WO2019202841A1 - Radiographic image processing device, radiographic image processing method, and program - Google Patents

Radiographic image processing device, radiographic image processing method, and program Download PDF

Info

Publication number
WO2019202841A1
WO2019202841A1 PCT/JP2019/006465 JP2019006465W WO2019202841A1 WO 2019202841 A1 WO2019202841 A1 WO 2019202841A1 JP 2019006465 W JP2019006465 W JP 2019006465W WO 2019202841 A1 WO2019202841 A1 WO 2019202841A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
radiation
image processing
irradiation field
processing apparatus
Prior art date
Application number
PCT/JP2019/006465
Other languages
French (fr)
Japanese (ja)
Inventor
高澤 徹
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019202841A1 publication Critical patent/WO2019202841A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to a radiation image processing apparatus, a radiation image processing method, and a program.
  • various operations are performed when displaying an X-ray image in order to facilitate interpretation of the X-ray image by a radiology doctor. For example, a region unnecessary for interpretation outside the irradiation field is masked and displayed, a small target region (region of interest) is enlarged and displayed, or the target region is moved to the center by panning and displayed.
  • image data trimmed based on an irradiation field in the X-ray image is sent in order to prevent transmission of extra data. Yes.
  • Patent Document 1 an area of an irradiation field is recognized from a captured X-ray image and the outside of the area is masked, the area is enlarged to an appropriate magnification, the area is shifted to the center, and the area is based on the area. It has been proposed to perform processing such as trimming.
  • the irradiation field is extracted by finding the shading edge of the diaphragm from the shading information corresponding to the X-ray transmitted through the subject.
  • an image similar to the edge of the aperture may appear in the X-ray image, and there is a problem that an erroneous irradiation field is recognized.
  • the image of the auxiliary tool is recognized as an edge of the diaphragm, which may affect the recognized irradiation field.
  • a virtual collimator may be set to limit the display area.
  • the position of the virtual collimator must be manually moved, and there is a problem that the operation becomes complicated.
  • the imaging posture of the subject is changed from the standing position to the prone position in order to fill the contrast medium, but the position of the virtual collimator needs to be moved because the position of the stomach moves due to gravity. Arise.
  • the present invention provides a technique that makes it possible to appropriately set a region in a radiographic image.
  • a radiographic image processing apparatus has the following configuration. That is, Acquisition means for acquiring images of a plurality of radiation distributions with different radiation energies from the radiation imaging apparatus; Generating means for generating a processed image in which a specific substance is emphasized based on the plurality of radiation distribution images; Determining means for determining a region to be set in the radiation image based on the information on the specific substance in the processed image.
  • FIG. 1 is a block diagram illustrating a configuration example of a radiation imaging system according to an embodiment.
  • FIG. 2 is a timing chart illustrating an imaging operation of the radiation imaging apparatus according to the embodiment.
  • FIG. 3A is a diagram illustrating energy subtraction.
  • FIG. 3B is a diagram showing the correspondence between substances and effective atomic numbers.
  • FIG. 4 is a block diagram illustrating a functional configuration example of the imaging control apparatus according to the first embodiment.
  • FIG. 5 is a flowchart illustrating an example of processing performed by the imaging control apparatus of the first embodiment.
  • FIG. 6A is a diagram illustrating an example of the relative positional relationship between the diaphragm and the radiation imaging apparatus and an irradiation field.
  • FIG. 1 is a block diagram illustrating a configuration example of a radiation imaging system according to an embodiment.
  • FIG. 2 is a timing chart illustrating an imaging operation of the radiation imaging apparatus according to the embodiment.
  • FIG. 3A is a diagram illustrating energy subtraction.
  • FIG. 6B is a diagram illustrating an example of an irradiation field and a relative positional relationship between the diaphragm and the radiation imaging apparatus.
  • FIG. 6C is a diagram illustrating an example of the relative positional relationship between the diaphragm and the radiation imaging apparatus and an irradiation field.
  • FIG. 7 is a diagram illustrating an example of a surface density image and a mask image.
  • FIG. 8A is a flowchart illustrating another example of processing performed by the imaging control apparatus according to the first embodiment.
  • FIG. 8B is a flowchart illustrating another example of processing performed by the imaging control apparatus according to the first embodiment.
  • FIG. 9 is a block diagram illustrating a functional configuration example of the imaging control apparatus according to the second embodiment.
  • FIG. 10 is a diagram for explaining extraction of an irradiation field according to the second embodiment.
  • FIG. 11 is a flowchart illustrating an exemplary process performed by the imaging control apparatus according to the second embodiment.
  • FIG. 12 is a block diagram illustrating a functional configuration example of the imaging control apparatus according to the third embodiment.
  • FIG. 13 is a diagram illustrating the determination of the visual field area according to the third embodiment.
  • FIG. 14 is a flowchart illustrating an exemplary process performed by the imaging control apparatus according to the third embodiment.
  • the term “radiation” may include, for example, ⁇ rays, ⁇ rays, ⁇ ray particle beams, cosmic rays, and the like in addition to X rays.
  • a radiation imaging system including a radiation generator, a radiation imaging apparatus (a flat panel detector (FPD), and an imaging control apparatus (radiation image processing apparatus)) that generates an energy subtraction image will be described.
  • the irradiation field, the region, the subject, and the missing region are recognized, and the recognition result is used for radiation.
  • the radiation imaging systems of the following embodiments can be applied to both still image shooting and movie shooting.
  • one shot in a movie can be considered as a still image
  • an example is given in the movie system.
  • the radiation imaging system of the embodiment acquires a high-energy image and a low-energy image for energy subtraction and a diagnostic radioscopic image with a single irradiation of radiation.
  • the radiographic image is referred to as a fluoroscopic image.
  • FIG. 1 is a block diagram illustrating a configuration example of a radiation imaging system according to the first embodiment.
  • the radiation generator 101 generates radiation and irradiates the radiation in a desired direction.
  • the radiation control device 102 controls the dose / ray quality and irradiation timing of the radiation generated by the radiation generation device 101.
  • the imaging control device 103 is connected to the radiation control device 102 to control the irradiation timing of the radiation by the radiation generation device 101 and is connected to the radiation imaging device 104 to capture the radiation image, thereby controlling the operation of radiation imaging. To do.
  • the imaging control device 103 performs radiographic image processing including energy subtraction on the radiographic image captured from the radiographic imaging device 104.
  • the radiation imaging apparatus 104 includes an FPD, receives radiation irradiated from the radiation generation apparatus 101, generates an image as radiation intensity distribution information, and transmits the image to the imaging control apparatus 103.
  • the display device 105 is connected to the imaging control device 103 and displays a radiation image that has been subjected to radiation image processing (hereinafter, image processing) by the imaging control device 103.
  • the photographing control apparatus 103 includes a CPU 131 as a processor and a memory 132, and the CPU 131 executes various programs described below by executing predetermined programs stored in the memory 132.
  • the imaging control apparatus 103 uses an energy subtraction method that obtains new images (for example, bone images and soft tissue images) by processing a plurality of radiographic images with different radiation energies applied to the subject. When imaging by the energy subtraction method is performed, at least two radiographic images captured with different radiation energies are required to generate one subtraction image.
  • the radiation imaging apparatus 104 performs sampling a plurality of times during an imaging period of one frame (between adjacent reset signals). Thereby, the radiation imaging apparatus 104 can acquire an image (low energy image) with low energy radiation and an image (high energy image) with high energy radiation in one frame period.
  • FIG. 2 shows an example of a timing chart for X-ray irradiation and image acquisition.
  • the radiation imaging apparatus 104 of the present embodiment can acquire images of a plurality of radiation distributions by performing sampling a plurality of times during a single irradiation of radiation.
  • radiation (radiation (X L ) and radiation (X H )) of two different energies (X L , X H ) is irradiated by one irradiation.
  • Radiation (X L ) is a lower energy radiation than radiation (X H ) and is used to generate a low energy image (X L ), and radiation (X H ) generates a high energy image (X H ). Used to do.
  • imaging conditions are set so that an image (X L + X H ) obtained by irradiation with radiation (X L ) and radiation (X H ) becomes a diagnostic fluoroscopic image suitable for interpretation of the target site.
  • Tcyc indicates one cycle. Since the radiographic imaging system 100 of the present embodiment performs video imaging (perspective imaging), irradiation and readout are repeated with Tcyc1, Tcyc2, and Tcyc3.
  • radiation distribution information that has already been accumulated in the radiation imaging apparatus 104 is initialized with a Reset signal.
  • the sampling hold signal (SHold) the radiation distribution information (X L ) accumulated during the period from the start of irradiation of radiation (X L ) to the completion of irradiation (immediately before the start of irradiation of radiation (X H )) is sampled and held. , Temporarily stored in the radiation imaging apparatus 104.
  • radiation (X L) radiation distribution information (X L + X H) accumulated during the period of irradiation to completion of the radiation from the irradiation start (X H) of the sampling hold radiographic apparatus 104 Temporarily save in.
  • the radiation imaging apparatus 104 can accumulate a plurality of pieces of radiation distribution information.
  • the imaging control apparatus 103 receives radiation distribution information (X L ) and radiation distribution information ( (X L + X H ) is read out.
  • the imaging control unit 103 by subtracting the radiation distribution information (X L) from the radiation distribution information (X L + X H), obtain radiation distribution information (X H).
  • the radiation distribution information (X L ) is the base image of the low energy image
  • the radiation distribution information (X H ) is the base image of the high energy image
  • the radiation distribution information (X L + X H ) is read by the doctor. This is the base image of the diagnostic fluoroscopic image.
  • Effective atomic number is an atomic number that corresponds to the average of the constituent elements of an element, compound, or mixture, and is a quantitative index that indicates the atomic number of a hypothetical element that attenuates photons at the same rate as the substance. It is.
  • FIG. 3A by setting two equations from a high energy image (X H ) and a low energy image (X L ) and obtaining a solution, an image of effective atomic number (Z) and an area density (D) You can ask for an image.
  • X H high energy image
  • X L low energy image
  • Z effective atomic number
  • D area density
  • FIG. 3B shows the effective atomic number of the material.
  • the aperture stop the material of the radiation movable aperture stop
  • the effective atomic number is 82.
  • the surface density image of the effective atomic number of the specific substance can be generated, and the generated image is an image in which the specific material is emphasized. Therefore, if a surface density image having an effective atomic number of 82 is generated, an image in which the lead, that is, the image of the aperture region is enhanced can be obtained.
  • the imaging control device 103 calculates the relationship between the effective atomic number and the surface density from the low energy image and the high energy image, generates a surface density image of lead (Pb: effective atomic number 82), which is the material of the diaphragm, Extract the aperture area from the image.
  • the lead surface density image is an image in which the lead image is enhanced, and the aperture region can be easily extracted.
  • the imaging control device 103 can perform generation of a mask, calculation of a cutout region, and calculation of a display region in a diagnostic fluoroscopic image with high accuracy.
  • the final interpretation image (diagnosis radiation image) is displayed on the display device 105.
  • FIG. 4 is a block diagram illustrating a functional configuration example related to image processing of the imaging control apparatus 103 according to the first embodiment.
  • Each functional block may be realized by the CPU 131 executing a program stored in the memory 132 or the like, or may be realized by dedicated hardware, or by the cooperation of the CPU 131 and dedicated hardware. It may be realized.
  • the image acquisition unit 201 acquires images of a plurality of radiation distributions with different radiation energies from the radiation imaging apparatus 104.
  • the image separation unit 202 generates a processed image in which a specific substance is emphasized based on the result of performing energy subtraction on a plurality of radiation distribution images.
  • the specific substance is an aperture 107 (lead).
  • the substance extraction unit 203 and the irradiation field determination unit 204 determine an area (an irradiation field in a fluoroscopic image in the present embodiment) to be set in the radiation image based on information on a specific substance in the processed image.
  • an area an irradiation field in a fluoroscopic image in the present embodiment
  • the image acquisition unit 201 acquires radiation distribution information (a high energy image and a low energy image) from the radiation imaging apparatus 104.
  • the image acquisition unit 201 of the present embodiment acquires a plurality of radiation distribution images including an image that is a source of a fluoroscopic image for each single irradiation of radiation from the radiation imaging apparatus 104 described above.
  • the image separation unit 202 performs energy subtraction shown in FIG. 3A using the high energy image and the low energy image acquired by the image acquisition unit 201, and generates an image of effective atomic number and surface density. Furthermore, the image separation unit 202 generates a surface density image of the specific substance (the aperture 107 in the present embodiment) as a processed image from the generated effective atomic number and surface density image.
  • the substance extraction unit 203 extracts a specific substance region from the processed image generated by the image separation unit 202.
  • the irradiation field determination unit 204 determines the irradiation field on the X-ray fluoroscopic image based on the extraction result by the substance extraction unit 203.
  • the image display unit 205 corrects the mask of the irradiation field area of the diagnostic fluoroscopic image and displays it on the display device 105.
  • the image output unit 206 outputs an image cut out based on the irradiation field to a desired image server 108 via the in-hospital network 106.
  • the low energy image holding unit 207 holds the low energy image acquired by the image acquisition unit 201.
  • the high energy image holding unit 208 holds the high energy image acquired by the image acquisition unit 201.
  • the fluoroscopic image holding unit 209 holds the diagnostic fluoroscopic image acquired by the image acquisition unit 201.
  • the processed image holding unit 210 holds a processed image such as an effective atomic number and surface density image generated by the image separating unit 202 and a surface density image of a specific substance.
  • the extraction data holding unit 211 holds the substance extraction data generated by the image separation unit 202.
  • the correction data holding unit 212 holds data for correcting the measurement error of the calculated effective atomic number and data for correcting the measurement error of the surface density.
  • FIG. 5 is a flowchart showing processing by the imaging control apparatus 103 (mainly, the image separation unit 202, the substance extraction unit 203, the irradiation field determination unit 204, and the image display unit 205) of the present embodiment.
  • the radiation emitted from the radiation generation apparatus 101 passes through the subject and is acquired as a radiation transmission image by the radiation imaging apparatus 104.
  • the irradiation area of the radiation from the radiation generation apparatus 101 is limited by the aperture 107 so that the radiation is not irradiated to an area other than the area where the subject needs to be imaged.
  • the area narrowed by the diaphragm 107 is called an irradiation field on the photographed image.
  • 6A to 6C show the relative positional relationship between the diaphragm 107 and the radiation imaging apparatus 104 and the relationship between the irradiation fields.
  • FIGS. 6A to 6C As the shape of the diaphragm 107, a rectangle and a circle are generally used as shown in FIGS. 6A to 6C.
  • FIG. 6A shows a state where the center of the diaphragm 107 is aligned with the center 601 of the radiation imaging apparatus 104.
  • FIG. 6B shows a state where the diaphragm 107 is rotated and / or translated. Due to the parallel movement, the center 602 of the diaphragm is displaced from the center 601 of the radiation imaging apparatus 104.
  • FIG. 6C shows a state in which radiation is irradiated obliquely rather than perpendicularly to the radiation imaging apparatus 104.
  • a diaphragm having a shape other than a rectangle or a circle is also used.
  • the image acquisition unit 201 acquires the radiation distribution information (X L ) and the radiation distribution information (X L + X H ) from the radiation imaging apparatus 104 that operates at the timing described with reference to FIG. Acquire low-energy images and diagnostic fluoroscopic images.
  • the image acquisition unit 201 holds the acquired low energy image and fluoroscopic image in the low energy image holding unit 207 and the fluoroscopic image holding unit 209, respectively.
  • the image acquisition unit 201 calculates the radiation distribution information (X H ) by obtaining the difference between the radiation distribution information (X L + X H ) and the radiation distribution information (X L ), and based on this, the high energy image Is stored in the high energy image holding unit 208.
  • step S500 the image separation unit 202 performs an energy subtraction process using the high energy image and the low energy image, and calculates an effective atomic number and an areal density.
  • the obtained effective atomic number image and surface density image are held in the processed image holding unit 210.
  • step S501 the image separation unit 202 extracts the pixel of the effective atomic number of the diaphragm from the image of the effective atomic number and surface density calculated in step S500, and generates a surface density image of the diaphragm.
  • the image separation unit 202 corrects the surface density image using the correction data obtained from the correction data holding unit 212.
  • the irradiation field is an area limited by the diaphragm, and conversely, the area outside the irradiation field is the area of the diaphragm itself.
  • the diaphragm is made of lead, it is difficult for X-rays to pass therethrough, but there is also energy that is detected by the radiation imaging apparatus 104 without being completely blocked.
  • the effective atomic number of lead is 82, and there is almost no substance having an effective atomic number higher than this in the radiographic image. Therefore, by creating a surface density image for effective atomic numbers within a predetermined value range, for example, a processed image in which the aperture (lead) is emphasized can be obtained. For example, if a surface density image for an effective atomic number of 70 or more is created, an image in which lead, which is a substance having an effective atomic number of 70 or more, is emphasized, that is, an aperture surface density image is obtained.
  • an areal density image for an effective atomic number of 13 or more an image in which aluminum, enamel, iron, and lead, which are substances having an effective atomic number of 13 or more, are emphasized, that is, an areal density image of a metal is obtained. .
  • the user can arbitrarily select a predetermined value range by the imaging control apparatus 103.
  • An example of the surface density image of the aperture generated as described above is shown in an image 700 in FIG.
  • the effective atomic number of the substance to extract was set to 70 or more, it is not restricted to this. What is necessary is just to set the effective atomic number of the substance extracted including the effective atomic number 82 of lead and not including a human body or air.
  • the substance extraction unit 203 extracts a diaphragm region based on the surface density image of the diaphragm held in the processed image holding unit 210, and shapes of the boundary (irradiation field) of the diaphragm region Whether or not can be represented by a rectangle or a circle. For example, in the case of a rectangle as shown in the upper part of FIGS. 6A to 6C and a circle as shown in the lower part of FIGS. 6A to 6B, it is determined that the shape of the diaphragm is determined by the rectangle or the circle, and the process Advances to step S503. On the other hand, when it is irradiated obliquely using a circular diaphragm as shown in FIG.
  • step S502 elliptical irradiation field
  • step S506 Alternatively, even in the case of a rectangular diaphragm, when the center of the diaphragm 107 is significantly deviated from the center of the radiation imaging apparatus 104 and the shape of the irradiation field cannot be determined, the process proceeds from step S502 to step S506.
  • the irradiation field determination unit 204 determines a geometric shape applicable to the shape defined by the specific substance from the processed image, and detects the irradiation field from the fluoroscopic image using the determined geometric shape. By doing so, the area of the irradiation field is determined.
  • the geometric shape used in this example is a rectangle or a circle as described above.
  • the substance extraction unit 203 performs image processing such as edge enhancement on the surface density image of the diaphragm, extracts a straight line or a circle edge that is a boundary between the irradiation field and the diaphragm, and geometrics of the irradiation field. Determine the shape.
  • the geometric shape of the field can be defined by coordinates, for example. For example, if the irradiation field is rectangular, the irradiation field can be determined by the positions of the four vertices, and if it is circular, the irradiation field can be determined by the center coordinates and the radius.
  • the substance extraction unit 203 holds the determined coordinates in the extraction data holding unit 211.
  • the irradiation field determination unit 204 determines the irradiation field on the diagnostic fluoroscopic image.
  • the irradiation field determination unit 204 sets an irradiation field candidate (initial value) based on the coordinates of the irradiation field held in the extraction data holding unit 211 on the fluoroscopic image, and sets the irradiation field from the fluoroscopic image. Recognize and confirm.
  • the irradiation field determination unit 204 generates a mask image from the coordinates of the irradiation field determined in step S504 (four vertices if rectangular, center coordinates and radius if circular).
  • the irradiation field determination unit 204 when the process proceeds from step S502 to step S506, the irradiation field determination unit 204 generates a mask image using the surface density image of the diaphragm.
  • the irradiation field is determined based on the binarized image obtained by binarizing the processed image. That is, in step S506, the irradiation field determination unit 204 generates a mask image using pixels corresponding to the diaphragm in the surface density image of the diaphragm held in the extraction data holding unit 211 as pixels of the mask image, and extracts the extracted image data. Hold in the holding unit 211.
  • the irradiation field determination unit 204 can generate a binary mask image (701 in FIG.
  • the irradiation field determination unit 204 provides the generated mask image to the image display unit 205 and the image output unit 206.
  • step S507 the irradiation field determination unit 204 calculates the coordinates of each vertex of the circumscribed rectangle with respect to the irradiation field of the mask image for trimming the image area, and provides the calculated coordinates to the image output unit 206.
  • step S508 the image display unit 205 generates an image (703 in FIG. 7) in which the mask image (701 in FIG. 7) generated in step S505 or S506 and the fluoroscopic image (702 in FIG. 7) are superimposed, and the display device To 105.
  • step S509 the image output unit 206 trims (cuts out) the superimposed image (703 in FIG. 7) with respect to each vertex coordinate of the circumscribed rectangle calculated in step S507 (output image 704 in FIG. 7). Output to the image server 108.
  • the area of the aperture is extracted by generating an area density image of a substance having an effective atomic number of 70 or more, and a mask image is generated based on this, but the present invention is not limited to this.
  • An area other than the stop in the radiographic image may be extracted to detect the irradiation field.
  • a surface density image may be generated by selecting an effective atomic number so as to include a substance constituting the human body and air but not a substance constituting a diaphragm, and an irradiation field may be determined based on the generated surface density image. .
  • an image of a material other than lead that is, a surface density image of an irradiation field that is an area not blocked by the diaphragm is generated. Based on this, the irradiation field may be determined.
  • the mask image corresponding to the stop is generated based on the surface density image of the stop or the surface density image of the irradiation field obtained by the energy subtraction process. As a result, erroneous recognition of the irradiation field is reduced.
  • a surface density image of the stop or a surface density image of a region (irradiation field) other than the stop is generated from the effective atomic number of the stop, and a mask image is generated using the result.
  • a configuration in which a mask image is generated based on the surface density image of the background missing area will be described.
  • the surface density image of the unexposed region is an image obtained by detecting the radiation energy transmitted through the air. Therefore, by creating a surface density image of 7.76 (FIG. 3B), which is the effective atomic number of air, a surface density image without blanks can be obtained.
  • FIG. 7 is a diagram illustrating an example of a surface density image of the blank region 712.
  • the irradiation field determination unit 204 generates a mask image by extracting the irradiation field from the outer side of the background region 712.
  • the generation method of the display image 703 and the output image 704 using the generated mask image is the same as that in the first embodiment described above.
  • a processing procedure according to this modification will be described with reference to the flowcharts of FIGS. 8A and 8B. 8A and 8B, the same step numbers are assigned to the same processes as those in the first embodiment (FIG. 5) described above.
  • step S500 the image acquisition unit 201 calculates a low energy image, a high energy image, and a fluoroscopic image, and stores them in the low energy image holding unit 207 and the fluoroscopic image holding unit 209, respectively.
  • step S ⁇ b> 500 the image separation unit 202 generates an effective atomic number image and an area density image from the high energy image and the low energy image, and holds them in the processed image holding unit 210.
  • step S801 the image separation unit 202 extracts pixels of the effective atomic number of air from the image of the effective atomic number and surface density calculated in step S500, and obtains the surface density image 711 of the blank region. Generated and stored in the processed image holding unit 210. As shown in FIG. 3B, the effective atomic number of air is 7.76.
  • step S802 the substance extraction unit 203 determines whether the shape of the irradiation field determined from the surface density image of the blank region generated in step S801 is a simple rectangle or circle. If the shape of the irradiation field is a simple rectangle or circle, the process proceeds to step S803.
  • step S ⁇ b> 803 the irradiation field determination unit 204 extracts the straight line of the diaphragm or the edge of the circle from the surface density image of the unexposed region, and defines the coordinates of the irradiation field geometric shape (in the case of a rectangle, the four vertexes). Coordinates, and in the case of a circle, the center coordinates and radius) are calculated.
  • the substance extraction unit 203 stores the calculated coordinates in the extraction data holding unit 211. Thereafter, the irradiation field determination unit 204 generates a mask image by the same processing as in the first embodiment (steps S504 to S505 in FIG. 5).
  • step S802 the process proceeds from step S802 to step S804.
  • step S804 the process proceeds from step S802 to step S804 even if the surface density image of the missing region is generated but the subject is located at the corner of the irradiation field and the outer periphery of the missing region cannot be determined.
  • the irradiation field in the fluoroscopic image is determined so as to include the extracted background missing region at a predetermined ratio or more. More specifically, the irradiation field determination unit 204 creates an image of the background region obtained by binarizing the surface density image of the background region with a threshold value, and uses this to correct the irradiation field extracted from the fluoroscopic image. A mask image is generated.
  • the operation in each step will be described.
  • step S804 the irradiation field determination unit 204 binarizes the surface density image 711 of the background missing area with a predetermined threshold, and generates a background missing image in which the pixel value of the background missing area is 1.
  • step S805 the irradiation field determination unit 204 performs image processing that makes the irradiation field easy to understand, such as edge enhancement processing, on the fluoroscopic image held in the fluoroscopic image holding unit 209, and then performs irradiation field candidates. Perform extraction.
  • step S806 the irradiation field determination unit 204 determines whether or not the irradiation field candidate is appropriate by comparing the irradiation field candidate extracted in step S805 with the blank image generated in step S804.
  • step S807 the irradiation field determination unit 204 generates a mask image that masks the area outside the irradiation field extracted in step S805.
  • step S806 determines whether the irradiation field candidate is appropriate.
  • step S806 determines again whether the irradiation field candidates are appropriate.
  • a predetermined ratio for example, 80% or more of the missing images is included in the irradiation field candidates. It is determined that the irradiation field candidate is appropriate.
  • the user may specify the ratio at which the blank field images are included in the irradiation field candidates.
  • the subsequent generation of the display image and output image using the mask image in steps S507 to S509 is the same as in the first embodiment (FIG. 5).
  • the irradiation field of the X-ray fluoroscopic image may be determined using the extraction results of both the aperture and the blank region described above.
  • an image in which the specific substance is emphasized is acquired, and the irradiation field is determined using this.
  • the effective atomic number (Z) and the surface density (D) an image can be generated when X-rays having an arbitrary energy are irradiated. That is, a monochromatic X-ray image when irradiated with virtual monochromatic X-rays is obtained.
  • the image separation unit 202 Since the X-ray wavelength at which the X-ray absorption rate exhibits a peak varies from material to material, an image in which the specific material is emphasized is generated by creating a monochromatic X-ray image having a wavelength that maximizes the X-ray absorption rate of the specific material. be able to. Therefore, the image separation unit 202 generates a monochromatic radiation image when a monochromatic radiation having a wavelength at which the radiation absorption rate of the specific substance shows a peak is generated from the image of the effective atomic number and the surface density, and this is generated as the specific substance. It may be used as an image in which is emphasized. The same applies to the second and third embodiments described below.
  • an image in which the determined irradiation field is masked is generated as a display image, and an image cut out by a rectangle circumscribing the mask is generated as an output image.
  • an imaging control apparatus 103 capable of automatically adjusting the display position and size of the determined irradiation area will be described.
  • the system configuration of the second embodiment is the same as that of the first embodiment (FIG. 1). In the following, differences from the first embodiment will be mainly described.
  • FIG. 9 is a block diagram illustrating a functional configuration example related to image processing of the imaging control apparatus 103 according to the second embodiment.
  • the display adjustment unit 220 adjusts the position and display magnification of the irradiation field based on the position and size of the irradiation field determined by the irradiation field determination unit 204.
  • the image display unit 205 displays the adjusted image in which the position of the irradiation field is adjusted and the display magnification is adjusted on the display device 105, and the image output unit 206 extracts a necessary region (irradiation field region) from the fluoroscopic image.
  • the processed image is output to the image server 108 as an output image.
  • FIG. 10 is a diagram showing an example of an image in the case where the imaging target region is small like a finger joint, and a procedure for performing imaging with the aperture 107 restricting most of the irradiation area is performed. As shown in the perspective image 1002, the target area is located toward the end of the imaging area of the radiation imaging apparatus 104.
  • FIG. 11 is a flowchart showing the operation of the imaging control apparatus 103 according to the second embodiment.
  • the display adjustment unit 220 performs the processing of steps S1101 to S1104 between steps S507 and S509 in the flowchart shown in FIG. 5 or FIGS. 8A to 8B.
  • the image acquisition unit 201, the image separation unit 202, the substance extraction unit 203, and the irradiation field determination unit 204 determine the irradiation field and generate a mask image outside the irradiation field.
  • the display adjustment unit 220 determines the amount of movement of the irradiation field image so that the image of the irradiation field is displayed at the center of the display area for displaying the fluoroscopic image on the display device 105 (step S1101). Thereby, the position is adjusted so that the center of the irradiation field coincides with the center of the display area of the fluoroscopic image.
  • the display adjustment unit 220 determines an enlargement ratio for enlarging the irradiation field display size (step S1103). More specifically, the display adjustment unit 220 has a magnification within a range not subjected to digital zooming determined from the relationship between the resolution of the detector of the radiation imaging apparatus 104 and the resolution of the display apparatus 105, and the image of the irradiation field is a display area. Determine the enlargement ratio so that it does not protrude. In step S1104, the image display unit 205 superimposes the fluoroscopic image 1002 and the mask image 1001 as shown in FIG.
  • the image output unit 206 cuts out an output image based on the circumscribed rectangle calculated in step S507 and transmits the output image to the image server 108.
  • the display adjustment unit 220 calculates the rotation angle of the irradiation field, and the image display unit 205 returns and displays the rotation based on the rotation angle. It may be.
  • the size of the irradiation field is enlarged when the size of the irradiation field is equal to or smaller than a predetermined value.
  • the present invention is not limited to this. Irrespective of whether or not the size of the irradiation field is equal to or smaller than a predetermined value, the irradiation field may be enlarged and displayed in a range that is not digitally zoomed and that does not exceed the radiation image display area.
  • an image in which a specific substance (aperture) is emphasized is generated from an image of effective atomic number and surface density obtained by energy subtraction, and an irradiation field is determined based on the generated image.
  • an image in which a specific tissue (for example, a bone) of a subject is emphasized as a specific material is generated from an image of effective atomic number and areal density, and an appropriate visual field region based on a specific position of the specific material To decide.
  • the specific substance targeted by the first and second embodiments is immobile during imaging, but the specific substance targeted by the third embodiment moves during imaging. Accordingly, the visual field area moves during moving image shooting.
  • FIG. 12 is a block diagram illustrating a functional configuration example related to image processing of the imaging control apparatus 103 according to the third embodiment. Functional blocks similar to those in the first embodiment (FIG. 4) are denoted by the same reference numerals.
  • FIG. 13 moving image shooting when viewing the movement of the knee joint is illustrated.
  • the knee joint is composed of a femur, a patella, a rib, and a tibia, and it is confirmed whether the knee can be bent and stretched smoothly. In this case, the doctor causes the subject to bend and stretch the knee while applying a load, and observe the state with a moving image.
  • FIG. 12 is a block diagram illustrating a functional configuration example related to image processing of the imaging control apparatus 103 according to the third embodiment. Functional blocks similar to those in the first embodiment (FIG. 4) are denoted by the same reference numerals.
  • FIG. 13 moving image shooting when viewing the movement of the knee joint is illustrated.
  • the knee joint is composed of a femur, a pat
  • the visual field region 1301 is an image obtained by imaging the knee joint with the radiation imaging apparatus 104, but what is actually displayed on the display apparatus 105 is an area of a visual field area 1301 of a predetermined size.
  • the visual field region 1301 may be limited by being limited by a diaphragm, may be limited by a preset virtual fixed collimator size, or may be trimmed on an image.
  • the visual field size is set in advance.
  • the image of the visual field is output to the image server 108 as moving image data. In this photographing, since it is necessary to see the movement of the subject, the relative positional relationship between the subject and the visual field region changes every moment.
  • FIG. 14 is a flowchart showing the operation of the imaging control apparatus 103 according to the third embodiment.
  • the image separation unit 202 calculates the effective atomic number and the surface density from the low energy image and the high energy image acquired by the image acquisition unit 201 (step S1401).
  • the image separation unit 202 further generates an image (bone surface density image) in which the bone is emphasized using the effective atomic number and the surface density image, and the effective atomic number of the bone (step S1402).
  • the substance extraction unit 203 extracts the femur from the generated surface density image of the bone, and sets a portion to be displayed at the center of the visual field region.
  • the user may designate a part to be displayed at the center of the visual field area on the GUI, but a characteristic part of the bone may be set in advance.
  • the lowermost portion 1302 of the femur is a portion that is displayed at the center of the visual field region.
  • the visual field determination unit 221 automatically detects the specific position (the lowest part of the femur) of the specific material (bone) from the femur extracted by the material extraction unit 203 by a method such as pattern matching, and obtains the coordinates ( Step S1403).
  • the visual field determination unit 221 acquires the visual field size from the visual field size holding unit 213, and sets the visual field region so that the detected lowermost part of the femur is at the center of the visual field region (step S1404).
  • the display position adjustment unit 222 calculates a movement amount for moving the visual field region to the center of the display region (step S1405).
  • the image display unit 205 cuts out the visual field region determined by the visual field determination unit 221 from the fluoroscopic image, moves it according to the movement amount calculated by the display position adjustment unit 222, and displays it on the display device 105 (step S1406). Thus, the display position of the visual field area is adjusted and displayed on the display device 105.
  • the image output unit 206 transmits the image of the visual field area cut out from the fluoroscopic image to the image server 108 (step S1407). Note that the transmission of the moving image by the image output unit 206 may be executed after the moving image has been shot. As described above, the region of interest is displayed at the center of the visual field region even when the subject moves.
  • the image separation unit 202 calculates the effective atomic number and the surface density, and creates the surface density image of the bone from the effective atomic number of the bone, but is not limited thereto. As described above, it is possible to create a monochromatic radiation image when a virtual single-wavelength radiation having a wavelength with a high bone absorption rate is irradiated from the effective atomic number and surface density, and to extract the femur from the image. . In the third embodiment, the image of the visual field region 1301 is extracted from the fluoroscopic image, but the present invention is not limited to this.
  • the movable diaphragm is moved according to the detection result of the lowermost part of the femur, the irradiation field is detected as described in the second embodiment, and the display position is adjusted and displayed. You may do it.
  • a target part, organ, or organ may be recognized by energy subtraction, and as a result, display control may be performed so that the target object is in the center of the visual field region.
  • a region of a predetermined organ for example, stomach
  • display control may be performed so that the center of the region becomes the center of the visual field region.
  • the present invention has been described with respect to a moving image system capable of energy subtraction with a single irradiation and capable of acquiring a fluoroscopic image
  • the present invention is not limited thereto. That is, even if it is not a moving image system but a still image system, it can be applied even to a system that cannot simultaneously acquire energy subtraction and a fluoroscopic image by one irradiation, and the same effectiveness can be obtained.
  • the surface density image of the diaphragm is generated from the images of a plurality of radiation distributions with different radiation energies, the diaphragm area of the radiation generator is extracted, and applied to the radiation image. It becomes possible to recognize the irradiation field well. Further, according to the second embodiment, the irradiation field can be displayed at an appropriate position with an appropriate display magnification. Furthermore, according to the third embodiment, since the visual field region can be appropriately maintained following the movement of an appropriate subject, a moving image that is easy to observe is obtained particularly in a fluoroscopic image (moving image).
  • an areal density image for an effective atomic number of 13 or more is created, an image in which aluminum, enamel, iron, and lead, which are substances having an effective atomic number of 13 or more, are emphasized, that is, an areal density image of a metal is obtained. .
  • the region of the metal is determined. It is also possible to identify or generate an image excluding metal areas.
  • the present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in the computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A radiographic image processing device according to the present invention acquires images having a plurality of radiation distributions due to different radiation energies from a radiographic imaging device, generates a processed image in which a specific substance is emphasized on the basis of the images having a plurality of radiation distributions, and determines a region to be set in a radiographic image on the basis of info of the specific substance in the processed image.

Description

放射線画像処理装置、放射線画像処理方法及びプログラムRadiation image processing apparatus, radiation image processing method and program
 本発明は、放射線画像処理装置、放射線画像処理方法及びプログラムに関する。 The present invention relates to a radiation image processing apparatus, a radiation image processing method, and a program.
 一般に、放射線科の医師によるX線画像の読影をより容易にするために、X線画像の表示に際して種々の操作が行われる。例えば、照射野外の読影に不要な領域をマスクして表示したり、小さい対象領域(関心領域)を拡大して表示したり、パニングにより対象領域を中央に移動して表示したりする。また、外部の読影システムのサーバへX線画像データを送る場合、余分なデータの送信を防止するために、X線画像中の照射野をもとにトリミングした画像データを送ることが行われている。 Generally, various operations are performed when displaying an X-ray image in order to facilitate interpretation of the X-ray image by a radiology doctor. For example, a region unnecessary for interpretation outside the irradiation field is masked and displayed, a small target region (region of interest) is enlarged and displayed, or the target region is moved to the center by panning and displayed. In addition, when X-ray image data is sent to an external interpretation system server, image data trimmed based on an irradiation field in the X-ray image is sent in order to prevent transmission of extra data. Yes.
 放射線技師がX線撮影の度に上述のような操作をするのは撮影効率が悪く、放射線技師にかかる負担も大きい。特許文献1では、撮影されたX線画像から照射野の領域を認識してその領域外をマスクする、その領域を適切な倍率に拡大する、その領域を中央にずらす、その領域をもとにトリミングするなどの処理を行うことが提案されている。 If the radiologist performs the above-mentioned operations every time X-rays are taken, the imaging efficiency is poor and the burden on the radiologist is great. In Patent Document 1, an area of an irradiation field is recognized from a captured X-ray image and the outside of the area is masked, the area is enlarged to an appropriate magnification, the area is shifted to the center, and the area is based on the area. It has been proposed to perform processing such as trimming.
特公平05-049143号公報Japanese Patent Publication No. 05-049143
 X線画像から照射野を自動的に認識する場合、被写体を透過したX線に応じた濃淡の情報から絞りの濃淡のエッジを見つけることにより照射野が抽出される。しかしながら、被写体の姿勢や体格、撮影方法などにより、X線画像に絞りのエッジと類似した画像が現れることがあり、誤った照射野が認識されるという課題があった。例えば、被写体の固定のため金属製の補助具を用いた撮影が行われた場合には、その補助具の画像が絞りのエッジとして認識され、認識される照射野に影響する可能性がある。 When automatically recognizing the irradiation field from the X-ray image, the irradiation field is extracted by finding the shading edge of the diaphragm from the shading information corresponding to the X-ray transmitted through the subject. However, depending on the posture, physique, and imaging method of the subject, an image similar to the edge of the aperture may appear in the X-ray image, and there is a problem that an erroneous irradiation field is recognized. For example, when photographing using a metal auxiliary tool is performed to fix the subject, the image of the auxiliary tool is recognized as an edge of the diaphragm, which may affect the recognized irradiation field.
 また、放射線動画(放射線透視画像)を得る場合、表示領域を限定するため仮想のコリメータを設定することがある。この場合、仮想のコリメータ内で関心領域が中央からずれると、手動で仮想コリメータの位置を移動しなければならず、操作が煩雑になるという課題がある。あるいは、胃の透視撮影などでは造影剤を充満させるため被写体の撮影姿勢を立位から臥位まで変えているが、重力により胃の位置が移動するため、仮想のコリメータの位置を移動する必要が生じる。 Also, when obtaining a radiological moving image (radioscopy image), a virtual collimator may be set to limit the display area. In this case, if the region of interest deviates from the center in the virtual collimator, the position of the virtual collimator must be manually moved, and there is a problem that the operation becomes complicated. Or, in the case of fluoroscopic imaging of the stomach, the imaging posture of the subject is changed from the standing position to the prone position in order to fill the contrast medium, but the position of the virtual collimator needs to be moved because the position of the stomach moves due to gravity. Arise.
 本発明は、放射線画像において適切に領域の設定を行うことを可能にする技術を提供する。 The present invention provides a technique that makes it possible to appropriately set a region in a radiographic image.
 本発明の一態様による放射線画像処理装置は以下の構成を備える。すなわち、
 放射線撮影装置から異なる放射線のエネルギーによる複数の放射線分布の画像を取得する取得手段と、
 前記複数の放射線分布の画像に基づいて特定物質が強調された処理画像を生成する生成手段と、
 前記処理画像における前記特定物質の情報に基づいて、放射線画像に設定する領域を決定する決定手段と、を備える。
A radiographic image processing apparatus according to an aspect of the present invention has the following configuration. That is,
Acquisition means for acquiring images of a plurality of radiation distributions with different radiation energies from the radiation imaging apparatus;
Generating means for generating a processed image in which a specific substance is emphasized based on the plurality of radiation distribution images;
Determining means for determining a region to be set in the radiation image based on the information on the specific substance in the processed image.
 本発明によれば、放射線画像において適切に領域を設定することが可能になる。 According to the present invention, it is possible to appropriately set a region in a radiographic image.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
図1は、実施形態による放射線撮影システムの構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of a radiation imaging system according to an embodiment. 図2は、実施形態による放射線撮影装置の撮影動作を示すタイミングチャートである。FIG. 2 is a timing chart illustrating an imaging operation of the radiation imaging apparatus according to the embodiment. 図3Aは、エネルギーサブトラクションを説明する図である。FIG. 3A is a diagram illustrating energy subtraction. 図3Bは物質と実効原子番号の対応を示す図である。FIG. 3B is a diagram showing the correspondence between substances and effective atomic numbers. 図4は、第1実施形態による撮影制御装置の機能構成例を示すブロック図である。FIG. 4 is a block diagram illustrating a functional configuration example of the imaging control apparatus according to the first embodiment. 図5は、第1実施形態の撮影制御装置による処理例を示すフローチャートである。FIG. 5 is a flowchart illustrating an example of processing performed by the imaging control apparatus of the first embodiment. 図6Aは、絞りと放射線撮影装置の相対的位置関係と照射野の例を示す図である。FIG. 6A is a diagram illustrating an example of the relative positional relationship between the diaphragm and the radiation imaging apparatus and an irradiation field. 図6Bは、絞りと放射線撮影装置の相対的位置関係と照射野の例を示す図である。FIG. 6B is a diagram illustrating an example of an irradiation field and a relative positional relationship between the diaphragm and the radiation imaging apparatus. 図6Cは、絞りと放射線撮影装置の相対的位置関係と照射野の例を示す図である。FIG. 6C is a diagram illustrating an example of the relative positional relationship between the diaphragm and the radiation imaging apparatus and an irradiation field. 図7は、面密度画像とマスク画像の例を示す図である。FIG. 7 is a diagram illustrating an example of a surface density image and a mask image. 図8Aは、第1実施形態の撮影制御装置による処理の他の例を示すフローチャートである。FIG. 8A is a flowchart illustrating another example of processing performed by the imaging control apparatus according to the first embodiment. 図8Bは、第1実施形態の撮影制御装置による処理の他の例を示すフローチャートである。FIG. 8B is a flowchart illustrating another example of processing performed by the imaging control apparatus according to the first embodiment. 図9は、第2実施形態による撮影制御装置の機能構成例を示すブロック図である。FIG. 9 is a block diagram illustrating a functional configuration example of the imaging control apparatus according to the second embodiment. 図10は、第2実施形態による照射野の抽出を説明する図である。FIG. 10 is a diagram for explaining extraction of an irradiation field according to the second embodiment. 図11は、第2実施形態の撮影制御装置による処理例を示すフローチャートである。FIG. 11 is a flowchart illustrating an exemplary process performed by the imaging control apparatus according to the second embodiment. 図12は、第3実施形態による撮影制御装置の機能構成例を示すブロック図である。FIG. 12 is a block diagram illustrating a functional configuration example of the imaging control apparatus according to the third embodiment. 図13は、第3実施形態による視野領域の決定を説明する図である。FIG. 13 is a diagram illustrating the determination of the visual field area according to the third embodiment. 図14は、第3実施形態の撮影制御装置による処理例を示すフローチャートである。FIG. 14 is a flowchart illustrating an exemplary process performed by the imaging control apparatus according to the third embodiment.
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。なお、以下の実施形態において、放射線という用語は、X線の他、例えば、α線、β線、γ線粒子線、宇宙線などを含み得る。また、以下の実施形態では、放射線発生装置と、放射線撮影装置(フラットパネルディテクタ(FPD)と、撮影制御装置(放射線画像処理装置)とを備え、エネルギーサブトラクション画像の生成を行う放射線撮影システムについて説明する。実施形態によれば、エネルギーサブトラクションにより得られた、特定物質が強調された処理画像において、照射野、部位、被写体、素抜け領域の認識が行われる。そして、その認識結果を用いて放射線画像における照射野、被写体の部位、素抜け認識の認識精度を向上させることで、放射線画像における領域の適正な切り出しを可能にする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the term “radiation” may include, for example, α rays, β rays, γ ray particle beams, cosmic rays, and the like in addition to X rays. In the following embodiments, a radiation imaging system including a radiation generator, a radiation imaging apparatus (a flat panel detector (FPD), and an imaging control apparatus (radiation image processing apparatus)) that generates an energy subtraction image will be described. According to the embodiment, in the processed image obtained by energy subtraction in which the specific substance is emphasized, the irradiation field, the region, the subject, and the missing region are recognized, and the recognition result is used for radiation. By improving the recognition accuracy of the irradiation field in the image, the part of the subject, and the element missing recognition, it is possible to appropriately cut out the region in the radiographic image.
 また、以下の各実施形態の放射線撮影システムは、静止画撮影および動画撮影のどちらにも適用可能であるが、動画における1ショット分が静止画であると考えることができるので、動画システムで例を示す。また、エネルギーサブトラクション画像と診断用の放射線透視画像の取得のタイミングは、できるだけ同じほうがより正確な照射野の認識が可能である。したがって、実施形態の放射線撮影システムは、1回の放射線の照射でエネルギーサブトラクションのための高エネルギー画像と低エネルギー画像および、診断用放射線透視画像を取得する。以下、各実施形態について詳細に説明する。なお、以下では、放射線透視画像を透視画像と称する。 In addition, the radiation imaging systems of the following embodiments can be applied to both still image shooting and movie shooting. However, since one shot in a movie can be considered as a still image, an example is given in the movie system. Indicates. Further, when the energy subtraction image and the diagnostic radioscopic image are acquired at the same timing, the irradiation field can be more accurately recognized as much as possible. Therefore, the radiation imaging system of the embodiment acquires a high-energy image and a low-energy image for energy subtraction and a diagnostic radioscopic image with a single irradiation of radiation. Hereinafter, each embodiment will be described in detail. Hereinafter, the radiographic image is referred to as a fluoroscopic image.
 <第1実施形態>
 図1は、第1実施形態による放射線撮影システム構成例を示すブロック図である。放射線発生装置101は、放射線を発生し所望の方向へ放射線を照射する。放射線制御装置102は、放射線発生装置101が発生する放射線の線量・線質や照射タイミングを制御する。撮影制御装置103は放射線制御装置102と接続されて放射線発生装置101による放射線の照射タイミングを制御すると共に、放射線撮影装置104と接続されて放射線画像の取り込みを行うことにより、放射線撮影の動作を制御する。また、撮影制御装置103は、放射線撮影装置104から取り込んだ放射線画像に対し、エネルギーサブトラクションを含む放射線画像処理を行う。放射線撮影装置104は、FPDを備え、放射線発生装置101から照射された放射線を受けて放射線強度分布情報としての画像を生成し、撮影制御装置103へ送信する。表示装置105は撮影制御装置103と接続され、撮影制御装置103にて放射線画像処理(以下、画像処理)を施された放射線画像を表示する。
<First Embodiment>
FIG. 1 is a block diagram illustrating a configuration example of a radiation imaging system according to the first embodiment. The radiation generator 101 generates radiation and irradiates the radiation in a desired direction. The radiation control device 102 controls the dose / ray quality and irradiation timing of the radiation generated by the radiation generation device 101. The imaging control device 103 is connected to the radiation control device 102 to control the irradiation timing of the radiation by the radiation generation device 101 and is connected to the radiation imaging device 104 to capture the radiation image, thereby controlling the operation of radiation imaging. To do. In addition, the imaging control device 103 performs radiographic image processing including energy subtraction on the radiographic image captured from the radiographic imaging device 104. The radiation imaging apparatus 104 includes an FPD, receives radiation irradiated from the radiation generation apparatus 101, generates an image as radiation intensity distribution information, and transmits the image to the imaging control apparatus 103. The display device 105 is connected to the imaging control device 103 and displays a radiation image that has been subjected to radiation image processing (hereinafter, image processing) by the imaging control device 103.
 撮影制御装置103は、プロセッサとしてのCPU131、メモリ132を有し、CPU131がメモリ132に格納されている所定のプログラムを実行することにより、以下で説明する各種制御を実現する。撮影制御装置103は、被写体に照射する放射線のエネルギーが異なる複数の放射線画像を処理することによって新たな画像(例えば、骨画像および軟部組織画像)を得るエネルギーサブトラクション法を用いる。エネルギーサブトラクション法による撮影を実施する場合、1枚のサブトラクション画像を生成するために異なる放射線エネルギーで撮影された少なくとも2枚の放射線画像が必要となる。放射線撮影装置104は、1フレームの撮影期間(隣接するReset信号の間)に複数回のサンプリングを行う。これにより、放射線撮影装置104は、低エネルギーの放射線による画像(低エネルギー画像)と高エネルギーの放射線による画像(高エネルギー画像)を1フレーム期間で取得できる。以下、図2を参照して、放射線撮影装置104の動作を説明する。 The photographing control apparatus 103 includes a CPU 131 as a processor and a memory 132, and the CPU 131 executes various programs described below by executing predetermined programs stored in the memory 132. The imaging control apparatus 103 uses an energy subtraction method that obtains new images (for example, bone images and soft tissue images) by processing a plurality of radiographic images with different radiation energies applied to the subject. When imaging by the energy subtraction method is performed, at least two radiographic images captured with different radiation energies are required to generate one subtraction image. The radiation imaging apparatus 104 performs sampling a plurality of times during an imaging period of one frame (between adjacent reset signals). Thereby, the radiation imaging apparatus 104 can acquire an image (low energy image) with low energy radiation and an image (high energy image) with high energy radiation in one frame period. Hereinafter, the operation of the radiation imaging apparatus 104 will be described with reference to FIG.
 図2はX線照射および画像取得のタイミングチャートの一例を示している。本実施形態の放射線撮影装置104は、放射線の単一の照射中に複数回のサンプリングを実施することで複数の放射線分布の画像の取得が可能である。図2に示されるように、一回の放射線照射で異なる2つのエネルギー(X,X)の放射線(放射線(X)と放射線(X))が照射される。放射線(X)は放射線(X)よりも低いエネルギーの放射線であり、低エネルギー画像(X)を生成するために使われ、放射線(X)は高エネルギー画像(X)を生成するため使われる。また、放射線(X)と放射線(X)の照射により得られる画像(X+X)が、対象部位を読影するのに適した診断用の透視画像となるように撮影条件が設定されている。なお、Tcycは1サイクルを示しており、本実施形態の放射線撮影システム100では動画撮影(透視撮影)が行われるので、Tcyc1、Tcyc2、Tcyc3と照射および読み出しが繰り返される。 FIG. 2 shows an example of a timing chart for X-ray irradiation and image acquisition. The radiation imaging apparatus 104 of the present embodiment can acquire images of a plurality of radiation distributions by performing sampling a plurality of times during a single irradiation of radiation. As shown in FIG. 2, radiation (radiation (X L ) and radiation (X H )) of two different energies (X L , X H ) is irradiated by one irradiation. Radiation (X L ) is a lower energy radiation than radiation (X H ) and is used to generate a low energy image (X L ), and radiation (X H ) generates a high energy image (X H ). Used to do. In addition, imaging conditions are set so that an image (X L + X H ) obtained by irradiation with radiation (X L ) and radiation (X H ) becomes a diagnostic fluoroscopic image suitable for interpretation of the target site. ing. Note that Tcyc indicates one cycle. Since the radiographic imaging system 100 of the present embodiment performs video imaging (perspective imaging), irradiation and readout are repeated with Tcyc1, Tcyc2, and Tcyc3.
 先ず、放射線撮影装置104において蓄積済みとなっている放射線分布情報をReset信号で初期化する。サンプリングホールド信号(SHold)を用いて、放射線(X)の照射開始から照射完了(放射線(X)の照射開始直前)までの期間に蓄積された放射線分布情報(X)をサンプリングホールドし、放射線撮影装置104内に一時的に保存する。また、SHold信号を用いて、放射線(X)の照射開始から放射線(X)の照射完了までの期間に蓄積された放射線分布情報(X+X)をサンプリングホールドし、放射線撮影装置104内に一時的に保存する。なお、放射線撮影装置104は、複数の放射線分布情報を蓄積可能である。 First, radiation distribution information that has already been accumulated in the radiation imaging apparatus 104 is initialized with a Reset signal. Using the sampling hold signal (SHold), the radiation distribution information (X L ) accumulated during the period from the start of irradiation of radiation (X L ) to the completion of irradiation (immediately before the start of irradiation of radiation (X H )) is sampled and held. , Temporarily stored in the radiation imaging apparatus 104. Further, by using the SHold signal, radiation (X L) radiation distribution information (X L + X H) accumulated during the period of irradiation to completion of the radiation from the irradiation start (X H) of the sampling hold radiographic apparatus 104 Temporarily save in. The radiation imaging apparatus 104 can accumulate a plurality of pieces of radiation distribution information.
 放射線撮影装置104内に一時保存された放射線分布情報は、サンプリングホールド実施後、読み出し可能となるため、撮影制御装置103は、放射線撮影装置104から、放射線分布情報(X)と放射線分布情報(X+X)の読み出しを実施する。放射線分布情報の読み出しが終了したら、撮影制御装置103は、放射線分布情報(X+X)から放射線分布情報(X)を差し引くことで、放射線分布情報(X)を得る。ここで、放射線分布情報(X)が低エネルギー画像の基の画像、放射線分布情報(X)が高エネルギー画像の基の画像、放射線分布情報(X+X)が医師により読影される診断用の透視画像の基の画像になる。 Since the radiation distribution information temporarily stored in the radiation imaging apparatus 104 can be read out after sampling and holding, the imaging control apparatus 103 receives radiation distribution information (X L ) and radiation distribution information ( (X L + X H ) is read out. When the reading of the radiation distribution information is completed, the imaging control unit 103, by subtracting the radiation distribution information (X L) from the radiation distribution information (X L + X H), obtain radiation distribution information (X H). Here, the radiation distribution information (X L ) is the base image of the low energy image, the radiation distribution information (X H ) is the base image of the high energy image, and the radiation distribution information (X L + X H ) is read by the doctor. This is the base image of the diagnostic fluoroscopic image.
 エネルギーサブトラクション法を行うことによって、高エネルギー画像と低エネルギー画像から得られる差分画像により物質識別が可能であることが知られている。例えば、このような差分画像から腰椎、横突領域、軟部組織を検出し、その軟部組織の画素値を使って、差分画像の腰椎領域を補正して骨密度を算出することができる。また、物質識別には実効原子番号と呼ばれる概念を用いる方法がある。実効原子番号とは、元素、化合物、混合物の構成元素を平均的に見た場合に相当する原子番号を示し、その物質と同じ割合で光子の減弱をする仮想の元素の原子番号を示す定量指標である。 It is known that by performing the energy subtraction method, it is possible to identify a substance from a difference image obtained from a high energy image and a low energy image. For example, it is possible to detect a lumbar vertebra, a lateral projection region, and a soft tissue from such a difference image, and use the pixel values of the soft tissue to correct the lumbar region of the difference image to calculate the bone density. In addition, there is a method of using a concept called effective atomic number for substance identification. Effective atomic number is an atomic number that corresponds to the average of the constituent elements of an element, compound, or mixture, and is a quantitative index that indicates the atomic number of a hypothetical element that attenuates photons at the same rate as the substance. It is.
 図3Aに示す様に、高エネルギー画像(X)と低エネルギー画像(X)から2つの方程式を立て、解を求めることによって、実効原子番号(Z)の画像と面密度(D)の画像を求めることが出来る。なお、方程式を解くためには、ニュートンラフソン法、二分法などを用いることができる。図3Bは、物質の実効原子番号を示す。たとえば、放射線可動絞り(以降、絞りと略す)の材質は鉛(Pb)なので、実効原子番号は82となる。実効原子番号(Z)の画像と面密度(D)の画像から、特定物質の実効原子番号の面密度画像を生成することができ、生成された画像は特定物質が強調された画像となる。したがって、実効原子番号が82の面密度画像を生成すれば、鉛、すなわち絞りの領域の画像が強調された画像を得ることができる。 As shown in FIG. 3A, by setting two equations from a high energy image (X H ) and a low energy image (X L ) and obtaining a solution, an image of effective atomic number (Z) and an area density (D) You can ask for an image. In order to solve the equation, Newton-Raphson method, bisection method or the like can be used. FIG. 3B shows the effective atomic number of the material. For example, since the material of the radiation movable aperture stop (hereinafter abbreviated as the aperture stop) is lead (Pb), the effective atomic number is 82. From the effective atomic number (Z) image and the surface density (D) image, the surface density image of the effective atomic number of the specific substance can be generated, and the generated image is an image in which the specific material is emphasized. Therefore, if a surface density image having an effective atomic number of 82 is generated, an image in which the lead, that is, the image of the aperture region is enhanced can be obtained.
 撮影制御装置103は、低エネルギー画像、高エネルギー画像から実効原子番号と面密度の関係を算出して、絞りの材質である鉛(Pb:実効原子番号82)の面密度画像を生成し、その画像から絞り領域を抽出する。鉛の面密度画像は、鉛の画像が強調された画像であり、絞り領域を容易に抽出できる。撮影制御装置103は、抽出した絞り領域を用いることで、診断用の透視画像におけるマスクの生成、切り出し領域の算出、表示領域の算出を高精度に行うことが可能となる。最終的な読影画像(診断用の放射線画像)は表示装置105に表示される。 The imaging control device 103 calculates the relationship between the effective atomic number and the surface density from the low energy image and the high energy image, generates a surface density image of lead (Pb: effective atomic number 82), which is the material of the diaphragm, Extract the aperture area from the image. The lead surface density image is an image in which the lead image is enhanced, and the aperture region can be easily extracted. By using the extracted aperture region, the imaging control device 103 can perform generation of a mask, calculation of a cutout region, and calculation of a display region in a diagnostic fluoroscopic image with high accuracy. The final interpretation image (diagnosis radiation image) is displayed on the display device 105.
 図4は、第1実施形態による撮影制御装置103の画像処理に関わる機能構成例を示すブロック図である。各機能ブロックは、CPU131がメモリ132などに格納されたプログラムを実行することにより実現されてもよいし、専用のハードウエアにより実現されてもよいし、CPU131と専用のハードウエアとの協働により実現されてもよい。画像取得部201は、上述したように放射線撮影装置104から異なる放射線のエネルギーによる複数の放射線分布の画像を取得する。画像分離部202は、複数の放射線分布の画像についてエネルギーサブトラクションを行った結果に基づいて特定物質が強調された処理画像を生成する。本実施形態では、特定物質は絞り107(鉛)である。物質抽出部203と照射野確定部204は、処理画像における特定物質の情報に基づいて、放射線画像に設定する領域(本実施形態では透視画像における照射野)を決定する。以下、各機能部についてより詳細に説明する。 FIG. 4 is a block diagram illustrating a functional configuration example related to image processing of the imaging control apparatus 103 according to the first embodiment. Each functional block may be realized by the CPU 131 executing a program stored in the memory 132 or the like, or may be realized by dedicated hardware, or by the cooperation of the CPU 131 and dedicated hardware. It may be realized. As described above, the image acquisition unit 201 acquires images of a plurality of radiation distributions with different radiation energies from the radiation imaging apparatus 104. The image separation unit 202 generates a processed image in which a specific substance is emphasized based on the result of performing energy subtraction on a plurality of radiation distribution images. In the present embodiment, the specific substance is an aperture 107 (lead). The substance extraction unit 203 and the irradiation field determination unit 204 determine an area (an irradiation field in a fluoroscopic image in the present embodiment) to be set in the radiation image based on information on a specific substance in the processed image. Hereinafter, each functional unit will be described in more detail.
 撮影制御装置103において、画像取得部201は、放射線撮影装置104から放射線分布情報(高エネルギー画像と低エネルギー画像)を取得する。本実施形態の画像取得部201は、上述した放射線撮影装置104から、放射線の単一の照射ごとに、透視画像の元となる画像を含む、複数の放射線分布の画像を取得する。画像分離部202は、画像取得部201が取得した高エネルギー画像と低エネルギー画像を用いて図3Aに示されるエネルギーサブトラクションを行い、実効原子番号と面密度の画像を生成する。さらに、画像分離部202は、生成した実効原子番号と面密度の画像から、特定物質(本実施形態では絞り107)の面密度画像を処理画像として生成する。物質抽出部203は、画像分離部202が生成した処理画像から特定物質の領域を抽出する。照射野確定部204は、物質抽出部203による抽出の結果をもとにX線透視画像上の照射野を確定する。画像表示部205は診断用透視画像の照射野外領域のマスクを修正して、表示装置105に表示する。画像出力部206は、照射野をもとに切り出した画像を、院内ネットワーク106を介して所望の画像サーバ108へ出力する。 In the imaging control apparatus 103, the image acquisition unit 201 acquires radiation distribution information (a high energy image and a low energy image) from the radiation imaging apparatus 104. The image acquisition unit 201 of the present embodiment acquires a plurality of radiation distribution images including an image that is a source of a fluoroscopic image for each single irradiation of radiation from the radiation imaging apparatus 104 described above. The image separation unit 202 performs energy subtraction shown in FIG. 3A using the high energy image and the low energy image acquired by the image acquisition unit 201, and generates an image of effective atomic number and surface density. Furthermore, the image separation unit 202 generates a surface density image of the specific substance (the aperture 107 in the present embodiment) as a processed image from the generated effective atomic number and surface density image. The substance extraction unit 203 extracts a specific substance region from the processed image generated by the image separation unit 202. The irradiation field determination unit 204 determines the irradiation field on the X-ray fluoroscopic image based on the extraction result by the substance extraction unit 203. The image display unit 205 corrects the mask of the irradiation field area of the diagnostic fluoroscopic image and displays it on the display device 105. The image output unit 206 outputs an image cut out based on the irradiation field to a desired image server 108 via the in-hospital network 106.
 また、低エネルギー画像保持部207は、画像取得部201が取得した低エネルギー画像を保持する。高エネルギー画像保持部208は、画像取得部201が取得した高エネルギー画像を保持する。透視画像保持部209は、画像取得部201が取得した診断用の透視画像を保持する。処理画像保持部210は、画像分離部202が生成した実効原子番号と面密度の画像、および特定物質の面密度画像などの処理画像を保持する。抽出データ保持部211は、画像分離部202が生成した物質抽出データを保持する。補正データ保持部212は、算出した実効原子番号の測定誤差を補正するためのデータおよび、面密度の測定誤差を補正するためのデータを保持する。 Also, the low energy image holding unit 207 holds the low energy image acquired by the image acquisition unit 201. The high energy image holding unit 208 holds the high energy image acquired by the image acquisition unit 201. The fluoroscopic image holding unit 209 holds the diagnostic fluoroscopic image acquired by the image acquisition unit 201. The processed image holding unit 210 holds a processed image such as an effective atomic number and surface density image generated by the image separating unit 202 and a surface density image of a specific substance. The extraction data holding unit 211 holds the substance extraction data generated by the image separation unit 202. The correction data holding unit 212 holds data for correcting the measurement error of the calculated effective atomic number and data for correcting the measurement error of the surface density.
 図5は、本実施形態の撮影制御装置103(主に、画像分離部202と物質抽出部203と照射野確定部204と画像表示部205)による処理を示すフローチャートである。 FIG. 5 is a flowchart showing processing by the imaging control apparatus 103 (mainly, the image separation unit 202, the substance extraction unit 203, the irradiation field determination unit 204, and the image display unit 205) of the present embodiment.
 図5のフローチャートを説明する前に、本実施形態による照射野について説明する。放射線発生装置101から照射された放射線は、被写体を透過して放射線撮影装置104で放射線透過画像として取得される。このとき、被写体の撮影を必要とする領域以外の領域へ放射線を照射しないように、絞り107で、放射線発生装置101からの放射線の照射領域を制限する。絞り107で絞られた領域は、撮影画像上で照射野と呼ばれる。図6A~図6Cに絞り107と放射線撮影装置104の相対的位置関係と照射野の関係を示す。絞り107の形状は、図6A~図6Cに示されるように矩形と円形が一般的に使用されている。図6Aは、放射線撮影装置104の中心601に絞り107の中心を合わせた状態を示す。図6Bは、絞り107が回転および/または平行移動した状態を示す。平行移動により、絞りの中心602が放射線撮影装置104の中心601からずれている。また、図6Cは、放射線撮影装置104に対して垂直ではなく斜めに放射線が照射された状態を示す。また、図示していないが矩形や円形以外の形状の絞りも使われる。 Before describing the flowchart of FIG. 5, the irradiation field according to the present embodiment will be described. The radiation emitted from the radiation generation apparatus 101 passes through the subject and is acquired as a radiation transmission image by the radiation imaging apparatus 104. At this time, the irradiation area of the radiation from the radiation generation apparatus 101 is limited by the aperture 107 so that the radiation is not irradiated to an area other than the area where the subject needs to be imaged. The area narrowed by the diaphragm 107 is called an irradiation field on the photographed image. 6A to 6C show the relative positional relationship between the diaphragm 107 and the radiation imaging apparatus 104 and the relationship between the irradiation fields. As the shape of the diaphragm 107, a rectangle and a circle are generally used as shown in FIGS. 6A to 6C. FIG. 6A shows a state where the center of the diaphragm 107 is aligned with the center 601 of the radiation imaging apparatus 104. FIG. 6B shows a state where the diaphragm 107 is rotated and / or translated. Due to the parallel movement, the center 602 of the diaphragm is displaced from the center 601 of the radiation imaging apparatus 104. FIG. 6C shows a state in which radiation is irradiated obliquely rather than perpendicularly to the radiation imaging apparatus 104. Although not shown, a diaphragm having a shape other than a rectangle or a circle is also used.
 ステップS500において、画像取得部201は、図2で説明したタイミングで動作する放射線撮影装置104から、放射線分布情報(X)と放射線分布情報(X+X)を取得し、これらに基づいて低エネルギー画像と診断用の透視画像を取得する。画像取得部201は、取得した低エネルギー画像と透視画像をそれぞれ低エネルギー画像保持部207と透視画像保持部209へ保持する。また、画像取得部201は、放射線分布情報(X+X)と放射線分布情報(X)の差を求めることで、放射線分布情報(X)を算出し、これに基づいて高エネルギー画像を取得して高エネルギー画像保持部208へ保存する。さらに、ステップS500において、画像分離部202は、高エネルギー画像と低エネルギー画像を用いてエネルギーサブトラクション処理を行い、実効原子番号と面密度を算出する。得られた実効原子番号の画像と面密度の画像は、処理画像保持部210に保持される。 In step S500, the image acquisition unit 201 acquires the radiation distribution information (X L ) and the radiation distribution information (X L + X H ) from the radiation imaging apparatus 104 that operates at the timing described with reference to FIG. Acquire low-energy images and diagnostic fluoroscopic images. The image acquisition unit 201 holds the acquired low energy image and fluoroscopic image in the low energy image holding unit 207 and the fluoroscopic image holding unit 209, respectively. Further, the image acquisition unit 201 calculates the radiation distribution information (X H ) by obtaining the difference between the radiation distribution information (X L + X H ) and the radiation distribution information (X L ), and based on this, the high energy image Is stored in the high energy image holding unit 208. Further, in step S500, the image separation unit 202 performs an energy subtraction process using the high energy image and the low energy image, and calculates an effective atomic number and an areal density. The obtained effective atomic number image and surface density image are held in the processed image holding unit 210.
 次に、ステップS501において、画像分離部202は、ステップS500で算出された実効原子番号と面密度の画像から、絞りの実効原子番号の画素を抽出して、絞りの面密度画像を生成し、処理画像保持部210に格納する。このとき、画像分離部202は、補正データ保持部212より得られる補正データを用いて面密度画像を補正する。図6A~図6Cで説明したように、照射野は絞りで制限された領域であり、逆に照射野外の領域は絞りそのものの領域となる。絞りは鉛でできているためX線を透過しにくいが、すべてが遮断されるのではなく透過して放射線撮影装置104で検出されるエネルギーもある。図3Bに示したように、鉛の実効原子番号が82であり、放射線画像にはこれより大きい実効原子番号の物質はほぼ存在しない。そこで、所定値の範囲の実効原子番号についての面密度画像を作成することで、例えば絞り(鉛)が強調された処理画像を得ることがきる。例えば実効原子番号が70以上についての面密度画像を作成すれば、実効原子番号70以上の物質である鉛が強調された画像、すなわち絞りの面密度画像が得られる。また、実効原子番号が13以上についての面密度画像を作成すれば、実効原子番号13以上の物質であるアルミニウム、エナメル質、鉄、鉛が強調された画像、すなわち金属の面密度画像が得られる。ユーザは、撮影制御装置103によって所定値の範囲を任意に選択することができる。以上のようにして生成された絞りの面密度画像の例を、図7の画像700に示す。なお、抽出する物質の実効原子番号を70以上としたが、これに限られるものではない。鉛の実効原子番号82を含み、人体や空気を含まないように抽出する物質の実効原子番号を設定すればよい。 Next, in step S501, the image separation unit 202 extracts the pixel of the effective atomic number of the diaphragm from the image of the effective atomic number and surface density calculated in step S500, and generates a surface density image of the diaphragm. Stored in the processed image holding unit 210. At this time, the image separation unit 202 corrects the surface density image using the correction data obtained from the correction data holding unit 212. As described with reference to FIGS. 6A to 6C, the irradiation field is an area limited by the diaphragm, and conversely, the area outside the irradiation field is the area of the diaphragm itself. Although the diaphragm is made of lead, it is difficult for X-rays to pass therethrough, but there is also energy that is detected by the radiation imaging apparatus 104 without being completely blocked. As shown in FIG. 3B, the effective atomic number of lead is 82, and there is almost no substance having an effective atomic number higher than this in the radiographic image. Therefore, by creating a surface density image for effective atomic numbers within a predetermined value range, for example, a processed image in which the aperture (lead) is emphasized can be obtained. For example, if a surface density image for an effective atomic number of 70 or more is created, an image in which lead, which is a substance having an effective atomic number of 70 or more, is emphasized, that is, an aperture surface density image is obtained. Further, if an areal density image for an effective atomic number of 13 or more is created, an image in which aluminum, enamel, iron, and lead, which are substances having an effective atomic number of 13 or more, are emphasized, that is, an areal density image of a metal is obtained. . The user can arbitrarily select a predetermined value range by the imaging control apparatus 103. An example of the surface density image of the aperture generated as described above is shown in an image 700 in FIG. In addition, although the effective atomic number of the substance to extract was set to 70 or more, it is not restricted to this. What is necessary is just to set the effective atomic number of the substance extracted including the effective atomic number 82 of lead and not including a human body or air.
 次に、ステップS502において、物質抽出部203は、処理画像保持部210に保持されている絞りの面密度画像に基づいて、絞りの領域を抽出し、絞りの領域の境界(照射野)の形状が、矩形または円形により表現できるか否かを判定する。例えば、図6A~図6Cの上段に示されるような矩形、図6A~図6Bの下段に示されるような円形であれば、絞りの形状が矩形または円形により決定されるものと判定され、処理はステップS503へ進む。他方、図6Cのように円形の絞りを用いて斜めに照射された場合(楕円形の照射野)、照射野を形成する辺の形状が凸凹になっている場合、などでは、単純な矩形、円として照射野を規定することができないと判定される。この場合、処理はステップS502からステップS506へ進む。あるいは、矩形絞りであっても、絞り107の中心が放射線撮影装置104の中心から著しくずれていて、照射野の形状が決定できないような場合も、処理はステップS502からステップS506に進む。 Next, in step S502, the substance extraction unit 203 extracts a diaphragm region based on the surface density image of the diaphragm held in the processed image holding unit 210, and shapes of the boundary (irradiation field) of the diaphragm region Whether or not can be represented by a rectangle or a circle. For example, in the case of a rectangle as shown in the upper part of FIGS. 6A to 6C and a circle as shown in the lower part of FIGS. 6A to 6B, it is determined that the shape of the diaphragm is determined by the rectangle or the circle, and the process Advances to step S503. On the other hand, when it is irradiated obliquely using a circular diaphragm as shown in FIG. 6C (elliptical irradiation field), when the shape of the side forming the irradiation field is uneven, etc., a simple rectangle, It is determined that the irradiation field cannot be defined as a circle. In this case, the process proceeds from step S502 to step S506. Alternatively, even in the case of a rectangular diaphragm, when the center of the diaphragm 107 is significantly deviated from the center of the radiation imaging apparatus 104 and the shape of the irradiation field cannot be determined, the process proceeds from step S502 to step S506.
 ステップS503~S505において、照射野確定部204は、処理画像から特定物質により規定される形状に当てはまる幾何学的形状を決定し、決定された幾何学的形状を用いて透視画像から照射野を検出することにより、照射野の領域を決定する。本例で用いられる幾何学的形状は、上述したように矩形か円である。ステップS503において、物質抽出部203は、絞りの面密度画像に対してエッジ強調などの画像処理を施し、照射野と絞りの境界である直線あるいは円のエッジを抽出して照射野の幾何学的形状を確定する。照射野の幾何学的形状は、例えば、座標により規定され得る。例えば照射野が矩形であれば、4つの頂点の位置、円形であれば中心座標と半径により、照射野を確定することができる。物質抽出部203は、確定された座標を抽出データ保持部211に保持する。 In steps S503 to S505, the irradiation field determination unit 204 determines a geometric shape applicable to the shape defined by the specific substance from the processed image, and detects the irradiation field from the fluoroscopic image using the determined geometric shape. By doing so, the area of the irradiation field is determined. The geometric shape used in this example is a rectangle or a circle as described above. In step S503, the substance extraction unit 203 performs image processing such as edge enhancement on the surface density image of the diaphragm, extracts a straight line or a circle edge that is a boundary between the irradiation field and the diaphragm, and geometrics of the irradiation field. Determine the shape. The geometric shape of the field can be defined by coordinates, for example. For example, if the irradiation field is rectangular, the irradiation field can be determined by the positions of the four vertices, and if it is circular, the irradiation field can be determined by the center coordinates and the radius. The substance extraction unit 203 holds the determined coordinates in the extraction data holding unit 211.
 続いて、ステップS504~S505において、照射野確定部204は、診断用の透視画像上での照射野を確定する。まず、ステップS504において、照射野確定部204は、透視画像上で、抽出データ保持部211に保持された照射野の座標による領域を照射野の候補(初期値)とし、透視画像から照射野を認識、確定する。ステップS505において、照射野確定部204は、ステップS504で確定した照射野の座標(矩形なら4頂点、円形なら中心座標と半径)からマスク画像を生成する。 Subsequently, in steps S504 to S505, the irradiation field determination unit 204 determines the irradiation field on the diagnostic fluoroscopic image. First, in step S504, the irradiation field determination unit 204 sets an irradiation field candidate (initial value) based on the coordinates of the irradiation field held in the extraction data holding unit 211 on the fluoroscopic image, and sets the irradiation field from the fluoroscopic image. Recognize and confirm. In step S505, the irradiation field determination unit 204 generates a mask image from the coordinates of the irradiation field determined in step S504 (four vertices if rectangular, center coordinates and radius if circular).
 一方、ステップS502からステップS506へ処理が進んだ場合、照射野確定部204は、絞りの面密度画像を用いてマスク画像を生成する。本実施形態では、処理画像を2値化して得られる2値化画像に基づいて照射野が決定される。すなわち、ステップS506において、照射野確定部204は、抽出データ保持部211に保持されている絞りの面密度画像における絞りに対応する画素をマスク画像の画素としてマスク画像を生成し、これを抽出データ保持部211に保持する。例えば、照射野確定部204は、絞りの面密度画像において、適切な閾値を設けて二値化処理を行うことで、2値のマスク画像(図7の701)を生成することができる。従って、単純な矩形や円形以外の形状の絞りであっても容易にマスク画像を生成することができる。照射野確定部204は生成したマスク画像を画像表示部205、画像出力部206へ提供する。 On the other hand, when the process proceeds from step S502 to step S506, the irradiation field determination unit 204 generates a mask image using the surface density image of the diaphragm. In the present embodiment, the irradiation field is determined based on the binarized image obtained by binarizing the processed image. That is, in step S506, the irradiation field determination unit 204 generates a mask image using pixels corresponding to the diaphragm in the surface density image of the diaphragm held in the extraction data holding unit 211 as pixels of the mask image, and extracts the extracted image data. Hold in the holding unit 211. For example, the irradiation field determination unit 204 can generate a binary mask image (701 in FIG. 7) by performing binarization processing by setting an appropriate threshold value in the surface density image of the stop. Therefore, a mask image can be easily generated even with a simple rectangular or circular aperture. The irradiation field determination unit 204 provides the generated mask image to the image display unit 205 and the image output unit 206.
 ステップS505またはS506でマスク画像が生成されると処理ステップS507へ進む。ステップS507において、照射野確定部204は、画像領域のトリミングのために、マスク画像の照射野に対する外接矩形の各頂点座標を算出し、画像出力部206へ提供する。ステップS508において、画像表示部205は、ステップS505またはS506で生成したマスク画像(図7の701)と透視画像(図7の702)を重畳した画像(図7の703)を生成し、表示装置105に出力する。ステップS509において、画像出力部206は、ステップS507で算出された外接矩形の各頂点座標により、重畳画像(図7の703)についてトリミング(切り出し)を行った画像(図7の出力画像704)を画像サーバ108へ出力する。 When the mask image is generated in step S505 or S506, the process proceeds to processing step S507. In step S507, the irradiation field determination unit 204 calculates the coordinates of each vertex of the circumscribed rectangle with respect to the irradiation field of the mask image for trimming the image area, and provides the calculated coordinates to the image output unit 206. In step S508, the image display unit 205 generates an image (703 in FIG. 7) in which the mask image (701 in FIG. 7) generated in step S505 or S506 and the fluoroscopic image (702 in FIG. 7) are superimposed, and the display device To 105. In step S509, the image output unit 206 trims (cuts out) the superimposed image (703 in FIG. 7) with respect to each vertex coordinate of the circumscribed rectangle calculated in step S507 (output image 704 in FIG. 7). Output to the image server 108.
 なお、上記実施形態では、実効原子番号が70以上の物質の面密度画像を生成することにより絞りの領域を抽出し、これに基づいてマスク画像を生成したがこれに限られるものではない。放射線画像における絞り以外の領域を抽出して照射野を検出するようにしてもよい。例えば、人体と空気を構成する物質を含むが絞りを構成する物質を含まないように実行原子番号を選択して面密度画像を生成し、これに基づいて照射野を決定するようにしてもよい。より具体的には、実効原子番号が70以下の物質の面密度画像を生成することにより、鉛以外の物質の画像、すなわち絞りによって遮られていない領域である照射野の面密度画像を生成し、これに基づいて照射野を決定するようにしてもよい。 In the above embodiment, the area of the aperture is extracted by generating an area density image of a substance having an effective atomic number of 70 or more, and a mask image is generated based on this, but the present invention is not limited to this. An area other than the stop in the radiographic image may be extracted to detect the irradiation field. For example, a surface density image may be generated by selecting an effective atomic number so as to include a substance constituting the human body and air but not a substance constituting a diaphragm, and an irradiation field may be determined based on the generated surface density image. . More specifically, by generating a surface density image of a material having an effective atomic number of 70 or less, an image of a material other than lead, that is, a surface density image of an irradiation field that is an area not blocked by the diaphragm is generated. Based on this, the irradiation field may be determined.
 以上のように、第1実施形態によれば、エネルギーサブトラクション処理により得られた絞りの面密度画像あるいは照射野の面密度画像に基づいて絞りに対応するマスク画像が生成される。結果、照射野の誤認識が低減される。 As described above, according to the first embodiment, the mask image corresponding to the stop is generated based on the surface density image of the stop or the surface density image of the irradiation field obtained by the energy subtraction process. As a result, erroneous recognition of the irradiation field is reduced.
 <変形例>
 第1実施形態では、絞りの実効原子番号から絞りの面密度画像あるいは絞り以外の領域(照射野)の面密度画像を生成し、その結果を用いてマスク画像を生成した。変形例では、素抜け領域の面密度画像に基づいてマスク画像を生成する構成を説明する。素抜け領域の面密度画像は、空気を透過した放射線エネルギーを検出することにより得られた画像である。従って、空気の実効原子番号である7.76(図3B)の面密度画像を作成することにより素抜けの面密度画像が得られる。
<Modification>
In the first embodiment, a surface density image of the stop or a surface density image of a region (irradiation field) other than the stop is generated from the effective atomic number of the stop, and a mask image is generated using the result. In the modified example, a configuration in which a mask image is generated based on the surface density image of the background missing area will be described. The surface density image of the unexposed region is an image obtained by detecting the radiation energy transmitted through the air. Therefore, by creating a surface density image of 7.76 (FIG. 3B), which is the effective atomic number of air, a surface density image without blanks can be obtained.
 図7の面密度画像711は素抜け領域712の面密度画像の一例を示す図である。照射野確定部204は、素抜け領域712の外辺から照射野を抽出することによりマスク画像を生成する。生成されたマスク画像を用いた表示画像703および出力画像704の生成方法は、上述した第1実施形態と同様である。以下、図8A、図8Bのフローチャートを参照して、本変形例による処理手順を説明する。なお、図8A、図8Bにおいて、上述した第1実施形態(図5)と同様の処理には同一のステップ番号を付している。 7 is a diagram illustrating an example of a surface density image of the blank region 712. The irradiation field determination unit 204 generates a mask image by extracting the irradiation field from the outer side of the background region 712. The generation method of the display image 703 and the output image 704 using the generated mask image is the same as that in the first embodiment described above. Hereinafter, a processing procedure according to this modification will be described with reference to the flowcharts of FIGS. 8A and 8B. 8A and 8B, the same step numbers are assigned to the same processes as those in the first embodiment (FIG. 5) described above.
 ステップS500において、画像取得部201は、低エネルギー画像、高エネルギー画像、透視画像を算出し、それぞれ低エネルギー画像保持部207、透視画像保持部209に保存する。また、ステップS500において、画像分離部202は、高エネルギー画像と低エネルギー画像から実効原子番号の画像と面密度の画像を生成し、処理画像保持部210に保持する。 In step S500, the image acquisition unit 201 calculates a low energy image, a high energy image, and a fluoroscopic image, and stores them in the low energy image holding unit 207 and the fluoroscopic image holding unit 209, respectively. In step S <b> 500, the image separation unit 202 generates an effective atomic number image and an area density image from the high energy image and the low energy image, and holds them in the processed image holding unit 210.
 次に、ステップS801において、画像分離部202は、ステップS500で算出された実効原子番号と面密度の画像から、空気の実効原子番号の画素を抽出して、素抜け領域の面密度画像711を生成し、処理画像保持部210に格納する。図3Bに示されるように、空気の実効原子番号は7.76である。ステップS802において、物質抽出部203は、ステップS801で生成された素抜け領域の面密度画像から決定される照射野の形状が単純な矩形または円形であるかを判定する。照射野の形状が単純な矩形または円形である場合は、処理はステップS803へ進む。ステップS803において、照射野確定部204は、素抜け領域の面密度画像から、絞りの直線あるいは円のエッジを抽出して照射野の幾何学的形状を規定する座標(矩形の場合は4頂点の座標、円形の場合は中心座標と半径)を算出する。物質抽出部203は、算出した座標を抽出データ保持部211へ保存する。その後、照射野確定部204は、第1実施形態(図5のステップS504~S505)と同様の処理により、マスク画像を生成する。以上のように、変形例では、実効原子番号と面密度の画像から、特定物質を空気として素抜け領域が強調された画像が生成され、素抜け領域により規定される形状に当てはまる幾何学的形状に基づいて照射が決定される
 他方、素抜け領域の面密度画像から決定される照射野の形状が単純な矩形でも円形でもない場合、処理はステップS802からステップS804へ進む。あるいは、素抜け領域の面密度画像を生成したものの被写体が照射野の角などに位置していて、素抜け領域の外周を確定できない場合も、処理はステップS802からステップS804へ進む。ステップS804~S808では、抽出された素抜け領域を所定割合以上含むように透視画像における照射野が決定される。より具体的には、照射野確定部204が、素抜け領域の面密度画像を閾値で二値化した素抜け領域の画像を作成し、これを用いて透視画像から抽出した照射野を補正し、マスク画像を生成する。以下、各ステップにおける動作を説明する。
Next, in step S801, the image separation unit 202 extracts pixels of the effective atomic number of air from the image of the effective atomic number and surface density calculated in step S500, and obtains the surface density image 711 of the blank region. Generated and stored in the processed image holding unit 210. As shown in FIG. 3B, the effective atomic number of air is 7.76. In step S802, the substance extraction unit 203 determines whether the shape of the irradiation field determined from the surface density image of the blank region generated in step S801 is a simple rectangle or circle. If the shape of the irradiation field is a simple rectangle or circle, the process proceeds to step S803. In step S <b> 803, the irradiation field determination unit 204 extracts the straight line of the diaphragm or the edge of the circle from the surface density image of the unexposed region, and defines the coordinates of the irradiation field geometric shape (in the case of a rectangle, the four vertexes). Coordinates, and in the case of a circle, the center coordinates and radius) are calculated. The substance extraction unit 203 stores the calculated coordinates in the extraction data holding unit 211. Thereafter, the irradiation field determination unit 204 generates a mask image by the same processing as in the first embodiment (steps S504 to S505 in FIG. 5). As described above, in the modified example, an image in which the blank area is emphasized by using the specific substance as air is generated from the image of the effective atomic number and the surface density, and the geometric shape corresponding to the shape defined by the blank area is applied. On the other hand, if the shape of the irradiation field determined from the surface density image of the blank area is neither a simple rectangle nor a circle, the process proceeds from step S802 to step S804. Alternatively, the process proceeds from step S802 to step S804 even if the surface density image of the missing region is generated but the subject is located at the corner of the irradiation field and the outer periphery of the missing region cannot be determined. In steps S804 to S808, the irradiation field in the fluoroscopic image is determined so as to include the extracted background missing region at a predetermined ratio or more. More specifically, the irradiation field determination unit 204 creates an image of the background region obtained by binarizing the surface density image of the background region with a threshold value, and uses this to correct the irradiation field extracted from the fluoroscopic image. A mask image is generated. Hereinafter, the operation in each step will be described.
 ステップS804において、照射野確定部204は、素抜け領域の面密度画像711を所定の閾値で二値化して、素抜け領域の画素値が1になるような素抜け画像を生成する。ステップS805において、照射野確定部204は、透視画像保持部209に保持されている透視画像に対してエッジ強調処理などの照射野が分かりやすくなるような画像処理を施したうえで、照射野候補の抽出を行う。ステップS806において、照射野確定部204は、ステップS805で抽出した照射野候補と、ステップS804で生成した素抜け画像との比較により、照射野候補が適正であるか否かを判断する。照射野候補が適正であると判断された場合、その照射野候補を照射野に決定し、処理はステップS806からステップS807へ進む。ステップS807において、照射野確定部204は、ステップS805で抽出した照射野外の領域をマスクするマスク画像を生成する。 In step S804, the irradiation field determination unit 204 binarizes the surface density image 711 of the background missing area with a predetermined threshold, and generates a background missing image in which the pixel value of the background missing area is 1. In step S805, the irradiation field determination unit 204 performs image processing that makes the irradiation field easy to understand, such as edge enhancement processing, on the fluoroscopic image held in the fluoroscopic image holding unit 209, and then performs irradiation field candidates. Perform extraction. In step S806, the irradiation field determination unit 204 determines whether or not the irradiation field candidate is appropriate by comparing the irradiation field candidate extracted in step S805 with the blank image generated in step S804. If it is determined that the irradiation field candidate is appropriate, the irradiation field candidate is determined as the irradiation field, and the process proceeds from step S806 to step S807. In step S807, the irradiation field determination unit 204 generates a mask image that masks the area outside the irradiation field extracted in step S805.
 他方、ステップS806において照射野候補が適正でないと判定された場合は、処理はステップS808へ進む。ステップS808において、照射野確定部204は、照射野を拡げる方向で照射候補領域を設定し、ステップS805で再度の照射野候補の抽出を行う。そして、ステップS806において、照射野確定部204は、再度、照射野候補が適正であるか否かを判断する。なお、ステップS806での判断基準は種々あるが、例えば、照射野と素抜け画像を比較し、素抜け画像のうちの所定割合(例えば80%)以上が照射野候補に含まれている場合にその照射野候補が適正であると判断する。ここで、照射野候補に素抜け画像が含まれる割合をユーザが指定するようにしてもよい。 On the other hand, if it is determined in step S806 that the irradiation field candidate is not appropriate, the process proceeds to step S808. In step S808, the irradiation field determination unit 204 sets irradiation candidate areas in a direction in which the irradiation field is expanded, and performs extraction of irradiation field candidates again in step S805. In step S806, the irradiation field determination unit 204 determines again whether the irradiation field candidates are appropriate. Although there are various criteria for determination in step S806, for example, when an irradiation field and a missing image are compared, and a predetermined ratio (for example, 80%) or more of the missing images is included in the irradiation field candidates. It is determined that the irradiation field candidate is appropriate. Here, the user may specify the ratio at which the blank field images are included in the irradiation field candidates.
 その後の、ステップS507~S509による、マスク画像を用いた表示画像および出力画像の生成は第1実施形態(図5)と同様である。また、上述した絞りと素抜け領域の両方の抽出結果を用いて、X線透視画像の照射野を確定してもよい。 The subsequent generation of the display image and output image using the mask image in steps S507 to S509 is the same as in the first embodiment (FIG. 5). In addition, the irradiation field of the X-ray fluoroscopic image may be determined using the extraction results of both the aperture and the blank region described above.
 また、上記実施形態では、実効原子番号と面密度の画像から特定物質(絞り)の面密度画像を生成することにより、特定物質が強調された画像を取得し、これを用いて照射野を決定したがこれに限られるものではない。実効原子番号(Z)と面密度(D)から任意のエネルギーのX線を照射したときの画像を生成できる。つまり、仮想の単色X線で照射した場合の単色X線画像が得られる。X線吸収率がピークを示すX線波長が物質毎に異なるため、特定物質のX線吸収率が最大となる波長の単色X線画像を作成することで特定物質が強調された画像を生成することができる。したがって、画像分離部202が、実効原子番号の画像と面密度の画像から、特定物質の放射線吸収率がピークを示す波長の単色放射線を照射した場合の単色放射線画像を生成し、これを特定物質が強調された画像として用いるようにしてもよい。このことは、以下に説明する第2、第3の実施形態についても同様である。 Further, in the above embodiment, by generating a surface density image of the specific substance (aperture) from the image of the effective atomic number and the surface density, an image in which the specific substance is emphasized is acquired, and the irradiation field is determined using this. However, it is not limited to this. From the effective atomic number (Z) and the surface density (D), an image can be generated when X-rays having an arbitrary energy are irradiated. That is, a monochromatic X-ray image when irradiated with virtual monochromatic X-rays is obtained. Since the X-ray wavelength at which the X-ray absorption rate exhibits a peak varies from material to material, an image in which the specific material is emphasized is generated by creating a monochromatic X-ray image having a wavelength that maximizes the X-ray absorption rate of the specific material. be able to. Therefore, the image separation unit 202 generates a monochromatic radiation image when a monochromatic radiation having a wavelength at which the radiation absorption rate of the specific substance shows a peak is generated from the image of the effective atomic number and the surface density, and this is generated as the specific substance. It may be used as an image in which is emphasized. The same applies to the second and third embodiments described below.
 <第2実施形態>
 第1実施形態では、確定した照射野外をマスクした画像を表示画像として生成し、当該マスクに外接する矩形により切り出された画像を出力画像として生成した。第2実施形態では、さらに確定された照射領域の表示位置およびサイズを自動的に調整することが可能な撮影制御装置103について説明する。なお、第2実施形態のシステム構成は第1実施形態(図1)と同様である。以下、主として第1実施形態と相違する点について説明する。
Second Embodiment
In the first embodiment, an image in which the determined irradiation field is masked is generated as a display image, and an image cut out by a rectangle circumscribing the mask is generated as an output image. In the second embodiment, an imaging control apparatus 103 capable of automatically adjusting the display position and size of the determined irradiation area will be described. The system configuration of the second embodiment is the same as that of the first embodiment (FIG. 1). In the following, differences from the first embodiment will be mainly described.
 図9は、第2実施形態による撮影制御装置103の画像処理に関わる機能構成例を示すブロック図である。図9において、第1実施形態(図4)と同様の機能ブロックには同一の参照番号を付してある。表示調整部220は、照射野確定部204により確定された照射野の位置および大きさに基づいて、当該照射野の位置および表示倍率を調整する。画像表示部205は照射野の位置が調整され、表示倍率が調整された調整後の画像を表示装置105に表示し、画像出力部206は透視画像から必要な領域(照射野の領域)が抽出された画像を出力画像として画像サーバ108へ出力する。 FIG. 9 is a block diagram illustrating a functional configuration example related to image processing of the imaging control apparatus 103 according to the second embodiment. In FIG. 9, the same reference numerals are assigned to functional blocks similar to those in the first embodiment (FIG. 4). The display adjustment unit 220 adjusts the position and display magnification of the irradiation field based on the position and size of the irradiation field determined by the irradiation field determination unit 204. The image display unit 205 displays the adjusted image in which the position of the irradiation field is adjusted and the display magnification is adjusted on the display device 105, and the image output unit 206 extracts a necessary region (irradiation field region) from the fluoroscopic image. The processed image is output to the image server 108 as an output image.
 図10は、指関節のように撮影対象部位が小さく、照射領域の大部分を絞り107で絞って撮影する手技が行われた場合の画像例を示す図である。透視画像1002に示されるように、対象領域は、放射線撮影装置104の撮影領域の端のほうに位置している。また、図11は、第2実施形態による撮影制御装置103の動作を示すフローチャートである。図5または図8A~8Bに示したフローチャートのステップS507とS509の間において、表示調整部220がステップS1101~S1104の処理を行う。 FIG. 10 is a diagram showing an example of an image in the case where the imaging target region is small like a finger joint, and a procedure for performing imaging with the aperture 107 restricting most of the irradiation area is performed. As shown in the perspective image 1002, the target area is located toward the end of the imaging area of the radiation imaging apparatus 104. FIG. 11 is a flowchart showing the operation of the imaging control apparatus 103 according to the second embodiment. The display adjustment unit 220 performs the processing of steps S1101 to S1104 between steps S507 and S509 in the flowchart shown in FIG. 5 or FIGS. 8A to 8B.
 第1実施形態で説明したように、画像取得部201、画像分離部202、物質抽出部203、照射野確定部204により、照射野が確定され、照射野外のマスク画像が生成される。表示調整部220は、表示装置105における透視画像を表示するための表示領域の中央に照射野の画像が表示されるように照射野の画像の移動量を決定する(ステップS1101)。これにより、照射野の中心が、透視画像の表示領域の中心と一致するように位置が調整される。また、表示調整部220は、確定された照射野のサイズが所定値以下の場合に(ステップS1102でYES)、照射野の表示サイズを拡大するための拡大率を決定する(ステップS1103)。より具体的には、表示調整部220は、放射線撮影装置104の検出器の解像度と表示装置105の解像度との関係から決定されるデジタルズームされない範囲の倍率で、かつ、照射野の画像が表示領域をはみ出さないように拡大率を決定する。ステップS1104において、画像表示部205は、例えば図10に示すような透視画像1002とマスク画像1001を重畳するとともに、表示調整部220により決定された移動量、拡大率を適用して表示画像1003を表示装置105に表示する。また、画像出力部206は、ステップS507で算出された外接する矩形に基づいて出力画像を切り出し、画像サーバ108へ送信する。 As described in the first embodiment, the image acquisition unit 201, the image separation unit 202, the substance extraction unit 203, and the irradiation field determination unit 204 determine the irradiation field and generate a mask image outside the irradiation field. The display adjustment unit 220 determines the amount of movement of the irradiation field image so that the image of the irradiation field is displayed at the center of the display area for displaying the fluoroscopic image on the display device 105 (step S1101). Thereby, the position is adjusted so that the center of the irradiation field coincides with the center of the display area of the fluoroscopic image. Further, when the determined irradiation field size is equal to or smaller than the predetermined value (YES in step S1102), the display adjustment unit 220 determines an enlargement ratio for enlarging the irradiation field display size (step S1103). More specifically, the display adjustment unit 220 has a magnification within a range not subjected to digital zooming determined from the relationship between the resolution of the detector of the radiation imaging apparatus 104 and the resolution of the display apparatus 105, and the image of the irradiation field is a display area. Determine the enlargement ratio so that it does not protrude. In step S1104, the image display unit 205 superimposes the fluoroscopic image 1002 and the mask image 1001 as shown in FIG. 10, for example, and applies the movement amount and the enlargement ratio determined by the display adjustment unit 220 to display the display image 1003. It is displayed on the display device 105. Further, the image output unit 206 cuts out an output image based on the circumscribed rectangle calculated in step S507 and transmits the output image to the image server 108.
 なお、絞り107が放射線撮影装置104に対して回転していた場合、表示調整部220が照射野の回転角度を算出し、画像表示部205がその回転角度に基づいて回転を戻して表示するようにしてもよい。また、上記では照射野のサイズが所定値以下の場合に照射野のサイズを拡大するようにしたがこれに限られるものではない。照射野のサイズが所定値以下か否かに関わらず、デジタルズームされない範囲で、かつ、放射線画像の表示領域を超えない範囲で照射野を拡大して表示するようにしてもよい。 When the diaphragm 107 is rotated with respect to the radiation imaging apparatus 104, the display adjustment unit 220 calculates the rotation angle of the irradiation field, and the image display unit 205 returns and displays the rotation based on the rotation angle. It may be. In the above description, the size of the irradiation field is enlarged when the size of the irradiation field is equal to or smaller than a predetermined value. However, the present invention is not limited to this. Irrespective of whether or not the size of the irradiation field is equal to or smaller than a predetermined value, the irradiation field may be enlarged and displayed in a range that is not digitally zoomed and that does not exceed the radiation image display area.
 <第3実施形態>
 第1実施形態、第2実施形態では、エネルギーサブトラクションにより得られた実効原子番号と面密度の画像から特定物質(絞り)が強調された画像を生成し、これに基づいて照射野を確定した。第3実施形態では、実効原子番号と面密度の画像から、特定物質として被写体の特定の組織(例えば、骨)が強調された画像を生成し、特定物質の特定位置に基づいて適切な視野領域を決定する。第1、第2実施形態が対象とした特定物質は撮影中に不動であったが、第3実施形態が対象とする特定物質は撮影中に移動する。したがって、視野領域は動画撮影中に移動することになる。
<Third Embodiment>
In the first embodiment and the second embodiment, an image in which a specific substance (aperture) is emphasized is generated from an image of effective atomic number and surface density obtained by energy subtraction, and an irradiation field is determined based on the generated image. In the third embodiment, an image in which a specific tissue (for example, a bone) of a subject is emphasized as a specific material is generated from an image of effective atomic number and areal density, and an appropriate visual field region based on a specific position of the specific material To decide. The specific substance targeted by the first and second embodiments is immobile during imaging, but the specific substance targeted by the third embodiment moves during imaging. Accordingly, the visual field area moves during moving image shooting.
 第3実施形態における放射線撮影システムの構成は第1実施形態(図1)と同様である。図12は第3実施形態による撮影制御装置103の画像処理に関わる機能構成例を示すブロック図である。第1実施形態(図4)と同様の機能ブロックには同一の参照番号を付してある。第3実施形態では、図13で示されるように、膝関節の動きをみる場合の動画撮影を例示する。膝関節は、大腿骨、膝蓋骨、腓骨、脛骨で構成されており膝の曲げ伸ばしがスムーズに行われるか確認される。この場合、医師は、負荷をかけた状態で被写体に膝の曲げ伸ばしをさせ、その状態を動画で観察する。図13は、膝関節を放射線撮影装置104で撮像した画像であるが、実際に表示装置105に表示されるのは所定サイズの視野領域1301の領域である。視野領域1301は絞りにより絞って制限する場合と、予め設定した仮想の固定コリメータサイズで制限する場合と、画像上でトリミングを設定する場合がある。ここでは予め視野サイズが設定されているとする。いずれにしても視野領域の画像が動画データとして、画像サーバ108へ出力される。この撮影では、被写体の動きをみる必要があるので、被写体と視野領域の相対的な位置関係は刻々と変わる。 The configuration of the radiation imaging system in the third embodiment is the same as that in the first embodiment (FIG. 1). FIG. 12 is a block diagram illustrating a functional configuration example related to image processing of the imaging control apparatus 103 according to the third embodiment. Functional blocks similar to those in the first embodiment (FIG. 4) are denoted by the same reference numerals. In the third embodiment, as illustrated in FIG. 13, moving image shooting when viewing the movement of the knee joint is illustrated. The knee joint is composed of a femur, a patella, a rib, and a tibia, and it is confirmed whether the knee can be bent and stretched smoothly. In this case, the doctor causes the subject to bend and stretch the knee while applying a load, and observe the state with a moving image. FIG. 13 is an image obtained by imaging the knee joint with the radiation imaging apparatus 104, but what is actually displayed on the display apparatus 105 is an area of a visual field area 1301 of a predetermined size. The visual field region 1301 may be limited by being limited by a diaphragm, may be limited by a preset virtual fixed collimator size, or may be trimmed on an image. Here, it is assumed that the visual field size is set in advance. In any case, the image of the visual field is output to the image server 108 as moving image data. In this photographing, since it is necessary to see the movement of the subject, the relative positional relationship between the subject and the visual field region changes every moment.
 図14は第3実施形態による撮影制御装置103の動作を示すフローチャートである。第1実施形態と同様に、画像分離部202は、画像取得部201が取得した低エネルギー画像と高エネルギー画像から実効原子番号と面密度を算出する(ステップS1401)。画像分離部202はさらに、実効原子番号と面密度の画像、骨の実効原子番号を用いて、骨が強調された画像(骨の面密度画像)を生成する(ステップS1402)。物質抽出部203は、生成された骨の面密度画像から大腿骨を抽出し、視野領域の中央に表示する部分を設定する。視野領域の中央に表示する部分をGUI上でユーザが指定するようにしてもよいが、予め骨の特徴的な部分を設定しておいてもよい。本実施形態では、膝関節、すなわち大腿骨と脛骨の接触部分を観察したいため、大腿骨の最下部1302を視野領域の中央に表示する部分とする。視野確定部221は、特定物質(骨)の特定位置(大腿骨の最下部)を、物質抽出部203が抽出した大腿骨からパターンマッチング等の手法により自動的に検出し、その座標を得る(ステップS1403)。 FIG. 14 is a flowchart showing the operation of the imaging control apparatus 103 according to the third embodiment. Similar to the first embodiment, the image separation unit 202 calculates the effective atomic number and the surface density from the low energy image and the high energy image acquired by the image acquisition unit 201 (step S1401). The image separation unit 202 further generates an image (bone surface density image) in which the bone is emphasized using the effective atomic number and the surface density image, and the effective atomic number of the bone (step S1402). The substance extraction unit 203 extracts the femur from the generated surface density image of the bone, and sets a portion to be displayed at the center of the visual field region. The user may designate a part to be displayed at the center of the visual field area on the GUI, but a characteristic part of the bone may be set in advance. In this embodiment, since it is desired to observe the knee joint, that is, the contact portion between the femur and the tibia, the lowermost portion 1302 of the femur is a portion that is displayed at the center of the visual field region. The visual field determination unit 221 automatically detects the specific position (the lowest part of the femur) of the specific material (bone) from the femur extracted by the material extraction unit 203 by a method such as pattern matching, and obtains the coordinates ( Step S1403).
 視野確定部221は、視野サイズ保持部213から視野サイズを取得して、検出された大腿骨最下部が視野領域の中央にくるように視野領域を設定する(ステップS1404)。表示位置調整部222は、視野領域が表示領域の中央に移動するための移動量を算出する(ステップS1405)。画像表示部205は、透視画像から視野確定部221が確定した視野領域を切り出し、これを表示位置調整部222で算出された移動量に従って移動し、表示装置105に表示する(ステップS1406)。こうして、視野領域の表示位置が調整され、表示装置105に表示される。画像出力部206は透視画像から切り出した視野領域の画像を画像サーバ108へ送信する(ステップS1407)。なお、画像出力部206による動画の送信は、動画が撮り終わった後で実行されてもよい。以上のように、被写体が動く場合でも関心領域が視野領域の中央に表示される。 The visual field determination unit 221 acquires the visual field size from the visual field size holding unit 213, and sets the visual field region so that the detected lowermost part of the femur is at the center of the visual field region (step S1404). The display position adjustment unit 222 calculates a movement amount for moving the visual field region to the center of the display region (step S1405). The image display unit 205 cuts out the visual field region determined by the visual field determination unit 221 from the fluoroscopic image, moves it according to the movement amount calculated by the display position adjustment unit 222, and displays it on the display device 105 (step S1406). Thus, the display position of the visual field area is adjusted and displayed on the display device 105. The image output unit 206 transmits the image of the visual field area cut out from the fluoroscopic image to the image server 108 (step S1407). Note that the transmission of the moving image by the image output unit 206 may be executed after the moving image has been shot. As described above, the region of interest is displayed at the center of the visual field region even when the subject moves.
 画像分離部202は、実効原子番号と面密度を算出して、骨の実効原子番号から骨の面密度画像を作成したがこれに限られるものではない。実効原子番号と面密度から骨の吸収率が大きい波長をもつ仮想単波長放射線を照射した場合の単色放射線画像を作成し、その画像から大腿骨を抽出してもよいことは上述の通りである。また、上記第3実施形態では、透視画像から視野領域1301の画像を抽出するがこれに限られるものではない。例えば、可動絞りを用いて、大腿骨の最下部の検出結果に応じて、可動絞りを移動し、第2実施形態で説明したように照射野を検出し、その表示位置を調整して表示するようにしてもよい。 The image separation unit 202 calculates the effective atomic number and the surface density, and creates the surface density image of the bone from the effective atomic number of the bone, but is not limited thereto. As described above, it is possible to create a monochromatic radiation image when a virtual single-wavelength radiation having a wavelength with a high bone absorption rate is irradiated from the effective atomic number and surface density, and to extract the femur from the image. . In the third embodiment, the image of the visual field region 1301 is extracted from the fluoroscopic image, but the present invention is not limited to this. For example, using the movable diaphragm, the movable diaphragm is moved according to the detection result of the lowermost part of the femur, the irradiation field is detected as described in the second embodiment, and the display position is adjusted and displayed. You may do it.
 また、骨ではなく対象となる部位や器官や臓器をエネルギーサブトラクションで認識してその結果、対象となるものが視野領域の中央になるように表示制御するようにしてもよい。例えば、エネルギーサブトラクションにより得られた画像に基づいて所定の臓器(例えば胃)の領域を検出し、その領域の中心が視野領域の中央になるように表示制御してもよい。 Also, instead of bone, a target part, organ, or organ may be recognized by energy subtraction, and as a result, display control may be performed so that the target object is in the center of the visual field region. For example, a region of a predetermined organ (for example, stomach) may be detected based on an image obtained by energy subtraction, and display control may be performed so that the center of the region becomes the center of the visual field region.
 以上のように、単一の照射でエネルギーサブトラクション可能であるとともに透視画像の取得可能な動画システムについて本発明を説明したがこれに限られるものではない。すなわち、動画システムでなく静止画システムであっても、1回の照射でエネルギーサブトラクションと透視画像を同時に取得できないシステムであっても適用可能であり、同様な有効性が得られる。 As described above, although the present invention has been described with respect to a moving image system capable of energy subtraction with a single irradiation and capable of acquiring a fluoroscopic image, the present invention is not limited thereto. That is, even if it is not a moving image system but a still image system, it can be applied even to a system that cannot simultaneously acquire energy subtraction and a fluoroscopic image by one irradiation, and the same effectiveness can be obtained.
 以上、第1実施形態と第2実施形態を説明した。第1実施形態によれば、異なる放射線のエネルギーによる複数の放射線分布の画像から、絞りの面密度画像を生成し、放射線発生装置の絞りの領域を抽出して、放射線画像に適用することで精度よく照射野を認識することが可能になる。また、第2実施形態によれば、照射野を、適切な表示倍率で適切な位置に表示することが可能になる。さらに、第3実施形態によれば、適切な被写体の動きに追従して視野領域を適切に維持することができるので、特に透視画像(動画)において観察しやすい動画が得られる。 The first embodiment and the second embodiment have been described above. According to the first embodiment, the surface density image of the diaphragm is generated from the images of a plurality of radiation distributions with different radiation energies, the diaphragm area of the radiation generator is extracted, and applied to the radiation image. It becomes possible to recognize the irradiation field well. Further, according to the second embodiment, the irradiation field can be displayed at an appropriate position with an appropriate display magnification. Furthermore, according to the third embodiment, since the visual field region can be appropriately maintained following the movement of an appropriate subject, a moving image that is easy to observe is obtained particularly in a fluoroscopic image (moving image).
 なお、実効原子番号が13以上についての面密度画像を作成すれば、実効原子番号13以上の物質であるアルミニウム、エナメル質、鉄、鉛が強調された画像、すなわち金属の面密度画像が得られる。上記実施形態では、照射野に限らず、実効原子番号が13以上の物質(アルミニウム、エナメル質、鉄、鉛)が強調された画像である金属の面密度画像を求めることにより、金属の領域を特定したり、金属の領域を除いた画像を生成したりすることもできる。 If an areal density image for an effective atomic number of 13 or more is created, an image in which aluminum, enamel, iron, and lead, which are substances having an effective atomic number of 13 or more, are emphasized, that is, an areal density image of a metal is obtained. . In the above embodiment, not only the irradiation field, but by obtaining a metal surface density image that is an image in which a substance having an effective atomic number of 13 or more (aluminum, enamel, iron, lead) is emphasized, the region of the metal is determined. It is also possible to identify or generate an image excluding metal areas.
 <他の実施形態>
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
<Other embodiments>
The present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in the computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2018年4月16日提出の日本国特許出願特願2018-078626を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2018-078626 filed on Apr. 16, 2018, the entire contents of which are incorporated herein by reference.

Claims (25)

  1.  放射線撮影装置から異なる放射線のエネルギーによる複数の放射線分布の画像を取得する取得手段と、
     前記複数の放射線分布の画像に基づいて特定物質が強調された処理画像を生成する生成手段と、
     前記処理画像における前記特定物質の情報に基づいて、放射線画像に設定する領域を決定する決定手段と、を備えることを特徴とする放射線画像処理装置。
    Acquisition means for acquiring images of a plurality of radiation distributions with different radiation energies from the radiation imaging apparatus;
    Generating means for generating a processed image in which a specific substance is emphasized based on the plurality of radiation distribution images;
    A radiographic image processing apparatus comprising: a determining unit that determines an area to be set in a radiographic image based on information on the specific substance in the processed image.
  2.  前記複数の放射線分布の画像についてエネルギーサブトラクションを行った結果に基づいて、前記処理画像を生成することを特徴とする請求項1に記載の放射線画像処理装置。 The radiographic image processing apparatus according to claim 1, wherein the processed image is generated based on a result of energy subtraction performed on the plurality of radiation distribution images.
  3.  前記生成手段は、所定値の範囲の実効原子番号についての面密度画像を前記処理画像として生成することを特徴とする請求項1または2に記載の放射線画像処理装置。 3. The radiographic image processing apparatus according to claim 1, wherein the generation unit generates an area density image with respect to an effective atomic number within a predetermined value range as the processed image.
  4.  前記所定値の範囲をユーザが任意に設定する設定手段を備えることを特徴とする請求項3に記載の放射線画像処理装置。 4. The radiation image processing apparatus according to claim 3, further comprising setting means for a user to arbitrarily set a range of the predetermined value.
  5.  前記放射線撮影装置は、放射線の単一の照射中に複数回のサンプリングを実施することで前記複数の放射線分布の画像の取得が可能であり、
     前記取得手段は、放射線の前記単一の照射ごとに、放射線画像の元となる画像を含む前記複数の放射線分布の画像を取得することを特徴とする請求項1乃至4のいずれか1項に記載の放射線画像処理装置。
    The radiation imaging apparatus is capable of acquiring images of the plurality of radiation distributions by performing sampling a plurality of times during a single irradiation of radiation,
    5. The acquisition unit according to claim 1, wherein the acquisition unit acquires images of the plurality of radiation distributions including an image that is a source of a radiation image for each single irradiation of radiation. The radiation image processing apparatus described.
  6.  前記生成手段は、前記複数の放射線分布の画像についてエネルギーサブトラクションを行って生成された実効原子番号の画像と面密度の画像から、前記特定物質の実効原子番号の面密度画像を前記処理画像として生成することを特徴とする請求項1乃至5のいずれか1項に記載の放射線画像処理装置。 The generation unit generates an area density image of an effective atomic number of the specific substance as the processed image from an image of an effective atomic number and an area density image generated by performing energy subtraction on the plurality of radiation distribution images. The radiographic image processing apparatus according to claim 1, wherein the radiographic image processing apparatus is a radiographic image processing apparatus.
  7.  前記生成手段は、前記複数の放射線分布の画像についてエネルギーサブトラクションを行って生成された実効原子番号の画像と面密度の画像から、前記特定物質の放射線吸収率がピークを示す波長の単色放射線を照射した場合の単色放射線画像を、前記処理画像として生成することを特徴とする請求項1乃至5のいずれか1項に記載の放射線画像処理装置。 The generating means irradiates monochromatic radiation having a wavelength at which the radiation absorption rate of the specific substance has a peak from an image of an effective atomic number and an image of surface density generated by performing energy subtraction on the images of the plurality of radiation distributions. The radiographic image processing apparatus according to claim 1, wherein a monochromatic radiographic image is generated as the processed image.
  8.  前記特定物質は放射線発生装置における絞りを構成する物質または金属であること特徴とする請求項1乃至7のいずれか1項に記載の放射線画像処理装置。 The radiographic image processing apparatus according to any one of claims 1 to 7, wherein the specific substance is a substance or metal constituting a diaphragm in a radiation generating apparatus.
  9.  前記決定手段は前記領域として照射野を決定することを特徴とする請求項8に記載の放射線画像処理装置。 9. The radiation image processing apparatus according to claim 8, wherein the determining unit determines an irradiation field as the region.
  10.  前記特定物質は、人体と空気を構成する物質を含むが絞りを構成する物質を含まず、前記決定手段は前記領域として照射野を決定することを特徴とする請求項1乃至7のいずれか1項に記載の放射線画像処理装置。 The specific substance includes a substance that constitutes a human body and air but does not include a substance that constitutes an aperture, and the determining means determines an irradiation field as the region. The radiation image processing apparatus according to item.
  11.  前記決定手段は、前記処理画像から前記特定物質により規定される形状に当てはまる幾何学的形状を決定し、決定された前記幾何学的形状を用いて前記放射線画像から照射野を検出することにより、照射野の領域を決定することを特徴とする請求項8乃至10のいずれか1項に記載の放射線画像処理装置。 The determining means determines a geometric shape that applies to the shape defined by the specific substance from the processed image, and detects an irradiation field from the radiographic image using the determined geometric shape, The radiation image processing apparatus according to claim 8, wherein an irradiation field region is determined.
  12.  前記幾何学的形状は円または矩形であることを特徴とする請求項11に記載の放射線画像処理装置。 The radiation image processing apparatus according to claim 11, wherein the geometric shape is a circle or a rectangle.
  13.  前記決定手段は、前記特定物質により規定される形状に当てはまる幾何学的形状を決定できない場合に、前記処理画像を2値化して得られる2値化画像に基づいて照射野を決定することを特徴とする請求項11または12に記載の放射線画像処理装置。 The determining means determines an irradiation field based on a binarized image obtained by binarizing the processed image when a geometric shape applicable to the shape defined by the specific substance cannot be determined. The radiographic image processing apparatus according to claim 11 or 12.
  14.  前記決定手段は、前記処理画像を2値化して得られる2値化画像に基づいて照射野を決定することを特徴とする請求項8乃至10のいずれか1項に記載の放射線画像処理装置。 11. The radiographic image processing apparatus according to claim 8, wherein the determining unit determines an irradiation field based on a binarized image obtained by binarizing the processed image.
  15.  前記生成手段は、前記特定物質を空気として素抜け領域が強調された画像を生成し、
     前記決定手段は、前記素抜け領域により規定される形状に当てはまる幾何学的形状に基づいて照射野を決定することを特徴とする請求項1乃至7のいずれか1項に記載の放射線画像処理装置。
    The generation means generates an image in which a void region is emphasized with the specific substance as air,
    The radiographic image processing apparatus according to claim 1, wherein the determining unit determines an irradiation field based on a geometric shape that is applicable to a shape defined by the blank region. .
  16.  前記決定手段は、前記素抜け領域を所定割合以上含むように前記放射線画像における照射野を決定することを特徴とする請求項15に記載の放射線画像処理装置。 16. The radiographic image processing apparatus according to claim 15, wherein the determining unit determines an irradiation field in the radiographic image so as to include the blank region at a predetermined ratio or more.
  17.  前記照射野の中心が、前記放射線画像の表示領域の中心と一致するように位置を調整する調整手段をさらに備えることを特徴とする請求項9乃至16のいずれか1項に記載の放射線画像処理装置。 The radiographic image processing according to any one of claims 9 to 16, further comprising an adjusting unit that adjusts a position so that a center of the irradiation field coincides with a center of a display area of the radiographic image. apparatus.
  18.  前記調整手段は、さらに前記照射野のサイズをデジタルズームにならない範囲で拡大することを特徴とする請求項17に記載の放射線画像処理装置。 The radiographic image processing apparatus according to claim 17, wherein the adjusting means further enlarges the size of the irradiation field within a range that does not become a digital zoom.
  19.  前記放射線画像において、前記決定手段により決定された前記照射野を除く領域がマスクされた画像を表示する表示手段をさらに備えることを特徴とする請求項9乃至18のいずれか1項に記載の放射線画像処理装置。 The radiation according to claim 9, further comprising display means for displaying an image in which a region excluding the irradiation field determined by the determination means is masked in the radiation image. Image processing device.
  20.  前記放射線画像から、前記決定手段により決定された前記照射野に外接する矩形により切り取った画像を出力する出力手段をさらに備えることを特徴とする請求項9乃至19のいずれか1項に記載の放射線画像処理装置。 The radiation according to any one of claims 9 to 19, further comprising output means for outputting an image cut out by a rectangle circumscribing the irradiation field determined by the determination means from the radiation image. Image processing device.
  21.  前記決定手段は、前記特定物質の特定の位置を中心とした、所定サイズの領域を視野領域に決定することを特徴とする請求項1乃至7のいずれか1項に記載の放射線画像処理装置。 The radiographic image processing apparatus according to any one of claims 1 to 7, wherein the determining unit determines an area of a predetermined size centered on a specific position of the specific substance as a visual field area.
  22.  前記放射線画像から前記決定手段により決定された前記視野領域を抽出して表示する表示手段をさらに備えることを特徴とする請求項21に記載の放射線画像処理装置。 The radiographic image processing apparatus according to claim 21, further comprising display means for extracting and displaying the visual field region determined by the determining means from the radiographic image.
  23.  放射線画像処理方法であって、
     異なる放射線のエネルギーによる複数の放射線分布の画像を取得する取得工程と、
     前記複数の放射線分布の画像に基づいて特定物質が強調された処理画像を生成する生成工程と、
     前記処理画像における前記特定物質の情報に基づいて、放射線画像に設定する領域を決定する決定工程と、を備えることを特徴とする放射線画像処理方法。
    A radiation image processing method comprising:
    An acquisition step of acquiring images of a plurality of radiation distributions with different radiation energies;
    Generating a processed image in which a specific substance is emphasized based on the plurality of radiation distribution images;
    A radiation image processing method comprising: a determination step of determining a region to be set in the radiation image based on information on the specific substance in the processed image.
  24.  前記生成工程において、前記複数の放射線分布の画像についてエネルギーサブトラクションを行った結果に基づいて、前記処理画像を生成することを特徴とする請求項23に記載の放射線画像処理方法。 The radiation image processing method according to claim 23, wherein, in the generation step, the processed image is generated based on a result of energy subtraction performed on the images of the plurality of radiation distributions.
  25.  コンピュータを請求項1乃至22の何れか1項に記載の放射線画像処理装置の各手段として機能させるためのプログラム。 A program for causing a computer to function as each unit of the radiation image processing apparatus according to any one of claims 1 to 22.
PCT/JP2019/006465 2018-04-16 2019-02-21 Radiographic image processing device, radiographic image processing method, and program WO2019202841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-078626 2018-04-16
JP2018078626A JP2019181039A (en) 2018-04-16 2018-04-16 Radiographic image processing apparatus, radiographic image processing method, and program

Publications (1)

Publication Number Publication Date
WO2019202841A1 true WO2019202841A1 (en) 2019-10-24

Family

ID=68239500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006465 WO2019202841A1 (en) 2018-04-16 2019-02-21 Radiographic image processing device, radiographic image processing method, and program

Country Status (2)

Country Link
JP (1) JP2019181039A (en)
WO (1) WO2019202841A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297442A (en) * 2008-06-17 2009-12-24 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
JP2011244875A (en) * 2010-05-24 2011-12-08 Ge Medical Systems Global Technology Co Llc Image processor, image display device, program, and x-ray ct apparatus
JP2012125409A (en) * 2010-12-15 2012-07-05 Fujifilm Corp X-ray imaging apparatus
JP2018000379A (en) * 2016-06-29 2018-01-11 英伸 橘 Dose calculation device, dose calculation method, and dose calculation program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297442A (en) * 2008-06-17 2009-12-24 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
JP2011244875A (en) * 2010-05-24 2011-12-08 Ge Medical Systems Global Technology Co Llc Image processor, image display device, program, and x-ray ct apparatus
JP2012125409A (en) * 2010-12-15 2012-07-05 Fujifilm Corp X-ray imaging apparatus
JP2018000379A (en) * 2016-06-29 2018-01-11 英伸 橘 Dose calculation device, dose calculation method, and dose calculation program

Also Published As

Publication number Publication date
JP2019181039A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
KR102187814B1 (en) Medical apparatus, and method for controlling medical apparatus
US6862364B1 (en) Stereo image processing for radiography
JP4977201B2 (en) CONTROL DEVICE, CONTROL METHOD, AND COMPUTER-READABLE MEMORY FOR MULTI X-RAY GENERATOR
US8705695B2 (en) Region of interest determination for X-ray imaging
US8597211B2 (en) Determination of indicator body parts and pre-indicator trajectories
JP5572040B2 (en) Radiography equipment
US10448913B2 (en) X-ray imaging apparatus
US10672108B2 (en) Image processing apparatus, image processing method, and image processing program
JP7337556B2 (en) MEDICAL IMAGE PROCESSING APPARATUS, X-RAY DIAGNOSTIC APPARATUS, AND MEDICAL IMAGE PROCESSING METHOD
JP2023040242A (en) System and method for image localization of effectors during medical procedure
KR101909125B1 (en) Method for computer-aided diagnosis and computer-aided diagnosis apparatus thereof
US9595116B2 (en) Body motion detection device and method
US20220054862A1 (en) Medical image processing device, storage medium, medical device, and treatment system
JP4416823B2 (en) Image processing apparatus, image processing method, and computer program
JP7017492B2 (en) Tomographic image generator, method and program
US9582892B2 (en) Radiation imaging apparatus, radiation imaging method, and program
JP6225636B2 (en) Medical image processing apparatus and program
JP6853376B2 (en) How to reconstruct a 2D image from multiple X-ray images
WO2019202841A1 (en) Radiographic image processing device, radiographic image processing method, and program
US20220358652A1 (en) Image processing apparatus, radiation imaging apparatus, image processing method, and storage medium
JP6843683B2 (en) X-ray inspection equipment
JP2016131805A (en) X-ray image diagnostic apparatus and method for creating x-ray image
JP5239585B2 (en) X-ray imaging device
JP6167841B2 (en) Medical image processing apparatus and program
JP2006149438A (en) Irradiation position collation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788707

Country of ref document: EP

Kind code of ref document: A1