WO2019202944A1 - Control system, control method, and program - Google Patents

Control system, control method, and program Download PDF

Info

Publication number
WO2019202944A1
WO2019202944A1 PCT/JP2019/013720 JP2019013720W WO2019202944A1 WO 2019202944 A1 WO2019202944 A1 WO 2019202944A1 JP 2019013720 W JP2019013720 W JP 2019013720W WO 2019202944 A1 WO2019202944 A1 WO 2019202944A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
imaging
movement
movement command
unit
Prior art date
Application number
PCT/JP2019/013720
Other languages
French (fr)
Japanese (ja)
Inventor
功征 川又
健祐 垂水
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2019202944A1 publication Critical patent/WO2019202944A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • This technology relates to a control system, a control method, and a program using a visual sensor.
  • Patent Document 1 discloses a visual system that repeatedly picks up images of a movable table, a driving mechanism that moves the movable table, and a workpiece placed on the movable table, and repeatedly detects the position of the workpiece.
  • a workpiece positioning device including a sensor is disclosed.
  • the workpiece positioning device calculates the difference between the detected position and the target position every time the position is detected by the visual sensor, and moves the movable base when it is determined that the difference is within the allowable range. Stop.
  • the workpiece positioning device calculates the difference between the position detected by the visual sensor after the movable table stops moving and the target position, and determines whether the calculated difference is within an allowable range. If it is determined that the difference is outside the allowable range, the moving direction of the movable base that reduces the difference is determined, and the drive mechanism is controlled to move the movable base in the determined moving direction.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a control system, a control method, and a program capable of positioning an object at high speed and with high accuracy.
  • an object control system includes a moving mechanism for moving an object, a visual sensor for imaging the object, a position determination unit, a feedback control unit, and a stop control unit. And an imaging command unit and a determination unit.
  • the position determination unit determines the estimated position of the target object for each second period shorter than the first period, based on the image captured by the visual sensor for each first period and the position related information from the moving mechanism.
  • the feedback control unit updates a movement command for adjusting the estimated position to the target position of the target object every second period and outputs the updated movement command to the movement mechanism.
  • the stop control unit stops the update of the movement command by the feedback control unit when the first deviation between the estimated position and the target position is less than the first threshold.
  • the imaging command unit determines whether the movement according to the final movement command is completed, determines that the movement according to the final movement command is completed, and then issues an imaging command to the visual sensor. Output.
  • the determination unit determines to end the positioning of the object when the measurement result from the image captured in response to the imaging command satisfies a predetermined condition.
  • the feedback control unit updates the movement command for adjusting the estimated position to the target position every second period and outputs the updated movement command to the movement mechanism.
  • the estimated position is determined for each second period based on the image captured by the visual sensor for each first period and the position related information from the moving mechanism.
  • Visual sensors generally have low responsiveness. For this reason, if feedback control is performed using an image obtained from a visual sensor, overshoot and vibration are likely to occur, so the gain of feedback control cannot be increased very much.
  • the gain in the feedback control can be increased and the estimated position can be brought close to the target position at high speed.
  • the update of the movement command is stopped, and after it is determined that the movement according to the final movement command is completed, the imaging command is output to the visual sensor. Is done.
  • the measurement result from the image captured in accordance with the imaging command satisfies a predetermined condition
  • it is determined that the positioning is to be ended That is, the position of the object is reconfirmed by the image obtained after the movement of the object in accordance with the final movement command is completed. Then, even if the movement according to the final movement command is taken into account, the positioning is ended when the measurement result satisfies a predetermined condition. Thereby, positioning of a target object can be performed with high precision.
  • the estimated position is determined based on the position related information from the moving mechanism every second period shorter than the first period. Therefore, the estimated error of the estimated position is smaller than the error of the position measured based only on the image captured every first period. As a result, the frequency at which the measurement result does not satisfy the predetermined condition due to the movement according to the final movement command after the first deviation between the estimated position and the target position is less than the first threshold is low. Thereby, it can position at high speed.
  • the object can be positioned at high speed and with high accuracy.
  • the feedback control unit resumes the update of the movement command.
  • the update of the movement command can be resumed even when the measurement result does not satisfy the predetermined condition due to the movement according to the final movement command.
  • the imaging command unit completes the movement according to the final movement command when the second deviation between the position command value indicated by the final movement command and the position indicated by the position related information is less than the second threshold value. It is determined that Alternatively, the imaging command unit may determine that the movement according to the final movement command is completed when the speed indicated by the position related information is less than the third threshold. According to these disclosures, it is possible to reliably determine whether or not the movement according to the final movement command is completed.
  • the imaging command unit may determine that the movement according to the final movement command is completed when the elapsed time after the update of the movement command is stopped by the stop control unit exceeds the fourth threshold value. According to this disclosure, it is possible to easily determine whether or not the movement according to the final movement command is completed without using the position related information.
  • the measurement result indicates the measurement position of the object measured from the image captured in accordance with the imaging command.
  • the predetermined condition is a condition that the third deviation between the measurement position and the target position is less than the fifth threshold value. According to this disclosure, the position of the object can be accurately positioned at the target position.
  • the control system includes a moving mechanism for moving the object and a visual sensor for imaging the object.
  • the control method in the object control system includes the following first to fifth steps.
  • the estimated position of the object is determined for each second period shorter than the first period, based on the image captured by the visual sensor for each first period and the position related information from the moving mechanism. It is a step to do.
  • the second step is a step in which a movement command for adjusting the estimated position to the target position of the object is updated every second period and output to the movement mechanism.
  • the third step is a step of stopping the update of the movement command when the first deviation between the estimated position and the target position is less than the first threshold value.
  • the fourth step when the update of the movement command is stopped, it is determined whether the movement according to the final movement command is completed, and after determining that the movement according to the final movement command is completed, the imaging command is sent to the visual sensor. Is a step of outputting.
  • the fifth step is a step of determining that the positioning of the object is to be ended when the measurement result from the image captured in accordance with the imaging command satisfies a predetermined condition. According to this disclosure, the object can be positioned at high speed and with high accuracy.
  • a program for causing a computer to execute the control method in the object control system causes the computer to execute the first to fifth steps.
  • the object can be positioned at high speed and with high accuracy.
  • the object can be positioned at high speed and with high accuracy.
  • FIG. 1 is a schematic diagram showing an outline of a control system according to the present embodiment.
  • the control system 1 shown in FIG. 1 performs positioning using image processing.
  • the positioning typically means a process of placing an object (hereinafter also referred to as “work W”) at an original position of the production line in the manufacturing process of an industrial product.
  • the control system 1 positions the glass substrate with respect to the exposure mask before the circuit pattern printing process (exposure process) on the glass substrate in the production line of the liquid crystal panel.
  • control system 1 includes a stage device 10, a servo driver 20, a visual sensor 30, and a controller 40.
  • the stage device 10 moves the workpiece W to be placed.
  • the stage device 10 operates under operation control from the servo driver 20.
  • the servo driver 20 controls the operation of the stage device 10 using the movement command MV received every control cycle Tc.
  • the servo driver 20 acquires the encoder value PVm of the motor included in the stage device 10 and outputs it to the controller 40. At this time, the servo driver 20 outputs the encoder value PVm to the controller 40 at the same cycle as the control cycle Tc.
  • the stage device 10 and the servo driver 20 constitute a moving mechanism for moving the workpiece W.
  • the visual sensor 30 images a region including the workpiece W placed on the stage device 10 and performs processing on the image obtained by the imaging, whereby a position of a specific point on the workpiece W (hereinafter, a measurement position PVv). Measure).
  • the specific point is, for example, a mark marked on the workpiece W, a corner of the workpiece W, or the like.
  • the visual sensor 30 includes an imaging unit 31 and an image processing unit 32.
  • the imaging unit 31 performs an imaging process of capturing an image of a subject existing in the imaging field and generating image data, and images the workpiece W.
  • the imaging unit 31 is a camera, for example.
  • the imaging unit 31 performs imaging in accordance with imaging triggers TR1 and TR2 from the controller 40.
  • the image processing unit 32 performs image analysis on the image data generated by the imaging unit 31 and measures the measurement position PVv.
  • the controller 40 is, for example, a PLC (programmable logic controller), and performs various FA controls.
  • the controller 40 includes, for example, a first imaging command unit 41, a position determination unit 42, a feedback control unit 43, a stop control unit 44, a second imaging command unit 45, and a determination unit 46.
  • the first imaging command unit 41 outputs an imaging trigger TR1 to the visual sensor 30 at a predetermined imaging cycle Tp.
  • the imaging cycle Tp is set longer than the total time of the time required for the imaging processing by the imaging unit 31 and the time required for measurement of the measurement position PVv by the image processing unit 32, and is longer than the control cycle Tc.
  • the first imaging command unit 41 When the first imaging command unit 41 receives the stop signal SS from the stop control unit 44, the first imaging command unit 41 stops the output process of the imaging trigger TR1. When receiving the restart signal RS from the determination unit 46 in a state where the output process of the imaging trigger TR1 is stopped, the first imaging command unit 41 restarts the output process of the imaging trigger TR1.
  • the position determination unit 42 calculates the estimated position PV of the workpiece W for each control cycle Tc based on the measurement position PVv measured for each imaging cycle Tp by the visual sensor 30 and the encoder value PVm output for each control cycle Tc. decide.
  • the feedback control unit 43 uses the target position SP and the estimated position PV determined by the position determination unit 42 to update a movement command MV for adjusting the estimated position PV to the target position SV every control cycle Tc. Output to the driver 20.
  • Feedback control unit 43 includes a subtraction unit 431 and a PID calculation unit 432.
  • the subtraction unit 431 outputs a deviation (distance)
  • the PID calculation unit 432 performs PID calculation so that the distance
  • the PID calculation unit 432 outputs a movement command MV to the servo driver 20.
  • the movement command MV is, for example, a position command or a speed command.
  • the feedback control unit 43 When the feedback control unit 43 receives the stop signal SS from the stop control unit 44, the feedback control unit 43 stops updating the movement command MV. When the feedback control unit 43 receives the restart signal RS from the determination unit 46 while the update of the movement command MV is stopped, the feedback control unit 43 restarts the update of the movement command MV.
  • the stop control unit 44 compares the distance
  • the stop control unit 44 stops the update of the movement command MV by the feedback control unit 43 by outputting a stop signal SS to the feedback control unit 43. Furthermore, the stop control unit 44 stops the output process of the imaging trigger TR1 by the first imaging command unit 41 by outputting a stop signal SS to the first imaging command unit 41.
  • the second imaging command unit 45 determines whether or not the movement of the workpiece W accompanying the final movement command at the time of the update stop is completed when the update of the movement command is stopped by the stop signal SS.
  • the second imaging command unit 45 outputs the imaging trigger TR2 to the visual sensor 30 after determining that the movement of the work W accompanying the final movement command is completed.
  • the determination unit 46 determines whether or not the measurement position PVv from the image captured in accordance with the imaging trigger TR2 satisfies a predetermined condition. This condition is a condition for determining the end of positioning. The determination unit 46 determines that the positioning of the workpiece W is finished when the measurement position PVv satisfies a predetermined condition, and outputs an end signal FS. When the end signal FS is output, the controller 40 ends the movement control of the stage apparatus 10.
  • the determination unit 46 outputs a restart signal RS to the first imaging command unit 41 and the feedback control unit 43 when the measurement position PVv does not satisfy a predetermined condition.
  • the restart signal RS is output, the first imaging command unit 41 resumes the output process of the imaging trigger TR1, and the feedback control unit 43 resumes the update of the movement command MV.
  • the feedback control unit 43 updates the movement command for adjusting the estimated position PV to the target position SP of the workpiece W for each control cycle Tc and outputs it to the servo driver 20.
  • work W can be performed with the precision which can be visually recognized by the visual sensor 30.
  • FIG. Therefore, robustness against disturbance is improved and positioning accuracy is improved.
  • the estimated position PV is determined for each control period Tc based on an image captured by the visual sensor 30 for each imaging period Tp and an encoder value PVm that is position-related information from the stage apparatus 10.
  • the imaging cycle Tp of the visual sensor 30 is longer than the control cycle Tc. Since the measurement position PVv is position information with a long update cycle and a delay, if feedback control is performed using the measurement position PVv instead of the estimated position PV, overshoot and vibration are likely to occur. The control gain cannot be increased too much.
  • the estimated position PV is determined based on the encoder value PVm that is position-related information from the stage apparatus 10, and the gain in feedback control can be increased by using the estimated position PV, and the estimated position PV is set to the target position SP. Can approach high speed.
  • the stop control unit 44 stops the update of the movement command by the feedback control unit 43 when the distance
  • the second imaging command unit 45 determines whether or not the movement according to the final movement command at the time of the update stop is completed, and after determining that the movement according to the final movement command is completed
  • the imaging trigger TR2 is output to the visual sensor 30.
  • the determination unit 46 determines to end the positioning of the workpiece W. Thereby, the workpiece W can be positioned with high accuracy.
  • the estimated position PV is determined based on the image captured at each imaging cycle Tp and the encoder value PVm output at each control cycle Tc. Therefore, the estimation error of the estimated position PV is smaller than the error between the measurement position PVv and the current position measured based only on the image captured at each imaging cycle Tp. As a result, the frequency at which the measurement position PVv does not satisfy the predetermined condition due to the movement according to the final movement command after the distance
  • the workpiece W can be positioned at high speed and with high accuracy.
  • FIG. 2 is a perspective view showing an example of a stage apparatus constituting the control system 1 according to the present embodiment.
  • the stage apparatus 10 includes an X stage 11, a Y stage 13, a ⁇ stage 15, and servo motors 12, 14, and 16.
  • the X stage 11 moves along the X direction by driving the servo motor 12.
  • the Y stage 13 moves along the Y direction by driving the servo motor 14.
  • the ⁇ stage 15 is rotated in the ⁇ direction by driving the servo motor 16.
  • Each of the servo motors 12, 14, 16 is provided with an encoder.
  • the encoder detects the rotational position of the corresponding motor and outputs an encoder value PVm as a detection result.
  • FIG. 3 is a schematic diagram illustrating a hardware configuration of the image processing unit 32 configuring the control system 1 according to the present embodiment.
  • the image processing unit 32 typically has a structure according to a general-purpose computer architecture, and implements various types of image processing as will be described later by the processor executing a preinstalled program.
  • the image processing unit 32 includes a processor 310 such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit), a RAM (Random Access Memory) 312, a display controller 314, and a system controller 316. , An I / O (Input Output) controller 318, a hard disk 320, a camera interface 322, an input interface 324, a controller interface 326, a communication interface 328, and a memory card interface 330. These units are connected to each other so as to be capable of data communication with a system controller 316 as a center.
  • a processor 310 such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit), a RAM (Random Access Memory) 312, a display controller 314, and a system controller 316.
  • An I / O (Input Output) controller 318 a hard disk 320, a camera interface 322, an input interface 324, a controller interface 326, a communication interface 328
  • the processor 310 exchanges programs (codes) and the like with the system controller 316 and executes them in a predetermined order, thereby realizing the target arithmetic processing.
  • the system controller 316 is connected to the processor 310, the RAM 312, the display controller 314, and the I / O controller 318 via buses, and performs data exchange with each unit and the processing of the entire image processing unit 32. To manage.
  • the RAM 312 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory), a program read from the hard disk 320, an image (image data) captured by the imaging unit 31, and an image Holds processing results and work data.
  • the processing result for the image includes the exposure start time and the exposure end time when the image is captured, and the measurement position PVv.
  • the display controller 314 is connected to the display unit 70 and outputs a signal for displaying various information to the display unit 70 in accordance with an internal command from the system controller 316.
  • the I / O controller 318 controls data exchange with a recording medium connected to the image processing unit 32 and an external device. More specifically, the I / O controller 318 is connected to the hard disk 320, the camera interface 322, the input interface 324, the controller interface 326, the communication interface 328, and the memory card interface 330.
  • the hard disk 320 is typically a non-volatile magnetic storage device, and stores various setting values in addition to programs executed by the processor 310.
  • the camera interface 322 corresponds to an input unit that receives image data generated by shooting the workpiece W, and mediates data transmission between the processor 310 and the imaging unit 31.
  • the camera interface 322 includes an image buffer for temporarily storing image data from the imaging unit 31.
  • the input interface 324 mediates data transmission between the processor 310 and an input device such as a keyboard 334, a mouse, a touch panel, and a dedicated console.
  • the controller interface 326 mediates data transmission between the processor 310 and the controller 40.
  • the communication interface 328 mediates data transmission between the processor 310 and another personal computer or server device (not shown).
  • the communication interface 328 typically includes Ethernet (registered trademark), USB (Universal Serial Bus), or the like.
  • the memory card interface 330 mediates data transmission between the processor 310 and the recording medium 50.
  • FIG. 4 is a schematic diagram showing a hardware configuration of a controller constituting the control system according to the present embodiment.
  • the controller 40 includes a main control unit 410 and a plurality of servo units 422, 424, 426.
  • the controller 40 according to the present embodiment includes the same number of servo units 422, 424, 426 as the servo motors 12, 14, 16 included in the stage device 10.
  • the main control unit 410 governs overall control of the controller 40.
  • the main control unit 410 is connected to the servo units 422, 424, and 426 via the internal bus 419, and exchanges data with each other.
  • the servo units 422, 424, and 426 output control commands (typically drive pulses and the like) to the servo drivers 22, 24, and 26, respectively, in accordance with internal commands from the main control unit 410 and the like.
  • the servo drivers 22, 24, and 26 are drivers that drive the connected servo motors 12, 14, and 16, respectively.
  • the main control unit 410 includes a chip set 411, a processor 412, a nonvolatile memory 413, a main memory 414, a system clock 415, a memory card interface 416, a communication interface 417, and an internal bus controller 418.
  • the chip set 411 and other components are coupled via various buses.
  • the processor 412 and the chip set 411 typically have a configuration according to a general-purpose computer architecture. That is, the processor 412 interprets and executes instruction codes sequentially supplied from the chipset 411 according to the internal clock.
  • the chip set 411 exchanges internal data with various connected components and generates instruction codes necessary for the processor 412.
  • the system clock 415 generates a system clock having a predetermined period and provides it to the processor 412.
  • the chip set 411 caches data obtained as a result of execution of arithmetic processing by the processor 412.
  • the main control unit 410 has a nonvolatile memory 413 and a main memory 414 as storage means.
  • the nonvolatile memory 413 holds data definition information, log information, and the like in addition to the OS and the control program 430 executed by the processor 412.
  • the control program 430 is distributed while being stored in the recording medium 51 or the like.
  • the main memory 414 is a volatile storage area, holds various programs to be executed by the processor 412, and is also used as a working memory when executing the various programs.
  • the main control unit 410 has a communication interface 417 and an internal bus controller 418 as communication means. These communication circuits transmit and receive data.
  • the communication interface 417 exchanges data with the visual sensor 30.
  • the communication interface 417 receives from the visual sensor 30 the exposure start time and the exposure end time when capturing an image, and the measurement position PVv.
  • the internal bus controller 418 controls data exchange through the internal bus 419.
  • the internal bus controller 418 receives the encoder value PVm from the servo drivers 22, 24 and 26.
  • the internal bus controller 418 includes a buffer memory 481, a DMA (Dynamic Memory Access) control circuit 482, and an internal bus control circuit 483.
  • DMA Dynamic Memory Access
  • the memory card interface 416 connects the recording medium 51 detachably attached to the main control unit 410 and the processor 412.
  • the recording medium 51 stores information such as a program by an electrical, magnetic, optical, mechanical, or chemical action so that the information such as a program recorded by a computer or other device or machine can be read. It is a medium to do.
  • the recording medium 51 is distributed in a state where a control program 430 executed by the controller 40 is stored, and the memory card interface 416 reads the control program from the recording medium 51.
  • the recording medium 51 is a general-purpose semiconductor storage device such as SD (Secure Digital), a magnetic recording medium such as a flexible disk, or an optical recording medium such as a CD-ROM (Compact Disk Read Only Memory). Become.
  • a program downloaded from a distribution server or the like may be installed in the controller 40 via the communication interface 417.
  • Second imaging command unit 45 determines whether or not the movement of the workpiece W accompanying the final movement command is completed as follows.
  • the second imaging command unit 45 compares the deviation (distance)
  • the second imaging command unit 45 may acquire the measured positions from the encoder values PVm from the servo motors 12, 14, and 16, respectively. When the distance
  • the second imaging command unit 45 may compare the rotation speed and the threshold value Th2 for each of the servo motors 12, 14, and 16. The second imaging command unit 45 may acquire the respective rotation speeds from the encoder values PVm from the servo motors 12, 14, 16. When the rotation speed is lower than the threshold Th2 in all of the servo motors 12, 14, 16, the second imaging command unit 45 determines that the movement of the workpiece W accompanying the final movement command is completed, and outputs the imaging trigger TR2. .
  • the determination unit 46 determines whether or not to end the positioning of the workpiece W depending on whether or not the measurement position PVv satisfies a predetermined condition.
  • the condition is appropriately determined according to the accuracy required for positioning the workpiece W.
  • the predetermined condition is that the deviation (distance)
  • the determination unit 46 calculates the distance
  • the determination unit 46 outputs the end signal FS when the distance
  • the threshold value Th3 may be the same as or different from the threshold value Th1.
  • FIG. 5 is a flowchart illustrating an example of a process flow of the controller 40.
  • the controller 40 initializes the estimated position PV and the encoder value PVm (step S1).
  • the first imaging command unit 41 starts output processing of the imaging trigger TR1 for each imaging cycle Tp (step S2).
  • the position determination unit 42 determines the estimated position PV (step S3). Details of the process of determining the estimated position PV will be described later.
  • the feedback control unit 43 performs feedback control based on the estimated position PV and the target position SV (step S4). Specifically, the feedback control unit 43 calculates a movement command MV for adjusting the estimated position PV to the target position SV and outputs it to the servo drivers 22, 24, and 26.
  • the stop control unit 44 compares the distance
  • the stop control unit 44 If the distance
  • the second imaging command unit 45 compares the distance
  • the determination unit 46 acquires the measurement position PVv measured from the image imaged according to the imaging trigger TR2 from the visual sensor 30 (step S9).
  • the determination unit 46 compares the distance
  • the restart signal RS is output from the determination unit 46, and the process returns to step S2. If the distance
  • a predetermined process is performed on the positioned workpiece W. For example, when positioning the work W with respect to the exposure mask before the circuit pattern printing process (exposure process) on the work W that is a glass substrate, the controller 40 prints when the end signal FS is output from the determination unit 46. Drive control of the apparatus which performs processing.
  • the position determination unit 42 calculates the estimated position PV by performing a process such as that shown in the flowchart of FIG.
  • FIG. 6 is a flowchart showing the processing contents of the subroutine of the estimated position determination processing shown in FIG.
  • the position determination unit 42 detects whether or not the measurement position PVv from the visual sensor 30 is obtained (step S21). If it is the time when the measurement position PVv is obtained (YES in step S21), the position determination unit 42 detects whether or not the measurement position PVv is a normal value (step S22). For example, the position determining unit 42 determines that the measured position PVv is a normal value if the measured position PVv is a value within a predetermined range. If the measurement position PVv is a normal value (YES in step S22), the position determination unit 42 receives an input of the measurement position PVv (step S23).
  • the position determination unit 42 estimates the encoder value PVms at the imaging time that is the basis for calculating the measurement position PVv (step S24). A specific method of this estimation will be described later.
  • the imaging time is, for example, an exposure start time (time when the shutter of the imaging unit 31 is opened) and an exposure end time (time when the shutter of the imaging unit 31 is closed). It is set by the middle time.
  • the position determination unit 42 outputs the calculated estimated position PV to the feedback control unit 43 (S26). Further, the position determination unit 42 updates and stores the estimated position PV as the reference estimated position PVp and the encoder value PVm at this time as the reference encoder value PVmp.
  • step S21 If it is time when the measurement position PVv from the visual sensor 30 is not obtained (NO in step S21), the position determination unit 42 detects whether or not the output of the measurement position PVv is one or more times (step S27). ). Further, if the measurement position PVv is not a normal value (NO in step S22), the position determination unit 42 similarly detects whether or not the output of the measurement position PVv is one or more times (step S27).
  • step S27 If there is no output of the measurement position PVv (NO in step S27), the position determination unit 42 maintains the estimated position PV as the initial value. After step S28 and if NO at step S27, the process proceeds to step S26. After step S26, the process returns to step S4 shown in FIG.
  • the controller 40 calculates the estimated position PV using the high-accuracy measurement position PVv at the time when the high-accuracy measurement position PVv by image processing is input.
  • Positioning control can be realized.
  • the time interval at which the measurement position PVv is input is the imaging cycle Tp, and is longer than the control cycle Tc at which the encoder value PVm is input.
  • the position determination unit 42 performs the position control by calculating the estimated position PV for each input time of the encoder value PVm having a short input cycle. Thereby, positioning control with high accuracy and a short cycle becomes possible.
  • the position determination unit 42 performs processing using the above-described simple four arithmetic operations. Therefore, high-speed and high-accuracy positioning can be realized with a simple configuration and processing.
  • Calculating the measurement position PVv requires time for imaging by the visual sensor 30 and image processing. Therefore, the imaging cycle Tp is long. Even if the measurement position PVv is obtained at the calculation time tn of the estimated position PV, the measurement position PVv is based on the image captured at the imaging time tv1 past the calculation time tn, and the workpiece W at the imaging time tv1 Is calculated with high accuracy.
  • the time (tn ⁇ tv1) has elapsed from the imaging time tv1 to the calculation time tn, and the workpiece W is moving. Therefore, the movement of the workpiece W must be corrected.
  • the encoder value PVm is updated at a control cycle Tc shorter than the imaging cycle Tp.
  • the position determination unit 42 performs the calculation shown in (Equation 1). Specifically, the position determination unit 42 acquires the encoder value PVms at the imaging time tv1 and the encoder value PVm at the calculation time tn.
  • the position determination unit 42 calculates the estimated position PV at the calculation time tn by adding the change ⁇ PVm (PVm ⁇ PVms) of the encoder value PVm for the time (tn ⁇ tv1) to the measurement position PVv. At this time, the estimated position PV becomes discontinuous at the calculation time tn.
  • the time change of the estimated position PV can be smoothed by using a smoothing process (for example, moving averaging process) on the estimated position PV. More preferable.
  • the estimated position PV reflects the position of the workpiece W at the calculation time tn with high accuracy. Therefore, highly accurate positioning control is possible.
  • FIG. 7 is a flowchart showing the processing contents of a subroutine for estimation processing of the encoder value at the time of imaging shown in FIG.
  • the position determination unit 42 acquires the imaging time (S31).
  • the position determination unit 42 acquires encoder values PVm at a plurality of times close to the imaging time (S32).
  • the position determination unit 42 calculates an interpolation value of the encoder values PVm at a plurality of times and sets it as the encoder value PVms at the imaging time (S33). If the imaging time matches the encoder value calculation time, this encoder value may be used as it is.
  • the position determination unit 42 acquires the encoder value PVm (n) at the calculation time tn for calculating the estimated position PV.
  • the position determination unit 42 acquires an imaging time tvi that is past the calculation time tn.
  • the position determination unit 42 includes two times close to the imaging time tvi, for example, a past calculation time t (n ⁇ k) and a past calculation time t (n ⁇ k + 1) sandwiching the imaging time tvi on the time axis. Is detected.
  • the position determination unit 42 acquires the encoder value PVm (nk) at the calculation time t (nk) and the encoder value PVm (nk + 1) at the calculation time t (nk + 1).
  • the past encoder values are stored in the storage unit of the controller 40 (for example, the nonvolatile memory 413 or the main memory 414 (see FIG. 3)).
  • Kk is an interpolation coefficient.
  • the control cycle is Tc
  • the transmission delay time of the encoder value PVm is Ted
  • the transmission delay time of the imaging trigger TR1 is Tsd
  • Tc ⁇ Ted ⁇ Tsd ⁇ 2Tc ⁇ Ted the interpolation coefficient Kk is Calculated using Equation 4).
  • Kk ⁇ Tsd ⁇ (Tc ⁇ Ted) ⁇ / Tc (Expression 4)
  • the encoder value PVms (ni) at the imaging time tvi can be calculated with high accuracy.
  • the estimated position PV with higher accuracy can be calculated, and positioning control with higher accuracy becomes possible.
  • the second imaging command unit 45 may determine that the movement according to the final movement command is completed when the elapsed time after the stop signal SS is output from the stop control unit 44 exceeds the threshold Th4. .
  • the threshold value Th4 is determined in advance so as to be longer than the time required to complete the movement according to the final movement command. For example, the time required to complete the movement according to the final movement command is confirmed by a preliminary experiment, and a time longer than the maximum value of the time is determined as the threshold Th4.
  • stop control unit 44 includes a comparator circuit that compares a voltage value corresponding to distance
  • the comparator circuit outputs a stop signal SS that becomes active when the distance
  • the second imaging command unit 45 includes a comparator circuit that compares a voltage value corresponding to the distance
  • the comparator circuit outputs an imaging trigger TR2 that becomes active when the distance
  • the determination unit 46 includes a comparator circuit that compares the voltage value corresponding to the distance
  • the comparator circuit outputs an end signal FS that becomes active when the distance
  • the imaging command unit (45) moves in accordance with the final movement command when a second deviation between a position command value indicated by the final movement command and a position indicated by the position related information is less than a second threshold value.
  • the control system (1) according to Configuration 1 or 2, wherein it is determined that is completed.
  • the imaging command unit (45) determines that the movement according to the final movement command is completed when the elapsed time since the update of the movement command is stopped by the stop control unit (44) exceeds a fourth threshold value.
  • the control system (1) according to configuration 1 or 2.
  • the measurement result indicates a measurement position of the object (W) measured from an image captured according to the imaging command,
  • the control system (1) according to any one of configurations 1 to 5, wherein the predetermined condition is a condition that a third deviation between the measurement position and the target position is less than a fifth threshold value.
  • (Configuration 7) A control method in a control system (1) for an object (W), The control system (1) A moving mechanism (10, 20) for moving the object (W); A visual sensor (30) for imaging the object (W), The control method is: Based on the image captured by the visual sensor (30) for each first period and the position related information from the moving mechanism (10, 20), the target for each second period shorter than the first period.
  • the control system (1) A moving mechanism (10, 20) for moving the object (W);
  • the control method is: Based on the image captured by the visual sensor (30) for each first period and the position related information from the moving mechanism (10, 20), the target for each second period shorter than the first period.

Abstract

An alignment part determines an estimated position of a subject of interest for each control period on the basis of an image captured in each image capture period and of position-related information from a mobile mechanism. Every second period, a feedback control part updates a movement command for aligning the estimated position with a target position. An interrupt control part interrupts the update of the movement command if the deviation between the estimated position and the target position is less than a threshold. A determination part determines that the alignment of the subject of interest is to be ended if a measurement result, derived from the image having been captured after it was determined that a movement according to the final movement command has been completed, satisfies a predetermined condition. A subject of interest may thus be aligned rapidly and precisely.

Description

制御システム、制御方法およびプログラムControl system, control method and program
 本技術は、視覚センサを用いた制御システム、制御方法およびプログラムに関する。 This technology relates to a control system, a control method, and a program using a visual sensor.
 FA(ファクトリーオートメーション)において、対象物の位置を目標位置に合わせる技術(位置決め技術)が各種実用化されている。この際、対象物の位置と目標位置との偏差(距離)を計測する方法として、視覚センサによって撮像された画像を用いる方法がある。 In FA (Factory Automation), various technologies (positioning technologies) for aligning the position of an object with a target position have been put into practical use. At this time, as a method for measuring the deviation (distance) between the position of the object and the target position, there is a method using an image captured by a visual sensor.
 特開2017-24134号公報(特許文献1)には、可動台と、可動台を移動させる駆動機構と、可動台に載置されたワークを繰り返し撮像し、当該ワークの位置を繰り返し検出する視覚センサとを備えるワーク位置決め装置が開示されている。ワーク位置決め装置は、視覚センサによって位置が検出される毎に、検出された位置と目標位置との差を算出し、当該差が許容範囲内であると判定されたときに、可動台の移動を停止する。ワーク位置決め装置は、可動台の移動停止後に視覚センサによって検出された位置と目標位置との差を算出し、算出された差が許容範囲内であるか否かを判定する。差が許容範囲外であると判定されると、当該差を小さくする可動台の移動方向が決定され、決定された移動方向へ可動台を移動させるように、駆動機構が制御される。 Japanese Patent Laid-Open No. 2017-24134 (Patent Document 1) discloses a visual system that repeatedly picks up images of a movable table, a driving mechanism that moves the movable table, and a workpiece placed on the movable table, and repeatedly detects the position of the workpiece. A workpiece positioning device including a sensor is disclosed. The workpiece positioning device calculates the difference between the detected position and the target position every time the position is detected by the visual sensor, and moves the movable base when it is determined that the difference is within the allowable range. Stop. The workpiece positioning device calculates the difference between the position detected by the visual sensor after the movable table stops moving and the target position, and determines whether the calculated difference is within an allowable range. If it is determined that the difference is outside the allowable range, the moving direction of the movable base that reduces the difference is determined, and the drive mechanism is controlled to move the movable base in the determined moving direction.
特開2017-24134号公報Japanese Patent Laid-Open No. 2017-24134
 視覚センサによる位置の検出にはある程度の時間を要する。そのため、視覚センサによって検出された位置と目標位置との差が許容範囲内となり、可動台の移動を停止したとしても、視覚センサによる位置の検出時間における可動台の移動によって、ワークの現在の位置と目標位置の差が許容範囲外になり得る。したがって、特許文献1の記載の技術では、可動台の移動停止後に視覚センサによって検出された位置と目標位置との差が許容範囲外であると判定される頻度が高くなり、位置決め速度が低下しやすい。許容範囲を広げることにより、当該頻度が低下するが、この場合、位置決め精度が低下する。 位置 It takes a certain amount of time to detect the position with the visual sensor. Therefore, even if the difference between the position detected by the visual sensor and the target position is within the allowable range and the movement of the movable table is stopped, the current position of the workpiece is detected by the movement of the movable table during the position detection time by the visual sensor. The difference between the target position and the target position may be outside the allowable range. Therefore, in the technique described in Patent Document 1, the frequency at which the difference between the position detected by the visual sensor after the movement of the movable base stops and the target position is determined to be outside the allowable range increases, and the positioning speed decreases. Cheap. By expanding the allowable range, the frequency decreases, but in this case, the positioning accuracy decreases.
 本発明は、上記の問題を鑑みてなされたものであり、その目的は、対象物を高速かつ高精度に位置決めできる制御システム、制御方法およびプログラムを提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a control system, a control method, and a program capable of positioning an object at high speed and with high accuracy.
 本開示の一例によれば、対象物の制御システムは、対象物を移動させるための移動機構と、対象物を撮像するための視覚センサと、位置決定部と、フィードバック制御部と、停止制御部と、撮像指令部と、判定部とを備える。位置決定部は、視覚センサによって第1周期ごとに撮像された画像と移動機構からの位置関連情報とに基づいて、第1周期よりも短い第2周期ごとに、対象物の推定位置を決定する。フィードバック制御部は、推定位置を対象物の目標位置に合わせるための移動指令を第2周期ごとに更新して移動機構に出力する。停止制御部は、推定位置と目標位置との第1偏差が第1閾値未満である場合に、フィードバック制御部による移動指令の更新を停止させる。撮像指令部は、移動指令の更新が停止された場合に、最終移動指令に従う移動が完了したか否かを判定し、最終移動指令に従う移動が完了したと判定した後に、視覚センサに撮像指令を出力する。判定部は、撮像指令に応じて撮像された画像からの計測結果が予め定められた条件を満たす場合に、対象物の位置決めを終了すると判定する。 According to an example of the present disclosure, an object control system includes a moving mechanism for moving an object, a visual sensor for imaging the object, a position determination unit, a feedback control unit, and a stop control unit. And an imaging command unit and a determination unit. The position determination unit determines the estimated position of the target object for each second period shorter than the first period, based on the image captured by the visual sensor for each first period and the position related information from the moving mechanism. . The feedback control unit updates a movement command for adjusting the estimated position to the target position of the target object every second period and outputs the updated movement command to the movement mechanism. The stop control unit stops the update of the movement command by the feedback control unit when the first deviation between the estimated position and the target position is less than the first threshold. When the update of the movement command is stopped, the imaging command unit determines whether the movement according to the final movement command is completed, determines that the movement according to the final movement command is completed, and then issues an imaging command to the visual sensor. Output. The determination unit determines to end the positioning of the object when the measurement result from the image captured in response to the imaging command satisfies a predetermined condition.
 この開示によれば、フィードバック制御部は、推定位置を目標位置に合わせるための移動指令を第2周期ごとに更新して移動機構に出力する。これにより、視覚センサによって視認可能な精度で、対象物の状態に応じた位置決めを行なうことができる。そのため、外乱に対するロバスト性が向上し、位置決め精度が向上する。 According to this disclosure, the feedback control unit updates the movement command for adjusting the estimated position to the target position every second period and outputs the updated movement command to the movement mechanism. Thereby, the positioning according to the state of the object can be performed with an accuracy that can be visually recognized by the visual sensor. Therefore, robustness against disturbance is improved and positioning accuracy is improved.
 推定位置は、視覚センサによって第1周期ごとに撮像された画像と移動機構からの位置関連情報に基づいて、第2周期ごとに決定される。視覚センサは一般に応答性が低い。そのため、視覚センサから得られた画像を用いてフィードバック制御が行なわれると、オーバシュートや振動が生じやすくなるため、フィードバック制御のゲインをあまり強くできない。しかしながら、移動機構からの位置関連情報に基づいて決定される推定位置を用いることにより、フィードバック制御におけるゲインを強くでき、推定位置を目標位置に高速に近づけることができる。 The estimated position is determined for each second period based on the image captured by the visual sensor for each first period and the position related information from the moving mechanism. Visual sensors generally have low responsiveness. For this reason, if feedback control is performed using an image obtained from a visual sensor, overshoot and vibration are likely to occur, so the gain of feedback control cannot be increased very much. However, by using the estimated position determined based on the position related information from the moving mechanism, the gain in the feedback control can be increased and the estimated position can be brought close to the target position at high speed.
 さらに、推定位置と目標位置との第1偏差が第1閾値未満である場合に、移動指令の更新が停止され、最終移動指令に従う移動が完了したと判定した後に、視覚センサに撮像指令が出力される。撮像指令に応じて撮像された画像からの計測結果が予め定められた条件を満たす場合に、位置決めを終了すると判定される。すなわち、最終移動指令に従う対象物の移動の完了後に得られる画像によって、対象物の位置が再確認される。そして、最終移動指令に従う移動を考慮しても計測結果が予め定められた条件を満たす場合に位置決めが終了される。これにより、対象物の位置決めを高精度に行なうことができる。 Further, when the first deviation between the estimated position and the target position is less than the first threshold, the update of the movement command is stopped, and after it is determined that the movement according to the final movement command is completed, the imaging command is output to the visual sensor. Is done. When the measurement result from the image captured in accordance with the imaging command satisfies a predetermined condition, it is determined that the positioning is to be ended. That is, the position of the object is reconfirmed by the image obtained after the movement of the object in accordance with the final movement command is completed. Then, even if the movement according to the final movement command is taken into account, the positioning is ended when the measurement result satisfies a predetermined condition. Thereby, positioning of a target object can be performed with high precision.
 さらに、上述したように、視覚センサの応答性が低いため、視覚センサが撮像した画像から得られる対象物の位置と移動中の対象物の現在位置との差が大きくなりやすい。これに対し、推定位置は、第1周期よりも短い第2周期ごとに、移動機構からの位置関連情報に基づいて決定される。そのため、推定位置の推定誤差は、第1周期ごとに撮像された画像のみに基づいて計測される位置の誤差よりも小さい。その結果、推定位置と目標位置との第1偏差が第1閾値未満となった後の最終移動指令に従う移動によって、計測結果が予め定められた条件を満たさなくなる頻度が低い。これにより、高速に位置決めすることができる。 Furthermore, as described above, since the responsiveness of the visual sensor is low, the difference between the position of the target obtained from the image captured by the visual sensor and the current position of the moving target tends to increase. On the other hand, the estimated position is determined based on the position related information from the moving mechanism every second period shorter than the first period. Therefore, the estimated error of the estimated position is smaller than the error of the position measured based only on the image captured every first period. As a result, the frequency at which the measurement result does not satisfy the predetermined condition due to the movement according to the final movement command after the first deviation between the estimated position and the target position is less than the first threshold is low. Thereby, it can position at high speed.
 このように、本開示の制御システムによれば、対象物を高速かつ高精度に位置決めできる。 Thus, according to the control system of the present disclosure, the object can be positioned at high speed and with high accuracy.
 上述の開示において、計測結果が予め定められた条件を満たさない場合に、フィードバック制御部は、移動指令の更新を再開する。この開示によれば、最終移動指令に従う移動によって計測結果が予め定められた条件を満たさなくなった場合でも移動指令の更新を再開することができる。 In the above disclosure, when the measurement result does not satisfy a predetermined condition, the feedback control unit resumes the update of the movement command. According to this disclosure, the update of the movement command can be resumed even when the measurement result does not satisfy the predetermined condition due to the movement according to the final movement command.
 上述の開示において、撮像指令部は、最終移動指令で示される位置指令値と、位置関連情報によって示される位置との第2偏差が第2閾値未満である場合に、最終移動指令に従う移動が完了したと判定する。もしくは、撮像指令部は、位置関連情報によって示される速度が第3閾値未満である場合に、最終移動指令に従う移動が完了したと判定してもよい。これらの開示によれば、最終移動指令に従う移動の完了の有無を確実に判定できる。 In the above disclosure, the imaging command unit completes the movement according to the final movement command when the second deviation between the position command value indicated by the final movement command and the position indicated by the position related information is less than the second threshold value. It is determined that Alternatively, the imaging command unit may determine that the movement according to the final movement command is completed when the speed indicated by the position related information is less than the third threshold. According to these disclosures, it is possible to reliably determine whether or not the movement according to the final movement command is completed.
 あるいは、撮像指令部は、停止制御部によって移動指令の更新が停止されてからの経過時間が第4閾値を超える場合に、最終移動指令に従う移動が完了したと判定してもよい。この開示によれば、位置関連情報を用いることなく、簡易に最終移動指令に従う移動の完了の有無を判定できる。 Alternatively, the imaging command unit may determine that the movement according to the final movement command is completed when the elapsed time after the update of the movement command is stopped by the stop control unit exceeds the fourth threshold value. According to this disclosure, it is possible to easily determine whether or not the movement according to the final movement command is completed without using the position related information.
 上述の開示において、計測結果は、撮像指令に応じて撮像された画像から計測された対象物の計測位置を示す。予め定められた条件は、計測位置と目標位置との第3偏差が第5閾値未満であるという条件である。この開示によれば、対象物の位置を目標位置に高精度に位置決めすることができる。 In the above disclosure, the measurement result indicates the measurement position of the object measured from the image captured in accordance with the imaging command. The predetermined condition is a condition that the third deviation between the measurement position and the target position is less than the fifth threshold value. According to this disclosure, the position of the object can be accurately positioned at the target position.
 本開示の一例によれば、制御システムは、対象物を移動させるための移動機構と、対象物を撮像するための視覚センサとを含む。対象物の制御システムにおける制御方法は、以下の第1~第5のステップを備える。第1のステップは、視覚センサによって第1周期ごとに撮像された画像と移動機構からの位置関連情報とに基づいて、第1周期よりも短い第2周期ごとに、対象物の推定位置を決定するステップである。第2のステップは、推定位置を対象物の目標位置に合わせるための移動指令を第2周期ごとに更新して移動機構に出力するステップである。第3のステップは、推定位置と目標位置との第1偏差が第1閾値未満である場合に、移動指令の更新を停止させるステップである。第4のステップは、移動指令の更新が停止された場合に、最終移動指令に従う移動が完了したか否かを判定し、最終移動指令に従う移動が完了したと判定した後に、視覚センサに撮像指令を出力するステップである。第5のステップは、撮像指令に応じて撮像された画像からの計測結果が予め定められた条件を満たす場合に、対象物の位置決めを終了すると判定するステップである。この開示によっても、対象物を高速かつ高精度に位置決めできる。 According to an example of the present disclosure, the control system includes a moving mechanism for moving the object and a visual sensor for imaging the object. The control method in the object control system includes the following first to fifth steps. In the first step, the estimated position of the object is determined for each second period shorter than the first period, based on the image captured by the visual sensor for each first period and the position related information from the moving mechanism. It is a step to do. The second step is a step in which a movement command for adjusting the estimated position to the target position of the object is updated every second period and output to the movement mechanism. The third step is a step of stopping the update of the movement command when the first deviation between the estimated position and the target position is less than the first threshold value. In the fourth step, when the update of the movement command is stopped, it is determined whether the movement according to the final movement command is completed, and after determining that the movement according to the final movement command is completed, the imaging command is sent to the visual sensor. Is a step of outputting. The fifth step is a step of determining that the positioning of the object is to be ended when the measurement result from the image captured in accordance with the imaging command satisfies a predetermined condition. According to this disclosure, the object can be positioned at high speed and with high accuracy.
 本開示の一例によれば、対象物の制御システムにおける制御方法をコンピュータに実行させるためのプログラムは、上記の第1~第5のステップをコンピュータに実行させる。この開示によっても、対象物を高速かつ高精度に位置決めできる。 According to an example of the present disclosure, a program for causing a computer to execute the control method in the object control system causes the computer to execute the first to fifth steps. According to this disclosure, the object can be positioned at high speed and with high accuracy.
 本発明によれば、対象物を高速かつ高精度に位置決めできる。 According to the present invention, the object can be positioned at high speed and with high accuracy.
本実施の形態に係る制御システムの概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the control system which concerns on this Embodiment. 本実施の形態に係る制御システムを構成するステージ装置の一例を示す斜視図である。It is a perspective view which shows an example of the stage apparatus which comprises the control system which concerns on this Embodiment. 本実施の形態に係る制御システムを構成する画像処理部のハードウェア構成を示す模式図である。It is a schematic diagram which shows the hardware constitutions of the image process part which comprises the control system which concerns on this Embodiment. 本実施の形態に係る制御システムを構成するコントローラのハードウェア構成を示す模式図である。It is a schematic diagram which shows the hardware constitutions of the controller which comprises the control system which concerns on this Embodiment. コントローラの処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process of a controller. 図5に示す推定位置決定処理のサブルーチンの処理内容を示すフローチャートである。It is a flowchart which shows the processing content of the subroutine of the estimated position determination process shown in FIG. 図6に示す撮像時エンコーダ値の推定処理のサブルーチンの処理内容を示すフローチャートである。It is a flowchart which shows the processing content of the subroutine of the estimation process of the encoder value at the time of imaging shown in FIG.
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. Note that the same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated.
 §1 適用例
 図1を参照して、本発明が適用される場面の一例について説明する。図1は、本実施の形態に係る制御システムの概要を示す模式図である。図1に示す制御システム1は、画像処理を用いて位置決めを行なう。位置決めは、典型的には、工業製品の製造過程などにおいて、対象物(以下、「ワークW」とも称す)を生産ラインの本来の位置に配置する処理などを意味する。たとえば、制御システム1は、液晶パネルの生産ラインにおいて、ガラス基板に回路パターンの焼付処理(露光処理)前に、露光マスクに対するガラス基板の位置決めを行なう。
§1 Application example An example of a scene to which the present invention is applied will be described with reference to FIG. FIG. 1 is a schematic diagram showing an outline of a control system according to the present embodiment. The control system 1 shown in FIG. 1 performs positioning using image processing. The positioning typically means a process of placing an object (hereinafter also referred to as “work W”) at an original position of the production line in the manufacturing process of an industrial product. For example, the control system 1 positions the glass substrate with respect to the exposure mask before the circuit pattern printing process (exposure process) on the glass substrate in the production line of the liquid crystal panel.
 図1に示すように、制御システム1は、ステージ装置10と、サーボドライバ20と、視覚センサ30と、コントローラ40とを備える。 As shown in FIG. 1, the control system 1 includes a stage device 10, a servo driver 20, a visual sensor 30, and a controller 40.
 ステージ装置10は、載置されるワークWを移動する。ステージ装置10は、サーボドライバ20からの動作制御を受けて動作する。 The stage device 10 moves the workpiece W to be placed. The stage device 10 operates under operation control from the servo driver 20.
 サーボドライバ20は、制御周期Tcごとに受ける移動指令MVを用いて、ステージ装置10の動作制御を行なう。サーボドライバ20は、ステージ装置10に含まれるモータのエンコーダ値PVmを取得して、コントローラ40に出力する。この際、サーボドライバ20は、制御周期Tcと同じ周期で、エンコーダ値PVmをコントローラ40に出力する。 The servo driver 20 controls the operation of the stage device 10 using the movement command MV received every control cycle Tc. The servo driver 20 acquires the encoder value PVm of the motor included in the stage device 10 and outputs it to the controller 40. At this time, the servo driver 20 outputs the encoder value PVm to the controller 40 at the same cycle as the control cycle Tc.
 ステージ装置10およびサーボドライバ20は、ワークWを移動させるための移動機構を構成する。 The stage device 10 and the servo driver 20 constitute a moving mechanism for moving the workpiece W.
 視覚センサ30は、ステージ装置10上に載置されたワークWを含む領域を撮像し、撮像により得られた画像に対する処理を行なうことにより、ワークW上の特定点の位置(以下、計測位置PVvという)を計測する。特定点は、たとえばワークWに印されたマーク、ワークWのコーナーなどである。 The visual sensor 30 images a region including the workpiece W placed on the stage device 10 and performs processing on the image obtained by the imaging, whereby a position of a specific point on the workpiece W (hereinafter, a measurement position PVv). Measure). The specific point is, for example, a mark marked on the workpiece W, a corner of the workpiece W, or the like.
 視覚センサ30は、撮像部31と画像処理部32とを含む。撮像部31は、撮像視野に存在する被写体を撮像して画像データを生成する撮像処理を行なうものであり、ワークWを撮像する。撮像部31は、たとえばカメラである。撮像部31は、コントローラ40からの撮像トリガTR1,TR2に応じて撮像を行なう。画像処理部32は、撮像部31により生成された画像データに対して画像解析を行ない、計測位置PVvを計測する。 The visual sensor 30 includes an imaging unit 31 and an image processing unit 32. The imaging unit 31 performs an imaging process of capturing an image of a subject existing in the imaging field and generating image data, and images the workpiece W. The imaging unit 31 is a camera, for example. The imaging unit 31 performs imaging in accordance with imaging triggers TR1 and TR2 from the controller 40. The image processing unit 32 performs image analysis on the image data generated by the imaging unit 31 and measures the measurement position PVv.
 コントローラ40は、たとえばPLC(プログラマブルロジックコントローラ)であり、各種のFA制御を行なう。コントローラ40は、たとえば第1撮像指令部41と、位置決定部42と、フィードバック制御部43と、停止制御部44と、第2撮像指令部45と、判定部46とを備える。 The controller 40 is, for example, a PLC (programmable logic controller), and performs various FA controls. The controller 40 includes, for example, a first imaging command unit 41, a position determination unit 42, a feedback control unit 43, a stop control unit 44, a second imaging command unit 45, and a determination unit 46.
 第1撮像指令部41は、予め定められた撮像周期Tpで撮像トリガTR1を視覚センサ30に出力する。撮像周期Tpは、撮像部31による撮像処理に要する時間と、画像処理部32による計測位置PVvの計測に要する時間との合計時間よりも長く設定され、制御周期Tcよりも長い。 The first imaging command unit 41 outputs an imaging trigger TR1 to the visual sensor 30 at a predetermined imaging cycle Tp. The imaging cycle Tp is set longer than the total time of the time required for the imaging processing by the imaging unit 31 and the time required for measurement of the measurement position PVv by the image processing unit 32, and is longer than the control cycle Tc.
 第1撮像指令部41は、停止制御部44から停止信号SSを受けると、撮像トリガTR1の出力処理を停止する。第1撮像指令部41は、撮像トリガTR1の出力処理を停止している状態において判定部46から再開信号RSを受けると、撮像トリガTR1の出力処理を再開する。 When the first imaging command unit 41 receives the stop signal SS from the stop control unit 44, the first imaging command unit 41 stops the output process of the imaging trigger TR1. When receiving the restart signal RS from the determination unit 46 in a state where the output process of the imaging trigger TR1 is stopped, the first imaging command unit 41 restarts the output process of the imaging trigger TR1.
 位置決定部42は、視覚センサ30によって撮像周期Tpごとに計測された計測位置PVvと制御周期Tcごとに出力されるエンコーダ値PVmとに基づいて、制御周期TcごとにワークWの推定位置PVを決定する。 The position determination unit 42 calculates the estimated position PV of the workpiece W for each control cycle Tc based on the measurement position PVv measured for each imaging cycle Tp by the visual sensor 30 and the encoder value PVm output for each control cycle Tc. decide.
 フィードバック制御部43は、目標位置SPと位置決定部42によって決定された推定位置PVとを用いて、推定位置PVを目標位置SVに合わせるための移動指令MVを制御周期Tcごとに更新してサーボドライバ20に出力する。フィードバック制御部43は、減算部431と、PID演算部432とを含む。 The feedback control unit 43 uses the target position SP and the estimated position PV determined by the position determination unit 42 to update a movement command MV for adjusting the estimated position PV to the target position SV every control cycle Tc. Output to the driver 20. Feedback control unit 43 includes a subtraction unit 431 and a PID calculation unit 432.
 減算部431は、推定位置PVと目標位置SVとの偏差(距離)|Lm1|を出力する。PID演算部432は、距離|Lm1|が0に収束するようにPID演算を行ない、制御周期Tcごとに移動指令MVを算出する。PID演算部432は、移動指令MVをサーボドライバ20に出力する。移動指令MVは、たとえば位置指令または速度指令である。 The subtraction unit 431 outputs a deviation (distance) | Lm1 | between the estimated position PV and the target position SV. The PID calculation unit 432 performs PID calculation so that the distance | Lm1 | converges to 0, and calculates a movement command MV for each control cycle Tc. The PID calculation unit 432 outputs a movement command MV to the servo driver 20. The movement command MV is, for example, a position command or a speed command.
 フィードバック制御部43は、停止制御部44から停止信号SSを受けると、移動指令MVの更新を停止する。フィードバック制御部43は、移動指令MVの更新を停止している状態において判定部46から再開信号RSを受けると、移動指令MVの更新を再開する。 When the feedback control unit 43 receives the stop signal SS from the stop control unit 44, the feedback control unit 43 stops updating the movement command MV. When the feedback control unit 43 receives the restart signal RS from the determination unit 46 while the update of the movement command MV is stopped, the feedback control unit 43 restarts the update of the movement command MV.
 停止制御部44は、推定位置PVと目標位置SVとの距離|Lm1|と閾値Th1とを比較し、距離|Lm1|が閾値Th1未満である場合に停止信号SSを出力する。停止制御部44は、停止信号SSをフィードバック制御部43に出力することにより、フィードバック制御部43による移動指令MVの更新を停止させる。さらに、停止制御部44は、停止信号SSを第1撮像指令部41に出力することにより、第1撮像指令部41による撮像トリガTR1の出力処理を停止させる。 The stop control unit 44 compares the distance | Lm1 | between the estimated position PV and the target position SV with a threshold Th1, and outputs a stop signal SS when the distance | Lm1 | is less than the threshold Th1. The stop control unit 44 stops the update of the movement command MV by the feedback control unit 43 by outputting a stop signal SS to the feedback control unit 43. Furthermore, the stop control unit 44 stops the output process of the imaging trigger TR1 by the first imaging command unit 41 by outputting a stop signal SS to the first imaging command unit 41.
 第2撮像指令部45は、停止信号SSによって移動指令の更新が停止された場合に、更新停止時の最終移動指令に伴うワークWの移動が完了したか否かを判定する。第2撮像指令部45は、最終移動指令に伴うワークWの移動が完了したと判定した後に、視覚センサ30に撮像トリガTR2を出力する。 The second imaging command unit 45 determines whether or not the movement of the workpiece W accompanying the final movement command at the time of the update stop is completed when the update of the movement command is stopped by the stop signal SS. The second imaging command unit 45 outputs the imaging trigger TR2 to the visual sensor 30 after determining that the movement of the work W accompanying the final movement command is completed.
 判定部46は、撮像トリガTR2に応じて撮像された画像からの計測位置PVvが予め定められた条件を満たすか否かを判定する。当該条件は、位置決めの終了を判定するための条件である。判定部46は、計測位置PVvが予め定められた条件を満たす場合に、ワークWの位置決めを終了すると判定し、終了信号FSを出力する。終了信号FSが出力されると、コントローラ40は、ステージ装置10の移動制御を終了する。 The determination unit 46 determines whether or not the measurement position PVv from the image captured in accordance with the imaging trigger TR2 satisfies a predetermined condition. This condition is a condition for determining the end of positioning. The determination unit 46 determines that the positioning of the workpiece W is finished when the measurement position PVv satisfies a predetermined condition, and outputs an end signal FS. When the end signal FS is output, the controller 40 ends the movement control of the stage apparatus 10.
 判定部46は、計測位置PVvが予め定められた条件を満たさない場合に、再開信号RSを第1撮像指令部41およびフィードバック制御部43に出力する。再開信号RSが出力されると、第1撮像指令部41は、撮像トリガTR1の出力処理を再開し、フィードバック制御部43は、移動指令MVの更新を再開する。 The determination unit 46 outputs a restart signal RS to the first imaging command unit 41 and the feedback control unit 43 when the measurement position PVv does not satisfy a predetermined condition. When the restart signal RS is output, the first imaging command unit 41 resumes the output process of the imaging trigger TR1, and the feedback control unit 43 resumes the update of the movement command MV.
 <作用・効果>
 以上のとおり、本実施の形態では、フィードバック制御部43は、推定位置PVをワークWの目標位置SPに合わせるための移動指令を制御周期Tcごとに更新してサーボドライバ20に出力する。これにより、視覚センサ30によって視認可能な精度で、ワークWの状態に応じた位置決めを行なうことができる。そのため、外乱に対するロバスト性が向上し、位置決め精度が向上する。
<Action and effect>
As described above, in the present embodiment, the feedback control unit 43 updates the movement command for adjusting the estimated position PV to the target position SP of the workpiece W for each control cycle Tc and outputs it to the servo driver 20. Thereby, the positioning according to the state of the workpiece | work W can be performed with the precision which can be visually recognized by the visual sensor 30. FIG. Therefore, robustness against disturbance is improved and positioning accuracy is improved.
 推定位置PVは、視覚センサ30によって撮像周期Tpごとに撮像された画像とステージ装置10からの位置関連情報であるエンコーダ値PVmに基づいて、制御周期Tcごとに決定される。視覚センサ30の撮像周期Tpは、制御周期Tcよりも長い。計測位置PVvは、更新周期が長く、かつ遅れを伴った位置情報であるため、推定位置PVではなく計測位置PVvを用いてフィードバック制御が行なわれると、オーバシュートや振動が生じやすくなるため、フィードバック制御のゲインをあまり強くできない。しかしながら、ステージ装置10からの位置関連情報であるエンコーダ値PVmに基づいて推定位置PVが決定され、当該推定位置PVを用いることにより、フィードバック制御におけるゲインを強くでき、推定位置PVを目標位置SPに高速に近づけることができる。 The estimated position PV is determined for each control period Tc based on an image captured by the visual sensor 30 for each imaging period Tp and an encoder value PVm that is position-related information from the stage apparatus 10. The imaging cycle Tp of the visual sensor 30 is longer than the control cycle Tc. Since the measurement position PVv is position information with a long update cycle and a delay, if feedback control is performed using the measurement position PVv instead of the estimated position PV, overshoot and vibration are likely to occur. The control gain cannot be increased too much. However, the estimated position PV is determined based on the encoder value PVm that is position-related information from the stage apparatus 10, and the gain in feedback control can be increased by using the estimated position PV, and the estimated position PV is set to the target position SP. Can approach high speed.
 ただし、推定位置PVと目標位置SPとの距離|Lm1|が閾値Th1未満となった後の移動指令によってワークWがわずかに移動し、ワークWの位置が目標位置から遠ざかる可能性がある。そのため、停止制御部44は、推定位置PVと目標位置SPとの距離|Lm1|が閾値Th1未満である場合に、フィードバック制御部43による移動指令の更新を停止させる。移動指令の更新が停止された場合に、第2撮像指令部45は、更新停止時の最終移動指令に従う移動が完了したか否かを判定し、最終移動指令に従う移動が完了したと判定した後に、視覚センサ30に撮像トリガTR2を出力する。撮像トリガTR2に応じて撮像された画像からの計測位置PVvが予め定められた条件を満たす場合に、判定部46は、ワークWの位置決めを終了すると判定する。これにより、ワークWの位置決めを高精度に行なうことができる。 However, there is a possibility that the workpiece W slightly moves due to the movement command after the distance | Lm1 | between the estimated position PV and the target position SP becomes less than the threshold Th1, and the position of the workpiece W moves away from the target position. Therefore, the stop control unit 44 stops the update of the movement command by the feedback control unit 43 when the distance | Lm1 | between the estimated position PV and the target position SP is less than the threshold Th1. When the update of the movement command is stopped, the second imaging command unit 45 determines whether or not the movement according to the final movement command at the time of the update stop is completed, and after determining that the movement according to the final movement command is completed The imaging trigger TR2 is output to the visual sensor 30. When the measurement position PVv from the image imaged in accordance with the imaging trigger TR2 satisfies a predetermined condition, the determination unit 46 determines to end the positioning of the workpiece W. Thereby, the workpiece W can be positioned with high accuracy.
 視覚センサ30の応答性が低いため、視覚センサ30が撮像した画像から得られるワークWの計測位置PVvと移動中のワークWの現在位置との差が大きくなりやすい。これに対し、推定位置PVは、撮像周期Tpごとに撮像された画像と制御周期Tcごとに出力されるエンコーダ値PVmとに基づいて決定される。そのため、推定位置PVの推定誤差は、撮像周期Tpごとに撮像された画像のみに基づいて計測される計測位置PVvと現在位置との誤差よりも小さい。その結果、推定位置PVと目標位置SPとの距離|Lm1|が閾値Th1未満となった後の最終移動指令に従う移動によって、計測位置PVvが予め定められた条件を満たさなくなる頻度が低い。これにより、高速に位置決めすることができる。 Since the responsiveness of the visual sensor 30 is low, the difference between the measurement position PVv of the work W obtained from the image captured by the visual sensor 30 and the current position of the moving work W tends to increase. On the other hand, the estimated position PV is determined based on the image captured at each imaging cycle Tp and the encoder value PVm output at each control cycle Tc. Therefore, the estimation error of the estimated position PV is smaller than the error between the measurement position PVv and the current position measured based only on the image captured at each imaging cycle Tp. As a result, the frequency at which the measurement position PVv does not satisfy the predetermined condition due to the movement according to the final movement command after the distance | Lm1 | between the estimated position PV and the target position SP becomes less than the threshold Th1 is low. Thereby, it can position at high speed.
 このように、本実施の形態の制御システムによれば、ワークWを高速かつ高精度に位置決めできる。 Thus, according to the control system of the present embodiment, the workpiece W can be positioned at high speed and with high accuracy.
 §2 具体例
 次に、本実施の形態に係る制御システムの一例について説明する。
§2 Specific example Next, an example of a control system according to the present embodiment will be described.
 <2-1.ステージおよびモータ>
 図2は、本実施の形態に係る制御システム1を構成するステージ装置の一例を示す斜視図である。図2に示す例では、ステージ装置10は、Xステージ11と、Yステージ13と、θステージ15と、サーボモータ12,14,16とを含む。Xステージ11は、サーボモータ12の駆動によりX方向に沿って移動する。Yステージ13は、サーボモータ14の駆動によりY方向に沿って移動する。θステージ15は、サーボモータ16の駆動によりθ方向に回転する。
<2-1. Stage and Motor>
FIG. 2 is a perspective view showing an example of a stage apparatus constituting the control system 1 according to the present embodiment. In the example illustrated in FIG. 2, the stage apparatus 10 includes an X stage 11, a Y stage 13, a θ stage 15, and servo motors 12, 14, and 16. The X stage 11 moves along the X direction by driving the servo motor 12. The Y stage 13 moves along the Y direction by driving the servo motor 14. The θ stage 15 is rotated in the θ direction by driving the servo motor 16.
 サーボモータ12,14,16の各々にはエンコーダが設けられる。エンコーダは、対応するモータの回転位置を検出し、検出結果であるエンコーダ値PVmを出力する。 Each of the servo motors 12, 14, 16 is provided with an encoder. The encoder detects the rotational position of the corresponding motor and outputs an encoder value PVm as a detection result.
 <2-2.画像処理部のハードウェア構成>
 図3は、本実施の形態に係る制御システム1を構成する画像処理部32のハードウェア構成を示す模式図である。画像処理部32は、典型的には、汎用的なコンピュータアーキテクチャに従う構造を有しており、予めインストールされたプログラムをプロセッサが実行することで、後述するような各種の画像処理を実現する。
<2-2. Hardware configuration of image processing unit>
FIG. 3 is a schematic diagram illustrating a hardware configuration of the image processing unit 32 configuring the control system 1 according to the present embodiment. The image processing unit 32 typically has a structure according to a general-purpose computer architecture, and implements various types of image processing as will be described later by the processor executing a preinstalled program.
 より具体的には、画像処理部32は、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)などのプロセッサ310と、RAM(Random Access Memory)312と、表示コントローラ314と、システムコントローラ316と、I/O(Input Output)コントローラ318と、ハードディスク320と、カメラインターフェイス322と、入力インターフェイス324と、コントローラインターフェイス326と、通信インターフェイス328と、メモリカードインターフェイス330とを含む。これらの各部は、システムコントローラ316を中心として、互いにデータ通信可能に接続される。 More specifically, the image processing unit 32 includes a processor 310 such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit), a RAM (Random Access Memory) 312, a display controller 314, and a system controller 316. , An I / O (Input Output) controller 318, a hard disk 320, a camera interface 322, an input interface 324, a controller interface 326, a communication interface 328, and a memory card interface 330. These units are connected to each other so as to be capable of data communication with a system controller 316 as a center.
 プロセッサ310は、システムコントローラ316との間でプログラム(コード)などを交換して、これらを所定順序で実行することで、目的の演算処理を実現する。 The processor 310 exchanges programs (codes) and the like with the system controller 316 and executes them in a predetermined order, thereby realizing the target arithmetic processing.
 システムコントローラ316は、プロセッサ310、RAM312、表示コントローラ314、およびI/Oコントローラ318とそれぞれバスを介して接続されており、各部との間でデータ交換などを行なうとともに、画像処理部32全体の処理を司る。 The system controller 316 is connected to the processor 310, the RAM 312, the display controller 314, and the I / O controller 318 via buses, and performs data exchange with each unit and the processing of the entire image processing unit 32. To manage.
 RAM312は、典型的には、DRAM(Dynamic Random Access Memory)などの揮発性の記憶装置であり、ハードディスク320から読み出されたプログラムや、撮像部31によって撮像された画像(画像データ)、画像に対する処理結果、およびワークデータなどを保持する。画像に対する処理結果には、当該画像を撮像する際の露光開始時刻および露光終了時刻と、計測位置PVvとが含まれる。 The RAM 312 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory), a program read from the hard disk 320, an image (image data) captured by the imaging unit 31, and an image Holds processing results and work data. The processing result for the image includes the exposure start time and the exposure end time when the image is captured, and the measurement position PVv.
 表示コントローラ314は、表示部70と接続されており、システムコントローラ316からの内部コマンドに従って、各種の情報を表示するための信号を表示部70へ出力する。 The display controller 314 is connected to the display unit 70 and outputs a signal for displaying various information to the display unit 70 in accordance with an internal command from the system controller 316.
 I/Oコントローラ318は、画像処理部32に接続される記録媒体や外部機器との間のデータ交換を制御する。より具体的には、I/Oコントローラ318は、ハードディスク320と、カメラインターフェイス322と、入力インターフェイス324と、コントローラインターフェイス326と、通信インターフェイス328と、メモリカードインターフェイス330と接続される。 The I / O controller 318 controls data exchange with a recording medium connected to the image processing unit 32 and an external device. More specifically, the I / O controller 318 is connected to the hard disk 320, the camera interface 322, the input interface 324, the controller interface 326, the communication interface 328, and the memory card interface 330.
 ハードディスク320は、典型的には、不揮発性の磁気記憶装置であり、プロセッサ310で実行されるプログラムに加えて、各種設定値などが格納される。 The hard disk 320 is typically a non-volatile magnetic storage device, and stores various setting values in addition to programs executed by the processor 310.
 カメラインターフェイス322は、ワークWを撮影することで生成された画像データを受付ける入力部に相当し、プロセッサ310と撮像部31との間のデータ伝送を仲介する。カメラインターフェイス322は、撮像部31からの画像データをそれぞれ一時的に蓄積するための画像バッファを含む。 The camera interface 322 corresponds to an input unit that receives image data generated by shooting the workpiece W, and mediates data transmission between the processor 310 and the imaging unit 31. The camera interface 322 includes an image buffer for temporarily storing image data from the imaging unit 31.
 入力インターフェイス324は、プロセッサ310とキーボード334、マウス、タッチパネル、専用コンソールなどの入力装置との間のデータ伝送を仲介する。 The input interface 324 mediates data transmission between the processor 310 and an input device such as a keyboard 334, a mouse, a touch panel, and a dedicated console.
 コントローラインターフェイス326は、プロセッサ310とコントローラ40との間のデータ伝送を仲介する。 The controller interface 326 mediates data transmission between the processor 310 and the controller 40.
 通信インターフェイス328は、プロセッサ310と図示しない他のパーソナルコンピュータやサーバ装置などとの間のデータ伝送を仲介する。通信インターフェイス328は、典型的には、イーサネット(登録商標)やUSB(Universal Serial Bus)などからなる。 The communication interface 328 mediates data transmission between the processor 310 and another personal computer or server device (not shown). The communication interface 328 typically includes Ethernet (registered trademark), USB (Universal Serial Bus), or the like.
 メモリカードインターフェイス330は、プロセッサ310と記録媒体50との間のデータ伝送を仲介する。 The memory card interface 330 mediates data transmission between the processor 310 and the recording medium 50.
 <2-3.コントローラのハードウェア構成>
 図4は、本実施の形態に係る制御システムを構成するコントローラのハードウェア構成を示す模式図である。図4に示されるように、コントローラ40は、主制御ユニット410と、複数のサーボユニット422,424,426とを含む。本実施の形態に係るコントローラ40は、ステージ装置10に含まれるサーボモータ12,14,16と同数のサーボユニット422,424,426を含む。
<2-3. Controller hardware configuration>
FIG. 4 is a schematic diagram showing a hardware configuration of a controller constituting the control system according to the present embodiment. As shown in FIG. 4, the controller 40 includes a main control unit 410 and a plurality of servo units 422, 424, 426. The controller 40 according to the present embodiment includes the same number of servo units 422, 424, 426 as the servo motors 12, 14, 16 included in the stage device 10.
 主制御ユニット410は、コントローラ40の全体制御を司る。主制御ユニット410は、内部バス419を介して、サーボユニット422,424,426と接続されており、互いにデータを遣り取りする。サーボユニット422,424,426は、主制御ユニット410からの内部指令などに従って、サーボドライバ22,24,26に対して制御コマンド(典型的には、駆動パルスなど)をそれぞれ出力する。サーボドライバ22,24,26は、接続されているサーボモータ12,14,16をそれぞれ駆動するドライバである。 The main control unit 410 governs overall control of the controller 40. The main control unit 410 is connected to the servo units 422, 424, and 426 via the internal bus 419, and exchanges data with each other. The servo units 422, 424, and 426 output control commands (typically drive pulses and the like) to the servo drivers 22, 24, and 26, respectively, in accordance with internal commands from the main control unit 410 and the like. The servo drivers 22, 24, and 26 are drivers that drive the connected servo motors 12, 14, and 16, respectively.
 主制御ユニット410は、チップセット411と、プロセッサ412と、不揮発性メモリ413と、主メモリ414と、システムクロック415と、メモリカードインターフェイス416と、通信インターフェイス417と、内部バスコントローラ418とを含む。チップセット411と他のコンポーネントとの間は、各種のバスを介してそれぞれ結合されている。 The main control unit 410 includes a chip set 411, a processor 412, a nonvolatile memory 413, a main memory 414, a system clock 415, a memory card interface 416, a communication interface 417, and an internal bus controller 418. The chip set 411 and other components are coupled via various buses.
 プロセッサ412およびチップセット411は、典型的には、汎用的なコンピュータアーキテクチャに従う構成を有している。すなわち、プロセッサ412は、チップセット411から内部クロックに従って順次供給される命令コードを解釈して実行する。チップセット411は、接続されている各種コンポーネントとの間で内部的なデータを遣り取りするとともに、プロセッサ412に必要な命令コードを生成する。システムクロック415は、予め定められた周期のシステムクロックを発生してプロセッサ412に提供する。チップセット411は、プロセッサ412での演算処理の実行の結果得られたデータなどをキャッシュする。 The processor 412 and the chip set 411 typically have a configuration according to a general-purpose computer architecture. That is, the processor 412 interprets and executes instruction codes sequentially supplied from the chipset 411 according to the internal clock. The chip set 411 exchanges internal data with various connected components and generates instruction codes necessary for the processor 412. The system clock 415 generates a system clock having a predetermined period and provides it to the processor 412. The chip set 411 caches data obtained as a result of execution of arithmetic processing by the processor 412.
 主制御ユニット410は、記憶手段として、不揮発性メモリ413および主メモリ414を有する。不揮発性メモリ413は、OS、プロセッサ412で実行される制御プログラム430に加えて、データ定義情報、ログ情報などを不揮発的に保持する。制御プログラム430は、記録媒体51などに格納された状態で流通する。主メモリ414は、揮発性の記憶領域であり、プロセッサ412で実行されるべき各種プログラムを保持するとともに、各種プログラムの実行時の作業用メモリとしても使用される。 The main control unit 410 has a nonvolatile memory 413 and a main memory 414 as storage means. The nonvolatile memory 413 holds data definition information, log information, and the like in addition to the OS and the control program 430 executed by the processor 412. The control program 430 is distributed while being stored in the recording medium 51 or the like. The main memory 414 is a volatile storage area, holds various programs to be executed by the processor 412, and is also used as a working memory when executing the various programs.
 主制御ユニット410は、通信手段として、通信インターフェイス417および内部バスコントローラ418を有する。これらの通信回路は、データの送信および受信を行なう。通信インターフェイス417は、視覚センサ30との間でデータを遣り取りする。通信インターフェイス417は、視覚センサ30から、画像を撮像する際の露光開始時刻および露光終了時刻と、計測位置PVvとを受信する。内部バスコントローラ418は、内部バス419を介したデータの遣り取りを制御する。内部バスコントローラ418は、サーボドライバ22,24,26からエンコーダ値PVmを受信する。内部バスコントローラ418は、バッファメモリ481と、DMA(Dynamic Memory Access)制御回路482と、内部バス制御回路483とを含む。 The main control unit 410 has a communication interface 417 and an internal bus controller 418 as communication means. These communication circuits transmit and receive data. The communication interface 417 exchanges data with the visual sensor 30. The communication interface 417 receives from the visual sensor 30 the exposure start time and the exposure end time when capturing an image, and the measurement position PVv. The internal bus controller 418 controls data exchange through the internal bus 419. The internal bus controller 418 receives the encoder value PVm from the servo drivers 22, 24 and 26. The internal bus controller 418 includes a buffer memory 481, a DMA (Dynamic Memory Access) control circuit 482, and an internal bus control circuit 483.
 メモリカードインターフェイス416は、主制御ユニット410に対して着脱可能な記録媒体51とプロセッサ412とを接続する。記録媒体51は、コンピュータその他装置、機械等が記録されたプログラム等の情報を読み取り可能なように、当該プログラム等の情報を、電気的、磁気的、光学的、機械的または化学的作用によって蓄積する媒体である。記録媒体51には、コントローラ40で実行される制御プログラム430などが格納された状態で流通し、メモリカードインターフェイス416は、記録媒体51から制御プログラムを読み出す。記録媒体51は、SD(Secure Digital)などの汎用的な半導体記憶デバイスや、フレキシブルディスク(Flexible Disk)などの磁気記録媒体や、CD-ROM(Compact Disk Read Only Memory)などの光学記録媒体等からなる。あるいは、通信インターフェイス417を介して、配信サーバなどからダウンロードしたプログラムをコントローラ40にインストールしてもよい。 The memory card interface 416 connects the recording medium 51 detachably attached to the main control unit 410 and the processor 412. The recording medium 51 stores information such as a program by an electrical, magnetic, optical, mechanical, or chemical action so that the information such as a program recorded by a computer or other device or machine can be read. It is a medium to do. The recording medium 51 is distributed in a state where a control program 430 executed by the controller 40 is stored, and the memory card interface 416 reads the control program from the recording medium 51. The recording medium 51 is a general-purpose semiconductor storage device such as SD (Secure Digital), a magnetic recording medium such as a flexible disk, or an optical recording medium such as a CD-ROM (Compact Disk Read Only Memory). Become. Alternatively, a program downloaded from a distribution server or the like may be installed in the controller 40 via the communication interface 417.
 <2-4.第2撮像指令部>
 第2撮像指令部45は、たとえば以下のようにして、最終移動指令に伴うワークWの移動が完了したか否かを判定する。
<2-4. Second imaging command unit>
For example, the second imaging command unit 45 determines whether or not the movement of the workpiece W accompanying the final movement command is completed as follows.
 第2撮像指令部45は、移動指令MVが位置指令である場合、サーボモータ12,14,16の各々について、位置指令値と実測位置との偏差(距離)|Lm2|と閾値Th2とを比較する。第2撮像指令部45は、サーボモータ12,14,16からのエンコーダ値PVmから実測位置をそれぞれ取得すればよい。サーボモータ12,14,16の全てにおいて位置指令値と実測位置との距離|Lm2|が閾値Th2未満である場合、第2撮像指令部45は、最終移動指令に伴うワークWの移動が完了したと判定し、撮像トリガTR2を出力する。 When the movement command MV is a position command, the second imaging command unit 45 compares the deviation (distance) | Lm2 | between the position command value and the actually measured position and the threshold value Th2 for each of the servo motors 12, 14, and 16. To do. The second imaging command unit 45 may acquire the measured positions from the encoder values PVm from the servo motors 12, 14, and 16, respectively. When the distance | Lm2 | between the position command value and the actually measured position is less than the threshold Th2 in all of the servo motors 12, 14, and 16, the second imaging command unit 45 has completed the movement of the workpiece W accompanying the final movement command. And the imaging trigger TR2 is output.
 第2撮像指令部45は、移動指令MVが速度指令である場合、サーボモータ12,14,16の各々について、回転速度と閾値Th2とを比較してもよい。第2撮像指令部45は、サーボモータ12,14,16からのエンコーダ値PVmからそれぞれの回転速度を取得すればよい。サーボモータ12,14,16の全てにおいて回転速度が閾値Th2未満である場合、第2撮像指令部45は、最終移動指令に伴うワークWの移動が完了したと判定し、撮像トリガTR2を出力する。 When the movement command MV is a speed command, the second imaging command unit 45 may compare the rotation speed and the threshold value Th2 for each of the servo motors 12, 14, and 16. The second imaging command unit 45 may acquire the respective rotation speeds from the encoder values PVm from the servo motors 12, 14, 16. When the rotation speed is lower than the threshold Th2 in all of the servo motors 12, 14, 16, the second imaging command unit 45 determines that the movement of the workpiece W accompanying the final movement command is completed, and outputs the imaging trigger TR2. .
 <2-5.判定部>
 判定部46は、計測位置PVvが予め定められた条件を満たすか否かに応じて、ワークWの位置決めを終了するか否かを判定する。当該条件は、ワークWの位置決めに要求される精度に応じて適宜定められる。
<2-5. Judgment part>
The determination unit 46 determines whether or not to end the positioning of the workpiece W depending on whether or not the measurement position PVv satisfies a predetermined condition. The condition is appropriately determined according to the accuracy required for positioning the workpiece W.
 たとえば、予め定められる条件は、計測位置PVvと目標位置SVとの偏差(距離)|Lm3|が閾値Th3未満であるという条件である。この場合、判定部46は、計測位置PVvと目標位置SVとの距離|Lm3|を算出し、算出した距離|Lm3|と閾値Th3とを比較する。判定部46は、距離|Lm3|が閾値Th3未満である場合に、終了信号FSを出力し、距離|Lm3|が閾値Th3以上である場合に、再開信号RSを出力する。閾値Th3は、閾値Th1と同じであってもよいし、異なっていてもよい。 For example, the predetermined condition is that the deviation (distance) | Lm3 | between the measurement position PVv and the target position SV is less than the threshold Th3. In this case, the determination unit 46 calculates the distance | Lm3 | between the measurement position PVv and the target position SV, and compares the calculated distance | Lm3 | with the threshold Th3. The determination unit 46 outputs the end signal FS when the distance | Lm3 | is less than the threshold Th3, and outputs the restart signal RS when the distance | Lm3 | is equal to or greater than the threshold Th3. The threshold value Th3 may be the same as or different from the threshold value Th1.
 §3 動作例
 <3-1.コントローラの処理の流れ>
 図5を参照して、コントローラ40の処理の流れの一例について説明する。図5は、コントローラ40の処理の流れの一例を示すフローチャートである。
§3 Example of operation <3-1. Controller processing flow>
An example of the processing flow of the controller 40 will be described with reference to FIG. FIG. 5 is a flowchart illustrating an example of a process flow of the controller 40.
 まず、コントローラ40は、推定位置PVおよびエンコーダ値PVmを初期化する(ステップS1)。次に、第1撮像指令部41は、撮像周期Tpごとの撮像トリガTR1の出力処理を開始する(ステップS2)。視覚センサ30からの計測位置PVvおよびサーボドライバ22,24,26の各々からのエンコーダ値PVmの出力が開始されると、位置決定部42は、推定位置PVを決定する(ステップS3)。推定位置PVの決定処理の詳細については後述する。 First, the controller 40 initializes the estimated position PV and the encoder value PVm (step S1). Next, the first imaging command unit 41 starts output processing of the imaging trigger TR1 for each imaging cycle Tp (step S2). When the output of the measurement position PVv from the visual sensor 30 and the encoder value PVm from each of the servo drivers 22, 24, 26 is started, the position determination unit 42 determines the estimated position PV (step S3). Details of the process of determining the estimated position PV will be described later.
 次に、フィードバック制御部43は、推定位置PVと目標位置SVとに基づくフィードバック制御を行なう(ステップS4)。具体的には、フィードバック制御部43は、推定位置PVを目標位置SVに合わせるための移動指令MVを算出し、サーボドライバ22,24,26に出力する。 Next, the feedback control unit 43 performs feedback control based on the estimated position PV and the target position SV (step S4). Specifically, the feedback control unit 43 calculates a movement command MV for adjusting the estimated position PV to the target position SV and outputs it to the servo drivers 22, 24, and 26.
 停止制御部44は、推定位置PVと目標位置SVとの距離|Lm1|と閾値Th1とを比較し、距離|Lm1|が閾値Th1未満であるか否かを判定する(ステップS5)。距離|Lm1|が閾値Th1未満ではない場合(ステップS5でNO)、処理はステップS3に戻される。これにより、ステップS3およびステップS4が繰り返し実行される。その結果、フィードバック制御により移動指令MVが更新され、推定位置PVを目標位置SVに合わせるためのステージ装置10の動作が継続される。ステップS3およびステップS4は、制御周期Tcごとに実行される。 The stop control unit 44 compares the distance | Lm1 | between the estimated position PV and the target position SV with a threshold value Th1, and determines whether the distance | Lm1 | is less than the threshold value Th1 (step S5). If the distance | Lm1 | is not less than the threshold value Th1 (NO in step S5), the process returns to step S3. Thereby, step S3 and step S4 are repeatedly performed. As a result, the movement command MV is updated by feedback control, and the operation of the stage device 10 for adjusting the estimated position PV to the target position SV is continued. Steps S3 and S4 are executed every control cycle Tc.
 距離|Lm1|が閾値Th1未満である場合(ステップS5でYES)、停止制御部44は、停止信号SSをフィードバック制御部43および第1撮像指令部41に出力する。これにより、フィードバック制御部43は、移動指令MVの更新を停止する。さらに、第1撮像指令部41は、撮像周期Tpごとの撮像トリガTR1の出力処理を停止する(ステップS6)。 If the distance | Lm1 | is less than the threshold Th1 (YES in step S5), the stop control unit 44 outputs a stop signal SS to the feedback control unit 43 and the first imaging command unit 41. As a result, the feedback control unit 43 stops updating the movement command MV. Further, the first imaging command unit 41 stops the output process of the imaging trigger TR1 for each imaging cycle Tp (step S6).
 次に、第2撮像指令部45は、更新停止時の最終移動指令で示される位置指令値と実測位置との距離|Lm2|と閾値Th2とを比較し、距離|Lm2|が閾値Th2未満であるか否かを判定する(ステップS7)。距離|Lm2|が閾値Th2未満ではない場合(ステップS7でNO)、処理はステップS7に戻る。距離|Lm2|が閾値Th2未満である場合(ステップS7でYES)、第2撮像指令部45は、撮像トリガTR2を視覚センサ30に出力する(ステップS8)。 Next, the second imaging command unit 45 compares the distance | Lm2 | between the position command value indicated by the final movement command at the time of updating stop and the measured position and the threshold Th2, and the distance | Lm2 | is less than the threshold Th2. It is determined whether or not there is (step S7). If the distance | Lm2 | is not less than the threshold Th2 (NO in step S7), the process returns to step S7. If the distance | Lm2 | is less than the threshold Th2 (YES in step S7), the second imaging command unit 45 outputs the imaging trigger TR2 to the visual sensor 30 (step S8).
 次に、判定部46は、撮像トリガTR2に応じて撮像された画像から計測された計測位置PVvを、視覚センサ30から取得する(ステップS9)。判定部46は、計測位置PVvと目標位置SVとの距離|Lm3|と閾値Th3とを比較し、距離|Lm3|が閾値Th3未満であるか否かを判定する(ステップS10)。距離|Lm3|が閾値Th3未満ではない場合(ステップS10でNO)、判定部46から再開信号RSが出力され、処理はステップS2に戻る。距離|Lm3|が閾値Th3未満である場合(ステップS10でYES)、判定部46は、終了信号FSを出力し、位置決め処理を終了させる(ステップS11)。 Next, the determination unit 46 acquires the measurement position PVv measured from the image imaged according to the imaging trigger TR2 from the visual sensor 30 (step S9). The determination unit 46 compares the distance | Lm3 | between the measurement position PVv and the target position SV and the threshold value Th3, and determines whether the distance | Lm3 | is less than the threshold value Th3 (step S10). When the distance | Lm3 | is not less than the threshold Th3 (NO in step S10), the restart signal RS is output from the determination unit 46, and the process returns to step S2. If the distance | Lm3 | is less than the threshold Th3 (YES in step S10), the determination unit 46 outputs an end signal FS and ends the positioning process (step S11).
 位置決め処理が終了すると、位置決めされたワークWに対して所定の処理が実行される。たとえば、ガラス基板であるワークWに回路パターンの焼付処理(露光処理)前に、露光マスクに対するワークWの位置決めを行なう場合、コントローラ40は、判定部46から終了信号FSが出力されると、焼付処理を行なう装置を駆動制御する。 When the positioning process is completed, a predetermined process is performed on the positioned workpiece W. For example, when positioning the work W with respect to the exposure mask before the circuit pattern printing process (exposure process) on the work W that is a glass substrate, the controller 40 prints when the end signal FS is output from the determination unit 46. Drive control of the apparatus which performs processing.
 <3-2.推定位置の決定処理>
 位置決定部42は、たとえば図6のフローチャートに示すような処理を行なうことで、推定位置PVを算出する。図6は、図5に示す推定位置決定処理のサブルーチンの処理内容を示すフローチャートである。
<3-2. Estimated position determination process>
The position determination unit 42 calculates the estimated position PV by performing a process such as that shown in the flowchart of FIG. FIG. 6 is a flowchart showing the processing contents of the subroutine of the estimated position determination processing shown in FIG.
 位置決定部42は、視覚センサ30からの計測位置PVvが得られているか否かを検出する(ステップS21)。位置決定部42は、計測位置PVvが得られている時刻であれば(ステップS21でYES)、計測位置PVvが正常値か否かを検出する(ステップS22)。たとえば、位置決定部42は、計測位置PVvが所定範囲内の値であれば正常値であると判定する。位置決定部42は、計測位置PVvが正常値であれば(ステップS22でYES)、計測位置PVvの入力を受け付ける(ステップS23)。 The position determination unit 42 detects whether or not the measurement position PVv from the visual sensor 30 is obtained (step S21). If it is the time when the measurement position PVv is obtained (YES in step S21), the position determination unit 42 detects whether or not the measurement position PVv is a normal value (step S22). For example, the position determining unit 42 determines that the measured position PVv is a normal value if the measured position PVv is a value within a predetermined range. If the measurement position PVv is a normal value (YES in step S22), the position determination unit 42 receives an input of the measurement position PVv (step S23).
 位置決定部42は、計測位置PVvの入力を受け付けると、当該計測位置PVvの算出の元となる撮像時刻のエンコーダ値PVmsの推定を行なう(ステップS24)。この推定の具体的な方法は後述する。なお、撮像部31の露光時間が長い場合、撮像時刻は、例えば、露光開始時刻(撮像部31のシャッターが開となる時刻)と露光終了時刻(撮像部31のシャッターが閉となる時刻)との中間の時刻によって設定される。 When the position determination unit 42 receives the input of the measurement position PVv, the position determination unit 42 estimates the encoder value PVms at the imaging time that is the basis for calculating the measurement position PVv (step S24). A specific method of this estimation will be described later. When the exposure time of the imaging unit 31 is long, the imaging time is, for example, an exposure start time (time when the shutter of the imaging unit 31 is opened) and an exposure end time (time when the shutter of the imaging unit 31 is closed). It is set by the middle time.
 位置決定部42は、同時刻の計測位置PVvおよびエンコーダ値PVmと、当該計測位置PVvの算出元となる撮像時刻のエンコーダ値PVmsとを用いて、推定位置PVを算出する(ステップS25)。具体的には、ステップS25では、位置決定部42は、次の(式1)を用いて、推定位置PVを算出する。
PV=PVv+(PVm-PVms) ・・・(式1)。
The position determination unit 42 calculates the estimated position PV using the measurement position PVv and encoder value PVm at the same time and the encoder value PVms at the imaging time that is the calculation source of the measurement position PVv (step S25). Specifically, in step S25, the position determination unit 42 calculates the estimated position PV using the following (Equation 1).
PV = PVv + (PVm−PVms) (Formula 1)
 位置決定部42は、算出した推定位置PVをフィードバック制御部43に出力する(S26)。また、位置決定部42は、この推定位置PVを参照推定位置PVpとし、この時刻のエンコーダ値PVmを参照エンコーダ値PVmpとして、更新記憶する。 The position determination unit 42 outputs the calculated estimated position PV to the feedback control unit 43 (S26). Further, the position determination unit 42 updates and stores the estimated position PV as the reference estimated position PVp and the encoder value PVm at this time as the reference encoder value PVmp.
 位置決定部42は、視覚センサ30からの計測位置PVvが得られていない時刻であれば(ステップS21でNO)、計測位置PVvの出力が1回以上であるか否かを検出する(ステップS27)。また、位置決定部42は、計測位置PVvが正常値でなければ(ステップS22でNO)、同様に、計測位置PVvの出力が1回以上であるか否かを検出する(ステップS27)。 If it is time when the measurement position PVv from the visual sensor 30 is not obtained (NO in step S21), the position determination unit 42 detects whether or not the output of the measurement position PVv is one or more times (step S27). ). Further, if the measurement position PVv is not a normal value (NO in step S22), the position determination unit 42 similarly detects whether or not the output of the measurement position PVv is one or more times (step S27).
 位置決定部42は、計測位置PVvの出力が1回以上であれば(ステップS27でYES)、エンコーダ値PVm、参照推定位置PVp、および、参照エンコーダ値PVmpを用いて、推定位置PVを算出する(S28)。具体的には、ステップS28では、位置決定部42は、次の(式2)を用いて、推定位置PVを算出する。
PV=PVp+PVm―PVmp ・・・(式2)。
If the output of the measurement position PVv is one or more times (YES in step S27), the position determination unit 42 calculates the estimated position PV using the encoder value PVm, the reference estimated position PVp, and the reference encoder value PVmp. (S28). Specifically, in step S28, the position determination unit 42 calculates the estimated position PV using the following (Expression 2).
PV = PVp + PVm−PVmp (Formula 2).
 位置決定部42は、計測位置PVvの出力が1回もなければ(ステップS27でNO)、推定位置PVを初期値のまま維持する。ステップS28の後およびステップS27でNOの場合、処理はステップS26に移る。ステップS26の後、処理は図5に示すステップS4に戻る。 If there is no output of the measurement position PVv (NO in step S27), the position determination unit 42 maintains the estimated position PV as the initial value. After step S28 and if NO at step S27, the process proceeds to step S26. After step S26, the process returns to step S4 shown in FIG.
 このような処理を実行することによって、コントローラ40は、画像処理による高精度な計測位置PVvが入力される時刻には、この高精度な計測位置PVvを用いて推定位置PVを算出し、高精度な位置決め制御を実現できる。ここで、計測位置PVvが入力される時間間隔は、撮像周期Tpであり、エンコーダ値PVmが入力される制御周期Tcに比べて長い。しかしながら、時間軸上で隣り合う計測位置PVvの入力時刻間において、位置決定部42は、入力周期が短いエンコーダ値PVmの入力時刻毎に、推定位置PVを算出して、位置制御を行なう。これにより、高精度且つ短周期の位置決め制御が可能になる。さらに、位置決定部42は、上述の簡単な四則演算を用いる処理を行なう。そのため、簡素な構成および処理による高速且つ高精度な位置決めを実現できる。 By executing such processing, the controller 40 calculates the estimated position PV using the high-accuracy measurement position PVv at the time when the high-accuracy measurement position PVv by image processing is input. Positioning control can be realized. Here, the time interval at which the measurement position PVv is input is the imaging cycle Tp, and is longer than the control cycle Tc at which the encoder value PVm is input. However, between the input times of the measurement positions PVv adjacent on the time axis, the position determination unit 42 performs the position control by calculating the estimated position PV for each input time of the encoder value PVm having a short input cycle. Thereby, positioning control with high accuracy and a short cycle becomes possible. Further, the position determination unit 42 performs processing using the above-described simple four arithmetic operations. Therefore, high-speed and high-accuracy positioning can be realized with a simple configuration and processing.
 計測位置PVvの算出は、視覚センサ30による撮像と画像処理の時間を必要とする。そのため、撮像周期Tpは長い。推定位置PVの算出時刻tnに、計測位置PVvが得られたとしても、当該計測位置PVvは、算出時刻tnよりも過去の撮像時刻tv1に撮像した画像によるものであり、撮像時刻tv1におけるワークWの位置を高精度に算出したものである。 Calculating the measurement position PVv requires time for imaging by the visual sensor 30 and image processing. Therefore, the imaging cycle Tp is long. Even if the measurement position PVv is obtained at the calculation time tn of the estimated position PV, the measurement position PVv is based on the image captured at the imaging time tv1 past the calculation time tn, and the workpiece W at the imaging time tv1 Is calculated with high accuracy.
 撮像時刻tv1から算出時刻tnまで時間(tn-tv1)が経過しており、ワークWは移動している。したがって、このワークWの移動分は、補正しなければならない。 The time (tn−tv1) has elapsed from the imaging time tv1 to the calculation time tn, and the workpiece W is moving. Therefore, the movement of the workpiece W must be corrected.
 ここで、エンコーダ値PVmは、撮像周期Tpよりも短い制御周期Tcで更新されていく。これを利用し、位置決定部42は、(式1)に示す演算を行なう。具体的に、位置決定部42は、撮像時刻tv1のエンコーダ値PVmsと算出時刻tnのエンコーダ値PVmを取得する。位置決定部42は、時間(tn-tv1)分のエンコーダ値PVmの変化分ΔPVm(PVm-PVms)を、計測位置PVvに対して加算することによって、算出時刻tnの推定位置PVを算出する。この際、算出時刻tnでは、推定位置PVが不連続になるが、この場合、推定位置PVに対するスムージング処理(例えば、移動平均化処理)等を用いることで、推定位置PVの時間変化を滑らかにでき、より好ましい。 Here, the encoder value PVm is updated at a control cycle Tc shorter than the imaging cycle Tp. Using this, the position determination unit 42 performs the calculation shown in (Equation 1). Specifically, the position determination unit 42 acquires the encoder value PVms at the imaging time tv1 and the encoder value PVm at the calculation time tn. The position determination unit 42 calculates the estimated position PV at the calculation time tn by adding the change ΔPVm (PVm−PVms) of the encoder value PVm for the time (tn−tv1) to the measurement position PVv. At this time, the estimated position PV becomes discontinuous at the calculation time tn. In this case, the time change of the estimated position PV can be smoothed by using a smoothing process (for example, moving averaging process) on the estimated position PV. More preferable.
 この処理を用いることによって、推定位置PVは、算出時刻tnでのワークWの位置を高精度に反映するものとなる。したがって、高精度な位置決め制御が可能となる。 By using this processing, the estimated position PV reflects the position of the workpiece W at the calculation time tn with high accuracy. Therefore, highly accurate positioning control is possible.
 さらに、位置決定部42は、次に示す処理を用いて、撮像時刻のエンコーダ値PVmsを算出する。図7は、図6に示す撮像時エンコーダ値の推定処理のサブルーチンの処理内容を示すフローチャートである。 Furthermore, the position determination unit 42 calculates the encoder value PVms at the imaging time using the following process. FIG. 7 is a flowchart showing the processing contents of a subroutine for estimation processing of the encoder value at the time of imaging shown in FIG.
 図7に示すように、位置決定部42は、撮像時刻を取得する(S31)。位置決定部42は、撮像時刻に近い複数の時刻のエンコーダ値PVmを取得する(S32)。位置決定部42は、複数の時刻のエンコーダ値PVmの内挿補間値を算出し、撮像時刻のエンコーダ値PVmsとする(S33)。なお、撮像時刻がエンコーダ値の算出時刻と一致する場合には、このエンコーダ値をそのまま用いればよい。 As shown in FIG. 7, the position determination unit 42 acquires the imaging time (S31). The position determination unit 42 acquires encoder values PVm at a plurality of times close to the imaging time (S32). The position determination unit 42 calculates an interpolation value of the encoder values PVm at a plurality of times and sets it as the encoder value PVms at the imaging time (S33). If the imaging time matches the encoder value calculation time, this encoder value may be used as it is.
 具体的には、位置決定部42は、推定位置PVを算出する算出時刻tnにおけるエンコーダ値PVm(n)を取得する。位置決定部42は、算出時刻tnよりも過去の撮像時刻tviを取得する。位置決定部42は、撮像時刻tviに近接する2つの時刻、例えば、時間軸上で、撮像時刻tviを挟む過去の算出時刻t(n-k)と過去の算出時刻t(n-k+1)とを検出する。 Specifically, the position determination unit 42 acquires the encoder value PVm (n) at the calculation time tn for calculating the estimated position PV. The position determination unit 42 acquires an imaging time tvi that is past the calculation time tn. The position determination unit 42 includes two times close to the imaging time tvi, for example, a past calculation time t (n−k) and a past calculation time t (n−k + 1) sandwiching the imaging time tvi on the time axis. Is detected.
 位置決定部42は、算出時刻t(n-k)のエンコーダ値PVm(n-k)と、算出時刻t(n-k+1)のエンコーダ値PVm(n-k+1)とを取得する。過去のエンコーダ値は、コントローラ40の記憶部(たとえば不揮発性メモリ413または主メモリ414(図3参照))に記憶される。 The position determination unit 42 acquires the encoder value PVm (nk) at the calculation time t (nk) and the encoder value PVm (nk + 1) at the calculation time t (nk + 1). The past encoder values are stored in the storage unit of the controller 40 (for example, the nonvolatile memory 413 or the main memory 414 (see FIG. 3)).
 位置決定部42は、エンコーダ値PVm(n-k)とエンコーダ値PVm(n-k+1)との内挿補間値を用いて、撮像時刻tviのエンコーダ値PVms(ni)を算出する。具体的には、位置決定部42は、次の(式3)を用いて、撮像時刻tviのエンコーダ値PVms(ni)を算出する。
PVms(ni)=PVm(n-k)+Kk*(PVm(n-k+2)-PVm(n-k+1)) ・・・(式3)。
The position determination unit 42 calculates an encoder value PVms (ni) at the imaging time tvi by using an interpolation value between the encoder value PVm (nk) and the encoder value PVm (nk + 1). Specifically, the position determination unit 42 calculates the encoder value PVms (ni) at the imaging time tvi using the following (Equation 3).
PVms (ni) = PVm (n−k) + Kk * (PVm (n−k + 2) −PVm (n−k + 1)) (Formula 3)
 ここで、Kkは、内挿補間係数である。制御周期をTcとし、エンコーダ値PVmの伝送遅延時間をTedとし、撮像トリガTR1の伝送遅延時間をTsdとして、Tc-Ted≦Tsd<2Tc-Tedの場合、内挿補間係数Kkは、次の(式4)を用いて算出される。
Kk={Tsd-(Tc-Ted)}/Tc ・・・(式4)。
Here, Kk is an interpolation coefficient. When the control cycle is Tc, the transmission delay time of the encoder value PVm is Ted, the transmission delay time of the imaging trigger TR1 is Tsd, and Tc−Ted ≦ Tsd <2Tc−Ted, the interpolation coefficient Kk is Calculated using Equation 4).
Kk = {Tsd− (Tc−Ted)} / Tc (Expression 4)
 このような内挿補間値の算出方法を用いることによって、撮像時刻tviのエンコーダ値PVms(ni)を高精度に算出できる。これにより、さらに高精度な推定位置PVが算出でき、さらに高精度な位置決め制御が可能になる。 By using this interpolation interpolation value calculation method, the encoder value PVms (ni) at the imaging time tvi can be calculated with high accuracy. As a result, the estimated position PV with higher accuracy can be calculated, and positioning control with higher accuracy becomes possible.
 §4 変形例
 第2撮像指令部45は、停止制御部44から停止信号SSが出力されてからの経過時間が閾値Th4を超える場合に、最終移動指令に従う移動が完了したと判定してもよい。閾値Th4は、最終移動指令に従う移動の完了に要する時間よりも長くなるように予め定められる。たとえば、最終移動指令に従う移動の完了に要する時間が予備実験により確認され、当該時間の最大値よりも長い時間が閾値Th4として定められる。
§4 Modification The second imaging command unit 45 may determine that the movement according to the final movement command is completed when the elapsed time after the stop signal SS is output from the stop control unit 44 exceeds the threshold Th4. . The threshold value Th4 is determined in advance so as to be longer than the time required to complete the movement according to the final movement command. For example, the time required to complete the movement according to the final movement command is confirmed by a preliminary experiment, and a time longer than the maximum value of the time is determined as the threshold Th4.
 停止制御部44、第2撮像指令部45および判定部46は、コンパレータ回路によって構成されてもよい。たとえば、停止制御部44は、距離|Lm1|に対応する電圧値と閾値Th1に対応する電圧値とを比較するコンパレータ回路を含む。コンパレータ回路は、距離|Lm1|が閾値Th1未満である場合にアクティブとなる停止信号SSを出力する。第2撮像指令部45は、距離|Lm2|に対応する電圧値と閾値Th2に対応する電圧値とを比較するコンパレータ回路を含む。コンパレータ回路は、距離|Lm2|が閾値Th2未満である場合にアクティブとなる撮像トリガTR2を出力する。判定部46は、距離|Lm3|に対応する電圧値と閾値Th3に対応する電圧値とを比較するコンパレータ回路を含む。コンパレータ回路は、距離|Lm3|が閾値Th3未満である場合にアクティブとなる終了信号FSを出力し、距離|Lm3|が閾値Th3以上である場合にアクティブとなる再開信号RSを出力する。 The stop control unit 44, the second imaging command unit 45, and the determination unit 46 may be configured by a comparator circuit. For example, stop control unit 44 includes a comparator circuit that compares a voltage value corresponding to distance | Lm1 | with a voltage value corresponding to threshold value Th1. The comparator circuit outputs a stop signal SS that becomes active when the distance | Lm1 | is less than the threshold Th1. The second imaging command unit 45 includes a comparator circuit that compares a voltage value corresponding to the distance | Lm2 | and a voltage value corresponding to the threshold Th2. The comparator circuit outputs an imaging trigger TR2 that becomes active when the distance | Lm2 | is less than the threshold Th2. The determination unit 46 includes a comparator circuit that compares the voltage value corresponding to the distance | Lm3 | with the voltage value corresponding to the threshold Th3. The comparator circuit outputs an end signal FS that becomes active when the distance | Lm3 | is less than the threshold Th3, and outputs a restart signal RS that becomes active when the distance | Lm3 | is equal to or greater than the threshold Th3.
 §5 付記
 以上のように、本実施の形態および変形例は以下のような開示を含む。
§5 Appendix As described above, the present embodiment and the modified example include the following disclosure.
 (構成1)
 対象物(W)の制御システム(1)であって、
 前記対象物(W)を移動させるための移動機構(10,20)と、
 前記対象物(W)を撮像するための視覚センサ(30)と、
 前記視覚センサ(30)によって第1周期ごとに撮像された画像と前記移動機構(10,20)からの位置関連情報とに基づいて、前記第1周期よりも短い第2周期ごとに、前記対象物(W)の推定位置を決定する位置決定部(42)と、
 前記推定位置を前記対象物(W)の目標位置に合わせるための移動指令を前記第2周期ごとに更新して前記移動機構(10,20)に出力するフィードバック制御部(43)と、
 前記推定位置と前記目標位置との第1偏差が第1閾値未満である場合に、前記フィードバック制御部(43)による前記移動指令の更新を停止させる停止制御部(44)と、
 前記移動指令の更新が停止された場合に、最終移動指令に従う移動が完了したか否かを判定し、前記最終移動指令に従う移動が完了したと判定した後に、前記視覚センサ(30)に撮像指令を出力する撮像指令部(45)と、
 前記撮像指令に応じて撮像された画像からの計測結果が予め定められた条件を満たす場合に、前記対象物(W)の位置決めを終了すると判定する判定部とを備える、制御システム(1)。
(Configuration 1)
A control system (1) for an object (W),
A moving mechanism (10, 20) for moving the object (W);
A visual sensor (30) for imaging the object (W);
Based on the image captured by the visual sensor (30) for each first period and the position related information from the moving mechanism (10, 20), the target for each second period shorter than the first period. A position determining unit (42) for determining an estimated position of the object (W);
A feedback control unit (43) that updates a movement command for adjusting the estimated position to a target position of the object (W) every second cycle and outputs the movement command to the movement mechanism (10, 20);
A stop control unit (44) for stopping the update of the movement command by the feedback control unit (43) when a first deviation between the estimated position and the target position is less than a first threshold;
When the update of the movement command is stopped, it is determined whether the movement according to the final movement command is completed, and after determining that the movement according to the final movement command is completed, the imaging command is sent to the visual sensor (30). An imaging command section (45) for outputting
A control system (1) comprising: a determination unit that determines to end positioning of the object (W) when a measurement result from an image captured in accordance with the imaging command satisfies a predetermined condition.
 (構成2)
 前記計測結果が前記予め定められた条件を満たさない場合に、前記フィードバック制御部(43)は、前記移動指令の更新を再開する、構成1に記載の制御システム(1)。
(Configuration 2)
The control system (1) according to Configuration 1, wherein the feedback control unit (43) resumes the update of the movement command when the measurement result does not satisfy the predetermined condition.
 (構成3)
 前記撮像指令部(45)は、前記最終移動指令で示される位置指令値と、前記位置関連情報によって示される位置との第2偏差が第2閾値未満である場合に、前記最終移動指令に従う移動が完了したと判定する、構成1または2に記載の制御システム(1)。
(Configuration 3)
The imaging command unit (45) moves in accordance with the final movement command when a second deviation between a position command value indicated by the final movement command and a position indicated by the position related information is less than a second threshold value. The control system (1) according to Configuration 1 or 2, wherein it is determined that is completed.
 (構成4)
 前記撮像指令部(45)は、前記位置関連情報によって示される速度が第3閾値未満である場合に、前記最終移動指令に従う移動が完了したと判定する、構成1または2に記載の制御システム(1)。
(Configuration 4)
The control system according to Configuration 1 or 2, wherein the imaging command unit (45) determines that the movement according to the final movement command is completed when the speed indicated by the position-related information is less than a third threshold. 1).
 (構成5)
 前記撮像指令部(45)は、前記停止制御部(44)によって前記移動指令の更新が停止されてからの経過時間が第4閾値を超える場合に、前記最終移動指令に従う移動が完了したと判定する、構成1または2に記載の制御システム(1)。
(Configuration 5)
The imaging command unit (45) determines that the movement according to the final movement command is completed when the elapsed time since the update of the movement command is stopped by the stop control unit (44) exceeds a fourth threshold value. The control system (1) according to configuration 1 or 2.
 (構成6)
 前記計測結果は、前記撮像指令に応じて撮像された画像から計測された前記対象物(W)の計測位置を示し、
 前記予め定められた条件は、前記計測位置と前記目標位置との第3偏差が第5閾値未満であるという条件である、構成1から5のいずれかに記載の制御システム(1)。
(Configuration 6)
The measurement result indicates a measurement position of the object (W) measured from an image captured according to the imaging command,
The control system (1) according to any one of configurations 1 to 5, wherein the predetermined condition is a condition that a third deviation between the measurement position and the target position is less than a fifth threshold value.
 (構成7)
 対象物(W)の制御システム(1)における制御方法であって、
 前記制御システム(1)は、
 前記対象物(W)を移動させるための移動機構(10,20)と、
 前記対象物(W)を撮像するための視覚センサ(30)とを含み、
 前記制御方法は、
 前記視覚センサ(30)によって第1周期ごとに撮像された画像と前記移動機構(10,20)からの位置関連情報とに基づいて、前記第1周期よりも短い第2周期ごとに、前記対象物(W)の推定位置を決定するステップと、
 前記推定位置を前記対象物(W)の目標位置に合わせるための移動指令を前記第2周期ごとに更新して前記移動機構(10,20)に出力するステップと、
 前記推定位置と前記目標位置との第1偏差が第1閾値未満である場合に、前記移動指令の更新を停止させるステップと、
 前記移動指令の更新が停止された場合に、最終移動指令に従う移動が完了したか否かを判定し、前記最終移動指令に従う移動が完了したと判定した後に、前記視覚センサ(30)に撮像指令を出力するステップと、
 前記撮像指令に応じて撮像された画像からの計測結果が予め定められた条件を満たす場合に、前記対象物(W)の位置決めを終了すると判定するステップとを備える、制御方法。
(Configuration 7)
A control method in a control system (1) for an object (W),
The control system (1)
A moving mechanism (10, 20) for moving the object (W);
A visual sensor (30) for imaging the object (W),
The control method is:
Based on the image captured by the visual sensor (30) for each first period and the position related information from the moving mechanism (10, 20), the target for each second period shorter than the first period. Determining an estimated position of the object (W);
Updating a movement command for adjusting the estimated position to a target position of the object (W) every second period, and outputting it to the movement mechanism (10, 20);
Stopping the update of the movement command when a first deviation between the estimated position and the target position is less than a first threshold;
When the update of the movement command is stopped, it is determined whether the movement according to the final movement command is completed, and after determining that the movement according to the final movement command is completed, the imaging command is sent to the visual sensor (30). A step of outputting
And a step of determining that the positioning of the object (W) is to be ended when a measurement result from an image captured in response to the imaging command satisfies a predetermined condition.
 (構成8)
 対象物(W)の制御システム(1)における制御方法をコンピュータに実行させるためのプログラム(430)であって、
 前記制御システム(1)は、
 前記対象物(W)を移動させるための移動機構(10,20)と、
 前記対象物(W)を撮像するための視覚センサ(30)とを含み、
 前記制御方法は、
 前記視覚センサ(30)によって第1周期ごとに撮像された画像と前記移動機構(10,20)からの位置関連情報とに基づいて、前記第1周期よりも短い第2周期ごとに、前記対象物(W)の推定位置を決定するステップと、
 前記推定位置を前記対象物(W)の目標位置に合わせるための移動指令を前記第2周期ごとに更新して前記移動機構(10,20)に出力するステップと、
 前記推定位置と前記目標位置との第1偏差が第1閾値未満である場合に、前記移動指令の更新を停止させるステップと、
 前記移動指令の更新が停止された場合に、最終移動指令に従う移動が完了したか否かを判定し、前記最終移動指令に従う移動が完了したと判定した後に、前記視覚センサ(30)に撮像指令を出力するステップと、
 前記撮像指令に応じて撮像された画像からの計測結果が予め定められた条件を満たす場合に、前記対象物(W)の位置決めを終了すると判定するステップとを備える、プログラム。
(Configuration 8)
A program (430) for causing a computer to execute a control method in a control system (1) for an object (W),
The control system (1)
A moving mechanism (10, 20) for moving the object (W);
A visual sensor (30) for imaging the object (W),
The control method is:
Based on the image captured by the visual sensor (30) for each first period and the position related information from the moving mechanism (10, 20), the target for each second period shorter than the first period. Determining an estimated position of the object (W);
Updating a movement command for adjusting the estimated position to a target position of the object (W) every second period, and outputting it to the movement mechanism (10, 20);
Stopping the update of the movement command when a first deviation between the estimated position and the target position is less than a first threshold;
When the update of the movement command is stopped, it is determined whether the movement according to the final movement command is completed, and after determining that the movement according to the final movement command is completed, the imaging command is sent to the visual sensor (30). A step of outputting
And a step of determining that the positioning of the object (W) is to be ended when a measurement result from an image captured in response to the imaging command satisfies a predetermined condition.
 今回開示された各実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、実施の形態および各変形例において説明された発明は、可能な限り、単独でも、組合せても、実施することが意図される。 Each embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. In addition, the invention described in the embodiment and each modification is intended to be implemented alone or in combination as much as possible.
 1 制御システム、10 ステージ装置、11,13,15 ステージ、12,14,16 サーボモータ、20,22,24,26 サーボドライバ、30 視覚センサ、31 撮像部、32 画像処理部、40 コントローラ、41 第1撮像指令部、42 位置決定部、43 フィードバック制御部、44 停止制御部、45 第2撮像指令部、46 判定部、50,51 記録媒体、70 表示部、310,412 プロセッサ、312 RAM、314 表示コントローラ、316 システムコントローラ、318 I/Oコントローラ、320 ハードディスク、322 カメラインターフェイス、324 入力インターフェイス、326 コントローラインターフェイス、328,417 通信インターフェイス、330,416 メモリカードインターフェイス、334 キーボード、410 主制御ユニット、411 チップセット、413 不揮発性メモリ、414 主メモリ、415 システムクロック、418 内部バスコントローラ、419 内部バス、422,424,426 サーボユニット、430 制御プログラム、431 減算部、432 PID演算部、481 バッファメモリ、482 制御回路、483 内部バス制御回路、W ワーク。 1 control system, 10 stage device, 11, 13, 15 stage, 12, 14, 16 servo motor, 20, 22, 24, 26 servo driver, 30 visual sensor, 31 imaging unit, 32 image processing unit, 40 controller, 41 First imaging command unit, 42 Position determining unit, 43 Feedback control unit, 44 Stop control unit, 45 Second imaging command unit, 46 Determination unit, 50, 51 Recording medium, 70 Display unit, 310, 412 processor, 312 RAM, 314 display controller, 316 system controller, 318 I / O controller, 320 hard disk, 322 camera interface, 324 input interface, 326 controller interface, 328, 417 communication interface, 330, 16 memory card interface, 334 keyboard, 410 main control unit, 411 chipset, 413 non-volatile memory, 414 main memory, 415 system clock, 418 internal bus controller, 419 internal bus, 422, 424, 426 servo unit, 430 control program 431 subtraction unit, 432 PID operation unit, 481 buffer memory, 482 control circuit, 483 internal bus control circuit, W work.

Claims (8)

  1.  対象物の制御システムであって、
     前記対象物を移動させるための移動機構と、
     前記対象物を撮像するための視覚センサと、
     前記視覚センサによって第1周期ごとに撮像された画像と前記移動機構からの位置関連情報とに基づいて、前記第1周期よりも短い第2周期ごとに、前記対象物の推定位置を決定する位置決定部と、
     前記推定位置を前記対象物の目標位置に合わせるための移動指令を前記第2周期ごとに更新して前記移動機構に出力するフィードバック制御部と、
     前記推定位置と前記目標位置との第1偏差が第1閾値未満である場合に、前記フィードバック制御部による前記移動指令の更新を停止させる停止制御部と、
     前記移動指令の更新が停止された場合に、最終移動指令に従う移動が完了したか否かを判定し、前記最終移動指令に従う移動が完了したと判定した後に、前記視覚センサに撮像指令を出力する撮像指令部と、
     前記撮像指令に応じて撮像された画像からの計測結果が予め定められた条件を満たす場合に、前記対象物の位置決めを終了すると判定する判定部とを備える、制御システム。
    An object control system,
    A moving mechanism for moving the object;
    A visual sensor for imaging the object;
    A position for determining an estimated position of the object for each second period shorter than the first period, based on an image captured by the visual sensor for each first period and position-related information from the moving mechanism. A decision unit;
    A feedback control unit that updates a movement command for adjusting the estimated position to a target position of the object every second period and outputs the movement command to the movement mechanism;
    A stop control unit that stops updating the movement command by the feedback control unit when a first deviation between the estimated position and the target position is less than a first threshold;
    When updating of the movement command is stopped, it is determined whether or not the movement according to the final movement command is completed, and after determining that the movement according to the final movement command is completed, the imaging command is output to the visual sensor. An imaging command section;
    A control system comprising: a determination unit that determines to end positioning of the object when a measurement result from an image captured in accordance with the imaging command satisfies a predetermined condition.
  2.  前記計測結果が前記予め定められた条件を満たさない場合に、前記フィードバック制御部は、前記移動指令の更新を再開する、請求項1に記載の制御システム。 The control system according to claim 1, wherein when the measurement result does not satisfy the predetermined condition, the feedback control unit resumes the update of the movement command.
  3.  前記撮像指令部は、前記最終移動指令で示される位置指令値と、前記位置関連情報によって示される位置との第2偏差が第2閾値未満である場合に、前記最終移動指令に従う移動が完了したと判定する、請求項1または2に記載の制御システム。 When the second deviation between the position command value indicated by the final movement command and the position indicated by the position related information is less than a second threshold, the imaging command unit has completed the movement according to the final movement command The control system according to claim 1 or 2, wherein
  4.  前記撮像指令部は、前記位置関連情報によって示される速度が第3閾値未満である場合に、前記最終移動指令に従う移動が完了したと判定する、請求項1または2に記載の制御システム。 The control system according to claim 1 or 2, wherein the imaging command unit determines that the movement according to the final movement command is completed when a speed indicated by the position related information is less than a third threshold value.
  5.  前記撮像指令部は、前記停止制御部によって前記移動指令の更新が停止されてからの経過時間が第4閾値を超える場合に、前記最終移動指令に従う移動が完了したと判定する、請求項1または2に記載の制御システム。 The imaging command unit determines that the movement according to the final movement command is completed when an elapsed time from when the update of the movement command is stopped by the stop control unit exceeds a fourth threshold value. 2. The control system according to 2.
  6.  前記計測結果は、前記撮像指令に応じて撮像された画像から計測された前記対象物の計測位置を示し、
     前記予め定められた条件は、前記計測位置と前記目標位置との第3偏差が第5閾値未満であるという条件である、請求項1から5のいずれか1項に記載の制御システム。
    The measurement result indicates a measurement position of the object measured from an image captured according to the imaging command,
    The control system according to any one of claims 1 to 5, wherein the predetermined condition is a condition that a third deviation between the measurement position and the target position is less than a fifth threshold value.
  7.  対象物の制御システムにおける制御方法であって、
     前記制御システムは、
     前記対象物を移動させるための移動機構と、
     前記対象物を撮像するための視覚センサとを含み、
     前記制御方法は、
     前記視覚センサによって第1周期ごとに撮像された画像と前記移動機構からの位置関連情報とに基づいて、前記第1周期よりも短い第2周期ごとに、前記対象物の推定位置を決定するステップと、
     前記推定位置を前記対象物の目標位置に合わせるための移動指令を前記第2周期ごとに更新して前記移動機構に出力するステップと、
     前記推定位置と前記目標位置との第1偏差が第1閾値未満である場合に、前記移動指令の更新を停止させるステップと、
     前記移動指令の更新が停止された場合に、最終移動指令に従う移動が完了したか否かを判定し、前記最終移動指令に従う移動が完了したと判定した後に、前記視覚センサに撮像指令を出力するステップと、
     前記撮像指令に応じて撮像された画像からの計測結果が予め定められた条件を満たす場合に、前記対象物の位置決めを終了すると判定するステップとを備える、制御方法。
    A control method in an object control system, comprising:
    The control system is
    A moving mechanism for moving the object;
    A visual sensor for imaging the object,
    The control method is:
    Determining an estimated position of the object for each second period shorter than the first period, based on an image captured by the visual sensor for each first period and position-related information from the moving mechanism. When,
    Updating a movement command for adjusting the estimated position to a target position of the object for each second period and outputting the instruction to the movement mechanism;
    Stopping the update of the movement command when a first deviation between the estimated position and the target position is less than a first threshold;
    When updating of the movement command is stopped, it is determined whether or not the movement according to the final movement command is completed, and after determining that the movement according to the final movement command is completed, the imaging command is output to the visual sensor. Steps,
    And determining to end positioning of the object when a measurement result from an image imaged in accordance with the imaging command satisfies a predetermined condition.
  8.  対象物の制御システムにおける制御方法をコンピュータに実行させるためのプログラムであって、
     前記制御システムは、
     前記対象物を移動させるための移動機構と、
     前記対象物を撮像するための視覚センサとを含み、
     前記制御方法は、
     前記視覚センサによって第1周期ごとに撮像された画像と前記移動機構からの位置関連情報とに基づいて、前記第1周期よりも短い第2周期ごとに、前記対象物の推定位置を決定するステップと、
     前記推定位置を前記対象物の目標位置に合わせるための移動指令を前記第2周期ごとに更新して前記移動機構に出力するステップと、
     前記推定位置と前記目標位置との第1偏差が第1閾値未満である場合に、前記移動指令の更新を停止させるステップと、
     前記移動指令の更新が停止された場合に、最終移動指令に従う移動が完了したか否かを判定し、前記最終移動指令に従う移動が完了したと判定した後に、前記視覚センサに撮像指令を出力するステップと、
     前記撮像指令に応じて撮像された画像からの計測結果が予め定められた条件を満たす場合に、前記対象物の位置決めを終了すると判定するステップとを備える、プログラム。
    A program for causing a computer to execute a control method in an object control system,
    The control system is
    A moving mechanism for moving the object;
    A visual sensor for imaging the object,
    The control method is:
    Determining an estimated position of the object for each second period shorter than the first period, based on an image captured by the visual sensor for each first period and position-related information from the moving mechanism. When,
    Updating a movement command for adjusting the estimated position to a target position of the object for each second period and outputting the instruction to the movement mechanism;
    Stopping the update of the movement command when a first deviation between the estimated position and the target position is less than a first threshold;
    When updating of the movement command is stopped, it is determined whether or not the movement according to the final movement command is completed, and after determining that the movement according to the final movement command is completed, the imaging command is output to the visual sensor. Steps,
    And a step of determining that the positioning of the object is to be terminated when a measurement result from an image captured in response to the imaging command satisfies a predetermined condition.
PCT/JP2019/013720 2018-04-17 2019-03-28 Control system, control method, and program WO2019202944A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018079084A JP7020262B2 (en) 2018-04-17 2018-04-17 Control systems, control methods and programs
JP2018-079084 2018-04-17

Publications (1)

Publication Number Publication Date
WO2019202944A1 true WO2019202944A1 (en) 2019-10-24

Family

ID=68239167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013720 WO2019202944A1 (en) 2018-04-17 2019-03-28 Control system, control method, and program

Country Status (2)

Country Link
JP (1) JP7020262B2 (en)
WO (1) WO2019202944A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339035A (en) * 2021-12-20 2022-04-12 青岛海尔科技有限公司 Image acquisition method and device, storage medium and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383807A (en) * 1986-09-29 1988-04-14 S G:Kk Compensating system for angle of lead in position control
JPH01222844A (en) * 1988-02-26 1989-09-06 Okuma Mach Works Ltd Device for correcting positioning error of numerically controlled machine tool
JP2015213139A (en) * 2014-05-07 2015-11-26 国立大学法人 東京大学 Positioning device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079797A (en) * 2008-09-29 2010-04-08 Sharp Corp Process processing apparatus
JP6167622B2 (en) 2013-04-08 2017-07-26 オムロン株式会社 Control system and control method
JP2016205957A (en) 2015-04-21 2016-12-08 日置電機株式会社 Method for correcting movable head position of x-y substrate inspection device, and x-y substrate inspection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383807A (en) * 1986-09-29 1988-04-14 S G:Kk Compensating system for angle of lead in position control
JPH01222844A (en) * 1988-02-26 1989-09-06 Okuma Mach Works Ltd Device for correcting positioning error of numerically controlled machine tool
JP2015213139A (en) * 2014-05-07 2015-11-26 国立大学法人 東京大学 Positioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339035A (en) * 2021-12-20 2022-04-12 青岛海尔科技有限公司 Image acquisition method and device, storage medium and electronic device

Also Published As

Publication number Publication date
JP7020262B2 (en) 2022-02-16
JP2019185654A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
CN110581946B (en) Control system, control device, image processing device, and storage medium
JP7143643B2 (en) Positioning system, monitoring device, monitoring method and program
CN110581945B (en) Control system, control device, image processing device, and storage medium
WO2019202944A1 (en) Control system, control method, and program
TW202029879A (en) Control device and control method
JP7003454B2 (en) Control device, position control system, position control method, and position control program
WO2020003945A1 (en) Position determination system, control method, and program
JP2007035946A (en) Electronic component mounting apparatus
WO2019208074A1 (en) Control system, control method, and program
JP6919622B2 (en) Control systems, control methods, and control programs
WO2019208107A1 (en) Control system, control method and control program
JP6922829B2 (en) Control systems, control methods, and control programs
JP7172151B2 (en) Control systems, controllers and programs
JP7052840B2 (en) Positioning device, control method of position specifying device, information processing program, and recording medium
CN113561170A (en) Robot torque compensation method, robot, device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788812

Country of ref document: EP

Kind code of ref document: A1