WO2019202250A1 - Dispositif optoelectronique a diode contrainte en tension par effet piezoelectrique inverse - Google Patents

Dispositif optoelectronique a diode contrainte en tension par effet piezoelectrique inverse Download PDF

Info

Publication number
WO2019202250A1
WO2019202250A1 PCT/FR2019/050882 FR2019050882W WO2019202250A1 WO 2019202250 A1 WO2019202250 A1 WO 2019202250A1 FR 2019050882 W FR2019050882 W FR 2019050882W WO 2019202250 A1 WO2019202250 A1 WO 2019202250A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral
optoelectronic device
conductive layer
main plane
semiconductor
Prior art date
Application number
PCT/FR2019/050882
Other languages
English (en)
Inventor
Abdelkader Aliane
Luc Andre
Jean-Louis Ouvrier-Buffet
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to CN201980026320.5A priority Critical patent/CN112055895A/zh
Priority to US17/044,510 priority patent/US20210111205A1/en
Priority to EP19744752.7A priority patent/EP3782205A1/fr
Publication of WO2019202250A1 publication Critical patent/WO2019202250A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1037Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIVBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/206Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using only longitudinal or thickness displacement, e.g. d33 or d31 type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier

Definitions

  • the field of the invention is that of optoelectronic devices comprising at least one diode made of a semiconductor compound strained in tension.
  • the invention finds an application particularly in the field of the detection of a light radiation belonging for example to the near infrared, the diode or diodes of the optoelectronic device can then be made of germanium stress-stressed.
  • a layer of a crystalline semiconductor compound preferably monocrystalline, having a mechanical stress in tension. This is the case in particular of certain light sources whose material of the emissive layer presents, except constraint, a structure of bands of indirect energy, the structure of bands being then made direct by the application of a stress in tension sufficient.
  • the crystalline semiconductor compound may be a compound based on germanium, for example germanium, germanium tin, or even silicon germanium.
  • the document US2014 / 0291682 describes an avalanche photodiode whose absorption semiconductor layer is made of germanium strained in tension.
  • the photodiode is then adapted to absorb light radiation up to a cut-off wavelength greater than issonm, which is the absorption cut-off wavelength of the relaxed germanium.
  • the germanium layer is coated with a stressing layer formed of a stack of sublayers of silicon nitride, silicon oxide and amorphous silicon.
  • this photodiode has the particular disadvantage of being obtained by using engineering techniques of the mechanical stress by deposition of a stack of thin layers, which can make the manufacturing process complex.
  • EP3151265 discloses an optoelectronic device with a diode having a voltage-constrained semiconductor layer and made of germanium.
  • the semiconductor layer has been tensioned here by a prior localized structuring of the layer, then by suspending the structured layer above a substrate, followed by bonding to the latter by direct bonding.
  • a consolidation annealing is finally implemented to improve the mechanical strength of the structured layer bonded bonded to the substrate.
  • this optoelectronic device has the disadvantage of being obtained by a relatively complex manufacturing process.
  • controlling the value of the voltage stress actually experienced by the semiconductor layer can be particularly difficult.
  • the invention aims to remedy at least in part the disadvantages of the prior art, and more particularly to provide an optoelectronic device having one or more diodes that can be actively tensioned. It also aims to provide an optoelectronic device with a small footprint, and can be obtained by a simplified manufacturing process. It also aims to provide an optoelectronic device comprising a matrix of high spatial resolution diodes.
  • the object of the invention is an optoelectronic device comprising: at least one diode, comprising a semiconductor portion having:
  • a first face and a second opposite face substantially parallel to a main plane, and connected to one another by a lateral edge, and
  • peripheral conductive layer made of at least one electrically conductive material, extending along the main plane in contact with the second doped region so as to surround the semiconductor portion;
  • a peripheral piezoelectric portion made of at least one piezoelectric material, extending in the main plane in contact with the peripheral conductive layer so as to surround the semiconductor portion; a first electrical polarization circuit of the peripheral piezoelectric portion, adapted to generate an electric field in the peripheral piezoelectric portion by applying an electrical potential to at least the peripheral conductive layer, so as to induce a deformation of the peripheral piezoelectric portion oriented according to the main plane then causing a voltage deformation of the semiconductor portion along the main plane.
  • the peripheral conductive layer and the peripheral piezoelectric portion surround the semiconductor portion continuously.
  • the peripheral conductive layer completely covers the lateral edge of the semiconductor portion along an axis orthogonal to the main plane, and the peripheral piezoelectric portion completely covers the conductive layer along said orthogonal axis.
  • the lateral edge extends substantially orthogonal to the main plane.
  • the peripheral piezoelectric portion may have a thickness at least equal to that of the semiconductor portion.
  • the optoelectronic device may comprise a second electrical circuit for biasing the diode, adapted to apply said electrical potential to the second doped region through the peripheral conductive layer and a different electrical potential to the first doped region.
  • the first doped portion may extend from the first face and is distant from the side edge.
  • the diode may comprise:
  • the first doped region being surrounded in the main plane and in contact with an unintentionally doped region, or
  • the first doped region being surrounded in the main plane and in contact with the second doped region.
  • the semiconductor portion is made of germanium.
  • the peripheral piezoelectric portion is made of PZT.
  • the peripheral piezoelectric portion extends along the main plane substantially coplanar with the diode.
  • the optoelectronic device may comprise a matrix of coplanar diodes, whose semiconductor portions are electrically isolated from each other by a peripheral piezoelectric portion extending in the main plane continuously.
  • the optoelectronic device may comprise a metallization surrounding each semiconductor portion and resting on one end of the peripheral piezoelectric portion opening on the first face or the second face, the first circuit being adapted to apply an electrical potential difference between the metallization and the peripheral conductive layer of each diode, so as to cause a compressive deformation of the peripheral piezoelectric portion along the main plane.
  • the optoelectronic device may comprise a second peripheral conductive layer arranged so that the peripheral piezoelectric portion is interposed, in the main plane, between the second peripheral conductive layer and the peripheral conductive layer in contact with the semiconductor portion, the first circuit being adapted to apply an electrical potential difference between said peripheral conductive layers, so as to cause a deformation of the peripheral piezoelectric portion in the main plane in a direction opposite to the semiconductor portion.
  • the invention also relates to a method of manufacturing an optoelectronic device according to any one of the preceding features, comprising at least the following steps:
  • peripheral piezoelectric portion by depositing a piezoelectric material on and in contact with a face of the peripheral conductive layer opposite to the side edge.
  • FIG. 4A is a partial and schematic cross-sectional view of an optoelectronic device according to a first embodiment in which the optoelectronic device comprises at least one diode;
  • FIG. 1B is a partial and schematic cross-sectional view of an optoelectronic device according to a second embodiment in which the optoelectronic device comprises a matrix of diodes;
  • FIGS. 2A and 2B are top, partial and schematic views of variants of the optoelectronic device illustrated in FIG. 11A, of circular shape for one (FIG. 2A) and square for the other (FIG. and FIG. 2C is a top view, partial and schematic, of an optoelectronic device similar to that illustrated in FIG. 2C, comprising a matrix of square diodes;
  • FIGS. 3A and 3B are partial and schematic views, in cross-section, of an optoelectronic device according to two variants of the second embodiment
  • FIGS. 4A to 4N illustrate, schematically and partially, and in cross-sectional view, various steps of a method of manufacturing an optoelectronic device according to the second embodiment similar to that illustrated in FIG.
  • the invention relates generally to an optoelectronic device comprising at least one diode, and preferably a matrix of diodes, each comprising a semiconductor portion surrounded, in a main plane of the diode, by a peripheral piezoelectric portion. .
  • the semiconductor portion of the diode is intended to be tensioned as a result of a deformation of the peripheral piezoelectric portion in the main plane of the diode.
  • the peripheral piezoelectric portion is deformed by an inverse piezoelectric effect.
  • the voltage stresses experienced by the semiconductor portion then result in a modification of the optical properties and / or diode electrodes, such as, for example, an enlargement of the spectral range of absorption of light radiation in the case of a photodiode.
  • Stress stressing may also be sufficient to substantially direct the energy band structure of the semiconductor compound, in the case where the semiconductor compound exhibits an indirect band structure when in a relaxed state.
  • the performance of the optoelectronic device can then be improved, especially in the case of a light emitting diode.
  • constrained portion is meant a portion made of a crystalline semiconductor compound under mechanical stress or compression, causing deformation of the mesh of its crystal lattice.
  • the portion is constrained in tension when it undergoes a mechanical stress which tends to stretch the meshes of the network in a plane.
  • the semiconductor portion is intended to be voltage-stressed in a main plane of the diode. This results in the fact that its mesh parameter, in the main plane, has a so-called effective value greater than its natural value when the semiconductor compound is relaxed (i.e. unconstrained). In the remainder of the description, unless otherwise indicated, the constraint considered is oriented in the main plane of the diode.
  • the semiconductor compound then subjected to mechanical stresses in voltage, thus has modified optical and / or electrical properties.
  • it may have a decreased bandgap energy, especially that associated with the valley G (or direct valley).
  • the bandgap energy can be estimated as a function of the voltage strain, as described in the case of a germanium layer publication by Guilloy et al. entitled Germanium under High Tensile Stress: Nonlinear dependence of direct band gap vs strain, ACS Photonics 2016, 3, 1907-1911.
  • the mechanical stress in tension experienced by the semiconductor portion may be sufficient for the energy band structure to become direct.
  • substantially equal means here that this energy difference is of the order of magnitude or less than kT, where k is the Boltzmann constant and T the temperature of the material.
  • the semiconductor portion is made of germanium whose energy band structure is indirect in the relaxed state, in other words DE ⁇ 0, and becomes direct when it suffers a sufficient voltage strain.
  • the voltage setting of the semiconductor portion is obtained as a result of the deformation of the peripheral piezoelectric portion by inverse piezoelectric effect, in the main plane of the diode.
  • inverse piezoelectric effect is meant the physical phenomenon of deformation of the crystalline structure of the piezoelectric material, in expansion or compression, in response to the application of an electric field passing therethrough.
  • the field T of the stresses undergone by the piezoelectric material depends on the electric field E and the piezoelectric coefficient e, and the stress tensor [T] is equal to - [e] [E].
  • FIG. 1 is a partial and schematic view in cross section, of an optoelectronic device i according to a first embodiment.
  • the optoelectronic device i comprises at least one germanium photodiode 2 adapted to detect a near infrared light radiation (SWIR, for Short Wavelength IR, corresponding to the spectral range from 0.8 pm to i, About 7pm, even about 2.5pm.
  • SWIR near infrared light radiation
  • the diode 2 is tensioned by dilating the peripheral piezoelectric portion 30 in the main plane of the diode in a direction opposite to the semiconductor portion 20.
  • a three-dimensional direct reference mark (C, U, Z) is defined here, in which the X and Y axes form a plane parallel to the main plane of the diode (s) 2 of the optoelectronic device 1, and where the Z axis is oriented according to the thickness of the semiconductor portion 20.
  • the optoelectronic device 1 comprises at least one diode 2 PN junction or PIN, the semiconductor portion 20 is surrounded by a peripheral piezoelectric portion 30. It also comprises an electrical bias circuit of the peripheral piezoelectric portion 30 for generating in the first embodiment, a deformation of the peripheral piezoelectric portion 30 in the main plane of the diode 2 and in a direction opposite to the semiconductor portion 20. As a result, the latter undergoes a mechanical stress in the same plane main. It also comprises an electrical circuit for biasing the diode 2.
  • the semiconductor portion 20 extends along a main plane, here parallel to the XY plane, and has a first face 21 and a second opposite face 22, which are substantially parallel to the XY plane. They are connected to one another by a lateral border 23 which laterally delimits the semiconductor portion 20 in the XY plane.
  • the first and second faces 21, 22 are substantially planar, so that the semiconductor portion 20 has a substantially uniform thickness.
  • the lateral edge 23 here advantageously extends parallel to the Z axis, that is to say that it is substantially orthogonal to the XY plane.
  • the semiconductor portion 20 may have various shapes in the XY plane, for example circular (fig.2A) or square (fig.2B). Other forms are possible.
  • the semiconductor portion 20 is made based on a crystalline semiconductor compound of interest, which is preferably monocrystalline. By “based on” is meant that the material is an alloy formed of at least the same chemical elements as the semiconductor compound of interest.
  • the semiconductor portion 20 may thus be a layer or a substrate made of the same semiconductor compound of interest and have regions of different types of conductivity (homojunction) so as to form the PN or PIN junction. It may alternatively be a stack of sub-layers of different semiconductor compounds (heterojunction), which are alloys of the semiconductor compound of interest.
  • the semiconductor compound of interest is advantageously selected germanium-based materials, such as germanium Ge, silicon germanium SiGe, germanium tin GeSn, and silicon germanium tin SiGeSn.
  • the semiconductor compound of interest has, in the absence of voltage strain of its crystal lattice, a first value of direct forbidden band energy, and, when it undergoes voltage strain, a second value less than the first value.
  • the semiconductor portion 20 is derived from a layer made of the same semiconductor compound, namely here in germanium.
  • the semiconductor portion 20 has a thickness along the Z axis which can be between a few hundred nanometers and a few microns, for example between Ipm and spm approximately. In the case of a photodiode, the thickness is chosen so as to obtain good absorption in the wavelength range of the light radiation to be detected. It has a transverse dimension in the XY plane that can be between a few hundred nanometers and a few tens of microns, for example between 1pm and 1mim approximately.
  • a PN or PIN junction is formed in the semiconductor portion 20. It is formed by two regions of the semiconductor portion 20 having different conductivity types. More precisely, it comprises a first region 24 doped according to a first type of conductivity, for example of the n type, and a second region 25 doped according to a second type of conductivity opposite to the first type, for example of the p type.
  • the junction can thus be PN or PIN type.
  • the junction is PIN type, so that the semiconductor portion 20 comprises an intrinsic region 26, that is to say unintentionally doped, which extends between and in contact with the first n-doped region 24 and the second p-doped region.
  • the junction is PN type so that the first n-doped region 24 is surrounded and in contact with the second p-doped region.
  • the first n-doped region 24 extends here along the Z axis from the first face 21 and is distant from the side edge 23 in the XY plane. It thus forms a doped box n which is flush with the first face 21 and is spaced from a non-zero distance with respect to the lateral edge 23 as well as the second face 22. By flush, it is intended to arrive at the level of, or extends from.
  • the first doped region 24 thus participates in defining the first face 21. It is electrically insulated from the side edge 23.
  • doped n may have a doping that can be between 1.10 19 and 1.10 20 at / crrU approximately.
  • the second p-doped region 25 extends from the lateral edge 23 in the XY plane, preferably continuously, that is to say it is flush with the lateral edge 23 preferably over the entire periphery of the the semiconducting portion 20. It extends here along the Z axis from the second face 22. It may have a substantially homogeneous thickness along the Z axis, as shown in Fig.iA, and thus flush with a lower zone 23. Alternatively, as illustrated in FIGS. 3A and 3B, the second region
  • the p-doped element may have a lateral zone that is flush with the entire surface of the lateral edge 23, both along the Z axis and over the entire periphery of the semiconductor portion 20.
  • the second p-doped region 25 may have a doping that can be between 1.10 19 and 1.10 20 at / cms approx.
  • the second p-doped region is preferably overdoped so as to have good ohmic contact with the peripheral conductive layer 40 mentioned below.
  • the optoelectronic device 1 comprises two peripheral conductive layers 4O 1 , 4O 2 , concentric.
  • a first conductive peripheral layer 4O 1 is in contact with the lateral edge 23 of the semiconductor portion 20 and is adapted to participate in the electrical polarization of the diode 2 as well as in the electrical polarization of the peripheral piezoelectric portion 30.
  • the second layer Peripheral conductor 40 2 is arranged such that the peripheral piezoelectric portion 30 is interposed, in the XY plane, between the two peripheral conductive layers 40 1 , 40 2 .
  • the first peripheral conductive layer 4O 1 extends along the main plane in contact with the second doped region p so as to surround the semiconductor portion 20. It is therefore in contact with the lateral edge 23 of the semiconductor portion 20 , and more precisely of the second p-doped region 25 which is flush with the lateral edge 23, and thus allows the application of an electric potential V- to the second p-doped region 25. It thus at least partially covers the lateral edge 23, and preferably entirely as illustrated in fig.iA. It surrounds at least part of the semiconductor portion 20, and preferably entirely as illustrated in FIGS. 1B and 1C, so as to participate in making the mechanical stresses in tension undergone by the periphery of the semiconductor portion 20 more homogeneous. the semiconductor portion 20 due to the deformation of the peripheral piezoelectric portion.
  • the first conductive peripheral layer 4O 1 is formed of one or more conductive sub-layers, and is made of at least one electrically conductive material, for example TiN. Ti, NiCr, Al, Au, Pt, W, Ni, Cu, Mo etc. It has a thickness preferably substantially constant along its surface area, for example between 1m and 1m. Preferably, it has a height along the Z axis at least equal to the thickness of the semiconductor portion 20, and thus completely covers the lateral edge 23 along the Z axis.
  • the optoelectronic device 1 comprises a peripheral piezoelectric portion 30, adapted to undergo here a deformation in the main plane of the diode 2 in a direction opposite to the semiconductor portion 20, by inverse piezoelectric effect, thereby causing the formation of mechanical stresses.
  • voltage in the semiconductor portion 20 in the main plane of the diode that is to say in the XY plane.
  • the peripheral piezoelectric portion 30 extends along the main plane in contact with the first peripheral conductive layer 4O 1 so as to surround the semiconductor portion 20. There is therefore physical and electrical contact between the peripheral piezoelectric portion 30 and the first conductive peripheral layer 4O 1 , which is therefore adapted to apply an electrical potential to the peripheral piezoelectric layer. It thus takes at least partly the first conductive layer 4O device 1 along the Z axis, and preferably entirely as shown in fig.iA. It surrounds at least part of the semiconductor portion 20, and preferably entirely, as illustrated in FIGS. 1B and 1C, so as to participate in making the tensile mechanical stresses more homogeneous, depending on the periphery of the semiconductor portion 20.
  • the semiconductor portion 20 due to the deformation of the peripheral piezoelectric portion 30. It thus extends along all or part of the periphery of the semiconductor portion 20.
  • the first peripheral conductive layer 4O 1 is interposed, in the XY plane, between the semiconductor portion 20 and the peripheral piezoelectric portion 30.
  • the peripheral piezoelectric portion 30 is formed of at least one piezoelectric material, preferably of lead zirconate titanate PbZrTiO 3 (PZT), but other materials may be used, such as BaTiO 3 , GA1N, ZnO, LiNbO 3 , Pb (Nb0 3 ) 2 , PbTi0 3 , Pb (Mg 0.33 Nb 0, 66 ) 0 3 , Pb (Sc o, 5 Ta 0.5 ) O 3 or any other suitable piezoelectric material.
  • the peripheral piezoelectric portion 30 preferably extends continuously around the semiconductor portion 20, so as to participate in making the mechanical stress stresses experienced by the latter substantially homogeneous, depending on the periphery of the semiconductor portion 20. Preferably, it has a thickness along the Z axis greater than or equal to that of the semiconductor portion 20, so as to participate in making substantially homogeneous, along the Z axis, the mechanical stresses in tension experienced by the semiconductor portion 20.
  • the optoelectronic device 1 here comprises a second peripheral conductive layer 40 2 , preferably made of the same material or materials as for the first peripheral conductive layer 4O 1 . It extends in contact with an external lateral flank of the peripheral piezoelectric portion 30 so as to surround the latter in the XY plane.
  • the peripheral piezoelectric portion 30 has an internal lateral flank, oriented towards the semiconductive portion 20 and in contact with the first peripheral conductive layer 4O 1 , and an external lateral flank, opposite to the internal flank, in contact with the second peripheral conductive layer 4O 2 .
  • the optoelectronic device 1 comprises a first electrical polarization circuit of the peripheral piezoelectric portion 30, which electrical polarization makes it possible to cause a deformation of the peripheral piezoelectric portion 30 in the main plane and in a direction opposite to the semiconductor portion 20.
  • the electric circuit comprises metallizations (not shown), in contact with the two peripheral conductive layers 4O 1 , 40 2 , for applying a potential difference to the peripheral piezoelectric portion 30.
  • the metallizations are preferably based on the first face 21, and are in electrical contact with one end of the peripheral conductive layers 4O 1 , 40 2 .
  • V- can thus be applied to the first peripheral conductive layer 4O 1
  • Vp + can be applied to the second peripheral conductive layer 40 2 .
  • a bias voltage of the peripheral piezoelectric portion 30 is applied via the two peripheral conductive layers 4O 1 , 40 2 , carrying the first to the electrical potential V- and the second to the electric potential. Vp +.
  • An electric field is then generated within the peripheral piezoelectric portion 30 whose field lines extend substantially parallel to the XY plane. Due to the orientation of the peripheral conductive layers 4O 1 , 4O 2 along the axis Z along the peripheral piezoelectric portion 30, the generated electric field has a non-zero component in the XY plane, and thus induces a deformation in the XY plane of the peripheral piezoelectric portion 30 by an inverse piezoelectric effect, in a direction opposite to the semiconductor portion 20 (represented by arrows).
  • peripheral piezoelectric portion 30 surrounds the semiconductor portion 20 on the one hand, and there is continuity of material between the peripheral piezoelectric portion 30 and the semiconductor portion 20 in the XY plane on the other hand, the constraints Mechanical forces experienced by the peripheral piezoelectric portion 30 are transmitted in the semiconductor portion 20, so that the semiconductor portion 20 then undergoes mechanical stresses in tension along the XY plane, that is to say along the main plane.
  • Figure 1B is a partial schematic view, in cross section, of an optoelectronic device 1 according to a second embodiment.
  • the optoelectronic device 1 comprises a matrix of diodes 2 adjacent in the XY plane and substantially coplanar.
  • the diodes 2 are here germanium photodiodes 2 adapted to detect a light radiation in the near infrared.
  • the voltage setting of the diodes 2 is provided by a compression of the peripheral piezoelectric portion 30, in the main plane of the diode.
  • the optoelectronic device 1 differs from that illustrated in FIG. IA essentially in that each diode 2 is associated with a peripheral conductive layer 40 interposed between the semiconductor portion 20 and the peripheral piezoelectric portion 30.
  • the other peripheral conductive layer 40 illustrated in FIG. 1B is that associated with the adjacent diodes 2.
  • the adjacent conductive layers are preferably brought to the same negative electric potential V-.
  • the piezoelectric material is chosen from electrically insulating materials, so as to provide electrical insulation between the diodes 2.
  • a second metallization 42 (illustrated in dashed lines in FIG. 2C) of polarization of the peripheral piezoelectric portion 30, preferably resting on the first face 21 and in contact with the piezoelectric material.
  • the second metallization 42 may be a plurality of pads arranged to surround the semiconductor portion 20, or may be a strip which extends so as to continuously surround the semiconductor portion 20. It is preferably located between each adjacent conductive layer 40 in the XY plane. A positive electrical potential Vp + can thus be applied to the peripheral piezoelectric portion 30 via this metallization.
  • a bias voltage is applied to the peripheral piezoelectric portion 30, thereby generating an electric field in the peripheral piezoelectric portion 30 whose field lines extend between the peripheral conductive layer 40 and the second metallization 42. Due to the orientation of the peripheral conductive layer 40 along the peripheral piezoelectric portion 30 along the Z axis, the generated electric field has a non-zero component in the XY plane, and thus induces a compression deformation of the peripheral piezoelectric portion 30 in the XY plane by inverse piezoelectric effect.
  • peripheral piezoelectric portion 30 surrounds the semiconductor portion 20 on the one hand, and there is continuity of material between the peripheral piezoelectric portion 30 and the semiconductor portion 20 in the XY plane on the other hand, the constraints Mechanical forces experienced by the peripheral piezoelectric portion 30 are transmitted in the semiconductor portion 20, so that the semiconductor portion 20 is then subjected to mechanical stresses in tension along the XY plane.
  • the optoelectronic device 1 comprises a second electrical bias circuit of the diode or diodes 2, so as to allow the emission or detection of light radiation.
  • the electrical circuit comprises metallizations (not shown) for biasing the diode or diodes 2 directly or in reverse, depending on the application of emission or detection of the diode.
  • a first metallization is located on and in contact with the first n-doped region 24, and adapted to apply a positive electrical potential Vd + to the latter.
  • the application of a negative potential V- to the second p-doped region 25 is effected via the peripheral conductive layer 40 with which it is in contact.
  • the electric potential applied to the peripheral conductive layer 40 makes it possible both to polarize the peripheral piezoelectric portion 30 to induce a deformation in compression, and to polarize the diode 2 here in reverse.
  • FIG 2C is a top view, schematic and partial, of an optoelectronic device 1 identical to that shown in Fig.iB, the diodes 2 have a square shape.
  • the diodes 2 are electrically isolated from each other by the peripheral piezoelectric portion 30 which here extends continuously in the XY plane.
  • Each diode 2 comprises a peripheral conductive layer 40 interposed in the XY plane between the semiconductor portion 20 and the peripheral piezoelectric portion 30.
  • the first electrical circuits comprise a metallization 42 (dotted line) of polarization of the peripheral piezoelectric portion 30, which extends longitudinally on the first face 21 around each diode 2.
  • the metallization 42 is brought to a positive electrical potential Vp + and each peripheral conductive layer 40 is brought to a negative electric potential V-, thus making it possible to generate an electric field in the peripheral piezoelectric portion 30 capable of causing the compressive deformation of the latter.
  • each first n-doped region 24 is brought to a positive electrical potential Vd +.
  • each diode 2 is here reverse biased, thereby allowing photodetection of the infrared light radiation.
  • Each peripheral conductive layer 40 participates in polarizing at the same time the peripheral piezoelectric portion 30 as well as the corresponding semiconductor portion 20.
  • FIG. 3A is a partial and schematic cross-sectional view of a variant of the optoelectronic device 1 according to the second embodiment illustrated in FIG. 11A.
  • the optoelectronic device 1 differs essentially in that the second doped region p has a lateral zone, preferably also overdoped, which is flush with the lateral edge 23 over the entire height thereof along the Z axis, and following the entire periphery of the semiconductor portion 20 in the XY plane.
  • the polarization of the second p-doped region is improved insofar as the area of the ohmic contact with the peripheral conductive layer 40 is increased.
  • Figure 3B is a partial and schematic cross sectional view of a variant of the optoelectronic device 1 according to the second embodiment illustrated in Fig.3A.
  • the optoelectronic device 1 differs in particular in that the diode 2 has a PN junction and not a PIN junction, as it could also be the case in the first embodiment of fig.iA.
  • the second p-doped region 25 may comprise an overdoped zone that is flush with the lateral border 23 and here the second face 22, and a zone with a lower p-doping level, which surrounds the n-doped well.
  • This intermediate conductive layer 44 here extends substantially parallel to the peripheral conductive layer 40 along the Z axis, and surrounds the semiconductor portion 20 in the XY plane. It is brought to the positive electrical potential Vp +.
  • the electric field generated between the intermediate conductive layer 44 and the peripheral conductive layer 40 essentially comprises a component parallel to the XY plane, thereby improving the compressional deformation intensity of the piezoelectric material, as well as the following deformation homogeneity.
  • the Z axis The semiconductor portion 20 is then subjected to a voltage stress whose homogeneity along the Z axis is also improved.
  • the optoelectronic device 1 then has the advantage of allowing the semiconductor portion 20 of the diode or diodes 2 to be energized in an active manner, that is to say by applying a polarization voltage.
  • piezoelectric material As detailed above, the polarization of the piezoelectric material can induce a deformation of the peripheral piezoelectric portion 30 in the XY plane in a direction opposite to the semiconductor portion 20 (first embodiment illustrated in FIG. IA), or compression deformation. in the XY plane (second embodiment illustrated in Fig.iB).
  • the value of the voltage stress can be controlled in a precise and simplified manner, insofar as it depends essentially on the intensity of the polarization voltage of the piezoelectric material, and not on a strain-strain stressing technology. a stack of thin layers or a structuring of the semiconductor portion 20 followed by a suspension.
  • an optoelectronic device 1 is obtained whose optical and / or electrical properties can be modified in a controlled manner, that is to say here in an active manner, during the operation of the optoelectronic device 1, by modulating the polarization voltage of the piezoelectric material.
  • the optoelectronic device it is then possible to broaden the absorption spectral range of the optoelectronic device 1, for example up to a cut-off wavelength greater than 1550 nm in the case of a germanium photodiode 2. It is also possible, particularly in the context of telecom application, to modulate the signal-to-noise ratio associated with the photodiode, by varying the bias voltage of the piezoelectric material.
  • the optoelectronic device 1 has a small footprint, insofar as the peripheral piezoelectric portion 30 extends substantially coplanar with the semiconductor portion 20 of the diode or diodes 2.
  • the piezoelectric material essentially covers the edge 23 of the semiconductor portion 20 and preferably does not take the first face 21 and / or the second face 22 of the diode.
  • Such an arrangement of the peripheral piezoelectric portion 30 with respect to the diodes 2 also allows a high spatial density of diodes 2, and therefore a high spatial resolution of the optoelectronic device 1, in the case where the latter comprises a matrix of diodes 2.
  • the optoelectronic device i may comprise a photodiode 2 whose semiconductive portion 20 is circular and made of germanium.
  • the first n-doped region 24 may have a diameter of about 3 ⁇ m and the semiconductor portion 20 may have a diameter of about 8 ⁇ m. It is bordered by a peripheral piezoelectric portion 30 of PZT with a transverse dimension of approximately 1 ⁇ m.
  • a peripheral conductive layer 40 made of TiN is interposed between the peripheral piezoelectric portion 30 and the peripheral conductive layer 40.
  • a numerical simulation study has made it possible to show that a bias voltage of the peripheral piezoelectric portion of about +5 V makes it possible to provoke a deformation of o, 5nm in the XY plane of the semiconductor portion 20. Such a constraint then makes it possible to increase the cut-off wavelength of the germanium voltage to a value greater than issonm.
  • the diodes 2 are PIN junction photodiodes made of germanium and are adapted to detect infrared radiation in the SWIR range.
  • a first semiconductor sublayer 12.1 of monocrystalline germanium is produced.
  • the first semiconductor sublayer 12.1 is secured to a support layer 10, here made of silicon, via a lower dielectric layer 11, here a silicon oxide.
  • This stack takes the form of a GeOI substrate (for Germanium On Insulator, in English).
  • This stack is preferably made using the method described in the publication of Reboud et al. Structural and optical properties of 200mm germanium-on-insulator (GeOI) substrates for Silicon photonics applications, Proc. SPIE 9367, Silicon Photonics X, 936714 (February 27, 2015).
  • Such a method has the advantage of producing a semiconductor 12.1 semiconductor sublayer having a low level of structural defects such as dislocations.
  • the germanium may be unintentionally doped or doped, for example p-type.
  • the semiconductor sublayer 12.1 may have a thickness of between approximately 1 m and approximately 1 m, for example equal to approximately 300 nm, and may be covered with a protective layer (not shown) in a silicon oxide.
  • the first germanium sub-layer 12.1 is doped according to the second type of conductivity, here of the p type, by implantation. ionic of a dopant such as boron.
  • the protective layer if any, has previously been removed by surface cleaning, and the first germanium sublayer 12.1 may be coated with a layer of preimplantation oxide having a thickness of a few tens of nanometers, for example equal to 2onm.
  • the underlayer 12.1 germanium then has a doping level comprised between 1.10 19 and 1.10 20 at / cm 3 approximately.
  • a diffusion annealing of the dopant may then be carried out under nitrogen for a few minutes to a few hours, for example 1 h, at a temperature which may be between 600 ° C. and 800 ° C., for example equal to 8000 ° C.
  • This step makes it possible to obtain an overdopulation of the germanium sublayer 12.1 improving the ohmic contact between the second p-doped region 25 and the peripheral conductive layer 40.
  • a second semiconductor sublayer 12.2 of germanium is produced by epitaxy from the first underlayer 12.1.
  • the two sublayers are intended to form the semiconductor germanium portions of the diode matrix 2.
  • the second sub-layer 12.2 is formed by epitaxy, for example by chemical vapor deposition (CVD), for Chemical Vapor Deposition, in which English) or by any other epitaxial technique.
  • CVD chemical vapor deposition
  • the second sublayer 12.2 germanium here is intrinsic, that is to say unintentionally doped. It is intended to form the light absorption zone of the diodes 2. Its thickness depends on the wavelength range of the light radiation to be detected in the case of a photodiode. In the context of 2 SWIR photodiodes, the sub-layer 12.2 of intrinsic germanium has a thickness for example between 1pm and 3pm, preferably equal to 1.5 .mu.m.
  • etching of the semiconductor layer of germanium formed by the two sub-layers is carried out in order to form a continuous trench 14 in the XY plane ensuring the pixelation of the diodes.
  • an upper dielectric layer 13 is preferably previously deposited on the exposed face of the semiconductor layer.
  • the upper dielectric layer 13 may have a thickness of a few tens to a few hundreds of nanometers, for example between 2onm and 300nm approximately, for example equal to about 1oonm.
  • the trench 14 is made by conventional photolithography and etching techniques.
  • a localized area of the upper dielectric layer 13, the second sub-layer 12.2 of intrinsic germanium and at least a portion of the thickness of the first underlayer 12.1 of overdopened germanium is thus etched.
  • a plurality of semiconductor portions 20 made of germanium separated from each other by the continuous trench 14 are thus obtained.
  • the trench 14 is preferably obtained by an anisotropic etching technique, so as to obtain a lateral border 23 of the portions semiconductors 20 substantially plane along the Z axis, and preferably substantially orthogonal to the XY plane.
  • the trench 14 continues has a transverse dimension (width) in the XY plane may be between 300nm and 30 pm, for example between 1pm and 2pm approximately. It extends longitudinally in the XY plane so as to delimit the semiconductor portions 20.
  • the latter may thus have a shape in the XY plane for example circular, oval, polygonal, for example square, or any other shape.
  • the first sub-layer 12.1 is etched locally over its entire thickness to lead to the lower dielectric layer 11.
  • the first sub-layer 12.1 may be etched locally in part, of in order to keep a continuous lower portion of overdoped germanium, in order to increase the ohmic contact area between the second p-doped region and the peripheral conductive layer 40.
  • an additional ion implantation for example boron, may be performed with a non-zero inclination angle, so as to dope the lateral flank of the semiconductor portions 20.
  • a continuous conductive layer 15 is conformally deposited on the exposed surface of the previously obtained structure.
  • the conductive layer is made of at least one electrically conductive material, here in TiN. It can be deposited by chemical vapor deposition (CVD) and continuously covers the lateral edge 23 of the semiconductor portions 20, as well as the upper dielectric layer 13 and here the exposed surface of the lower dielectric layer 11.
  • This continuous conductive layer 15 is intended to form the peripheral conductive layers which extend in contact with the lateral edge 23 in order to ensure the joint polarization of the second p-doped region and the peripheral piezoelectric portion 30.
  • the continuous conductive layer 15 may have a thickness from about 1m to about 1m.
  • the peripheral piezoelectric portion 30 is produced.
  • a deposit of a piezoelectric material for example here PZT, is produced so as to continuously cover the structure obtained. previously and thus to fill the trench 14.
  • the piezoelectric material is then in contact with the continuous conductive layer. It can be deposited by physical vapor deposition (PVD, for Physical Vapor Deposition, in English) or by any other suitable technique.
  • the conductive layer device 40 especially when made of TiN, provides good grip for the piezoelectric material, especially when in PZT.
  • the piezoelectric material is preferably dielectric, thereby providing electrical insulation between the photodiodes 2.
  • An annealing step may be carried out, for example between 300 ° C and 700 ° C, to optimize the piezoelectric properties of the material.
  • a planarization step for example mechano-chemical (CMP), is then implemented, with stopping on the upper part of the continuous conductive layer.
  • CMP mechano-chemical
  • zones for ion implantation of dopants are defined in order to form the first n-doped regions 24.
  • a photosensitive resin 16 is deposited, the openings 17 of which are located opposite the semiconductor portion 20.
  • a localized etching of an upper zone of the continuous conductive layer 15 and preferably of a portion of the layer is then carried out.
  • the transverse dimensions, in the XY plane, of the localized etching correspond substantially to that of the first n-doped regions 24 that it is desired to obtain. These transverse dimensions thus depend on those of the semiconductor portion 20, and may be, for example, between 300 nm and 10 ⁇ m.
  • the first n-doped portions are produced by ion implantation of a dopant such as phosphorus, through the openings 17.
  • the first regions 24 are preferably overdoped, and can thus have a level of doping between 1.10 19 and 1.10 20 at / cnU approximately.
  • the first doped regions 24 thus form n-doped wells delimited in the XY plane and in the -Z direction by the second intrinsic germanium sub-layer 12.2.
  • a resistive contact is thus formed at the interface between the peripheral conductive layer 40 and the intrinsic germanium of the second sublayer 12.2.
  • a diffusion annealing of the dopants can be carried out, for example at a temperature of between 400 ° C. and 700 ° C. for a duration of a few seconds to a few tens of minutes, for example at 600 ° C. for 30 seconds.
  • an additional dielectric layer 18 is deposited for the purpose of carrying out the polarization metallizations.
  • the photosensitive resin 16 is removed and then the dielectric layer (FIG. 41) is made, for example made of a silicon oxide or a tetraethyl orthosilicate (TEOS), so as to completely cover the structure obtained. previously.
  • the dielectric layer 18 may have a thickness of between 200 and 200 nm, for example.
  • first through apertures 19.1 are made in the dielectric layer (FIG. 4 ⁇ J) with etch stop on the peripheral conductive layer 40, in order to form the metallizations 41 of polarization of the peripheral conductive layer. .
  • Second through-openings 19.2 are also produced in order to form polarization metallizations 42 for the peripheral piezoelectric portion 30 and third openings 19.3 for the purpose of forming polarization metallizations 43 of the first n-doped regions 24.
  • the second openings 19.2 may extend longitudinally so as to surround each diode 2 in the XY plane. In other words, each diode 2 is surrounded by a same second opening 19.2 which can extend longitudinally in a continuous or even discontinuous manner.
  • the openings 19.1, 19.2, 19.3 may have transverse dimensions in the XY plane between a few hundred nanometers and a few microns, depending on the dimensions of the diodes 2 and the width of the peripheral piezoelectric portion 30.
  • the metallizations 41, 42, 43 are made through the through openings 19.1, 19.2, 19.3.
  • the metallizations 41, 42, 43 are made of at least one metallic material, and may be formed of a barrier layer, for example of TiN deposited by CVD, followed by a layer of copper.
  • a planarization step, for example by CMP, is then carried out with etching stop on the protective oxide top layer.
  • Hybridization can be carried out by direct bonding. (or adhesion bond molecular bonding, in English) copper / copper type and / or oxide / oxide, or by any other hybridization technique.
  • the support layer 10 is advantageously removed from silicon, for example by grinding, and / or by wet etching or plasma etching (FIG. RIE, ICP ...), with etching stop on the lower dielectric layer 11. It is also possible to perform localized etching of the lower dielectric layer 11 as well as the continuous conductive layer, so as to expose a face of the peripheral piezoelectric portion. 30. Thus, the lower dielectric layer 11 ensures the passivation of the semiconductor portion 20.
  • a next step (FIG. 4N), it is possible to remove the lower dielectric layer 11 remaining, so as to also expose the second face 22 of the semiconductor portion 20, and then to deposit a dielectric layer 4 at least partially transparent.
  • This layer 4 provides a protection for the diodes 2, the passivation of the second face 22 of the semiconductor portions 20, and can also provide an optical antireflection function when its thickness is a multiple of l / 4h, where l is a length of wave of the light radiation to be detected and n is the refractive index of the material of the antireflection layer.
  • Such a layer 4 may be made of a silicon oxide or nitride, for example SiO 2 , SiN, Si 3 N 4 , or aluminum, for example AlN or Al 2 O 3 . Its thickness can be, for example, between 20nm and 200nm approximately.
  • this manufacturing method makes it possible to obtain an optoelectronic device 1 comprising a matrix of diodes 2, the semiconductor portions 20 of which can be tensioned actively, that is to say by the application of FIG. a potential difference to the peripheral piezoelectric portion 30 surrounding each diode, causing the deformation thereof.
  • the optoelectronic device 1 may have a high spatial resolution, as well as a small bulk, insofar as the peripheral piezoelectric portion 30 extends coplanar with the diodes 2.
  • peripheral piezoelectric portion 30 defines, with the diodes 2, a substantially planar optoelectronic structure delimited along the Z axis by two substantially planar faces, which contributes to reducing the bulk of the optoelectronic device 1.
  • the diodes 2 have good optical properties and / or particularly in so far as possible structural defects such as dislocations remain confined essentially in the second p-doped region and not in the intrinsic region 26.
  • first regions 24 are n-doped and for the second regions 25 to be p-doped in terms of diffusion annealing time.
  • the boron used for doping p diffuses more slowly than the phosphorus used for doping n.
  • the diffusion annealing of phosphorus which requires a short duration, is performed after the boron diffusion annealing, which requires a longer duration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

L'invention porte sur un dispositif optoélectronique (1), comportant : - au moins une diode (2), comportant une portion semiconductrice (20) dans laquelle est formée une jonction PN ou PIN; - une couche conductrice périphérique (40), s'étendant suivant le plan principal de manière à entourer la portion semiconductrice (20); - une portion piézoélectrique périphérique (30), s'étendant suivant le plan principal de manière à entourer la portion semiconductrice (20); - un premier circuit électrique de polarisation (30), adapté à générer un champ électrique dans la portion piézoélectrique périphérique (30) en appliquant un potentiel électrique à au moins la couche conductrice périphérique (40), de manière à induire une déformation de la portion piézoélectrique périphérique (30) orientée suivant le plan principal entraînant alors une déformation en tension de la portion semiconductrice (20) suivant le plan principal.

Description

DISPOSITIF OPTOELECTRONIQUE A DIODE CONTRAINTE EN TENSION PAR EFFET PIEZOELECTRIQUE INVERSE
DOMAINE TECHNIQUE
[001] Le domaine de l’invention est celui des dispositifs optoélectroniques comportant au moins une diode réalisée à base d’un composé semiconducteur contraint en tension. L’invention trouve une application notamment dans le domaine de la détection d’un rayonnement lumineux appartenant par exemple au proche infrarouge, la ou les diodes du dispositif optoélectronique pouvant alors être réalisées à base de germanium contraint en tension.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
[002] Dans diverses applications microélectroniques ou optoélectroniques, il peut être avantageux d’utiliser une couche en un composé semiconducteur cristallin, de préférence monocristallin, présentant une contrainte mécanique en tension. C’est le cas notamment de certaines sources de lumière dont le matériau de la couche émissive présente, hors contrainte, une structure de bandes d’énergie indirecte, la structure de bandes étant alors rendue directe par l’application d’une contrainte en tension suffisante. Le composé semiconducteur cristallin peut être un composé à base de germanium, par exemple du germanium, du germanium étain, voire du silicium germanium.
[003] Ainsi, le document US2014/0291682 décrit une photodiode à avalanche dont la couche semiconductrice d’absorption est réalisée en germanium contraint en tension. La photodiode est alors adaptée à absorber un rayonnement lumineux jusqu’à une longueur d’onde de coupure supérieure à issonm, qui est la longueur d’onde de coupure d’absorption du germanium relaxé. Pour cela, la couche de germanium est revêtue par une couche de mise en contrainte formée d’un empilement de sous-couches de nitrure de silicium, d’oxyde de silicium et de silicium amorphe. Cependant, cette photodiode présente notamment l’inconvénient d’être obtenue en ayant recours à des techniques d’ingénierie de la contrainte mécanique par dépôt d’un empilement de couches minces, ce qui peut rendre complexe le procédé de fabrication.
[004] Le document EP3151265 décrit un dispositif optoélectronique à diode comportant une couche semiconductrice contrainte en tension et réalisée à base de germanium. La couche semiconductrice a été ici mise en tension par une structuration localisée préalable de la couche, puis par une mise en suspension de la couche structurée au-dessus d’un substrat, suivi d’une solidarisation à ce dernier par collage direct. Un recuit de consolidation est enfin mis en œuvre pour améliorer la tenue mécanique de la couche structurée contrainte collée au substrat. Cependant, ce dispositif optoélectronique présente notamment l’inconvénient d’être obtenu par un procédé de fabrication relativement complexe. De plus, comme dans le document précédent, la maîtrise de la valeur de la contrainte en tension effectivement subie par la couche semiconductrice peut être particulièrement difficile.
[005] Il existe donc un besoin de disposer d’un dispositif optoélectronique dont la valeur de la contrainte mécanique en tension subie par la ou les diodes est contrôlée de manière plus simple et plus précise. Il existe également un besoin de disposer d’un tel dispositif optoélectronique susceptible de présenter un encombrement réduit et une haute résolution spatiale lorsqu’il comporte une matrice de diodes, et susceptible d’être obtenu par un procédé de fabrication simplifié.
EXPOSÉ DE L’INVENTION
[006] L’invention a pour objectif de remédier au moins en partie aux inconvénients de l’art antérieur, et plus particulièrement de proposer un dispositif optoélectronique comportant une ou plusieurs diodes pouvant être mises en tension de manière active. Elle a également pour objectif de proposer un dispositif optoélectronique présentant un encombrement réduit, et susceptible d’être obtenu par un procédé de fabrication simplifié. Elle a également pour objectif de proposer un dispositif optoélectronique comportant une matrice de diodes à haute résolution spatiale.
[007] Pour cela, l’objet de l’invention est un dispositif optoélectronique comportant : o au moins une diode, comportant une portion semiconductrice présentant :
• une première face et une deuxième face opposée, sensiblement parallèles à un plan principal, et reliées l’une à l’autre par une bordure latérale, et
• une jonction PN ou PIN formée par :
une première région dopée selon un premier type de conductivité, et
une deuxième région dopée selon un deuxième type de conductivité opposé au premier type, s’étendant à partir de la bordure latérale ;
o une couche conductrice périphérique, réalisée en au moins un matériau électriquement conducteur, s’étendant suivant le plan principal au contact de la deuxième région dopée de manière à entourer la portion semiconductrice ;
o une portion piézoélectrique périphérique, réalisée en au moins un matériau piézoélectrique, s’étendant suivant le plan principal au contact de la couche conductrice périphérique de manière à entourer la portion semiconductrice ; un premier circuit électrique de polarisation de la portion piézoélectrique périphérique, adapté à générer un champ électrique dans la portion piézoélectrique périphérique en appliquant un potentiel électrique à au moins la couche conductrice périphérique, de manière à induire une déformation de la portion piézoélectrique périphérique orientée suivant le plan principal entraînant alors une déformation en tension de la portion semiconductrice suivant le plan principal.
[008] Certains aspects préférés mais non limitatifs de ce dispositif optoélectronique sont les suivants.
[009] De préférence, la couche conductrice périphérique et la portion piézoélectrique périphérique entourent la portion semiconductrice continûment.
[0010] De préférence, la couche conductrice périphérique revêt entièrement la bordure latérale de la portion semiconductrice suivant un axe orthogonal au plan principal, et la portion piézoélectrique périphérique revêt entièrement la couche conductrice périphérique suivant ledit axe orthogonal.
[0011] De préférence, la bordure latérale s’étend de manière sensiblement orthogonale au plan principal.
[0012] La portion piézoélectrique périphérique peut présenter une épaisseur au moins égale à celle de la portion semiconductrice.
[0013] Le dispositif optoélectronique peut comporter un deuxième circuit électrique, de polarisation de la diode, adapté à appliquer ledit potentiel électrique à la deuxième région dopée par le biais de la couche conductrice périphérique et un potentiel électrique différent à la première région dopée.
[0014] La première portion dopée peut s’étendre à partir de la première face et est distante de la bordure latérale.
[0015] La diode peut comporter :
une jonction PIN, la première région dopée étant entourée dans le plan principal et au contact d’une région non intentionnellement dopée, ou
une jonction PN, la première région dopée étant entourée dans le plan principal et au contact de la deuxième région dopée.
[0016] De préférence, la portion semiconductrice est réalisée à base de germanium.
[0017] De préférence, la portion piézoélectrique périphérique est réalisée en PZT.
[0018] De préférence, la portion piézoélectrique périphérique s’étend suivant le plan principal de manière sensiblement coplanaire à la diode. [0019] Le dispositif optoélectronique peut comporter une matrice de diodes coplanaires, dont les portions semiconductrices sont isolées électriquement les unes des autres par une portion piézoélectrique périphérique s’étendant suivant le plan principal de manière continue.
[0020] Le dispositif optoélectronique peut comporter une métallisation entourant chaque portion semiconductrice et reposant sur une extrémité de la portion piézoélectrique périphérique débouchant sur la première face ou la deuxième face, le premier circuit étant adapté à appliquer une différence de potentiel électrique entre la métallisation et la couche conductrice périphérique de chaque diode, de manière à provoquer une déformation en compression de la portion piézoélectrique périphérique suivant le plan principal.
[0021] Le dispositif optoélectronique peut comporter une deuxième couche conductrice périphérique agencée de sorte que la portion piézoélectrique périphérique est intercalée, suivant le plan principal, entre la deuxième couche conductrice périphérique et ladite couche conductrice périphérique au contact de la portion semiconductrice, le premier circuit étant adapté à appliquer une différence de potentiel électrique entre lesdites couches conductrices périphériques, de manière à provoquer une déformation de la portion piézoélectrique périphérique dans le plan principal suivant une direction opposée à la portion semiconductrice.
[0022] L’invention porte également sur un procédé de fabrication d’un dispositif optoélectronique selon l’une quelconque des caractéristiques précédentes, comportant au moins les étapes suivantes :
réalisation d’au moins la portion semiconductrice ;
dépôt conforme de la couche conductrice périphérique sur et au contact de la bordure latérale de la portion semiconductrice ;
formation de la portion piézoélectrique périphérique par dépôt d’un matériau piézoélectrique sur et au contact d’une face de la couche conductrice périphérique opposée à la bordure latérale.
BRÈVE DESCRIPTION DES DESSINS
[0023] D'autres aspects, buts, avantages et caractéristiques de l’invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : la figure îA est une vue partielle et schématique, en coupe transversale, d’un dispositif optoélectronique selon un premier mode de réalisation dans lequel le dispositif optoélectronique comporte au moins une diode ;
la figure îB est une vue partielle et schématique, en coupe transversale, d’un dispositif optoélectronique selon un deuxième mode de réalisation dans lequel le dispositif optoélectronique comporte une matrice de diodes ;
les figures 2A et 2B sont des vues de dessus, partielles et schématiques, de variantes du dispositif optoélectronique illustré sur la fig.iA, de forme circulaire pour l’une (fig.2A) et carrée pour l’autre (fig.2B), et la figure 2C est une vue de dessus, partielle et schématique, d’un dispositif optoélectronique similaire à celui illustré sur la fig.2C, comportant une matrice de diodes de forme carrée ;
les figures 3A et 3B sont des vues partielles et schématiques, en coupe transversale, d’un dispositif optoélectronique selon deux variantes du deuxième mode de réalisation ;
les figures 4A à 4N illustrent, de manière schématique et partielle, et en vue en coupe transversale, différentes étapes d’un procédé de fabrication d’un dispositif optoélectronique selon le deuxième mode de réalisation similaire à celui illustré sur la fig.iB.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
[0024] Sur les figures et dans la suite de la description, les mêmes références représentent les éléments identiques ou similaires. De plus, les différents éléments ne sont pas représentés à l’échelle de manière à privilégier la clarté des figures. Par ailleurs, les différents modes de réalisation et variantes ne sont pas exclusifs les uns des autres et peuvent être combinés entre eux. Sauf indication contraire, les termes « sensiblement », « environ », « de l’ordre de » signifient à 10% près. Par ailleurs, l’expression « comportant un » doit être comprise comme « comportant au moins un », sauf indication contraire.
[0025] L’invention porte d’une manière générale sur un dispositif optoélectronique comportant au moins une diode, et de préférence une matrice de diodes, comprenant chacune une portion semiconductrice entourée, dans un plan principal de la diode, par une portion piézoélectrique périphérique. La portion semiconductrice de la diode est destinée à être mise en tension en conséquence d’une déformation de la portion piézoélectrique périphérique dans le plan principal de la diode. La portion piézoélectrique périphérique est déformée par effet piézoélectrique inverse. Les contraintes en tension subies par la portion semiconductrice se traduisent alors par une modification des propriétés optiques et/ou électriques de la diode, comme, par exemple, un élargissement de la gamme spectrale d’absorption d’un rayonnement lumineux dans le cas d’une photodiode. La mise en contrainte en tension peut également être suffisante pour rendre sensiblement directe la structure de bandes d’énergie du composé semiconducteur, dans le cas où ce dernier présente une structure de bandes indirecte lorsqu’il est à l’état relaxé. Les performances du dispositif optoélectronique peuvent alors être améliorées, notamment dans le cas d’une diode d’émission lumineuse.
[0026] Par portion contrainte, on entend une portion réalisée en un composé semiconducteur cristallin subissant une contrainte mécanique en tension ou en compression, entraînant une déformation des mailles de son réseau cristallin. La portion est contrainte en tension lorsqu’elle subit une contrainte mécanique qui tend à étirer les mailles du réseau dans un plan. Dans le cadre de l’invention, la portion semiconductrice est destinée à être contrainte en tension dans un plan principal de la diode. Cela se traduit par le fait que son paramètre de maille, dans le plan principal, présente une valeur dite effective supérieure à sa valeur naturelle lorsque le composé semiconducteur est relaxé (i.e. non contraint). Dans la suite de la description, sauf indication contraire, la contrainte considérée est orientée dans le plan principal de la diode.
[0027] Le composé semiconducteur, alors soumis à des contraintes mécaniques en tension, présente donc des propriétés optiques et/ou électriques modifiées. En particulier, il peut présenter une énergie de bande interdite diminuée, notamment celle associée à la vallée G (ou vallée directe). L’énergie de bande interdite peut être estimée en fonction de la déformation en tension, comme le décrit dans le cas d’une couche en germanium la publication de Guilloy et al. intitulée Germanium under high tensile stress: Nonlinear dependence of direct band gap vs strain, ACS Photonics 2016, 3, 1907-1911. Par ailleurs, la contrainte mécanique en tension subie par la portion semiconductrice peut être suffisante pour que la structure de bandes d’énergie devienne directe.
[0028] Par structure de bandes directe ou sensiblement directe, on entend que le minimum d’énergie EBC,L de la bande de conduction de la vallée L (ou vallée indirecte) est supérieur ou sensiblement égal au minimum d’énergie EBc,r de la bande de conduction de la vallée G (ou vallée directe), autrement dit : DE = EBC,L - EBc,r > o. Par sensiblement égal, on entend ici que cette différence d’énergie est de l’ordre de grandeur ou inférieure à kT, où k est la constante de Boltzmann et T la température du matériau. De préférence, la portion semiconductrice est réalisée à base de germanium dont la structure de bandes d’énergie est indirecte à l’état relaxé, autrement dit DE < o, et devient directe lorsqu’elle subit une déformation en tension suffisante. [0029] Comme détaillé par la suite, la mise en tension de la portion semiconductrice est obtenue en conséquence de la déformation de la portion piézoélectrique périphérique par effet piézoélectrique inverse, dans le plan principal de la diode. Par effet piézoélectrique inverse, on entend le phénomène physique de déformation de la structure cristalline du matériau piézoélectrique, en dilatation ou en compression, en réponse à l’application d’un champ électrique le traversant. De manière connue, le champ T des contraintes subies par le matériau piézoélectrique dépend du champ électrique E et du coefficient piézoélectrique e, et le tenseur de contrainte [T] est égal à -[e][E].
[0030] La figure îA est une vue partielle et schématique, en coupe transversale, d’un dispositif optoélectronique i selon un premier mode de réalisation. Dans cet exemple, le dispositif optoélectronique i comporte au moins une photodiode 2 en germanium adaptée à détecter un rayonnement lumineux dans le proche infrarouge (SWIR, pour Short Wavelength IR, en anglais) correspondant à la gamme spectrale allant de o,8pm à i,7pm environ, voire à 2,5pm environ. Comme détaillé plus loin, la mise en tension de la diode 2 est assurée par une dilatation de la portion piézoélectrique périphérique 30, dans le plan principal de la diode, suivant une direction opposée à la portion semiconductrice 20.
[0031] On définit ici et pour la suite de la description un repère direct tridimensionnel (C,U,Z), où les axes X et Y forment un plan parallèle au plan principal de la ou des diodes 2 du dispositif optoélectronique 1, et où l’axe Z est orienté suivant l’épaisseur de la portion semiconductrice 20.
[0032] Le dispositif optoélectronique 1 comporte au moins une diode 2 à jonction PN ou PIN, dont la portion semiconductrice 20 est entourée par une portion piézoélectrique périphérique 30. Il comporte également un circuit électrique de polarisation de la portion piézoélectrique périphérique 30 destiné à générer, dans le premier mode de réalisation, une déformation de la portion piézoélectrique périphérique 30 dans le plan principal de la diode 2 et suivant une direction opposée à la portion semiconductrice 20. En conséquence, cette dernière subit une contrainte mécanique en tension dans le même plan principal. Il comporte également un circuit électrique de polarisation de la diode 2.
[0033] La portion semiconductrice 20 s’étend suivant un plan principal, ici parallèle au plan XY, et présente une première face 21 et une deuxième face 22 opposée, lesquelles sont sensiblement parallèles au plan XY. Elles sont reliées l’une à l’autre par une bordure latérale 23 qui délimite latéralement la portion semiconductrice 20 dans le plan XY. Dans cet exemple, les première et deuxième faces 21, 22 sont sensiblement planes, de sorte que la portion semiconductrice 20 présente une épaisseur sensiblement homogène. La bordure latérale 23 s’étend ici avantageusement de manière parallèle à l’axe Z, c’est-à-dire qu’elle est sensiblement orthogonale au plan XY. Comme l’illustrent les fig.2A et 2B, la portion semiconductrice 20 peut présenter diverses formes dans le plan XY, par exemple circulaire (fig.2A) ou carrée (fig.2B). D’autres formes sont possibles.
[0034] La portion semiconductrice 20 est réalisée à base d’un composé semiconducteur cristallin d’intérêt, lequel est de préférence monocristallin. Par à base de, on entend que le matériau est un alliage formé d’au moins les mêmes éléments chimiques que le composé semiconducteur d’intérêt. La portion semiconductrice 20 peut ainsi être une couche ou un substrat réalisé en le même composé semiconducteur d’intérêt et présenter des régions de différents types de conductivité (homojonction) de manière à former la jonction PN ou PIN. Elle peut en variante être un empilement de sous-couches de différents composés semiconducteurs (hétéroj onction), lesquels sont des alliages du composé semiconducteur d’intérêt.
[0035] D’une manière générale, le composé semiconducteur d’intérêt est avantageusement choisi les matériaux à base de germanium, tel que le germanium Ge, le silicium germanium SiGe, le germanium étain GeSn, et le silicium germanium étain SiGeSn. De préférence, le composé semiconducteur d’intérêt présente, en l’absence de déformation en tension de son réseau cristallin, une première valeur d’énergie de bande interdite directe, et, lorsqu’il subit déformation en tension, une deuxième valeur inférieure à la première valeur. Dans cet exemple, la portion semiconductrice 20 est issue d’une couche réalisée en le même composé semiconducteur, à savoir ici en germanium.
[0036] La portion semiconductrice 20 présente une épaisseur suivant l’axe Z pouvant être comprise entre quelques centaines de nanomètres et quelques microns, par exemple comprise entre îpm et spm environ. Dans le cas d’une photodiode, l’épaisseur est choisie de manière à obtenir une bonne absorption dans la gamme de longueurs d’onde du rayonnement lumineux à détecter. Elle présente une dimension transversale dans le plan XY pouvant être comprise entre quelques centaines de nanomètres et quelques dizaines de microns, par exemple comprise entre îpm et îopm environ.
[0037] Une jonction PN ou PIN est formée dans la portion semiconductrice 20. Elle est formée par deux régions de la portion semiconductrice 20 présentant des types de conductivité différents. Plus précisément, elle comporte une première région 24 dopée selon un premier type de conductivité, par exemple de type n, et une deuxième région 25 dopée selon un deuxième type de conductivité opposé au premier type, par exemple de type p.
[0038] La jonction peut ainsi être de type PN ou PIN. Dans les exemples des fig.iA et 3A, la jonction est de type PIN, de sorte que la portion semiconductrice 20 comporte une région intrinsèque 26, c’est-à-dire non intentionnellement dopée, qui s’étend entre et au contact de la première région 24 dopée n et de la deuxième région 25 dopée p. Dans l’exemple de la fig.3B, la jonction est de type PN de sorte que la première région 24 dopée n est entourée et au contact de la deuxième région 25 dopée p.
[0039] La première région 24 dopée n s’étend ici suivant l’axe Z à partir de la première face 21 et est distante de la bordure latérale 23 dans le plan XY. Elle forme ainsi un caisson dopé n qui affleure la première face 21 et est espacée d’une distance non nulle vis-à-vis de la bordure latérale 23 ainsi que de la deuxième face 22. Par affleurer, on entend arriver au niveau de, ou s’étend à partir de. La première région 24 dopée participe ainsi à délimiter la première face 21. Elle est électriquement isolée de la bordure latérale 23. La première région
24 dopée n peut présenter un dopage pouvant être compris entre 1.1019 et 1.1020 at/crrU environ.
[0040] La deuxième région 25 dopée p s'étend à partir de la bordure latérale 23 dans le plan XY, de préférence continûment, c’est-à-dire qu’elle affleure la bordure latérale 23 de préférence sur toute la périphérie de la portion semiconductrice 20. Elle s’étend ici suivant l’axe Z à partir de la deuxième face 22. Elle peut présenter une épaisseur sensiblement homogène suivant l’axe Z, comme illustré sur la fig.iA, et ainsi affleurer une zone inférieure de la bordure latérale 23. En variante, comme illustré sur les fig-3A et 3B, la deuxième région
25 dopée p peut présenter une zone latérale qui affleure toute la surface de la bordure latérale 23, tant suivant l’axe Z que sur toute la périphérie de la portion semiconductrice 20. La deuxième région 25 dopée p peut présenter un dopage pouvant être compris entre 1.1019 et 1.1020 at/cms environ. La deuxième région 25 dopée p est de préférence surdopée de manière à présenter un bon contact ohmique avec la couche conductrice périphérique 40 mentionnée plus loin.
[0041] Le dispositif optoélectronique 1 selon le premier mode de réalisation comporte deux couches conductrices périphériques 4O1, 4O2, concentriques. Une première couche conductrice périphérique 4O1 est en contact avec la bordure latérale 23 de la portion semiconductrice 20 et est adaptée à participer à la polarisation électrique de la diode 2 ainsi qu’à la polarisation électrique de la portion piézoélectrique périphérique 30. La deuxième couche conductrice périphérique 402 est agencée de sorte que la portion piézoélectrique périphérique 30 est intercalée, dans le plan XY, entre les deux couches conductrices périphériques 4O1, 4O2.
[0042] La première couche conductrice périphérique 4O1 s’étend suivant le plan principal au contact de la deuxième région 25 dopée p de manière à entourer la portion semiconductrice 20. Elle est donc au contact de la bordure latérale 23 de la portion semiconductrice 20, et plus précisément de la deuxième région 25 dopée p qui affleure la bordure latérale 23, et permet donc l’application d’un potentiel électrique V- à la deuxième région 25 dopée p. Elle revêt ainsi au moins partiellement la bordure latérale 23, et de préférence entièrement comme illustré sur la fig.iA. Elle entoure au moins en partie la portion semiconductrice 20, et de préférence entièrement comme illustré sur les fig.iB et îC, de manière à participer à rendre davantage homogènes, suivant la périphérie de la portion semiconductrice 20, les contraintes mécaniques en tension subies par la portion semiconductrice 20 du fait de la déformation de la portion piézoélectrique périphérique.
[0043] La première couche conductrice périphérique 4O1 est formée d’une ou plusieurs sous-couches conductrices, et est réalisée en au moins un matériau électriquement conducteur, par exemple en TiN. Ti, NiCr, Al, Au, Pt, W, Ni, Cu, Mo etc. Elle présente une épaisseur de préférence sensiblement constante le long de son étendue surfacique, par exemple comprise entre îonm et îoonm environ. De préférence, elle présente une hauteur suivant l’axe Z au moins égale à l’épaisseur de la portion semiconductrice 20, et revêt ainsi entièrement la bordure latérale 23 suivant l’axe Z.
[0044] Le dispositif optoélectronique 1 comporte une portion piézoélectrique périphérique 30, adaptée à subir ici une déformation dans le plan principal de la diode 2 suivant une direction opposée à la portion semiconductrice 20, par effet piézoélectrique inverse, entraînant ainsi la formation de contraintes mécanique en tension dans la portion semiconductrice 20 dans le plan principal de la diode, c’est-à-dire dans le plan XY.
[0045] La portion piézoélectrique périphérique 30 s’étend suivant le plan principal au contact de la première couche conductrice périphérique 4O1 de manière à entourer la portion semiconductrice 20. Il y a donc contact physique et électrique entre la portion piézoélectrique périphérique 30 et la première couche conductrice périphérique 4O1, laquelle est donc adaptée à appliquer un potentiel électrique à la couche piézoélectrique périphérique. Elle revêt ainsi au moins partiellement la première couche conductrice périphérique 4O1 suivant l’axe Z, et de préférence entièrement comme illustré sur la fig.iA. Elle entoure au moins en partie la portion semiconductrice 20, et de préférence entièrement, comme illustré sur les fig.iB et 1C, de manière à participer à rendre davantage homogènes, suivant la périphérie de la portion semiconductrice 20, les contraintes mécaniques en tension subies par la portion semiconductrice 20 du fait de la déformation de la portion piézoélectrique périphérique 30. Elle s’étend ainsi le long de tout ou partie de la périphérie de la portion semiconductrice 20. Ainsi, la première couche conductrice périphérique 4O1 est intercalée, dans le plan XY, entre la portion semiconductrice 20 et la portion piézoélectrique périphérique 30.
[0046] La portion piézoélectrique périphérique 30 est formée en au moins un matériau piézoélectrique, de préférence en plomb zirconate titanate PbZrTi03 (PZT), mais d’autres matériaux peuvent être utilisés, tels que le BaTi03, GA1N, le ZnO, LiNb03, Pb(Nb03)2, PbTi03, Pb(Mg0,33Nbo,66)03, Pb(Sco,5Ta0,5)03 ou tout autre matériau piézoélectrique adapté. La portion piézoélectrique périphérique 30 s’étend de préférence continûment autour de la portion semiconductrice 20, de manière à participer à rendre sensiblement homogènes, suivant la périphérie de la portion semiconductrice 20, les contraintes mécaniques en tension subies par cette dernière. De préférence, elle présente une épaisseur suivant l’axe Z supérieure ou égale à celle de la portion semiconductrice 20, de manière à participer à rendre sensiblement homogènes, suivant l’axe Z, les contraintes mécaniques en tension subies par la portion semiconductrice 20.
[0047] Le dispositif optoélectronique 1 comporte ici une deuxième couche conductrice périphérique 402, de préférence réalisée en le ou les mêmes matériaux que pour la première couche conductrice périphérique 4O1. Elle s’étend au contact d’un flanc latéral externe de la portion piézoélectrique périphérique 30 de manière à entourer cette dernière dans le plan XY. Ainsi, la portion piézoélectrique périphérique 30 comporte un flanc latéral interne, orienté vers la portion semiconductrice 20 et au contact de la première couche conductrice périphérique 4O1, et un flanc latéral externe, opposé au flanc interne, au contact de la deuxième couche conductrice périphérique 4O2.
[0048] Le dispositif optoélectronique 1 comporte un premier circuit électrique de polarisation de la portion piézoélectrique périphérique 30, laquelle polarisation électrique permet de provoquer une déformation de la portion piézoélectrique périphérique 30 dans le plan principal et suivant une direction opposée à la portion semiconductrice 20. Pour cela, le circuit électrique comporte des métallisations (non représentées), au contact des deux couches conductrices périphériques 4O1, 402, permettant d’appliquer une différence de potentiel à la portion piézoélectrique périphérique 30. Les métallisations reposent de préférence sur la première face 21, et sont au contact électrique d’une extrémité des couches conductrices périphériques 4O1, 402. Elles peuvent être des plots dont les dimensions dans le plan XY peuvent être du même ordre que leur épaisseur, ou être des bandes qui s’étendent longitudinalement au contact des couches conductrices périphériques 4O1, 402, de préférence sur toute la longueur de celle-ci. Un potentiel électrique négatif V- peut ainsi être appliqué à la première couche conductrice périphérique 4O1, et un potentiel électrique positif Vp+ peut être appliqué à la deuxième couche conductrice périphérique 402.
[0049] Ainsi, en fonctionnement, une tension de polarisation de la portion piézoélectrique périphérique 30 est appliquée par l’intermédiaire des deux couches conductrices périphériques 4O1, 402, en portant la première au potentiel électrique V- et la deuxième au potentiel électrique Vp+. Un champ électrique est alors généré au sein de la portion piézoélectrique périphérique 30 dont les lignes de champ s’étendent de manière sensiblement parallèle au plan XY. Du fait de l’orientation des couches conductrices périphériques 4O1, 4O2 suivant l’axe Z le long de la portion piézoélectrique périphérique 30, le champ électrique généré présente une composante non nulle dans le plan XY, et induit ainsi une déformation dans le plan XY de la portion piézoélectrique périphérique 30 par effet piézoélectrique inverse, suivant une direction opposée à la portion semiconductrice 20 (représentée par des flèches). Dans la mesure où la portion piézoélectrique périphérique 30 entoure la portion semiconductrice 20 d’une part, et qu’il y a continuité de matière entre la portion piézoélectrique périphérique 30 et la portion semiconductrice 20 dans le plan XY d’autre part, les contraintes mécaniques subies par la portion piézoélectrique périphérique 30 sont transmises dans la portion semiconductrice 20, de sorte que la portion semiconductrice 20 subit alors des contraintes mécaniques en tension suivant le plan XY, c’est-à-dire suivant le plan principal.
[0050] La figure 1B est une vue partielle et schématique, en coupe transversale, d’un dispositif optoélectronique 1 selon un deuxième mode de réalisation. Dans cet exemple, le dispositif optoélectronique 1 comporte une matrice de diodes 2 adjacentes dans le plan XY et sensiblement coplanaires. Les diodes 2 sont ici des photodiodes 2 en germanium adaptées à détecter un rayonnement lumineux dans le proche infrarouge. Comme détaillé plus loin, la mise en tension des diodes 2 est assurée par une compression de la portion piézoélectrique périphérique 30, dans le plan principal de la diode.
[0051] Le dispositif optoélectronique 1 selon ce mode de réalisation se distingue de celui illustré sur la fig.iA essentiellement en ce qu’à chaque diode 2 est associée une couche conductrice périphérique 40 intercalée entre la portion semiconductrice 20 et la portion piézoélectrique périphérique 30. L’autre couche conductrice périphérique 40 illustrée sur la fig.iB est celle associée aux diodes 2 adjacentes. Aussi, les couches conductrices adjacentes sont de préférence portées à un même potentiel électrique négatif V-. Par ailleurs, le matériau piézoélectrique est choisi parmi les matériaux électriquement isolants, de manière à assurer une isolation électrique entre les diodes 2.
[0052] Il comporte ainsi une première métallisation (non représentée) de polarisation de la couche conductrice périphérique 40, de préférence reposant sur la première face 21 du dispositif optoélectronique 1 et au contact électrique d’une extrémité de ladite couche conductrice périphérique 40.
[0053] Il comporte également, dans cet exemple, une deuxième métallisation 42 (illustrée en trait pointillé sur la fig.2C) de polarisation de la portion piézoélectrique périphérique 30, de préférence reposant sur la première face 21 et au contact du matériau piézoélectrique. La deuxième métallisation 42 peut être une pluralité de plots agencés de manière à entourer la portion semiconductrice 20, ou peut être une bande qui s’étend de manière à entourer continûment la portion semiconductrice 20. Elle est située de préférence entre chaque couche conductrice périphérique 40 adjacente, dans le plan XY. Un potentiel électrique positif Vp+ peut ainsi être appliqué à la portion piézoélectrique périphérique 30 par l’intermédiaire de cette métallisation.
[0054] Ainsi, en fonctionnement, une tension de polarisation est appliquée à la portion piézoélectrique périphérique 30, générant ainsi un champ électrique dans la portion piézoélectrique périphérique 30 dont les lignes de champ s’étendent entre la couche conductrice périphérique 40 et la deuxième métallisation 42. Du fait de l’orientation de la couche conductrice périphérique 40 le long de la portion piézoélectrique périphérique 30 suivant l’axe Z, le champ électrique généré présente une composante non nulle dans le plan XY, et induit ainsi une déformation en compression de la portion piézoélectrique périphérique 30 dans le plan XY par effet piézoélectrique inverse. Dans la mesure où la portion piézoélectrique périphérique 30 entoure la portion semiconductrice 20 d’une part, et qu’il y a continuité de matière entre la portion piézoélectrique périphérique 30 et la portion semiconductrice 20 dans le plan XY d’autre part, les contraintes mécaniques subies par la portion piézoélectrique périphérique 30 sont transmises dans la portion semiconductrice 20, de sorte que la portion semiconductrice 20 subit alors des contraintes mécaniques en tension suivant le plan XY.
[0055] Le dispositif optoélectronique 1 selon les premier et deuxième modes de réalisation comporte un deuxième circuit électrique de polarisation de la ou des diodes 2, de manière à permettre l’émission ou la détection d’un rayonnement lumineux.
[0056] Pour cela, le circuit électrique comporte des métallisations (non représentées) permettant de polariser la ou les diodes 2 en direct ou en inverse, selon l’application d’émission ou de détection de la diode. Ainsi, dans le cas d’une photodiode, une première métallisation est située sur et au contact de la première région 24 dopée n, et adaptée à appliquer un potentiel électrique positif Vd+ à cette dernière. L’application d’un potentiel négatif V- à la deuxième région 25 dopée p est effectuée par l’intermédiaire de la couche conductrice périphérique 40 avec laquelle elle est au contact. Ainsi, le potentiel électrique appliqué à la couche conductrice périphérique 40 permet à la fois de polariser la portion piézoélectrique périphérique 30 pour y induire une déformation en compression, et de polariser la diode 2 ici en inverse.
[0057] La figure 2C est une vue de dessus, schématique et partielle, d’un dispositif optoélectronique 1 identique à celui illustré sur la fig.iB, dont les diodes 2 présentent une forme carrée. Les diodes 2 sont électriquement isolées les unes des autres par la portion piézoélectrique périphérique 30 qui s’étend ici de manière continue dans le plan XY. Chaque diode 2 comporte une couche conductrice périphérique 40 intercalée dans le plan XY entre la portion semiconductrice 20 et la portion piézoélectrique périphérique 30. Les premiers circuits électriques comportent une métallisation 42 (trait pointillé) de polarisation de la portion piézoélectrique périphérique 30, qui s’étend longitudinalement sur la première face 21 autour de chaque diode 2. La métallisation 42 est portée à un potentiel électrique positif Vp+ et chaque couche conductrice périphérique 40 est portée à un potentiel électrique négatif V-, permettant ainsi de générer un champ électrique dans la portion piézoélectrique périphérique 30 susceptible de provoquer la déformation en compression de cette dernière. Par ailleurs, chaque première région 24 dopée n est portée à un potentiel électrique positif Vd+. Ainsi, chaque diode 2 est ici polarisée en inverse, permettant alors la photodétection du rayonnement lumineux infrarouge. Chaque couche conductrice périphérique 40 participe à polariser dans le même temps la portion piézoélectrique périphérique 30 ainsi que la portion semiconductrice 20 correspondante.
[0058] La figure 3A est une vue partielle et schématique, en coupe transversale, d’une variante du dispositif optoélectronique 1 selon le deuxième mode de réalisation illustré sur la fig.iA. Le dispositif optoélectronique 1 s’en distingue essentiellement en ce que la deuxième région 25 dopée p comporte une zone latérale, de préférence également surdopée, qui affleure la bordure latérale 23 sur toute la hauteur de celle-ci suivant l’axe Z, et suivant toute la périphérie de la portion semiconductrice 20 dans le plan XY. Ainsi, la polarisation de la deuxième région 25 dopée p est améliorée dans la mesure où la surface du contact ohmique avec la couche conductrice périphérique 40 est augmentée. De plus, une telle configuration de la jonction PIN permet d’éviter que la zone de charge d’espace entre les régions dopées n et p ne s’étende jusqu’à la bordure latérale 23. Ainsi, on limite la contribution de cette zone (potentiellement non exempte de défauts liés à la réalisation des tranchées) au courant d’obscurité. Cette variante s’applique également au dispositif optoélectronique 1 selon le premier mode de réalisation.
[0059] La figure 3B est une vue partielle et schématique, en coupe transversale, d’une variante du dispositif optoélectronique 1 selon le deuxième mode de réalisation illustré sur la fig.3A. Le dispositif optoélectronique 1 s’en distingue notamment en ce que la diode 2 comporte une jonction PN et non pas une jonction PIN, comme ce pourrait également être le cas dans le premier mode de réalisation de la fig.iA. Par ailleurs, la deuxième région 25 dopée p peut comporter une zone surdopée qui affleure la bordure latérale 23 et ici la deuxième face 22, et une zone de niveau de dopage p plus faible, qui entoure le caisson dopé n. Il s’en distingue également en ce qu’une couche conductrice intercalaire 44 entre la couche conductrice périphérique 40 au contact de la portion semiconductrice 20 considérée et celle au contact de la portion semiconductrice 20 d’une diode 2 voisine. Cette couche conductrice intercalaire 44 s’étend ici de manière sensiblement parallèle à la couche conductrice périphérique 40 suivant l’axe Z, et entoure la portion semiconductrice 20 dans le plan XY. Elle est portée au potentiel électrique positif Vp+. Ainsi, le champ électrique généré entre la couche conductrice intercalaire 44 et la couche conductrice périphérique 40 comporte essentiellement une composante parallèle au plan XY, ce qui améliore ainsi l’intensité de déformation en compression du matériau piézoélectrique, ainsi que l’homogénéité de déformation suivant l’axe Z. La portion semiconductrice 20 subit alors une contrainte en tension dont l’homogénéité suivant l’axe Z est également améliorée.
[0060] Le dispositif optoélectronique 1 présente alors l’avantage de permettre la mise en tension de la portion semiconductrice 20 de la ou des diodes 2 de manière active, c’est-à- dire par l’application d’une tension de polarisation du matériau piézoélectrique. Comme détaillé précédemment, la polarisation du matériau piézoélectrique peut induire une déformation de la portion piézoélectrique périphérique 30 dans le plan XY suivant une direction opposée à la portion semiconductrice 20 (premier mode de réalisation illustré sur la fig.iA), ou une déformation en compression dans le plan XY (deuxième mode de réalisation illustré sur la fig.iB). La valeur de la contrainte en tension peut être contrôlée de manière précise et simplifiée, dans la mesure où elle dépend essentiellement de l’intensité de la tension de polarisation du matériau piézoélectrique, et non pas d’une technologie de mise en contrainte par dépôt d’un empilement de couches minces ou d’une structuration de la portion semiconductrice 20 suivie d’une mise en suspension. Ainsi, on obtient un dispositif optoélectronique 1 dont les propriétés optiques et/ou électriques peuvent être modifiées de manière contrôlée, c’est-à-dire ici de manière active, lors du fonctionnement du dispositif optoélectronique 1, en modulant la tension de polarisation du matériau piézoélectrique. Il est alors possible d’élargir la gamme spectrale d’absorption du dispositif optoélectronique 1, par exemple jusqu’à une longueur d’onde de coupure supérieure à i550nm dans le cas d’une photodiode 2 en germanium. Il est également possible, notamment dans le cadre d’application télécom, de moduler le rapport signal sur bruit associé à la photodiode, en faisant varier la tension de polarisation du matériau piézoélectrique.
[0061] De plus, le dispositif optoélectronique 1 présente un faible encombrement, dans la mesure où la portion piézoélectrique périphérique 30 s’étend de manière sensiblement coplanaire avec la portion semiconductrice 20 de la ou des diodes 2. Le matériau piézoélectrique recouvre essentiellement la bordure latérale 23 de la portion semiconductrice 20 et ne revêt de préférence pas la première face 21 et/ou la deuxième face 22 de la diode. Un tel agencement de la portion piézoélectrique périphérique 30 par rapport aux diodes 2 autorise également une densité spatiale de diodes 2 élevée, et donc une haute résolution spatiale du dispositif optoélectronique 1, dans le cas où ce dernier comporte une matrice de diodes 2.
[0062] A titre d’exemple, le dispositif optoélectronique i peut comporter une photodiode 2 dont la portion semiconductrice 20 est circulaire et réalisée en germanium. La première région 24 dopée n peut présenter un diamètre de 3pm environ et la portion semiconductrice 20 présenter un diamètre de 8pm environ. Elle est bordée d’une portion piézoélectrique périphérique 30 en PZT d’une dimension transversale de îpm environ. Une couche conductrice périphérique 40 en TiN est intercalée entre la portion piézoélectrique périphérique 30 et la couche conductrice périphérique 40. Une étude par simulation numérique a permis de montrer qu’une tension de polarisation de la portion piézoélectrique périphérique 30 de +5V environ permet de provoquer une déformation de o,5nm dans le plan XY de la portion semiconductrice 20. Une telle contrainte permet alors d’augmenter la longueur d’onde de coupure du germanium en tension à une valeur supérieure à issonm.
[0063] Un exemple de procédé de fabrication d’un dispositif optoélectronique 1 selon le deuxième mode de réalisation identique ou similaire à celui illustré sur la fig.iB est maintenant décrit en référence aux figures 4A à 4N. Dans cet exemple, les diodes 2 sont des photodiodes à jonctions PIN réalisées en germanium et sont adaptées pour détecter un rayonnement infrarouge dans la gamme SWIR.
[0064] Lors d’une première étape (fig.4A), on réalise une première sous-couche semiconductrice 12.1 de germanium monocristallin. La première sous-couche semiconductrice 12.1 est solidarisée d’une couche support 10, ici en silicium, par l’intermédiaire d’une couche diélectrique inférieure 11, ici en un oxyde de silicium. Cet empilement prend la forme d’un substrat GeOI (pour Germanium On Insulator, en anglais). Cet empilement est de préférence réalisé au moyen du procédé décrit dans la publication de Reboud et al. intitulée Structural and optical properties of 200mm germanium-on-insulator (GeOI) substrates for Silicon photonics applications, Proc. SPIE 9367, Silicon Photonics X, 936714 (February 27, 2015). Un tel procédé présente l’avantage de réaliser une sous-couche semiconductrice 12.1 de germanium présentant un faible taux de défauts structuraux tels que les dislocations. Le germanium peut être non intentionnellement dopé ou être dopé, par exemple de type p. La sous-couche semiconductrice 12.1 peut présenter une épaisseur comprise entre îoonm et soonm environ, par exemple égale à 300nm environ, et peut être recouverte d’une couche de protection (non représentée) en un oxyde de silicium.
[0065] Lors d’une étape suivante (fig.4B), on réalise un dopage de la première sous-couche 12.1 en germanium selon le deuxième type de conductivité, ici de type p, par implantation ionique d’un dopant tel que le bore. La couche de protection, le cas échéant, a été préalablement retirée par un nettoyage de surface, et la première sous-couche 12.1 de germanium peut être revêtue d’une couche d’oxyde de préimplantation d’une épaisseur de quelques dizaines de nanomètres, par exemple égale à 2onm. La sous-couche 12.1 de germanium présente alors un niveau de dopage compris entre 1.1019 et 1.1020 at/cm3 environ. Un recuit de diffusion du dopant peut ensuite être effectué sous azote, pendant quelques minutes à quelques heures, par exemple îh, à une température pouvant être comprise entre 6oo°C et 8oo°C, par exemple égale à 8oo°C. Cette étape permet d’obtenir un surdopage de la sous-couche 12.1 de germanium améliorant le contact ohmique entre la deuxième région 25 dopée p et la couche conductrice périphérique 40.
[0066] Lors d’une étape suivante (fig.4C), on réalise une deuxième sous-couche semiconductrice 12.2 de germanium par épitaxie à partir de la première sous-couche 12.1. Les deux sous-couches sont destinées à former les portions semiconductrices 20 de germanium de la matrice de diodes 2. La deuxième sous-couche 12.2 est formée par épitaxie, par exemple par dépôt chimique en phase vapeur (CVD, pour Chemical Vapor Déposition, en anglais) ou par toute autre technique d’épitaxie. La couche d’oxyde de préimplémentation, le cas échéant, a été préalablement retirée par un nettoyage de surface. La deuxième sous-couche 12.2 de germanium est ici intrinsèque, c’est-à-dire non intentionnellement dopée. Elle est destinée à former la zone d’absorption lumineuse des diodes 2. Son épaisseur dépend de la gamme de longueurs d’onde du rayonnement lumineux à détecter dans le cas d’une photodiode. Dans le cadre de photodiodes 2 SWIR, la sous-couche 12.2 de germanium intrinsèque présente une épaisseur par exemple comprise entre îpm et 3pm, de préférence égale à 1,5 pm.
[0067] Lors d’une étape suivante (fig.4D), on réalise une gravure localisée de la couche semiconductrice de germanium formée des deux sous-couches dans le but de former une tranchée 14 continue dans le plan XY assurant la pixellisation des diodes 2. Pour cela, une couche diélectrique supérieure 13 est de préférence préalablement déposée sur la face exposée de la couche semiconductrice. La couche diélectrique supérieure 13 peut présenter une épaisseur de quelques dizaines à quelques centaines de nanomètres, par exemple comprise entre 2onm et 300nm environ, par exemple égale à îoonm environ. La réalisation de la tranchée 14 est effectuée par des techniques classiques de photolithographie et de gravure. On grave ainsi une zone localisée de la couche diélectrique supérieure 13, de la deuxième sous-couche 12.2 de germanium intrinsèque et d’au moins une partie de l’épaisseur de la première sous-couche 12.1 de germanium surdopé. On obtient ainsi une pluralité de portions semiconductrices 20 en germanium séparées les unes des autres par la tranchée 14 continue. La tranchée 14 est obtenue de préférence par une technique de gravure anisotrope, de manière à obtenir une bordure latérale 23 des portions semiconductrices 20 sensiblement plane suivant l’axe Z, et de préférence sensiblement orthogonale au plan XY. La tranchée 14 continue présente une dimension transversale (largeur) dans le plan XY pouvant être comprise entre 300nm et 30 pm, par exemple comprise entre îpm et 2pm environ. Elle s’étend longitudinalement dans le plan XY de manière à délimiter les portions semiconductrices 20. Ces dernières peuvent ainsi présenter une forme dans le plan XY par exemple circulaire, ovale, polygonale, par exemple carrée, ou toute autre forme.
[0068] Dans cet exemple, la première sous-couche 12.1 est gravée localement sur toute son épaisseur pour déboucher sur la couche diélectrique inférieure 11. En variante (non représenté), la première sous-couche 12.1 peut être gravée localement en partie, de manière à garder une portion inférieure continue de germanium surdopé, dans le but d’augmenter la surface de contact ohmique entre la deuxième région 25 dopée p et la couche conductrice périphérique 40.
[0069] Pour obtenir une deuxième région 25 dopée p qui comporte une zone latérale s’étendant le long de la bordure latérale 23 suivant l’axe Z, et sur le pourtour de la portion semiconductrice 20 dans le plan XY, comme illustré sur les fig-3A et 3B, une implantation ionique supplémentaire, par exemple de bore, peut être effectuée avec un angle d’inclinaison non nul, de manière à venir doper le flanc latéral des portions semiconductrices 20.
[0070] Lors d’une étape suivante (fig.4E), une couche conductrice continue 15 est déposée de manière conforme sur la surface exposée de la structure obtenue précédemment. La couche conductrice est réalisée en au moins un matériau électriquement conducteur, ici en TiN. Elle peut être déposée par dépôt chimique en phase vapeur (CVD) et recouvre continûment la bordure latérale 23 des portions semiconductrices 20, ainsi que la couche diélectrique supérieure 13 et ici la surface exposée de la couche diélectrique inférieure 11. Cette couche conductrice continue 15 est destinée à former les couches conductrices périphériques qui s’étendent au contact de la bordure latérale 23 en vue d’assurer la polarisation conjointe de la deuxième région 25 dopée p et de la portion piézoélectrique périphérique 30. La couche conductrice continue 15 peut présenter une épaisseur comprise entre îonm et îoonm environ.
[0071] Lors d’une étape suivante (fig.4F), on réalise la portion piézoélectrique périphérique 30. Pour cela, un dépôt d’un matériau piézoélectrique, par exemple ici de PZT, est réalisé de manière à recouvrir continûment la structure obtenue préalablement et donc à remplir la tranchée 14. Le matériau piézoélectrique est alors au contact de la couche conductrice continue. Il peut être déposé par dépôt physique en phase vapeur (PVD, pour Physical Vapor Déposition, en anglais) ou par toute autre technique adaptée. La couche conductrice périphérique 40, notamment lorsqu’elle est réalisée en TiN, assure une bonne accroche pour le matériau piézoélectrique, notamment lorsqu’il est en PZT. Le matériau piézoélectrique est de préférence diélectrique, assurant ainsi une isolation électrique entre les photodiodes 2. Une étape de recuit peut être mise en œuvre, par exemple entre 300°C et 700°C, pour optimiser les propriétés piézoélectriques du matériau. Une étape de planarisation, par exemple mécano-chimique (CMP), est ensuite mise en œuvre, avec arrêt sur la partie supérieure de la couche conductrice continue.
[0072] Lors d’une étape suivante (fig.4G), on définit des zones d’implantation ionique de dopants en vue de former les premières régions 24 dopées n. Pour cela, on dépose une résine photosensible 16 dont les ouvertures 17 sont situées en regard de la portion semiconductrice 20. On réalise ensuite une gravure localisée d’une zone supérieure de la couche conductrice continue 15 et de préférence d’une partie de la couche diélectrique supérieure 13. Les dimensions transversales, dans le plan XY, de la gravure localisée correspondent sensiblement à celle des premières régions 24 dopées n que l’on souhaite obtenir. Ces dimensions transversales dépendent ainsi de celles de la portion semiconductrice 20, et peuvent être comprises, par exemple, entre 300nm et îopm.
[0073] Lors d’une étape suivante (fig.4H), on réalise les premières portions dopées n par implantation ionique d’un dopant tel que le phosphore, au travers des ouvertures 17. Les premières régions 24 sont de préférence surdopées, et peuvent ainsi présenter un niveau de dopage compris entre 1.1019 et 1.1020 at/cnU environ. Les premières régions 24 dopées n forment ainsi des caissons dopés n délimités dans le plan XY et suivant la direction -Z par la deuxième sous-couche 12.2 de germanium intrinsèque. Un contact résistif est ainsi formé à l’interface entre la couche conductrice périphérique 40 et le germanium intrinsèque de la deuxième sous-couche 12.2. Un recuit de diffusion des dopants peut être effectué, par exemple à une température comprise entre 400°C et 700°C pendant une durée de quelques secondes à quelques dizaines de minutes, par exemple à 6oo°C pendant 30s.
[0074] Lors d’étapes suivantes (fig.41 et 4J), on dépose une couche diélectrique supplémentaire 18 dans le but ensuite de réaliser les métallisations de polarisation. Pour cela, on retire la résine photosensible 16 puis on réalise un dépôt de la couche diélectrique (fig.41), par exemple réalisée en un oxyde de silicium ou en un orthosilicate de tétraéthyle (TEOS), de manière à recouvrir entièrement la structure obtenue préalablement. La couche diélectrique 18 peut présenter une épaisseur comprise entre sonm et 200nm, par exemple. On réalise ensuite, par photolithographie et gravure, des premières ouvertures 19.1 traversantes dans la couche diélectrique (fig.4<J) avec arrêt de gravure sur la couche conductrice périphérique 40, en vue de former les métallisations 41 de polarisation de la couche conductrice périphérique. Les ouvertures débouchent ainsi sur une zone supérieure de la couche conductrice périphérique 40 qui s’étend sur la couche diélectrique supérieure 13. On réalise également des deuxièmes ouvertures traversantes 19.2 en vue de former des métallisations 42 de polarisation de la portion piézoélectrique périphérique 30, et des troisièmes ouvertures 19.3 en vue de former des métallisations 43 de polarisation des premières régions 24 dopées n. Les deuxièmes ouvertures 19.2 peuvent s’étendre longitudinalement de manière à entourer chaque diode 2 dans le plan XY. Autrement dit, chaque diode 2 est entourée par une même deuxième ouverture 19.2 qui peut s’étendre longitudinalement de manière continue voire discontinue. Les ouvertures 19.1, 19.2, 19.3 peuvent présenter des dimensions transversales dans le plan XY comprises entre quelques centaines de nanomètres et quelques microns, selon les dimensions des diodes 2 et de la largeur de la portion piézoélectrique périphérique 30.
[0075] Lors d’une étape suivante (fig.4K), on réalise les métallisations 41, 42, 43 au travers des ouvertures traversantes 19.1, 19.2, 19.3. Les métallisations 41, 42, 43 sont réalisées en au moins un matériau métallique, et peuvent être formées d’une couche barrière par exemple en TiN déposé par CVD, suivi d’une couche de cuivre. Une étape de planarisation, par exemple par CMP, est ensuite effectuée avec arrêt de gravure sur la couche supérieure d’oxyde de protection.
[0076] Lors d’une étape suivante (fig.4L), on réalise ensuite l’assemblage mécanique et électrique, également appelée hybridation, de la structure ainsi obtenue à une puce de commande 3. L’hybridation peut être effectuée par collage direct (ou collage par adhésion moléculaire, direct bonding, en anglais) de type cuivre/cuivre et/ou de type oxyde/oxyde, ou par tout autre technique d’hybridation.
[0077] Lors d’une étape suivante (fig.4M), on effectue avantageusement le retrait de la couche support 10 de silicium, par exemple par meulage ( grinding , en anglais) et/ou par gravure humide ou par gravure sèche plasma (RIE, ICP...), avec arrêt de gravure sur la couche diélectrique inférieure 11. On peut également effectuer la gravure localisée de la couche diélectrique inférieure 11 ainsi que la couche conductrice continue, de manière à exposer une face de la portion piézoélectrique périphérique 30. Ainsi, la couche diélectrique inférieure 11 assure la passivation de la portion semiconductrice 20.
[0078] Lors d’une étape suivante (fig.4N), il est possible de supprimer la couche diélectrique inférieure 11 restante, de manière à exposer également la deuxième face 22 de la portion semiconductrice 20, et de déposer ensuite une couche diélectrique 4 au moins partiellement transparente. Cette couche 4 assure une protection des diodes 2, la passivation de la deuxième face 22 des portions semiconductrices 20, et peut également assurer une fonction optique d’antireflet lorsque son épaisseur est un multiple de l/4h, où l est une longueur d’onde du rayonnement lumineux à détecter et n est l’indice de réfraction du matériau de la couche antireflet. Une telle couche 4 peut être réalisée en un oxyde ou un nitrure de silicium, par exemple Si02, SiN, Si3N4, ou d’aluminium, par exemple AIN ou Al203. Son épaisseur peut être comprise, par exemple, entre 20nm et 200nm environ.
[0079] Ainsi, ce procédé de fabrication permet d’obtenir un dispositif optoélectronique 1 comportant une matrice de diodes 2 dont les portions semiconductrices 20 peuvent être mises en tension de manière active, c’est-à-dire par l’application d’une différence de potentiel à la portion piézoélectrique périphérique 30 entourant chaque diode, entraînant la déformation de celle-ci. Par ailleurs, le dispositif optoélectronique 1 peut présenter une haute résolution spatiale, ainsi qu’un faible encombrement, dans la mesure où la portion piézoélectrique périphérique 30 s’étend de manière coplanaire aux diodes 2. De plus, la portion piézoélectrique périphérique 30 définit, avec les diodes 2, une structure optoélectronique sensiblement planaire, délimitée suivant l’axe Z par deux faces sensiblement planes, ce qui participe à diminuer l’encombrement du dispositif optoélectronique 1. Par ailleurs, les diodes 2 présentent de bonnes propriétés optiques et/ou électroniques, notamment dans la mesure où les éventuels défauts structuraux tels que les dislocations restent confinées essentiellement dans la deuxième région 25 dopée p et non pas dans la région intrinsèque 26.
[0080] Par ailleurs, il est avantageux que les premières régions 24 soient dopées n et que les deuxièmes régions 25 soient dopées p en termes de durée de recuit de diffusion. En effet, le bore utilisé pour le dopage p diffuse plus lentement que le phosphore utilisé pour le dopage n. Ainsi, le recuit de diffusion du phosphore, qui nécessite une courte durée, est effectué après le recuit de diffusion du bore, qui lui nécessite une plus longueur durée.
[0081] Des modes de réalisation particuliers viennent d’être décrits. Différentes variantes et modifications apparaîtront à l’homme du métier.

Claims

REVENDICATIONS
1. Dispositif optoélectronique (1), comportant :
o au moins une diode (2), comportant une portion semiconductrice (20) présentant :
• une première face (21) et une deuxième face (22) opposée, sensiblement parallèles à un plan principal, et reliées l’une à l’autre par une bordure latérale (23), et
• une jonction PN ou PIN formée par :
une première région (24) dopée selon un premier type de conductivité, et
une deuxième région (25) dopée selon un deuxième type de conductivité opposé au premier type, s’étendant à partir de la bordure latérale (23) ;
o une couche conductrice périphérique (40), réalisée en au moins un matériau électriquement conducteur, s’étendant suivant le plan principal au contact de la deuxième région dopée (25) de manière à entourer la portion semiconductrice (20) ; o une portion piézoélectrique périphérique (30), réalisée en au moins un matériau piézoélectrique, s’étendant suivant le plan principal au contact de la couche conductrice périphérique (40) de manière à entourer la portion semiconductrice (20) ;
o un premier circuit électrique de polarisation de la portion piézoélectrique périphérique (30), adapté à générer un champ électrique dans la portion piézoélectrique périphérique (30) en appliquant un potentiel électrique à au moins la couche conductrice périphérique (40), de manière à induire une déformation de la portion piézoélectrique périphérique (30) orientée suivant le plan principal entraînant alors une déformation en tension de la portion semiconductrice (20) suivant le plan principal.
2. Dispositif optoélectronique (1) selon la revendication 1, dans lequel la couche conductrice périphérique (40) et la portion piézoélectrique périphérique (30) entourent la portion semiconductrice (20) continûment.
3. Dispositif optoélectronique (1) selon la revendication 1 ou 2, dans lequel la couche conductrice périphérique (40) revêt entièrement la bordure latérale (23) de la portion semiconductrice (20) suivant un axe orthogonal au plan principal, et la portion piézoélectrique périphérique (30) revêt entièrement la couche conductrice périphérique (40) suivant ledit axe orthogonal.
4. Dispositif optoélectronique (1) selon l’une quelconque des revendications 1 à 3, dans lequel la bordure latérale (23) s’étend de manière sensiblement orthogonale au plan principal.
5. Dispositif optoélectronique (i) selon l’une quelconque des revendications i à 4, dans lequel la portion piézoélectrique périphérique (30) présente une épaisseur au moins égale à celle de la portion semiconductrice (20).
6. Dispositif optoélectronique (1) selon l’une quelconque des revendications 1 à 5, comportant un deuxième circuit électrique de polarisation de la diode (2), adapté à appliquer ledit potentiel électrique à la deuxième région dopée (25) par le biais de la couche conductrice périphérique (40) et un potentiel électrique différent à la première région dopée
(24)·
7. Dispositif optoélectronique (1) selon l’une quelconque des revendications 1 à 6, dans lequel la première portion dopée (24) s’étend à partir de la première face (21) et est distante de la bordure latérale (23).
8. Dispositif optoélectronique (1) selon l’une quelconque des revendications 1 à 7, dans lequel la diode (2) comporte :
- une jonction PIN, la première région dopée (24) étant entourée dans le plan principal et au contact d’une région (26) non intentionnellement dopée, ou
- une jonction PN, la première région dopée (24) étant entourée dans le plan principal et au contact de la deuxième région dopée (25).
9. Dispositif optoélectronique (1) selon l’une quelconque des revendications 1 à 8, dans lequel la portion semiconductrice (20) est réalisée à base de germanium.
10. Dispositif optoélectronique (1) selon l’une quelconque des revendications 1 à 9, dans lequel la portion piézoélectrique périphérique (30) est réalisée en PZT.
11. Dispositif optoélectronique (1) selon l’une quelconque des revendications 1 à 10, dans lequel la portion piézoélectrique périphérique (30) s’étend suivant le plan principal de manière sensiblement coplanaire à la diode (2).
12. Dispositif optoélectronique (1) selon l’une quelconque des revendications 1 à 11, comportant une matrice de diodes (2) coplanaires, dont les portions semiconductrices (20) sont isolées électriquement les unes des autres par une portion piézoélectrique périphérique (30) s’étendant suivant le plan principal de manière continue.
13. Dispositif optoélectronique (1) selon la revendication 12, comportant une métallisation (42) entourant chaque portion semiconductrice (20) et reposant sur une extrémité de la portion piézoélectrique périphérique (30) débouchant sur la première face (21) ou la deuxième face (22), le premier circuit étant adapté à appliquer une différence de potentiel électrique entre la métallisation (42) et la couche conductrice périphérique (40) de chaque diode (2), de manière à provoquer une déformation en compression de la portion piézoélectrique périphérique (30) suivant le plan principal.
14. Dispositif optoélectronique (1) selon l’une quelconque des revendications 1 à 12, comportant une deuxième couche conductrice périphérique (402) agencée de sorte que la portion piézoélectrique périphérique (30) est intercalée, suivant le plan principal, entre la deuxième couche conductrice périphérique (4O2) et ladite couche conductrice périphérique (4O1) au contact de la portion semiconductrice (20), le premier circuit étant adapté à appliquer une différence de potentiel électrique entre lesdites couches conductrices périphériques (4O1, 402), de manière à provoquer une déformation de la portion piézoélectrique périphérique (30) dans le plan principal suivant une direction opposée à la portion semiconductrice (20).
15. Procédé de fabrication d’un dispositif optoélectronique (1) selon l’une quelconque des revendications précédentes, comportant au moins les étapes suivantes :
- réalisation d’au moins la portion semiconductrice (20) ;
- dépôt conforme de la couche conductrice périphérique (40) sur et au contact de la bordure latérale (23) de la portion semiconductrice (20) ;
- formation de la portion piézoélectrique périphérique (30) par dépôt d’un matériau piézoélectrique sur et au contact d’une face de la couche conductrice périphérique (40) opposée à la bordure latérale (23).
PCT/FR2019/050882 2018-04-18 2019-04-15 Dispositif optoelectronique a diode contrainte en tension par effet piezoelectrique inverse WO2019202250A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980026320.5A CN112055895A (zh) 2018-04-18 2019-04-15 具有由于逆压电效应而受拉伸应力的二极管的光电器件
US17/044,510 US20210111205A1 (en) 2018-04-18 2019-04-15 Optoelectronic device having a diode put under tensile stress by an inverse piezoelectric effect
EP19744752.7A EP3782205A1 (fr) 2018-04-18 2019-04-15 Dispositif optoelectronique a diode contrainte en tension par effet piezoelectrique inverse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1853386 2018-04-18
FR1853386A FR3080489B1 (fr) 2018-04-18 2018-04-18 Dispositif optoelectronique a diode contrainte en tension par effet piezoelectrique inverse

Publications (1)

Publication Number Publication Date
WO2019202250A1 true WO2019202250A1 (fr) 2019-10-24

Family

ID=62948234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050882 WO2019202250A1 (fr) 2018-04-18 2019-04-15 Dispositif optoelectronique a diode contrainte en tension par effet piezoelectrique inverse

Country Status (5)

Country Link
US (1) US20210111205A1 (fr)
EP (1) EP3782205A1 (fr)
CN (1) CN112055895A (fr)
FR (1) FR3080489B1 (fr)
WO (1) WO2019202250A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4354524A1 (fr) 2022-10-14 2024-04-17 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Photodiode planaire à base de germanium comportant une zone latérale périphérique en compression

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10854646B2 (en) * 2018-10-19 2020-12-01 Attollo Engineering, LLC PIN photodetector
FR3101727B1 (fr) * 2019-10-08 2021-09-17 Commissariat Energie Atomique procede de fabrication d’au moins une photodiode planaire contrainte en tension
FR3129248B1 (fr) 2021-11-17 2023-11-03 Commissariat Energie Atomique Photodiode germanium à courant d’obscurité réduit comportant une portion intermédiaire périphérique à base de SiGe/Ge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090108387A1 (en) * 2007-10-30 2009-04-30 Nathaniel Quitoriano Semiconductor Device And Method For Strain Controlled Optical Absorption
US20140291682A1 (en) 2012-05-05 2014-10-02 Sifotonics Technologies Co., Ltd. High Performance GeSi Avalanche Photodiode Operating Beyond Ge Bandgap Limits
US20150308891A1 (en) * 2012-11-29 2015-10-29 International Business Machines Corporation Optical spectrometer
EP3151265A1 (fr) 2015-09-30 2017-04-05 Commissariat à l'énergie atomique et aux énergies alternatives Procede de realisation d'une structure semiconductrice comportant une portion contrainte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090108387A1 (en) * 2007-10-30 2009-04-30 Nathaniel Quitoriano Semiconductor Device And Method For Strain Controlled Optical Absorption
US20140291682A1 (en) 2012-05-05 2014-10-02 Sifotonics Technologies Co., Ltd. High Performance GeSi Avalanche Photodiode Operating Beyond Ge Bandgap Limits
US20150308891A1 (en) * 2012-11-29 2015-10-29 International Business Machines Corporation Optical spectrometer
EP3151265A1 (fr) 2015-09-30 2017-04-05 Commissariat à l'énergie atomique et aux énergies alternatives Procede de realisation d'une structure semiconductrice comportant une portion contrainte

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUILLOY ET AL.: "Germanium under high tensile stress: Nonlinear dependence of direct band gap vs strain", ACS PHOTONICS, vol. 3, 2016, pages 1907 - 1911
REBOUD ET AL.: "Structural and optical properties of 200mm germanium-on-insulator (GeOI) substratesfor silicon photonics applications", PROC. SPIE 9367, SILICON PHOTONICS X, 936714, 27 February 2015 (2015-02-27)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4354524A1 (fr) 2022-10-14 2024-04-17 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Photodiode planaire à base de germanium comportant une zone latérale périphérique en compression
FR3140992A1 (fr) 2022-10-14 2024-04-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photodiode planaire à base de germanium comportant une zone latérale périphérique en compression

Also Published As

Publication number Publication date
FR3080489B1 (fr) 2020-05-08
FR3080489A1 (fr) 2019-10-25
CN112055895A (zh) 2020-12-08
US20210111205A1 (en) 2021-04-15
EP3782205A1 (fr) 2021-02-24

Similar Documents

Publication Publication Date Title
EP3657556B1 (fr) Procede de fabrication d&#39;au moins une photodiode planaire passivee a courant d&#39;obscurite reduit
WO2019202250A1 (fr) Dispositif optoelectronique a diode contrainte en tension par effet piezoelectrique inverse
EP3660930B1 (fr) Procédé de fabrication d&#39;une matrice de photodiodes à base de germanium et à faible courant d&#39;obscurité
EP3971995B1 (fr) Photodiode passivée comportant une portion périphérique ferroélectrique
EP3806167B1 (fr) Procede de fabrication d&#39;au moins une photodiode planaire contrainte en tension
EP2587539B1 (fr) Imageur CMOS UTBB
FR2923651A1 (fr) Procede de realisation d&#39;une jonction pn dans un nanofil, et d&#39;un nanofil avec au moins une jonction pn.
FR2992471A1 (fr) Structure semiconductrice comportant une zone absorbante placee dans une cavite focalisante
EP3396720B1 (fr) Procede de realisation d&#39;une matrice de photodiodes a structures en mesa
EP3438041B1 (fr) Structure semiconductrice comportant une membrane suspendue a portion centrale structuree en epaisseur
EP3745473B1 (fr) Dispositif optoelectronique comportant une portion centrale contrainte en tension suivant un premier axe et polarisee electriquement suivant un deuxieme axe
FR3076078A1 (fr) Dispositif optoelectronique a matrice de diodes tridimensionnelles
EP3563426B1 (fr) Procede de realisation d&#39;un dispositif optoelectronique comportant une etape de gravure de la face arriere du substrat de croissance
EP4184594B1 (fr) Photodiode germanium a courant d obscurite reduit comportant une portion intermediaire peripherique a base de sige/ge
EP4354524A1 (fr) Photodiode planaire à base de germanium comportant une zone latérale périphérique en compression
EP4148919B1 (fr) Procede de fabrication d&#39;une diode semiconductrice par gravures seche et humide
WO2022171650A1 (fr) Photodiode germanium a contacts metalliques optimises
EP3903341B1 (fr) Procede de fabrication d&#39;un substrat pour un capteur d&#39;image de type face avant
EP4136681A1 (fr) Procédé de fabrication d&#39;un dispositif émetteur de rayonnement
EP3939935A1 (fr) Actuateur électromécanique nanométrique et son procédé de fabrication
FR3083000A1 (fr) Substrat pour capteur d&#39;image de type face avant et procede de fabrication d&#39;un tel substrat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019744752

Country of ref document: EP

Effective date: 20201118