WO2019202790A1 - Dynamo-electric machine, and elevator hoist system - Google Patents
Dynamo-electric machine, and elevator hoist system Download PDFInfo
- Publication number
- WO2019202790A1 WO2019202790A1 PCT/JP2019/001064 JP2019001064W WO2019202790A1 WO 2019202790 A1 WO2019202790 A1 WO 2019202790A1 JP 2019001064 W JP2019001064 W JP 2019001064W WO 2019202790 A1 WO2019202790 A1 WO 2019202790A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- permanent magnet
- width
- rotor
- rotating electrical
- electric machine
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B11/00—Main component parts of lifts in, or associated with, buildings or other structures
- B66B11/04—Driving gear ; Details thereof, e.g. seals
- B66B11/08—Driving gear ; Details thereof, e.g. seals with hoisting rope or cable operated by frictional engagement with a winding drum or sheave
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/32—Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
Definitions
- the present invention relates to a rotating electric machine suitable for use as an elevator hoisting machine, and an elevator hoisting machine system using the rotating electric machine.
- induction motors were often used as rotating machines for hoisting elevators, but in recent years, they are more suitable for smaller and lighter weight and higher efficiency due to the lower price of permanent magnets and the spread of high-performance inverters.
- Motivation to use permanent magnet rotating electrical machines is increasing.
- the permanent magnet of the rotor is arranged in an arc shape on the surface of the rotor core, the inner peripheral surface of the permanent magnet and the outer peripheral surface of the rotor core are in close contact with each other near the magnetic pole center, and a gap is provided near the magnetic pole boundary. It has a rotor structure.
- Patent Document 2 a groove is provided in the rotor core in the radial direction on the surface on which the permanent magnet of the rotor core is attached, and the groove is changed along the axial direction.
- Patent Document 1 arc-shaped magnets are arranged on the outer peripheral surface of the rotor core, and a gap is provided in the rotor core on the inner diameter side at both ends of the arc-shaped magnet.
- the magnetic flux density in the magnet central part is increased, the magnetic flux density in the magnetic pole part is decreased, and a smooth rotational force is obtained.
- this gap is excessively increased, the magnetic resistance on the back surface of the magnet is increased, making it difficult for the magnetic flux to flow, resulting in a decrease in torque.
- Patent Document 1 fully considers this problem. It has not been.
- a torque ripple is reduced by providing a groove at one end of the magnet and changing the groove in the axial direction toward the opposite end of the magnet.
- the groove located near the center in the axial direction passes through the magnet central portion. As described above, this leads to lowering of the magnetic flux density at the magnet central portion, so that the effect of reducing torque ripple cannot be expected so much.
- the present invention is based on the problems of both patent documents, and by optimizing the position and size of the air gap provided in the rotor core, the permanent magnet achieves both maintenance of torque and suppression of torque ripple.
- An object of the present invention is to provide a rotary electric machine and an elevator hoisting system using the same.
- a rotating electrical machine of the present invention is provided with a rotor on the inside and a stator on the outside, and the rotor is provided on a shaft serving as a rotating shaft and on an outer periphery of the shaft.
- the width T of the convex part and the width W of the concave part or the hole satisfy the width W ⁇ width T.
- torque ripple can be reduced while maintaining the necessary torque.
- FIG. 4 is a quarter cross-sectional view of the rotating electrical machine according to the first embodiment.
- FIG. 3 is an enlarged view of an outer peripheral portion of the rotor according to the first embodiment.
- the graph which shows the relationship between the shape of the space
- FIG. 3 is a schematic view showing the shape of a permanent magnet of Example 1.
- FIG. 14 is a quarter cross-sectional view of a rotating electrical machine according to a modification of the first embodiment.
- FIG. 14 is a quarter cross-sectional view of a rotating electrical machine according to a modification of the first embodiment.
- FIG. 4 is an enlarged view of an outer peripheral portion of a rotor according to a second embodiment.
- FIG. 6 is an enlarged view of an outer peripheral portion of a rotor according to a third embodiment.
- the graph which shows the relationship between the shape of the surrounding fastening part of Example 3, and a torque ripple.
- FIG. 6 is an enlarged view of an outer peripheral portion of a rotor according to a fourth embodiment.
- the enlarged view of the boundary of the rotor of Example 5, and a stator. 10 is a graph showing a relationship between a magnetic field and a magnetic flux density in the stator core and the wedge of Example 5.
- FIG. The graph which shows the relationship between the shape of the rotary electric machine of Example 6, and a torque ripple.
- Sectional drawing of the elevator winding system of Example 7. FIG. Sectional drawing of the elevator winding system of Example 7.
- FIG. 1 is a quarter cross-sectional view of a rotor 1 and a stator 2 in a rotating electrical machine 100 according to a first embodiment of the present invention.
- the rotating electrical machine 100 illustrated here has a 56-pole rotor 1 on the inside, a 72-slot stator 2 on the outside, and a concentrated winding permanent magnet having a predetermined gap 7 therebetween.
- This is a rotary electric machine.
- this rotary electric machine 100 assumes the thing for high-speed and heavy loads which are mainly used for an elevator hoisting machine and have an output of several hundred kW and a rotational speed of several hundred [min ⁇ 1 ] class.
- the number of poles of the rotor 1, the number of slots of the stator 2, the winding method, the output, the rotation speed, and the application are not limited to the above examples.
- the substantially cylindrical rotor 1 includes a shaft 8 serving as a rotating shaft, a substantially tubular rotor core 3 fixed to the outer peripheral side, and a circumferential surface with alternating polarity on the outer peripheral surface. It consists of a plurality of permanent magnets 5 arranged side by side in the direction.
- the substantially tubular stator 2 includes a substantially tubular stator core 4 and a plurality of coils 6 disposed on the inner peripheral side of the stator core 4. More specifically, the stator core 4 is a space formed between the teeth 4b and a cylindrical core back 4a, a plurality of teeth 4b arranged in the circumferential direction on the inner peripheral side of the core back 4a, and the teeth 4b.
- a plurality of slots 4c are configured, and a coil 6 is formed in each slot 4c by winding an electric wire around the teeth 4b.
- the rotor core 3 and the stator core 4 may be formed by stacking and molding press-worked electromagnetic steel sheets, or may be integrally formed by casting.
- the left view of FIG. 2 is an enlarged view of two poles on the outer peripheral surface of the rotor 1.
- the rotor 1 is a surface magnet type rotor in which a flat permanent magnet 5 is fixed to the outer peripheral surface of the rotor core 3.
- a pair of gaps 9 also referred to as “concave portions” notched inward are provided at positions facing both ends of each permanent magnet 5,
- a pair of peripheral fastening portions 10 also referred to as “convex portions” projecting outward are provided at positions where both end surfaces of the permanent magnet 5 are sandwiched.
- the peripheral fastening portion 10 is in surface contact with the circumferential end surface of the permanent magnet 5 so that the permanent magnet 5 is not displaced in the circumferential direction.
- the circumferential end surface of the rotation retaining portion 10 is connected to the d axis 11 connecting the rotation center of the rotor 1 and the magnetic pole center of the permanent magnet 5. If it is made substantially parallel (that is, if the surrounding clasp part 10 is made into a radial shape), the circumferential end faces of both the permanent magnet 5 and the circumscribing part 10 can be brought into surface contact, and the permanent magnet 5 is firmly fixed. can do.
- FIG. 2 is a further enlarged view of the vicinity of the peripheral fastening portion 10.
- FIG. In the case where the gap 9 and the surrounding clasp portion 10 are arranged as shown in the left diagram of FIG. 2, the surrounding clasp portion 10 is sandwiched between the pair of gaps 9. Taking the right side gap 9 as an example, the relationship between the gap 9 and the peripheral fastening part 10 will be described.
- the left circumferential end surface of the gap 9 is formed to form a plane with the right circumferential end face of the peripheral fastening part 10. Further, the circumferential end surface on the right side of the gap 9 is formed in parallel with the circumferential end face on the right side of the retaining portion 10 (that is, the circumferential end face on the left side of the gap 9).
- any circumferential end surface of the gap 9 is formed in parallel with the d-axis 11.
- the width W of the gap 9 is the length in the circumferential direction in which the gap 9 is widened in the direction of the d-axis 11 when the circumferential end surface of the retaining portion 10 is used as a reference position, as shown in the right diagram of FIG. It is.
- the horizontal axis is the W / T ratio
- the vertical axis is the torque (right vertical axis) of the rotating electrical machine 100 with the value when the W / T ratio is 0 (when there is no gap 9) as 1.
- the torque ripple indicated by the solid line rapidly decreases and maintains the minimum value after the vicinity of 0.25 is exceeded. For this reason, in order to suppress the torque ripple, it is necessary to increase the width W of the air gap 9 so that the W / T ratio exceeds 0.25 (that is, so as to satisfy the following expression 1).
- Width W ⁇ width T (Formula 2) Note that when the W / T ratio is 1 or more, the torque indicated by the two-dot chain line in FIG. 3 sharply decreases because the balance of the magnetic resistance around the interpolar portion deteriorates. As long as the above formula 2 is satisfied, the circumferential end magnetic flux of the permanent magnet 5 does not pass through the gap 7 and flows directly to the surrounding clasp 10 as a leakage flux, but the area of the clasp 10 is also small. As a result, the magnetic flux is always saturated due to the magnetic flux leakage of the magnet (the magnetic resistance is close to that of air). Therefore, even when the gap 9 is provided, it is possible to maintain substantially the same torque as when there is no gap 9. .
- the magnitude relationship between the width W of the gap 9 and the width T of the peripheral fastening portion 10 is closely related to the balance of the magnetic resistance around the interpolar portion and the magnitude of the torque. It is very important to set the position and size of the fastening portion 10 appropriately in order to achieve both reduction of torque ripple and maintenance of torque. That is, in order to achieve both the suppression of torque ripple and the maintenance of torque, it is desirable to set the width W of the air gap 9 within a range satisfying the following expression 3 including the expressions 1 and 2.
- FIG. 3 The characteristic shown in FIG. 3 is an example of the rotating electrical machine 100 using a flat plate as the permanent magnet 5, but the surface magnet type rotor for reducing the torque ripple is similar to the above-mentioned patent document.
- a D-shaped permanent magnet 12 or a tile-shaped permanent magnet 13 may be used.
- FIG. 4 shows magnetic flux distributions of (a) the flat permanent magnet 5, (b) the D-shaped permanent magnet 12, and (c) the roof-shaped permanent magnet 13.
- the difference in magnetic flux distribution shown here appears as a difference in magnetic flux density distribution in the gap 7 when each magnet is used as the rotor 1 as it is.
- the D-shaped permanent magnet 12 or the tile-shaped permanent magnet 13 is used, the D-shaped or roof-shaped magnet shape appears in the magnetic flux density distribution as it is, and the magnetic flux density at the center of the magnet becomes the highest.
- torque ripple can be reduced by making the magnetic flux density distribution of the gap 7 close to a sine wave. Therefore, if the D-shaped permanent magnet 12 or the roof-shaped permanent magnet 13 can be used, the torque ripple can be easily reduced by the magnet shape itself. In other words, it can be said that torque ripple can also be suppressed by appropriately setting the magnet shape and dimensions.
- the magnetic flux density distribution from the center to the end of the magnet is uniform as shown in FIG. Unlike the case where it is used, the magnetic flux density at the center of the magnet cannot be increased only by using the magnet shape, and the magnetic flux density distribution of the gap 7 cannot be approximated to a sine wave.
- the rotor core 3 on which the D-type permanent magnet 12 and the roof tile permanent magnet 13 are mounted needs to have a more complicated surface shape than that on which the flat plate magnet is mounted. There is. As a result, when the D-shaped permanent magnet 12 and the tile-shaped permanent magnet 13 are used, man-hours and costs required for assembling the rotating electrical machine 100 are increased as compared with the case where a flat magnet is used.
- the cheap flat plate-like permanent magnet 5 when used, if the gap 9 satisfying the above-mentioned formula 3 and the surrounding fastening portion 10 are provided, the D-type permanent magnet 12 and the roof-shaped permanent magnet are suppressed while suppressing the manufacturing cost. As with the magnet 13, the rotating electrical machine 100 with reduced torque ripple can be provided at low cost.
- a flat permanent magnet 5 can be easily applied to a multi-pole surface magnet type rotor, such as the 56-pole rotor 1 illustrated in FIG.
- a flat magnet is applied to a rotor with a small number of poles, such as 4 poles and 6 poles, the cross-sectional shape of the rotor will be square or hexagonal, so the magnetic flux density distribution will become more steep and torque ripple will increase when rotating. Therefore, the torque ripple is generally suppressed by applying the D-shaped permanent magnet 12 or the tile-shaped permanent magnet 13.
- the rotor outer diameter will be substantially circular even if a flat magnet is applied, so the combination of a multipole rotor and a flat magnet is effective in reducing torque ripple. Can be said to be compatible.
- the corners of the permanent magnet 5 can be escaped by setting the start position for forming the air gap 9 to be the circumferential end face of the peripheral fastening portion 10 as in this embodiment.
- the rotor core 3 is formed by press working or casting of an electromagnetic steel plate, it is necessary to provide curved portions at the corners.
- the air gap 9 is provided as in the present embodiment, the permanent magnet 5 can be fixed in the circumferential direction without providing a useless clearance for reducing interference between the permanent magnet 5 and the rotor core 3 while reducing torque ripple. it can. Therefore, the rotor core 3 may be formed not only by the electromagnetic steel sheet but also by casting. By making the rotor core 3 into a casting, the number of assembling steps can be reduced as compared with the electromagnetic steel sheet, so that further cost reduction effect can be expected.
- FIGS. 5A and 5B a cooling axial duct 14 is added to the rotor 1 of the rotating electrical machine 100 illustrated in FIG.
- an axial duct 14 for flowing cooling air is formed between the rotor core 3 and the shaft 8 by connecting the rotor core 3 with a narrow width and the shaft 8 with bars 15 arranged radially. did.
- FIG. 5B a plurality of axial ducts 14 are provided directly on the rotor core 3. With this configuration, it is possible to effectively flow cooling air to a portion to be cooled.
- the position where the axial duct 14 is provided is the outermost position of the permanent magnet 5. It is preferable to keep it within 70% of the diameter as a reference.
- FIG. 6 is a cross-sectional view of two poles of the rotor 1 in the rotating electrical machine of the second embodiment.
- the air holes 16 are provided on the inner diameter side of the permanent magnet 5.
- the difference from the first embodiment is that the rotor core 3 is interposed between the hole 16 and the permanent magnet 5.
- the same effect as in the first embodiment can be obtained.
- the peripheral fastening portion 10 is formed by press working. At this time, when the circumferential width of the circumferentially fastened portion 10 is extremely short, there is a possibility that twisting or distortion may occur due to the influence of the press working, and when the gap 9 of Example 1 is extended toward the inner diameter direction, Since the base of the fastening portion 10 is thin, the strength of the surrounding fastening portion 10 may also be reduced.
- the rotor core 3 is interposed between the hole 16 and the permanent magnet 5, so that the same effect as that of the first embodiment can be realized, and the surrounding fastening portion 10 It is also possible to obtain the effect of ensuring the machining accuracy and strength.
- a pair of holes 16 is provided for each permanent magnet 5 is shown, but it is sufficient that a pair of holes 16 is provided in at least one permanent magnet. These may not be provided.
- the direction in which a pair of holes 16 are provided for each permanent magnet can further enhance the torque ripple reduction effect.
- FIG. 7 is an enlarged view between the magnetic poles of the rotor 1 in the rotating electrical machine 100 according to the third embodiment, and shows a portion corresponding to the thickness Mh of the permanent magnet 5 and the protrusion amount Rh of the retaining ring 10.
- FIG. 8 shows the ratio between the protrusion amount Rh and the thickness Mh shown in FIG. 7 (hereinafter referred to as “Rh / Mh”) and the normalized value with the torque ripple being 1 when Rh / Mh is 1. Showing the relationship. From this figure, it can be seen that when Rh / Mh is decreased, the torque ripple tends to decrease, and in particular, in the region where Rh / Mh is 0.5 or less, the torque ripple becomes the minimum value.
- the torque ripple can be further reduced by the configuration of the present embodiment in which the protrusion amount Rh of the peripheral fastening portion 10 is smaller than the thickness Mh of the permanent magnet 5 as compared with the configuration of the first embodiment. be able to.
- FIG. 9 is a cross-sectional view of two poles of the rotor 1 in the rotating electrical machine 100 of the fourth embodiment. As shown here, in this embodiment, the outer diameter of the rotor 1 is covered with a nonmagnetic material 17.
- the nonmagnetic material 17 may be a nonmagnetic metal such as stainless steel, aluminum, or copper, or may be a nonmetallic material such as plastic or carbon fiber.
- FIG. 10 is a cross-sectional view of two slots of the stator 2 in the rotating electrical machine 100 of the fifth embodiment.
- a slot 4 c is formed in the circumferential direction of the stator 2
- a coil 6 is disposed in the slot 4 c
- a wedge 19 as a teeth connecting member is attached to the inner diameter side of the coil 6. .
- FIG. 11 shows the magnetic characteristics of the stator core 4 and the wedge 19.
- the wedge 19 of the present embodiment is a magnetic material, but is a material having a magnetic property worse than that of the stator core 4.
- the reason why the torque ripple can be reduced by using the wedge 19 having such a poor magnetic characteristic is that when the wedge 19 having the same magnetic characteristic as that of the stator core 4 is used, the leakage magnetic flux between the slots 4c increases and conversely the torque ripple. This is because, by using the wedge 19 having poor magnetic properties, the magnetic flux can be appropriately leaked between the slots 4c, and the torque ripple can be reduced.
- FIG. 12 is a sectional view in the axial direction of the rotor 1 and the stator 2 in the rotating electrical machine 100 of the sixth embodiment. As shown here, in this embodiment, the axial length Lst of the stator core 4 is made longer than the axial length Lmag of the permanent magnet 5 of the rotor 1.
- FIG. 13 shows the relationship between the ratio Lst / Lmag between the length Lst and the length Lmag and the normalized value of the torque ripple.
- shaft of the figure normalized the torque ripple when Lst / Lmag is 1 to 1. From this figure, it can be seen that torque ripple can be reduced by increasing Lst / Lmag. This is because the length Lst of the stator core 4 in the axial direction is longer than the length Lmag of the permanent magnet 5, thereby reducing the leakage magnetic flux at the axial end of the stator core 4 and thus reducing the torque ripple. Because.
- FIG. 14A is an example of an elevator hoisting machine system according to the present embodiment.
- the rotating electrical machine 100 according to any of Embodiments 1 to 6 and the sheave 20 around which the main rope of the elevator is wound are connected via a coupling 21. It is directly connected to drive.
- the rotating electrical machine 100 is configured to support both ends of the shaft 8 with bearings 22.
- FIG. 14B is also an example of the elevator hoisting machine system of the present embodiment, and the rotary electric machine 100 of any of the first to sixth embodiments and the sheave 20 are directly connected via the coupling 21 and driven.
- bearings 22 are installed at both ends of the shaft 8, but in FIG. 14B, the bearings 22 on the coupling 21 side are omitted. That is, the shaft 8 of the rotating electrical machine 100 is supported by the sheave 20.
- the bearing 22 can be eliminated, an effect of reducing the number of parts of the rotating electrical machine 100 can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Civil Engineering (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Cage And Drive Apparatuses For Elevators (AREA)
Abstract
The purpose of the present invention is to provide a dynamo-electric machine system in which, in order to reduce a torque ripple, the position and size of an air gap provided in a rotor core are appropriately set to improve the a torque ripple reduction effect. In order to achieve the purpose, this dynamo-electric machine has a rotor provided inside thereof, and a stator provided outside thereof. The rotor has a shaft which serves as a rotating shaft, a substantially circular tube-shaped rotor core which is affixed to the outer periphery of the shaft, and a plurality of permanent magnets which are arranged side by side in a circumferential direction on the outer peripheral surface of the rotor core. The rotor core has a pair of protrusions which protrude outward at positions sandwiching both end surfaces of a permanent magnet, and has, provided at positions facing both ends of the permanent magnet, a pair of recesses cut into the inside or a pair of voids provided inside the rotor core. The width T of the protrusions and the width W of the recess or the void satisfy the expression of width T < width W.
Description
本発明は、エレベーターの巻上げ機としての利用に適した回転電機、及び、これを用いたエレベーター巻上げ機システムに関する。
The present invention relates to a rotating electric machine suitable for use as an elevator hoisting machine, and an elevator hoisting machine system using the rotating electric machine.
エレベーターの巻上げ用の回転電機としては、従来、誘導電動機が用いられることが多かったが、近年は、永久磁石の低価格化や高性能なインバータの普及により、小型軽量化、高効率化により適した永久磁石式回転電機を採用する気運が高まっている。
In the past, induction motors were often used as rotating machines for hoisting elevators, but in recent years, they are more suitable for smaller and lighter weight and higher efficiency due to the lower price of permanent magnets and the spread of high-performance inverters. Motivation to use permanent magnet rotating electrical machines is increasing.
ここで、車や電車と同様に、人が搭乗するエレベーターには、快適な乗り心地が求められているが、永久磁石式回転電機で発生するトルクリプルは乗り心地悪化を招く一因となっている。また、高速、大質量型のエレベーター巻上げシステムのように、回転電機とギアが接続される場合には、トルクリプルはギアの信頼性低下の一因となる。従って、エレベーターの乗り心地向上や、ギアの信頼性向上のためには、永久磁石式回転電機のトルクリプルの低減が必要となる。そして、永久磁石式回転電機のトルクリプルを低減するため、様々な回転電機構造が提案されている。
Here, as with cars and trains, elevators on which people ride are required to have a comfortable ride, but torque ripple generated by a permanent magnet type rotating electrical machine contributes to a deterioration in ride comfort. . Further, when a rotating electrical machine and a gear are connected as in a high-speed, large-mass type elevator hoisting system, torque ripple is a cause of a reduction in the reliability of the gear. Therefore, in order to improve the riding comfort of the elevator and the reliability of the gear, it is necessary to reduce the torque ripple of the permanent magnet type rotating electrical machine. In order to reduce the torque ripple of the permanent magnet type rotating electrical machine, various rotating electrical machine structures have been proposed.
例えば、特許文献1では、回転子の永久磁石を円弧状にしてロータコアの表面に配置し、永久磁石内周面とロータコア外周面が、磁極中心付近で密着し、磁極境界付近で隙間を設けた回転子構造としている。
For example, in Patent Document 1, the permanent magnet of the rotor is arranged in an arc shape on the surface of the rotor core, the inner peripheral surface of the permanent magnet and the outer peripheral surface of the rotor core are in close contact with each other near the magnetic pole center, and a gap is provided near the magnetic pole boundary. It has a rotor structure.
また、特許文献2では、回転子鉄心の永久磁石を貼り付ける面に、回転子鉄心に溝を径方向に設け、軸方向に沿って変化させている。
In Patent Document 2, a groove is provided in the rotor core in the radial direction on the surface on which the permanent magnet of the rotor core is attached, and the groove is changed along the axial direction.
特許文献1では、円弧状磁石をロータコア外周面に配置するとともに、円弧状磁石の両端部の内径側のロータコアに隙間を設けている。これにより、磁石中央部の磁束密度を高くし、磁極間部の磁束密度を低くし、滑らかな回転力を得ている。しかしながら、この隙間を過度に大きくすれば、磁石背面の磁気抵抗が大きくなり、磁石磁束が流れにくくなって、結果的にトルクを低下させるとも考えられるが、特許文献1ではこの問題は十分に考慮されていない。
In Patent Document 1, arc-shaped magnets are arranged on the outer peripheral surface of the rotor core, and a gap is provided in the rotor core on the inner diameter side at both ends of the arc-shaped magnet. Thereby, the magnetic flux density in the magnet central part is increased, the magnetic flux density in the magnetic pole part is decreased, and a smooth rotational force is obtained. However, if this gap is excessively increased, the magnetic resistance on the back surface of the magnet is increased, making it difficult for the magnetic flux to flow, resulting in a decrease in torque. However, Patent Document 1 fully considers this problem. It has not been.
また、特許文献2では、磁石の片端部に溝を設け、その溝は磁石の反対側端部に向かって、軸方向に変化させることで、トルクリプルを低減している。しかしながら、この溝の形成の場合、同文献の図4などから明らかなように、軸方向の中心付近に位置する溝は磁石中央部を経由することになる。これは上述したように、磁石中央部の磁束密度を下げることに繋がるため、トルクリプルの低減効果はあまり期待できない。
Further, in Patent Document 2, a torque ripple is reduced by providing a groove at one end of the magnet and changing the groove in the axial direction toward the opposite end of the magnet. However, in the case of forming this groove, as is apparent from FIG. 4 and the like of the same document, the groove located near the center in the axial direction passes through the magnet central portion. As described above, this leads to lowering of the magnetic flux density at the magnet central portion, so that the effect of reducing torque ripple cannot be expected so much.
トルクリプルを低減するには回転子と固定子の間のギャップ磁束密度を正弦波状に近づけることが有効である。この実現には、上述した特許文献のように、隙間、溝等の空隙部を設けることが重要であるが、両特許文献が開示する、隙間等の位置、大きさには更なる改善の余地が残されている。
To reduce torque ripple, it is effective to make the gap magnetic flux density between the rotor and stator close to a sine wave. To achieve this, it is important to provide gaps such as gaps and grooves as in the above-mentioned patent documents, but there is room for further improvement in the position and size of the gaps and the like disclosed by both patent documents. Is left.
本発明は、両特許文献の問題点を踏まえ、回転子鉄心に設ける空隙部の位置と大きさをより適正化することで、トルクの大きさの維持と、トルクリプルの抑制を両立させた永久磁石式回転電機、および、それを用いたエレベーター巻上げシステムを提供することを目的とする。
The present invention is based on the problems of both patent documents, and by optimizing the position and size of the air gap provided in the rotor core, the permanent magnet achieves both maintenance of torque and suppression of torque ripple. An object of the present invention is to provide a rotary electric machine and an elevator hoisting system using the same.
上記目的を達成するために、本発明の回転電機は、内側に回転子を設け外側に固定子を設けたものであって、前記回転子は、回転軸となるシャフトと、該シャフトの外周に固定した略円管状の回転子鉄心と、該回転子鉄心の外周面に周方向に並べて配置した複数の永久磁石と、を有するものであり、前記回転子鉄心には、該永久磁石の両端面を挟持する位置に、外側に向けて突出した一対の凸部と、該永久磁石の両端部と対向する位置に、内側に向けて切り欠いた一対の凹部または前記回転子鉄心の内部に設けた一対の空孔と、を有しており、前記凸部の幅Tと前記凹部または前記空孔の幅Wは、幅W < 幅T を満たすものとした。
In order to achieve the above object, a rotating electrical machine of the present invention is provided with a rotor on the inside and a stator on the outside, and the rotor is provided on a shaft serving as a rotating shaft and on an outer periphery of the shaft. A fixed substantially circular tubular rotor core, and a plurality of permanent magnets arranged in a circumferential direction on the outer peripheral surface of the rotor core, the rotor core having both end faces of the permanent magnet A pair of convex portions projecting outward at a position sandwiching the inner surface, and a pair of concave portions notched inward at a position facing both ends of the permanent magnet or provided inside the rotor core The width T of the convex part and the width W of the concave part or the hole satisfy the width W <width T.
本発明の永久磁石式回転電機によれば、必要トルクを維持しつつ、トルクリプルを低減できる。
According to the permanent magnet type rotating electrical machine of the present invention, torque ripple can be reduced while maintaining the necessary torque.
以下、図面を用いながら本発明の詳細を説明する。なお、各図において同一部分は同じ番号を付与している。
Hereinafter, the details of the present invention will be described with reference to the drawings. In each figure, the same part is given the same number.
図1は、本発明の実施例1の回転電機100における、回転子1と固定子2の1/4断面図である。ここに例示する回転電機100は、56極の回転子1を内側に設け、72スロットの固定子2を外側に設け、さらに、両者間に所定のギャップ7を設けた集中巻線方式の永久磁石式回転電機である。なお、この回転電機100は、主にエレベーターの巻上げ機用に使用される、出力が数百kW、回転速度が数百[min-1]クラスの高速・大荷重用のものを想定しているが、回転子1の極数、固定子2のスロット数、巻線方式、出力、回転速度、用途は上記の例に限定されるものではない。
FIG. 1 is a quarter cross-sectional view of a rotor 1 and a stator 2 in a rotating electrical machine 100 according to a first embodiment of the present invention. The rotating electrical machine 100 illustrated here has a 56-pole rotor 1 on the inside, a 72-slot stator 2 on the outside, and a concentrated winding permanent magnet having a predetermined gap 7 therebetween. This is a rotary electric machine. In addition, this rotary electric machine 100 assumes the thing for high-speed and heavy loads which are mainly used for an elevator hoisting machine and have an output of several hundred kW and a rotational speed of several hundred [min −1 ] class. However, the number of poles of the rotor 1, the number of slots of the stator 2, the winding method, the output, the rotation speed, and the application are not limited to the above examples.
ここに示すように、略円柱状の回転子1は、回転軸となるシャフト8と、この外周側に固定した略円管状の回転子鉄心3と、この外周面に極性を交互に変えながら周方向に並べて配置した複数の永久磁石5で構成される。また、略円管状の固定子2は、略円管状の固定子鉄心4と、固定子鉄心4の内周側に配置された複数のコイル6で構成される。この固定子鉄心4は、更に詳細には、円管状のコアバック4aと、コアバック4aの内周側に周方向に並べて設けられる複数のティース4bと、ティース4b間に形成された空間である複数のスロット4cで構成されており、ティース4bに電線を巻き回すことで各々のスロット4c内にコイル6を形成している。なお、回転子鉄心3や固定子鉄心4は、プレス加工した電磁鋼板を積層して成型したものでも良いし、鋳物で一体に成型したものであっても良い。
As shown here, the substantially cylindrical rotor 1 includes a shaft 8 serving as a rotating shaft, a substantially tubular rotor core 3 fixed to the outer peripheral side, and a circumferential surface with alternating polarity on the outer peripheral surface. It consists of a plurality of permanent magnets 5 arranged side by side in the direction. The substantially tubular stator 2 includes a substantially tubular stator core 4 and a plurality of coils 6 disposed on the inner peripheral side of the stator core 4. More specifically, the stator core 4 is a space formed between the teeth 4b and a cylindrical core back 4a, a plurality of teeth 4b arranged in the circumferential direction on the inner peripheral side of the core back 4a, and the teeth 4b. A plurality of slots 4c are configured, and a coil 6 is formed in each slot 4c by winding an electric wire around the teeth 4b. Note that the rotor core 3 and the stator core 4 may be formed by stacking and molding press-worked electromagnetic steel sheets, or may be integrally formed by casting.
図2の左図は、回転子1の外周面の2極分の拡大図である。ここに示すように、回転子1は、回転子鉄心3の外周面に平板状の永久磁石5を固定した表面磁石型回転子である。
また、回転子鉄心3の外周面には、各々の永久磁石5の両端部と対向する位置に、内側に向けて切り欠いた一対の空隙9(「凹部」とも言う)を設けるとともに、各々の永久磁石5の両端面を挟持する位置に、外側に向けて突出した一対の周り留め部10(「凸部」とも言う)を設けている。この周り留め部10は、永久磁石5の周方向端面と面接触することで、永久磁石5が周方向にずれないようにするものである。なお、本実施例のように、平板状の永久磁石5を用いる場合、周り留め部10の周方向の端面を、回転子1の回転中心と永久磁石5の磁極中心を結んだd軸11と略平行にすれば(すなわち、周り留め部10を放射状の形状とすれば)、永久磁石5と周り留め部10の両方の周方向端面を面接触させることができ、永久磁石5を強固に固定することができる。なお、図2では永久磁石5ごとに一対の凹部が設けられている例を示したが、少なくとも一つの永久磁石に一対の凹部が設けられていればよく、各永久磁石ごとにこれらが設けられていなくてもよい。なお、永久磁石ごとに一対の凹部、凸部が設けられている方が、トルクリプル低減効果をより高めることが可能である。 The left view of FIG. 2 is an enlarged view of two poles on the outer peripheral surface of therotor 1. As shown here, the rotor 1 is a surface magnet type rotor in which a flat permanent magnet 5 is fixed to the outer peripheral surface of the rotor core 3.
Further, on the outer peripheral surface of therotor core 3, a pair of gaps 9 (also referred to as “concave portions”) notched inward are provided at positions facing both ends of each permanent magnet 5, A pair of peripheral fastening portions 10 (also referred to as “convex portions”) projecting outward are provided at positions where both end surfaces of the permanent magnet 5 are sandwiched. The peripheral fastening portion 10 is in surface contact with the circumferential end surface of the permanent magnet 5 so that the permanent magnet 5 is not displaced in the circumferential direction. In the case where the flat permanent magnet 5 is used as in the present embodiment, the circumferential end surface of the rotation retaining portion 10 is connected to the d axis 11 connecting the rotation center of the rotor 1 and the magnetic pole center of the permanent magnet 5. If it is made substantially parallel (that is, if the surrounding clasp part 10 is made into a radial shape), the circumferential end faces of both the permanent magnet 5 and the circumscribing part 10 can be brought into surface contact, and the permanent magnet 5 is firmly fixed. can do. 2 shows an example in which a pair of recesses is provided for each permanent magnet 5, it is sufficient that at least one permanent magnet is provided with a pair of recesses, and these are provided for each permanent magnet. It does not have to be. In addition, the direction in which a pair of recessed part and convex part are provided for every permanent magnet can raise the torque ripple reduction effect more.
また、回転子鉄心3の外周面には、各々の永久磁石5の両端部と対向する位置に、内側に向けて切り欠いた一対の空隙9(「凹部」とも言う)を設けるとともに、各々の永久磁石5の両端面を挟持する位置に、外側に向けて突出した一対の周り留め部10(「凸部」とも言う)を設けている。この周り留め部10は、永久磁石5の周方向端面と面接触することで、永久磁石5が周方向にずれないようにするものである。なお、本実施例のように、平板状の永久磁石5を用いる場合、周り留め部10の周方向の端面を、回転子1の回転中心と永久磁石5の磁極中心を結んだd軸11と略平行にすれば(すなわち、周り留め部10を放射状の形状とすれば)、永久磁石5と周り留め部10の両方の周方向端面を面接触させることができ、永久磁石5を強固に固定することができる。なお、図2では永久磁石5ごとに一対の凹部が設けられている例を示したが、少なくとも一つの永久磁石に一対の凹部が設けられていればよく、各永久磁石ごとにこれらが設けられていなくてもよい。なお、永久磁石ごとに一対の凹部、凸部が設けられている方が、トルクリプル低減効果をより高めることが可能である。 The left view of FIG. 2 is an enlarged view of two poles on the outer peripheral surface of the
Further, on the outer peripheral surface of the
図2の右図は、周り留め部10の近傍の更なる拡大図である。図2の左図のように空隙9と周り留め部10を配置した場合、周り留め部10は一対の空隙9に挟まれることになる。右側の空隙9を例に、空隙9と周り留め部10の関係を説明すると、空隙9の左側の周方向端面は周り留め部10の右側の周方向端面と平面を構成するように形成されており、また、空隙9の右側の周方向端面は周り留め部10の右側の周方向端面(すなわち、空隙9の左側の周方向端面)と平行に形成されている。上述したように、周り留め部10の周方向端面はd軸11と平行に形成されているため、空隙9の周方向端面は何れも、d軸11とも平行に形成されることになる。
2 is a further enlarged view of the vicinity of the peripheral fastening portion 10. FIG. In the case where the gap 9 and the surrounding clasp portion 10 are arranged as shown in the left diagram of FIG. 2, the surrounding clasp portion 10 is sandwiched between the pair of gaps 9. Taking the right side gap 9 as an example, the relationship between the gap 9 and the peripheral fastening part 10 will be described. The left circumferential end surface of the gap 9 is formed to form a plane with the right circumferential end face of the peripheral fastening part 10. Further, the circumferential end surface on the right side of the gap 9 is formed in parallel with the circumferential end face on the right side of the retaining portion 10 (that is, the circumferential end face on the left side of the gap 9). As described above, since the circumferential end surface of the peripheral clasp portion 10 is formed in parallel with the d-axis 11, any circumferential end surface of the gap 9 is formed in parallel with the d-axis 11.
ここで、図3を用いて、空隙9の周方向の幅Wと周り留め部10の周方向の幅Tの比(以下、「W/T比」と称する)と、回転電機100のトルク、トルクリプルの関係について説明する。なお、空隙9の幅Wとは、図2の右図に示すように、周り留め部10の周方向端面を基準位置としたとき、空隙9をd軸11方向に広げた周方向の長さである。
Here, with reference to FIG. 3, the ratio of the circumferential width W of the gap 9 to the circumferential width T of the peripheral fastening portion 10 (hereinafter referred to as “W / T ratio”), the torque of the rotating electrical machine 100, The relationship of torque ripple will be described. The width W of the gap 9 is the length in the circumferential direction in which the gap 9 is widened in the direction of the d-axis 11 when the circumferential end surface of the retaining portion 10 is used as a reference position, as shown in the right diagram of FIG. It is.
図3において、横軸はW/T比であり、縦軸はW/T比が0のとき(空隙9が無い場合)の値を1とした、回転電機100のトルク(右側縦軸)とトルクリプル(左側縦軸)の規格化値である。同図から明らかなように、W/T比を0から徐々に大きくしていくと、実線で示すトルクリプルは急減し、0.25近傍を超えた後は最小値を維持する。このため、トルクリプルを抑制するには、W/T比が0.25を超えるように(すなわち、下記の式1を満たすように)、空隙9の幅Wを大きくする必要がある。
In FIG. 3, the horizontal axis is the W / T ratio, and the vertical axis is the torque (right vertical axis) of the rotatingelectrical machine 100 with the value when the W / T ratio is 0 (when there is no gap 9) as 1. It is a normalized value of torque ripple (left vertical axis). As is apparent from the figure, when the W / T ratio is gradually increased from 0, the torque ripple indicated by the solid line rapidly decreases and maintains the minimum value after the vicinity of 0.25 is exceeded. For this reason, in order to suppress the torque ripple, it is necessary to increase the width W of the air gap 9 so that the W / T ratio exceeds 0.25 (that is, so as to satisfy the following expression 1).
In FIG. 3, the horizontal axis is the W / T ratio, and the vertical axis is the torque (right vertical axis) of the rotating
0.25 × 幅T < 幅W … (式1)
一方、W/T比を0から徐々に大きくしていくと、二点鎖線で示すトルクは、0~1の範囲では僅かに減少しつつも概ね所望の大きさを維持できるが、W/T比が1より大きくなると、空隙9が無い状態(W/T比=0)でのトルク値から大きく乖離してしまう。このため、トルクを維持するには、W/T比が1未満となるように(すなわち、下記の式2を満たすように)、空隙9の幅Wを小さくすることが望ましい。
0.25 × width T <width W (Formula 1)
On the other hand, when the W / T ratio is gradually increased from 0, the torque indicated by the two-dot chain line can be maintained substantially at a desired level while slightly decreasing in the range of 0 to 1, but the W / T If the ratio is greater than 1, the torque value in a state where there is no air gap 9 (W / T ratio = 0) is greatly deviated. For this reason, in order to maintain the torque, it is desirable to reduce the width W of the air gap 9 so that the W / T ratio is less than 1 (that is, so as to satisfyEquation 2 below).
一方、W/T比を0から徐々に大きくしていくと、二点鎖線で示すトルクは、0~1の範囲では僅かに減少しつつも概ね所望の大きさを維持できるが、W/T比が1より大きくなると、空隙9が無い状態(W/T比=0)でのトルク値から大きく乖離してしまう。このため、トルクを維持するには、W/T比が1未満となるように(すなわち、下記の式2を満たすように)、空隙9の幅Wを小さくすることが望ましい。
0.25 × width T <width W (Formula 1)
On the other hand, when the W / T ratio is gradually increased from 0, the torque indicated by the two-dot chain line can be maintained substantially at a desired level while slightly decreasing in the range of 0 to 1, but the W / T If the ratio is greater than 1, the torque value in a state where there is no air gap 9 (W / T ratio = 0) is greatly deviated. For this reason, in order to maintain the torque, it is desirable to reduce the width W of the air gap 9 so that the W / T ratio is less than 1 (that is, so as to satisfy
幅W < 幅T … (式2)
なお、W/T比が1以上の場合に、図3にて二点鎖線で示すトルクが急減するのは、極間部まわりの磁気抵抗のバランスが悪化するためである。上述の式2を満たす範囲であれば、永久磁石5の周方向端部磁束はギャップ7を介さず、漏れ磁束として周り留め部10に直接流れる状態となるが、周り留め部10の面積も小さいことから、磁石の漏れ磁束により常に磁束飽和状態(磁気抵抗が空気に近い状態)となるため、空隙9を設けた構成であっても空隙9が無い場合と略等しいトルクを維持することができる。一方、空隙9の幅Wを極度に広げ上述の式2を満たさない状態となると、周り留め部10の磁気抵抗よりも空隙9の磁気抵抗が大きくなるため、磁石磁束の流れが空隙9によって阻害され、その結果として回転電機100のトルクが大幅に低下する状態となる。 Width W <width T (Formula 2)
Note that when the W / T ratio is 1 or more, the torque indicated by the two-dot chain line in FIG. 3 sharply decreases because the balance of the magnetic resistance around the interpolar portion deteriorates. As long as theabove formula 2 is satisfied, the circumferential end magnetic flux of the permanent magnet 5 does not pass through the gap 7 and flows directly to the surrounding clasp 10 as a leakage flux, but the area of the clasp 10 is also small. As a result, the magnetic flux is always saturated due to the magnetic flux leakage of the magnet (the magnetic resistance is close to that of air). Therefore, even when the gap 9 is provided, it is possible to maintain substantially the same torque as when there is no gap 9. . On the other hand, when the width W of the air gap 9 is extremely widened and the above formula 2 is not satisfied, the magnetic resistance of the air gap 9 becomes larger than the magnetic resistance of the retaining portion 10, so that the magnetic flux flow is inhibited by the air gap 9 As a result, the torque of the rotating electrical machine 100 is significantly reduced.
なお、W/T比が1以上の場合に、図3にて二点鎖線で示すトルクが急減するのは、極間部まわりの磁気抵抗のバランスが悪化するためである。上述の式2を満たす範囲であれば、永久磁石5の周方向端部磁束はギャップ7を介さず、漏れ磁束として周り留め部10に直接流れる状態となるが、周り留め部10の面積も小さいことから、磁石の漏れ磁束により常に磁束飽和状態(磁気抵抗が空気に近い状態)となるため、空隙9を設けた構成であっても空隙9が無い場合と略等しいトルクを維持することができる。一方、空隙9の幅Wを極度に広げ上述の式2を満たさない状態となると、周り留め部10の磁気抵抗よりも空隙9の磁気抵抗が大きくなるため、磁石磁束の流れが空隙9によって阻害され、その結果として回転電機100のトルクが大幅に低下する状態となる。 Width W <width T (Formula 2)
Note that when the W / T ratio is 1 or more, the torque indicated by the two-dot chain line in FIG. 3 sharply decreases because the balance of the magnetic resistance around the interpolar portion deteriorates. As long as the
このように、空隙9の幅Wと周り留め部10の幅Tの大小関係は、極間部まわりの磁気抵抗のバランスや、トルクの大きさに密接に関係しているため、空隙9と周り留め部10の位置と大きさを適切に設定することは、トルクリプルの低減とトルクの維持を両立するには非常に重要である。すなわち、トルクリプルの抑制とトルクの維持を両立させるには、式1、式2を合わせた、下記の式3を満たす範囲で、空隙9の幅Wを設定することが望ましい。
As described above, the magnitude relationship between the width W of the gap 9 and the width T of theperipheral fastening portion 10 is closely related to the balance of the magnetic resistance around the interpolar portion and the magnitude of the torque. It is very important to set the position and size of the fastening portion 10 appropriately in order to achieve both reduction of torque ripple and maintenance of torque. That is, in order to achieve both the suppression of torque ripple and the maintenance of torque, it is desirable to set the width W of the air gap 9 within a range satisfying the following expression 3 including the expressions 1 and 2.
As described above, the magnitude relationship between the width W of the gap 9 and the width T of the
0.25 × 幅T < 幅W < 幅T … (式3)
なお、図3に示す特性は、永久磁石5として平板状のものを用いた回転電機100の例であるが、トルクリプルを低減するための表面磁石型回転子には、上述した特許文献のようにD形永久磁石12や瓦形永久磁石13を用いる場合もある。 0.25 × width T <width W <width T (Formula 3)
The characteristic shown in FIG. 3 is an example of the rotatingelectrical machine 100 using a flat plate as the permanent magnet 5, but the surface magnet type rotor for reducing the torque ripple is similar to the above-mentioned patent document. A D-shaped permanent magnet 12 or a tile-shaped permanent magnet 13 may be used.
なお、図3に示す特性は、永久磁石5として平板状のものを用いた回転電機100の例であるが、トルクリプルを低減するための表面磁石型回転子には、上述した特許文献のようにD形永久磁石12や瓦形永久磁石13を用いる場合もある。 0.25 × width T <width W <width T (Formula 3)
The characteristic shown in FIG. 3 is an example of the rotating
図4は、(a)平板状の永久磁石5、(b)D形永久磁石12、(c)瓦形永久磁石13、夫々の磁束分布を示すものである。ここに示す磁束分布の違いは、そのまま夫々の磁石を回転子1に用いた場合のギャップ7の磁束密度分布の違いとなって現れる。例えば、D形永久磁石12や瓦形永久磁石13を利用する場合、D形あるいは瓦形の磁石形状がそのまま磁束密度分布に現れ、磁石の中心の磁束密度が最も高くなる。一般的に、トルクリプルはギャップ7の磁束密度分布を正弦波に近づけることで低減できるため、D形永久磁石12や瓦形永久磁石13を利用できれば、磁石形状そのものでトルクリプルを簡単に低減できる。言い換えれば、磁石形状と寸法を適切に設定することでもトルクリプルを抑制できるとも言える。
FIG. 4 shows magnetic flux distributions of (a) the flat permanent magnet 5, (b) the D-shaped permanent magnet 12, and (c) the roof-shaped permanent magnet 13. The difference in magnetic flux distribution shown here appears as a difference in magnetic flux density distribution in the gap 7 when each magnet is used as the rotor 1 as it is. For example, when the D-shaped permanent magnet 12 or the tile-shaped permanent magnet 13 is used, the D-shaped or roof-shaped magnet shape appears in the magnetic flux density distribution as it is, and the magnetic flux density at the center of the magnet becomes the highest. Generally, torque ripple can be reduced by making the magnetic flux density distribution of the gap 7 close to a sine wave. Therefore, if the D-shaped permanent magnet 12 or the roof-shaped permanent magnet 13 can be used, the torque ripple can be easily reduced by the magnet shape itself. In other words, it can be said that torque ripple can also be suppressed by appropriately setting the magnet shape and dimensions.
一方、平板状の永久磁石5を利用する場合は、図4(a)に示した通り、磁石の中心から端部までの磁束密度分布は一様であるため、D形や瓦形の磁石を用いる場合とは異なり、磁石形状を利用するだけでは、磁石の中心の磁束密度を高めることができず、ギャップ7の磁束密度分布を正弦波に近づけることはできない。
On the other hand, when using the flat permanent magnet 5, the magnetic flux density distribution from the center to the end of the magnet is uniform as shown in FIG. Unlike the case where it is used, the magnetic flux density at the center of the magnet cannot be increased only by using the magnet shape, and the magnetic flux density distribution of the gap 7 cannot be approximated to a sine wave.
しかしながら、本実施例では、図2に示したように、永久磁石5の両端部と対向する位置に適切な大きさの一対の空隙9を設けることで、ギャップ7の磁束密度を正弦波状に近づけることができ、図3に示したように、トルクリプルを低減できる。すなわち、本実施例の構成によれば、平板状の永久磁石5を利用する場合であっても、D形永久磁石12や瓦形永久磁石13を利用した時と同様に、トルクリプルの低減効果を得ることができる。
However, in this embodiment, as shown in FIG. 2, by providing a pair of gaps 9 having appropriate sizes at positions facing both ends of the permanent magnet 5, the magnetic flux density of the gap 7 is made close to a sine wave shape. As shown in FIG. 3, torque ripple can be reduced. That is, according to the configuration of the present embodiment, even when the plate-like permanent magnet 5 is used, the torque ripple reduction effect can be obtained in the same manner as when the D-shaped permanent magnet 12 or the tile-shaped permanent magnet 13 is used. Obtainable.
ここで、D形永久磁石12や瓦形永久磁石13は平板磁石よりも高価であることに加え、それらを装着する回転子鉄心3は平板磁石を装着するものに比べ複雑な表面形状とする必要がある。この結果、D形永久磁石12や瓦形永久磁石13を利用する場合は、平板磁石を利用する場合に比べ、回転電機100の組み立てに必要な工数やコストも増加することになる。
Here, in addition to the D-type permanent magnet 12 and the tile-shaped permanent magnet 13 being more expensive than the flat plate magnet, the rotor core 3 on which the D-type permanent magnet 12 and the roof tile permanent magnet 13 are mounted needs to have a more complicated surface shape than that on which the flat plate magnet is mounted. There is. As a result, when the D-shaped permanent magnet 12 and the tile-shaped permanent magnet 13 are used, man-hours and costs required for assembling the rotating electrical machine 100 are increased as compared with the case where a flat magnet is used.
一方、安価な平板状の永久磁石5を利用する際に、上述の式3を満たす空隙9と周り留め部10を設ければ、製造コストを抑制しつつ、D形永久磁石12や瓦形永久磁石13を用いたと同様にトルクリプルを低減した回転電機100を安価に提供することができる。
On the other hand, when the cheap flat plate-like permanent magnet 5 is used, if the gap 9 satisfying the above-mentioned formula 3 and the surrounding fastening portion 10 are provided, the D-type permanent magnet 12 and the roof-shaped permanent magnet are suppressed while suppressing the manufacturing cost. As with the magnet 13, the rotating electrical machine 100 with reduced torque ripple can be provided at low cost.
また、図1に例示する56極の回転子1のように、多極の表面磁石型回転子においては、平板状の永久磁石5を適用しやすい。例えば、4極、6極等の少極数の回転子に平板磁石を適用すると、回転子の断面形状は四角形や六角形になるため回転したときに磁束密度分布の緩急が強くなりトルクリプルが増加するという問題が生じるため、D形永久磁石12や瓦形永久磁石13を適用することでトルクリプルを抑制するのが一般的である。一方、回転子の極数が十分に多い場合は、平板磁石を適用しても回転子外径が略円形状になるため、多極の回転子と平板磁石の組合せはトルクリプル抑制の効果面からは相性が良いものと言える。
Further, a flat permanent magnet 5 can be easily applied to a multi-pole surface magnet type rotor, such as the 56-pole rotor 1 illustrated in FIG. For example, if a flat magnet is applied to a rotor with a small number of poles, such as 4 poles and 6 poles, the cross-sectional shape of the rotor will be square or hexagonal, so the magnetic flux density distribution will become more steep and torque ripple will increase when rotating. Therefore, the torque ripple is generally suppressed by applying the D-shaped permanent magnet 12 or the tile-shaped permanent magnet 13. On the other hand, if the number of poles of the rotor is sufficiently large, the rotor outer diameter will be substantially circular even if a flat magnet is applied, so the combination of a multipole rotor and a flat magnet is effective in reducing torque ripple. Can be said to be compatible.
さらに、本実施例のように空隙9を形成する開始位置を周り留め部10の周方向端面にすることで、永久磁石5の角部の逃げにもなる。通常、回転子鉄心3を電磁鋼板のプレス加工や鋳物により形成する場合、角部に曲線部を設ける必要がある。本実施例のように空隙9を設ければ、トルクリプルを低減しつつ、永久磁石5と回転子鉄心3が干渉しないための無駄なクリアランスを設けずに永久磁石5を周方向で固定することができる。よって、回転子鉄心3を電磁鋼板だけでなく、鋳物により成形しても良い。回転子鉄心3を鋳物にすることで、電磁鋼板にくらべ組立て工数をも抑えられるため、更なるコスト低減効果が期待できる。
Furthermore, the corners of the permanent magnet 5 can be escaped by setting the start position for forming the air gap 9 to be the circumferential end face of the peripheral fastening portion 10 as in this embodiment. Usually, when the rotor core 3 is formed by press working or casting of an electromagnetic steel plate, it is necessary to provide curved portions at the corners. If the air gap 9 is provided as in the present embodiment, the permanent magnet 5 can be fixed in the circumferential direction without providing a useless clearance for reducing interference between the permanent magnet 5 and the rotor core 3 while reducing torque ripple. it can. Therefore, the rotor core 3 may be formed not only by the electromagnetic steel sheet but also by casting. By making the rotor core 3 into a casting, the number of assembling steps can be reduced as compared with the electromagnetic steel sheet, so that further cost reduction effect can be expected.
次に、図5A、図5Bを用いて、本実施例の変形例を説明する。これらの変形例は、図1に例示した回転電機100の回転子1に冷却用のアキシャルダクト14を付加したものである。図5Aでは、幅を狭めた回転子鉄心3とシャフト8を放射状に配置したバー15で連結することで、回転子鉄心3とシャフト8の間に、冷却風を流すためのアキシャルダクト14を形成した。この構成により、回転子鉄心3の回転子強度を確保しつつ、軽量化することができる。また、図5Bでは、回転子鉄心3に直接、複数個のアキシャルダクト14を設けている。この構成により、冷却したい部分に効果的に冷却風を流すことができる。なお、アキシャルダクト14を設ける径方向位置は永久磁石5や空隙9に近接しすぎると、上記で示したトルクリプルの低減効果が得られなくなるので、アキシャルダクト14を設ける位置を永久磁石5の最外径を基準としたときの70%以内に留めることが好ましい。
Next, a modification of the present embodiment will be described with reference to FIGS. 5A and 5B. In these modified examples, a cooling axial duct 14 is added to the rotor 1 of the rotating electrical machine 100 illustrated in FIG. In FIG. 5A, an axial duct 14 for flowing cooling air is formed between the rotor core 3 and the shaft 8 by connecting the rotor core 3 with a narrow width and the shaft 8 with bars 15 arranged radially. did. With this configuration, it is possible to reduce the weight while securing the rotor strength of the rotor core 3. In FIG. 5B, a plurality of axial ducts 14 are provided directly on the rotor core 3. With this configuration, it is possible to effectively flow cooling air to a portion to be cooled. In addition, if the radial position where the axial duct 14 is provided is too close to the permanent magnet 5 or the gap 9, the torque ripple reduction effect described above cannot be obtained, so the position where the axial duct 14 is provided is the outermost position of the permanent magnet 5. It is preferable to keep it within 70% of the diameter as a reference.
次に、図6を用いて、本発明の実施例2の回転電機100を説明する。なお、実施例1との共通点は重複説明を省略する。
Next, the rotating electric machine 100 according to the second embodiment of the present invention will be described with reference to FIG. In addition, duplication description is abbreviate | omitted in common with Example 1. FIG.
図6は、実施例2の回転電機における回転子1の2極分の断面図である。本実施例では、図6に示すように、空孔16を永久磁石5の内径側に設けている。実施例1との違いは空孔16と永久磁石5との間に、回転子鉄心3を介している点である。
FIG. 6 is a cross-sectional view of two poles of the rotor 1 in the rotating electrical machine of the second embodiment. In the present embodiment, as shown in FIG. 6, the air holes 16 are provided on the inner diameter side of the permanent magnet 5. The difference from the first embodiment is that the rotor core 3 is interposed between the hole 16 and the permanent magnet 5.
このように、永久磁石5から、径方向内側に離した位置に空孔16を設けても、実施例1と同様の効果を得られる。回転子鉄心3を電磁鋼板にて構成する場合、プレス加工にて周り留め部10を形成する。この時、周り留め部10の周方向幅が極端に短い場合、プレス加工による影響でねじれや歪みが生じるおそれがあり、また、実施例1の空隙9を内径方向側に伸ばしていくと、周り留め部10の付け根は細くなるため、周り留め部10の強度も低下するおそれがある。
Thus, even if the hole 16 is provided at a position separated from the permanent magnet 5 inward in the radial direction, the same effect as in the first embodiment can be obtained. When the rotor core 3 is composed of an electromagnetic steel plate, the peripheral fastening portion 10 is formed by press working. At this time, when the circumferential width of the circumferentially fastened portion 10 is extremely short, there is a possibility that twisting or distortion may occur due to the influence of the press working, and when the gap 9 of Example 1 is extended toward the inner diameter direction, Since the base of the fastening portion 10 is thin, the strength of the surrounding fastening portion 10 may also be reduced.
これに対し、本実施例のように、空孔16と永久磁石5との間に、回転子鉄心3を介すことで、実施例1と同等の効果を実現できることに加え、周り留め部10の加工精度と強度を確保することができるという効果も得ることができる。なお、本実施例では永久磁石5ごとに一対の空孔16が設けられている例を示したが、少なくとも一つの永久磁石に一対の空孔16が設けられていればよく、各永久磁石ごとにこれらが設けられていなくてもよい。なお、永久磁石ごとに一対の空孔16が設けられている方が、トルクリプル低減効果をより高めることが可能である。
On the other hand, as in the present embodiment, the rotor core 3 is interposed between the hole 16 and the permanent magnet 5, so that the same effect as that of the first embodiment can be realized, and the surrounding fastening portion 10 It is also possible to obtain the effect of ensuring the machining accuracy and strength. In the present embodiment, an example in which a pair of holes 16 is provided for each permanent magnet 5 is shown, but it is sufficient that a pair of holes 16 is provided in at least one permanent magnet. These may not be provided. In addition, the direction in which a pair of holes 16 are provided for each permanent magnet can further enhance the torque ripple reduction effect.
次に、図7、図8を用いて、本発明の実施例3の回転電機100を説明する。なお、上述の実施例との共通点は重複説明を省略する。
Next, the rotating electrical machine 100 according to the third embodiment of the present invention will be described with reference to FIGS. In addition, duplication description is abbreviate | omitted in common with the above-mentioned Example.
図7は、実施例3の回転電機100における回転子1の磁極間の拡大図であり、永久磁石5の厚さMhと周り留め部10の突出量Rhに相当する箇所を示している。
FIG. 7 is an enlarged view between the magnetic poles of the rotor 1 in the rotating electrical machine 100 according to the third embodiment, and shows a portion corresponding to the thickness Mh of the permanent magnet 5 and the protrusion amount Rh of the retaining ring 10.
また、図8は、図7に示した突出量Rhと厚さMhの比(以下「Rh/Mh」と称する)と、Rh/Mhが1のときのトルクリプルを1とした規格化値との関係を示している。
この図から、Rh/Mhを小さくするとトルクリプルが低減する傾向を読み取ることができ、特に、Rh/Mhが0.5以下の領域では、トルクリプルが最小値となることが分かる。 Further, FIG. 8 shows the ratio between the protrusion amount Rh and the thickness Mh shown in FIG. 7 (hereinafter referred to as “Rh / Mh”) and the normalized value with the torque ripple being 1 when Rh / Mh is 1. Showing the relationship.
From this figure, it can be seen that when Rh / Mh is decreased, the torque ripple tends to decrease, and in particular, in the region where Rh / Mh is 0.5 or less, the torque ripple becomes the minimum value.
この図から、Rh/Mhを小さくするとトルクリプルが低減する傾向を読み取ることができ、特に、Rh/Mhが0.5以下の領域では、トルクリプルが最小値となることが分かる。 Further, FIG. 8 shows the ratio between the protrusion amount Rh and the thickness Mh shown in FIG. 7 (hereinafter referred to as “Rh / Mh”) and the normalized value with the torque ripple being 1 when Rh / Mh is 1. Showing the relationship.
From this figure, it can be seen that when Rh / Mh is decreased, the torque ripple tends to decrease, and in particular, in the region where Rh / Mh is 0.5 or less, the torque ripple becomes the minimum value.
ここで、永久磁石5の厚さMhが一定である場合、Rh/Mhを小さくすることと、周り留め部10の突出量Rhを小さくすることは等価であるので、図8は、周り留め部10の突出量Rhを小さくすればトルクリプルを抑制できることを示していると理解することができる。このような効果が得られるのは、周り留め部10の突出量が小さくなることで、永久磁石間の鉄の量が減るため、永久磁石5の漏れ磁束が低減し、トルクリプルも小さくなるからである。
Here, when the thickness Mh of the permanent magnet 5 is constant, reducing Rh / Mh is equivalent to reducing the protrusion amount Rh of the surrounding clasp portion 10, so FIG. It can be understood that the torque ripple can be suppressed by reducing the protrusion amount Rh of 10. Such an effect is obtained because the amount of iron between the permanent magnets is reduced by reducing the amount of protrusion of the retaining portion 10, thereby reducing the leakage flux of the permanent magnet 5 and reducing the torque ripple. is there.
以上で説明したように、周り留め部10の突出量Rhを、永久磁石5の厚さMhより小さくした本実施例の構成により、実施例1等の構成に比べても、トルクリプルを更に低減することができる。
As described above, the torque ripple can be further reduced by the configuration of the present embodiment in which the protrusion amount Rh of the peripheral fastening portion 10 is smaller than the thickness Mh of the permanent magnet 5 as compared with the configuration of the first embodiment. be able to.
次に、図9を用いて、本発明の実施例4の回転電機100を説明する。なお、上述の実施例との共通点は重複説明を省略する。
Next, the rotating electric machine 100 according to the fourth embodiment of the present invention will be described with reference to FIG. In addition, duplication description is abbreviate | omitted in common with the above-mentioned Example.
図9は、実施例4の回転電機100における回転子1の2極分の断面図である。ここに示すように、本実施例では回転子1の外径を、非磁性材料17で覆っている。この非磁性材料17は、ステンレス、アルミニウム、銅等の非磁性金属であっても良いし、プラスチック、炭素繊維等の非金属材料であっても良い。
FIG. 9 is a cross-sectional view of two poles of the rotor 1 in the rotating electrical machine 100 of the fourth embodiment. As shown here, in this embodiment, the outer diameter of the rotor 1 is covered with a nonmagnetic material 17. The nonmagnetic material 17 may be a nonmagnetic metal such as stainless steel, aluminum, or copper, or may be a nonmetallic material such as plastic or carbon fiber.
このように、回転子1の外径を非磁性材料17で覆うことで、実施例1等で述べた効果に加え、仮に永久磁石5が破損しても非磁性材料17で覆った内側に破片は留まるため、飛散も防止できる。飛散を防止できれば、ギャップ7に破片が挟まり、固定子2を損傷することを防止できる。また、非磁性材料17と回転子1の間にできた空間18を樹脂等で充填すると、永久磁石5を更に固定できて破損時の飛散を抑えられる。
In this way, by covering the outer diameter of the rotor 1 with the nonmagnetic material 17, in addition to the effects described in the first embodiment, even if the permanent magnet 5 is damaged, a fragment is formed on the inner side covered with the nonmagnetic material 17. Since it stays, scattering can be prevented. If scattering can be prevented, debris can be prevented from being caught in the gap 7 and damaging the stator 2. Further, if the space 18 formed between the nonmagnetic material 17 and the rotor 1 is filled with resin or the like, the permanent magnet 5 can be further fixed and scattering at the time of breakage can be suppressed.
次に、図10、図11を用いて、本発明の実施例5の回転電機100を説明する。なお、上述の実施例との共通点は重複説明を省略する。
Next, the rotating electrical machine 100 according to the fifth embodiment of the present invention will be described with reference to FIGS. Note that common explanation with the above-described embodiments is omitted.
図10は、実施例5の回転電機100における固定子2の2スロット分の断面図となる。ここに示すように、固定子2には周方向にスロット4cが形成され、スロット4cにコイル6が配置されており、更にコイル6の内径側にティース連結材としての楔19が取り付けられている。この楔19を設けることで、コイル6がギャップ7に脱落するのを防止できることに加え、トルクリプルを低減することもできる。
FIG. 10 is a cross-sectional view of two slots of the stator 2 in the rotating electrical machine 100 of the fifth embodiment. As shown here, a slot 4 c is formed in the circumferential direction of the stator 2, a coil 6 is disposed in the slot 4 c, and a wedge 19 as a teeth connecting member is attached to the inner diameter side of the coil 6. . By providing this wedge 19, in addition to preventing the coil 6 from dropping into the gap 7, it is possible to reduce torque ripple.
図11に、固定子鉄心4と楔19の夫々の磁気特性を示す。ここに示すように、本実施例の楔19は磁性材料ではあるが、固定子鉄心4よりも磁気特性が悪い材料である。このような磁気特性の悪い楔19を用いることでトルクリプルを低減できる理由は、固定子鉄心4と同等の磁気特性の楔19を用いる場合、スロット4cの間の漏れ磁束が多くなり、逆にトルクリプルが悪化するが、磁気特性の悪い楔19を用いることで、スロット4c間に適度に磁束を漏れさせ、トルクリプルを低減することができるからである。
FIG. 11 shows the magnetic characteristics of the stator core 4 and the wedge 19. As shown here, the wedge 19 of the present embodiment is a magnetic material, but is a material having a magnetic property worse than that of the stator core 4. The reason why the torque ripple can be reduced by using the wedge 19 having such a poor magnetic characteristic is that when the wedge 19 having the same magnetic characteristic as that of the stator core 4 is used, the leakage magnetic flux between the slots 4c increases and conversely the torque ripple. This is because, by using the wedge 19 having poor magnetic properties, the magnetic flux can be appropriately leaked between the slots 4c, and the torque ripple can be reduced.
次に、図12、図13を用いて、本発明の実施例6の回転電機100を説明する。なお、上述の実施例との共通点は重複説明を省略する。
Next, the rotating electric machine 100 according to the sixth embodiment of the present invention will be described with reference to FIGS. In addition, duplication description is abbreviate | omitted in common with the above-mentioned Example.
図12は、実施例6の回転電機100における回転子1、固定子2の軸方向端部断面図である。ここに示すように、本実施例では、回転子1の永久磁石5の軸方向長さLmagよりも、固定子鉄心4の軸方向長さLstを長くしている。
FIG. 12 is a sectional view in the axial direction of the rotor 1 and the stator 2 in the rotating electrical machine 100 of the sixth embodiment. As shown here, in this embodiment, the axial length Lst of the stator core 4 is made longer than the axial length Lmag of the permanent magnet 5 of the rotor 1.
図13は、長さLstと長さLmagの比Lst/Lmagと、トルクリプルの規格化値の関係を示したものである。なお、同図の縦軸は、Lst/Lmagが1の時のトルクリプルを1に規格化したものである。同図から、Lst/Lmagを大きくすると、トルクリプルを低減できることが分かる。これは、永久磁石5の長さLmagよりも固定子鉄心4の軸方向の長さLstが長くなることで、固定子鉄心4の軸方向端部の漏れ磁束が低減するため、トルクリプルも低減するからである。
FIG. 13 shows the relationship between the ratio Lst / Lmag between the length Lst and the length Lmag and the normalized value of the torque ripple. In addition, the vertical axis | shaft of the figure normalized the torque ripple when Lst / Lmag is 1 to 1. From this figure, it can be seen that torque ripple can be reduced by increasing Lst / Lmag. This is because the length Lst of the stator core 4 in the axial direction is longer than the length Lmag of the permanent magnet 5, thereby reducing the leakage magnetic flux at the axial end of the stator core 4 and thus reducing the torque ripple. Because.
次に、図14A、図14Bを用いて、本発明の実施例7のエレベーター巻上げシステムを説明する。なお、上述の実施例との共通点は重複説明を省略する。
Next, an elevator hoisting system according to a seventh embodiment of the present invention will be described with reference to FIGS. 14A and 14B. In addition, duplication description is abbreviate | omitted in common with the above-mentioned Example.
図14Aは、本実施例のエレベーター巻上げ機システムの一例であり、実施例1から実施例6の何れかの回転電機100と、エレベーターの主索を巻き掛けるシーブ20を、カップリング21を介して直結して駆動するものである。図14Aでは、回転電機100として、シャフト8の両端を軸受22で支持する構成をとっている。
FIG. 14A is an example of an elevator hoisting machine system according to the present embodiment. The rotating electrical machine 100 according to any of Embodiments 1 to 6 and the sheave 20 around which the main rope of the elevator is wound are connected via a coupling 21. It is directly connected to drive. In FIG. 14A, the rotating electrical machine 100 is configured to support both ends of the shaft 8 with bearings 22.
一方、図14Bも、本実施例のエレベーター巻上げ機システムの一例であり、実施例1から実施例6の何れかの回転電機100と、シーブ20を、カップリング21を介して直結して駆動するものである。図14Aでは、シャフト8の両端に軸受22を設置したが、図14Bでは、カップリング21側の軸受22を省略している。つまり、回転電機100のシャフト8をシーブ20で支持する構造となる。このようにすることで、エレベーター用の巻上げ機システムの軸方向の長さを縮小できる。また、軸受22を無くすことができるため、回転電機100の部品数を低減する効果も得られる。
On the other hand, FIG. 14B is also an example of the elevator hoisting machine system of the present embodiment, and the rotary electric machine 100 of any of the first to sixth embodiments and the sheave 20 are directly connected via the coupling 21 and driven. Is. In FIG. 14A, bearings 22 are installed at both ends of the shaft 8, but in FIG. 14B, the bearings 22 on the coupling 21 side are omitted. That is, the shaft 8 of the rotating electrical machine 100 is supported by the sheave 20. By doing in this way, the axial length of the elevator hoist system can be reduced. Moreover, since the bearing 22 can be eliminated, an effect of reducing the number of parts of the rotating electrical machine 100 can be obtained.
1 回転子、 2 固定子、 3 回転子鉄心、 4 固定子鉄心、 4a コアバック、 4b ティース、 4c スロット、 5 永久磁石、 6 コイル、 7 ギャップ、 8 シャフト、 9 空隙、 10 周り留め部、 11 d軸、 12 D形永久磁石、 13 瓦形永久磁石、 14 アキシャルダクト、 15 バー、 16 空孔、 17 非磁性材料、 18 空間、 19 楔、 20 シーブ、 21 カップリング、 22 軸受、 100 回転電機、
1 Rotor, 2 Stator, 3 Rotor Core, 4 Stator Core, 4a Core Back, 4b Teeth, 4c Slot, 5 Permanent Magnet, 6 Coil, 7 Gap, 8 Shaft, 9 Gap, 10 Around Retainer, 11 d-axis, 12 D-shaped permanent magnet, 13 tile-shaped permanent magnet, 14 axial duct, 15 bar, 16 hole, 17 non-magnetic material, 18 space, 19 wedge, 20 sheave, 21 coupling, 22 bearing, 100 rotating electric machine ,
Claims (12)
- 内側に回転子を設け外側に固定子を設けた回転電機であって、
前記回転子は、
回転軸となるシャフトと、
該シャフトの外周に固定した略円管状の回転子鉄心と、
該回転子鉄心の外周面に周方向に並べて配置した複数の永久磁石と、
を有するものであり、
前記回転子鉄心には、
該永久磁石の両端面を挟持する位置に、外側に向けて突出した一対の凸部と、
該永久磁石の両端部と対向する位置に、内側に向けて切り欠いた一対の凹部または前記回転子鉄心の内部に設けた一対の空孔と、
を有しており、
前記凸部の幅Tと前記凹部または前記空孔の幅Wは、次式を満たすことを特徴とする回転電機。
幅W < 幅T A rotating electrical machine having a rotor on the inside and a stator on the outside,
The rotor is
A shaft serving as a rotation axis;
A substantially tubular rotor core fixed to the outer periphery of the shaft;
A plurality of permanent magnets arranged in the circumferential direction on the outer peripheral surface of the rotor core;
Having
In the rotor core,
A pair of convex portions projecting outward at positions sandwiching both end faces of the permanent magnet;
A pair of recesses notched inward or a pair of holes provided inside the rotor core at positions facing both ends of the permanent magnet;
Have
The rotating electric machine characterized in that a width T of the convex portion and a width W of the concave portion or the hole satisfy the following expression.
Width W <width T - 請求項1に記載の回転電機において、
前記凸部の幅Tと前記凹部または前記空孔の幅Wは、次式を満たすことを特徴とする回転電機。
0.25 × 幅T < 幅W < 幅T In the rotating electrical machine according to claim 1,
The rotating electric machine characterized in that a width T of the convex portion and a width W of the concave portion or the hole satisfy the following expression.
0.25 × width T <width W <width T - 請求項1または請求項2に記載の回転電機において、
前記凸部の周方向端面は、前記回転子の回転中心と前記永久磁石の磁極中心を結んだd軸と平行であることを特徴とする回転電機。 In the rotating electrical machine according to claim 1 or 2,
The rotating electric machine according to claim 1, wherein a circumferential end surface of the convex portion is parallel to a d-axis connecting a rotation center of the rotor and a magnetic pole center of the permanent magnet. - 請求項1から請求項3の何れか一項に記載の回転電機において、
前記凸部の外径方向の突出量Rhと前記永久磁石の厚さMhは、次式を満たすことを特徴とする回転電機。
Rh ≦ 0.5 × Mh In the rotating electrical machine according to any one of claims 1 to 3,
The rotating electric machine characterized in that the protrusion amount Rh of the convex portion in the outer diameter direction and the thickness Mh of the permanent magnet satisfy the following expression.
Rh ≦ 0.5 × Mh - 請求項1から請求項4の何れか一項に記載の回転電機において、
前記永久磁石の外径を非磁性材料で覆ったことを特徴とする回転電機。 In the rotating electrical machine according to any one of claims 1 to 4,
A rotating electrical machine wherein the outer diameter of the permanent magnet is covered with a nonmagnetic material. - 請求項1から請求項5の何れか一項に記載の回転電機において、
前記固定子は、
円環状のコアバックと、
該コアバックの内周側に周方向に並べて設けた複数のティースと、
該ティースに電線を巻き回して形成したコイルと、
前記コイルより内周側に設けられ、隣接するティース同士を周方向に接続する磁性材料のティース連結材と、
を有することを特徴とする回転電機。 In the rotating electrical machine according to any one of claims 1 to 5,
The stator is
An annular core back,
A plurality of teeth arranged in the circumferential direction on the inner peripheral side of the core back;
A coil formed by winding an electric wire around the teeth;
Teeth coupling material of magnetic material provided on the inner circumferential side from the coil and connecting adjacent teeth in the circumferential direction;
A rotating electric machine comprising: - 請求項1から請求項6の何れか一項に記載の回転電機において、
前記回転子鉄心を鋳物により成型したことを特徴とする回転電機。 In the rotating electrical machine according to any one of claims 1 to 6,
A rotating electrical machine, wherein the rotor core is molded by casting. - 請求項1から請求項7の何れか一項に記載の回転電機において、
前記永久磁石の軸方向長さより、前記固定子の固定子鉄心の軸方向長さを長くしたことを特徴とする回転電機。 In the rotating electrical machine according to any one of claims 1 to 7,
A rotating electrical machine characterized in that an axial length of a stator core of the stator is made longer than an axial length of the permanent magnet. - 請求項1から請求項8の何れか一項に記載の回転電機において、
前記永久磁石は、平板状のものであることを特徴とする回転電機。 In the rotating electrical machine according to any one of claims 1 to 8,
The rotating electric machine according to claim 1, wherein the permanent magnet has a flat plate shape. - 請求項1から請求項9の何れか一項に記載の回転電機において、
前記回転子の内部に、冷却風を通すダクトを設けたことを特徴とする回転電機。 In the rotating electrical machine according to any one of claims 1 to 9,
A rotating electric machine characterized in that a duct for passing cooling air is provided inside the rotor. - 請求項1から請求項10の何れか一項に記載の回転電機において、
前記一対の凸部と、前記一対の凹部または前記一対の空孔とは、前記永久磁石ごとに設けられていることを特徴とする回転電機。 In the rotary electric machine according to any one of claims 1 to 10,
The rotating electric machine, wherein the pair of convex portions and the pair of concave portions or the pair of holes are provided for each of the permanent magnets. - エレベーターの主索を巻き掛けるシーブを備える巻上げ機と、前記シーブに接続した回転電機と、を備え、
前記回転電機は、請求項1から11の何れか一項に記載の回転電機であることを特徴とするエレベーター巻上げシステム。 A hoisting machine having a sheave around which the main rope of the elevator is wound, and a rotating electric machine connected to the sheave,
The elevator hoisting system according to any one of claims 1 to 11, wherein the rotating electric machine is the rotating electric machine according to any one of claims 1 to 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018078073A JP2019187164A (en) | 2018-04-16 | 2018-04-16 | Dynamo-electric machine, and elevator hoisting system |
JP2018-078073 | 2018-04-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019202790A1 true WO2019202790A1 (en) | 2019-10-24 |
Family
ID=68240212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/001064 WO2019202790A1 (en) | 2018-04-16 | 2019-01-16 | Dynamo-electric machine, and elevator hoist system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019187164A (en) |
WO (1) | WO2019202790A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111697725A (en) * | 2020-06-24 | 2020-09-22 | 珠海格力节能环保制冷技术研究中心有限公司 | Rotor of motor and motor |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04165932A (en) * | 1990-10-29 | 1992-06-11 | Toshiba Corp | Permanent magnet type rotor |
JPH0851751A (en) * | 1994-08-10 | 1996-02-20 | Toshiba Corp | Permanent magnet electric rotating machine |
JPH11234931A (en) * | 1998-02-19 | 1999-08-27 | Hitachi Ltd | Permanent magnet-incorporated rotary electric machine |
JP2001008392A (en) * | 1999-06-18 | 2001-01-12 | Matsushita Electric Ind Co Ltd | Permanent magnet rotor |
JP2011015458A (en) * | 2009-06-30 | 2011-01-20 | Hitachi Ltd | Permanent magnet type rotary electric machine, and elevator device using the same |
JP2012039775A (en) * | 2010-08-09 | 2012-02-23 | Hitachi Ltd | Permanent magnet type rotary electric machine |
JP2015100202A (en) * | 2013-11-19 | 2015-05-28 | 日本電産サンキョー株式会社 | Rotor, motor and method for manufacturing rotor |
US20180097413A1 (en) * | 2016-09-30 | 2018-04-05 | Johnson Electric S.A. | Motor and rotor thereof |
-
2018
- 2018-04-16 JP JP2018078073A patent/JP2019187164A/en active Pending
-
2019
- 2019-01-16 WO PCT/JP2019/001064 patent/WO2019202790A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04165932A (en) * | 1990-10-29 | 1992-06-11 | Toshiba Corp | Permanent magnet type rotor |
JPH0851751A (en) * | 1994-08-10 | 1996-02-20 | Toshiba Corp | Permanent magnet electric rotating machine |
JPH11234931A (en) * | 1998-02-19 | 1999-08-27 | Hitachi Ltd | Permanent magnet-incorporated rotary electric machine |
JP2001008392A (en) * | 1999-06-18 | 2001-01-12 | Matsushita Electric Ind Co Ltd | Permanent magnet rotor |
JP2011015458A (en) * | 2009-06-30 | 2011-01-20 | Hitachi Ltd | Permanent magnet type rotary electric machine, and elevator device using the same |
JP2012039775A (en) * | 2010-08-09 | 2012-02-23 | Hitachi Ltd | Permanent magnet type rotary electric machine |
JP2015100202A (en) * | 2013-11-19 | 2015-05-28 | 日本電産サンキョー株式会社 | Rotor, motor and method for manufacturing rotor |
US20180097413A1 (en) * | 2016-09-30 | 2018-04-05 | Johnson Electric S.A. | Motor and rotor thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111697725A (en) * | 2020-06-24 | 2020-09-22 | 珠海格力节能环保制冷技术研究中心有限公司 | Rotor of motor and motor |
CN111697725B (en) * | 2020-06-24 | 2021-11-26 | 珠海格力节能环保制冷技术研究中心有限公司 | Rotor of motor and motor |
Also Published As
Publication number | Publication date |
---|---|
JP2019187164A (en) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5260563B2 (en) | Permanent magnet generator or motor | |
JP5059614B2 (en) | Structure of magnet and web in permanent magnet embedded rotor | |
US8400040B2 (en) | Permanent magnet type rotary electric machine | |
US10447126B2 (en) | Induction motor including rotor teeth having an inclined surface | |
US20140028146A1 (en) | Induction Motor and Railway Vehicle Using Induction Motor | |
CN110663158B (en) | Dual magnetic phase material ring for AC motor | |
CN108321951B (en) | Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric automobile | |
JP6630690B2 (en) | Rotating electric machine rotor | |
WO2019196501A1 (en) | Permanent magnet synchronous gearless traction machine | |
WO2019202790A1 (en) | Dynamo-electric machine, and elevator hoist system | |
JP2003333772A (en) | Stator core having laminate made of iron-aluminum alloy and method for using the same | |
JP5621608B2 (en) | Outer rotor type motor | |
CN107742931A (en) | Motor stator core | |
JP6929603B2 (en) | Rotating machine | |
JP2014180096A (en) | Permanent magnet dynamo-electric machine and elevator drive hoist | |
CN112655141B (en) | Cage rotor and rotating electrical machine | |
CN111183566A (en) | Rotating electrical machine and elevator hoist system | |
JP7217205B2 (en) | Outer-rotating surface magnet rotating electric machine | |
JP6752379B1 (en) | Rotor of rotary electric machine and rotary electric machine | |
CN110120730B (en) | Outer rotor permanent magnet rotating motor | |
WO2024084542A1 (en) | Rotary electric machine | |
CN220544758U (en) | Rotor punching sheet, rotor, motor and vehicle | |
JP6070329B2 (en) | Stator core for rotating electrical machines | |
WO2022230265A1 (en) | Rotor and motor | |
CN220628980U (en) | Permanent magnet sinusoidal segmented high-performance high-speed surface-mounted permanent magnet synchronous motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19789316 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19789316 Country of ref document: EP Kind code of ref document: A1 |