WO2019202762A1 - Prepreg and fiber-reinforced composite material using same - Google Patents

Prepreg and fiber-reinforced composite material using same Download PDF

Info

Publication number
WO2019202762A1
WO2019202762A1 PCT/JP2018/041317 JP2018041317W WO2019202762A1 WO 2019202762 A1 WO2019202762 A1 WO 2019202762A1 JP 2018041317 W JP2018041317 W JP 2018041317W WO 2019202762 A1 WO2019202762 A1 WO 2019202762A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
epoxy resin
resin
prepreg
composite material
Prior art date
Application number
PCT/JP2018/041317
Other languages
French (fr)
Japanese (ja)
Inventor
周平 吉田
隆 西島
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Publication of WO2019202762A1 publication Critical patent/WO2019202762A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present invention relates to a prepreg and a fiber reinforced composite material.
  • Fiber reinforced composite materials formed by laminating prepregs impregnated with matrix resin on unidirectional alignment sheets such as carbon fibers and woven fabrics are widely used in sports and leisure fields such as golf shafts, fishing rods, and racket frames. Yes. In recent years, its use has expanded in the industrial field such as automobiles and the aerospace field.
  • Patent Document 2 discloses that a thermoplastic resin is added to a prepreg for the purpose of controlling resin flow during molding and imparting toughness to a cured resin.
  • a phenoxy resin is listed as a thermoplastic resin in addition to polyvinyl formal.
  • Patent Document 3 describes that when a fiber reinforced composite material is used for a tubular molded body such as a fishing rod or a golf shaft, polyvinyl formal or phenoxy resin is suitably used as a thermoplastic resin suitable for improving properties such as crushing strength. Yes.
  • Carbon fiber composite material is required to be improved in strength and elastic modulus because it is used in the form of a thin plate as a member of sporting goods, industrial goods, etc. for reasons such as weight reduction and reduction in production cost.
  • thermoplastic resin added to a CFRP matrix resin has both high strength and high elasticity in tensile, compression and bending properties.
  • Polyvinyl formal one of the thermoplastic resins added to the CFRP matrix resin, has the drawback of increasing the strength of CFRP with respect to tensile properties while lowering the elastic modulus.
  • An object of the present invention is to provide a prepreg having both high elastic modulus and high strength with respect to tensile, compression, and bending properties of a fiber reinforced composite material and imparting impact resistance, and a fiber reinforced composite material using the prepreg. It is.
  • polyvinyl formal added to a matrix resin (epoxy resin) of a carbon fiber composite material has a drawback that the elastic modulus is lowered even if the strength of the composite material is increased in terms of tensile and bending properties. Furthermore, in addition to these characteristics, it did not have impact resistance.
  • the configuration of the present invention is as follows. [1] The following [A], [B], [C] and an amine curing agent [D] are contained as main components, and each component of [A], [B], [C] is 1 to 20 parts by weight. Prepregs obtained by impregnating reinforcing fibers with a resin composition of 45 to 80 parts by weight and 20 to 55 parts by weight; [A] Carboxyl group-containing polyvinyl formal resin [B] Epoxy resin solid at 25 ° C. [C] Epoxy resin liquid at 25 ° C. [2] The prepreg of [1], wherein the carboxyl group-containing polyvinyl formal resin [A] includes structural units a, b, c, and d.
  • R 1 is independently hydrogen or alkyl having 1 to 5 carbons.
  • R 1 is independently hydrogen or alkyl having 1 to 5 carbons.
  • the reinforcing fiber is a carbon fiber, the tensile strength of the carbon fiber is 4.4 to 6.5 GPa, the tensile elongation is 1.7 to 2.3%, and the tensile modulus is 230 to 400 GPa.
  • the amine curing agent [D] is in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the total epoxy resin component including the solid epoxy resin [B] and the liquid epoxy resin [C].
  • the impregnation amount of the reinforcing fiber in the prepreg is 40 to 90% as a fiber volume content (Vf) when the volume of the prepreg including the reinforcing fiber is 100 vol%.
  • Vf fiber volume content
  • Fiber reinforced composites made by laminating prepregs with carboxyl group-containing polyvinyl formal added to other thermoplastic resins or conventional fiber reinforced composite materials containing polyvinyl formal in tensile, compression and bending properties. It showed high elastic modulus, high strength, and impact resistance.
  • the change of the viscosity by the temperature of the resin composition prepared by the Example and the comparative example is shown.
  • the electron micrograph of the bending test piece fracture surface evaluated in the Example and the comparative example is shown.
  • the electron micrograph which shows the pulling-out of the carbon fiber in the tensile fracture surface of the bending test piece fracture surface evaluated by the Example and the comparative example is shown.
  • the electron micrograph which observed the adhesion state of the resin between carbon fiber-resin in the 90 degree tensile test fracture surface evaluated by the Example and the comparative example is shown.
  • the prepreg according to the present invention contains the following [A], [B], [C] and an amine curing agent [D] as main components, and each component of [A], [B], [C] is 1 each.
  • the reinforcing fiber is impregnated with a resin composition of ⁇ 20 parts by weight, 45 to 80 parts by weight, and 20 to 55 parts by weight.
  • the resin composition contains a carboxyl group-containing polyvinyl formal resin as component [A], a solid epoxy resin as component [B], and a liquid epoxy resin as component [C].
  • Component [C] may contain a reactive diluent.
  • the content of the carboxyl group-containing polyvinyl formal resin of component [A] is 1 to 20 parts by weight, preferably 3 to 10 parts by weight. More preferably, it is 4 to 7 parts by weight.
  • the content of the carboxyl group-containing polyvinyl formal resin of component [A] is 1 part by weight or more, not only is it dissolved in the matrix resin constituting the prepreg, but also when the prepreg is laminated and heat-cured to form a fiber-reinforced composite material
  • the carboxyl group of the carboxyl group-containing polyvinyl formal is cross-linked with the epoxy resin on the one hand, and the other is interacted with oxygen-containing functional groups such as hydroxyl groups and carboxyl groups on the carbon fiber surface, thereby toughening the composite material.
  • the resin can be sufficiently applied to the release paper, and the reinforced fiber can be well impregnated with the resin when preparing the prepreg. .
  • the content of the solid epoxy resin of component [B] is 45 to 80 parts by weight, preferably 50 to 60 parts by weight. If the content of the solid epoxy resin of component [B] is 45 parts by weight or more, the tackiness of the prepreg will be good, and if it is 80 parts by weight or less, the resin will be poorly applied to the release paper due to viscosity increase or the prepreg It is possible to prevent poor impregnation of the reinforcing fibers.
  • the content of the liquid epoxy resin of the component [C] is 20 to 55 parts by weight, preferably 40 to 50 parts by weight. If the content of the liquid epoxy resin of component [C] is 55 parts by weight or less, the compatibility with the carboxyl group-containing polyvinyl formal and the tackiness of the prepreg will be good, and the impact resistance by improving the crosslink density of the liquid epoxy resin There will be no decline. If it is 20 parts by weight or more, it is possible to prevent poor coating of the resin to the release paper due to viscosity increase and poor impregnation of the reinforcing fibers during prepreg.
  • the carboxyl group-containing polyvinyl formal resin of component [A] preferably has structural units a, b, c, and d.
  • Carboxyl group-containing polyvinyl formal resin is obtained by introducing a carboxyl group as a crosslinkable group into polyvinyl formal resin, and using this resin composition improves the toughness, transparency and adhesiveness of the cured product. it can.
  • the introduced carboxyl group becomes a cross-linking point, and the carboxyl group and the epoxy resin are cross-linked directly or via a curing agent, and physical entanglement of molecular chains of both dense polymers based on the cross-linking point.
  • a flexible polyvinyl formal resin is incorporated into a network of epoxy resins that bind in a network.
  • R 1 is independently hydrogen or alkyl having 1 to 5 carbons.
  • the total content of the structural units a to d in the carboxyl group-containing polyvinyl formal resin is preferably 80% by weight to 100% by weight with respect to all the structural units.
  • Examples of other structural units that can be included in the carboxyl group-containing polyvinyl formal resin include intermolecular formal units and hemi-formal units.
  • the content of other structural multi-units is preferably less than 20% by weight.
  • the structural units a to d may be regularly arranged (block copolymer, alternating copolymer, etc.) or randomly arranged (random copolymer). The arrangement is preferably random.
  • the structural unit a is a structural unit having a formal site, and can be formed by a reaction between a continuous polyvinyl alcohol chain unit and an aldehyde (HCHO).
  • the structural unit b is a structural unit containing a vinyl acetate chain.
  • the structural unit c is a structural unit containing a vinyl alcohol chain.
  • the structural unit d is a chain having a carboxyl group
  • R 1 in the structural unit d is hydrogen or alkyl having 1 to 5 carbons, and more preferably hydrogen or alkyl having 1 to 3 carbons.
  • Each constituent unit in the carboxyl group-containing polyvinyl formal resin has a constituent unit a content of 49.9 to 80 mol%, a constituent unit b content of 0.1 to 49.9 mol%, The content is preferably 0.1 to 49.9 mol%.
  • the content of the structural unit d is preferably 0.1 to 49.9 mol%. More preferably, the content of the structural unit a is 49.9 to 80 mol%, the content of the structural unit b is 1 to 30 mol%, and the content of the structural unit c is 1 to 30 mol%.
  • a more preferable range of the content of the structural unit d is 1 to 30 mol%.
  • the content of the structural unit a is preferably 49.9 mol% or more.
  • the structural unit a in the carboxyl group-containing polyvinyl formal resin is formed by formalizing a vinyl alcohol chain portion that is continuously present in the molecular chain. That is, it is difficult to formalize a vinyl alcohol chain that is not continuous in the molecular chain (for example, one vinyl alcohol chain that is sandwiched between two vinyl formal chains). Therefore, in the synthesis, the content of the structural unit a is preferably 80.0 mol% or less.
  • the content rate of the structural unit b is 0.1 mol% or more, the solubility of the carboxyl group-containing polyvinyl formal resin in the solvent and the solubility in the epoxy resin are improved.
  • the content of the structural unit b is preferably 49.9 mol% because the chemical resistance, flexibility, wear resistance, and mechanical strength of the carboxyl group-containing polyvinyl formal resin are unlikely to decrease.
  • the structural unit c preferably has a content of up to 49.9 mol% in consideration of solubility in a solvent and solubility in an epoxy resin. Further, in the production of the polyvinyl formal resin, when the polyvinyl alcohol chain is formalized, the structural unit b and the structural unit c are in an equilibrium relationship, and therefore the content of the structural unit c is preferably 0.1 mol% or more.
  • the content of the structural unit d is preferably 49.9 mol% or less in consideration of the solubility in the epoxy resin and the viscosity after dissolution. .
  • the heat resistance glass transition temperature
  • the resin is toughened due to the cross-linking and has high tensile, bending and compression properties. Since a fiber-reinforced composite material exhibiting an elastic modulus and high strength and exhibiting impact resistance can be obtained, the content of the structural unit d is preferably 0.1 mol% or more.
  • the proportion of each of the structural units a to c in the carboxyl group-containing polyvinyl formal resin can be determined by measuring according to (JIS K6729).
  • the content of the structural unit d in the carboxyl group-containing polyvinyl formal resin can be measured by the method described below.
  • a polyvinyl formal resin having a carboxyl group introduced by copolymerization is heated at 80 ° C. for 2 hours. By this operation, a polymer in which sodium is added to the carboxyl group and sodium carboxylate is added is obtained. Excess sodium hydroxide is extracted from the polymer and then dehydrated and dried. Thereafter, carbonization is performed and atomic absorption analysis is performed, and the amount of sodium added is determined and quantified.
  • the structural unit d is quantified as a vinyl acetate chain at the time of analyzing the structural unit b (vinyl acetate chain)
  • the structural unit b is corrected by subtracting the structural unit d from the structural unit b measured according to JIS K6729. To do.
  • the proportion of the alkyl acrylate ester or alkyl methacrylate ester is arbitrarily changed with respect to the main raw material vinyl acetate monomer, It can adjust by adjusting the addition amount of the water and an acid catalyst for hydrolysis, and the addition amount of the aldehyde compound for formalization.
  • the weight average molecular weight of the carboxyl group-containing polyvinyl formal resin is preferably from 5,000 to 200,000, and more preferably from 10,000 to 150,000.
  • the weight average molecular weight of the polyvinyl formal resin is 5000 or more, the solubility in the epoxy resin is increased, and the toughening action by the carboxyl group-containing polyvinyl formal resin is obtained, which is preferable.
  • the weight average molecular weight of the polyvinyl formal rule resin is 150,000 or less, the viscosity when dissolved in the epoxy resin does not increase excessively, which is preferable from the workability at the time of molding into a fiber reinforced composite material.
  • the weight average molecular weight of the carboxyl group-containing polyvinyl formal resin can be measured by a GPC method. Specific measurement condition examples are as follows.
  • LC-4000 series manufactured by JASCO Corporation
  • Detector RI-4030
  • Oven CO-4060
  • Pump PU-4180
  • Separation column Shodex KF-805L x 2 Temperature: 40 ° C
  • Mobile phase Chloroform Standard sample: Polystyrene
  • vinylec (registered trademark) grade: PVF-C) manufactured by JNC Corporation is commercially available.
  • Component [B] A solid epoxy resin is used as the solid epoxy resin component [B].
  • the solid epoxy resin may be solid at 25 ° C. during use, and preferably has a softening point of at least 60 ° C.
  • Component [B] uses an epoxy resin having strong adhesiveness to carbon fiber, aramid fiber, boron fiber, glass fiber and other reinforcing fibers, and excellent strength, elastic modulus, and heat resistance as a matrix resin for prepreg. Is preferred.
  • the prepreg matrix resin it is preferable to use an epoxy resin that has strong adhesion to reinforcing fibers such as carbon fiber, aramid fiber, boron fiber, and glass fiber, and is excellent in strength, elastic modulus, and heat resistance.
  • the epoxy resin is combined with the matrix resin, the compatibility of the polyvinyl formal resin including the carboxyl group-containing polyvinyl formal resin of the component [A] with the epoxy resin is high, and when the prepreg is laminated and cured, the epoxy resin It can be expected that the resin is toughened by crosslinking.
  • the component [A] in the resin composition preparation can be uniformly dissolved.
  • the softening point of the solid epoxy resin is 60 ° C. or higher, after the polyvinyl formal resin including the carboxyl group-containing polyvinyl formal resin of component [A] is dissolved in the liquid epoxy resin of component [C] at 130 ° C. or higher in advance.
  • the solid epoxy resin of component [B] can be easily dissolved by lowering the temperature to 80 to 90 ° C.
  • the softening point is 60 ° C. or higher in order to facilitate dissolution in the preparation of the resin composition.
  • the solid epoxy resin is a compound having two or more epoxy groups in the molecule, and is a bisphenol type epoxy resin, a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a biphenyl type epoxy resin, or a naphthalene type epoxy. Resin, fluorene type epoxy resin, etc. can be used. A solid epoxy resin having an oxazolidone ring structure can be used to further improve the adhesion between the reinforcing fiber and the matrix resin. These epoxy resins can be used alone or in combination of two or more.
  • bisphenol type epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and brominated bisphenol A type epoxy resin.
  • Examples of the bisphenol A type solid epoxy resin include jER1001, jER1002, jER1003, jER1004, jER1055, jER1007, jER1009, and jER1010 in Mitsubishi Chemical Corporation products.
  • Examples of the bisphenol F type solid epoxy resin include, for example, jER4004P, jER4005P, jER4007P, and jER4010P in Mitsubishi Chemical Corporation products.
  • Brominated bisphenol A type solid epoxy resin includes jER5046B80 manufactured by Mitsubishi Chemical Corporation.
  • phenol novolac type solid epoxy resin examples include jER152 and jER154 manufactured by Mitsubishi Chemical Corporation.
  • cresol novolak type solid epoxy resin examples include Nippon Kayaku Co., Ltd. products EOCN-1020, EOCN-102S, EOCN-104S, and the like.
  • biphenyl type solid epoxy resin examples include jER YX4000, jER YX4000H, jER YL6121H, etc. manufactured by Mitsubishi Chemical Corporation.
  • naphthalene type solid epoxy resin Nippon Kayaku Co., Ltd. products such as NC-7000L and NC-7300L are included.
  • Fluorene-type solid epoxy resins include on-coat EX-1010, EX-1011 and EX-1012 manufactured by Nagase ChemteX.
  • solid epoxy resins having an oxazolidone ring structure examples include AER4152 manufactured by Asahi Kasei E-Materials Corporation, DER858 manufactured by DOW Corporation, and the like.
  • the component [B] is selected from those having a softening point at least higher than the above temperature.
  • the liquid epoxy resin may be liquid at 25 ° C. at the time of use, but when a liquid epoxy resin is used as the matrix resin, an epoxy resin of a polyvinyl formal resin including a carboxyl group-containing polyvinyl formal resin. Since the compatibility of the epoxy resin is high, the epoxy resin is preferably liquid at 150 ° C. This is because the melting temperature of polyvinyl formal in a liquid epoxy resin is usually 130 to 150 ° C.
  • the liquid state means a state that is liquid at normal temperature (25 ° C.) and does not contain a solid content.
  • the viscosity of the liquid epoxy resin is preferably 1.5 to 15 Pa ⁇ s at 25 ° C.
  • the carboxyl group-containing polyvinyl formal resin is a particle having a large number of pores (pore volume (representative value); 0.71 ml / g).
  • the carboxyl group-containing polyvinyl formal particle and the liquid epoxy resin are previously kneaded to obtain an epoxy resin. If the pores are filled, the solubility is improved, and the solubility is increased at least at 100 ° C. in the epoxy resin, and the dissolution time is shortened at 130 to 150 ° C.
  • the liquid epoxy resin may be one liquid epoxy resin or a mixture of two or more liquid epoxy resins.
  • liquid epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, alicyclic epoxy resin, and glycidylamine type epoxy resin.
  • jER827, jER828 and the like are listed as Mitsubishi Chemical Corporation products.
  • Examples of the bisphenol F type epoxy resin include jER806, jER807 and the like in Mitsubishi Chemical Corporation products.
  • Examples of the alicyclic epoxy resin include Daicel Chemical Industries, Ltd. products Celoxide 2021P, Celoxide 2081, and the like.
  • glycidylamine type epoxy resins examples include Sumitomo Chemical's ELM434, Ciba Specialty Chemicals YH-434L, Mitsubishi Chemical Corporation jER630 and jER604, Huntsman Advanced Materials Araldite MY0600, Nippon Kayaku Co., Ltd. GAN and GOT are included.
  • the liquid epoxy resin is a liquid compound having at least one oxiranyl group.
  • a liquid compound having a molecular weight lower than that of a general liquid epoxy resin and a viscosity at 25 ° C. of 2 mPa ⁇ s to 100 mPa ⁇ s may be used.
  • Such a liquid compound is preferably used for the purpose of reducing the viscosity of one liquid epoxy resin.
  • liquid compounds examples include monoepoxides.
  • Monoepoxides include alcohol-based allyl glycidyl ether, n-butyl glycidyl ether, 2-ethylhexyl glycidyl ether, and higher alcohol glycidyl ether.
  • phenols examples include phenyl glycidyl ether, p-tert-butylphenyl glycidyl ether, cresyl glycidyl ether, phenol (EO) 5 glycidyl ether, sec-butylphenyl glycidyl ether, cardanol diglycidyl ether, dibromophenyl glycidyl ether, and the like. .
  • examples of the triepoxides include glycerol polyglycidyl ether and trimethylolpropane polyglycidyl ether.
  • component [B] and component [C] By using component [B] and component [C] together, leakage from the resin mold due to a decrease in resin viscosity during thermosetting can be prevented when molding into a carbon fiber composite material, and adjustment of tackiness of prepreg Or to prevent a decrease in toughness due to improved crosslink density when heat-cured.
  • Component [D] Amine Curing Agent
  • the amine curing agent [D] is preferably dicyandiamide or a derivative thereof.
  • Examples include aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea-added amines, and isomers and modified forms thereof.
  • aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone
  • aliphatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone
  • imidazole derivatives imidazole derivatives
  • dicyandiamide tetramethylguanidine
  • thiourea-added amines thiourea-added amines
  • Derivatives are those obtained by bonding various compounds to dicyandiamide, and include reactants with epoxy resins, reactants with vinyl compounds and acrylic compounds.
  • Dicyandiamide is a particulate curing agent that does not dissolve in the epoxy resin component at a temperature of 25 ° C., but is dispersed in the epoxy resin component in the form of particles, so that it contacts the epoxy group in each epoxy resin component. Since it has a small area, it exhibits little reactivity and is usually dissolved in an epoxy resin when heated to 180 ° C. or higher and has a characteristic of reacting with an epoxy group.
  • the compounding amount of the amine curing agent [D] is such that the storage stability of the resulting resin composition, the calorific value at the time of prepreg curing, the heat resistance of the cured product, and the like are in an appropriate range. Is preferably in the range of 1 to 10 parts by weight, more preferably in the range of 2 to 8 parts by weight with respect to 100 parts by weight of the total epoxy resin component.
  • the curing aid is 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), 3- ( Urea derivatives such as 3-chloro-4-methylphenyl) -1,1-dimethylurea and 2,4-bis (3,3-dimethylureido) toluene are preferred.
  • DCMU 3-,4-dichlorophenyl) -1,1-dimethylurea
  • Urea derivatives such as 3-chloro-4-methylphenyl
  • 2,4-bis (3,3-dimethylureido) toluene are preferred.
  • dicyandiamide alone usually requires a temperature of 170 to 180 ° C., but when used together with dicyandiamide, it can be cured at 80 to 150 ° C.
  • Examples of commercially available ureas include DCMU99 (manufactured by PTI Japan Co., Ltd.), Omicure 24, Omicure 52, and Omicure 94 (above, manufactured by CVC Specialty Chemicals, Inc.).
  • each component constituting this composition is applied to a general stirring and heating device such as a kneader and a planetary mixer, and a stirring and pressure heating device. And thoroughly mixed.
  • a general stirring and heating device such as a kneader and a planetary mixer, and a stirring and pressure heating device. And thoroughly mixed.
  • a polyvinyl formal resin containing a carboxyl group-containing polyvinyl formal resin is first dissolved in a liquid epoxy resin at 130 ° C. or higher, and then a solid epoxy resin is dissolved at 80 to 90 ° C., Finally, the amine curing agent is preferably dispersed at 50 to 60 ° C.
  • the reinforcing fiber reinforced fiber is not particularly limited, and may be appropriately selected according to the use etc. from those known as the reinforcing fiber constituting the fiber reinforced composite material.
  • glass fiber examples thereof include carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber.
  • a hot melt method in which the resin composition is reduced in viscosity by heating and impregnated into reinforcing fibers or a method in which the resin composition is dissolved in a solvent such as methyl ethyl ketone or methanol to lower the viscosity and impregnate into reinforcing fibers (wet method) Is mentioned.
  • the wet method is a method in which a reinforcing fiber is immersed in a solution of the resin composition and then lifted and the solvent is evaporated using an oven or the like.
  • the hot melt method (dry method) is a resin composition whose viscosity is reduced by heating. Directly impregnating the reinforcing fiber, or a film in which the resin composition is once coated on a release paper or the like is prepared, and then the film is laminated from both sides or one side of the reinforcing fiber and heated and pressed to reinforce the fiber. Is impregnated with a resin composition.
  • the solvent remaining in the prepreg is substantially absent, and therefore, this is a preferred embodiment in the present invention.
  • the fiber volume content (Vf) of the impregnated reinforcing fibers is preferably 40 to 90 vol%, more preferably 50 to 80 vol%, when the volume of the prepreg including the reinforcing fibers is 100 vol%. . If Vf is 50 vol% or more, the mass of the obtained composite material does not become excessive, and the advantages of the fiber-reinforced composite material excellent in specific strength and specific modulus can be maintained. Moreover, if Vf is 80 vol% or less, the impregnation failure of the resin composition does not occur, the resulting composite material has few voids, and the mechanical properties are not deteriorated.
  • the form of the reinforcing fiber used in the present invention is a form in which the continuous fibers are aligned in one direction, a form in which the continuous fibers are used as a woven fabric, a form in which the tow is aligned in one direction and held by a weft auxiliary yarn, a plurality of sheets There are multi-axial warp knit forms that overlap unidirectional reinforcing fiber sheets in different directions and stitch together with auxiliary yarns, and non-woven forms of reinforcing fibers. And the form which arranged the continuous fiber in one direction is preferable.
  • the basis weight of the reinforcing fiber can be freely set according to the purpose of use of the fiber reinforced composite material, but 50 to 2000 g / m 2 is a practically preferable range.
  • the carbon fiber preferably used in the present invention can be any type of carbon fiber depending on the application, but is preferably a carbon fiber having a tensile modulus of 230 to 400 GPa from the viewpoint of impact resistance. . From the viewpoint of strength, a carbon fiber having a tensile strength of preferably 4.4 to 6.5 GPa is preferably used because a composite material having high rigidity and mechanical strength can be obtained. Also, the tensile elongation is an important factor, and it is preferable that the carbon fiber is a high strength and high elongation carbon fiber of 1.7 to 2.3%.
  • Carbon fibers include “Torayca (registered trademark)” T800G-24K, “Torayca (registered trademark)” T800S-24K, “Torayca (registered trademark)” T700G-24K, and “Torayca (registered trademark)” T300- 3K, and “Torayca (registered trademark)” T700S-12K (manufactured by Toray Industries, Inc.), TR50S (manufactured by Mitsubishi Rayon), and the like.
  • the prepreg of the present invention is obtained by impregnating a reinforcing fiber with the above-described resin composition of the present invention, and a fiber-reinforced composite material having excellent strength and heat resistance can be obtained by curing.
  • a publicly known method can be used about the preparation method of a fiber reinforced composite material.
  • Typical methods include a prepreg method, a filament winding method, and a resin transfer molding method.
  • Resin composition viscosity applicable to prepreg method is 1 Pa ⁇ s to 10000 Pa ⁇ s
  • resin composition viscosity applicable to filament winding method is 15 mPa ⁇ s to 30 Pa ⁇ s
  • resin composition applicable to resin transfer molding method The range of the product viscosity is 350 mPa ⁇ s to 1 Pa ⁇ s.
  • the resin composition used for the prepreg of the present invention is preferably applied to a prepreg method capable of dealing with a high viscosity since the viscosity of the resin composition is increased by adding a carboxyl group-containing polyvinyl formal.
  • the prepreg sheets are arranged and laminated in a predetermined direction, pressed and integrated, and finally heated and pressed to be cured.
  • Examples of the molding method in the production method of the fiber-reinforced composite material of the present invention include autoclave molding method, vacuum back molding method, oven molding method, press molding method, continuous press molding method, pultrusion molding method, internal pressure molding method, and sheet wrap molding method. It is done.
  • the fiber reinforced composite material formed by laminating and thermosetting the prepreg of the present invention is suitably used for aircraft use, general industrial use, and sports use. More specifically, in aerospace applications, primary structural material applications such as main wings, tail wings and floor beams, secondary structural material applications such as aircraft cabins, flaps, ailerons, cowls, fairings and interior materials, rocket motor cases It is suitably used for satellite structural material applications. Among such aerospace applications, impact resistance is required, and because it is exposed to low temperatures during high altitude flight, aircraft primary structure applications that require tensile strength at low temperatures, especially fuselage skins and main wing skins, The fiber-reinforced composite material of the present invention is particularly preferably used.
  • structural materials for moving bodies such as automobiles, ships, and railway vehicles, drive shafts, leaf springs, windmill blades, various turbines, pressure vessels, flywheels, paper rollers, roofing materials, cables, reinforcement bars And suitable for civil engineering and building material applications such as repair and reinforcement materials.
  • it is suitably used for golf shafts, fishing rods, tennis, badminton, squash and other racket applications, hockey and other stick applications, and ski pole applications.
  • the carboxyl group-containing polyvinyl formal resin used in the examples is Vinylec (registered trademark), grade: PVF-C manufactured by JNC Corporation.
  • the weight average molecular weight Mw is 62000
  • vinyl formal (constituent unit a) is 70.42 mol%
  • vinyl acetate (constituent unit b) is 10.34 mol%
  • vinyl alcohol (constituent unit c) is 16.09 mol%
  • acrylic acid (Structural unit d) is 3.15 mol%.
  • the polyvinyl formal used in the comparative examples is Vinylec (registered trademark) manufactured by JNC Corporation, grades: PVF-K, PVF-E.
  • the weight average molecular weight Mw is 54000
  • vinyl formal (structural unit a) is 75.13 mol%
  • vinyl acetate (structural unit b) is 12.26 mol%
  • vinyl alcohol (structural unit c) is 12. 61 mol%.
  • PVF-E the weight average molecular weight Mw is 120,000
  • vinyl formal (constituent unit a) is 74.80 mol%
  • vinyl acetate (constituent unit b) is 12.66 mol%
  • vinyl alcohol (constituent unit c) is 12. 54 mol%.
  • PVF-K and PVK-E are polyvinyl formal resins into which carboxyl groups are not introduced.
  • a phenoxy resin PKHP200 manufactured by Sakai Kogyo Co., Ltd.
  • the weight average molecular weight Mw is 52000.
  • jER828 Bisphenol A type epoxy resin Average molecular weight 370 Epoxy equivalent 184 to 194 Made by Mitsubishi Chemical (liquid at 25 ° C, viscosity (25 ° C): 12 to 15 Pa ⁇ s) ⁇ Used solid epoxy resin> jER1001: Bisphenol A type epoxy resin Average molecular weight 900 Epoxy equivalent 450-500 Made by Mitsubishi Chemical (softening point: 64 ° C) ⁇ Amine curing agent used> DICY7: Dicyandiamide Made by Mitsubishi Chemical ⁇ Used accelerator> DCMU99: 3- (3,4-dichlorophenyl) -1,1-dimethylurea, manufactured by PTI Japan Co., Ltd.
  • a temperature-viscosity relationship was measured with a rheometer (MCR-302, manufactured by Anton Paar) under conditions of a swing angle of 60%, a frequency of 0.5 Hz, a temperature increase rate of 3 ° C./min, and a temperature of 30 to 130 ° C.
  • the preparation method of the resin composition used for the viscosity measurement is shown.
  • the same composition as in the examples and comparative examples is prepared except that no amine curing agent is contained.
  • Example 1 A hot stirrer with an aluminum block bath (manufactured by RCH-20L EYELA) was used for heating, and a stirring motor (manufactured by BLh600 HEIDON) was used for stirring.
  • Liquid bisphenol A type epoxy resin 60 g of jER828 (Mitsubishi Chemical) was weighed into a 200 mL beaker, 7.2 g of JNC Co. vinylec (trademark: PVF-C) was added, and the temperature was 130 ° C., 120 rpm, 120 Dissolved in minutes.
  • a liquid bisphenol A type epoxy resin 60 g of jER828 (manufactured by Mitsubishi Chemical) was weighed in a 200 mL beaker, 60 g of solid bisphenol A type epoxy resin, jER1001 (manufactured by Mitsubishi Chemical) was added and dissolved by heating at 90 ° C. and 120 rpm. Finally, vacuum deaeration was performed at 90 ° C. and 30 kPa with a diaphragm pump in a vacuum oven (Vacuum Oven ADP300 manufactured by Yamato).
  • a liquid bisphenol A type epoxy resin 60 g of jER828 (Mitsubishi Chemical) was weighed in a 200 mL beaker, 7.2 g of phenoxy resin (PKHP200) manufactured by Sakai Kogyo Co., Ltd. was added and dissolved at a temperature of 130 ° C., 120 rpm for 40 minutes. .
  • PKHP200 phenoxy resin
  • Liquid bisphenol A type epoxy resin 60 g of jER828 (Mitsubishi Chemical) was weighed into a 200 mL beaker, 7.2 g of JNC Co., Ltd. vinylec ((trademark) grade: PVF-K) was added, and the temperature was 130 ° C., 120 rpm, 120 Dissolved in minutes.
  • Liquid bisphenol A type epoxy resin 60 g of jER828 (Mitsubishi Chemical) was weighed into a 200 mL beaker, 7.2 g of Vinylec ((trademark) grade: PVF-E) manufactured by JNC Corporation was added, and the temperature was 130 ° C., 120 rpm, 120 Dissolved in minutes.
  • jER828 Mitsubishi Chemical
  • Vinylec ((trademark) grade: PVF-E) manufactured by JNC Corporation
  • test piece was subjected to a 90 ° tensile test using a 5 kN load cell at a test speed of 1 mm / min, 25 ° C., and a humidity of 50% (JIS K7165). Compliant).
  • the strain (elongation) was measured using a video extensometer, and the elastic modulus was measured according to JIS K7165.
  • the distance between the marked lines was 50 mm, and the distance between the chucks was 150 mm.
  • the direction of scratching is 90 ° with respect to the fiber direction on the CFRP test piece side.
  • a glass epoxy plate cut out with dimensions of 2 mm thickness, 25 mm width and 100 mm length was prepared as a tab.
  • the tab was adhered to the test piece using a two-pack type epoxy adhesive (manufactured by ThreeBond) and left for 2 days.
  • the bonding was performed in a thermostatic chamber at 25 ° C. and a humidity of 50%.
  • the test piece was fixed to a compression test jig, and the autograph (AG-IS 100 kN) manufactured by Shimadzu Corporation was used at 25 ° C. and 50% humidity at a test speed of 1 mm / min. A 0 ° compression test was carried out. The strain was measured with a strain gauge, and the elastic modulus was calculated according to the elastic modulus calculation method of JIS K7076.
  • a water-cooled composite material cutting machine (high speed cutter AC-500CF, manufactured by Maruto Seisakusho Co., Ltd.) so that the reinforcing fibers are oriented at 0 ° with respect to the longitudinal direction of the test piece from the produced fiber reinforced composite material having a thickness of 2 mm and 320 cm ⁇ 320 cm.
  • a test piece (length 80 mm ⁇ width 10 mm) was cut out.
  • the fracture surface in FIG. 2 When the fracture surface in FIG. 2 is observed, an interface exists between the portion to be compressed in the bending test and the portion to be pulled inside the test piece, and the tensile fracture surface up to the interface is shown as the tensile fracture surface.
  • the fracture surface to be compressed was defined as the compression fracture surface (B), and the fracture surface and the area of each fracture surface were determined by image analysis.
  • the adhesion between the carbon fiber and the resin on the fracture surface of the bending test piece was evaluated by measuring the number of carbon fibers pulled out on the tensile fracture surface of the fracture surface taken by SEM.
  • the SEM photograph of the tensile fracture surface evaluated in FIG. 3 is shown.
  • Example 1 Preparation of resin composition> As a machine for preparing the resin composition, a 10 L planetary mixer (PLM-15) manufactured by Inoue Seisakusho was used.
  • Liquid bisphenol A type epoxy resin, jER828 (Mitsubishi Chemical) 1.7kg is charged into the kettle, and then JNC vinylec ((registered trademark) grade: PVF-C) 204g is charged.
  • the mixture was kneaded for 3 hours while degassing under reduced pressure (vacuum degree: 200 kPa) at 28 r / min and autorotation 77 r / min.
  • the resin composition prepared by the above method was previously placed in an oven and heated to 65 ° C.
  • the resin composition is put into a liquid dam heated to 65 ° C. in a coating apparatus, and applied on a release paper with a roll temperature of 60 ° C. and a coating width of 290 mm with a coating weight of 26.96 g / m 2 .
  • a resin sheet was produced.
  • the resin composition prepared by the above method was previously placed in an oven and warmed to 55 ° C.
  • a resin composition is placed in a liquid dam heated to 55 ° C. in a coating apparatus, applied on a release paper with a roll temperature of 50 ° C. and a coating width of 290 mm, and has a basis weight of 26.92 g / m 2 .
  • a sheet was produced.
  • Comparative Example 2 ⁇ Preparation of resin composition> A 10 L planetary mixer (PLM-15) manufactured by Inoue Seisakusho was used as a machine for preparing the resin composition.
  • Liquid bisphenol A type epoxy resin, jER828 (Mitsubishi Chemical) 1.7kg is charged into the kettle, then 204g of phenoxy resin (PKHP200) manufactured by Sakai Kogyo Co., Ltd. is charged, temperature 130 ° C rotation speed is 28r / min, rotation speed is 77r The mixture was kneaded for 1 hour while defoaming under reduced pressure (vacuum degree: 200 kPa) at / min.
  • PKHP200 phenoxy resin manufactured by Sakai Kogyo Co., Ltd.
  • the resin composition prepared by the above method was previously placed in an oven and warmed to 62 ° C.
  • a resin composition is placed in a liquid dam heated to 62 ° C. in a coating device, applied on a release paper with a roll temperature of 57 ° C. and a coating width of 290 mm, and a resin having a basis weight of 26.90 g / m 2 .
  • a sheet was produced.
  • Comparative Example 3 ⁇ Preparation of resin composition> A 10 L planetary mixer (PLM-15) manufactured by Inoue Seisakusho was used as a machine for preparing the resin composition.
  • Liquid bisphenol A type epoxy resin, jER828 (Mitsubishi Chemical) 1.7kg is charged into the kettle, and then JNC vinylec ((registered trademark) grade: PVF-K) 204g is charged.
  • the mixture was kneaded for 2 hours while degassing under reduced pressure (vacuum degree: 200 kPa) at 28 r / min and rotation 77 r / min.
  • the resin composition prepared by the above method was previously placed in an oven and heated to 65 ° C.
  • a resin composition is placed in a liquid dam heated to 65 ° C. in a coating device, applied to a release paper with a coating roll at a roll temperature of 60 ° C. and a coating width of 290 mm, and has a basis weight of 26.96 g / m 2 .
  • a sheet was produced.
  • Comparative Example 4 ⁇ Preparation of resin composition>
  • a 10 L planetary mixer (PLM-15) manufactured by Inoue Seisakusho was used as a machine for preparing the resin composition.
  • the resin composition prepared by the above method was previously placed in an oven and warmed to 70 ° C.
  • a resin composition is placed in a liquid dam heated to 70 ° C. in a coating apparatus, applied on a release paper with a roll temperature of 66 ° C. and a coating width of 290 mm, and a basis weight of 26.96 g / m 2 resin.
  • a sheet was produced.
  • Tables 1 to 5 show the evaluation results of the compositions prepared in Example 1 and Comparative Examples 1 to 4. As shown in Tables 1 and 2, the comparison between Example 1 and Comparative Examples 1 to 4 shows that the 90 ° tensile property, 0 ° bending property, and 0 ° compression property of the fiber reinforced composite material produced by the prepreg of the present invention are higher. It showed elastic modulus, high strength, and even higher impact resistance.
  • Example 1 improved the 90 ° tensile property and 0 ° bending property of the fiber reinforced composite material as compared with Comparative Examples 1 to 4, the carboxyl group was observed from the electron microscope observation results of FIGS. 3 and 4 and Tables 3 to 5. The effect of improving the adhesion between the carbon fiber and the resin due to the contained polyvinyl formal is considered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To provide a prepreg having both high elastic modulus and high strength with respect to the tensile, compressive, and bending properties of a fiber-reinforced composite material, and a fiber-reinforced composite material using the prepreg. [Solution] A prepreg obtained by impregnating reinforcing fibers with a resin composition containing as main components the following [A], [B], [C], and amine curing agent [D], in which components [A], [B], and [C] are 1-20 weight parts, 45-80 weight parts, and 20-55 weight parts, respectively; [A] carboxyl group-containing polyvinyl formal resin, [B] epoxy resin that is solid at 25°C, [C] epoxy resin that is liquid at 25°C.

Description

プリプレグ、およびそれを用いた繊維強化複合材料Prepreg and fiber-reinforced composite material using the same
 本発明は、プリプレグ及び繊維強化複合材料に関する。 The present invention relates to a prepreg and a fiber reinforced composite material.
 炭素繊維などの一方向引き揃えシートや織布等にマトリックス樹脂を含浸したプリプレグを積層して成形された繊維強化複合材料は、ゴルフシャフト、釣竿、ラケットフレーム等のスポーツレジャー分野に広く使用されている。また近年、自動車などの産業分野、航空宇宙分野においてその使用が拡大してきている。 Fiber reinforced composite materials formed by laminating prepregs impregnated with matrix resin on unidirectional alignment sheets such as carbon fibers and woven fabrics are widely used in sports and leisure fields such as golf shafts, fishing rods, and racket frames. Yes. In recent years, its use has expanded in the industrial field such as automobiles and the aerospace field.
 これまで、マトリックス樹脂であるエポキシ樹脂の性質を改良する目的で、エポキシ樹脂にポリビニルブチラール樹脂などの熱可塑性樹脂を含む樹脂組成物を用いられていた。しかし、ポリビニルブチラールは、エポキシ樹脂との相溶性も良好でないため、組成物を硬化する際に相分離を生じて、強度を低下させることがあった。これに対し、ポリビニルホルマール含有樹脂組成物を含有したプリプレグを積層してできた繊維強化複合材料では相分離をある程度にまで抑えることができ、繊維方向に対して90°の引張強度が向上することが知られている(特許文献1)。 Until now, for the purpose of improving the properties of the epoxy resin which is a matrix resin, a resin composition containing an epoxy resin and a thermoplastic resin such as polyvinyl butyral resin has been used. However, since polyvinyl butyral has poor compatibility with the epoxy resin, phase separation may occur when the composition is cured, and the strength may be lowered. In contrast, a fiber reinforced composite material obtained by laminating a prepreg containing a polyvinyl formal-containing resin composition can suppress phase separation to some extent, and the tensile strength at 90 ° with respect to the fiber direction is improved. Is known (Patent Document 1).
 特許文献2においては成形時の樹脂フロー制御や樹脂硬化物への靭性付与を目的としてプリプレグに熱可塑性樹脂が添加されることが開示されている。特許文献2では、熱可塑性樹脂としてポリビニルホルマールのほかフェノキシ樹脂が挙げられている。また特許文献3において釣竿やゴルフシャフトなどの管状成形体に繊維強化複合材料を用いた場合、つぶし強度などの特性向上にふさわしい熱可塑性樹脂としてポリビニルホルマールやフェノキシ樹脂が好適に用いられると記載されている。 Patent Document 2 discloses that a thermoplastic resin is added to a prepreg for the purpose of controlling resin flow during molding and imparting toughness to a cured resin. In Patent Document 2, a phenoxy resin is listed as a thermoplastic resin in addition to polyvinyl formal. Patent Document 3 describes that when a fiber reinforced composite material is used for a tubular molded body such as a fishing rod or a golf shaft, polyvinyl formal or phenoxy resin is suitably used as a thermoplastic resin suitable for improving properties such as crushing strength. Yes.
 炭素繊維複合材料(CFRP)において、軽量化、作製コストの低減化等の理由によりスポーツ用品、産業用品等の部材として薄板状で使用されることから強度と弾性率の向上が求められている。 Carbon fiber composite material (CFRP) is required to be improved in strength and elastic modulus because it is used in the form of a thin plate as a member of sporting goods, industrial goods, etc. for reasons such as weight reduction and reduction in production cost.
 従来、CFRPのマトリックス樹脂に添加する熱可塑性樹脂において引張、圧縮、曲げ特性において高強度・高弾性率を両立した例はない。CFRPのマトリックス樹脂に添加する熱可塑性樹脂のひとつである、ポリビニルホルマールは、引張特性に関してCFRPの強度をあげる一方、弾性率を下げる欠点があった。 Conventionally, there is no example in which a thermoplastic resin added to a CFRP matrix resin has both high strength and high elasticity in tensile, compression and bending properties. Polyvinyl formal, one of the thermoplastic resins added to the CFRP matrix resin, has the drawback of increasing the strength of CFRP with respect to tensile properties while lowering the elastic modulus.
特開昭62-169829号公報JP-A-62-169829 特開2017-2202号公報Japanese Patent Laid-Open No. 2017-2202 国際公開第1998/044017号International Publication No. 1998/044017
 本発明の課題は、繊維強化複合材料の引張、圧縮、曲げ特性に関して高弾性率、高強度を両立し、かつ耐衝撃性を付与したプリプレグ、およびそれを用いた繊維強化複合材料を提供することである。 An object of the present invention is to provide a prepreg having both high elastic modulus and high strength with respect to tensile, compression, and bending properties of a fiber reinforced composite material and imparting impact resistance, and a fiber reinforced composite material using the prepreg. It is.
 従来、炭素繊維複合材料のマトリックス樹脂(エポキシ樹脂)に添加するポリビニルホルマールでは引張、曲げ特性に関して複合材料の強度があがっても弾性率がさがる欠点があった。さらにそれらの特性に加えて耐衝撃性を有することはなかった。そこで本発明者たちは引張特性のみならず、曲げ、圧縮特性に関して高強度、高弾性率の両立、そして耐衝撃性向上させるべく鋭意検討した結果、エポキシ樹脂のオキシラニル基と反応し、炭素繊維表面の水酸基やカルボキシル基などの酸素含有官能基と相互作用するカルボキシル基を導入したポリビニルホルマールを用いて、プリプレグを作製すれば上記課題をいずれも解消できることを見出し、本発明を完成するに至った。 Conventionally, polyvinyl formal added to a matrix resin (epoxy resin) of a carbon fiber composite material has a drawback that the elastic modulus is lowered even if the strength of the composite material is increased in terms of tensile and bending properties. Furthermore, in addition to these characteristics, it did not have impact resistance. Therefore, as a result of intensive investigations aimed at improving not only tensile properties but also bending and compression properties as well as high strength and high elastic modulus and improving impact resistance, the present inventors reacted with the oxiranyl group of the epoxy resin, and the carbon fiber surface It was found that any of the above problems can be solved by preparing a prepreg using a polyvinyl formal introduced with a carboxyl group that interacts with an oxygen-containing functional group such as a hydroxyl group or a carboxyl group of the present invention, and the present invention has been completed.
 本発明の構成は以下の通りである。
[1]下記[A]、[B]、[C]及びアミン硬化剤[D]を主成分として含み、かつ[A]、[B]、[C]の各成分がそれぞれ1~20重量部、45~80重量部、20~55重量部である樹脂組成物を強化繊維に含浸してなるプリプレグ;
 [A] カルボキシル基含有ポリビニルホルマール樹脂
 [B] 25℃で固形のエポキシ樹脂
 [C] 25℃で液状のエポキシ樹脂。
[2]カルボキシル基含有ポリビニルホルマール樹脂[A]が構成単位a、b、c、およびdを含む[1]のプリプレグ。
The configuration of the present invention is as follows.
[1] The following [A], [B], [C] and an amine curing agent [D] are contained as main components, and each component of [A], [B], [C] is 1 to 20 parts by weight. Prepregs obtained by impregnating reinforcing fibers with a resin composition of 45 to 80 parts by weight and 20 to 55 parts by weight;
[A] Carboxyl group-containing polyvinyl formal resin [B] Epoxy resin solid at 25 ° C. [C] Epoxy resin liquid at 25 ° C.
[2] The prepreg of [1], wherein the carboxyl group-containing polyvinyl formal resin [A] includes structural units a, b, c, and d.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(構成単位dの式において、R1は独立して、水素または炭素数1から5のアルキルである。)
[3]固形のエポキシ樹脂[B]の軟化点が60℃以上である[1]または[2]のプリプレグ。
[4]液状のエポキシ樹脂[C]が150℃で液状である[1]~[3]のプリプレグ。
[5]アミン硬化剤[D]がジシアンジアミドまたはその誘導体である、[1]~[4]のプリプレグ。
[6]強化繊維が炭素繊維、アラミド繊維、ガラス繊維、黒鉛繊維、炭化ケイ素繊維、ボロン繊維、アルミナ繊維、ステンレス鋼繊維のいずれかであることを特徴とする[1]~[5]のプリプレグ。
[7]強化繊維が炭素繊維であり、炭素繊維の引張強度が4.4~6.5GPaであり、引張伸度が1.7~2.3%であり、引張弾性率が230~400GPaである[1]~[6]のプリプレグ。
[8]アミン硬化剤[D]は、固形のエポキシ樹脂[B]、液状のエポキシ樹脂[C]を含む全エポキシ樹脂成分100重量部に対し、1~10重量部の範囲である[1]~[7]の記載のプリプレグ。
〔9〕プリプレグ中の強化繊維の含浸量は、強化繊維を含めたプリプレグの体積を100vol%としたときに、繊維体積含有率(Vf)として、40~90%である[1]~[8]のプリプレグ。
[10][1]~[9]のプリプレグを用いた繊維強化複合材料。
(In the formula of the structural unit d, R 1 is independently hydrogen or alkyl having 1 to 5 carbons.)
[3] The prepreg of [1] or [2], wherein the softening point of the solid epoxy resin [B] is 60 ° C. or higher.
[4] The prepreg of [1] to [3], wherein the liquid epoxy resin [C] is liquid at 150 ° C.
[5] The prepreg of [1] to [4], wherein the amine curing agent [D] is dicyandiamide or a derivative thereof.
[6] The prepreg according to [1] to [5], wherein the reinforcing fiber is any one of carbon fiber, aramid fiber, glass fiber, graphite fiber, silicon carbide fiber, boron fiber, alumina fiber, and stainless steel fiber. .
[7] The reinforcing fiber is a carbon fiber, the tensile strength of the carbon fiber is 4.4 to 6.5 GPa, the tensile elongation is 1.7 to 2.3%, and the tensile modulus is 230 to 400 GPa. Some [1] to [6] prepregs.
[8] The amine curing agent [D] is in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the total epoxy resin component including the solid epoxy resin [B] and the liquid epoxy resin [C]. The prepreg described in [7].
[9] The impregnation amount of the reinforcing fiber in the prepreg is 40 to 90% as a fiber volume content (Vf) when the volume of the prepreg including the reinforcing fiber is 100 vol%. [1] to [8 ] Prepreg.
[10] A fiber-reinforced composite material using the prepreg of [1] to [9].
 カルボキシル基含有ポリビニルホルマールを添加したプリプレグを積層して作製した繊維強化複合材料は、他の熱可塑性樹脂、あるいは従来のポリビニルホルマールを含んだ繊維強化複合材料に比して引張、圧縮、曲げ特性において高弾性率、高強度を示し、かつ耐衝撃性をも示した。 Fiber reinforced composites made by laminating prepregs with carboxyl group-containing polyvinyl formal added to other thermoplastic resins or conventional fiber reinforced composite materials containing polyvinyl formal in tensile, compression and bending properties. It showed high elastic modulus, high strength, and impact resistance.
実施例および比較例で調製した樹脂組成物の温度による粘度の変化を示す。The change of the viscosity by the temperature of the resin composition prepared by the Example and the comparative example is shown. 実施例および比較例で評価した曲げ試験片破断面の電子顕微鏡写真を示す。The electron micrograph of the bending test piece fracture surface evaluated in the Example and the comparative example is shown. 実施例および比較例で評価した曲げ試験片破断面の引張破壊面における炭素繊維の引き抜けを示す電子顕微鏡写真を示す。The electron micrograph which shows the pulling-out of the carbon fiber in the tensile fracture surface of the bending test piece fracture surface evaluated by the Example and the comparative example is shown. 実施例および比較例で評価した90°引張試験破断面における炭素繊維‐樹脂間の樹脂の付着具合を観察した電子顕微鏡写真を示す。The electron micrograph which observed the adhesion state of the resin between carbon fiber-resin in the 90 degree tensile test fracture surface evaluated by the Example and the comparative example is shown.
 以下本発明の実施形態を具体的に説明するが、本発明はこれらの記載に限定されるものではない。 Embodiments of the present invention will be specifically described below, but the present invention is not limited to these descriptions.
 本発明にかかるプリプレグは、下記[A]、[B]、[C]及びアミン硬化剤[D]を主成分として含み、かつ[A]、[B]、[C]の各成分がそれぞれ1~20重量部、45~80重量部、20~55重量部である樹脂組成物を強化繊維に含浸してなる。 The prepreg according to the present invention contains the following [A], [B], [C] and an amine curing agent [D] as main components, and each component of [A], [B], [C] is 1 each. The reinforcing fiber is impregnated with a resin composition of ˜20 parts by weight, 45 to 80 parts by weight, and 20 to 55 parts by weight.
 [A] カルボキシル基含有ポリビニルホルマール樹脂
 [B] 固形エポキシ樹脂
 [C] 液状エポキシ樹脂
樹脂組成物
 樹脂組成物は、成分[A]のカルボキシル基含有ポリビニルホルマール樹脂、成分[B]の固形エポキシ樹脂、および成分[C]の液状エポキシ樹脂を含む。成分[C]には、反応性希釈剤が含まれていてもよい。
[A] Carboxyl group-containing polyvinyl formal resin [B] Solid epoxy resin [C] Liquid epoxy resin
Resin Composition The resin composition contains a carboxyl group-containing polyvinyl formal resin as component [A], a solid epoxy resin as component [B], and a liquid epoxy resin as component [C]. Component [C] may contain a reactive diluent.
 樹脂組成物における、成分[A]のカルボキシル基含有ポリビニルホルマール樹脂の含有量は、1重量部から20重量部であり、好ましくは3重量部から10重量部である。さらに好ましくは4重量部から7重量部である。 In the resin composition, the content of the carboxyl group-containing polyvinyl formal resin of component [A] is 1 to 20 parts by weight, preferably 3 to 10 parts by weight. More preferably, it is 4 to 7 parts by weight.
 成分[A]のカルボキシル基含有ポリビニルホルマール樹脂の含有量が1重量部以上の場合、プリプレグを構成するマトリックス樹脂に溶解するだけでなく、プリプレグを積層・熱硬化して繊維強化複合材料にした場合にカルボキシル基含有ポリビニルホルマールのカルボキシル基が一方ではエポキシ樹脂と架橋し、もう一方は炭素繊維表面上の水酸基やカルボキシル基などの酸素含有官能基と相互作用することにより複合材料の強靭化が発現される。成分[A]のカルボキシル基含有ポリビニルホルマール樹脂の含有量が20重量部以下であれば樹脂の離型紙への塗工を十分にでき、かつプリプレグを作製する際に強化繊維に樹脂をよく含浸できる。 When the content of the carboxyl group-containing polyvinyl formal resin of component [A] is 1 part by weight or more, not only is it dissolved in the matrix resin constituting the prepreg, but also when the prepreg is laminated and heat-cured to form a fiber-reinforced composite material In addition, the carboxyl group of the carboxyl group-containing polyvinyl formal is cross-linked with the epoxy resin on the one hand, and the other is interacted with oxygen-containing functional groups such as hydroxyl groups and carboxyl groups on the carbon fiber surface, thereby toughening the composite material. The If the content of the carboxyl group-containing polyvinyl formal resin of component [A] is 20 parts by weight or less, the resin can be sufficiently applied to the release paper, and the reinforced fiber can be well impregnated with the resin when preparing the prepreg. .
 成分[B]の固形エポキシ樹脂の含有量は45~80重量部であり、好ましくは50~60重量部である。成分[B]の固形エポキシ樹脂の含有量が45重量部以上であればプリプレグのタック性が良好になり、80重量部以下であれば粘度増大による樹脂の離型紙への塗工不良やプリプレグの際の強化繊維への含浸不良を防ぐことができる。 The content of the solid epoxy resin of component [B] is 45 to 80 parts by weight, preferably 50 to 60 parts by weight. If the content of the solid epoxy resin of component [B] is 45 parts by weight or more, the tackiness of the prepreg will be good, and if it is 80 parts by weight or less, the resin will be poorly applied to the release paper due to viscosity increase or the prepreg It is possible to prevent poor impregnation of the reinforcing fibers.
 成分[C]の液状エポキシ樹脂の含有量は20~55重量部であり、好ましくは40~50重量部である。成分[C]の液状エポキシ樹脂の含有量が55重量部以下であればカルボキシル基含有ポリビニルホルマールとの相溶性やプリプレグのタック性が良好になり、また液状エポキシ樹脂の架橋密度向上による耐衝撃性の低下が起こらない。20重量部以上であれば粘度増大による樹脂の離型紙への塗工不良やプリプレグの際の強化繊維への含浸不良を防ぐことができる。 The content of the liquid epoxy resin of the component [C] is 20 to 55 parts by weight, preferably 40 to 50 parts by weight. If the content of the liquid epoxy resin of component [C] is 55 parts by weight or less, the compatibility with the carboxyl group-containing polyvinyl formal and the tackiness of the prepreg will be good, and the impact resistance by improving the crosslink density of the liquid epoxy resin There will be no decline. If it is 20 parts by weight or more, it is possible to prevent poor coating of the resin to the release paper due to viscosity increase and poor impregnation of the reinforcing fibers during prepreg.
 以下、各成分について、説明する。 Hereinafter, each component will be described.
 成分[A] カルボキシル基含有ポリビニルホルマール樹脂
 成分[A]のカルボキシル基含有ポリビニルホルマール樹脂は、構成単位a、b、c、およびdを有するものが好ましい。カルボキシル基含有ポリビニルホルマール樹脂は、ポリビニルホルマール樹脂にカルボキシル基が架橋性基として導入されたものであり、これを添加した樹脂組成物を用いると、硬化物の靭性や透明性、接着性などを向上できる。導入されたカルボキシル基が架橋点となり、カルボキシル基とエポキシ樹脂とが直接、または硬化剤を介して架橋が行なわれ、架橋点を基点とした密な両高分子の分子鎖の物理的な絡まりあいを生じさせる。このメカニズムにより、柔軟なポリビニルホルマール樹脂が、網状に結合するエポキシ樹脂のネットワーク中に組み込まれる。
Component [A] Carboxy Group-Containing Polyvinyl Formal Resin The carboxyl group-containing polyvinyl formal resin of component [A] preferably has structural units a, b, c, and d. Carboxyl group-containing polyvinyl formal resin is obtained by introducing a carboxyl group as a crosslinkable group into polyvinyl formal resin, and using this resin composition improves the toughness, transparency and adhesiveness of the cured product. it can. The introduced carboxyl group becomes a cross-linking point, and the carboxyl group and the epoxy resin are cross-linked directly or via a curing agent, and physical entanglement of molecular chains of both dense polymers based on the cross-linking point. Give rise to By this mechanism, a flexible polyvinyl formal resin is incorporated into a network of epoxy resins that bind in a network.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
構成単位dの式において、R1は独立して、水素または炭素数1から5のアルキルである。 In the formula of the structural unit d, R 1 is independently hydrogen or alkyl having 1 to 5 carbons.
 カルボキシル基含有ポリビニルホルマール樹脂における構成単位aからdの総含有率は、全構成単位に対して、80重量%から100重量%であることが好ましい。 The total content of the structural units a to d in the carboxyl group-containing polyvinyl formal resin is preferably 80% by weight to 100% by weight with respect to all the structural units.
 カルボキシル基含有ポリビニルホルマール樹脂に含まれ得るその他の構成単位の例には、分子間ホルマール単位やヘミホルマール単位が含まれる。その他の構成多単位の含有率は、20重量%未満であることが好ましい。 Examples of other structural units that can be included in the carboxyl group-containing polyvinyl formal resin include intermolecular formal units and hemi-formal units. The content of other structural multi-units is preferably less than 20% by weight.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(Rは水素原子、炭素数1~5のアルキルを示す)
 カルボキシル基含有ポリビニルホルマール樹脂において構成単位a~dは、規則性をもって配列(ブロック共重合体、交互共重合体など)していても、ランダムに配列(ランダム共重合体)していてもよいが、ランダムに配列しているのが好ましい。
(R represents a hydrogen atom, alkyl having 1 to 5 carbon atoms)
In the carboxyl group-containing polyvinyl formal resin, the structural units a to d may be regularly arranged (block copolymer, alternating copolymer, etc.) or randomly arranged (random copolymer). The arrangement is preferably random.
 構成単位aは、ホルマール部位を有する構成単位であって、連続するポリビニルアルコール鎖単位とアルデヒド(HCHO)との反応により形成され得る。 The structural unit a is a structural unit having a formal site, and can be formed by a reaction between a continuous polyvinyl alcohol chain unit and an aldehyde (HCHO).
 構成単位bは、ビニルアセテート鎖を含む構成単位である。 The structural unit b is a structural unit containing a vinyl acetate chain.
 構成単位cは、ビニルアルコール鎖を含む構成単位である。 The structural unit c is a structural unit containing a vinyl alcohol chain.
 構成単位dは、カルボキシル基を有する鎖であり、構成単位dにおけるR1は、水素または炭素数1から5のアルキルであり、水素または炭素数1から3のアルキルであることがより好ましい。 The structural unit d is a chain having a carboxyl group, and R 1 in the structural unit d is hydrogen or alkyl having 1 to 5 carbons, and more preferably hydrogen or alkyl having 1 to 3 carbons.
 カルボキシル基含有ポリビニルホルマール樹脂における各構成単位は、構成単位aの含有率が49.9~80mol%であり、構成単位bの含有率が0.1~49.9mol%であり、構成単位cの含有率が0.1~49.9mol%であることが好ましい。構成単位dを有する場合、構成単位dの含有率は0.1~49.9mol%であることが好ましい。より好ましくは、構成単位aの含有率が49.9~80mol%であり、構成単位bの含有率が1~30mol%であり、構成単位cの含有率が1~30mol%である。構成単位dを含む場合、構成単位dの含有率のより好ましい範囲は1~30mol%である。 Each constituent unit in the carboxyl group-containing polyvinyl formal resin has a constituent unit a content of 49.9 to 80 mol%, a constituent unit b content of 0.1 to 49.9 mol%, The content is preferably 0.1 to 49.9 mol%. When the structural unit d is included, the content of the structural unit d is preferably 0.1 to 49.9 mol%. More preferably, the content of the structural unit a is 49.9 to 80 mol%, the content of the structural unit b is 1 to 30 mol%, and the content of the structural unit c is 1 to 30 mol%. When the structural unit d is included, a more preferable range of the content of the structural unit d is 1 to 30 mol%.
 カルボキシル基含有ポリビニルホルマール樹脂の耐薬品性、可撓性、耐摩耗性、機械的強度を充分に得るために、構成単位aの含有率を49.9mol%以上にすることが好ましい。また、カルボキシル基含有ポリビニルホルマール樹脂における構成単位aは、分子鎖中に連続して存在しているビニルアルコール鎖分をホルマール化することによって形成される。すなわち、分子鎖中に連続していないビニルアルコール鎖(例えば、2つのビニルホルマール鎖の間に、挟まれて存在する1つのビニルアルコール鎖)をホルマール化することは難しいのである。そのため、合成においては構成単位aの含有率を80.0mol%以下とすることが好ましい。 In order to sufficiently obtain the chemical resistance, flexibility, wear resistance, and mechanical strength of the carboxyl group-containing polyvinyl formal resin, the content of the structural unit a is preferably 49.9 mol% or more. In addition, the structural unit a in the carboxyl group-containing polyvinyl formal resin is formed by formalizing a vinyl alcohol chain portion that is continuously present in the molecular chain. That is, it is difficult to formalize a vinyl alcohol chain that is not continuous in the molecular chain (for example, one vinyl alcohol chain that is sandwiched between two vinyl formal chains). Therefore, in the synthesis, the content of the structural unit a is preferably 80.0 mol% or less.
 構成単位bの含有率が0.1mol%以上であれば、カルボキシル基含有ポリビニルホルマール樹脂の溶媒への溶解性やエポキシ樹脂への溶解性が良くなる。構成単位bの含有率を49.9mol%までとすると、カルボキシル基含有ポリビニルホルマール樹脂の耐薬品性、可撓性、耐摩耗性、機械的強度が低下しにくいため好ましい。 If the content rate of the structural unit b is 0.1 mol% or more, the solubility of the carboxyl group-containing polyvinyl formal resin in the solvent and the solubility in the epoxy resin are improved. The content of the structural unit b is preferably 49.9 mol% because the chemical resistance, flexibility, wear resistance, and mechanical strength of the carboxyl group-containing polyvinyl formal resin are unlikely to decrease.
 構成単位cは、溶媒への溶解性やエポキシ樹脂への溶解性を考慮して、含有率が49.9mol%までとすることが好ましい。また、ポリビニルホルマール樹脂の製造において、ポリビニルアルコール鎖をホルマール化する際、構成単位bと構成単位cが平衡関係となるため、構成単位cの含有率は0.1mol%以上が好ましい。 The structural unit c preferably has a content of up to 49.9 mol% in consideration of solubility in a solvent and solubility in an epoxy resin. Further, in the production of the polyvinyl formal resin, when the polyvinyl alcohol chain is formalized, the structural unit b and the structural unit c are in an equilibrium relationship, and therefore the content of the structural unit c is preferably 0.1 mol% or more.
 カルボキシル基含有ポリビニルホルマール樹脂が構成単位dを含有する場合、その構成単位dの含有率は、エポキシ樹脂への溶解性と溶解後の粘度を考慮すれば、49.9mol%以下とすることが好ましい。また、側鎖カルボキシル基とエポキシ樹脂との架橋反応がスムーズに行なわれることによって、耐熱性(ガラス転移温度)を維持できること、また架橋にともない樹脂が強靭化されて引張、曲げ、圧縮特性において高弾性率、高強度が発現し、また耐衝撃性をも示す繊維強化複合材料が得られるため、構成単位dの含有率が0.1mol%以上であることが好ましい。 When the carboxyl group-containing polyvinyl formal resin contains the structural unit d, the content of the structural unit d is preferably 49.9 mol% or less in consideration of the solubility in the epoxy resin and the viscosity after dissolution. . In addition, since the cross-linking reaction between the side chain carboxyl group and the epoxy resin is smoothly performed, the heat resistance (glass transition temperature) can be maintained, and the resin is toughened due to the cross-linking and has high tensile, bending and compression properties. Since a fiber-reinforced composite material exhibiting an elastic modulus and high strength and exhibiting impact resistance can be obtained, the content of the structural unit d is preferably 0.1 mol% or more.
 カルボキシル基含有ポリビニルホルマール樹脂における、構成単位a~cのそれぞれの割合は、(JIS K6729)に準じて測定して求めることができる。 The proportion of each of the structural units a to c in the carboxyl group-containing polyvinyl formal resin can be determined by measuring according to (JIS K6729).
 カルボキシル基含有ポリビニルホルマール樹脂における構成単位dの含有率は、以下に述べる方法で測定することができる。 The content of the structural unit d in the carboxyl group-containing polyvinyl formal resin can be measured by the method described below.
 1mol/l水酸化ナトリウム水溶液中で、共重合によりカルボキシル基が導入されたポリビニルホルマール樹脂を、2時間、80℃で加温する。この操作により、カルボキシル基にナトリウムが付加し、カルボン酸ナトリウムが付加されたポリマーが得られる。該ポリマーから過剰な水酸化ナトリウムを抽出した後、脱水乾燥を行なう。その後、炭化させて原子吸光分析を行い、ナトリウムの付加量を求めて定量する。 In a 1 mol / l sodium hydroxide aqueous solution, a polyvinyl formal resin having a carboxyl group introduced by copolymerization is heated at 80 ° C. for 2 hours. By this operation, a polymer in which sodium is added to the carboxyl group and sodium carboxylate is added is obtained. Excess sodium hydroxide is extracted from the polymer and then dehydrated and dried. Thereafter, carbonization is performed and atomic absorption analysis is performed, and the amount of sodium added is determined and quantified.
 なお、構成単位b(ビニルアセテート鎖)分析時に、構成単位dは、ビニルアセテート鎖として定量されるため、JIS K6729に準じて測定された構成単位bより構成単位dを差し引き、構成単位bを補正する。 In addition, since the structural unit d is quantified as a vinyl acetate chain at the time of analyzing the structural unit b (vinyl acetate chain), the structural unit b is corrected by subtracting the structural unit d from the structural unit b measured according to JIS K6729. To do.
 また、カルボキシル基含有ポリビニルホルマール樹脂における上記の各構成単位の割合を変更するには、例えば主原料の酢酸ビニルモノマーに対してアクリル酸アルキルエステルやメタクリル酸アルキルエステルの割合を任意に変更したり、加水分解のための水と酸触媒の添加量、ホルマール化のためのアルデヒド化合物の添加量を調整することで調整できる。 Moreover, in order to change the proportion of each structural unit in the carboxyl group-containing polyvinyl formal resin, for example, the proportion of the alkyl acrylate ester or alkyl methacrylate ester is arbitrarily changed with respect to the main raw material vinyl acetate monomer, It can adjust by adjusting the addition amount of the water and an acid catalyst for hydrolysis, and the addition amount of the aldehyde compound for formalization.
 カルボキシル基含有ポリビニルホルマール樹脂の重量平均分子量は、5000から200000であることが好ましく、10000から150000であることがより好ましい。ポリビニルホルマール樹脂の重量平均分子量が5000以上の場合、エポキシ樹脂への溶解性は高くなり、カルボキシル基含有ポリビニルホルマール樹脂による強靭化作用を得られるので好ましい。ポリビニルホルマールール樹脂の重量平均分子量が、150000以下の場合、エポキシ樹脂に溶解したときの粘度が増大しすぎることがないため繊維強化複合材料への成型時の作業性から好ましい。 The weight average molecular weight of the carboxyl group-containing polyvinyl formal resin is preferably from 5,000 to 200,000, and more preferably from 10,000 to 150,000. When the weight average molecular weight of the polyvinyl formal resin is 5000 or more, the solubility in the epoxy resin is increased, and the toughening action by the carboxyl group-containing polyvinyl formal resin is obtained, which is preferable. When the weight average molecular weight of the polyvinyl formal rule resin is 150,000 or less, the viscosity when dissolved in the epoxy resin does not increase excessively, which is preferable from the workability at the time of molding into a fiber reinforced composite material.
 カルボキシル基含有ポリビニルホルマール樹脂の重量平均分子量は、GPC法により測定することができる。具体的な測定条件例は以下の通りである。 The weight average molecular weight of the carboxyl group-containing polyvinyl formal resin can be measured by a GPC method. Specific measurement condition examples are as follows.
    装置:LC-4000シリーズ(日本分光社製)
    検出器:RI-4030
    オーブン:CO-4060
    ポンプ: PU-4180
    分離カラム:Shodex KF-805L×2本
    温度:40℃
    移動相:クロロホルム
    標準試料:ポリスチレン
 このようなカルボキシル基含有ポリビニルホルマール樹脂としては、JNC(株)製のビニレック((登録商標)グレード:PVF-C)などが市販されている。
成分[B]  固形エポキシ樹脂
 成分[B]として固形エポキシ樹脂が使用される。固形エポキシ樹脂は使用時に25℃で固体であればよく、軟化点が少なくとも60℃であるものが好ましい。
Apparatus: LC-4000 series (manufactured by JASCO Corporation)
Detector: RI-4030
Oven: CO-4060
Pump: PU-4180
Separation column: Shodex KF-805L x 2 Temperature: 40 ° C
Mobile phase: Chloroform Standard sample: Polystyrene As such a carboxyl group-containing polyvinyl formal resin, vinylec ((registered trademark) grade: PVF-C) manufactured by JNC Corporation is commercially available.
Component [B] A solid epoxy resin is used as the solid epoxy resin component [B]. The solid epoxy resin may be solid at 25 ° C. during use, and preferably has a softening point of at least 60 ° C.
 成分[B]は、プリプレグのマトリックス樹脂として、炭素繊維、アラミド繊維、ボロン繊維、ガラス繊維などの強化繊維との接着性が強く、強度、弾性率、耐熱性にも優れたエポキシ樹脂を用いることが好ましい。 Component [B] uses an epoxy resin having strong adhesiveness to carbon fiber, aramid fiber, boron fiber, glass fiber and other reinforcing fibers, and excellent strength, elastic modulus, and heat resistance as a matrix resin for prepreg. Is preferred.
  プリプレグのマトリックス樹脂として、炭素繊維、アラミド繊維、ボロン繊維、ガラス繊維などの強化繊維との接着性が強く、強度、弾性率、耐熱性にも優れたエポキシ樹脂を用いることが好ましい。
マトリックス樹脂にエポキシ樹脂を組み合わせると、成分[A]のカルボキシル基含有ポリビニルホルマール樹脂を含めたポリビニルホルマール樹脂のエポキシ樹脂への相溶性が高く、またプリプレグを積層して硬化した際にはエポキシ樹脂との架橋による樹脂の強靭化を期待できる。
As the prepreg matrix resin, it is preferable to use an epoxy resin that has strong adhesion to reinforcing fibers such as carbon fiber, aramid fiber, boron fiber, and glass fiber, and is excellent in strength, elastic modulus, and heat resistance.
When the epoxy resin is combined with the matrix resin, the compatibility of the polyvinyl formal resin including the carboxyl group-containing polyvinyl formal resin of the component [A] with the epoxy resin is high, and when the prepreg is laminated and cured, the epoxy resin It can be expected that the resin is toughened by crosslinking.
 固形エポキシ樹脂と液状エポキシ樹脂を併用することで、樹脂組成物調製における成分[A]を均一に溶解させることができる。 By using the solid epoxy resin and the liquid epoxy resin in combination, the component [A] in the resin composition preparation can be uniformly dissolved.
 例えば固形エポキシ樹脂の軟化点が60℃以上あれば、予め成分[A]のカルボキシル基含有ポリビニルホルマール樹脂を含めたポリビニルホルマール樹脂を成分[C]の液状エポキシ樹脂に130℃以上で溶解させた後、80~90℃に温度を下げて成分[B]の固形エポキシ樹脂を容易に溶解させることができる。 For example, if the softening point of the solid epoxy resin is 60 ° C. or higher, after the polyvinyl formal resin including the carboxyl group-containing polyvinyl formal resin of component [A] is dissolved in the liquid epoxy resin of component [C] at 130 ° C. or higher in advance. The solid epoxy resin of component [B] can be easily dissolved by lowering the temperature to 80 to 90 ° C.
 固形エポキシ樹脂の種類については、樹脂組成物調製において溶解しやすくするためには軟化点が60℃以上であることが好ましい。 As for the type of the solid epoxy resin, it is preferable that the softening point is 60 ° C. or higher in order to facilitate dissolution in the preparation of the resin composition.
 具体的には、固形エポキシ樹脂は、分子内に2個以上のエポキシ基を有する化合物であり、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂などを使用することができる。また強化繊維とマトリックス樹脂との密着性をさらに向上させるためにオキサゾリドン環構造を持つ固形エポキシ樹脂を使用することができる。これらのエポキシ樹脂は、単独、または2種類以上を併用して使用することができる。 Specifically, the solid epoxy resin is a compound having two or more epoxy groups in the molecule, and is a bisphenol type epoxy resin, a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a biphenyl type epoxy resin, or a naphthalene type epoxy. Resin, fluorene type epoxy resin, etc. can be used. A solid epoxy resin having an oxazolidone ring structure can be used to further improve the adhesion between the reinforcing fiber and the matrix resin. These epoxy resins can be used alone or in combination of two or more.
 ビスフェノール型エポキシ樹脂については、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ブロム化ビスフェノールA型エポキシ樹脂などがある。 Examples of the bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and brominated bisphenol A type epoxy resin.
 ビスフェノールA型の固形エポキシ樹脂としては、三菱ケミカル株式会社製品では、例えばjER1001、jER1002、jER1003、jER1004、jER1055、jER1007、jER1009、jER1010が含まれる。 Examples of the bisphenol A type solid epoxy resin include jER1001, jER1002, jER1003, jER1004, jER1055, jER1007, jER1009, and jER1010 in Mitsubishi Chemical Corporation products.
 ビスフェノールF型の固形エポキシ樹脂としては、三菱ケミカル株式会社製品では、例えばjER4004P、jER4005P、jER4007P、jER4010Pが含まれる。 Examples of the bisphenol F type solid epoxy resin include, for example, jER4004P, jER4005P, jER4007P, and jER4010P in Mitsubishi Chemical Corporation products.
 ブロム化ビスフェノールA型の固形エポキシ樹脂としては、三菱ケミカル株式会社製品のjER5046B80が含まれる。 Brominated bisphenol A type solid epoxy resin includes jER5046B80 manufactured by Mitsubishi Chemical Corporation.
 フェノールノボラック型の固形エポキシ樹脂としては、三菱ケミカル株式会社製品のjER152、jER154が含まれる。 Examples of the phenol novolac type solid epoxy resin include jER152 and jER154 manufactured by Mitsubishi Chemical Corporation.
 クレゾールノボラック型の固形エポキシ樹脂としては、日本化薬株式会社製品のEOCN-1020、EOCN-102S、EOCN-104Sなどが含まれる。 Examples of the cresol novolak type solid epoxy resin include Nippon Kayaku Co., Ltd. products EOCN-1020, EOCN-102S, EOCN-104S, and the like.
 ビフェニル型の固形エポキシ樹脂としては、三菱ケミカル株式会社製品のjER YX4000、jER YX4000H、jER YL6121Hなどが含まれる。 Examples of the biphenyl type solid epoxy resin include jER YX4000, jER YX4000H, jER YL6121H, etc. manufactured by Mitsubishi Chemical Corporation.
 ナフタレン型の固形エポキシ樹脂としては日本化薬株式会社製品のNC-7000L、NC-7300Lなどが含まれる。 As naphthalene type solid epoxy resin, Nippon Kayaku Co., Ltd. products such as NC-7000L and NC-7300L are included.
 フルオレン型の固形エポキシ樹脂としてはナガセケムテックス製のオンコートEX-1010、EX-1011、EX-1012などが含まれる。 Fluorene-type solid epoxy resins include on-coat EX-1010, EX-1011 and EX-1012 manufactured by Nagase ChemteX.
 オキサゾリドン環構造を持つ固形エポキシ樹脂としては旭化成イーマテリアルズ株式会社製品のAER4152、DOW株式会社製のDER858などが含まれる。 Examples of solid epoxy resins having an oxazolidone ring structure include AER4152 manufactured by Asahi Kasei E-Materials Corporation, DER858 manufactured by DOW Corporation, and the like.
 これらのなかで、軟化点が少なくとも前記温度より高いものから、成分[B]が選択される。 Among these, the component [B] is selected from those having a softening point at least higher than the above temperature.
 成分[C] 液状エポキシ樹脂
 液状エポキシ樹脂は使用時に25℃で液状であればよいが、マトリックス樹脂に液状エポキシ樹脂を用いた場合、カルボキシル基含有ポリビニルホルマール樹脂をはじめとするポリビニルホルマール樹脂のエポキシ樹脂への相溶性が高いため、エポキシ樹脂の種類については、150℃で液状のものであることが好ましい。通常、ポリビニルホルマールの液状エポキシ樹脂への溶解温度が130~150℃であるためである。ここで液状とは、常温(25℃)で液状であり、固形分を含まない状態をいう。また、液状エポキシ樹脂の粘度は25℃で1.5~15Pa・sであることが好ましい。
Component [C] Liquid Epoxy Resin The liquid epoxy resin may be liquid at 25 ° C. at the time of use, but when a liquid epoxy resin is used as the matrix resin, an epoxy resin of a polyvinyl formal resin including a carboxyl group-containing polyvinyl formal resin. Since the compatibility of the epoxy resin is high, the epoxy resin is preferably liquid at 150 ° C. This is because the melting temperature of polyvinyl formal in a liquid epoxy resin is usually 130 to 150 ° C. Here, the liquid state means a state that is liquid at normal temperature (25 ° C.) and does not contain a solid content. The viscosity of the liquid epoxy resin is preferably 1.5 to 15 Pa · s at 25 ° C.
 カルボキシル基含有ポリビニルホルマール樹脂は多くの細孔を有する粒子(細孔容積(代表値);0.71ml/g)であり、予めカルボキシル基含有ポリビニルホルマール粒子と液状エポキシ樹脂を混練してエポキシ樹脂を細孔に充填させれば溶解性が向上し、少なくとも100℃でエポキシ樹脂に溶解し、130~150℃であれば溶解時間が短縮する。 The carboxyl group-containing polyvinyl formal resin is a particle having a large number of pores (pore volume (representative value); 0.71 ml / g). The carboxyl group-containing polyvinyl formal particle and the liquid epoxy resin are previously kneaded to obtain an epoxy resin. If the pores are filled, the solubility is improved, and the solubility is increased at least at 100 ° C. in the epoxy resin, and the dissolution time is shortened at 130 to 150 ° C.
 液状エポキシ樹脂は1種の液状エポキシ樹脂、もしくは2種以上の液状エポキシ樹脂を混合したものを用いてよい。 The liquid epoxy resin may be one liquid epoxy resin or a mixture of two or more liquid epoxy resins.
 液状エポキシ樹脂としてはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂などが挙げられる。 Examples of the liquid epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, alicyclic epoxy resin, and glycidylamine type epoxy resin.
 ビスフェノールA型の液状エポキシ樹脂として三菱ケミカル株式会社製品では、jER827、jER828などが挙げられる。 As a bisphenol A type liquid epoxy resin, jER827, jER828 and the like are listed as Mitsubishi Chemical Corporation products.
 ビスフェノールF型エポキシ樹脂としては、三菱ケミカル株式会社製品では、jER806、jER807などが挙げられる。 Examples of the bisphenol F type epoxy resin include jER806, jER807 and the like in Mitsubishi Chemical Corporation products.
 脂環式エポキシ樹脂としては、ダイセル化学工業株式会社製品のセロキサイド2021P、セロキサイド2081などが含まれる。 Examples of the alicyclic epoxy resin include Daicel Chemical Industries, Ltd. products Celoxide 2021P, Celoxide 2081, and the like.
 グリシジルアミン型エポキシ樹脂としては、住友化学製品のELM434、Ciba Specialty ChemicalsのYH-434L、三菱ケミカル株式会社製品のjER630、jER604や、ハンツマン・アドバンスド・マテリアルズ製のアラルダイトMY0600、日本化薬株式会社製品のGAN,GOTが含まれる。 Examples of glycidylamine type epoxy resins include Sumitomo Chemical's ELM434, Ciba Specialty Chemicals YH-434L, Mitsubishi Chemical Corporation jER630 and jER604, Huntsman Advanced Materials Araldite MY0600, Nippon Kayaku Co., Ltd. GAN and GOT are included.
 液状エポキシ樹脂は、オキシラニル基を少なくとも1つ有する液状化合物である。一般的な液状エポキシ樹脂よりも分子量が低く、25℃での粘度が2mPa・sから100mPa・sである液状化合物でもよい。このような液状化合物は一方の液状エポキシ樹脂の粘度を下げる目的で使用するのが好ましい。 The liquid epoxy resin is a liquid compound having at least one oxiranyl group. A liquid compound having a molecular weight lower than that of a general liquid epoxy resin and a viscosity at 25 ° C. of 2 mPa · s to 100 mPa · s may be used. Such a liquid compound is preferably used for the purpose of reducing the viscosity of one liquid epoxy resin.
 そのような液状化合物としてモノエポキシド類が挙げられる。モノエポキシド類として、アルコール系のアリルグリシジルエーテル、n-ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、高級アルコールグリシジルエーテルがある。フェノール系としてフェニルグリシジルエーテル、p-tert-ブチルフェニルグリシジルエーテル、クレジルグリシジルエーテル、フェノール(EO)5グリシジルエーテル、sec-ブチルフェニルグリシジルエーテル、カルダノールジグリシジルエーテル、ジブロモフェニルグリシジルエーテルなどが挙げられる。 Examples of such liquid compounds include monoepoxides. Monoepoxides include alcohol-based allyl glycidyl ether, n-butyl glycidyl ether, 2-ethylhexyl glycidyl ether, and higher alcohol glycidyl ether. Examples of phenols include phenyl glycidyl ether, p-tert-butylphenyl glycidyl ether, cresyl glycidyl ether, phenol (EO) 5 glycidyl ether, sec-butylphenyl glycidyl ether, cardanol diglycidyl ether, dibromophenyl glycidyl ether, and the like. .
 その他の化合物として、グリシジルメタクリレート、スチレンオキサイド、3級カルボン酸グリシジルエステル、ジエポキシド類としてN,N’-ジグリシジルアニリン、N,N-ジグリシジル-O-トルイジン、無水ヘキサヒドロフタル酸ジグリシジルエステル、ポリエチレングリコールジグリシジルエーテル(n=2~13)、エチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル(n=3~11)、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レソルシノールジグリシジルエーテル、ジグリシジル-O-フタレート、ジブロモネオペンチルグリコールジグリシジルエーテルなどが挙げられる。 Other compounds include glycidyl methacrylate, styrene oxide, tertiary carboxylic acid glycidyl ester, diepoxides such as N, N′-diglycidylaniline, N, N-diglycidyl-O-toluidine, anhydrous hexahydrophthalic acid diglycidyl ester, polyethylene Glycol diglycidyl ether (n = 2 to 13), ethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether (n = 3 to 11), neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcinol Examples include diglycidyl ether, diglycidyl-O-phthalate, dibromoneopentyl glycol diglycidyl ether, and the like.
 また、トリエポキシド類として、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテルなどが挙げられる。 Further, examples of the triepoxides include glycerol polyglycidyl ether and trimethylolpropane polyglycidyl ether.
 成分[B]と成分[C]を併用することにより炭素繊維複合材料に成形するときに熱硬化時の樹脂粘度低下による樹脂の金型からの漏出を防ぐことができ、プリプレグのタック性の調整や熱硬化させたときの架橋密度向上による靭性の低下を防ぐごとができる。
成分[D] アミン硬化剤
 アミン硬化剤[D]がジシアンジアミドまたはその誘導体が好ましく使用される。
By using component [B] and component [C] together, leakage from the resin mold due to a decrease in resin viscosity during thermosetting can be prevented when molding into a carbon fiber composite material, and adjustment of tackiness of prepreg Or to prevent a decrease in toughness due to improved crosslink density when heat-cured.
Component [D] Amine Curing Agent The amine curing agent [D] is preferably dicyandiamide or a derivative thereof.
 たとえば、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン、脂肪族アミン、イミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、及びこれらの異性体、変成体などがある。これらの中でも、プリプレグの保存性に優れる点で、ジシアンジアミドが特に好ましい。 Examples include aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea-added amines, and isomers and modified forms thereof. Among these, dicyandiamide is particularly preferable in terms of excellent prepreg storage.
 誘導体としては、ジシアンジアミドに各種化合物を結合させたものであり、エポキシ樹脂との反応物、ビニル化合物やアクリル化合物との反応物などが挙げられる。 Derivatives are those obtained by bonding various compounds to dicyandiamide, and include reactants with epoxy resins, reactants with vinyl compounds and acrylic compounds.
 ジシアンジアミドは粒子状の硬化剤であり、25℃での温度下ではエポキシ樹脂成分に溶解せず、粒子状のままエポキシ樹脂成分に分散した状態となるため、各エポキシ樹脂成分中のエポキシ基と接触する面積が小さくなることから反応性をほとんど示さず、通常180℃以上まで加熱するとエポキシ樹脂に溶解し、エポキシ基と反応する特徴を有する。 Dicyandiamide is a particulate curing agent that does not dissolve in the epoxy resin component at a temperature of 25 ° C., but is dispersed in the epoxy resin component in the form of particles, so that it contacts the epoxy group in each epoxy resin component. Since it has a small area, it exhibits little reactivity and is usually dissolved in an epoxy resin when heated to 180 ° C. or higher and has a characteristic of reacting with an epoxy group.
 アミン硬化剤[D]の配合量は、得られる樹脂組成物の保存安定性、プリプレグ硬化時の発熱量および硬化物の耐熱性などを適正な範囲とするため、成分[B]および[C]を含む全エポキシ樹脂成分100重量部に対し、好ましくは1~10重量部の範囲であり、2~8重量部の範囲であればさらに好ましい。ジシアンジアミドの配合量をかかる範囲とすることで、硬化不足や反応発熱過多による耐熱性や力学特性の低下を起こすことなく、良好な硬化物を得ることができる。ジシアンジアミドの市販品としては、DICY-7、DICY-15(以上、三菱ケミカル(株)製)などが挙げられる。 The compounding amount of the amine curing agent [D] is such that the storage stability of the resulting resin composition, the calorific value at the time of prepreg curing, the heat resistance of the cured product, and the like are in an appropriate range. Is preferably in the range of 1 to 10 parts by weight, more preferably in the range of 2 to 8 parts by weight with respect to 100 parts by weight of the total epoxy resin component. By setting the blending amount of dicyandiamide within such a range, a good cured product can be obtained without causing deterioration of heat resistance and mechanical properties due to insufficient curing or excessive reaction heat generation. Examples of commercially available dicyandiamide include DICY-7 and DICY-15 (manufactured by Mitsubishi Chemical Corporation).
 また、本発明のプリプレグ調製に用いるアミン硬化剤の硬化活性を高めるために、硬化助剤を併用するのが好ましい。例えばエポキシ樹脂の硬化剤がジシアンジアミドである場合の硬化助剤は3-フェニル-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(DCMU)、3-(3-クロロ-4-メチルフェニル)-1,1-ジメチル尿素、2,4-ビス(3,3-ジメチルウレイド)トルエン等の尿素誘導体が好ましい。これらの硬化助剤を用いれば通常ジシアンジアミド単独では硬化に170~180℃の温度が必要なところ、ジシアンジアミドと併用することにより80~150℃で硬化可能とすることができる。 Further, in order to increase the curing activity of the amine curing agent used for the preparation of the prepreg of the present invention, it is preferable to use a curing aid together. For example, when the epoxy resin curing agent is dicyandiamide, the curing aid is 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), 3- ( Urea derivatives such as 3-chloro-4-methylphenyl) -1,1-dimethylurea and 2,4-bis (3,3-dimethylureido) toluene are preferred. When these curing aids are used, dicyandiamide alone usually requires a temperature of 170 to 180 ° C., but when used together with dicyandiamide, it can be cured at 80 to 150 ° C.
 ウレア類の市販品としては、DCMU99(PTIジャパン(株)製)、Omicure24、Omicure52、Omicure94(以上、CVC Specialty Chemicals,Inc.製)などが挙げられる。 Examples of commercially available ureas include DCMU99 (manufactured by PTI Japan Co., Ltd.), Omicure 24, Omicure 52, and Omicure 94 (above, manufactured by CVC Specialty Chemicals, Inc.).
 本発明のプリプレグ製造に用いる樹脂組成物の製造方法には特段の制限はなく、この組成物を構成する各成分をニーダー、プラネタリーミキサー等の一般的な撹拌加熱装置、攪拌加圧加熱装置にて充分に混合することによって製造することができる。 There is no particular limitation on the method for producing the resin composition used for producing the prepreg of the present invention, and each component constituting this composition is applied to a general stirring and heating device such as a kneader and a planetary mixer, and a stirring and pressure heating device. And thoroughly mixed.
 樹脂組成物を製造する際には、カルボキシル基含有ポリビニルホルマール樹脂を含むポリビニルホルマール樹脂を先に液状エポキシ樹脂に130℃以上で溶解させ、つぎに固形エポキシ樹脂を80~90℃にて溶解させ、最後に50~60℃でアミン硬化剤を分散させるのが好ましい。
強化繊維
 強化繊維としては特に限定されず、繊維強化複合材料を構成する強化繊維として公知のものの中から用途等に応じて適宜選択すればよく、本発明で用いられる強化繊維としては、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、ボロン繊維、アルミナ繊維および炭化ケイ素繊維等が挙げられる。これらの強化繊維を2種以上混合して用いても構わないが、より軽量で、より耐久性の高い成形品を得るために、炭素繊維や黒鉛繊維を用いることが好ましい。特に、材料の軽量化や高強度化の要求が高い用途においては、その優れた比弾性率と比強度のため、炭素繊維を好適に用いられる。
プリプレグの製造方法
 本発明のプリプレグの製造方法に特段の制限はない。例えば、樹脂組成物を加熱により低粘度化し、強化繊維に含浸させるホットメルト法、あるいは樹脂組成物をメチルエチルケトンやメタノール等の溶媒に溶解して低粘度化し、強化繊維に含浸させる方法(ウェット法)が挙げられる。
When producing a resin composition, a polyvinyl formal resin containing a carboxyl group-containing polyvinyl formal resin is first dissolved in a liquid epoxy resin at 130 ° C. or higher, and then a solid epoxy resin is dissolved at 80 to 90 ° C., Finally, the amine curing agent is preferably dispersed at 50 to 60 ° C.
The reinforcing fiber reinforced fiber is not particularly limited, and may be appropriately selected according to the use etc. from those known as the reinforcing fiber constituting the fiber reinforced composite material. As the reinforcing fiber used in the present invention, glass fiber, Examples thereof include carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber. Two or more kinds of these reinforcing fibers may be mixed and used, but in order to obtain a molded product that is lighter and more durable, it is preferable to use carbon fibers or graphite fibers. In particular, in applications where there is a high demand for reducing the weight and strength of materials, carbon fibers are preferably used because of their excellent specific modulus and specific strength.
Production method of prepreg There is no particular limitation on the production method of the prepreg of the present invention. For example, a hot melt method in which the resin composition is reduced in viscosity by heating and impregnated into reinforcing fibers, or a method in which the resin composition is dissolved in a solvent such as methyl ethyl ketone or methanol to lower the viscosity and impregnate into reinforcing fibers (wet method) Is mentioned.
 ウェット法は、強化繊維を樹脂組成物の溶液に浸漬した後、引き上げ、オーブン等を用いて溶媒を蒸発させる方法であり、ホットメルト法(ドライ法)は、加熱により低粘度化した樹脂組成物を直接強化繊維に含浸させる方法、または一旦樹脂組成物を離型紙等の上にコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂組成物を含浸させる方法である。ホットメルト法によれば、プリプレグ中に残留する溶媒が実質上皆無となるため、本発明においては好ましい態様である。 The wet method is a method in which a reinforcing fiber is immersed in a solution of the resin composition and then lifted and the solvent is evaporated using an oven or the like. The hot melt method (dry method) is a resin composition whose viscosity is reduced by heating. Directly impregnating the reinforcing fiber, or a film in which the resin composition is once coated on a release paper or the like is prepared, and then the film is laminated from both sides or one side of the reinforcing fiber and heated and pressed to reinforce the fiber. Is impregnated with a resin composition. According to the hot melt method, the solvent remaining in the prepreg is substantially absent, and therefore, this is a preferred embodiment in the present invention.
 本発明のプリプレグでは含浸させた強化繊維の繊維体積含有率(Vf)は、強化繊維を含めたプリプレグの体積を100vol%としたときに、40~90vol%が好ましく、50~80vol%がより好ましい。Vfが50vol%以上であれば得られる複合材料の質量が過大になることがなく、比強度および比弾性率に優れる繊維強化複合材料の利点を保つことができる。また、Vfが80vol%以下であれば樹脂組成物の含浸不良が生じることがなく、得られる複合材料がボイドの少ないものになり、その力学特性が低下することがなくなる。 In the prepreg of the present invention, the fiber volume content (Vf) of the impregnated reinforcing fibers is preferably 40 to 90 vol%, more preferably 50 to 80 vol%, when the volume of the prepreg including the reinforcing fibers is 100 vol%. . If Vf is 50 vol% or more, the mass of the obtained composite material does not become excessive, and the advantages of the fiber-reinforced composite material excellent in specific strength and specific modulus can be maintained. Moreover, if Vf is 80 vol% or less, the impregnation failure of the resin composition does not occur, the resulting composite material has few voids, and the mechanical properties are not deteriorated.
 本発明に用いる強化繊維の形態は、連続繊維を一方向に引き揃えた形態、連続繊維を経緯にして織物とした形態、トウを一方向に引き揃え横糸補助糸で保持した形態、複数枚の一方向の強化繊維のシートを異なる方向に重ねて補助糸でステッチして留めマルチアキシャルワープニットとした形態、また、強化繊維を不織布とした形態などが挙げられるが、硬化物の強度発現の点で、連続繊維を一方向に引き揃えた形態が好ましい。強化繊維の目付けは、繊維強化複合材料の使用目的に応じて自由に設定できるが、50~2000g/m2が実用的に好ましい範囲である。 The form of the reinforcing fiber used in the present invention is a form in which the continuous fibers are aligned in one direction, a form in which the continuous fibers are used as a woven fabric, a form in which the tow is aligned in one direction and held by a weft auxiliary yarn, a plurality of sheets There are multi-axial warp knit forms that overlap unidirectional reinforcing fiber sheets in different directions and stitch together with auxiliary yarns, and non-woven forms of reinforcing fibers. And the form which arranged the continuous fiber in one direction is preferable. The basis weight of the reinforcing fiber can be freely set according to the purpose of use of the fiber reinforced composite material, but 50 to 2000 g / m 2 is a practically preferable range.
 本発明で好ましく用いられる炭素繊維は、用途に応じてあらゆる種類の炭素繊維を用いることが可能であるが、耐衝撃性の点から230~400GPaの引張弾性率を有する炭素繊維であることが好ましい。また、強度の観点からは、高い剛性および機械強度を有する複合材料が得られることから、引張強度が好ましくは4.4~6.5GPaの炭素繊維が用いられる。また、引張伸度も重要な要素であり、1.7~2.3%の高強度高伸度炭素繊維であることが好ましい。 The carbon fiber preferably used in the present invention can be any type of carbon fiber depending on the application, but is preferably a carbon fiber having a tensile modulus of 230 to 400 GPa from the viewpoint of impact resistance. . From the viewpoint of strength, a carbon fiber having a tensile strength of preferably 4.4 to 6.5 GPa is preferably used because a composite material having high rigidity and mechanical strength can be obtained. Also, the tensile elongation is an important factor, and it is preferable that the carbon fiber is a high strength and high elongation carbon fiber of 1.7 to 2.3%.
 炭素繊維の市販品としては、“トレカ(登録商標)”T800G-24K、“トレカ(登録商標)”T800S-24K、“トレカ(登録商標)”T700G-24K、“トレカ(登録商標)”T300-3K、および“トレカ(登録商標)”T700S-12K(以上東レ(株)製)、TR50S(三菱レイヨン製)などが挙げられる。 Commercially available carbon fibers include “Torayca (registered trademark)” T800G-24K, “Torayca (registered trademark)” T800S-24K, “Torayca (registered trademark)” T700G-24K, and “Torayca (registered trademark)” T300- 3K, and "Torayca (registered trademark)" T700S-12K (manufactured by Toray Industries, Inc.), TR50S (manufactured by Mitsubishi Rayon), and the like.
 本発明のプリプレグは、上述した本発明の樹脂組成物を強化繊維に含浸させてなるものであり、硬化することで強度や耐熱性などに優れた繊維強化複合材料を得ることができる。 The prepreg of the present invention is obtained by impregnating a reinforcing fiber with the above-described resin composition of the present invention, and a fiber-reinforced composite material having excellent strength and heat resistance can be obtained by curing.
 繊維強化複合材料の作製法については公知の方法を用いることができる。代表的な方法として、プリプレグ法、フィラメントワインディング法、レジントランスファーモールディング法がある。プリプレグ法に適用できる樹脂組成物粘度の範囲が1Pa・s~10000Pa・s、フィラメントワインディング法に適用できる樹脂組成物粘度の範囲が15mPa・s~30Pa・s、レジントランスファーモールディング法に適用できる樹脂組成物粘度の範囲が350mPa・s~1Pa・sである。 A publicly known method can be used about the preparation method of a fiber reinforced composite material. Typical methods include a prepreg method, a filament winding method, and a resin transfer molding method. Resin composition viscosity applicable to prepreg method is 1 Pa · s to 10000 Pa · s, resin composition viscosity applicable to filament winding method is 15 mPa · s to 30 Pa · s, resin composition applicable to resin transfer molding method The range of the product viscosity is 350 mPa · s to 1 Pa · s.
 本発明のプリプレグに用いる樹脂組成物はカルボキシル基含有ポリビニルホルマールを添加することで樹脂組成物の粘度が増大することから高粘度まで対応可能なプリプレグ法への適用が好ましい。 The resin composition used for the prepreg of the present invention is preferably applied to a prepreg method capable of dealing with a high viscosity since the viscosity of the resin composition is increased by adding a carboxyl group-containing polyvinyl formal.
 例えば、前記のプリプレグで繊維強化複合材料を作製する場合、プリプレグシートを所定の方向に配列して積層し、加圧し一体化させ、最終的に加熱、加圧して硬化する。 For example, when a fiber-reinforced composite material is produced with the prepreg, the prepreg sheets are arranged and laminated in a predetermined direction, pressed and integrated, and finally heated and pressed to be cured.
 本発明の繊維強化複合材料の製造方法における成形法はオートクレーブ成形法、真空バック成形法、オーブン成形法、プレス成形法、連続プレス成形法、引き抜き成形法、内圧成形法、シートラップ成形法が挙げられる。 Examples of the molding method in the production method of the fiber-reinforced composite material of the present invention include autoclave molding method, vacuum back molding method, oven molding method, press molding method, continuous press molding method, pultrusion molding method, internal pressure molding method, and sheet wrap molding method. It is done.
 本発明のプリプレグを積層し、熱硬化することにより成形した繊維強化複合材料は、航空機用途、一般産業用途、およびスポーツ用途に好適に用いられる。より具体的には、航空宇宙用途では、主翼、尾翼およびフロアビーム等の航空機一次構造材用途、航空機客室、フラップ、エルロン、カウル、フェアリングおよび内装材等の二次構造材用途、ロケットモーターケースおよび人工衛星構造材用途等に好適に用いられる。このような航空宇宙用途の中でも、特に耐衝撃性が必要で、かつ、高度飛行中において低温にさらされるため、低温における引張強度が必要な航空機一次構造材用途、特に胴体スキンや主翼スキンにおいて、本発明の繊維強化複合材料が特に好適に用いられる。また、一般産業用途では、自動車、船舶および鉄道車両等の移動体の構造材、ドライブシャフト、板バネ、風車ブレード、各種タービン、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、補強筋、および補修補強材料等の土木・建築材料用途等に好適に用いられる。さらにスポーツ用途では、ゴルフシャフト、釣竿、テニス、バトミントンおよびスカッシュ等のラケット用途、ホッケー等のスティック用途、およびスキーポール用途等に好適に用いられる。 The fiber reinforced composite material formed by laminating and thermosetting the prepreg of the present invention is suitably used for aircraft use, general industrial use, and sports use. More specifically, in aerospace applications, primary structural material applications such as main wings, tail wings and floor beams, secondary structural material applications such as aircraft cabins, flaps, ailerons, cowls, fairings and interior materials, rocket motor cases It is suitably used for satellite structural material applications. Among such aerospace applications, impact resistance is required, and because it is exposed to low temperatures during high altitude flight, aircraft primary structure applications that require tensile strength at low temperatures, especially fuselage skins and main wing skins, The fiber-reinforced composite material of the present invention is particularly preferably used. In general industrial applications, structural materials for moving bodies such as automobiles, ships, and railway vehicles, drive shafts, leaf springs, windmill blades, various turbines, pressure vessels, flywheels, paper rollers, roofing materials, cables, reinforcement bars And suitable for civil engineering and building material applications such as repair and reinforcement materials. Further, in sports applications, it is suitably used for golf shafts, fishing rods, tennis, badminton, squash and other racket applications, hockey and other stick applications, and ski pole applications.
 次に本発明を実施例によってさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<使用したポリビニルホルマールの分子量と組成>
 実施例で使用したカルボキシル基含有ポリビニルホルマール樹脂はJNC株式会社製ビニレック(登録商標)、グレード:PVF‐Cである。重量平均分子量Mwは62000であり、ビニルホルマール(構成単位a)は70.42mol%、酢酸ビニル(構成単位b)は10.34mol%、ビニルアルコール(構成単位c)は16.09mol%、アクリル酸(構成単位d)は3.15mol%である。
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to these.
<Molecular weight and composition of the used polyvinyl formal>
The carboxyl group-containing polyvinyl formal resin used in the examples is Vinylec (registered trademark), grade: PVF-C manufactured by JNC Corporation. The weight average molecular weight Mw is 62000, vinyl formal (constituent unit a) is 70.42 mol%, vinyl acetate (constituent unit b) is 10.34 mol%, vinyl alcohol (constituent unit c) is 16.09 mol%, and acrylic acid. (Structural unit d) is 3.15 mol%.
 比較例で使用したポリビニルホルマールはJNC株式会社製ビニレック(登録商標)、グレード:PVF‐K、PVF-Eである。PVF‐Kに関して、重量平均分子量Mwは54000であり、ビニルホルマール(構成単位a)は75.13mol%、酢酸ビニル(構成単位b)は12.26mol%、ビニルアルコール(構成単位c)は12.61mol%である。 The polyvinyl formal used in the comparative examples is Vinylec (registered trademark) manufactured by JNC Corporation, grades: PVF-K, PVF-E. Regarding PVF-K, the weight average molecular weight Mw is 54000, vinyl formal (structural unit a) is 75.13 mol%, vinyl acetate (structural unit b) is 12.26 mol%, and vinyl alcohol (structural unit c) is 12. 61 mol%.
 PVF-Eに関して、重量平均分子量Mwは120000であり、ビニルホルマール(構成単位a)は74.80mol%、酢酸ビニル(構成単位b)は12.66mol%、ビニルアルコール(構成単位c)は12.54mol%である。PVF-KおよびPVK-Eはカルボキシル基が導入されていないポリビニルホルマール樹脂である。
<使用した他の熱可塑性樹脂>
 他の熱可塑性樹脂としてフェノキシ樹脂(PKHP200 巴工業製)を使用した。PKHP200に関して、重量平均分子量Mwは52000である。
<使用した液状エポキシ樹脂>
jER828:ビスフェノールA型エポキシ樹脂 平均分子量370 エポキシ当量184~194  三菱ケミカル製(25℃で液状、粘度(25℃):12~15Pa・s)
<使用した固形エポキシ樹脂>
jER1001:ビスフェノールA型エポキシ樹脂 平均分子量900 エポキシ当量450~500三菱ケミカル製(軟化点:64℃)

<使用したアミン硬化剤>
DICY7:ジシアンジアミド 三菱ケミカル製
<使用した硬化促進剤>
DCMU99:3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素、PTIジャパン株式会社製
<使用した炭素繊維>
TR50S15L:三菱ケミカル製 引張強度4.9GPa、引張弾性率240GPa、引張伸度        2%
<樹脂粘度の測定>
 樹脂組成物の粘度測定についてアミン硬化剤があると80℃で反応し、粘度上昇がおこるため、成分A、成分B、成分Cからなる樹脂組成物、または成分B、成分Cからなる樹脂組成物を調製して実施した。
Regarding PVF-E, the weight average molecular weight Mw is 120,000, vinyl formal (constituent unit a) is 74.80 mol%, vinyl acetate (constituent unit b) is 12.66 mol%, and vinyl alcohol (constituent unit c) is 12. 54 mol%. PVF-K and PVK-E are polyvinyl formal resins into which carboxyl groups are not introduced.
<Other thermoplastic resins used>
As another thermoplastic resin, a phenoxy resin (PKHP200 manufactured by Sakai Kogyo Co., Ltd.) was used. For PKHP200, the weight average molecular weight Mw is 52000.
<Liquid epoxy resin used>
jER828: Bisphenol A type epoxy resin Average molecular weight 370 Epoxy equivalent 184 to 194 Made by Mitsubishi Chemical (liquid at 25 ° C, viscosity (25 ° C): 12 to 15 Pa · s)
<Used solid epoxy resin>
jER1001: Bisphenol A type epoxy resin Average molecular weight 900 Epoxy equivalent 450-500 Made by Mitsubishi Chemical (softening point: 64 ° C)

<Amine curing agent used>
DICY7: Dicyandiamide Made by Mitsubishi Chemical <Used accelerator>
DCMU99: 3- (3,4-dichlorophenyl) -1,1-dimethylurea, manufactured by PTI Japan Co., Ltd. <Carbon fiber used>
TR50S15L: Made by Mitsubishi Chemical Tensile strength 4.9 GPa, Tensile modulus 240 GPa, Tensile elongation 2%
<Measurement of resin viscosity>
Regarding the viscosity measurement of a resin composition, if there is an amine curing agent, it reacts at 80 ° C. and the viscosity rises. Therefore, a resin composition comprising Component A, Component B and Component C, or a resin composition comprising Component B and Component C Was prepared and carried out.
 レオメーター(MCR-302 アントンパール社製)で振り角60%、周波数0.5Hz、昇温速度3℃/min、温度30~130℃の条件で温度―粘度の関係を測定した。 A temperature-viscosity relationship was measured with a rheometer (MCR-302, manufactured by Anton Paar) under conditions of a swing angle of 60%, a frequency of 0.5 Hz, a temperature increase rate of 3 ° C./min, and a temperature of 30 to 130 ° C.
 以下、粘度測定に用いた樹脂組成物の調製法を示す。粘度測定には、アミン硬化剤が含まれていない以外は実施例および比較例と同じ組成のものを調製する。 Hereinafter, the preparation method of the resin composition used for the viscosity measurement is shown. For the viscosity measurement, the same composition as in the examples and comparative examples is prepared except that no amine curing agent is contained.
 <実施例1の粘度測定用組成物>
 加熱にはアルミブロックバス付きホットスターラー(RCH-20L EYELA製)、攪拌には攪拌モーター(BLh600 HEIDON製)を用いた。
<Composition for Viscosity Measurement of Example 1>
A hot stirrer with an aluminum block bath (manufactured by RCH-20L EYELA) was used for heating, and a stirring motor (manufactured by BLh600 HEIDON) was used for stirring.
 液状ビスフェノールA型エポキシ樹脂、jER828(三菱ケミカル製)60gを200mLビーカーに秤量し、JNC株式会社製ビニレック((商標)グレード:PVF-C)を7.2g添加して温度130℃、120rpm、120分で溶解させた。 Liquid bisphenol A type epoxy resin, 60 g of jER828 (Mitsubishi Chemical) was weighed into a 200 mL beaker, 7.2 g of JNC Co. vinylec (trademark: PVF-C) was added, and the temperature was 130 ° C., 120 rpm, 120 Dissolved in minutes.
 次に温度を90℃にさげ、固形ビスフェノールA型エポキシ樹脂、jER1001(三菱ケミカル製)60gを添加して120rpmで加熱溶解させた。最後に真空オーブン(Vacuum Oven ADP300 ヤマト製)でダイヤフラムポンプにより90℃、30kPaにて真空脱泡した。
<比較例1の粘度測定用組成物>
 加熱にはアルミブロックバス付きホットスターラー(RCH-20L EYELA製)、攪拌には攪拌モーター(BLh600 HEIDON製)を用いた。
Next, the temperature was lowered to 90 ° C., 60 g of solid bisphenol A type epoxy resin, jER1001 (manufactured by Mitsubishi Chemical) was added and dissolved by heating at 120 rpm. Finally, vacuum deaeration was performed at 90 ° C. and 30 kPa with a diaphragm pump in a vacuum oven (Vacuum Oven ADP300 manufactured by Yamato).
<Composition for Viscosity Measurement of Comparative Example 1>
A hot stirrer with an aluminum block bath (manufactured by RCH-20L EYELA) was used for heating, and a stirring motor (manufactured by BLh600 HEIDON) was used for stirring.
 液状ビスフェノールA型エポキシ樹脂、jER828(三菱ケミカル製)60gを200mLビーカーに秤量し、固形ビスフェノールA型エポキシ樹脂、jER1001(三菱ケミカル製)60gを添加して90℃、120rpmで加熱溶解させた。最後に真空オーブン(Vacuum Oven ADP300 ヤマト製)でダイヤフラムポンプにより90℃、30kPaにて真空脱泡した。
<比較例2の粘度測定用組成物>
 加熱にはアルミブロックバス付きホットスターラー(EYELA製)、攪拌には攪拌モーター(BLh600 HEIDON製)を用いた。
A liquid bisphenol A type epoxy resin, 60 g of jER828 (manufactured by Mitsubishi Chemical) was weighed in a 200 mL beaker, 60 g of solid bisphenol A type epoxy resin, jER1001 (manufactured by Mitsubishi Chemical) was added and dissolved by heating at 90 ° C. and 120 rpm. Finally, vacuum deaeration was performed at 90 ° C. and 30 kPa with a diaphragm pump in a vacuum oven (Vacuum Oven ADP300 manufactured by Yamato).
<Composition for Viscosity Measurement of Comparative Example 2>
A hot stirrer with an aluminum block bath (manufactured by EYELA) was used for heating, and a stirring motor (manufactured by BLh600 HEIDON) was used for stirring.
 液状ビスフェノールA型エポキシ樹脂、jER828(三菱ケミカル製)60gを200mLビーカーに秤量し、巴工業株式会社製フェノキシ樹脂(PKHP200)を7.2g添加して温度130℃、120rpm、40分で溶解させた。 A liquid bisphenol A type epoxy resin, 60 g of jER828 (Mitsubishi Chemical) was weighed in a 200 mL beaker, 7.2 g of phenoxy resin (PKHP200) manufactured by Sakai Kogyo Co., Ltd. was added and dissolved at a temperature of 130 ° C., 120 rpm for 40 minutes. .
 次に温度を90℃にさげ、固形ビスフェノールA型エポキシ樹脂、jER1001(三菱ケミカル製)60gを添加して120rpmで加熱溶解させた。最後に真空オーブン(Vacuum Oven ADP300 ヤマト製)で90℃、30kPaにて真空脱泡した。
<比較例3の粘度測定用組成物>
 加熱にはアルミブロックバス付きホットスターラー(EYELA製)、攪拌には攪拌モーター(BLh600 HEIDON製)を用いた。
Next, the temperature was lowered to 90 ° C., 60 g of solid bisphenol A type epoxy resin, jER1001 (manufactured by Mitsubishi Chemical) was added and dissolved by heating at 120 rpm. Finally, vacuum degassing was performed at 90 ° C. and 30 kPa in a vacuum oven (Vacuum Oven ADP300 manufactured by Yamato).
<Composition for Viscosity Measurement of Comparative Example 3>
A hot stirrer with an aluminum block bath (manufactured by EYELA) was used for heating, and a stirring motor (manufactured by BLh600 HEIDON) was used for stirring.
 液状ビスフェノールA型エポキシ樹脂、jER828(三菱ケミカル製)60gを200mLビーカーに秤量し、JNC株式会社製ビニレック((商標)グレード:PVF-K)を7.2g添加して温度130℃、120rpm、120分で溶解させた。 Liquid bisphenol A type epoxy resin, 60 g of jER828 (Mitsubishi Chemical) was weighed into a 200 mL beaker, 7.2 g of JNC Co., Ltd. vinylec ((trademark) grade: PVF-K) was added, and the temperature was 130 ° C., 120 rpm, 120 Dissolved in minutes.
 次に温度を90℃にさげ、固形ビスフェノールA型エポキシ樹脂、jER1001(三菱ケミカル製)60gを添加して120rpmで加熱溶解させた。最後に真空オーブン(Vacuum Oven ADP300 ヤマト製)で90℃、30kPaにて真空脱泡した。
<比較例4の粘度測定用組成物>
 加熱にはアルミブロックバス付きホットスターラー(EYELA製)、攪拌には攪拌モーター(BLh600 HEIDON製)を用いた。
Next, the temperature was lowered to 90 ° C., 60 g of solid bisphenol A type epoxy resin, jER1001 (manufactured by Mitsubishi Chemical) was added and dissolved by heating at 120 rpm. Finally, vacuum degassing was performed at 90 ° C. and 30 kPa in a vacuum oven (Vacuum Oven ADP300 manufactured by Yamato).
<Composition for Viscosity Measurement of Comparative Example 4>
A hot stirrer with an aluminum block bath (manufactured by EYELA) was used for heating, and a stirring motor (manufactured by BLh600 HEIDON) was used for stirring.
 液状ビスフェノールA型エポキシ樹脂、jER828(三菱ケミカル製)60gを200mLビーカーに秤量し、JNC株式会社製ビニレック((商標)グレード:PVF-E)を7.2g添加して温度130℃、120rpm、120分で溶解させた。 Liquid bisphenol A type epoxy resin, 60 g of jER828 (Mitsubishi Chemical) was weighed into a 200 mL beaker, 7.2 g of Vinylec ((trademark) grade: PVF-E) manufactured by JNC Corporation was added, and the temperature was 130 ° C., 120 rpm, 120 Dissolved in minutes.
 次に温度を90℃にさげ、固形ビスフェノールA型エポキシ樹脂、jER1001(三菱ケミカル製)60gを添加して120rpmで加熱溶解させた。最後に真空オーブン(Vacuum Oven ADP300 ヤマト製)で90℃、30kPaにて真空脱泡した。
<繊維強化複合材料の90°引張強度の測定>
 作製した厚み2mm、320cm×320cmの繊維強化複合材料から、試験片の長手方向に対して補強繊維が90゜に配向するように水冷式複合材料切断機(高速カッターAC-500CF 丸東製作所製)で試験片(長さ250mm×幅25mm)を切り出した。島津製作所製のオートグラフ(AG-IS 100kN)にて該試験片について5kNのロードセルを用いて試験速度1mm/min、25℃、湿度50%の条件下で90°引張試験を実施した(JIS K7165に準拠)。なおひずみ(伸び)はビデオ伸び計を用いて測定し、JIS K7165に従って弾性率を測定した。標線間距離は50mm、チャック間距離は150mmにした。
<繊維強化複合材料の0°圧縮強度の測定>
 作製した厚み2mm、320cm×320cmの繊維強化複合材料から、いったん試験片の長さ方向に対して補強繊維が0゜に配向するように水冷式複合材料切断機(高速カッターAC-500CF 丸東製作所製)で幅98mm、長さ65mmの試験片を切り出した。そして試験片のタブを貼り付ける部位とタブの接着側を接着剤でくっつくように粒度600、1000の紙やすりで傷をつけた。ただし、傷をつける方向はCFRP試験片側では繊維方向に対して90°方向である。タブとして厚み2mm、幅25mm、長さ100mmの寸法で切り出したガラスエポキシ板を用意した。2液型エポキシ接着剤(スリーボンド製)を用いて試験片にタブを接着させ、2日間放置した。なお接着の際は25℃、湿度50%の恒温室で実施した。
Next, the temperature was lowered to 90 ° C., 60 g of solid bisphenol A type epoxy resin, jER1001 (manufactured by Mitsubishi Chemical) was added and dissolved by heating at 120 rpm. Finally, vacuum degassing was performed at 90 ° C. and 30 kPa in a vacuum oven (Vacuum Oven ADP300 manufactured by Yamato).
<Measurement of 90 ° tensile strength of fiber reinforced composite material>
A water-cooled composite material cutting machine (manufactured by a high-speed cutter AC-500CF, Maruto Manufacturing Co., Ltd.) so that the reinforcing fibers are oriented at 90 ° with respect to the longitudinal direction of the test piece from the produced fiber reinforced composite material having a thickness of 2 mm and 320 cm × 320 cm. The test piece (length 250 mm × width 25 mm) was cut out. Using an autograph (AG-IS 100 kN) manufactured by Shimadzu Corporation, the test piece was subjected to a 90 ° tensile test using a 5 kN load cell at a test speed of 1 mm / min, 25 ° C., and a humidity of 50% (JIS K7165). Compliant). The strain (elongation) was measured using a video extensometer, and the elastic modulus was measured according to JIS K7165. The distance between the marked lines was 50 mm, and the distance between the chucks was 150 mm.
<Measurement of 0 ° compressive strength of fiber reinforced composite material>
Water-cooled composite material cutting machine (high-speed cutter AC-500CF Maruto Manufacturing Co., Ltd.) from the manufactured fiber reinforced composite material with a thickness of 2 mm and 320 cm × 320 cm so that the reinforcing fibers are once oriented at 0 ° with respect to the length direction of the test piece. A test piece having a width of 98 mm and a length of 65 mm was cut out. And it scratched with the sandpaper of the particle sizes 600 and 1000 so that the site | part which affixes the tab of a test piece and the adhesion side of a tab may adhere with an adhesive agent. However, the direction of scratching is 90 ° with respect to the fiber direction on the CFRP test piece side. A glass epoxy plate cut out with dimensions of 2 mm thickness, 25 mm width and 100 mm length was prepared as a tab. The tab was adhered to the test piece using a two-pack type epoxy adhesive (manufactured by ThreeBond) and left for 2 days. The bonding was performed in a thermostatic chamber at 25 ° C. and a humidity of 50%.
 試験片の長手方向に対して補強繊維が0°に配向するように水冷式複合材料切断機(高速カッターAC-500CF 丸東製作所製)で長さ55mm×幅20mm(タブの幅を20mm、測定部の長さを15mm)の圧縮試験片を切り出した。該試験片について両面にひずみゲージ(型式:KFGS-1-120-C1-11L1M2R 株式会社共和電業製)を貼り付けた。貼り付けに用いた接着剤はひずみゲージ専用の瞬間接着剤(CC-33A 株式会社共和電業製)を用いた。 Measured 55 mm long x 20 mm wide (20 mm tab width, measured with a water-cooled composite cutting machine (high-speed cutter AC-500CF, manufactured by Maruto Seisakusho) so that the reinforcing fibers are oriented at 0 ° with respect to the longitudinal direction of the test piece. A compression test piece having a length of 15 mm was cut out. Strain gauges (model: KFGS-1-120-C1-11L1M2R, manufactured by Kyowa Denki Co., Ltd.) were attached to both sides of the test piece. As the adhesive used for pasting, an instantaneous adhesive (CC-33A, manufactured by Kyowa Denki Co., Ltd.) dedicated to a strain gauge was used.
 JISK 7018の方法3に準じ、該試験片を圧縮試験用治具に固定し、島津製作所製のオートグラフ(AG-IS 100kN)にて試験速度1mm/minで25℃、湿度50%の条件下で0°圧縮試験を実施した。なおひずみはひずみゲージにより測定し、弾性率をJIS K7076の弾性率の算出法に従って算出した。
<繊維強化複合材料の0°曲げ強度の測定>
 作製した厚み2mm、320cm×320cmの繊維強化複合材料から、試験片の長手方向に対して補強繊維が0゜に配向するように水冷式複合材料切断機(高速カッターAC-500CF 丸東製作所製)で試験片(長さ100mm×幅15mm)を切り出し、該試験片について、4点曲げ治具(圧子の半径3mm、支点の半径3mm、上部支点間距離27mm、下部支点間距離81mm)を設置した島津製作所製のオートグラフ(AG-IS 100kN)を用い、試験速度5mm/min、25℃、湿度50%の条件下で0°曲げ強度の測定を実施した(JIS K7074に準拠)。なお、曲げ弾性率は測定した荷重―変位曲線の初期の直線部の勾配を算出し、JIS K7074の4点曲げ試験(B法)の曲げ弾性率算出式に従って算出した。
<繊維強化複合材料の耐衝撃性の測定>
 作製した厚み2mm、320cm×320cmの繊維強化複合材料から、試験片の長手方向に対して補強繊維が0゜に配向するように水冷式複合材料切断機(高速カッターAC-500CF 丸東製作所製)で試験片(長さ80mm×幅10mm)を切り出した。
According to method 3 of JISK 7018, the test piece was fixed to a compression test jig, and the autograph (AG-IS 100 kN) manufactured by Shimadzu Corporation was used at 25 ° C. and 50% humidity at a test speed of 1 mm / min. A 0 ° compression test was carried out. The strain was measured with a strain gauge, and the elastic modulus was calculated according to the elastic modulus calculation method of JIS K7076.
<Measurement of 0 ° bending strength of fiber reinforced composite material>
A water-cooled composite material cutting machine (manufactured by a high-speed cutter AC-500CF, Maruto Manufacturing Co., Ltd.) so that the reinforcing fibers are oriented at 0 ° with respect to the longitudinal direction of the test piece from the produced fiber reinforced composite material having a thickness of 2 mm and 320 cm × 320 cm. Then, a test piece (length 100 mm × width 15 mm) was cut out and a four-point bending jig (indenter radius 3 mm, fulcrum radius 3 mm, upper fulcrum distance 27 mm, lower fulcrum distance 81 mm) was installed on the test piece. Using an autograph (AG-IS 100 kN) manufactured by Shimadzu Corporation, 0 ° bending strength was measured under the conditions of a test speed of 5 mm / min, 25 ° C., and 50% humidity (conforming to JIS K7074). The bending elastic modulus was calculated according to the bending elastic modulus calculation formula of the four-point bending test (Method B) of JIS K7074 by calculating the gradient of the initial linear portion of the measured load-displacement curve.
<Measurement of impact resistance of fiber reinforced composite material>
A water-cooled composite material cutting machine (high speed cutter AC-500CF, manufactured by Maruto Seisakusho Co., Ltd.) so that the reinforcing fibers are oriented at 0 ° with respect to the longitudinal direction of the test piece from the produced fiber reinforced composite material having a thickness of 2 mm and 320 cm × 320 cm. A test piece (length 80 mm × width 10 mm) was cut out.
 25℃、湿度50%の環境においてシャルピー衝撃試験機(王子計測機器株式会社製)でフラットワイズ衝撃にてハンマーを振り角度149.7°から振り下ろし、該試験片に2Jのエネルギーを与えて衝撃性試験をした(JIS K7077に準拠)。
<繊維強化複合材料の曲げ試験片、90°引張試験片の破断面観察>
  曲げ試験片、ならびに90°引張試験片から破断面を含むサンプルをカッターで切り取り、電子顕微鏡(装置:日立ハイテクノロジーズ SU8020、分析条件:加速電圧1kv、電流10μA)で破断面を以下のようにして観察した。
Shake the hammer from a swing angle of 149.7 ° with a Charpy impact tester (manufactured by Oji Scientific Instruments) in an environment of 25 ° C and 50% humidity. The test was conducted (in accordance with JIS K7077).
<Observation of fracture surface of fiber reinforced composite material bending specimen and 90 degree tensile specimen>
A sample including a fracture surface is cut from a bending test piece and a 90 ° tensile test piece with a cutter, and the fracture surface is as follows with an electron microscope (device: Hitachi High-Technologies SU8020, analysis conditions: acceleration voltage 1 kv, current 10 μA). Observed.
 電子顕微鏡観察前にあらかじめ、曲げ試験片破断面について、マイクロスコープ(装置:キーエンスVHX-2000、分析条件:側射光)により観察し、圧縮破壊面と引張破壊面を確認した(図2)。 Before the observation with an electron microscope, the fracture surface of the bending test piece was observed with a microscope (apparatus: KEYENCE VHX-2000, analysis condition: side light) to confirm the compression fracture surface and the tensile fracture surface (FIG. 2).
  図2の破断面を観察すると、試験片内部で、曲げ試験の際に圧縮される部分と、引張られる部分との間に界面が存在し、界面までの引張られる方の破断面を引張破壊面(A)とし、圧縮される方の破断面を圧縮破壊面(B)として、破断面および各破壊面の面積を、画像解析により求めた。 When the fracture surface in FIG. 2 is observed, an interface exists between the portion to be compressed in the bending test and the portion to be pulled inside the test piece, and the tensile fracture surface up to the interface is shown as the tensile fracture surface. With (A), the fracture surface to be compressed was defined as the compression fracture surface (B), and the fracture surface and the area of each fracture surface were determined by image analysis.
 曲げ試験片の破断面における炭素繊維‐樹脂間の接着について、SEMで撮影した破断面の引張破壊面における炭素繊維の引き抜け数を測定することにより評価した。図3に評価した引張破壊面のSEM写真を示す。 The adhesion between the carbon fiber and the resin on the fracture surface of the bending test piece was evaluated by measuring the number of carbon fibers pulled out on the tensile fracture surface of the fracture surface taken by SEM. The SEM photograph of the tensile fracture surface evaluated in FIG. 3 is shown.
 90°引張試験の試験片の破断面における炭素繊維‐樹脂間の接着について、SEMで撮影した破断面より、炭素繊維表面における樹脂の付着具合を以下の基準で観察することにより評価した。(図4および表5)
  ◎:炭素繊維への樹脂付着がよく見られる。○:炭素繊維への樹脂付着が見られる。
The adhesion between the carbon fiber and the resin on the fracture surface of the test piece of the 90 ° tensile test was evaluated by observing the degree of resin adhesion on the surface of the carbon fiber from the fracture surface photographed by SEM according to the following criteria. (Figure 4 and Table 5)
A: Resin adhesion to carbon fibers is often observed. ○: Resin adhesion to carbon fiber is observed.
  △:炭素繊維への樹脂付着が少々見られる。×:炭素繊維への付着が見られない。
[実施例]
実施例1
<樹脂組成物の調製>
 樹脂組成物の調製する機械として井上製作所製の10Lプラネタリーミキサー(PLM-15)を使用した。
Δ: Resin adhering to the carbon fiber is slightly observed. X: Adhesion to carbon fiber is not seen.
[Example]
Example 1
<Preparation of resin composition>
As a machine for preparing the resin composition, a 10 L planetary mixer (PLM-15) manufactured by Inoue Seisakusho was used.
 液状ビスフェノールA型エポキシ樹脂、jER828(三菱ケミカル製)1.7kgを釜に仕込み、次にJNC株式会社製ビニレック((登録商標)グレード:PVF-C) 204gを仕込み、温度130℃回転数を公転28r/min、自転77r/minで減圧(真空度:200kPa)脱泡しながら3時間混練した。 Liquid bisphenol A type epoxy resin, jER828 (Mitsubishi Chemical) 1.7kg is charged into the kettle, and then JNC vinylec ((registered trademark) grade: PVF-C) 204g is charged. The mixture was kneaded for 3 hours while degassing under reduced pressure (vacuum degree: 200 kPa) at 28 r / min and autorotation 77 r / min.
 ビニレックが溶解したことを確認した後、固形エポキシ樹脂1.7kgを数回に分けて投入し、90℃で30分、減圧(真空度:200kPa)脱泡しながら回転数を公転28r/min、自転77r/minで混練した。 After confirming that vinylec was dissolved, 1.7 kg of solid epoxy resin was added in several batches, and the rotational speed was set at 28 r / min for revolutions while defoaming at 90 ° C. for 30 minutes under reduced pressure (vacuum degree: 200 kPa). The mixture was kneaded at a rotation speed of 77 r / min.
 固形エポキシ樹脂を溶解後、温度を50℃に下げた。硬化剤であるジシアンジアミド(DICY7)204gと3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(DCMU99)80gを加えて減圧(真空度:200kPa)にしてから攪拌を開始して50℃で90分、回転数を公転28r/min、自転77r/minで混練した。
<樹脂シートの作製>
 図1、表6の粘度測定結果をもとに温度を設定した。
After dissolving the solid epoxy resin, the temperature was lowered to 50 ° C. 204 g of dicyandiamide (DICY7) as a curing agent and 80 g of 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU99) were added to reduce pressure (vacuum degree: 200 kPa), and stirring was started at 50 ° C. And kneading at a revolution of 28 r / min and a rotation of 77 r / min for 90 minutes.
<Production of resin sheet>
The temperature was set based on the viscosity measurement results shown in FIG.
 上記の方法で調製した樹脂組成物を、あらかじめオーブンに入れて65℃に温めた。塗工装置の65℃に加温した液ダムに樹脂組成物を入れ、塗工ロールにてロール温度60℃、塗工幅290mmにして離型紙上に塗布し、目付26.96g/m2の樹脂シートを作製した。
<一方向プリプレグシートの作製>
 シート状に一方向に整列させた炭素繊維(フィラメント数15000、目付1.000g/m、モノフィラメント直径6.8μm、引張強度4900MPa、引張弾性率240GPa,引張伸度2%)に上記の作製した樹脂シートを重ね、加熱加圧して樹脂組成物を含浸させ、繊維体積含有率55%、目付76.96g/m2、スリット幅260mmのプリプレグシートを作製した。なお加熱に関しては図1、表6の粘度測定結果をもとに設定した。
<オートクレーブ法による繊維強化複合材料の作製>
 上記に従い作製した一方向プリプレグシートを、繊維強化複合材料の厚みが2mm、320mm×320mmになるように繊維方向を揃えて積層した後、オートクレーブ内で、130℃、2hr、0.5MPaで加熱加圧して硬化し、繊維強化複合材料を作製した。
[比較例]
比較例1
<樹脂組成物の調製>
 樹脂組成物の調製する機械として井上製作所製の10Lプラネタリーミキサー(PLM-15)を使用した。
The resin composition prepared by the above method was previously placed in an oven and heated to 65 ° C. The resin composition is put into a liquid dam heated to 65 ° C. in a coating apparatus, and applied on a release paper with a roll temperature of 60 ° C. and a coating width of 290 mm with a coating weight of 26.96 g / m 2 . A resin sheet was produced.
<Production of unidirectional prepreg sheet>
Resin produced as described above on a sheet of carbon fibers aligned in one direction (filament number 15000, basis weight 1.000 g / m, monofilament diameter 6.8 μm, tensile strength 4900 MPa, tensile modulus 240 GPa, tensile elongation 2%) The sheets were stacked and heated and pressed to impregnate the resin composition to prepare a prepreg sheet having a fiber volume content of 55%, a basis weight of 76.96 g / m 2 , and a slit width of 260 mm. The heating was set based on the viscosity measurement results shown in FIG.
<Production of fiber-reinforced composite material by autoclave method>
The unidirectional prepreg sheet prepared according to the above was laminated with the fiber direction aligned so that the thickness of the fiber-reinforced composite material was 2 mm, 320 mm × 320 mm, and then heated at 130 ° C., 2 hr, 0.5 MPa in an autoclave. A fiber reinforced composite material was produced by pressing and curing.
[Comparative example]
Comparative Example 1
<Preparation of resin composition>
A 10 L planetary mixer (PLM-15) manufactured by Inoue Seisakusho was used as a machine for preparing the resin composition.
 液状ビスフェノールA型エポキシ樹脂、jER828(三菱ケミカル製)1.8kgを釜に仕込み、固形エポキシ樹脂1.8kgを数回に分けて投入し、減圧(真空度:200kPa)脱泡しながら回転数を公転28r/min、自転77r/minで90℃で30分混練した。 Charge 1.8 kg of liquid bisphenol A type epoxy resin, jER828 (Mitsubishi Chemical) into the kettle, add 1.8 kg of solid epoxy resin in several times, and reduce the rotation speed while degassing the vacuum (degree of vacuum: 200 kPa). The mixture was kneaded at 90 ° C. for 30 minutes at revolution 28 r / min and rotation 77 r / min.
 固形エポキシ樹脂を溶解後、温度を35℃に下げた。硬化剤であるジシアンジアミド(DICY7)200gと3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(DCMU99)80gを加えて減圧(真空度:200kPa)にしてから攪拌を開始して35℃で90分、回転数を公転28r/min、自転77r/minで混練した。
<樹脂シートの作製>
 図1、表6の粘度測定結果をもとに温度を設定した。
After dissolving the solid epoxy resin, the temperature was lowered to 35 ° C. 200 g of dicyandiamide (DICY7) as a curing agent and 80 g of 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU99) were added to reduce the pressure (vacuum level: 200 kPa), and stirring was started at 35 ° C. And kneading at a revolution of 28 r / min and a rotation of 77 r / min for 90 minutes.
<Production of resin sheet>
The temperature was set based on the viscosity measurement results shown in FIG.
 上記の方法で調製した樹脂組成物を、あらかじめオーブンに入れて55℃に温めた。塗工装置の55℃に加温した液ダムに樹脂組成物を入れ、塗工ロールにてロール温度50℃、塗工幅290mmにして離型紙上に塗布し目付26.92g/m2の樹脂シートを作製した。 The resin composition prepared by the above method was previously placed in an oven and warmed to 55 ° C. A resin composition is placed in a liquid dam heated to 55 ° C. in a coating apparatus, applied on a release paper with a roll temperature of 50 ° C. and a coating width of 290 mm, and has a basis weight of 26.92 g / m 2 . A sheet was produced.
<一方向プリプレグシートの作製>
 シート状に一方向に整列させた炭素繊維(フィラメント数15000、目付1.000g/m、モノフィラメント直径6.8μm、引張強度4900MPa、引張弾性率240GPa,引張伸度2%)に上記の作製した樹脂シートを重ね、加熱加圧して樹脂組成物を含浸させ、繊維体積含有率55%、目付76.92g/m2、スリット幅260mmのプリプレグシートを作製した。なお加熱に関しては図1、表6の粘度測定結果をもとに設定した。
<オートクレーブ法による繊維強化複合材料の作製>
 上記に従い作製した一方向プリプレグシートを、繊維強化複合材料の厚みが2mm、320mm×320mmになるように繊維方向を揃えて積層した後、オートクレーブ内で、130℃、2hr、0.5MPaで加熱加圧して硬化し、繊維強化複合材料を作製した。
<Production of unidirectional prepreg sheet>
Resin produced as described above on a sheet of carbon fibers aligned in one direction (filament number 15000, basis weight 1.000 g / m, monofilament diameter 6.8 μm, tensile strength 4900 MPa, tensile modulus 240 GPa, tensile elongation 2%) The sheets were stacked and heated and pressed to impregnate the resin composition to prepare a prepreg sheet having a fiber volume content of 55%, a basis weight of 76.92 g / m 2 , and a slit width of 260 mm. The heating was set based on the viscosity measurement results shown in FIG.
<Production of fiber-reinforced composite material by autoclave method>
The unidirectional prepreg sheet prepared according to the above was laminated with the fiber direction aligned so that the thickness of the fiber-reinforced composite material was 2 mm, 320 mm × 320 mm, and then heated at 130 ° C., 2 hr, 0.5 MPa in an autoclave. A fiber reinforced composite material was produced by pressing and curing.
比較例2
<樹脂組成物の調製>
 樹脂組成物の調製する機械として井上製作所製の10Lプラネタリーミキサー(PLM-15)を使用した。
Comparative Example 2
<Preparation of resin composition>
A 10 L planetary mixer (PLM-15) manufactured by Inoue Seisakusho was used as a machine for preparing the resin composition.
 液状ビスフェノールA型エポキシ樹脂、jER828(三菱ケミカル製)1.7kgを釜に仕込み、次に巴工業株式会社製フェノキシ樹脂(PKHP200)204gを仕込み、温度130℃回転数を公転28r/min、自転77r/minで減圧(真空度:200kPa)脱泡しながら1時間混練した。 Liquid bisphenol A type epoxy resin, jER828 (Mitsubishi Chemical) 1.7kg is charged into the kettle, then 204g of phenoxy resin (PKHP200) manufactured by Sakai Kogyo Co., Ltd. is charged, temperature 130 ° C rotation speed is 28r / min, rotation speed is 77r The mixture was kneaded for 1 hour while defoaming under reduced pressure (vacuum degree: 200 kPa) at / min.
 フェノキシ樹脂が溶解したことを確認した後、固形エポキシ樹脂1.7kgを数回に分けて投入し、90℃で30分、減圧(真空度:200kPa)脱泡しながら回転数を公転28r/min、自転77r/minで混練した。 After confirming that the phenoxy resin was dissolved, 1.7 kg of solid epoxy resin was added in several portions, and the revolution was changed to 28 r / min at 90 ° C. for 30 minutes while degassing under reduced pressure (degree of vacuum: 200 kPa). And kneading at a rotational speed of 77 r / min.
 固形エポキシ樹脂を溶解後、温度を50℃に下げた。硬化剤であるジシアンジアミド(DICY7)204gと3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(DCMU99)80gを加えて減圧(真空度:200kPa)にしてから攪拌を開始して50℃で60分、回転数を公転28r/min、自転77r/minで混練した。
<樹脂シートの作製>
 図1、表6の粘度測定結果をもとに温度を設定した。
After dissolving the solid epoxy resin, the temperature was lowered to 50 ° C. 204 g of dicyandiamide (DICY7) as a curing agent and 80 g of 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU99) were added to reduce pressure (vacuum degree: 200 kPa), and stirring was started at 50 ° C. And kneading at a rotation speed of 28 r / min and a rotation speed of 77 r / min for 60 minutes.
<Production of resin sheet>
The temperature was set based on the viscosity measurement results shown in FIG.
 上記の方法で調製した樹脂組成物を、あらかじめオーブンに入れて62℃に温めた。塗工装置の62℃に加温した液ダムに樹脂組成物を入れ、塗工ロールにてロール温度57℃、塗工幅290mmにして離型紙上に塗布し目付26.90g/m2の樹脂シートを作製した。 The resin composition prepared by the above method was previously placed in an oven and warmed to 62 ° C. A resin composition is placed in a liquid dam heated to 62 ° C. in a coating device, applied on a release paper with a roll temperature of 57 ° C. and a coating width of 290 mm, and a resin having a basis weight of 26.90 g / m 2 . A sheet was produced.
<一方向プリプレグシートの作製>
 シート状に一方向に整列させた炭素繊維(フィラメント数15000、目付1.000g/m、モノフィラメント直径6.8μm、引張強度4900MPa、引張弾性率240GPa,引張伸度2%)に上記の作製した樹脂シートを重ね、加熱加圧して樹脂組成物を含浸させ、繊維体積含有率55%、目付76.90g/m2、スリット幅260mmのプリプレグシートを作製した。なお加熱に関しては図1、表6の粘度測定結果をもとに設定した。
<Production of unidirectional prepreg sheet>
Resin produced as described above on a sheet of carbon fibers aligned in one direction (filament number 15000, basis weight 1.000 g / m, monofilament diameter 6.8 μm, tensile strength 4900 MPa, tensile modulus 240 GPa, tensile elongation 2%) The sheets were stacked and heated and pressed to impregnate the resin composition to prepare a prepreg sheet having a fiber volume content of 55%, a basis weight of 76.90 g / m 2 , and a slit width of 260 mm. The heating was set based on the viscosity measurement results shown in FIG.
<オートクレーブ法による繊維強化複合材料の作製>
 上記に従い作製した一方向プリプレグシートを、繊維強化複合材料の厚みが2mm、320mm×320mmになるように繊維方向を揃えて積層した後、オートクレーブ内で、130℃、2hr、0.5MPaで加熱加圧して硬化し、繊維強化複合材料を作製した。
<Production of fiber-reinforced composite material by autoclave method>
The unidirectional prepreg sheet prepared according to the above was laminated with the fiber direction aligned so that the thickness of the fiber-reinforced composite material was 2 mm, 320 mm × 320 mm, and then heated at 130 ° C., 2 hr, 0.5 MPa in an autoclave. A fiber reinforced composite material was produced by pressing and curing.
比較例3
<樹脂組成物の調製>
 樹脂組成物の調製する機械として井上製作所製の10Lプラネタリーミキサー(PLM-15)を使用した。
Comparative Example 3
<Preparation of resin composition>
A 10 L planetary mixer (PLM-15) manufactured by Inoue Seisakusho was used as a machine for preparing the resin composition.
 液状ビスフェノールA型エポキシ樹脂、jER828(三菱ケミカル製)1.7kgを釜に仕込み、次にJNC株式会社製ビニレック((登録商標)グレード:PVF-K)204gを仕込み、温度130℃回転数を公転28r/min、自転77r/minで減圧(真空度:200kPa)脱泡しながら2時間混練した。 Liquid bisphenol A type epoxy resin, jER828 (Mitsubishi Chemical) 1.7kg is charged into the kettle, and then JNC vinylec ((registered trademark) grade: PVF-K) 204g is charged. The mixture was kneaded for 2 hours while degassing under reduced pressure (vacuum degree: 200 kPa) at 28 r / min and rotation 77 r / min.
 ビニレックが溶解したことを確認した後、固形エポキシ樹脂1.7kgを数回に分けて投入し、90℃で30分、減圧(真空度:200kPa)脱泡しながら回転数を公転28r/min、自転77r/minで混練した。 After confirming that vinylec was dissolved, 1.7 kg of solid epoxy resin was added in several batches, and the rotational speed was set at 28 r / min for revolutions while defoaming at 90 ° C. for 30 minutes under reduced pressure (vacuum degree: 200 kPa). The mixture was kneaded at a rotation speed of 77 r / min.
 固形エポキシ樹脂を溶解後、温度を50℃に下げた。硬化剤であるジシアンジアミド(DICY7)204gと3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(DCMU99)80gを加えて減圧(真空度:200kPa)にしてから攪拌を開始して50℃で30分、回転数を公転28r/min、自転77r/minで混練した。 After dissolving the solid epoxy resin, the temperature was lowered to 50 ° C. 204 g of dicyandiamide (DICY7) as a curing agent and 80 g of 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU99) were added to reduce pressure (vacuum degree: 200 kPa), and stirring was started at 50 ° C. And kneading at a rotation speed of 28 r / min and a rotation speed of 77 r / min for 30 minutes.
<樹脂シートの作製>
 図1、表6の粘度測定結果をもとに温度を設定した。
<Production of resin sheet>
The temperature was set based on the viscosity measurement results shown in FIG.
 上記の方法で調製した樹脂組成物を、あらかじめオーブンに入れて65℃に温めた。塗工装置の65℃に加温した液ダムに樹脂組成物を入れ、塗工ロールにてロール温度60℃、塗工幅290mmにして離型紙上に塗布し目付26.96g/m2の樹脂シートを作製した。 The resin composition prepared by the above method was previously placed in an oven and heated to 65 ° C. A resin composition is placed in a liquid dam heated to 65 ° C. in a coating device, applied to a release paper with a coating roll at a roll temperature of 60 ° C. and a coating width of 290 mm, and has a basis weight of 26.96 g / m 2 . A sheet was produced.
<一方向プリプレグシートの作製>
 シート状に一方向に整列させた炭素繊維(フィラメント数15000、目付1.000g/m、モノフィラメント直径6.8μm、引張強度4900MPa、引張弾性率240GPa,引張伸度2%)に上記の作製した樹脂シートを重ね、加熱加圧して樹脂組成物を含浸させ、繊維体積含有率55%、目付76.96g/m2、スリット幅260mmのプリプレグシートを作製した。なお加熱に関しては図1、表6の粘度測定結果をもとに設定した。
<Production of unidirectional prepreg sheet>
Resin produced as described above on a sheet of carbon fibers aligned in one direction (filament number 15000, basis weight 1.000 g / m, monofilament diameter 6.8 μm, tensile strength 4900 MPa, tensile modulus 240 GPa, tensile elongation 2%) The sheets were stacked and heated and pressed to impregnate the resin composition to prepare a prepreg sheet having a fiber volume content of 55%, a basis weight of 76.96 g / m 2 , and a slit width of 260 mm. The heating was set based on the viscosity measurement results shown in FIG.
<オートクレーブ法による繊維強化複合材料の作製>
 上記に従い作製した一方向プリプレグシートを、繊維強化複合材料の厚みが2mm、320mm×320mmになるように繊維方向を揃えて積層した後、オートクレーブ内で、130℃、2hr、0.5MPaで加熱加圧して硬化し、繊維強化複合材料を作製した。
<Production of fiber-reinforced composite material by autoclave method>
The unidirectional prepreg sheet prepared according to the above was laminated with the fiber direction aligned so that the thickness of the fiber-reinforced composite material was 2 mm, 320 mm × 320 mm, and then heated at 130 ° C., 2 hr, 0.5 MPa in an autoclave. A fiber reinforced composite material was produced by pressing and curing.
比較例4
<樹脂組成物の調製>
 樹脂組成物の調製する機械として井上製作所製の10Lプラネタリーミキサー(PLM-15)を使用した。
Comparative Example 4
<Preparation of resin composition>
As a machine for preparing the resin composition, a 10 L planetary mixer (PLM-15) manufactured by Inoue Seisakusho was used.
 液状ビスフェノールA型エポキシ樹脂、jER828(三菱ケミカル製)1.7kgを釜に仕込み、次にJNC株式会社製ビニレック((登録商標)グレード:PVF-E)204gを仕込み、温度150℃回転数を公転28r/min、自転77r/minで減圧(真空度:200kPa)脱泡しながら3時間混練した。 1.7kg of liquid bisphenol A type epoxy resin, jER828 (Mitsubishi Chemical) is charged in the kettle, and then 204g of vinylec ((registered trademark) grade: PVF-E) manufactured by JNC Corporation is charged. The mixture was kneaded for 3 hours while degassing under reduced pressure (vacuum degree: 200 kPa) at 28 r / min and autorotation 77 r / min.
 ビニレックが溶解したことを確認した後、固形エポキシ樹脂1.7kgを数回に分けて投入し、90℃で30分、減圧(真空度:200kPa)脱泡しながら回転数を公転28r/min、自転77r/minで混練した。 After confirming that vinylec was dissolved, 1.7 kg of solid epoxy resin was added in several batches, and the rotational speed was set at 28 r / min for revolutions while defoaming at 90 ° C. for 30 minutes under reduced pressure (vacuum degree: 200 kPa). The mixture was kneaded at a rotation speed of 77 r / min.
 固形エポキシ樹脂を溶解後、温度を60℃に下げた。硬化剤であるジシアンジアミド
(DICY7)204gと3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(DCMU99)80gを加えて減圧(真空度:200kPa)にしてから攪拌を開始して60℃で65分、回転数を公転28r/min、自転77r/minで混練した。
<樹脂シートの作製>
 図1、表6の粘度測定結果をもとに温度を設定した。
After dissolving the solid epoxy resin, the temperature was lowered to 60 ° C. Dicyandiamide, a curing agent
(DICY7) 204 g and 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU99) 80 g were added to reduce the pressure (vacuum degree: 200 kPa), and then the stirring was started, and the mixture was rotated at 60 ° C. for 65 minutes. The numbers were kneaded at a revolution of 28 r / min and a rotation of 77 r / min.
<Production of resin sheet>
The temperature was set based on the viscosity measurement results shown in FIG.
 上記の方法で調製した樹脂組成物を、あらかじめオーブンに入れて70℃に温めた。塗工装置の70℃に加温した液ダムに樹脂組成物を入れ、塗工ロールにてロール温度66℃、塗工幅290mmにして離型紙上に塗布し目付26.96g/m2の樹脂シートを作製した。 The resin composition prepared by the above method was previously placed in an oven and warmed to 70 ° C. A resin composition is placed in a liquid dam heated to 70 ° C. in a coating apparatus, applied on a release paper with a roll temperature of 66 ° C. and a coating width of 290 mm, and a basis weight of 26.96 g / m 2 resin. A sheet was produced.
<一方向プリプレグシートの作製>
 シート状に一方向に整列させた炭素繊維(フィラメント数15000、目付1.000g/m、モノフィラメント直径6.8μm、引張強度4900MPa、引張弾性率240GPa,引張伸度2%)に上記の作製した樹脂シートを重ね、加熱加圧して樹脂組成物を含浸させ、繊維体積含有率55%、目付76.96g/m2、スリット幅260mmのプリプレグシートを作製した。なお加熱に関しては図1、表6の粘度測定結果をもとに設定した。
<Production of unidirectional prepreg sheet>
Resin produced as described above on a sheet of carbon fibers aligned in one direction (filament number 15000, basis weight 1.000 g / m, monofilament diameter 6.8 μm, tensile strength 4900 MPa, tensile modulus 240 GPa, tensile elongation 2%) The sheets were stacked and heated and pressed to impregnate the resin composition to prepare a prepreg sheet having a fiber volume content of 55%, a basis weight of 76.96 g / m 2 , and a slit width of 260 mm. The heating was set based on the viscosity measurement results shown in FIG.
<オートクレーブ法による繊維強化複合材料の作製>
 上記に従い作製した一方向プリプレグシートを、繊維強化複合材料の厚みが2mm、320mm×320mmになるように繊維方向を揃えて積層した後、オートクレーブ内で、130℃、2hr、0.5MPaで加熱加圧して硬化し、繊維強化複合材料を作製した。
<Production of fiber-reinforced composite material by autoclave method>
The unidirectional prepreg sheet prepared according to the above was laminated with the fiber direction aligned so that the thickness of the fiber-reinforced composite material was 2 mm, 320 mm × 320 mm, and then heated at 130 ° C., 2 hr, 0.5 MPa in an autoclave. A fiber reinforced composite material was produced by pressing and curing.
<実施例1、比較例1~4>
 表1~5に実施例1、比較例1~4で作製した組成物の評価結果を示す。表1および2に示されるように、実施例1と比較例1~4の比較より本発明のプリプレグで作製した繊維強化複合材料の90°引張特性、0°曲げ特性、0°圧縮特性に関して高弾性率、高強度を示し、さらに高い耐衝撃性をも示した。
<Example 1, Comparative Examples 1 to 4>
Tables 1 to 5 show the evaluation results of the compositions prepared in Example 1 and Comparative Examples 1 to 4. As shown in Tables 1 and 2, the comparison between Example 1 and Comparative Examples 1 to 4 shows that the 90 ° tensile property, 0 ° bending property, and 0 ° compression property of the fiber reinforced composite material produced by the prepreg of the present invention are higher. It showed elastic modulus, high strength, and even higher impact resistance.
 実施例1が比較例1~4よりも繊維強化複合材料の90°引張特性、0°曲げ特性が向上した要因のひとつとして、図3および4、表3~5の電子顕微鏡観察結果よりカルボキシル基含有ポリビニルホルマールによる炭素繊維―樹脂間の接着性向上効果が考えられる。 As one of the factors in which Example 1 improved the 90 ° tensile property and 0 ° bending property of the fiber reinforced composite material as compared with Comparative Examples 1 to 4, the carboxyl group was observed from the electron microscope observation results of FIGS. 3 and 4 and Tables 3 to 5. The effect of improving the adhesion between the carbon fiber and the resin due to the contained polyvinyl formal is considered.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Claims (10)

  1.  下記[A]、[B]、[C]及びアミン硬化剤[D]を主成分として含み、かつ[A]、[B]、[C]の各成分がそれぞれ1~20重量部、45~80重量部、20~55重量部である樹脂組成物を強化繊維に含浸してなるプリプレグ;
     [A] カルボキシル基含有ポリビニルホルマール樹脂
     [B] 25℃で固形のエポキシ樹脂
     [C] 25℃で液状のエポキシ樹脂。
    The following [A], [B], [C] and an amine curing agent [D] are contained as main components, and each component of [A], [B], [C] is 1 to 20 parts by weight, 45 to A prepreg obtained by impregnating reinforcing fibers with a resin composition of 80 parts by weight, 20 to 55 parts by weight;
    [A] Carboxyl group-containing polyvinyl formal resin [B] Epoxy resin solid at 25 ° C. [C] Epoxy resin liquid at 25 ° C.
  2.  カルボキシル基含有ポリビニルホルマール樹脂[A]が構成単位a、b、c、およびdを含む請求項1記載のプリプレグ。
    Figure JPOXMLDOC01-appb-C000001
    (構成単位dの式において、R1は独立して、水素または炭素数1から5のアルキルである。)
    The prepreg according to claim 1, wherein the carboxyl group-containing polyvinyl formal resin [A] contains structural units a, b, c, and d.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula of the structural unit d, R 1 is independently hydrogen or alkyl having 1 to 5 carbons.)
  3.  固形のエポキシ樹脂[B]の軟化点が60℃以上である請求項1または2記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein the softening point of the solid epoxy resin [B] is 60 ° C or higher.
  4.  液状のエポキシ樹脂[C]が150℃で液状である、請求項1~3のいずれか1項記載のプリプレグ。 The prepreg according to any one of claims 1 to 3, wherein the liquid epoxy resin [C] is liquid at 150 ° C.
  5.  アミン硬化剤[D]がジシアンジアミドまたはその誘導体である、請求項1~4いずれか1項記載のプリプレグ。 The prepreg according to any one of claims 1 to 4, wherein the amine curing agent [D] is dicyandiamide or a derivative thereof.
  6.  強化繊維が炭素繊維、アラミド繊維、ガラス繊維、黒鉛繊維、炭化ケイ素繊維、ボロン繊維、アルミナ繊維、およびステンレス鋼繊維のいずれかである、請求項1~5いずれか1項記載のプリプレグ。 The prepreg according to any one of claims 1 to 5, wherein the reinforcing fiber is any one of carbon fiber, aramid fiber, glass fiber, graphite fiber, silicon carbide fiber, boron fiber, alumina fiber, and stainless steel fiber.
  7.  強化繊維が炭素繊維であり、炭素繊維の引張強度が4.4~6.5GPaであり、引張伸度が1.7~2.3%であり、引張弾性率が230~400GPaである、請求項1~6いずれか1項記載のプリプレグ。 The reinforcing fiber is a carbon fiber, the tensile strength of the carbon fiber is 4.4 to 6.5 GPa, the tensile elongation is 1.7 to 2.3%, and the tensile modulus is 230 to 400 GPa. Item 7. The prepreg according to any one of Items 1 to 6.
  8.  アミン硬化剤[D]は、固形のエポキシ樹脂[B]、液状のエポキシ樹脂[C]を含む全エポキシ樹脂成分100重量部に対し、1~10重量部の範囲である、請求項1~7のいずれか1項記載のプリプレグ。 The amine curing agent [D] is in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the total epoxy resin component including the solid epoxy resin [B] and the liquid epoxy resin [C]. The prepreg according to any one of the above.
  9.  プリプレグ中の強化繊維の含浸量は、強化繊維を含めたプリプレグの体積を100vol%としたときに、繊維体積含有率(Vf)として、40~90%である、請求項1~8のいずれか1項記載のプリプレグ。 The amount of impregnation of the reinforcing fiber in the prepreg is 40 to 90% as a fiber volume content (Vf) when the volume of the prepreg including the reinforcing fiber is 100 vol%. The prepreg according to item 1.
  10.  請求項1~9いずれか1項記載のプリプレグを用いた繊維強化複合材料。 A fiber-reinforced composite material using the prepreg according to any one of claims 1 to 9.
PCT/JP2018/041317 2018-04-20 2018-11-07 Prepreg and fiber-reinforced composite material using same WO2019202762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018081722 2018-04-20
JP2018-081722 2018-04-20

Publications (1)

Publication Number Publication Date
WO2019202762A1 true WO2019202762A1 (en) 2019-10-24

Family

ID=68239522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041317 WO2019202762A1 (en) 2018-04-20 2018-11-07 Prepreg and fiber-reinforced composite material using same

Country Status (2)

Country Link
TW (1) TW201943772A (en)
WO (1) WO2019202762A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661448A (en) * 2020-12-25 2021-04-16 北京金隅混凝土有限公司 Self-compacting jacking concrete and application method thereof
WO2023048259A1 (en) 2021-09-24 2023-03-30 積水化学工業株式会社 Carbon-fiber-reinforced composite material and method for producing carbon-fiber-reinforced composite material
KR20240067228A (en) 2021-09-24 2024-05-16 세키스이가가쿠 고교가부시키가이샤 Carbon fiber reinforced composite material and manufacturing method of carbon fiber reinforced composite material
KR20240074748A (en) 2021-09-24 2024-05-28 세키스이가가쿠 고교가부시키가이샤 Carbon fiber reinforced composite material and manufacturing method of carbon fiber reinforced composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202862A (en) * 2009-02-05 2010-09-16 Chisso Corp Epoxy resin composition and cured product thereof
JP2014051645A (en) * 2012-09-04 2014-03-20 Samsung Electro-Mechanics Co Ltd Insulating composition for multilayer printed circuit board
WO2014203797A1 (en) * 2013-06-19 2014-12-24 株式会社ダイセル Epoxy resin composition and cured article thereof, prepreg, and fiber-reinforced composite material
WO2017104823A1 (en) * 2015-12-16 2017-06-22 三菱ケミカル株式会社 Prepreg tape and use thereof
JP2018062643A (en) * 2016-10-07 2018-04-19 Jnc株式会社 Composite particles and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202862A (en) * 2009-02-05 2010-09-16 Chisso Corp Epoxy resin composition and cured product thereof
JP2014051645A (en) * 2012-09-04 2014-03-20 Samsung Electro-Mechanics Co Ltd Insulating composition for multilayer printed circuit board
WO2014203797A1 (en) * 2013-06-19 2014-12-24 株式会社ダイセル Epoxy resin composition and cured article thereof, prepreg, and fiber-reinforced composite material
WO2017104823A1 (en) * 2015-12-16 2017-06-22 三菱ケミカル株式会社 Prepreg tape and use thereof
JP2018062643A (en) * 2016-10-07 2018-04-19 Jnc株式会社 Composite particles and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661448A (en) * 2020-12-25 2021-04-16 北京金隅混凝土有限公司 Self-compacting jacking concrete and application method thereof
WO2023048259A1 (en) 2021-09-24 2023-03-30 積水化学工業株式会社 Carbon-fiber-reinforced composite material and method for producing carbon-fiber-reinforced composite material
KR20240067228A (en) 2021-09-24 2024-05-16 세키스이가가쿠 고교가부시키가이샤 Carbon fiber reinforced composite material and manufacturing method of carbon fiber reinforced composite material
KR20240072987A (en) 2021-09-24 2024-05-24 세키스이가가쿠 고교가부시키가이샤 Carbon fiber reinforced composite material and manufacturing method of carbon fiber reinforced composite material
KR20240074748A (en) 2021-09-24 2024-05-28 세키스이가가쿠 고교가부시키가이샤 Carbon fiber reinforced composite material and manufacturing method of carbon fiber reinforced composite material

Also Published As

Publication number Publication date
TW201943772A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
WO2019202762A1 (en) Prepreg and fiber-reinforced composite material using same
TWI435887B (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP6007914B2 (en) Pre-preg for vacuum forming, fiber reinforced composite material and method for producing the same
US9683072B2 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
JP5003827B2 (en) Epoxy resin composition for carbon fiber reinforced composite material, prepreg and carbon fiber reinforced composite material
RU2605424C2 (en) Composition based on epoxy resins and film, prepreg and fibre-reinforced plastic obtained using said composition
US10501618B2 (en) Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
JP5768893B2 (en) Epoxy resin composition and film, prepreg, fiber reinforced plastic using the same
EP2794735B1 (en) Improvements in or relating to fibre reinforced composites
KR102642515B1 (en) Prepreg and fiber reinforced composites
KR20160127023A (en) Epoxy resin composition, resin cured product, fibre-reinforced composite material, and prepreg
US11319420B2 (en) Prepreg and carbon fiber reinforced composite material
WO2010109929A1 (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
US11292874B2 (en) Thermosetting resin composition, prepreg, fiber-reinforced plastic molded body and method for producing same
KR101950627B1 (en) Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
US20180134837A1 (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP7063021B2 (en) Prepreg and carbon fiber reinforced composites
JP2014167102A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
US11661484B2 (en) Epoxy resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material
JP2017226745A (en) Epoxy resin composition, and film, prepreg and fiber-reinforced plastic using the same
JPWO2016136052A1 (en) Epoxy resin composition, cured epoxy resin, prepreg and fiber reinforced composite material
JP2014141632A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP