WO2019202682A1 - 油分離器、スクリュー圧縮機及び冷凍サイクル装置 - Google Patents

油分離器、スクリュー圧縮機及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2019202682A1
WO2019202682A1 PCT/JP2018/015991 JP2018015991W WO2019202682A1 WO 2019202682 A1 WO2019202682 A1 WO 2019202682A1 JP 2018015991 W JP2018015991 W JP 2018015991W WO 2019202682 A1 WO2019202682 A1 WO 2019202682A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
wave plate
oil separator
return hole
separator according
Prior art date
Application number
PCT/JP2018/015991
Other languages
English (en)
French (fr)
Inventor
雅浩 神田
雅章 上川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/015991 priority Critical patent/WO2019202682A1/ja
Publication of WO2019202682A1 publication Critical patent/WO2019202682A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to an oil separator, a screw compressor, and a refrigeration cycle apparatus that return oil separated from a refrigerant to an oil reservoir.
  • a screw compressor in which an oil separator that separates refrigeration oil and refrigerant gas is integrated with the compressor.
  • an oil separator that separates refrigeration oil and refrigerant gas
  • a system for separating the refrigerating machine oil and the refrigerant gas there is a system called a cyclone system that utilizes the gas-liquid density difference to separate the refrigerating machine oil and the refrigerant gas by centrifugal force.
  • the cyclone oil separator is composed of an oil separator and an oil reservoir.
  • the oil separation unit includes a centrifugal separation portion and a passage portion.
  • the centrifugal separation part is formed of a double cylinder and generates a centrifugal force for oil separation between the outer cylinder part and the inner cylinder part.
  • the passage portion is separated from the refrigerating machine oil by the centrifugal force and causes the refrigerant gas that descends while turning to swirl up inside the inner cylinder portion to flow out to the external refrigeration cycle circuit side.
  • the oil storage unit stores the separated refrigerating machine oil.
  • the oil level of the cyclone type oil separator When the oil reservoir of the cyclone type oil separator is provided at the lower part of the oil separator, the oil level becomes rough if the swirl flow enters the oil reservoir when the oil level of the oil reservoir is high. easy. Then, when the oil surface becomes rough, the oil in the oil reservoir is returned to the oil separation space, is wound up in a swirling flow, and flows out to the external refrigeration cycle circuit. There was a problem that the oil separation performance deteriorated.
  • the present invention is for solving the above-mentioned problems, and the roughening of the oil surface due to the swirling flow intrusion into the oil reservoir is suppressed with an inexpensive and easy structure, and the oil surface height of the oil reservoir is increased.
  • An object of the present invention is to provide an oil separator, a screw compressor, and a refrigeration cycle apparatus that can realize high oil separation efficiency.
  • An oil separator includes a cylindrical outer cylinder part, a cylindrical inner cylinder part provided inside the outer cylinder part, and an oil that is provided below the outer cylinder part and stores oil.
  • a storage part a partition plate that divides the outer cylinder part and the oil storage part, and an oil return hole that is formed on a side surface of the outer cylinder part and communicates with the oil storage part.
  • a wave plate is provided between the oil reservoir.
  • a screw compressor according to the present invention includes the above oil separator.
  • a refrigeration cycle apparatus includes the above screw compressor.
  • the wave plate is provided between the oil return hole and the oil reservoir. This makes it difficult for the swirling flow entering the oil reservoir from the oil return hole to directly hit the oil surface. Accordingly, the rough oil surface due to the swirling flow entering the oil reservoir is suppressed with an inexpensive and easy structure, and high oil separation efficiency can be realized even if the oil surface height of the oil reservoir increases.
  • FIG. 2 is a cross-sectional view showing the oil separator of the screw compressor according to Embodiment 1 of the present invention, taken along section AA in FIG.
  • FIG. 5 is a transverse cross-sectional view showing an oil separator of a screw compressor according to a first modification of the first embodiment of the present invention, taken along the line AA in FIG. 1.
  • It is a longitudinal cross-sectional view which shows the oil separator of the screw compressor which concerns on the modification 2 of Embodiment 1 of this invention.
  • It is a longitudinal cross-sectional view which shows the oil separator of the screw compressor which concerns on the modification 3 of Embodiment 1 of this invention.
  • It is a refrigerant circuit figure which shows the refrigerating-cycle apparatus to which the screw compressor which concerns on Embodiment 2 of this invention is applied.
  • FIG. 1 is a longitudinal sectional view showing a screw compressor 1 according to Embodiment 1 of the present invention.
  • the screw compressor 1 includes a compressor body 2 on the C side on the right side of the two-dot chain line S.
  • the screw compressor 1 includes an oil separator 3 on the O side on the left side of the two-dot chain line S.
  • the screw compressor 1 is a single screw compressor provided with an oil separator 3.
  • the screw compressor 1 has a configuration in which a compressor main body 2 and an oil separator 3 are fastened with bolts in a casing 4 that constitutes an outline of the compressor main body 2.
  • the compressor body 2 includes a casing 4, a motor 5, a screw shaft 6, a screw rotor 7, and a bearing 8.
  • the casing 4 has a cylindrical shape that constitutes the outline of the compressor body 2.
  • the motor 5 is accommodated in the casing 4.
  • the screw shaft 6 is fixed to the motor 5 and is rotationally driven by the motor 5.
  • the screw rotor 7 is fixed to the screw shaft 6.
  • the bearing 8 rotatably supports the end of the screw shaft 6 that is not fixed to the motor 5.
  • the compressor main body 2 includes a pair of gate rotors 9 disposed on the side surfaces of the screw rotor 7 so as to be an axial object with respect to the screw shaft 6.
  • the compressor body 2 includes a slide valve 10 slidable between the side surface of the casing 4 and the screw rotor 7 along the outer peripheral surface of the screw rotor 7 on the suction pressure side and the discharge pressure side.
  • the slide valve 10 has an opening 10a at the center.
  • the motor 5 includes a stator 5a that is inscribed and fixed in the casing 4, and a motor rotor 5b that is disposed inside the stator 5a.
  • the motor rotor 5 b is fixed to the screw shaft 6 and arranged on the same line as the screw rotor 7.
  • Screw rotor 7 is cylindrical. A plurality of screw grooves 7 a extending in a spiral shape from one end to the other end of the screw rotor 7 are formed on the outer peripheral surface of the screw rotor 7.
  • the casing 4 is divided into a suction pressure side filled with a low-pressure refrigerant gas and a discharge pressure side filled with a high-pressure refrigerant gas.
  • One end side of the screw rotor 7 serves as a refrigerant gas suction side and communicates with a suction pressure side.
  • the other end side of the screw rotor 7 becomes a refrigerant gas discharge side, and communicates the screw groove 7a with the discharge pressure side.
  • the gate rotor 9 has a disk shape.
  • a plurality of tooth portions 9 a are provided on the outer peripheral surface of the gate rotor 9 along the circumferential direction.
  • the tooth portion 9 a of the gate rotor 9 is disposed so as to mesh with the screw groove 7 a of the screw rotor 7.
  • a space surrounded by the screw groove 7a, the tooth portion 9a of the gate rotor 9, the inner peripheral surface of the casing 4, and the slide valve 10 is formed as a compression chamber 11 filled with a refrigerant gas to be compressed. Refrigerating machine oil that lubricates the bearing 8 and seals the compression chamber 11 is injected into the compression chamber 11.
  • a discharge port (not shown) connected to the discharge chamber 12 is opened on the inner peripheral surface of the casing 4 on the discharge pressure side.
  • the high-pressure refrigerant gas and refrigerating machine oil filled in the compression chamber 11 are discharged into the discharge chamber 12 through the opening 10 a and the discharge port of the slide valve 10.
  • the discharge chamber 12 is a space where high-pressure refrigerant gas and refrigeration oil in the compression chamber 11 are discharged.
  • the high-pressure refrigerant gas and refrigerating machine oil filled in the discharge chamber 12 are led to the oil separator 3.
  • the oil separator 3 is a cyclone type oil separator for separating refrigerant gas and refrigerating machine oil.
  • the oil separator 3 is fastened to the casing 4 of the compressor body 2 by bolts.
  • the oil separator 3 is formed of a double cylinder including a cylindrical outer cylinder part 13 and a cylindrical inner cylinder part 14.
  • the outer cylinder part 13 has the inflow port 20 which makes the refrigerant
  • the inner cylinder part 14 is provided inside the outer cylinder part 13.
  • the outer cylinder part 13 and the inner cylinder part 14 are concentric cylinders having the same central axis. Between the lower opening of the inner cylinder part 14 and the lower end of the outer cylinder part 13, an oil separation space in which refrigerant gas swirling between the outer cylinder part 13 and the inner cylinder part 14 is turned back inside the inner cylinder part 14. 16 is formed.
  • the oil separator 3 includes a lid portion 15 that covers the upper opening portions of the outer cylinder portion 13 and the inner cylinder portion 14.
  • the inner cylinder portion 14 is fixed to the lid portion 15.
  • the outer cylinder part 13, the inner cylinder part 14, and the lid part 15 constitute an oil separation part 17 of the oil separator 3.
  • the oil separator 3 is provided below the outer cylinder part 13 and includes an oil storage part 19 for storing the refrigerating machine oil separated from the refrigerant gas.
  • the oil reservoir 19 is wider than the lower projection area of the oil separator 17 and is formed longer on the compressor body 2 side so as to communicate with the compressor body 2.
  • the oil separator 3 includes a partition plate 51 that divides the outer cylinder portion 13 and the oil storage portion 19.
  • the partition plate 51 partitions the oil separation unit 17 and the oil storage unit 19.
  • the partition plate 51 covers and seals the lower opening of the outer cylinder portion 13.
  • the partition plate 51 is provided integrally with the outer cylinder portion 13.
  • the partition plate 51 is disposed in parallel with the annular end edge of the lower opening of the inner cylinder portion 14.
  • the lid 15 of the oil separator 17 is provided in a disc shape.
  • a through hole having a diameter smaller than the inner diameter of the inner cylinder portion 14 is formed in the center of the lid portion 15 through the lid portion 15 in the vertical direction.
  • the through hole is an outlet 15a that discharges the refrigerant gas after separating the refrigeration oil in the oil separator 3 from the screw compressor 1 to the refrigeration cycle circuit side.
  • a check valve 18 is provided on the downstream side of the refrigerant gas flow in the outlet portion 15a.
  • the check valve 18 may be built in the lid portion 15.
  • the oil separator 3 includes an oil return hole 50 that is formed on the side surface of the outer cylinder 13 and communicates with the oil reservoir 19.
  • the oil return hole 50 is formed on the side surface of the outer cylinder portion 13 on the compressor body 2 side so as to have a size within a half-circumferential region of the outer cylinder portion 13.
  • the oil return hole 50 is formed so as to reach at least the lower end of the side surface of the outer cylinder portion 13, and the refrigerating machine oil separated by the oil separation portion 17 flows on the partition plate 51 and flows out to the oil storage portion 19.
  • the height of the oil return hole 50 is formed within the range of the oil separation space 16 that does not reach the lower opening of the inner cylinder portion 14.
  • the height dimension of the oil return hole 50 may be formed within the lower half of the oil separation space 16.
  • FIG. 2 is a cross-sectional view showing the oil separator 3 of the screw compressor 1 according to Embodiment 1 of the present invention, taken along the line AA in FIG.
  • the oil separator 3 is provided with a wave plate 52 between the oil return hole 50 and the oil reservoir 19.
  • the wave plate 52 is formed by extending the partition plate 51.
  • the wave plate 52 has the same thickness as the partition plate 51.
  • the wave plate 52 is composed of the same plate-like member as the partition plate 51.
  • the wave plate 52 is configured integrally with the outer cylinder portion 13 and the partition plate 51.
  • the wave plate 52 is integrally formed by casting the outer cylinder part 13, the oil storage part 19, the partition plate 51, and the like.
  • the wave plate 52 is formed to have the same width as that of the oil return hole 50.
  • the wave plate 52 is formed in a rectangular shape.
  • the wave plate 52 extends toward the compressor main body 2 with a constant width that maintains the same width as the width of the oil return hole 50.
  • the tip of the wave plate 52 extending toward the compressor body 2 is formed in a straight line perpendicular to the lateral width of the wave plate 52.
  • the wave rectifying plate 52 is, for example, a trapezoidal shape, a convex U shape with the tip formed as an arc convex portion, a concave U shape with the tip formed as an arc concave portion, and a pentagon with a sharp tip. It may be a shape or a triangular shape with a sharp tip.
  • the low-pressure refrigerant gas sucked from the suction pressure side of the screw rotor 7 flows into the compression chamber 11.
  • the refrigerant gas that has flowed into the compression chamber 11 is sent to the discharge pressure side of the screw rotor 7 while being compressed in the compression chamber 11.
  • the refrigerant gas compressed to a high pressure is discharged into the discharge chamber 12 through the opening 10 a of the slide valve 10 together with the refrigerating machine oil injected into the compression chamber 11.
  • the discharged refrigerant gas and refrigerating machine oil are led out from the discharge chamber 12 to the oil separator 3.
  • Refrigerant gas and refrigerating machine oil that has reached the oil separator 3 flows into the inside of the outer cylinder part 13 from an inlet 20 that penetrates the upper side surface of the outer cylinder part 13 in and out.
  • the refrigerant gas and the refrigerating machine oil that have flowed in from the inflow port 20 descend while turning in the gap between the outer cylinder part 13 and the inner cylinder part 14.
  • the refrigerating machine oil having a density higher than that of the refrigerating gas is blown to the inner peripheral surface of the outer cylinder portion 13 by centrifugal force, and the refrigerating machine oil and the refrigerant gas are separated.
  • the refrigerating machine oil separated by the swirling flow falls on the inner peripheral surface of the outer cylinder portion 13 by its own weight, and flows on the partition plate 51 toward the oil return hole 50.
  • the refrigeration oil that has reached the oil return hole 50 is pushed out from the oil return hole 50 to the outside of the outer cylinder part 13 by being pushed out by a part of the refrigerant gas flowing out from the inside of the outer cylinder part 13 toward the outside. It flows out and is stored in the oil reservoir 19.
  • the refrigerating machine oil stored in the oil reservoir 19 is returned to the compressor body 2 through a path (not shown) provided in the casing 4 and supplied to the compression chamber 11 or the bearing 8.
  • the refrigerant gas separated from the refrigerating machine oil descends while turning, and is folded back inside by the partition plate 51 in the oil separation space 16.
  • the folded refrigerant gas flows into the inner cylinder portion 14 as an upward flow while continuing to swirl inside the refrigerant gas before the oil separation space 16 is folded.
  • the refrigerant gas that has flowed into the inner cylinder portion 14 passes through the inside of the inner cylinder portion 14, passes through the check valve 18 from the outlet portion 15 a of the lid portion 15, and flows out to the refrigeration cycle circuit side.
  • a wave plate 52 is provided.
  • the refrigerant gas entering the oil reservoir 19 from the oil return hole 50 is less likely to directly hit the oil surface by the wave plate 52, and the oil surface is less likely to be disturbed.
  • the refrigerating machine oil in the oil reservoir 19 jumps up, it is blocked by the wave plate 52 and hardly enters the oil separation space 16 from the oil return hole 50.
  • Embodiment 1 the outflow of refrigerating machine oil to the external refrigeration cycle circuit side is suppressed.
  • the wave plate 52 as shown in FIGS. 1 and 2 is provided, so that the external refrigeration cycle passes from the oil reservoir 19 through the oil return hole 50.
  • the outflow of refrigerating machine oil to the circuit side can be suppressed.
  • the wave plate 52 is integrated with the oil reservoir 19 and the partition plate 51. Therefore, the screw compressor 1 having the oil separator 3 having high oil separation performance can be obtained without increasing the number of parts and the assembly process.
  • FIG. 3 is a cross-sectional view of the oil separator 3 of the screw compressor 1 according to the first modification of the first embodiment of the present invention, taken along the line AA in FIG. In the first modification, differences from the first embodiment will be described. Description of other matters similar to those in the first embodiment is omitted.
  • the wave plate 52 is formed in a width dimension larger than the width dimension of the oil return hole 50.
  • the wave plate 52 is formed in a rectangular shape.
  • the wave plate 52 extends toward the compressor main body 2 with a constant width maintaining a width dimension larger than the width dimension of the oil return hole 50.
  • the tip of the wave plate 52 extending toward the compressor body 2 is formed in a straight line perpendicular to the lateral width of the wave plate 52.
  • the wave plate 52 is large, and when the swirling refrigerant gas enters the oil reservoir 19, it is less likely to directly hit the oil surface than in the first embodiment, and the oil surface of the oil reservoir 19 is disturbed. hard. Therefore, the outflow of refrigerating machine oil from the oil reservoir 19 through the oil return hole 50 to the external refrigeration cycle circuit side can be suppressed as compared with the first embodiment. That is, the screw compressor 1 having the oil separator 3 having higher oil separation performance than that of the first embodiment is obtained.
  • FIG. 4 is a longitudinal sectional view showing the oil separator 3 of the screw compressor 1 according to the second modification of the first embodiment of the present invention.
  • the second modification differences from the first embodiment and the first modification will be described. Description of other matters similar to those in the first embodiment and the first modification will be omitted.
  • the wave plate 52 has a tip 52 b protruding from the root 52 a near the oil return hole 50 bent in the horizontal direction. Specifically, the wave plate 52 is bent to an inclined surface with the tip portion 52b side directed upward from between the root portion 52a and the tip portion 52b.
  • the formation method of the wave plate 52 is not limited.
  • the wave plate 52 may be bent to a curved surface or a vertical surface with the tip 52b side directed upward from between the root 52a and the tip 52b. Further, the wave plate 52 may be bent from the root portion 52a in the vicinity of the oil return hole 50 to the tip portion 52b side with an inclined surface or a curved surface upward in the horizontal direction.
  • FIG. 5 is a longitudinal sectional view showing the oil separator 3 of the screw compressor 1 according to Modification 3 of Embodiment 1 of the present invention.
  • the third modification differences from the first embodiment and the first and second modifications will be described. Description of other matters similar to those of the first embodiment and the first and second modifications will be omitted.
  • the wave plate 52 has a tip 52 b protruding from a root 52 a near the oil return hole 50 bent in the horizontal direction. Specifically, the wave plate 52 is bent from an area between the root portion 52a and the tip portion 52b to an inclined surface with the tip portion 52b side directed downward.
  • the formation method of the wave plate 52 is not limited. Further, the wave plate 52 may be bent to a curved surface or a vertical surface with the tip 52b side directed downward from between the root portion 52a and the tip 52b. Further, the wave plate 52 may be bent from the root portion 52a in the vicinity of the oil return hole 50 to the tip portion 52b side in an inclined surface or a curved surface in the downward direction with respect to the horizontal direction.
  • the single screw compressor has been described.
  • the present invention is not limited to this.
  • the present invention can be applied to a twin screw compressor or an oil separator 3 that is not integrated with a compressor.
  • the operation of the screw compressor 1 may be either a constant speed drive that operates at a constant rotational speed or an inverter drive that controls the rotational speed of the motor 5.
  • the refrigerant applied to the screw compressor 1 is not limited to a specific refrigerant.
  • a low GWP may be selected in consideration of the influence on the environment.
  • the refrigerant having a low GWP is, for example, R32, HFO-1123, HFO-1234yf, HFO-1234ze, or a mixed refrigerant including at least one of them.
  • the refrigerant applied to the screw compressor 1 may be a natural refrigerant such as carbon dioxide.
  • the oil separator 3 includes the cylindrical outer cylinder portion 13.
  • the oil separator 3 includes a cylindrical inner cylinder portion 14 provided inside the outer cylinder portion 13.
  • the oil separator 3 includes an oil storage part 19 that is provided below the outer cylinder part 13 and stores oil.
  • the oil separator 3 includes a partition plate 51 that separates the outer cylinder portion 13 and the oil storage portion 19.
  • An oil return hole 50 formed on the side surface of the outer cylinder portion 13 and communicating with the oil storage portion 19 is provided.
  • a wave plate 52 is provided between the oil return hole 50 and the oil reservoir 19.
  • the swirl flow entering the oil reservoir 19 from the oil return hole 50 is blocked by the wave plate 52, and it is difficult to directly hit the oil surface. Further, even if the refrigerating machine oil in the oil reservoir 19 jumps up, it is blocked by the wave plate 52 and hardly enters the oil separation space 16 from the oil return hole 50. In this way, roughening of the oil level of the oil reservoir 19 is suppressed, and even when the oil level of the oil reservoir 19 becomes high, the refrigerating machine oil is prevented from flowing back into the oil separation space 16, and the external refrigeration cycle circuit The outflow of refrigeration oil can be suppressed. Therefore, the rough oil surface due to the swirling flow entering the oil reservoir 19 is suppressed with an inexpensive and easy structure, and high oil separation efficiency can be realized even if the oil surface height of the oil reservoir 19 is high.
  • the wave plate 52 is formed to have the same width as the width of the oil return hole 50.
  • the wave plate 52 that makes it difficult for the swirling flow entering the oil reservoir 19 from the oil return hole 50 to directly contact the oil surface can be formed with a minimum size. Thereby, an inexpensive and easy structure can be achieved.
  • the wave plate 52 is formed with a width dimension larger than the width dimension of the oil return hole 50.
  • the wave plate 52 can be formed in a wider area, and the swirling flow that enters the oil reservoir 19 from the oil return hole 50 is less likely to directly hit the oil surface. Further, even if the refrigerating machine oil in the oil reservoir 19 jumps up, it is blocked by the wave plate 52 and hardly enters the oil separation space 16 from the oil return hole 50.
  • the wave plate 52 is formed in a rectangular shape.
  • the wave plate 52 has a simple configuration. Thereby, an inexpensive and easy structure can be achieved.
  • the wave plate 52 is formed by extending the partition plate 51.
  • the wave plate 52 can be formed without increasing the number of parts and the assembly process. Thereby, an inexpensive and easy structure can be achieved.
  • the wave plate 52 has the same thickness as the partition plate 51.
  • the wave plate 52 is easy to manufacture. Thereby, an inexpensive and easy structure can be achieved.
  • the wave plate 52 is formed in parallel with the partition plate 51.
  • the wave plate 52 has a simple configuration. Thereby, an inexpensive and easy structure can be achieved.
  • the wave plate 52 bends the tip portion 52b protruding from the root portion 52a in the vicinity of the oil return hole 50 with respect to the horizontal direction.
  • the swirling flow from the oil return hole 50 can be guided in a direction away from the oil surface along the wave plate 52 in which the tip 52b is bent upward with respect to the horizontal direction.
  • the refrigerating machine oil is easily pushed by the oil reservoir 19 along the wave plate 52 having the tip 52b bent downward with respect to the horizontal direction by the swirling flow from the oil return hole 50, and the refrigerating machine oil is wave-controlled. It can be prevented from accumulating on the plate 52.
  • the wave plate 52 bends the tip portion 52b side from between the root portion 52a and the tip portion 52b.
  • the wave plate 52 is bent with the tip 52b side upward.
  • the swirl flow from the oil return hole 50 can be guided in the direction away from the oil surface along the wave-return plate 52 by the wave-breaking plate 52 bent at the tip 52b side upward. .
  • the refrigerating machine oil sent out from the oil return hole 50 flows into the oil reservoir 19 from the left and right boundaries between the oil return hole 50 and the wave plate 52. Further, if the portion between the root portion 52a in the vicinity of the oil return hole 50 of the wave shaping plate 52 and the protruding tip portion 52b is parallel to the bottom position of the oil return hole 50, the oil return hole 50 is sent out.
  • the refrigerating machine oil flows into the oil reservoir 19 from the edge portions having the left and right lengths on the base portion 52 a side of the wave plate 52.
  • the tip 52b is a vertical surface
  • the tip 52b of the wave plate 52 exists in the horizontal projection region of the oil return hole 50, and the swirling flow from the oil return hole 50 collides with the tip 52b. It can diffuse in the upward and left-right directions.
  • the wave plate 52 is bent with the tip 52b side downward.
  • the refrigeration oil flows into the oil reservoir 19 along the wave plate 52 by the swirl flow from the oil return hole 50 in the wave plate 52 bent at the tip 52b side downward. It is easy to be washed away, and the refrigerating machine oil can be prevented from collecting on the wave plate 52.
  • the wave plate 52 is configured integrally with the outer tube portion 13 and the partition plate 51.
  • the wave plate 52 can be formed without increasing the number of parts and the assembly process. Thereby, an inexpensive and easy structure can be achieved.
  • the wave plate 52 is integrally formed by casting the outer cylinder portion 13, the oil storage portion 19, the partition plate 51, and the like.
  • the wave plate 52 can be formed without increasing the number of parts and the assembly process. Thereby, an inexpensive and easy structure can be achieved.
  • the screw compressor 1 includes the oil separator 3 described above.
  • FIG. 6 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which the screw compressor 1 according to Embodiment 2 of the present invention is applied.
  • the refrigeration cycle apparatus 200 includes a screw compressor 1, a condenser 201, an expansion valve 202, and an evaporator 203.
  • the screw compressor 1, the condenser 201, the expansion valve 202, and the evaporator 203 are connected by a refrigerant pipe to form a refrigeration cycle circuit.
  • coolant which flowed out from the evaporator 203 is suck
  • the high-temperature and high-pressure refrigerant is condensed in the condenser 201 to become a liquid.
  • the refrigerant that has become liquid is decompressed and expanded by the expansion valve 202 to form a low-temperature and low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 203.
  • the screw compressor 1 of Embodiment 1 can be applied to such a refrigeration cycle apparatus 200.
  • the refrigeration cycle apparatus 200 include an air conditioner, a refrigeration apparatus, or a water heater.
  • the refrigeration cycle apparatus 200 includes the screw compressor 1 described in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

油分離器は、筒状の外筒部と、外筒部の内部に設けられた筒状の内筒部と、外筒部の下方に設けられ、油を貯留する油貯留部と、外筒部と油貯留部とを区切る仕切板と、外筒部の側面に形成され、油貯留部に連通する返油孔と、を備え、返油孔と油貯留部との間に整波板を設ける。

Description

油分離器、スクリュー圧縮機及び冷凍サイクル装置
 本発明は、冷媒から分離された油を油貯留部に戻す油分離器、スクリュー圧縮機及び冷凍サイクル装置に関する。
 スクリュー圧縮機では、軸受の潤滑、圧縮熱の冷却、又は隙間のシールを目的として、軸受あるいは圧縮室に多量の冷凍機油が供給されている。供給された冷凍機油は、圧縮された冷媒ガスと共に圧縮室から吐出部に吐き出される。このため、油分離器にて冷凍機油と冷媒ガスとを分離し、再度軸受あるいは圧縮室に供給する必要がある。
 また、吐出部に吐き出された冷凍機油が外部の冷凍サイクル回路側へ流入した場合には、凝縮器又は蒸発器での熱交換に悪影響を及ぼし、性能低下の要因となる。このため、冷凍機油が冷凍サイクル回路側へ流入する前に油分離器にて、冷媒ガスと冷凍機油とを分離し、冷凍機油を回収する必要がある。
 特許文献1に開示されるように、従来のスクリュー圧縮機において、冷凍機油と冷媒ガスとを分離する油分離器を圧縮機と一体化したスクリュー圧縮機が知られている。冷凍機油と冷媒ガスとを分離する方式としては、サイクロン方式と呼ばれる気液の密度差を利用して遠心力によって冷凍機油と冷媒ガスとを分離させる方式がある。
 サイクロン方式の油分離器は、油分離部と、油貯留部と、で構成される。油分離部は、遠心分離部分と、通路部分と、を備える。遠心分離部分は、二重の円筒で形成され、外筒部と内筒部との間にて油分離を行うための遠心力を発生させる。通路部分は、遠心力によって冷凍機油と分離されて旋回しながら下降する冷媒ガスを内筒部の内側にて旋回上昇させて外部の冷凍サイクル回路側に流出させる。油貯留部は、分離された冷凍機油を貯留する。
特許第4102891号公報
 サイクロン方式の油分離器の油貯留部が油分離器の下部に設けられた場合には、油貯留部の油面高さが高いときに旋回流が油貯留部へ侵入すると、油面が荒れ易い。そして、油面が荒れることにより、油貯留部の油が油分離空間に戻されてしまい、旋回流に巻き上げられて外部の冷凍サイクル回路に流出されてしまう。このような、油分離性能が悪化してしまう課題があった。
 本発明は、上記課題を解決するためのものであり、安価でかつ容易な構造にて油貯留部への旋回流侵入による油面荒れが抑制され、油貯留部の油面高さが高くなっても高い油分離効率が実現できる油分離器、スクリュー圧縮機及び冷凍サイクル装置を提供することを目的とする。
 本発明に係る油分離器は、筒状の外筒部と、前記外筒部の内部に設けられた筒状の内筒部と、前記外筒部の下方に設けられ、油を貯留する油貯留部と、前記外筒部と前記油貯留部とを区切る仕切板と、前記外筒部の側面に形成され、前記油貯留部に連通する返油孔と、を備え、前記返油孔と前記油貯留部との間に整波板を設けるものである。
 本発明に係るスクリュー圧縮機は、上記の油分離器を備えるものである。
 本発明に係る冷凍サイクル装置は、上記のスクリュー圧縮機を備えるものである。
 本発明に係る油分離器、スクリュー圧縮機及び冷凍サイクル装置によれば、返油孔と油貯留部との間に整波板が設けられる。これにより、返油孔から油貯留部へ侵入する旋回流が油面に直接当たり難くなる。したがって、安価でかつ容易な構造にて油貯留部への旋回流侵入による油面荒れが抑制され、油貯留部の油面高さが高くなっても高い油分離効率が実現できる。
本発明の実施の形態1に係るスクリュー圧縮機を示す縦断面図である。 本発明の実施の形態1に係るスクリュー圧縮機の油分離器を図1のA-A断面で示す横断面図である。 本発明の実施の形態1の変形例1に係るスクリュー圧縮機の油分離器を図1のA-A断面で示す横断面図である。 本発明の実施の形態1の変形例2に係るスクリュー圧縮機の油分離器を示す縦断面図である。 本発明の実施の形態1の変形例3に係るスクリュー圧縮機の油分離器を示す縦断面図である。 本発明の実施の形態2に係るスクリュー圧縮機を適用した冷凍サイクル装置を示す冷媒回路図である。
 以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングを省略している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
<スクリュー圧縮機1>
 図1は、本発明の実施の形態1に係るスクリュー圧縮機1を示す縦断面図である。図1に示すように、スクリュー圧縮機1は、二点鎖線Sより右側のC側に、圧縮機本体2を備える。スクリュー圧縮機1は、二点鎖線Sより左側のO側に、油分離器3を備える。
 スクリュー圧縮機1は、油分離器3を備えたシングルスクリュー圧縮機である。スクリュー圧縮機1は、圧縮機本体2と、油分離器3と、を圧縮機本体2の外郭を構成したケーシング4にてボルトによって締結された構成である。
<圧縮機本体2>
 圧縮機本体2は、ケーシング4と、モーター5と、スクリュー軸6と、スクリューローター7と、軸受8と、を備える。ケーシング4は、圧縮機本体2の外郭を構成した筒状である。モーター5は、ケーシング4内に収容されている。スクリュー軸6は、モーター5に固定され、モーター5によって回転駆動される。スクリューローター7は、スクリュー軸6に固定されている。軸受8は、スクリュー軸6におけるモーター5に固定されていない側の端部を回転自在に支持している。
 圧縮機本体2は、スクリューローター7の側面に、スクリュー軸6に対して軸対象となるように配置された一対のゲートローター9を備える。圧縮機本体2は、ケーシング4の側面とスクリューローター7との間に、スクリューローター7の外周面に沿って吸入圧力側と吐出圧力側とに摺動可能なスライドバルブ10を備える。スライドバルブ10は、中央部に開口部10aを有する。
 モーター5は、ケーシング4内に内接して固定されたステーター5aと、ステーター5aの内側に配置されたモーターローター5bと、から構成されている。モーターローター5bは、スクリュー軸6に固定され、スクリューローター7と同一線上に配置されている。
 スクリューローター7は、円柱状である。スクリューローター7の外周面には、スクリューローター7の一端から他端に向かって複数の螺旋状に延びるスクリュー溝7aが複数形成されている。ここで、ケーシング4は、低圧の冷媒ガスで満たされる吸入圧力側と、高圧の冷媒ガスで満たされる吐出圧力側と、に隔てられている。スクリューローター7の一端側は、冷媒ガスの吸入側となって吸入圧力側と連通する。スクリューローター7の他端側は、冷媒ガスの吐出側となってスクリュー溝7aを吐出圧力側と連通させる。
 ゲートローター9は、円板状である。ゲートローター9の外周面には、周方向に沿って複数の歯部9aが設けられている。ゲートローター9の歯部9aは、スクリューローター7のスクリュー溝7aに噛み合うように配置されている。スクリュー溝7aとゲートローター9の歯部9aとケーシング4の内周面とスライドバルブ10とによって囲まれた空間は、圧縮される冷媒ガスが満たされる圧縮室11として形成される。圧縮室11には、軸受8の潤滑及び圧縮室11のシールを行う冷凍機油が注入されている。
 ケーシング4の吐出圧力側の内周面には、吐出室12へ繋がる図示しない吐出口が開口している。圧縮室11内に満たされた高圧の冷媒ガス及び冷凍機油は、スライドバルブ10の開口部10a及び吐出口を介して吐出室12に吐出される。
 吐出室12は、圧縮室11内の高圧の冷媒ガス及び冷凍機油が吐出される空間である。吐出室12内に満たされた高圧の冷媒ガス及び冷凍機油は、油分離器3に導出される。
<油分離器3>
 油分離器3は、冷媒ガスと冷凍機油とを分離するためのサイクロン方式の油分離器である。油分離器3は、圧縮機本体2のケーシング4にボルトによって締結されている。
 油分離器3は、筒状の外筒部13及び筒状の内筒部14からなる二重円筒で形成されている。外筒部13は、上部側面に圧縮機本体2から導出される冷媒ガス及び冷凍機油を内側に流入させる流入口20を有する。内筒部14は、外筒部13の内部に設けられている。外筒部13と内筒部14とは、同じ中心軸の同心円筒である。内筒部14の下部開口部と外筒部13の下端との間には、外筒部13と内筒部14との間で旋回する冷媒ガスが内筒部14の内側に折り返す油分離空間16が形成されている。油分離器3は、外筒部13及び内筒部14の上部開口部を覆う蓋部15を備える。内筒部14は、蓋部15に固定されている。外筒部13、内筒部14及び蓋部15は、油分離器3の油分離部17を構成している。
 油分離器3は、外筒部13の下方に設けられ、冷媒ガスと分離された冷凍機油を貯留する油貯留部19を備える。油貯留部19は、油分離部17の下方投影領域よりも広く、かつ、圧縮機本体2に連通するように圧縮機本体2側に長く形成されている。
 油分離器3は、外筒部13と油貯留部19とを区切る仕切板51を備える。仕切板51は、油分離部17と油貯留部19とを仕切る。仕切板51は、外筒部13の下部開口部を覆って封止している。仕切板51は、外筒部13と一体化して設けられている。仕切板51は、内筒部14の下部開口部の円環状の端縁と平行に配置されている。
 油分離部17の蓋部15は、円板状に設けられている。蓋部15の中央には、蓋部15を上下に貫通して内筒部14の内径よりも小径な貫通孔が形成されている。貫通孔は、油分離器3において冷凍機油を分離させた後の冷媒ガスをスクリュー圧縮機1から冷凍サイクル回路側に排出する出口部15aである。出口部15aの冷媒ガス流れの下流側には、逆止弁18が設けられている。なお、逆止弁18は、蓋部15に内蔵されてもよい。
<返油孔50>
 油分離器3は、外筒部13の側面に形成され、油貯留部19に連通する返油孔50を備える。返油孔50は、外筒部13の圧縮機本体2側の側面に、外筒部13の半周領域内の大きさで形成されている。返油孔50は、少なくとも外筒部13の側面の下端に至って形成され、油分離部17で分離された冷凍機油を仕切板51上に流して油貯留部19に流出させる。返油孔50の高さ寸法は、内筒部14の下部開口部に至らない油分離空間16の範囲内に形成されている。好ましくは、返油孔50の高さ寸法は、油分離空間16の下半分の範囲内に形成されているとよい。
<整波板52>
 図2は、本発明の実施の形態1に係るスクリュー圧縮機1の油分離器3を図1のA-A断面で示す横断面図である。図1、図2に示すように、油分離器3は、返油孔50と油貯留部19との間に整波板52を設けている。整波板52は、仕切板51を延長して形成されている。整波板52は、仕切板51と同一の厚みを有する。整波板52は、仕切板51と同一の板状部材で構成されている。整波板52は、外筒部13及び仕切板51と一体化して構成されている。整波板52は、外筒部13と油貯留部19と仕切板51と鋳造によって一体成形されている。
 図2に示すように、整波板52は、返油孔50の横幅寸法と同一の横幅寸法に形成されている。整波板52は、矩形形状に形成されている。整波板52は、返油孔50の横幅寸法と同一の横幅寸法を維持した一定幅で圧縮機本体2側に延びている。整波板52の圧縮機本体2側に延びた先端は、整波板52の横幅に直交する直線状に形成されている。なお、整波板52は、矩形形状以外に、たとえば、台形形状、先端を円弧凸部に形成した凸U字形状、先端を円弧凹部に形成した凹U字形状、先端を尖らせた5角形形状、あるいは、先端を尖らせた三角形形状などでもよい。
<スクリュー圧縮機1における冷媒ガス及び冷凍機油の流れの過程>
 スクリューローター7と同一軸線上に固定されたモーター5が回転する。これにより、スクリュー軸6が回転する。スクリュー軸6の回転によってスクリュー軸6に固定されたスクリューローター7が回転する。回転するスクリューローター7は、スクリュー溝7aに噛み合う歯部9aを有するゲートローター9を回転させる。
 このとき、スクリューローター7の吸入圧力側から吸い込まれた低圧の冷媒ガスは、圧縮室11に流入する。圧縮室11に流入した冷媒ガスは、圧縮室11にて圧縮されつつ、スクリューローター7の吐出圧力側へ送られる。高圧に圧縮された冷媒ガスは、圧縮室11に注入されている冷凍機油と一緒にスライドバルブ10の開口部10aから吐出室12へ吐出される。吐出された冷媒ガス及び冷凍機油は、吐出室12から油分離器3に導出される。
 油分離器3に到達した冷媒ガス及び冷凍機油は、外筒部13の上部側面に内外に貫通した流入口20から外筒部13の内部に流入する。流入口20から流入した冷媒ガス及び冷凍機油は、外筒部13と内筒部14との間の隙間を旋回しながら下降する。この際、旋回下降する冷媒ガス及び冷凍機油のうち、冷媒ガスよりも密度の高い冷凍機油は遠心力によって外筒部13の内周面へ飛ばされ、冷凍機油と冷媒ガスとが分離される。
 旋回流により分離された冷凍機油は、外筒部13の内周面を自重によって落下し、仕切板51上を返油孔50に向かって流れる。返油孔50に到達した冷凍機油は、返油孔50を外筒部13の内側から外側に向けて流出する一部の冷媒ガスに押し出されて返油孔50から外筒部13の外側に流出し、油貯留部19に溜められる。油貯留部19へ溜められた冷凍機油は、ケーシング4内に設けられた図示しない経路を通って圧縮機本体2に戻され、圧縮室11あるいは軸受8に供給される。
 このとき、冷凍機油と分離した冷媒ガスは、旋回しながら下降して油分離空間16内にて仕切板51で内側に折り返される。折り返された冷媒ガスは、油分離空間16の折り返される前の冷媒ガスの内側にて旋回を継続しながら上昇流となって内筒部14の内部に流入する。内筒部14の内部に流入した冷媒ガスは、内筒部14の内側を経由し、蓋部15の出口部15aから逆止弁18を通過して冷凍サイクル回路側に流出する。
<整波板52の効果>
 図1、図2に示すように、油貯留部19の油面上部に仕切板51が設けられた場合でも、返油孔50から冷媒ガスが油貯留部19へ侵入して油面が乱されるおそれがある。この場合には、油貯留部19の冷凍機油が跳ね上がって油分離空間16に侵入し、冷媒ガスの上昇流に乗って外部の冷凍サイクル回路側に冷凍機油が流出するおそれがある。
 そこで、実施の形態1では、整波板52が設けられている。これにより、返油孔50から油貯留部19へ侵入する冷媒ガスが整波板52によって油面に直接当たり難くなり、油面が乱され難くなる。また、油貯留部19の冷凍機油が跳ね上がっても、整波板52に遮られ、返油孔50から油分離空間16に侵入し難い。この結果、実施の形態1では、外部の冷凍サイクル回路側への冷凍機油の流出が抑制される。
 以上のように、実施の形態1によれば、図1、図2に示すような整波板52が設けられていることにより、油貯留部19から返油孔50を通って外部の冷凍サイクル回路側への冷凍機油の流出が抑制できる。
 また、整波板52は、油貯留部19及び仕切板51と一体化されている。これにより、部品点数及び組立工程が増えることなく、油分離性能の高い油分離器3を有するスクリュー圧縮機1が得られる。
<変形例1>
 図3は、本発明の実施の形態1の変形例1に係るスクリュー圧縮機1の油分離器3を図1のA-A断面で示す横断面図である。なお、変形例1では、実施の形態1との差異点を説明する。その他の実施の形態1と同様な事項は、説明を省略する。
 図3に示すように、整波板52は、返油孔50の横幅寸法よりも大きな横幅寸法に形成されている。整波板52は、矩形形状に形成されている。整波板52は、返油孔50の横幅寸法よりも大きな横幅寸法を維持した一定幅で圧縮機本体2側に延びている。整波板52の圧縮機本体2側に延びた先端は、整波板52の横幅に直交する直線状に形成されている。
 変形例1によると、整波板52が大きく、旋回する冷媒ガスが油貯留部19へ侵入した際に実施の形態1よりも油面に直接当たり難く、油貯留部19の油面が乱され難い。そのため、油貯留部19から返油孔50を通って外部の冷凍サイクル回路側への冷凍機油の流出が実施の形態1よりも抑制できる。すなわち、実施の形態1よりも油分離性能の高い油分離器3を有するスクリュー圧縮機1が得られる。
<変形例2>
 図4は、本発明の実施の形態1の変形例2に係るスクリュー圧縮機1の油分離器3を示す縦断面図である。なお、変形例2では、実施の形態1及び変形例1との差異点を説明する。その他の実施の形態1及び変形例1と同様な事項は、説明を省略する。
 図4に示すように、整波板52は、返油孔50近傍の根元部52aから突出した先端部52bを水平方向に対して屈曲させている。具体的には、整波板52は、根元部52aと先端部52bとの間から先端部52b側を上方向に向けた傾斜面に屈曲させている。
 なお、整波板52の形成方法は、限定されない。また、整波板52は、根元部52aと先端部52bとの間から先端部52b側を上方向に向けた曲面又は鉛直面に屈曲させてもよい。さらに、整波板52は、返油孔50近傍の根元部52aから先端部52b側を水平方向に対して上方向に傾斜面又は曲面に屈曲させてもよい。
<変形例3>
 図5は、本発明の実施の形態1の変形例3に係るスクリュー圧縮機1の油分離器3を示す縦断面図である。なお、変形例3では、実施の形態1及び変形例1、2との差異点を説明する。その他の実施の形態1及び変形例1、2と同様な事項は、説明を省略する。
 図5に示すように、整波板52は、返油孔50近傍の根元部52aから突出した先端部52bを水平方向に対して屈曲させている。具体的には、整波板52は、根元部52aと先端部52bとの間から先端部52b側を下方向に向けた傾斜面に屈曲させている。
 なお、整波板52の形成方法は、限定されない。また、整波板52は、根元部52aと先端部52bとの間から先端部52b側を下方向に向けた曲面又は鉛直面に屈曲させてもよい。さらに、整波板52は、返油孔50近傍の根元部52aから先端部52b側を水平方向に対して下方向に傾斜面又は曲面に屈曲させてもよい。
<その他>
 上述の実施の形態1では、シングルスクリュー圧縮機について説明した。しかし、本発明は、これに限定されない。たとえば、本発明は、ツインスクリュー圧縮機、あるいは、圧縮機と一体となっていない油分離器3についても適用できる。
 また、スクリュー圧縮機1の運転は、一定の回転数で運転する定速駆動、あるいは、モーター5の回転数を制御するインバーター駆動のどちらでもよい。
 加えて、スクリュー圧縮機1に適用される冷媒は、特定の冷媒に限定されるものではない。たとえば、環境への影響等を考慮して、GWPが低いものが選択されるとよい。GWPが低い冷媒は、たとえば、R32、HFO-1123、HFO-1234yf、HFO-1234ze、又は、これらのうちの少なくとも1つを含む混合冷媒である。なお、スクリュー圧縮機1に適用される冷媒は、二酸化炭素等の自然冷媒でもよい。
<実施の形態1の効果>
 実施の形態1によれば、油分離器3は、筒状の外筒部13を備える。油分離器3は、外筒部13の内部に設けられた筒状の内筒部14を備える。油分離器3は、外筒部13の下方に設けられ、油を貯留する油貯留部19を備える。油分離器3は、外筒部13と油貯留部19とを区切る仕切板51を備える。外筒部13の側面に形成され、油貯留部19に連通する返油孔50を備える。返油孔50と油貯留部19との間に整波板52を設けている。
 この構成によれば、返油孔50から油貯留部19へ侵入する旋回流が整波板52に遮られ、油面に直接当たり難くなる。また、油貯留部19の冷凍機油が跳ね上がっても、整波板52に遮られ、返油孔50から油分離空間16に侵入し難い。このように、油貯留部19の油面荒れが抑制され、油貯留部19の油面が高くなった場合でも油分離空間16に冷凍機油が逆流することが抑制され、外部の冷凍サイクル回路への冷凍機油の流出が抑制できる。したがって、安価でかつ容易な構造にて油貯留部19への旋回流侵入による油面荒れが抑制され、油貯留部19の油面高さが高くなっても高い油分離効率が実現できる。
 実施の形態1によれば、整波板52は、返油孔50の横幅寸法と同一の横幅寸法に形成されている。
 この構成によれば、返油孔50から油貯留部19へ侵入する旋回流が油面に直接当たり難くなる整波板52が必要最小限の大きさで形成できる。これにより、安価でかつ容易な構造が達成できる。
 実施の形態1によれば、整波板52は、返油孔50の横幅寸法よりも大きな横幅寸法に形成されている。
 この構成によれば、整波板52がより広い面積で形成でき、返油孔50から油貯留部19へ侵入する旋回流が油面に直接当たり難くなる。また、油貯留部19の冷凍機油が跳ね上がっても、整波板52に遮られ、返油孔50から油分離空間16に侵入し難い。
 実施の形態1によれば、整波板52は、矩形形状に形成されている。
 この構成によれば、整波板52が単純な構成である。これにより、安価でかつ容易な構造が達成できる。
 実施の形態1によれば、整波板52は、仕切板51を延長して形成されている。
 この構成によれば、部品点数及び組立工程が増えることなく、整波板52が形成できる。これにより、安価でかつ容易な構造が達成できる。
 実施の形態1によれば、整波板52は、仕切板51と同一の厚みを有する。
 この構成によれば、整波板52が製造し易い。これにより、安価でかつ容易な構造が達成できる。
 実施の形態1によれば、整波板52は、仕切板51と平行に形成されている。
 この構成によれば、整波板52が単純な構成である。これにより、安価でかつ容易な構造が達成できる。
 実施の形態1によれば、整波板52は、返油孔50近傍の根元部52aから突出した先端部52bを水平方向に対して屈曲させている。
 この構成によれば、たとえば、返油孔50からの旋回流が先端部52bを水平方向に対して上方向に屈曲させた整波板52に沿って油面から離れる方向に誘導できる。あるいは、返油孔50からの旋回流によって冷凍機油が先端部52bを水平方向に対して下方向に屈曲させた整波板52に沿って油貯留部19に押し流され易く、冷凍機油が整波板52上に溜まらないようにできる。
 実施の形態1によれば、整波板52は、根元部52aと先端部52bとの間から先端部52b側を屈曲させている。
 この構成によれば、整波板52の返油孔50近傍の根元部52aと突出した先端部52bとの間までにて、返油孔50から油貯留部19へ侵入する勢いの強い旋回流が油面に直接当たり難くなる。それに加え、返油孔50から離れた先端部52b側にて、返油孔50からの勢いのそがれた旋回流が水平方向に対して上方向に屈曲された先端部52b側に沿って油面から離れる方向に誘導できる。あるいは、返油孔50からの勢いのそがれた旋回流によって冷凍機油が水平方向に対して下方向に屈曲された先端部52b側に沿って油貯留部19に押し流され易く、冷凍機油が整波板52上に溜まらないようにできる。
 実施の形態1によれば、整波板52は、先端部52b側を上方向に向けて屈曲させている。
 この構成によれば、先端部52b側を上方向に向けて屈曲させた整波板52にて、返油孔50からの旋回流が整波板52に沿って油面から離れる方向に誘導できる。なお、返油孔50から送り出された冷凍機油は、返油孔50と整波板52との左右両側の境界から油貯留部19に流れ込む。また、整波板52の返油孔50近傍の根元部52aと突出した先端部52bとの間までが返油孔50の底位置と平行な場合であれば、返油孔50から送り出された冷凍機油は、整波板52の根元部52a側にて左右両側の長さのある縁部から油貯留部19に流れ込める。加えて、先端部52bが鉛直面であると、整波板52の先端部52bが返油孔50の水平投影領域に存在し、返油孔50からの旋回流が先端部52bに衝突して上方向及び左右方向に拡散できる。
 実施の形態1によれば、整波板52は、先端部52b側を下方向に向けて屈曲させている。
 この構成によれば、先端部52b側を下方向に向けて屈曲させた整波板52にて、返油孔50からの旋回流によって冷凍機油が整波板52に沿って油貯留部19に押し流され易く、冷凍機油が整波板52上に溜まらないようにできる。
 実施の形態1によれば、整波板52は、外筒部13及び仕切板51と一体化して構成されている。
 この構成によれば、部品点数及び組立工程が増えることなく、整波板52が形成できる。これにより、安価でかつ容易な構造が達成できる。
 実施の形態1によれば、整波板52は、外筒部13と油貯留部19と仕切板51と鋳造によって一体成形されている。
 この構成によれば、部品点数及び組立工程が増えることなく、整波板52が形成できる。これにより、安価でかつ容易な構造が達成できる。
 実施の形態1によれば、スクリュー圧縮機1は、上記の油分離器3を備える。
 この構成によれば、油分離器3を備えるスクリュー圧縮機1では、安価でかつ容易な構造にて油貯留部19への旋回流侵入による油面荒れが抑制され、油貯留部19の油面高さが高くなっても高い油分離効率が実現できる。
実施の形態2.
<冷凍サイクル装置200>
 図6は、本発明の実施の形態2に係るスクリュー圧縮機1を適用した冷凍サイクル装置200を示す冷媒回路図である。
 図6に示すように、冷凍サイクル装置200は、スクリュー圧縮機1、凝縮器201、膨張弁202及び蒸発器203を備える。これらスクリュー圧縮機1、凝縮器201、膨張弁202及び蒸発器203が冷媒配管で接続されて冷凍サイクル回路を形成している。そして、蒸発器203から流出した冷媒は、スクリュー圧縮機1に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器201において凝縮されて液体になる。液体となった冷媒は、膨張弁202で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が蒸発器203において熱交換される。
 実施の形態1のスクリュー圧縮機1は、このような冷凍サイクル装置200に適用できる。なお、冷凍サイクル装置200としては、たとえば空気調和装置、冷凍装置又は給湯器などが挙げられる。
<実施の形態2の効果>
 実施の形態2によれば、冷凍サイクル装置200は、実施の形態1に記載のスクリュー圧縮機1を備える。
 この構成によれば、スクリュー圧縮機1を備える冷凍サイクル装置200では、安価でかつ容易な構造にて油貯留部19への旋回流侵入による油面荒れが抑制され、油貯留部19の油面高さが高くなっても高い油分離効率が実現できる。
 1 スクリュー圧縮機、2 圧縮機本体、3 油分離器、4 ケーシング、5 モーター、5a ステーター、5b モーターローター、6 スクリュー軸、7 スクリューローター、7a スクリュー溝、8 軸受、9 ゲートローター、9a 歯部、10 スライドバルブ、10a 開口部、11 圧縮室、12 吐出室、13 外筒部、14 内筒部、15 蓋部、15a 出口部、16 油分離空間、17 油分離部、18 逆止弁、19 油貯留部、20 流入口、50 返油孔、51 仕切板、52 整波板、52a 根元部、52b 先端部、200 冷凍サイクル装置、201 凝縮器、202 膨張弁、203 蒸発器。

Claims (15)

  1.  筒状の外筒部と、
     前記外筒部の内部に設けられた筒状の内筒部と、
     前記外筒部の下方に設けられ、油を貯留する油貯留部と、
     前記外筒部と前記油貯留部とを区切る仕切板と、
     前記外筒部の側面に形成され、前記油貯留部に連通する返油孔と、
    を備え、
     前記返油孔と前記油貯留部との間に整波板を設ける油分離器。
  2.  前記整波板は、前記返油孔の横幅寸法と同一の横幅寸法に形成される請求項1に記載の油分離器。
  3.  前記整波板は、前記返油孔の横幅寸法よりも大きな横幅寸法に形成される請求項1に記載の油分離器。
  4.  前記整波板は、矩形形状に形成される請求項1~3のいずれか1項に記載の油分離器。
  5.  前記整波板は、前記仕切板を延長して形成される請求項1~4のいずれか1項に記載の油分離器。
  6.  前記整波板は、前記仕切板と同一の厚みを有する請求項1~5のいずれか1項に記載の油分離器。
  7.  前記整波板は、前記仕切板と平行に形成される請求項1~6のいずれか1項に記載の油分離器。
  8.  前記整波板は、前記返油孔近傍の根元部から突出した先端部を水平方向に対して屈曲させる請求項1~6のいずれか1項に記載の油分離器。
  9.  前記整波板は、前記根元部と前記先端部との間から前記先端部側を屈曲させる請求項8に記載の油分離器。
  10.  前記整波板は、前記先端部側を上方向に向けて屈曲させる請求項8又は9に記載の油分離器。
  11.  前記整波板は、前記先端部側を下方向に向けて屈曲させる請求項8又は9に記載の油分離器。
  12.  前記整波板は、前記外筒部及び前記仕切板と一体化して構成される請求項1~11のいずれか1項に記載の油分離器。
  13.  前記整波板は、前記外筒部と前記油貯留部と前記仕切板と鋳造によって一体成形される請求項12に記載の油分離器。
  14.  請求項1~13のいずれか1項に記載の油分離器を備えるスクリュー圧縮機。
  15.  請求項14に記載のスクリュー圧縮機を備える冷凍サイクル装置。
PCT/JP2018/015991 2018-04-18 2018-04-18 油分離器、スクリュー圧縮機及び冷凍サイクル装置 WO2019202682A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015991 WO2019202682A1 (ja) 2018-04-18 2018-04-18 油分離器、スクリュー圧縮機及び冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015991 WO2019202682A1 (ja) 2018-04-18 2018-04-18 油分離器、スクリュー圧縮機及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019202682A1 true WO2019202682A1 (ja) 2019-10-24

Family

ID=68239089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015991 WO2019202682A1 (ja) 2018-04-18 2018-04-18 油分離器、スクリュー圧縮機及び冷凍サイクル装置

Country Status (1)

Country Link
WO (1) WO2019202682A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057444A1 (ja) * 2022-09-14 2024-03-21 三菱電機株式会社 油分離器、圧縮機及び冷凍サイクル装置
WO2024069834A1 (ja) * 2022-09-29 2024-04-04 三菱電機株式会社 スクリュー圧縮機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031759A (ja) * 2008-07-29 2010-02-12 Toyota Industries Corp ベーン圧縮機
JP2012041843A (ja) * 2010-08-17 2012-03-01 Toyota Industries Corp 圧縮機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031759A (ja) * 2008-07-29 2010-02-12 Toyota Industries Corp ベーン圧縮機
JP2012041843A (ja) * 2010-08-17 2012-03-01 Toyota Industries Corp 圧縮機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057444A1 (ja) * 2022-09-14 2024-03-21 三菱電機株式会社 油分離器、圧縮機及び冷凍サイクル装置
WO2024069834A1 (ja) * 2022-09-29 2024-04-04 三菱電機株式会社 スクリュー圧縮機

Similar Documents

Publication Publication Date Title
JP4788746B2 (ja) 圧縮機
JP5039869B1 (ja) 圧縮機
JP5255157B2 (ja) 圧縮機
JP6094236B2 (ja) 圧縮機
US9651047B2 (en) Compressor having a partitioned discharge chamber
CN103867450B (zh) 旋转式压缩机
TW201420887A (zh) 螺旋壓縮機及具備該螺旋壓縮機的急冷器單元
WO2019202682A1 (ja) 油分離器、スクリュー圧縮機及び冷凍サイクル装置
JP5591196B2 (ja) オイルセパレータ、及び、オイルセパレータを備えた圧縮機
JP2006283592A (ja) 流体機械
JP6597744B2 (ja) 油分離器
JP2009180106A (ja) スクロール圧縮機
CN105201846B (zh) 旋转式压缩机
WO2018008368A1 (ja) 圧縮機
JP2009221960A (ja) 圧縮機
WO2019146100A1 (ja) 油分離器、圧縮機及び冷凍サイクル装置
JP6762420B2 (ja) スクリュー圧縮機
JP2013015069A (ja) オイルセパレータ、及び、オイルセパレータを備えた圧縮機
WO2021124768A1 (ja) 圧縮機
WO2020136815A1 (ja) 油分離器、スクリュー圧縮機及び冷凍サイクル装置
JP6134906B2 (ja) 圧縮機
JP5609770B2 (ja) 圧縮機
JP6440927B2 (ja) 密閉型スクロール圧縮機
WO2024057444A1 (ja) 油分離器、圧縮機及び冷凍サイクル装置
WO2020148824A1 (ja) 圧縮機および冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP