion extending in the direction from the center point P1 to the side wall surface 10a. Has characteristics.
 図3に示すように、結合部7に設けられたフランジ7bは、マイクロ波の伝送方向Zの長さが、導波管構造部8の幅方向Wの長さがより短い形状を有する。すなわち、結合部7は、マイクロ波の伝送方向Zの長さが、伝送方向Zに直交する方向の長さより短い。フランジ7bによれば、中心点P1から結合部7に向かって延在するスリットの先端を、より結合部7の近くに形成することが可能となる。 As shown in FIG. 3, the flange 7 b provided in the coupling portion 7 has a shape in which the length in the microwave transmission direction Z is shorter than the length in the width direction W of the waveguide structure portion 8. That is, in the coupling unit 7, the length of the microwave transmission direction Z is shorter than the length in the direction orthogonal to the transmission direction Z. According to the flange 7b, the tip of the slit extending from the central point P1 toward the coupling portion 7 can be formed closer to the coupling portion 7.
 本実施の形態においては、凹部9aの裏側にフランジ7bが接合されるため、凹部9aは、例えば、TOXカシメの突き出し、溶接痕、ビス、ナットの頭など、フランジ7bの接合により凹部9aの表側に生じる突起の高さより深くなるように構成される。本実施の形態によれば、突起が載置台6の下面に接触するなどの問題が生じない。 In the present embodiment, since the flange 7b is joined to the back side of the recess 9a, the recess 9a is formed on the front side of the recess 9a by joining the flange 7b such as a protrusion of TOX caulking, a welding mark, a screw, a nut head, or the like. It is comprised so that it may become deeper than the height of the protrusion which arises. According to the present embodiment, there is no problem such that the protrusion contacts the lower surface of the mounting table 6.
 図11Aに示す導波管構造部8は、結合部7の上方の天井面9に設けられた凹部9aを有し、図10Bに示す導波管構造部900Bと同様の構成を有する。図11Aに示す導波管構造部8によれば、導波管構造部900Bと同様に、結合部7近傍の温度低下を抑制することができる。その理由として、次の二つのことが考えられる。 The waveguide structure portion 8 shown in FIG. 11A has a recess 9a provided on the ceiling surface 9 above the coupling portion 7, and has the same configuration as the waveguide structure portion 900B shown in FIG. 10B. According to the waveguide structure portion 8 shown in FIG. 11A, a temperature drop in the vicinity of the coupling portion 7 can be suppressed similarly to the waveguide structure portion 900B. There are two possible reasons for this.
 一つ目として、第1開口14aの上方に被加熱物が載置された場合、第1開口14aから放射され円偏波となったマイクロ波の一部が被加熱物で反射される。反射したマイクロ波は、凹部9aの上面と載置台6の下面との間に形成された空間において反射を繰り返し、その結果、被加熱物をより強く加熱する。 First, when an object to be heated is placed above the first opening 14a, a part of the microwave radiated from the first opening 14a and turned into a circular polarization is reflected by the object to be heated. The reflected microwave is repeatedly reflected in the space formed between the upper surface of the recess 9a and the lower surface of the mounting table 6, and as a result, the object to be heated is heated more strongly.
 二つ目として、本実施の形態では、凹部9aが形成された部分の導波管構造部8の内部空間は、他の部分より狭い。結合軸7aから導波管構造部8内に伝搬するマイクロ波の大部分が、凹部9a付近の狭い空間から、凹部9aから離間した広い空間に向かって進行する際、吸出し効果により第1開口14aから放射され、載置面6aの中央領域に載置された被加熱物を強く加熱する。 Second, in the present embodiment, the internal space of the waveguide structure portion 8 where the recess 9a is formed is narrower than the other portions. When most of the microwave propagating from the coupling axis 7a into the waveguide structure 8 travels from a narrow space near the recess 9a toward a wide space separated from the recess 9a, the first opening 14a is caused by the suction effect. The object to be heated radiated from the surface and placed in the central region of the placement surface 6a is strongly heated.
 以下、本実施の形態における第1開口14aの形状について詳述する。 Hereinafter, the shape of the first opening 14a in the present embodiment will be described in detail.
 図11Aに示すように、第1開口14aは、スリット20a、20bを含み、これらが中心点P1で交差するクロススロット形状を有する。第1開口14aの各スリットの長軸は、管軸Vに対して45度の角度を有する。 As shown in FIG. 11A, the first opening 14a includes slits 20a and 20b, and has a cross slot shape in which these intersect at the center point P1. The major axis of each slit of the first opening 14a has an angle of 45 degrees with respect to the tube axis V.
 スリット20aは、中心点P1の右下から左上まで延在し、中心点P1から右下の先端までの第1長さAと、中心点P1から左上の先端までの第3長さCとを有する。スリット20aの右下の先端は、結合部7に向けられて凹部9aに近接する。 The slit 20a extends from the lower right to the upper left of the center point P1, and has a first length A from the center point P1 to the lower right tip and a third length C from the center point P1 to the upper left tip. Have. The lower right tip of the slit 20a is directed toward the coupling portion 7 and close to the recess 9a.
 スリット20bは、中心点P1の左下から右上まで延在し、中心点P1から左下の先端までの第2長さBと、中心点P1から右上の先端までの第4長さDとを有する。すなわち、第1長さAは、中心点P1からスリット20a、20bの先端までの長さのうち、結合部7に最も近い先端までの長さである。 The slit 20b extends from the lower left to the upper right of the center point P1, and has a second length B from the center point P1 to the lower left tip and a fourth length D from the center point P1 to the upper right tip. That is, the first length A is the length from the center point P1 to the tips closest to the coupling portion 7 among the lengths from the center point P1 to the tips of the slits 20a and 20b.
 第3長さCと第4長さDとは同じであり、これらは、導波管構造部8内を伝搬するマイクロ波の波長の実質的に1/4に相当する。第2長さBは、第3長さCおよび第4長さDより短く、第1長さAはこれらの中で最も短い。 The third length C and the fourth length D are the same, and these correspond to substantially ¼ of the wavelength of the microwave propagating in the waveguide structure 8. The second length B is shorter than the third length C and the fourth length D, and the first length A is the shortest of these.
 また、スリット20aと管軸Vとの距離Xは、スリット20bと管軸Vとの距離Yより長い。すなわち、一対のマイクロ波吸出し開口14を構成する二対のスリットのうち、結合部7に近い方の一対のスリット20aの間の距離が、結合部7から遠い方の一対のスリット20bの間の距離より長い。このため、天井面9は、二つの第1開口14aの間の、凹部9a付近の領域が、凹部9aから離間した領域に比べて広い。 Further, the distance X between the slit 20a and the tube axis V is longer than the distance Y between the slit 20b and the tube axis V. That is, the distance between the pair of slits 20a closer to the coupling part 7 among the two pairs of slits constituting the pair of microwave suction openings 14 is between the pair of slits 20b farther from the coupling part 7. Longer than distance. For this reason, the area | region of the recessed part 9a vicinity between the two 1st opening 14a is wide compared with the area | region where the ceiling surface 9 was spaced apart from the recessed part 9a.
 二つの第1開口14aの間の領域が平坦でない場合、導波管構造部8内に乱れた電磁界が発生して、円偏波の形成に悪影響を及ぼすため、二つの第1開口14aの間に、より広い平坦な領域を設けることが好ましい。本実施の形態によれば、二つの第1開口14aの間に設けられたより広い平坦な領域により、乱れの少ない円偏波が形成されて、高い吸い出し効果が得られる。 If the region between the two first openings 14a is not flat, a turbulent electromagnetic field is generated in the waveguide structure 8 and adversely affects the formation of circularly polarized waves. It is preferable to provide a wider flat area between them. According to the present embodiment, a circular polarization with less disturbance is formed by a wider flat region provided between the two first openings 14a, and a high suction effect is obtained.
 一方、第2開口14bは、二つの同じ長さを有するスリットが、それぞれの中心で直交したクロススロット形状を有する。第2開口14bの各スリットの長軸は、管軸Vに対して45度の角度を有する。本実施の形態では、第2開口14bの各スリットの長軸の長さは、第1開口14aの第3長さCおよび第4長さDと同等の長さである。 On the other hand, the second opening 14b has a cross slot shape in which two slits having the same length are orthogonal to each other at the center. The major axis of each slit of the second opening 14b has an angle of 45 degrees with respect to the tube axis V. In the present embodiment, the length of the major axis of each slit of the second opening 14b is equal to the third length C and the fourth length D of the first opening 14a.
 本実施の形態に係る結合部7は上記形状のフランジ7bを有するが、フランジ7bの形状は、これに限定されるものではなく、仕様などに応じて適宜変更可能である。 The connecting portion 7 according to the present embodiment has the flange 7b having the above-mentioned shape, but the shape of the flange 7b is not limited to this, and can be changed as appropriate according to the specifications.
 例えば、フランジ7bの、管軸Vに沿った方向の部分をより短くすれば、第1開口14aを結合部7により近接させて設けることが可能である。第1開口14aとの間に切り欠きを有するフランジ7bを用いるなど、フランジ7bの形状により、第1開口14aを結合部7により近接して設けることも可能である。 For example, if the portion of the flange 7b in the direction along the tube axis V is made shorter, the first opening 14a can be provided closer to the coupling portion 7. It is also possible to provide the first opening 14a closer to the coupling portion 7 depending on the shape of the flange 7b, such as using a flange 7b having a notch with the first opening 14a.
 フランジ7bの形状を工夫すれば、接合部分の面積を小さくすることなく、結合部7と導波管構造部8との接合を強化することが可能となり、製品のばらつきを抑制することができる。 If the shape of the flange 7b is devised, it is possible to reinforce the joining between the coupling portion 7 and the waveguide structure portion 8 without reducing the area of the joining portion, thereby suppressing variations in products.
 結合軸7aが、例えば、半円、楕円、長方形の断面を有する場合、または、このような断面形状を有する結合軸7aを、導波管構造部8に直接的に接合する場合でも、本実施の形態と同様の効果が得られる。フランジ7bを設けない構成によれば、第1開口14aを形成するためのスペースをさらに広げることができる。 Even when the coupling shaft 7a has, for example, a semicircular, elliptical, or rectangular cross section, or when the coupling shaft 7a having such a cross-sectional shape is directly joined to the waveguide structure 8, this embodiment is implemented. The same effect as that of the embodiment can be obtained. According to the configuration in which the flange 7b is not provided, the space for forming the first opening 14a can be further expanded.
 本実施の形態によれば、高い吸出し効果が得られることにより、結合部7付近の温度低下を抑制し、載置面6aの中央領域における均一加熱が可能となる。 According to the present embodiment, since a high suction effect is obtained, a temperature drop in the vicinity of the coupling portion 7 is suppressed, and uniform heating in the central region of the mounting surface 6a becomes possible.
 本実施の形態では、マイクロ波吸出し開口がクロススロット形状を有するが、本開示のマイクロ波吸出し開口はこれに限定されるものではない。マイクロ波吸出し開口がクロススロット状以外でも、円偏波を発生させることができる形状であればよい。 In the present embodiment, the microwave suction opening has a cross slot shape, but the microwave suction opening of the present disclosure is not limited to this. Even if the microwave suction opening has a shape other than the cross slot shape, it may have a shape capable of generating circularly polarized waves.
 実験の結果、導波管構造部から円偏波を発生させるための必須条件は、管軸からずれた位置に、概ね細長い二つの開口を組み合わせて配置することであると推察される。 As a result of the experiment, it is inferred that the essential condition for generating the circularly polarized wave from the waveguide structure part is that the two generally elongated openings are combined at a position shifted from the tube axis.
 マイクロ波吸出し開口14を構成するスリットは、長方形に限定されるものではない。例えば、角に丸みのある開口や楕円形の開口の場合でも、円偏波を発生させることが可能である。 The slit constituting the microwave suction opening 14 is not limited to a rectangle. For example, even in the case of an opening having a rounded corner or an elliptical opening, it is possible to generate circularly polarized waves.
 むしろ、電界の集中を抑制するためには、開口の角が丸みをおびていることが好ましい。本実施の形態では、図3、図9A~図9C、図10A、図10B、図11Aに示すように、第1開口14aおよび第2開口14bに含まれるスリットは、先端および交差部分に丸みをおびた角を有する。すなわち、マイクロ波吸出し開口14に含まれる二つのスリットは、端部付近の幅より広い交差部分付近の幅を有する。 Rather, in order to suppress the concentration of the electric field, the corners of the opening are preferably rounded. In the present embodiment, as shown in FIGS. 3, 9A to 9C, 10A, 10B, and 11A, the slits included in the first opening 14a and the second opening 14b are rounded at the tip and the intersection. Has a cracked corner. That is, the two slits included in the microwave suction opening 14 have a width near the intersection that is wider than the width near the end.
 本実施の形態では、凹部9aが、天井面9の結合部7の上方に形成されるが、本開示の導波管構造部8はこれに限定されるものではない。 In the present embodiment, the concave portion 9a is formed above the coupling portion 7 of the ceiling surface 9, but the waveguide structure portion 8 of the present disclosure is not limited to this.
 例えば、開口から放射されたマイクロ波の伝搬状況などを考慮して、マイクロ波吸出し開口14と導波管構造部8の回転中心との間に凹部9aを設けてもよい。マイクロ波吸出し開口14より導波管構造部8の回転中心に近い側の天井面9に、導波管構造部8の内部空間に突出する凸部を設けてもよい。 For example, in consideration of the propagation state of the microwave radiated from the opening, a recess 9 a may be provided between the microwave suction opening 14 and the rotation center of the waveguide structure 8. A convex portion projecting into the internal space of the waveguide structure 8 may be provided on the ceiling surface 9 closer to the rotation center of the waveguide structure 8 than the microwave suction opening 14.
 すなわち、導波管構造部8が、マイクロ波吸出し開口14より結合部7に近い側の天井面9の一部分に設けられ、天井面9の他の部分より高さが低い段差領域を有すればよい。 That is, if the waveguide structure portion 8 is provided in a part of the ceiling surface 9 closer to the coupling portion 7 than the microwave suction opening 14 and has a step region whose height is lower than other portions of the ceiling surface 9. Good.
 [スリット形状]
 本発明者らは、第1開口14aにおける二つのスリットの交差部分の角形状に対する工夫により、より信頼性の高い導波管構造部を開発した。この導波管構造部について、図11Bを用いて説明する。
[Slit shape]
The inventors of the present invention have developed a waveguide structure with higher reliability by devising the square shape of the intersection of the two slits in the first opening 14a. This waveguide structure will be described with reference to FIG. 11B.
 図11Bに示すように、本変形例に係る導波管構造部28は、天井面29に設けられたマイクロ波吸出し開口24を有する。マイクロ波吸出し開口24は、第1開口24aと第2開口14bとを含む。以下に説明するように、第1開口24aは、図11Aに示す第1開口24aの二つのスリットの交差部分の角形状のみが異なる。 As shown in FIG. 11B, the waveguide structure 28 according to this modification has a microwave suction opening 24 provided in the ceiling surface 29. The microwave suction opening 24 includes a first opening 24a and a second opening 14b. As will be described below, the first opening 24a is different only in the angular shape of the intersection of the two slits of the first opening 24a shown in FIG. 11A.
 図11Bに示すように、第1開口24aは、スリット20cとスリット20dとの交差部分に、四つの角C1、C2、C3、C4を有する。 As shown in FIG. 11B, the first opening 24a has four corners C1, C2, C3, and C4 at the intersection of the slit 20c and the slit 20d.
 角C1は、管軸Vから最も遠くに位置する。角C2は、マイクロ波の伝送方向Zにおける最も上流側に設けられ、結合部7から最も近くに位置する。角C3は、管軸Vに最も近く位置する。角C4は、マイクロ波の伝送方向Zにおける最も下流側に設けられ、結合部7から最も遠くに位置する。 The corner C1 is located farthest from the tube axis V. The corner C <b> 2 is provided on the most upstream side in the microwave transmission direction Z and is located closest to the coupling portion 7. The corner C3 is located closest to the tube axis V. The corner C4 is provided on the most downstream side in the microwave transmission direction Z and is located farthest from the coupling portion 7.
 角C1~C4のうち、角C1~C3は、等しい曲率を有する湾曲形状を有する一方、角C4は、角C1~C3より曲率の小さい湾曲形状を有する。図11Bに示す構成では、角C4は、図11Bの点線で示す部分がほぼ直線的に切断されたような形状を有する。 Among the corners C1 to C4, the corners C1 to C3 have a curved shape having the same curvature, while the corner C4 has a curved shape having a smaller curvature than the corners C1 to C3. In the configuration shown in FIG. 11B, the corner C4 has a shape such that the portion indicated by the dotted line in FIG. 11B is cut substantially linearly.
 距離D1を、中心点P1から角C1までの距離、距離D2を、中心点P1から角C2までの距離、距離D3を、中心点P1から角C3までの距離とすると、距離D1~D3は同じであり、中心点P1から角C4までの距離D4は、距離D1~D3より大きい。すなわち、第1開口24aに含まれる二つのスリットは、端部付近の幅より広い交差部分付近の幅を有する。 If the distance D1 is the distance from the center point P1 to the corner C1, the distance D2 is the distance from the center point P1 to the corner C2, and the distance D3 is the distance from the center point P1 to the corner C3, the distances D1 to D3 are the same. The distance D4 from the center point P1 to the corner C4 is larger than the distances D1 to D3. That is, the two slits included in the first opening 24a have a width near the intersection that is wider than the width near the end.
 スリットにおける電界は、中央部分で最大、端部で0となる。クロススロット形状の第1開口24aの場合、二つの電界が交差部分で合成されるため、交差部分における電界は強くなる。 The electric field at the slit is maximum at the center and zero at the end. In the case of the first opening 24a having a cross slot shape, the two electric fields are combined at the intersection, so that the electric field at the intersection becomes strong.
 本発明者らは、図11Bに示す構成において、導波管構造部28は、上記形状の第1開口24aを備えることで、交差部分における過度の電界集中を抑制することができることを見出した。 The inventors of the present invention have found that, in the configuration shown in FIG. 11B, the waveguide structure 28 includes the first opening 24a having the above-described shape, thereby suppressing excessive electric field concentration at the intersection.
 特に、本発明者らは、第1開口24aの交差部分の角C1~角C4のうち、マイクロ波の伝送方向Zにおける最も下流側、すなわち、結合部7から最も遠くに位置する角C4が、最も曲率の小さい湾曲形状を有する場合、電界集中を抑制する効果が顕著であることを見出した。本構成によれば、より信頼性の高い導波管構造部を構成することができる。 In particular, the inventors of the present invention, among the corners C1 to C4 of the intersecting portion of the first opening 24a, have the corner C4 located on the most downstream side in the microwave transmission direction Z, that is, the farthest from the coupling portion 7. It has been found that the effect of suppressing electric field concentration is remarkable when the curved shape has the smallest curvature. According to this structure, a more reliable waveguide structure part can be comprised.
 このような現象が発生するのは、第2開口14bの周辺に生じる電界が、第1開口24aの、特に第2開口14bに最も近い第1開口24aの角C4の周辺に生じる電界に対して何らかの影響を及ぼすことが原因であると考えられる。 Such a phenomenon occurs because the electric field generated around the second opening 14b is in contrast to the electric field generated around the corner C4 of the first opening 24a, particularly the first opening 24a closest to the second opening 14b. The cause is thought to be some effect.
 なお、第1開口24aの交差部分における角の形状は、図11Bに示すような湾曲形状に限らない。第1開口24aが、端部付近の幅より広い交差部分付近の幅を有するスリットにより構成されたクロススロット形状を有すればよい。クロススロット形状の交差部分に、例えば、複数の直線で構成された実質的に湾曲形状の角が形成されてもよい。角C1~角C3が、角C4と同様の形状を有してもよい。 Note that the shape of the corner at the intersection of the first openings 24a is not limited to the curved shape as shown in FIG. 11B. The first opening 24a only needs to have a cross slot shape formed by a slit having a width near the intersection that is wider than the width near the end. For example, a substantially curved corner composed of a plurality of straight lines may be formed at the cross slot-shaped intersection. The corners C1 to C3 may have the same shape as the corner C4.
 第2開口14bにおける交差部分の角、特に、マイクロ波の伝送方向Zにおける最も上流側、すなわち、結合部7から最も近くに位置する角が、図11Bに示す第1開口24aの角C4と同様の形状を有しても、同様の効果を得ることができる。 The corner of the intersecting portion in the second opening 14b, in particular, the most upstream side in the microwave transmission direction Z, that is, the corner located closest to the coupling portion 7, is the same as the corner C4 of the first opening 24a shown in FIG. 11B. Even if it has this shape, the same effect can be obtained.
 二つの第1開口14a間の平坦な領域は、管軸Vに沿って結合部7から前方開口13に向かって延在して、前方開口13から放射されるマイクロ波の通り道となる。 A flat region between the two first openings 14 a extends along the tube axis V from the coupling portion 7 toward the front opening 13 and becomes a path for microwaves radiated from the front opening 13.
 この平坦な領域における開口間の距離L1(=2×Y(図11A参照))が大きすぎると、載置面6aの中央領域における加熱が抑制されて、均一加熱の性能が低下する。距離L1が小さすぎると、局所加熱の性能(加熱の指向性)が低下する。 If the distance L1 between the openings in this flat region (= 2 × Y (see FIG. 11A)) is too large, heating in the central region of the mounting surface 6a is suppressed, and the performance of uniform heating is reduced. When the distance L1 is too small, the performance of local heating (heating directivity) decreases.
 そこで、発明者らは、均一加熱の性能と局所加熱の性能とを向上させることができる距離L1を調べるため、下記第1実験から第3実験を行い、CAEにより検証した。 Therefore, the inventors conducted the following first to third experiments and verified them by CAE in order to investigate the distance L1 that can improve the performance of uniform heating and the performance of local heating.
 第1実験では、均一加熱の性能を向上させる距離L1を調べるため、距離L1をパラメータとし、載置面6aの中央領域に載置された冷凍お好み焼きを加熱した。本実験では、お好み焼きの中心温度に着目して、均一加熱の性能を評価した。 In the first experiment, the frozen okonomiyaki placed in the central region of the placement surface 6a was heated using the distance L1 as a parameter in order to investigate the distance L1 for improving the performance of uniform heating. In this experiment, focusing on the center temperature of okonomiyaki, the performance of uniform heating was evaluated.
 第2実験では、距離L1をパラメータとし、間隔を設けて載置台6上に配置した二皿の冷凍シュウマイを加熱した。第2実験では、二皿の被加熱物が、載置台6の幅の実質的に1/4の間隔を空けて、給電室2bの左右方向の中心線J(図2B参照)に関して対称に載置台6上に並べられる。各皿(直径約150mm以下)には、三行三列に並べた9個の冷凍シュウマイを載せる。 In the second experiment, two dishes of frozen shumai placed on the mounting table 6 with a distance L1 as a parameter were heated. In the second experiment, two dishes to be heated are placed symmetrically with respect to the center line J (see FIG. 2B) in the left-right direction of the power supply chamber 2b at an interval substantially 1/4 of the width of the mounting table 6. They are arranged on the table 6. Nine frozen shumais arranged in three rows and three columns are placed on each dish (diameter of about 150 mm or less).
 図12は、第2実験において、間隔を設けて載置面6aに載置された二つの皿(皿K1、K2)を上方から見た状態を示す模式図である。図12では、載置面6aの下方で回転アンテナ5がどの方向を向いているかを示すため、回転アンテナ5も便宜的に示される。 FIG. 12 is a schematic diagram showing a state in which two dishes (plates K1 and K2) placed on the placement surface 6a with an interval are viewed from above in the second experiment. In FIG. 12, the rotating antenna 5 is also shown for convenience in order to indicate in which direction the rotating antenna 5 is directed below the placement surface 6a.
 図12に示すように、載置面6aの両縁から載置面6aの幅の1/4離れた場所に中心が位置するように、皿K1、K2をそれぞれ配置する。すなわち、載置面6aを幅方向に4等分する三本の一点鎖線のうち、皿K1は最も左側の一点鎖線上に載置し、皿K2は最も右側の一点鎖線上に配置する。以下、このような配置を離間配置という。 As shown in FIG. 12, the dishes K1 and K2 are respectively arranged so that the center is located at a distance of ¼ of the width of the mounting surface 6a from both edges of the mounting surface 6a. That is, among the three one-dot chain lines that divide the placement surface 6a into four in the width direction, the dish K1 is placed on the leftmost one-dot chain line, and the dish K2 is placed on the rightmost one-dot chain line. Hereinafter, such an arrangement is referred to as a spaced arrangement.
 一般的な載置面6aの幅は400mm程度なので、図12のように配置すると、二つの皿の間に間隔が生じる。第2実験では、前方開口13が左側を向いた状態で停止するように、回転アンテナ5を制御して、皿K1を集中的に加熱することで、加熱の指向性(Heating directivity)と距離L1との関係を調べた。 Since the width of the general mounting surface 6a is about 400 mm, if it arrange | positions like FIG. 12, a space | interval will arise between two dishes. In the second experiment, the rotating antenna 5 is controlled so that the front opening 13 stops in a state of facing the left side, and the dish K1 is heated intensively, so that the heating directivity and the distance L1 are increased. I investigated the relationship with.
 加熱の指向性は、皿K2上の被加熱物の上昇温度に対する皿K1上の被加熱物の上昇温度の比(以下、左右比(Left/right ratio)という)に基づいて評価した。左右比が大きいほど、加熱の指向性が高く、局所加熱の性能が良いことを意味する。上昇温度とは、被加熱物の加熱前後の温度差をいう。 The directivity of heating was evaluated based on the ratio of the rising temperature of the heated object on the plate K1 to the rising temperature of the heated object on the plate K2 (hereinafter referred to as the left / right ratio). A larger left / right ratio means higher heating directivity and better local heating performance. The rising temperature refers to a temperature difference between before and after heating the object to be heated.
 第3実験では、距離L1をパラメータとし、間隔を設けずに載置面6a上に配置した二皿の冷凍シュウマイを加熱した。第3実験では、二皿の被加熱物を載置面6aの中央で当接させ、かつ、中心線Jに関して対称に配置する。以下、このような配置を当接配置という。 In the third experiment, the distance L1 was used as a parameter, and two dishes of frozen shumai placed on the placement surface 6a without heating were heated. In the third experiment, two dishes to be heated are brought into contact with each other at the center of the mounting surface 6a and arranged symmetrically with respect to the center line J. Hereinafter, such an arrangement is referred to as a contact arrangement.
 図13は、第3実験において、互いに当接して載置面6aに載置された二つの皿(皿K1、K2)を上方から見た状態を示す模式図である。図13では、載置面6aの下方で回転アンテナ5がどの方向を向いているかを示すため、回転アンテナ5も便宜的に示される。 FIG. 13 is a schematic view showing a state in which two dishes (dish K1, K2) placed in contact with each other and placed on the placing surface 6a are viewed from above in the third experiment. In FIG. 13, the rotating antenna 5 is also shown for convenience in order to indicate which direction the rotating antenna 5 is facing below the placement surface 6 a.
 第3実験においても、前方開口13が左側を向いた状態で停止するように、回転アンテナ5を制御して、皿K1を集中的に加熱することで、加熱の指向性と距離L1との関係を調べた。第3実験でも同様に、左右比に基づいて加熱の指向性を評価した。 Also in the third experiment, the rotation antenna 5 is controlled so that the front opening 13 stops in the left side and the dish K1 is heated intensively, whereby the relationship between the directivity of heating and the distance L1. I investigated. Similarly in the third experiment, the directivity of heating was evaluated based on the left / right ratio.
 すなわち、第2実験における左右比とは離間配置時の左右比を意味し、第3実験における左右比とは当接配置時の左右比を意味する。 That is, the left / right ratio in the second experiment means the left / right ratio at the time of distant arrangement, and the right / left ratio in the third experiment means the right / left ratio at the time of contact arrangement.
 第1条件(距離L1が12mmの場合)、第2条件(距離L1が15mmの場合)、第3条件(距離L1を18mmの場合)における、図11Bに示すマイクロ波吸出し開口14の各部分の場所とその寸法とについて、図14および表1を用いて説明する。 Each part of the microwave suction opening 14 shown in FIG. 11B under the first condition (when the distance L1 is 12 mm), the second condition (when the distance L1 is 15 mm), and the third condition (when the distance L1 is 18 mm). The location and its dimensions will be described with reference to FIG. 14 and Table 1.
 図14は、図11Bに示すマイクロ波吸出し開口14の各部分の場所を示し、表1は、第1条件から第3条件における各部分の寸法を示す。 FIG. 14 shows the location of each part of the microwave suction opening 14 shown in FIG. 11B, and Table 1 shows the dimensions of each part under the first condition to the third condition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図14および表1に示すように、第1条件から第3条件において、マイクロ波吸出し開口14の第2長さBを順に短く、距離L1を順に長く設定する。具体的には、第1条件では、第2長さを25.5mm、距離L1を12mmとし、第2条件では、第2長さを23.5mm、距離L1を15mmとし、第3条件では、第2長さを21.5mm、距離L1を18mmとした。 As shown in FIG. 14 and Table 1, in the first condition to the third condition, the second length B of the microwave suction opening 14 is set shorter in order and the distance L1 is set longer in order. Specifically, in the first condition, the second length is 25.5 mm and the distance L1 is 12 mm. In the second condition, the second length is 23.5 mm and the distance L1 is 15 mm. In the third condition, The second length was 21.5 mm and the distance L1 was 18 mm.
 図15は、距離L1をパラメータとした第1実験から第3実験の結果を示す図である。図15の右縦軸は、第1実験で測定されたお好み焼きの中心部の温度を示す。図15の左縦軸は、第2実験および第3実験で算出された左右比を示す。 FIG. 15 is a diagram showing the results of the first to third experiments using the distance L1 as a parameter. The right vertical axis in FIG. 15 shows the temperature at the center of the okonomiyaki measured in the first experiment. The left vertical axis in FIG. 15 indicates the left / right ratio calculated in the second experiment and the third experiment.
 ここで、第1実験の結果について説明する。 Here, the results of the first experiment will be described.
 図15に示すように、第1条件から第3条件において、被加熱物の中心部の温度は80~92℃程度となった。特許文献2に記載の電子レンジ200を用いて同様の条件で実験したところ、被加熱物の中心部の温度は74℃であった。 As shown in FIG. 15, in the first condition to the third condition, the temperature of the central portion of the heated object was about 80 to 92 ° C. When an experiment was performed under the same conditions using the microwave oven 200 described in Patent Document 2, the temperature at the center of the object to be heated was 74 ° C.
 これらの結果は、図11Bに示す構成により、距離L1が12~18mmの範囲において、従来技術と比べてお好み焼きの中心部が十分に加熱されたことを示す。本構成によれば、均一加熱の性能を向上させることができる。 These results indicate that the center part of the okonomiyaki was sufficiently heated by the configuration shown in FIG. 11B in the range of the distance L1 of 12 to 18 mm as compared with the prior art. According to this structure, the performance of uniform heating can be improved.
 次に、第2実験および第3実験の結果について説明する。 Next, the results of the second experiment and the third experiment will be described.
 図15に示すように、第2実験では、第1条件から第3条件における左右比が2.9~4であった。第3実験では、第1条件から第3条件における左右比が4.4~5.3であった。特許文献2に記載の電子レンジ200を用いて同様の条件で実験したところ、第2実験、第3実験における左右比は、それぞれ2.3、3.2であった。 As shown in FIG. 15, in the second experiment, the left-right ratio from the first condition to the third condition was 2.9-4. In the third experiment, the left / right ratio from the first condition to the third condition was 4.4 to 5.3. When an experiment was performed under the same conditions using the microwave oven 200 described in Patent Document 2, the left-right ratio in the second experiment and the third experiment was 2.3 and 3.2, respectively.
 これらの結果は、図11Bに示す構成により、距離L1が12~18mmの範囲において、従来技術と比べて左右比が増大したことを示す。本構成によれば、局所加熱の性能を向上させることができる。 These results show that the right / left ratio is increased as compared with the conventional technique in the range of the distance L1 of 12 to 18 mm by the configuration shown in FIG. 11B. According to this structure, the performance of local heating can be improved.
 理想として、例えば、三つの被加熱物に対して、配置位置に関わらず局所加熱が可能であることが望ましい。実験の結果、発明者らは、離間配置時の左右比が3.5以上の場合に、この理想的な局所加熱、すなわち、三つの被加熱物に対する高効率の局所加熱が可能であることを見出した。したがって、距離L1は、離間配置時の左右比が3.5以上となる15~18mmの範囲に設定されることが好ましい。 Ideally, for example, it is desirable to be able to locally heat three objects to be heated regardless of the arrangement position. As a result of the experiment, the inventors found that this ideal local heating, that is, high-efficiency local heating for three objects to be heated, is possible when the left-right ratio at the time of separation is 3.5 or more. I found it. Therefore, the distance L1 is preferably set in a range of 15 to 18 mm where the left / right ratio at the time of separation is 3.5 or more.
 以上のように、距離L1を15~18mmの範囲に設定することにより、均一加熱のための加熱分布の均一化、および、局所加熱のための加熱の指向性の最適化を図ることができる。 As described above, by setting the distance L1 within the range of 15 to 18 mm, the heating distribution for uniform heating can be made uniform and the directivity of heating for local heating can be optimized.
 言うまでもなく、本開示の技術的思想は上記具体的な寸法に限定されるものではない。例えば、距離L1は、マイクロ波加熱装置の寸法に応じて変更されるべきである。距離L1は、側壁面10aと側壁面10cとの距離L2、すなわち、導波管構造部8の幅(図11A参照)の約1/8~1/4に設定されることが望ましい。上記実施の形態では、距離L1は、結合軸7aの軸径にほぼ等しい。 Needless to say, the technical idea of the present disclosure is not limited to the above specific dimensions. For example, the distance L1 should be changed according to the dimensions of the microwave heating device. The distance L1 is preferably set to about 1/8 to 1/4 of the distance L2 between the side wall surface 10a and the side wall surface 10c, that is, the width of the waveguide structure 8 (see FIG. 11A). In the above embodiment, the distance L1 is substantially equal to the shaft diameter of the coupling shaft 7a.
 上記実験では、第2長さBを短くすることで、距離L1を長くしているが、これに限定されない。第1長さA~第4長さDは変更せず、第1開口14aを形成する二つのスリットの交差角度を変更することにより、距離L1を所望の寸法に設定してもよい。 In the above experiment, the distance L1 is increased by shortening the second length B, but the present invention is not limited to this. The distance L1 may be set to a desired dimension by changing the intersecting angle of the two slits forming the first opening 14a without changing the first length A to the fourth length D.
 図16Aおよび図16Bは、他の形状のマイクロ波吸出し開口34を示す平面図である。図16Aおよび図16Bに示すように、導波管構造部38は、天井面39に設けられたマイクロ波吸出し開口34を有する。マイクロ波吸出し開口34は、第1開口34aと第2開口14bとを含む。第1開口34aは、図11Aに示す第1開口14aおよび図11Bに示す第1開口24aと、二つのスリットの交差角度が異なる。 16A and 16B are plan views showing microwave suction openings 34 of other shapes. As shown in FIGS. 16A and 16B, the waveguide structure 38 has a microwave suction opening 34 provided in the ceiling surface 39. The microwave suction opening 34 includes a first opening 34a and a second opening 14b. The first opening 34a is different from the first opening 14a shown in FIG. 11A and the first opening 24a shown in FIG. 11B in the intersection angle of the two slits.
 具体的には、第1開口34aのスリット20eは、第1開口14aのスリット20aおよび第1開口24aのスリット20cと同じ長さである。スリット20eの長軸は、スリット20aの長軸およびスリット20cの長軸と同じ方向に向けられる(図11A、図11B参照)。 Specifically, the slit 20e of the first opening 34a has the same length as the slit 20a of the first opening 14a and the slit 20c of the first opening 24a. The major axis of the slit 20e is oriented in the same direction as the major axis of the slit 20a and the major axis of the slit 20c (see FIGS. 11A and 11B).
 しかしながら、図16Aおよび図16Bに示すように、スリット20fの長軸を管軸Vに平行に近づければ、同じ第2長さBを有する場合でも、距離L1をより大きく設定することができる。 However, as shown in FIGS. 16A and 16B, if the long axis of the slit 20f is brought close to the tube axis V in parallel, the distance L1 can be set larger even when the second length B is the same.
 以上のように、本開示によれば、被加熱物に対して均一加熱および局所加熱を行うことが可能となる。 As described above, according to the present disclosure, uniform heating and local heating can be performed on an object to be heated.
 本開示は、電子レンジの他に、乾燥装置、陶芸用加熱装置、生ゴミ処理機、半導体製造装置などの各種工業用途のマイクロ波加熱装置において利用可能である。 The present disclosure can be used in microwave heating apparatuses for various industrial uses such as a drying apparatus, a heating apparatus for ceramics, a garbage disposal machine, and a semiconductor manufacturing apparatus in addition to a microwave oven.
 1,100,200 電子レンジ
 2a,104,204 加熱室
 2b,209 給電室
 2c,10a,10b,10c 側壁面
 3,101,201 マグネトロン
 3a アンテナ
 4,102,202,400,500 導波管
 5,103,203 回転アンテナ
 6,108,208 載置台
 6a 載置面
 7 結合部
 7a,109 結合軸
 7b フランジ
 8,28,38,600,700,800,900A,900B 導波管構造部
 9,29,39 天井面
 9a,909a 凹部
 11 底面
 12,106,206 低インピーダンス部
 12a,20a,20b,20c,20d,20e,20f スリット
 13 前方開口
 14,24,34 マイクロ波吸出し開口
 14a,24a,34a,614a,714a,814a,914a 第1開口
 14b,614b,714b,814b,914b 第2開口
 15,105,205 モータ
 16,210 赤外線センサ
 17,211 制御部
 18,18a,18b 凸部
 19 保持部
 22 被加熱物
 107,207 放射口
 300 導波管
 301 幅広面
 302 幅狭面
 303 断面
 401,501 開口
1, 100, 200 Microwave oven 2a, 104, 204 Heating chamber 2b, 209 Feed chamber 2c, 10a, 10b, 10c Side wall surface 3, 101, 201 Magnetron 3a Antenna 4, 102, 202, 400, 500 Waveguide 5, 103, 203 Rotating antennas 6, 108, 208 Mounting table 6a Mounting surface 7 Coupling portion 7a, 109 Coupling shaft 7b Flange 8, 28, 38, 600, 700, 800, 900A, 900B Waveguide structure 9, 29, 39 Ceiling surface 9a, 909a Recess 11 Bottom surface 12, 106, 206 Low impedance portion 12a, 20a, 20b, 20c, 20d, 20e, 20f Slit 13 Front opening 14, 24, 34 Microwave suction opening 14a, 24a, 34a, 614a , 714a, 814a, 914a first opening 14b, 61 b, 714b, 814b, 914b Second opening 15, 105, 205 Motor 16, 210 Infrared sensor 17, 211 Control unit 18, 18a, 18b Convex part 19 Holding part 22 Heated object 107, 207 Radiation port 300 Waveguide 301 Wide surface 302 Narrow surface 303 Cross-section 401,501 Opening

Claims (4)

  1.  被加熱物を収納する加熱室と、
     マイクロ波を生成するマイクロ波生成部と、
     導波管構造部を規定する天井面および側壁面、ならびに前方開口を有し、前記マイクロ波を前記前方開口から前記加熱室に放射する導波管構造アンテナであって、前記導波管構造部は、前記天井面と接合され、前記マイクロ波を前記導波管構造部の内部空間に結合させる結合部を有する導波管構造アンテナと、を備え、
     前記導波管構造部は、前記天井面に形成された少なくとも一つのマイクロ波吸出し開口を有して、前記マイクロ波吸出し開口から前記加熱室内に円偏波を放射し、
     前記少なくとも一つのマイクロ波吸出し開口は、前記導波管構造部の管軸に関して対称な少なくとも一対のマイクロ波吸出し開口を含み、
     前記導波管構造部は、前記一対のマイクロ波吸出し開口の間に平坦な領域を有する、マイクロ波加熱装置。
    A heating chamber for storing an object to be heated;
    A microwave generator for generating microwaves;
    A waveguide structure antenna having a ceiling surface and a side wall surface defining a waveguide structure portion, and a front opening, and radiating the microwave from the front opening to the heating chamber, wherein the waveguide structure portion A waveguide structure antenna having a coupling portion joined to the ceiling surface and coupling the microwave to the internal space of the waveguide structure portion;
    The waveguide structure has at least one microwave suction opening formed in the ceiling surface, and radiates circularly polarized waves from the microwave suction opening into the heating chamber;
    The at least one microwave suction opening includes at least a pair of microwave suction openings symmetrical with respect to a tube axis of the waveguide structure;
    The microwave heating apparatus, wherein the waveguide structure has a flat region between the pair of microwave suction openings.
  2.  前記一対のマイクロ波吸出し開口の各々が、二つのスリットが交差するクロススロット形状を有し、
     前記一対のマイクロ波吸出し開口において、前記結合部に近い方のスリット間の距離が、前記結合部から遠い方のスリット間の距離より長い、請求項1に記載のマイクロ波加熱装置。
    Each of the pair of microwave suction openings has a cross slot shape in which two slits intersect,
    The microwave heating device according to claim 1, wherein, in the pair of microwave suction openings, a distance between slits closer to the coupling portion is longer than a distance between slits farther from the coupling portion.
  3.  前記導波管構造アンテナを回転させる駆動部をさらに備え、
     前記結合部が、前記駆動部に連結され、前記導波管構造アンテナの回転中心を含む結合軸と、前記結合軸の周りに設けられ、接合部分を構成するフランジと、を有し、
     前記結合部に近い方の前記一対のマイクロ波吸出し開口が、前記接合部分の縁に近接して配置された、請求項2に記載のマイクロ波加熱装置。
    A drive unit for rotating the waveguide structure antenna;
    The coupling portion is coupled to the driving portion and includes a coupling axis including a rotation center of the waveguide structure antenna; and a flange provided around the coupling axis and constituting a joint portion;
    The microwave heating apparatus according to claim 2, wherein the pair of microwave suction openings closer to the coupling portion are disposed in proximity to an edge of the joint portion.
  4.  前記一対のマイクロ波吸出し開口の間の距離が、前記導波管構造部の幅の1/8~1/4である、請求項1に記載のマイクロ波加熱装置。 2. The microwave heating apparatus according to claim 1, wherein a distance between the pair of microwave suction openings is 8 to ¼ of a width of the waveguide structure portion.
PCT/JP2015/006020 2014-12-22 2015-12-04 Microwave heating device WO2016103588A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580064916.6A CN107006086B (en) 2014-12-22 2015-12-04 Microwave heating device
EP15872165.4A EP3240366B1 (en) 2014-12-22 2015-12-04 Microwave heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014259171A JP6459123B2 (en) 2014-12-22 2014-12-22 Microwave heating device
JP2014-259171 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016103588A1 true WO2016103588A1 (en) 2016-06-30

Family

ID=56149659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006020 WO2016103588A1 (en) 2014-12-22 2015-12-04 Microwave heating device

Country Status (5)

Country Link
EP (1) EP3240366B1 (en)
JP (1) JP6459123B2 (en)
CN (1) CN107006086B (en)
TW (1) TWI686103B (en)
WO (1) WO2016103588A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417226A (en) * 2019-01-04 2020-07-14 青岛海尔股份有限公司 Heating device
CN112637986B (en) * 2019-10-09 2023-01-24 新奥科技发展有限公司 Waveguide telescopic deflection adjusting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114369A1 (en) * 2011-02-22 2012-08-30 三菱電機株式会社 High-frequency heating device
WO2013018358A1 (en) * 2011-08-04 2013-02-07 パナソニック株式会社 Microwave heating device
WO2014171152A1 (en) * 2013-04-19 2014-10-23 パナソニック株式会社 Microwave heating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040609A (en) * 2004-07-23 2006-02-09 Naohisa Goto Plasma treatment device and method, and manufacturing method for flat panel display apparatus
CN103609197B (en) * 2011-07-07 2016-09-28 松下电器产业株式会社 Microwave heating equipment
CN103718645B (en) * 2011-08-04 2016-08-17 松下电器产业株式会社 Microwave heating equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114369A1 (en) * 2011-02-22 2012-08-30 三菱電機株式会社 High-frequency heating device
WO2013018358A1 (en) * 2011-08-04 2013-02-07 パナソニック株式会社 Microwave heating device
WO2014171152A1 (en) * 2013-04-19 2014-10-23 パナソニック株式会社 Microwave heating device

Also Published As

Publication number Publication date
EP3240366A4 (en) 2017-12-27
TWI686103B (en) 2020-02-21
TW201635855A (en) 2016-10-01
EP3240366A1 (en) 2017-11-01
JP6459123B2 (en) 2019-01-30
CN107006086B (en) 2020-10-27
CN107006086A (en) 2017-08-01
JP2016119253A (en) 2016-06-30
EP3240366B1 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2014171152A1 (en) Microwave heating device
JPWO2017164290A1 (en) Microwave heating device
WO2016103588A1 (en) Microwave heating device
TWI713411B (en) Microwave heating device
WO2016103586A1 (en) Microwave heating device
TWI711343B (en) Microwave heating device
JP6671005B2 (en) Microwave heating equipment
WO2016103587A1 (en) Microwave heating device
TWI713412B (en) Microwave heating device
JP6569991B2 (en) Microwave heating device
JP6715525B2 (en) Microwave heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872165

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015872165

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015872165

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE