WO2019201257A1 - 一种设备到任意d2x通信的方法、装置及存储介质 - Google Patents

一种设备到任意d2x通信的方法、装置及存储介质 Download PDF

Info

Publication number
WO2019201257A1
WO2019201257A1 PCT/CN2019/082952 CN2019082952W WO2019201257A1 WO 2019201257 A1 WO2019201257 A1 WO 2019201257A1 CN 2019082952 W CN2019082952 W CN 2019082952W WO 2019201257 A1 WO2019201257 A1 WO 2019201257A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
mapping relationship
multicast address
message
server
Prior art date
Application number
PCT/CN2019/082952
Other languages
English (en)
French (fr)
Inventor
刘艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019201257A1 publication Critical patent/WO2019201257A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/185Arrangements for providing special services to substations for broadcast or conference, e.g. multicast with management of multicast group membership
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal

Definitions

  • the present application relates to the field of vehicle networking technologies, and in particular, to a method, an apparatus, and a storage medium for device to any D2X communication.
  • the Internet of Vehicles is used for intelligent information exchange and sharing between vehicles and any (such as people, cars, roads, backgrounds, etc.).
  • the Internet of Vehicles mainly includes vehicle-to-vehicle (V2V) communication and vehicle-to-base.
  • V2I vehicle to infrastructure
  • V2N vehicle to network
  • V2C vehicle to cloud
  • V2P vehicle to people
  • V2X Vechicle to X, V2X) Interconnection scenarios for communication.
  • V2V communication the vehicle periodically broadcasts its own state information within a certain geographical range.
  • multi-cast technology is mainly used to achieve efficient propagation efficiency.
  • the vehicle transmits a periodic V2V message to the V2V multicast group based on the multicast address within the geographical range adjacent thereto, and the vehicle needs to join the V2V multicast group first to receive the V2V message.
  • the vehicle joins the V2V multicast group, it needs to register with the server and send the location information of the vehicle itself to the server, and the server returns the multicast address matching the location information to the vehicle.
  • the vehicle can request the gateway to join the V2V multicast group corresponding to the multicast address through the multicast address, and then can subsequently send and receive V2V messages in the V2V multicast group.
  • the server when the server matches the multicast address, it is based on the geographical location of the vehicle, and the mobility of the vehicle is strong.
  • the server needs to recognize the changed geographical position of the vehicle at any time, and feedback the vehicle to the geographical position. Multicast address. It can be seen that the server cannot provide a suitable multicast address for the vehicle quickly and accurately, so that the vehicle cannot normally perform V2V communication.
  • the present application provides a method, device and storage medium for device to any D2X communication, which can solve the problem that the accuracy of the multicast address provided by the server to the vehicle in the V2V communication is low in the prior art.
  • a first aspect of the present application provides a method for any device to any D2X communication, the method being performed by a server, the method comprising:
  • mapping relationship includes a mapping relationship between the geographic location information and the pseudo multicast address
  • the server performs the encryption and masquerading process on the multicast address in the initial mapping relationship, and obtains a masquerading mapping relationship, so that the D2X terminal cannot perceive the real multicast address, but still can Determining a target pseudo-multicast address from the mapping relationship according to the location information of the user, and joining the multicast group according to the target pseudo-multicast address of the decision, and the D2X terminal cannot perform malicious propagation in the joined multicast group.
  • the server only needs to store an initial mapping relationship between the location information and the multicast address, and then the original mapping relationship is separately encrypted and delivered for different D2X terminals. This can reduce the data storage load.
  • the location information in the mapping relationship is divided according to the latitude and longitude of the cellular network or the GPS, and the real-time location information of the D2X terminal does not need to be dynamically updated to the server based on the D2X terminal, and the server does not need to decide the multicast address for the D2X terminal. Instead, the D2X terminal decides the multicast address according to its own location information, and the final multicast address has higher accuracy, which also reduces the computing load of the server.
  • the obtaining a mapping relationship includes:
  • the initial multicast address in the initial mapping relationship is encrypted to obtain a pseudo multicast address to obtain the mapping relationship.
  • the pseudo multicast address in the mapping relationship is encrypted according to one of the following:
  • the first timestamp and the initial multicast address are combined.
  • the pseudo multicast address in the mapping relationship is obtained according to the D2X service information and the initial multicast address.
  • the method further includes:
  • the first message further includes a first identity information of the D2X terminal and a target mapping relationship selected by the D2X terminal; and the decrypting the first message includes:
  • the method further includes:
  • the geographic location information in the mapping relationship includes a physical location of the D2X terminal or a random number indicating a physical location of the D2X terminal.
  • the present application further provides a method for device to any D2X communication, the method being performed by a gateway, the method comprising:
  • mapping relationship includes a mapping relationship between the geographic location information and a pseudo multicast address
  • the mapping relationship sent by the gateway to the D2X terminal is processed by the server encryption masquerading, so the D2X terminal cannot perceive the real multicast address in the mapping relationship, but still can be based on Determining a target pseudo-multicast address from the mapping relationship, authorizing the D2X terminal to join the multicast group after obtaining the target pseudo-multicast address determined by the D2X terminal, and ensuring that the D2X joins the multicast group for D2X communication. Moreover, the D2X terminal can not achieve malicious transmission within the joined multicast group.
  • the method further includes:
  • the method further includes:
  • the first message is sent to the server, and the decrypted target multicast address is received from the server.
  • the first message further includes a first identity information of the D2X terminal and a target mapping relationship selected by the D2X terminal; after receiving the first message from the D2X terminal, the Before the D2X terminal is authorized to join the multicast group corresponding to the target pseudo multicast address, the method further includes:
  • the present application further provides a method for device to any D2X communication, the method being performed by a D2X terminal, the method comprising:
  • mapping relationship includes a mapping relationship between the geographic location information and the pseudo multicast address
  • the D2X message After joining the multicast group corresponding to the target pseudo multicast address, the D2X message is sent to the gateway to send the D2X message to the multicast group.
  • the mapping relationship acquired by the D2X terminal is spoofed, so the D2X terminal does not need to perceive the real multicast address, but can still make a decision from the mapping relationship according to its own location information.
  • a target pseudo-multicast address is added to the multicast group according to the target pseudo-multicast address of the decision, and the D2X terminal cannot perform malicious propagation within the joined multicast group.
  • the location information in the mapping relationship is pre-divided according to the latitude and longitude of the cellular network or the GPS.
  • the D2X terminal does not need to dynamically update its real-time location information to the server, and the D2X terminal can decide the multicast address according to its own location information, and finally The accuracy of the multicast address is higher, and the delivery of messages is also reduced.
  • the pseudo multicast address in the mapping relationship is encrypted according to one of the following:
  • the first timestamp and the initial multicast address are combined.
  • the pseudo multicast address in the mapping relationship is obtained according to the D2X service information and the initial multicast address.
  • the method further includes:
  • the geographic location information in the mapping relationship includes a physical location of the D2X terminal or a random number indicating a physical location of the D2X terminal.
  • the application provides a server, where the server includes:
  • a processing module configured to acquire a mapping relationship, where the mapping relationship includes a mapping relationship between the geographic location information and a pseudo multicast address;
  • a transceiver module configured to send the mapping relationship acquired by the processing module to the D2X terminal, so that the D2X terminal determines the target pseudo multicast address according to the current location information and the mapping relationship, and joins the target pseudo multicast address. Multicast group.
  • the processing module is used to:
  • the initial multicast address in the initial mapping relationship is encrypted to obtain a pseudo multicast address to obtain the mapping relationship.
  • the pseudo multicast address in the mapping relationship is encrypted according to one of the following:
  • the first timestamp and the initial multicast address are combined.
  • the pseudo multicast address in the mapping relationship is obtained according to the D2X service information and the initial multicast address.
  • the processing module is further configured to:
  • the first message further includes a first identity information of the D2X terminal and a target mapping relationship selected by the D2X terminal; the processing module is configured to:
  • the processing module After the processing module decrypts the first message, before the sending and receiving module sends the decrypted target pseudo multicast address to the gateway, the processing module is further configured to:
  • the geographic location information in the mapping relationship includes a physical location of the D2X terminal or a random number indicating a physical location of the D2X terminal.
  • the application provides a gateway, where the gateway includes:
  • a transceiver module configured to receive a mapping relationship from the server, where the mapping relationship includes a mapping relationship between the geographic location information and the pseudo multicast address; and the mapping relationship is sent to the D2X terminal, so that the D2X terminal according to the current location information And determining, by the mapping relationship, a target pseudo multicast address; receiving, by the D2X terminal, a first message, where the first message includes the target pseudo multicast address;
  • a processing module configured to authorize the D2X terminal to join the multicast group corresponding to the target pseudo multicast address.
  • the processing module is further configured to:
  • the processing module authorizes the D2X terminal to join the multicast group corresponding to the target pseudo multicast address, and further uses to:
  • the first message is sent to the server by the transceiver module, and the target multicast address obtained by the decryption is received by the transceiver module from the server.
  • the first message further includes first identity information of the D2X terminal and a target mapping relationship selected by the D2X terminal; the processing module receives, at the transceiver module, the D2X terminal After the first message is sent to the multicast group corresponding to the target pseudo multicast address, the D2X terminal is further configured to:
  • the application provides a D2X terminal, where the D2X terminal includes:
  • a transceiver module configured to acquire a mapping relationship from a server, where the mapping relationship includes a mapping relationship between the geographic location information and a pseudo multicast address;
  • a processing module configured to determine a target pseudo multicast address according to the current location information and the mapping relationship, and send, by the transceiver module, a first message that carries the target pseudo multicast address to the gateway;
  • the transceiver module is further configured to: after the processing module controls the D2X terminal to join the multicast group corresponding to the target pseudo multicast address, send a D2X message to the gateway, to send the D2X message to the multicast group. D2X message.
  • the pseudo multicast address in the mapping relationship is encrypted according to one of the following:
  • the first timestamp and the initial multicast address are combined.
  • the pseudo multicast address in the mapping relationship is encrypted according to the D2X service information and the initial multicast address.
  • the transceiver module After the transceiver module obtains the mapping relationship from the server, it is further used to:
  • At least one processor, memory and transceiver At least one processor, memory and transceiver
  • the processor is configured to invoke program code in the memory to perform an operation performed by the server in the above first aspect, or perform execution by the gateway in the second aspect Operation, or performing the operations performed by the terminal in the third aspect.
  • the transceiver may also be replaced by a receiver and a transmitter, and may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory may be integrated in the processor or may be provided separately from the processor.
  • Yet another aspect of the present application provides a computer storage medium comprising instructions, when executed on a computer, causing a computer to perform the operations performed by the server in the first aspect described above, or to perform the gateway in the second aspect The operation performed, or the operation performed by the terminal in the third aspect.
  • Yet another aspect of the present application provides a computer program product comprising instructions, when executed on a computer, causing a computer to perform the operations performed by the server in the first aspect described above, or to perform the gateway in the second aspect The operation performed, or the operation performed by the terminal in the third aspect.
  • FIG. 1 is a schematic structural diagram of a communication system in an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for D2X communication in an embodiment of the present application
  • FIG. 3a is a schematic diagram of a mapping relationship in an embodiment of the present application.
  • FIG. 3b is a schematic flowchart of selecting a target mapping relationship for a D2X terminal according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a method for D2X communication in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for D2X communication in an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for D2X communication in an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for D2X communication in an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for D2X communication in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a mapping relationship in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a server in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a gateway in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a D2X terminal according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an apparatus for performing a method for D2X communication in an embodiment of the present application
  • 15 is a schematic structural diagram of an in-vehicle terminal according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a server in an embodiment of the present application.
  • modules may be combined or integrated into another system, or some features may be ignored or not executed, and in addition, displayed or discussed between each other
  • the coupling or direct coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection between the modules may be electrical or the like, which is not limited in the present application.
  • the modules or sub-modules described as separate components may or may not be physically separated, may not be physical modules, or may be distributed to multiple circuit modules, and some or all of them may be selected according to actual needs. Modules are used to achieve the objectives of the present application.
  • the present application provides a method, device and storage medium for any device to any D2X communication, and can be used in technical fields such as vehicle networking and industrial control applications, for example, can be applied to D2X communication, and D2X communication can be D2D communication, D2I communication, D2N communication. D2C communication, D2P communication and other interconnection communication scenarios, D2X communication may also be V2X communication, such as V2V communication, V2I communication, V2N communication, V2C communication, V2P communication and other interconnection communication scenarios.
  • the D2X terminal in this embodiment of the present application may be a V2X terminal.
  • the device involved in the present application is described below based on a communication system architecture diagram shown in FIG. 1.
  • the communication system shown in FIG. 1 includes a server, a gateway, and a plurality of D2X terminals.
  • the D2X terminal periodically transmits its own state information, which may include status information such as identification information (such as the ID of the vehicle), location information, moving speed, acceleration, moving direction, or possible traveling route, and may also be referred to as a period. signal.
  • status information such as identification information (such as the ID of the vehicle), location information, moving speed, acceleration, moving direction, or possible traveling route, and may also be referred to as a period. signal.
  • the gateway is used to implement network interconnection on the network layer.
  • the gateway can be used for interaction between the D2X terminal and the server, for example, forwarding the uplink data packet of the D2X terminal to the server, and forwarding the downlink data packet of the server to
  • the D2X terminal can also be used to join a multicast group to a D2X terminal.
  • the server is configured to provide access to the business logic for use by the D2X terminal.
  • the server may be configured to configure a mapping relationship between the geographic location information and the multicast address, and the mapping relationship is encrypted and then sent to the corresponding D2X.
  • the terminal is also used for authenticating the D2X terminal to be added to the multicast group.
  • the existing mechanism when the server matches the multicast address, it is based on the geographical location of the vehicle feedback, and the mobility of the vehicle is strong. The server needs to recognize the changed geographical position of the vehicle at any time, and the real-time feedback to the vehicle matches the geographical position. Broadcast address. Therefore, the existing mechanism has the following problems: 1. The server cannot quickly and accurately provide a suitable multicast address for the vehicle, so that the normal V2V communication of the vehicle cannot be guaranteed. 2. Because the number of vehicles registered in the server is huge, the server needs to detect the location information of a large number of vehicles, and correspondingly feed back the multicast address, which requires a large amount of resources. 3.
  • the geographic location of the home subscriber server is not uniform, and the geographic location acquired by the server depends on the deployment density of the base station and the granularity of the location.
  • the positioning accuracy of the network is generally lower than that of the global positioning system (GPS). The resulting multicast address will ultimately be less accurate.
  • the present application mainly adopts the following technical solutions:
  • the server performs the encryption and masquerading processing on the multicast address in the initial mapping relationship to obtain a spoofed mapping relationship, so that the UE cannot perceive the real multicast address, but can still join the multicast group through the selected multicast address, and the UE cannot Malicious propagation within the joined multicast group.
  • the server only needs to store the initial mapping relationship between the geographic location information and the initial multicast address, and then encrypt the initial mapping relationship for different UEs to obtain the geographical location information.
  • the mapping relationship with the pseudo multicast address can be delivered to the corresponding D2X terminal, thereby reducing the data storage load.
  • the location information in the mapping relationship is divided according to the latitude and longitude of the cellular network or the GPS in advance, and the real-time location information of the UE is not required to be dynamically updated to the server based on the D2X terminal, and the server does not need to decide the multicast address for the D2X terminal. Instead, the D2X terminal decides the multicast address according to its own location information, and the final multicast address has higher accuracy.
  • the present application provides a method for device to any D2X communication, the method comprising:
  • the server acquires a mapping relationship.
  • the mapping relationship includes a mapping relationship between the geographic location information and the pseudo multicast address, where the mapping relationship includes a mapping relationship between the multiple sets of geographic location information and the pseudo multicast address.
  • the location information in the mapping relationship is divided according to the latitude and longitude of the cellular network or the GPS in advance, and the server does not need to dynamically update the real-time location information of the D2X terminal to the server based on the D2X terminal.
  • FIG. 3a discloses a mapping relationship between a geographic location 1, a geographical location 2, a geographic location n, and a total of n geographic locations and n pseudo-multicast addresses, where n is a positive integer.
  • the server may encrypt the initial multicast address in the initial mapping relationship to obtain a pseudo multicast address, thereby obtaining the mapping relationship.
  • the pseudo multicast address in the mapping relationship may be obtained according to one of the following implementation manners:
  • the pseudo-multicast address can be generated by introducing other information, which is not limited in the embodiment of the present application.
  • the identity information of the D2X terminal may be a terminal identifier, a MAC address, and the like of the D2X terminal, and the information is uniquely identified.
  • the first timestamp may be a timestamp of the D2X terminal sending the verification request to the server, and may be a timestamp of the pseudo-multicast address generated by the server, or may be generated according to other rules, which is not limited in this application.
  • the D2X service information may be information such as a service type of the D2X service, a priority of the D2X service, a deployment range of the D2X service, or a service identifier of the D2X service.
  • the server may use the D2X service as the granularity, or distinguish the priority of the D2X service, and distinguish the corresponding multicast address according to the D2X service of the same type or level.
  • the initial multicast address is encrypted, and a random pseudo multicast address is generated, which can increase the security and crack resistance of the pseudo multicast address, and ensure different D2X terminals are different.
  • the list of multicast addresses requested by the same D2X terminal at different times is different.
  • the server and gateway can see the real multicast address in the mapping relationship through the shared key.
  • the server when the server encrypts the initial multicast address, when the server and the gateway are in the same trust domain, the server may use the first key to encrypt the multicast address in the mapping relationship.
  • the first key is a key shared between the server and the gateway; or, when the server and the gateway are in different trust domains, the server may adopt a second key pair in the mapping relationship Multicast address encryption, the second key being the exclusive key of the server.
  • the server sends the mapping relationship to a gateway.
  • the gateway receives the mapping relationship from the server, and sends the mapping relationship to the D2X terminal.
  • the D2X terminal acquires a mapping relationship from the server from the gateway, determines a target pseudo multicast address according to the current location information and the mapping relationship, and sends a first message to the gateway.
  • the forwarding operation of the gateway may be omitted, and it is considered that the D2X terminal sends a message to the server, and the D2X terminal receives the message from the server, and the server sends the message to the D2X. The message is sent and the server receives the message from the D2X terminal.
  • the D2X terminal may be the first request to acquire the mapping relationship, or may be the request to acquire the updated mapping relationship again.
  • the first message carries the target pseudo multicast address and the first identity information of the D2X terminal.
  • the D2X terminal learns the current location information of the D2X terminal according to the GPS location (for example, Shennan East Road, Luohu District, Shenzhen), and then matches the location information with the mapping relationship, and the matching obtains the geographic location 2 coverage.
  • the D2X service subscribed to by the D2X terminal.
  • the user can also determine the geographical location in the mapping relationship according to the location information of the D2X terminal. Then, the user can select the icon of the geographic location 2 in the visual panel of the D2X terminal.
  • the gateway receives the first message from the D2X terminal, and authorizes the D2X terminal to join the multicast group corresponding to the target pseudo multicast address.
  • the gateway After the gateway receives the first message from the D2X terminal, the gateway needs to acquire the target pseudo multicast address before the gateway authorizes the D2X terminal to join the multicast group corresponding to the target pseudo multicast address.
  • Plaintext ie, the target multicast address obtained by decrypting the target pseudo-multicast address).
  • the gateway Decrypting the target multicast address from the first message when the gateway is in the same trust domain as the server; or when the gateway is in a different trust domain than the server, the gateway
  • the first message is forwarded to the server, and after the server decrypts the target multicast address, the decrypted target multicast address is received from the server; or, when the gateway is in the same trust domain as the server,
  • the gateway may also forward the first message to the server, and after the server decrypts the target pseudo-multicast address, obtain the target multicast address, and receive the decrypted target multicast address from the server.
  • the manner in which the gateway obtains the target multicast address corresponding to the target pseudo multicast address in the mapping relationship is not used by the gateway in this embodiment.
  • the method further includes:
  • the gateway receives the D2X message sent by the D2X terminal, updates the destination address of the D2X message to the target pseudo multicast address, and sends the D2X message after updating the destination address to the multicast group.
  • the server performs an encryption and masquerading process on the multicast address in the initial mapping relationship to obtain a masquerading mapping relationship, so that the D2X terminal cannot perceive the real multicast address, but can still obtain the location information according to its location information.
  • the target pseudo-multicast address is determined in the mapping relationship, and the multicast group is added according to the target pseudo-multicast address of the decision, and the D2X terminal cannot perform malicious propagation in the joined multicast group.
  • the server only needs to store an initial mapping relationship between the location information and the multicast address, and then the original mapping relationship is separately encrypted and delivered for different D2X terminals. This can reduce the data storage load.
  • the location information in the mapping relationship is divided according to the latitude and longitude of the cellular network or the GPS, and the real-time location information of the D2X terminal does not need to be dynamically updated to the server based on the D2X terminal, and the server does not need to decide the multicast address for the D2X terminal. Instead, the D2X terminal decides the multicast address according to its own location information, and the final multicast address has higher accuracy, which also reduces the computing load of the server.
  • the D2X terminal when the server and the gateway are in the same trust domain, and the server and the gateway are in different trust domains, the D2X terminal is respectively sent to the gateway.
  • FIG. 4 is a flowchart of a D2X terminal joining a multicast group corresponding to a target multicast address and a D2X message being sent in the multicast group when the server and the gateway are in the same trust domain.
  • FIG. 5 is a flowchart of a multicast group corresponding to a D2X terminal joining a target multicast address and a D2X message being sent in the multicast group when the server and the gateway are in different trust domains.
  • the gateway may directly obtain the target multicast address from the target mapping relationship carried by the first message.
  • the embodiments of the present application include:
  • the gateway decrypts the target pseudo multicast address of the ciphertext in the first message to obtain a target multicast address of the plaintext.
  • the gateway may use a first key to decrypt the target pseudo multicast address in the target mapping relationship, thereby obtaining a target multicast address of the plaintext. After obtaining the target multicast address of the plaintext, the gateway authorizes the D2X terminal to join the multicast group corresponding to the target multicast address.
  • the first key is a shared key between the server and the gateway, and the first key can be used for communication interaction between the server and the gateway.
  • the mapping relationship required for the first key decryption can be regarded as clear text for both the server and the gateway. .
  • the D2X terminal sends a D2X message to the gateway, where the D2X message carries a target mapping relationship.
  • the gateway decrypts the target mapping relationship carried in the D2X message, and identifies that the D2X terminal has joined the multicast group, and updates the destination address in the D2X message to the target pseudo multicast address.
  • the gateway sends the D2X message after updating the destination address to the multicast group.
  • the gateway when the server and the gateway are in different trust domains, after receiving the first message from the D2X terminal, the gateway needs to forward the first message to the server, and obtain the target obtained after decryption from the server.
  • the server receives the first message from the gateway, decrypts the target mapping relationship in the first message, obtains a target multicast address of the plaintext, and sends the target multicast address to the gateway.
  • the server may use the second key to decrypt the target pseudo multicast address in the target mapping relationship in the first message, thereby obtaining the target multicast address of the plaintext.
  • the second key is an exclusive key of the server.
  • the gateway receives the target multicast address of the plaintext from the server, and authorizes the D2X terminal to join the multicast group corresponding to the target multicast address.
  • the D2X terminal sends a D2X message to the gateway, where the D2X message carries a target mapping relationship.
  • the gateway decrypts the target mapping relationship carried in the D2X message, and identifies that the D2X terminal has joined the multicast group, and updates the destination address in the D2X message to the target pseudo multicast address.
  • the gateway sends the D2X message after updating the destination address to the multicast group.
  • the shared key is used to generate a pseudo multicast address, or when the server and the gateway have different trust domains, the exclusive key generation pseudo-multiple is introduced.
  • the broadcast address can ensure that the D2X terminal can accurately join the multicast group without perceiving the true mapping relationship. Since D2X does not perceive the true mapping relationship, it can prevent the D2X terminal from broadcasting malicious D2X messages to the multicast group to some extent. Even if the D2X terminal traverses in different physical locations in a certain area, the specific physical location of other D2X terminals cannot be obtained, and the movement trajectories of other D2X terminals in the area cannot be derived.
  • the second key is used for encryption.
  • the gateway receives the first message or the D2X message from the D2X terminal, it needs to forward to the server for decryption.
  • the second key may also have a higher authority, that is, a function as a first key.
  • the initial multicast address corresponding to the geographical location information is also statically unchanged, in general,
  • the key that the server encrypts the initial multicast address is also fixed for a certain period of time. Therefore, the content of the pseudo-multicast address of the ciphertext obtained by encrypting the initial multicast address in the mapping relationship is static and fixed, regardless of whether the shared key is used or the encryption of the plaintext is encrypted.
  • the malicious D2X The terminal may also crack out the real multicast address by looking for the law.
  • the original multicast address is encrypted only.
  • the malicious D2X terminal cannot resolve the real multicast address corresponding to the pseudo-multicast address of the ciphertext in the mapping relationship, the malicious D2X terminal can obtain the geographical location information in the mapping relationship. Therefore, the malicious D2X terminal can still find the pseudo multicast address of the ciphertext corresponding to the geographical location information.
  • the server may introduce the D2X on the basis of the initial multicast address when encrypting the initial multicast address.
  • the terminal's identity information, timestamp, D2X service information and other information are encrypted to generate a pseudo-multicast address with a certain randomness and dynamic change. Therefore, the mapping relationship obtained by encrypting each D2X terminal is always different.
  • the server may add the identity information and the timestamp of the D2X terminal on the basis of the initial multicast address. Since the identity information of different D2X terminals is different, the timestamp is dynamically changed, so the pseudo-multicast address generated by the final encryption is also different. of.
  • both the D2X terminal 1 and the D2X terminal 2 subscribe to the same V2X service a.
  • the server After receiving the verification request sent by the D2X terminal 1 and the D2X terminal 2 in the same area a, the server sends a mapping for the D2X terminal 1 and the D2X terminal 2 respectively. relationship.
  • the time information of the D2X terminal 1 is ID1
  • the time stamp of the D2X terminal sending the verification request to the server is 201801020930
  • the identity information of the D2X terminal 2 is ID2
  • the time stamp of the D2X terminal sending the verification request to the server is 201801020929.
  • the server side only sets a mapping relationship 0 for the V2X service a in the area a
  • the server generates a mapping relationship 1 for the D2X terminal 1 based on the mapping relationship 0, and generates a mapping relationship 2 for the D2X terminal 2.
  • the pseudo multicast address in the mapping relationship 1 is encrypted by ID1, 201801020930 and the multicast address a
  • the pseudo multicast address in the mapping relationship 2 is encrypted by ID2, 201801020929 and the multicast address a. It can be seen that the mapping relationship obtained by the D2X terminal 1 and the D2X terminal 2 is different.
  • the D2X terminal 1 is a malicious D2X terminal, even if the D2X terminal 1 can intercept the mapping relationship sent by the server to other D2X terminals, the D2X terminal 1 is difficult due to the variability and irregularity of the time stamp and the D2X terminal identity information. Crack the intercepted mapping relationship.
  • the gateway or the server may also identify the D2X terminal that sends the D2X message. Validation of legality. For example, in step 304 of FIG. 6, after the server verifies that the D2X terminal is authenticated, the server encrypts the identification information of the D2X terminal, the first timestamp, and the initial multicast address, generates a pseudo-multicast address, and obtains the encrypted mapping relationship and sends the information. Give the D2X terminal.
  • FIG. 6 is a flowchart of a multicast group corresponding to a D2X terminal joining a target multicast address and a D2X message being sent in the multicast group when the server and the gateway are in the same trust domain.
  • the first message received by the gateway in FIG. 6 and FIG. 7 further includes a first identity information of the D2X terminal and a target mapping relationship selected by the D2X terminal, where the target mapping relationship includes a target pseudo multicast address of the ciphertext,
  • the target pseudo-multicast address of the ciphertext may include the identity information of the D2X terminal of the ciphertext (for convenience of subsequent judgment, referred to as the second identity information), and may also include the first timestamp and the like.
  • the gateway receives the first message from the D2X terminal, the authorizes the D2X terminal to join the multicast group corresponding to the target pseudo multicast address, and further The identity legality of the D2X terminal needs to be verified.
  • the gateway may directly obtain the first identity information and the second identity information from the first message. And the target multicast address, and the gateway determines the validity of the D2X terminal identity by the gateway.
  • the embodiment of the present application includes:
  • the gateway decrypts the target mapping relationship, and obtains a target multicast address of the plaintext and second identity information carried in the target mapping relationship.
  • the gateway determines that the D2X terminal is legal. That is to say, the D2X terminal that sends the first message is a legal receiving terminal of the target mapping relationship, and the target mapping relationship carried in the first message is sent by the server to the D2X terminal based on the verification request of the D2X terminal.
  • the purpose of the gateway to verify the first identity information and the second identity information is to prevent the D2X terminal that joins the multicast group from impersonating other D2X terminals in the multicast group. At the same time, it prevents the middleman from attacking or stealing the mapping relationship of the ciphertext received by the previous D2X terminal, and then sending the ciphertext mapping relationship to the gateway, and verifying the identity legality of the D2X terminal to prevent the ciphertext.
  • the security risk caused by the inconsistency between the identity information of the D2X terminal in the mapping relationship and the identity information of the D2X terminal that initiates the group request is not tamper-proof or man-in-the-middle attack.
  • the gateway On the basis of the step 307b of the embodiment corresponding to FIG. 5, after the gateway receives the first message from the D2X terminal, the authorization before the D2X terminal joins the multicast group corresponding to the target pseudo multicast address, The identity legality of the D2X terminal needs to be verified. As shown in FIG. 7, when the server and the gateway are in different trust domains, after receiving the first message from the D2X terminal, the gateway needs to forward the first message to the server, and the server determines the identity of the D2X terminal. If the data is legal, the target multicast address obtained by the decryption is provided to the gateway.
  • the embodiment of the present application includes:
  • the server decrypts the target mapping relationship, obtains a target multicast address of the plaintext, and second identity information of the D2X terminal carried in the target mapping relationship, when determining the first identity information and decrypting When the second identity information matches or is consistent, it is determined that the D2X terminal is legal.
  • the purpose of the server to verify the first identity information and the second identity information is to prevent the D2X terminal that joins the multicast group from impersonating other D2X terminals in the multicast group. At the same time, it prevents the middleman from attacking or stealing the mapping relationship of the ciphertext received by the previous D2X terminal, and then sending the ciphertext mapping relationship to the gateway, and verifying the identity legality of the D2X terminal to prevent the ciphertext.
  • the security risk caused by the inconsistency between the identity information of the D2X terminal in the mapping relationship and the identity information of the D2X terminal that initiates the group request is not tamper-proof or man-in-the-middle attack.
  • the server may also obtain the updated mapping relationship, and after the updated updated mapping relationship, the information is sent to the previously applied application.
  • a legal D2X terminal that maps relationships. The following describes how to prevent the security problem caused by the pseudo-server sending an updated mapping relationship to the D2X terminal in the process of updating the mapping relationship.
  • the embodiment of the present application includes:
  • the server acquires an updated mapping relationship, and sends an update message to the D2X terminal.
  • the mapping relationship may be obtained by the server itself or may be obtained from the CF.
  • the specific application is not limited.
  • the update message carries an updated mapping relationship, which is used to instruct the D2X terminal to update the locally stored mapping relationship.
  • the 802 and the D2X terminal After receiving the update message from the server, the 802 and the D2X terminal send a verification message to the CF.
  • the verification message carries the identification information and signature information of the server.
  • the CF After verifying that the signature information of the server is passed, the CF returns a confirmation message to the D2X terminal.
  • the D2X terminal After receiving the acknowledgement message from the CF, the D2X terminal updates the mapping relationship of the local storage.
  • the D2X terminal sends an update confirmation response to the server.
  • the embodiment of the present application includes:
  • the server acquires an updated mapping relationship, and sends an update message to the D2X terminal.
  • This update message is used to indicate that the DX is ready to update the mapping relationship.
  • the DD2X terminal After receiving the update message from the server, the DD2X terminal sends a verification message to the CF.
  • the verification message carries the identification information and signature information of the server.
  • the CF After the CF passes the verification of the signature information of the server, the CF returns a confirmation message to the D2X terminal.
  • the D2X terminal After receiving the acknowledgement message from the CF, the D2X terminal sends an update request to the server.
  • the server After receiving the update request from the D2X terminal, the server verifies the identity of the D2X terminal, encrypts the updated mapping relationship, and sends the encrypted updated mapping relationship to the D2X terminal.
  • the D2X receives the updated mapping relationship sent by the server, and updates the locally saved mapping relationship.
  • the D2X terminal when the D2X terminal receives the update message from the server, it first goes to the CF to verify whether the identity of the server that sent the update message is legal, and only after the CF verification is passed, the D2X terminal only It will perform the operation of updating the mapping relationship, which can prevent the D2X from receiving the malicious information of the pseudo server and avoid the security problem caused by adding the malicious multicast group after updating the spoof mapping relationship.
  • the D2X may send a join group request to the gateway to apply for joining the multicast group.
  • the entire process may refer to the description in any embodiment in FIG. 2 to FIG. 7 , and details are not described herein.
  • the geographic location information in the mapping relationship may be a physical location of the D2X terminal or a random number indicating a physical location of the D2X terminal.
  • the server allocates a random number to the D2X terminal, and the subsequent D2X terminal can select to join the corresponding multicast group according to the current geographical location, and send a join group request to the gateway, and the gateway forwards the join group request to the server to request the server to obtain the real Multicast address.
  • the server may pre-synchronize the mapping relationship between the random number and the multicast address to the gateway.
  • the gateway After receiving the group join request of the D2X terminal, the gateway directly obtains the real multicast address according to the locally saved mapping relationship, and then authorizes the D2X terminal to join.
  • the multicast group corresponding to the real multicast address. The specific analysis is shown in FIG.
  • the server maintains a mapping relationship between D2X terminals (for example, UEa, UEb, UEc, and UEd), and the mapping relationship includes a geographical location and a random number.
  • the mapping relationship of UEa includes: geographic location A1 and random number (UEa-R1), geographic location A2 and random number (UEa-R2), geographic location A3 and random number (UEa-R3), geographic location A4, and random number (UEa-R4), as well as geographic location A5 and random number (UEa-R5).
  • the mapping relationship of UEb includes: geographic location A1 and random number (UEb-R1), geographic location A2 and random number (UEb-R2), geographic location A3 and random number (UEb-R3), geographic location A4, and random number (UEb) -R4), as well as geographic location A5 and random number (UEb-R5).
  • UEc and UEd are similar, and will not be described again.
  • UEa, UEb, UEc, and UEd all correspond to a geographic location A1, a geographic location A2, a geographic location A3, and a geographic location A4.
  • the server is pre-configured with a corresponding mapping relationship for each UE, and can provide different mapping relationships for each UE in different geographical locations, so that the UEs can accurately join the multicast group corresponding to the current geographic location. .
  • mapping relationship such as mapping relationship, geographic location information, pseudo multicast address, initial multicast address, time stamp, target pseudo multicast address, encryption, decryption, D2X terminal identity information, etc.
  • mapping relationship such as mapping relationship, geographic location information, pseudo multicast address, initial multicast address, time stamp, target pseudo multicast address, encryption, decryption, D2X terminal identity information, etc.
  • the above describes a method for software upgrade management in the present application.
  • the following describes the server and terminal that perform the above software upgrade management.
  • FIG. 11 is a schematic structural diagram of a server, where the server in the embodiment of the present application can implement a device corresponding to any one of the foregoing embodiments in FIG. 2 to FIG. 10 to perform any D2X communication.
  • the functions implemented by the server can be implemented by hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above, which may be software and/or hardware.
  • the server may include a transceiver module and a processing module.
  • the function implementation of the processing module may refer to the corresponding embodiment of any of FIG. 2 to FIG. 11 to obtain a mapping relationship, encrypt an initial multicast address, and decrypt a target.
  • the function implementation of the transceiver module may be performed by referring to an operation of acquiring/receiving a mapping relationship, transmitting a mapping relationship, transmitting a target multicast address, and receiving a first message by using a server in any one of the embodiments corresponding to any one of FIG. 2 to FIG.
  • the module can be used to control the transceiving operation of the transceiver module.
  • the processing module is configured to acquire a mapping relationship, where the mapping relationship includes a mapping relationship between the geographic location information and a pseudo multicast address.
  • the transceiver module is configured to send, to the D2X terminal, a mapping relationship acquired by the processing module, so that the D2X terminal determines a target pseudo multicast address according to the current location information and the mapping relationship, and joins the target pseudo multicast address.
  • the corresponding multicast group is configured to send, to the D2X terminal, a mapping relationship acquired by the processing module, so that the D2X terminal determines a target pseudo multicast address according to the current location information and the mapping relationship, and joins the target pseudo multicast address.
  • the corresponding multicast group is configured to send, to the D2X terminal, a mapping relationship acquired by the processing module, so that the D2X terminal determines a target pseudo multicast address according to the current location information and the mapping relationship, and joins the target pseudo multicast address.
  • the processing module of the server performs encryption and masquerading processing on the multicast address in the initial mapping relationship to obtain a masquerading mapping relationship, so that the D2X terminal cannot perceive the real multicast address, but can still be based on its own location.
  • the information determines a target pseudo-multicast address from the mapping relationship, and joins the multicast group according to the target pseudo-multicast address of the decision, and the D2X terminal cannot perform malicious propagation in the joined multicast group.
  • the server only needs to store an initial mapping relationship between the location information and the multicast address, and then the original mapping relationship is separately encrypted and delivered for different D2X terminals. This can reduce the data storage load.
  • the location information in the mapping relationship is divided according to the latitude and longitude of the cellular network or the GPS, and the real-time location information of the D2X terminal does not need to be dynamically updated to the server based on the D2X terminal, and the server does not need to decide the multicast address for the D2X terminal. Instead, the D2X terminal decides the multicast address according to its own location information, and the final multicast address has higher accuracy, which also reduces the computing load of the server.
  • the processing module is configured to:
  • the initial multicast address in the initial mapping relationship is encrypted to obtain a pseudo multicast address to obtain the mapping relationship.
  • the pseudo multicast address in the mapping relationship is encrypted according to one of the following items:
  • the first timestamp and the initial multicast address are combined.
  • the pseudo multicast address in the mapping relationship is obtained according to the D2X service information and the initial multicast address.
  • the processing module is further configured to: after the sending and receiving module sends the mapping relationship to the D2X terminal that is legally authenticated:
  • the first message further includes first identity information of the D2X terminal and a target mapping relationship selected by the D2X terminal; the processing module is configured to:
  • the processing module After the processing module decrypts the first message, before the sending and receiving module sends the decrypted target pseudo multicast address to the gateway, the processing module is further configured to:
  • the geographic location information in the mapping relationship includes a physical location of the D2X terminal or a random number indicating a physical location of the D2X terminal.
  • the gateway in the embodiment of the present application can implement the device corresponding to any one of the foregoing embodiments in FIG. 2 to FIG. 10 to perform any D2X communication.
  • the functions implemented by the server can be implemented by hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above, which may be software and/or hardware.
  • the server may include a transceiver module and a processing module, and the function implementation of the processing module may refer to receiving, by the gateway, a mapping relationship, decrypting a target multicast address, and determining the function according to any one of the embodiments corresponding to FIG. 2 to FIG.
  • the D2X terminal is legally operated, and is not described here.
  • the function implementation of the transceiver module may refer to receiving, by the gateway, a mapping relationship, transmitting a mapping relationship, transmitting a target multicast address, receiving a first message, and authorizing the D2X terminal in the embodiment corresponding to any one of FIG. 2 to FIG. 10.
  • the operation module can be used to control the transceiving operation of the transceiver module.
  • the transceiver module is configured to receive a mapping relationship from the server, where the mapping relationship includes a mapping relationship between the geographic location information and the pseudo multicast address; and the mapping relationship is sent to the D2X terminal, so that the D2X is Determining, by the terminal, the target pseudo multicast address according to the current location information and the mapping relationship; receiving, by the D2X terminal, a first message, where the first message includes the target pseudo multicast address;
  • the processing module is configured to authorize the D2X terminal to join a multicast group corresponding to the target pseudo multicast address.
  • the mapping relationship sent by the transceiver module of the gateway to the D2X terminal is processed by the server encryption masquerading, so the D2X terminal cannot perceive the real multicast address in the mapping relationship, but still can according to its own location information.
  • the processing module of the gateway authorizes the D2X terminal to join the multicast group, which can ensure that the D2X joins.
  • the multicast group performs D2X communication, and the D2X terminal can not achieve malicious transmission in the joined multicast group.
  • the processing module is further configured to: after the transceiver module receives the first message from the D2X terminal:
  • the processing module after the transceiver module authorizes the D2X terminal to join the multicast group corresponding to the target pseudo multicast address, after the receiving and receiving module receives the first message from the D2X terminal, is further used to:
  • the first message is sent to the server by the transceiver module, and the target multicast address obtained by the decryption is received by the transceiver module from the server.
  • the first message further includes first identity information of the D2X terminal and a target mapping relationship selected by the D2X terminal; the processing module receives the first message from the D2X terminal in the transceiver module After the D2X terminal is authorized to join the multicast group corresponding to the target pseudo multicast address, the D2X terminal is further configured to:
  • the D2X terminal involved in the present application may be a device that provides voice and/or data connectivity to a user.
  • the D2X terminal can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device, or the D2X terminal can be a portable, pocket, handheld, computer built-in or onboard mobile device.
  • the D2X terminal can be a smart device such as a car, a drone, or a personal digital assistant (PDA).
  • PDA personal digital assistant
  • the D2X terminal may also be referred to as a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a User Terminal, a User Agent, and a User Equipment ( User Device), User Equipment, Sales Terminal (English name: Point of Sales, POS), on-board computer, etc., which can exchange voice and/or data over the network.
  • the D2X terminal in the embodiment of the present application can implement the device executed by the D2X terminal corresponding to the embodiment corresponding to any of the foregoing FIG. 2 to FIG. 10 to any The steps in the D2X communication method.
  • the functions implemented by the D2X terminal can be implemented by hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above, which may be software and/or hardware.
  • the server may include a transceiver module and a processing module.
  • the function implementation of the processing module may refer to receiving a mapping relationship, selecting a target pseudo multicast address, and joining by the D2X terminal in the embodiment corresponding to any one of FIG. 2 to FIG. 10. Operations such as multicast groups and update mappings are not described here.
  • the function implementation of the transceiver module may refer to receiving, by the gateway, a mapping relationship, transmitting a target pseudo multicast address, transmitting a first message, sending a D2X message, and receiving a second message, in the embodiment corresponding to any one of FIG. 2 to FIG. 10.
  • the operation module sends a third message, receives the first response, and sends the fourth message.
  • the processing module can be used to control the sending and receiving operations of the transceiver module.
  • the transceiver module is configured to acquire a mapping relationship from a server, where the mapping relationship includes a mapping relationship between the geographic location information and a pseudo multicast address.
  • the processing module is configured to determine a target pseudo multicast address according to the current location information and the mapping relationship, and send, by the transceiver module, a first message that carries the target pseudo multicast address to the gateway;
  • the transceiver module is further configured to: after the processing module controls the D2X terminal to join the multicast group corresponding to the target pseudo multicast address, send a D2X message to the gateway, to send the D2X message to the multicast group. D2X message.
  • the processing module of the D2X terminal since the mapping relationship acquired by the transceiver module of the D2X terminal is spoofed, the processing module of the D2X terminal does not need to perceive the real multicast address, but can still make a decision from the mapping relationship according to the location information of the D2X terminal.
  • a target pseudo-multicast address is added to the multicast group according to the target pseudo-multicast address of the decision, and the D2X terminal cannot perform malicious propagation within the joined multicast group.
  • the location information in the mapping relationship is divided according to the latitude and longitude of the cellular network or the GPS, and the D2X terminal does not need to dynamically update its real-time location information to the server, and the D2X terminal can decide the multicast address according to its own location information. In turn, the final multicast address is more accurate and reduces the delivery of messages.
  • the pseudo multicast address in the mapping relationship is encrypted according to one of the following items:
  • the first timestamp and the initial multicast address are combined.
  • the pseudo multicast address in the mapping relationship is obtained according to the D2X service information and the initial multicast address.
  • the transceiver module is further configured to:
  • FIG. 14 is a schematic structural diagram of a terminal for performing a method for performing device to any D2X communication according to an embodiment of the present disclosure, where at least one processor, at least one transceiver, a memory, and at least one bus may be included.
  • the at least one processor, the at least one transceiver, and the memory may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory (English name: Non-Volatile Random Access Memory, English abbreviation: NVRAM).
  • the memory stores operating system and program instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the program instructions can include various operational instructions for performing various operations.
  • the operating system can include a variety of system programs for implementing various basic tasks and handling hardware-based tasks.
  • the processor can control the operation of the device upgraded by the software.
  • the processor can also be called a central processing unit (English full name: Central Processing Unit, English abbreviation: CPU).
  • CPU Central Processing Unit
  • each component of the software upgrade management device is coupled together by a bus.
  • the bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses may be referred to as buses in FIG.
  • the physical devices corresponding to all the transceiver modules may be transceivers, and the physical devices corresponding to all the processing modules.
  • Each of the devices shown in FIG. 11, FIG. 12, and FIG. 13 may have a structure as shown in FIG. 14.
  • the processor and the transceiver in FIG. 14 implement the foregoing.
  • the processing module and the transceiver module provided by the device embodiment of the device have the same or similar functions, and the memory storage processor of FIG. 14 needs to call the program code when executing the method of the device to any D2X communication.
  • the transceiver may also be replaced by a receiver and a transmitter, and may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as a transceiver.
  • the transceiver can be a radio frequency (English name: Radio Frequency, English abbreviation: RF) circuit.
  • the memory may be integrated in the processor or may be provided separately from the processor.
  • the processor in FIG. 14 may invoke program code stored in a memory, and the processor specifically executes the program code to be called when the device in the embodiment of the present application performs a method to any D2X communication.
  • the memory storage processor in FIG. 14 needs to call the program code to be executed when the above-described method of executing the device to any D2X communication by the server is executed.
  • the processor in FIG. 14 can call the program code in the memory to perform the following operations:
  • mapping relationship includes a mapping relationship between the geographic location information and the pseudo multicast address
  • the memory storage processor in FIG. 14 executes the above-mentioned program code to be called when the method of the gateway executing device to any D2X communication is performed.
  • the processor in FIG. 14 can call the program code in the memory to perform the following operations:
  • mapping relationship receives, by the transceiver, a mapping relationship from the server, where the mapping relationship includes a mapping relationship between the geographic location information and the pseudo multicast address; and sending the mapping relationship to the D2X terminal, so that the D2X terminal according to the current location information And determining, by the mapping relationship, a target pseudo multicast address; receiving, by the D2X terminal, a first message, where the first message includes the target pseudo multicast address;
  • the memory storage processor in FIG. 14 needs to call the program code to be executed when the above-described method of executing the device to any D2X communication by the D2X terminal is performed.
  • the processor in FIG. 14 can call the program code in the memory to perform the following operations:
  • mapping relationship includes a mapping relationship between the geographic location information and the pseudo multicast address
  • FIG. 15 is a block diagram showing a partial structure related to the in-vehicle terminal provided by the embodiment of the present application.
  • the in-vehicle terminal includes at least an RF circuit 1515, a memory 1520, and a processor 1580.
  • the vehicle-mounted terminal structure shown in FIG. 15 does not constitute a limitation on the vehicle-mounted terminal, and may include more or less components than those shown in FIG. 15, or combine some components or different components. Arrangement.
  • the RF circuit 1515 can be used for receiving and transmitting signals during the transmission and reception of information, in particular, after receiving the information from the server, processing it to the processor 1580; in addition, transmitting the information of the in-vehicle terminal to the server.
  • the RF circuit 1515 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (English name: LNA), a duplexer, and the like.
  • RF circuitry 1515 can also communicate with the network and other devices via wireless communication.
  • the above wireless communication may use any communication standard or protocol, including but not limited to global mobile communication system (English name: global system of mobile communication, English abbreviation: GSM), general packet radio service (English full name: general packet radio service, English) Abbreviation: GPRS), code division multiple access (English full name: code division multiple access, English abbreviation: CDMA), wideband code division multiple access (English full name: wideband code division multiple access, English abbreviation: WCDMA), long-term evolution (English full name :long term evolution, English abbreviation: LTE), e-mail, short message service (English full name: short messaging service, English abbreviation: SMS).
  • the RF circuit 1515 may correspond to the transceiver module of FIG. 13 or the transceiver shown in FIG.
  • the memory 1520 can be used to store software programs and modules, and the processor 1580 executes various functional applications and data processing of the in-vehicle terminal by running software programs and modules stored in the memory 1520.
  • the memory 1520 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the in-vehicle terminal (such as audio data, phone book, etc.).
  • memory 1520 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 1580 is a control center of the vehicle-mounted terminal and can be used to control the operation of the vehicle-mounted terminal. Specifically, the processor 1580 can connect various parts of the entire vehicle terminal with various interfaces and lines, execute the vehicle by running or executing software programs and/or modules stored in the memory 1520, and calling data stored in the memory 1520. The various functions of the terminal and the processing of data enable overall monitoring of the vehicle terminal.
  • the processor 1580 can correspond to the processing module of FIG. 13 or the processor shown in FIG.
  • the vehicle terminal may further include an input/output unit 1530, a power source 1590, a display unit 1540, an audio circuit 1560, a speaker 1561, a microphone 1562, and a wireless fidelity (English name: Wi-Fi) module 1570.
  • a wireless fidelity English name: Wi-Fi
  • the input/output unit 1530 can be configured to receive input digital or character information and output digital or character information through an external interface.
  • the input/output unit 1530 may include a touch panel 1531 and other input devices 1532.
  • the touch panel 1531 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1531 or near the touch panel 1531. Operation), and drive the corresponding connecting device according to a preset program.
  • the power supply 1590 is used to power various components in the vehicle-mounted terminal, and the power supply 1590 can be logically connected to the processor 1580 through the power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the display unit 1540 can be used to display information input by the user or information provided to the user and various menus of the in-vehicle terminal.
  • the display unit 1540 can include a display panel 1541.
  • a liquid crystal display (English name: Liquid Crystal Display, English abbreviation: LCD), an organic light emitting diode (English name: Organic Light-Emitting Diode, English abbreviation: OLED), etc.
  • the display panel 1541 is configured in a form.
  • the touch panel 1531 may cover the display panel 1541. After the touch panel 1531 detects a touch operation on or near the touch panel 1531, the touch panel 1531 transmits to the processor 1580 to determine the type of the touch event, and then the processor 1580 according to the touch event.
  • the type provides a corresponding visual output on display panel 1541.
  • the touch panel 1531 and the display panel 1541 are used as two independent components to implement the input and input functions of the vehicle-mounted terminal, in some embodiments, the touch panel 1531 and the display panel 1541 may be integrated. The input and output functions of the vehicle terminal are realized.
  • An audio circuit 1560, a speaker 1561, and a microphone 1562 can provide an audio interface between the user and the in-vehicle terminal.
  • the audio circuit 1560 can transmit the converted electrical data of the received audio data to the speaker 1561, and convert it into a sound signal output by the speaker 1561.
  • the microphone 1562 converts the collected sound signal into an electrical signal, and the audio circuit 1560. After receiving, it is converted into audio data, and then processed by the audio data output processor 1580, transmitted to the, for example, another vehicle-mounted terminal via the RF circuit 1515, or outputted to the memory 1520 for further processing.
  • Wi-Fi is a short-range wireless transmission technology.
  • the car terminal can help users to send and receive e-mail, browse web pages and access streaming media through the Wi-Fi module 1570. It provides users with wireless broadband Internet access.
  • FIG. 15 shows the WiFi module 1570, it can be understood that it does not belong to the essential configuration of the in-vehicle terminal, and can be omitted as needed within the scope of not changing the essence of the application.
  • the in-vehicle terminal may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the processor 1280 included in the in-vehicle terminal further has a method flow for controlling execution of the above-mentioned device executed by the D2X terminal to any D2X communication.
  • the server 1620 may have a large difference due to different configurations or performances, and may include one or more central processors (English full name: central Processing units (English abbreviation: CPU) 1622 (eg, one or more processors), input and output interface 1658, and memory 1632, the server may also include one or more storage media 1630 that store application 1642 or data 1644 (eg, one Or a storage device in Shanghai).
  • CPU central Processing units
  • storage media 1630 that store application 1642 or data 1644 (eg, one Or a storage device in Shanghai).
  • the central processor 1622 can be configured to communicate with the storage medium 1630 to perform a series of instruction operations in the storage medium 1630 on the server 1620.
  • the CPU 1622 may correspond to the processing module in FIG. 11 or the processing module in FIG. 12 or the processor shown in FIG. 14.
  • the storage medium 1630 may correspond to the memory shown in FIG.
  • the input output interface 1658 may correspond to the transceiver module of FIG. 11 or the transceiver module of FIG. 12 or the transceiver shown in FIG.
  • Memory 1632 and storage medium 1630 may be ephemeral or persistent storage, and programs stored on storage medium 1630 may include one or more modules (not shown), each of which may include a series of instructions to the server.
  • Server 1620 may also include one or more power sources 1626, one or more wired or wireless network interfaces 1650, one or more input and output interfaces 1658, and/or one or more operating systems 1641, such as Windows Server, Mac OS X, Unix, Linux, FreeBSD, etc.
  • operating systems 1641 such as Windows Server, Mac OS X, Unix, Linux, FreeBSD, etc.
  • the steps performed by the server in the above embodiments may be based on the server structure shown in FIG.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or software may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or module, and may be electrical, mechanical or otherwise.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may be stored in a computer readable storage medium.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Abstract

一种设备到任意D2X通信的方法、装置及存储介质,所述方法包括:服务器获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;向身份合法的D2X终端发送所述映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址以及加入所述目标伪多播地址对应的多播组。通过采用本方案,能够在提高多播组安全性的前提下保证D2X终端加入合适的多播组。

Description

一种设备到任意D2X通信的方法、装置及存储介质
本申请要求于2018年4月19日提交中国国家知识产权局、申请号为201810355901.0、发明名称为“一种设备到任意D2X通信的方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车联网技术领域,尤其涉及一种设备到任意D2X通信的方法、装置及存储介质。
背景技术
在车联网通信领域,车联网用于车与任意(例如人、车、路、后台等)进行智能信息交换和共享,车联网主要包括车到车(vechicle to vechicle,V2V)通信、车到基础设施(vechicle to infrastructure,V2I)通信、车到网络(vechicle to network,V2N)通信、车到云端(vechicle to cloud,V2C)通信、车到人(vechicle to people,V2P)通信等车到任意(vechicle to X,V2X)通信的互联互通场景。例如在V2V通信中,车辆会在一定地理范围内周期性广播自身的状态信息,为减少V2V消息数量和提高V2V消息的范围时效性,现在主要采用多播技术实现高效的传播效率。具体来说,车辆在与其相邻的地理范围内,基于多播地址向V2V多播组发送周期的V2V消息,车辆要接收V2V消息则需要先加入V2V多播组。车辆加入V2V多播组时,需要向服务器注册,并将车辆自身的位置信息发送给服务器,由服务器将与该位置信息匹配的多播地址返回给该车辆。之后,该车辆即可通过该多播地址向网关请求加入该多播地址对应的V2V多播组,进而后续能够在该V2V多播组内收发V2V消息。
可见,现有机制中,服务器在匹配多播地址时,是基于车辆的地理位置,而车辆的移动性较强,服务器需要随时识别车辆变化的地理位置,并向车辆反馈与地理位置相匹配的多播地址。可见,服务器无法快速地、准确地为车辆提供合适的多播地址,从而无法保证该车辆正常进行V2V通信。
发明内容
本申请提供了一种设备到任意D2X通信的方法、装置及存储介质,能够解决现有技术中服务器向V2V通信中的车辆提供的多播地址的准确性较低的问题。
本申请第一方面提供一种设备到任意D2X通信的方法,所述方法由服务器执行,所述方法包括:
获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
向D2X终端发送所述映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址以及加入所述目标伪多播地址对应的多播组。
与现有机制相比,本申请实施例中,服务器对初始映射关系中的多播地址进行加密伪装处理,得到一个伪装的映射关系,使得D2X终端无法感知到真实的多播地址,但依然能够根据自身的位置信息从所述映射关系中决策一个目标伪多播地址,并根据决策的目标伪多播地 址加入多播组,且D2X终端无法在所加入的多播组内进行恶意传播。此外,对于同一地理区域部署的同一种D2X业务,服务器只需要存储一份位置信息与多播地址的初始映射关系,后续在针对不同的D2X终端分别对初始映射关系进行加密和下发即可,从而可以减少数据存储负荷。映射关系中的位置信息是预先根据蜂窝网络或GPS的经纬度划分的,不需要基于D2X终端动态向服务器更新D2X终端的实时位置信息,服务器也不需要为D2X终端决策多播地址。而是由D2X终端根据自身的位置信息自行去决策多播地址,进而最终的多播地址的准确性较高,也减少服务器的运算负荷。
在一种可能的设计中,所述获取映射关系,包括:
对初始映射关系中的初始多播地址加密,得到伪多播地址,以得到所述映射关系。
在一种可能的设计中,所述映射关系中的伪多播地址根据以下项之一加密得到:
所述D2X终端的身份信息、第一时间戳和初始多播地址;
或者,所述D2X终端的身份信息和初始多播地址;
或者,第一时间戳和初始多播地址。
在一种可能的设计中,所述映射关系中的伪多播地址根据D2X业务信息和初始多播地址加密得到。
在一种可能的设计中,所述向身份合法的D2X终端发送所述映射关系之后,所述方法还包括:
从所述网关接收来自所述D2X终端的第一消息,所述第一消息携带所述目标伪多播地址;
对所述目标伪多播地址解密,得到目标多播地址;
向所述网关发送所述目标多播地址。
在一种可能的设计中,所述第一消息还包括所述D2X终端的第一身份信息和所述D2X终端选择的目标映射关系;所述对所述第一消息解密,包括:
对所述目标映射关系解密,得到所述目标映射关系中携带的D2X终端的第二身份信息;
所述对所述第一消息解密之后,所述向所述网关发送解密得到的所述目标伪多播地址之前,方法还包括:
当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,确定所述D2X终端合法。
在一种可能的设计中,所述映射关系中的地理位置信息包括D2X终端的物理位置或指示D2X终端的物理位置的随机数。
第二方面,本申请还提供一种设备到任意D2X通信的方法,所述方法由网关执行,所述方法包括:
从所述服务器接收映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
向D2X终端发送所述映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址;
从所述D2X终端接收第一消息,所述第一消息包括所述目标伪多播地址;
授权所述D2X终端加入所述目标伪多播地址对应的多播组。
与现有机制相比,本申请实施例中,网关下发给D2X终端的映射关系是经过服务器加密 伪装处理的,所以D2X终端无法感知到该映射关系中真实的多播地址,但依然能够根据自身的位置信息从所述映射关系中决策一个目标伪多播地址,在获取到D2X终端决策的目标伪多播地址后授权D2X终端加入多播组,既能够保证D2X加入多播组进行D2X通信,又能够实现D2X终端无法在所加入的多播组内进行恶意传播的目的。
在一种可能的设计中,所述从所述D2X终端接收第一消息之后,所述方法还包括:
从所述D2X终端接收D2X消息,将所述D2X消息的目的地址更新为所述目标伪多播地址,并向所述多播组内发送更新目的地址后的所述D2X消息。
在一种可能的设计中,所述从所述D2X终端接收第一消息之后,所述授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,还包括:
当所述服务器和所述网关在同一信任域时,从所述第一消息中解密得到目标多播地址;
或者,当所述服务器和所述网关在不同信任域时,向所述服务器发送所述第一消息,从所述服务器接收解密得到的目标多播地址。
在一种可能的设计中,所述第一消息还包括所述D2X终端的第一身份信息和所述D2X终端选择的目标映射关系;所述从所述D2X终端接收第一消息之后,所述授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,方法还包括:
对所述目标映射关系解密,得到所述目标映射关系中携带的D2X终端的第二身份信息;
当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,确定所述D2X终端合法。
第三方面,本申请还提供一种设备到任意D2X通信的方法,所述方法由D2X终端执行,所述方法包括:
从服务器获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
根据当前的位置信息和所述映射关系确定目标伪多播地址,向网关发送携带所述目标伪多播地址的第一消息;
加入所述目标伪多播地址对应的多播组后,向所述网关发送D2X消息,以向所述多播组内发送所述D2X消息。
与现有机制相比,本申请实施例中,D2X终端获取的映射关系伪装的,所以D2X终端不需要感知到真实的多播地址,但依然能够根据自身的位置信息从所述映射关系中决策一个目标伪多播地址,并根据决策的目标伪多播地址加入多播组,且D2X终端无法在所加入的多播组内进行恶意传播。映射关系中的位置信息是预先根据蜂窝网络或GPS的经纬度划分的,D2X终端不需要动态的向服务器更新自身的实时位置信息,D2X终端可根据自身的位置信息自行去决策多播地址,进而最终的多播地址的准确性较高,也减少消息的发送。
在一种可能的设计中,所述映射关系中的伪多播地址根据以下项之一加密得到:
所述D2X终端的身份信息、第一时间戳和初始多播地址;
或者,所述D2X终端的身份信息和初始多播地址;
或者,第一时间戳和初始多播地址。
在一种可能的设计中,所述映射关系中的伪多播地址根据D2X业务信息和初始多播地址加密得到。
在一种可能的设计中,所述从服务器获取映射关系之后,所述方法还包括:
从服务器接收第二消息,所述第二消息用于指示更新的映射关系;
向D2X管理平台发送第三消息,所述第三消息携带所述服务器的签名信息和所述服务器的标识信息;
从所述D2X管理平台接收第一响应,所述第一响应用于指示发送所述第二消息的服务器身份验证通过;
向所述服务器发送第四消息,所述第四消息用于请求所述更新的映射关系;
从所述服务器接收所述更新的映射关系,更新本地保存的映射关系。
在一种可能的设计中,所述映射关系中的地理位置信息包括D2X终端的物理位置或指示D2X终端的物理位置的随机数。
第四方面,本申请提供一种服务器,所述服务器包括:
处理模块,用于获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
收发模块,用于向D2X终端发送所述处理模块获取的映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址以及加入所述目标伪多播地址对应的多播组。
在一种可能的设计中,所述处理模块用于:
对初始映射关系中的初始多播地址加密,得到伪多播地址,以得到所述映射关系。
在一种可能的设计中,所述映射关系中的伪多播地址根据以下项之一加密得到:
所述D2X终端的身份信息、第一时间戳和初始多播地址;
或者,所述D2X终端的身份信息和初始多播地址;
或者,第一时间戳和初始多播地址。
在一种可能的设计中,所述映射关系中的伪多播地址根据D2X业务信息和初始多播地址加密得到。
在一种可能的设计中,所述处理模块在所述收发模块向身份合法的D2X终端发送所述映射关系之后,还用于:
通过所述收发模块从所述网关接收来自所述D2X终端的第一消息,所述第一消息携带所述目标伪多播地址;
对所述目标伪多播地址解密,得到目标多播地址;
通过所述收发模块向所述网关发送所述目标多播地址。
在一种可能的设计中,所述第一消息还包括所述D2X终端的第一身份信息和所述D2X终端选择的目标映射关系;所述处理模块用于:
对所述目标映射关系解密,得到所述目标映射关系中携带的D2X终端的第二身份信息;
所述处理模块对所述第一消息解密之后,在所述收发模块向所述网关发送解密得到的所述目标伪多播地址之前,还用于:
当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,确定所述D2X终端合法。
在一种可能的设计中,所述映射关系中的地理位置信息包括D2X终端的物理位置或指示D2X终端的物理位置的随机数。
第五方面,本申请提供一种网关,所述网关包括:
收发模块,用于从所述服务器接收映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;向D2X终端发送所述映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址;从所述D2X终端接收第一消息,所述第一消息包括所述目标伪多播地址;
处理模块,用于授权所述D2X终端加入所述目标伪多播地址对应的多播组。
在一种可能的设计中,所述处理模块在所述收发模块从所述D2X终端接收第一消息之后,还用于:
通过所述收发模块从所述D2X终端接收D2X消息;
将所述D2X消息的目的地址更新为所述目标伪多播地址,通过所述收发模块向所述多播组内发送更新目的地址后的所述D2X消息。
在一种可能的设计中,所述处理模块在所述收发模块从所述D2X终端接收第一消息之后,授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,还用于:
当所述服务器和所述网关在同一信任域时,从所述第一消息中解密得到目标多播地址;
或者,当所述服务器和所述网关在不同信任域时,通过所述收发模块向所述服务器发送所述第一消息,通过所述收发模块从所述服务器接收解密得到的目标多播地址。
在一种可能的设计中,所述第一消息还包括所述D2X终端的第一身份信息和所述D2X终端选择的目标映射关系;所述处理模块在所述收发模块从所述D2X终端接收第一消息之后,所述授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,还用于:
对所述目标映射关系解密,得到所述目标映射关系中携带的D2X终端的第二身份信息;
当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,确定所述D2X终端合法。
第六方面,本申请提供一种D2X终端,所述D2X终端包括:
收发模块,用于从服务器获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
处理模块,用于根据当前的位置信息和所述映射关系确定目标伪多播地址,通过所述收发模块向网关发送携带所述目标伪多播地址的第一消息;
所述收发模块还用于所述处理模块控制所述D2X终端加入所述目标伪多播地址对应的多播组后,向所述网关发送D2X消息,以向所述多播组内发送所述D2X消息。
在一种可能的设计中,所述映射关系中的伪多播地址根据以下项之一加密得到:
所述D2X终端的身份信息、第一时间戳和初始多播地址;
或者,所述D2X终端的身份信息和初始多播地址;
或者,第一时间戳和初始多播地址。
在一种可能的设计中,所述映射关系中的伪多播地址根据D2X业务信息和初始多播地址 加密得到。
在一种可能的设计中,所述收发模块从服务器获取映射关系之后,还用于:
从服务器接收第二消息,所述第二消息用于指示更新的映射关系;
向D2X管理平台发送第三消息,所述第三消息携带所述服务器的签名信息和所述服务器的标识信息;
从所述D2X管理平台接收第一响应,所述第一响应用于指示发送所述第二消息的服务器身份验证通过;
向所述服务器发送第四消息,所述第四消息用于请求所述更新的映射关系;
从所述服务器接收所述更新的映射关系,更新本地保存的映射关系。
本申请又一方面提供一种计算机装置,所述计算机装置包括:
至少一个处理器、存储器和收发器;
其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码来执行上述第一方面中由所述服务器执行的操作,或者执行第二方面中由所述网关执行的操作,或者执行第三方面中由所述终端执行的操作。
其中,该收发器也可以用接收器和发送器代替,可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器可以集成在所述处理器中,也可以与所述处理器分开设置。
本申请又一方面提供一种计算机存储介质,其包含指令,当其在计算机上运行时,使得计算机执行上述第一方面中由所述服务器执行的操作,或者执行第二方面中由所述网关执行的操作,或者执行第三方面中由所述终端执行的操作。
本申请又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面中由所述服务器执行的操作,或者执行第二方面中由所述网关执行的操作,或者执行第三方面中由所述终端执行的操作。
附图说明
图1为本申请实施例中的通信系统的一种架构示意图;
图2为本申请实施例中D2X通信的方法的一种流程示意图;
图3a为本申请实施例中映射关系的一种示意图;
图3b为本申请实施例中为D2X终端选择目标映射关系的一种流程示意图;
图4为本申请实施例中D2X通信的方法的一种流程示意图;
图5为本申请实施例中D2X通信的方法的一种流程示意图;
图6为本申请实施例中D2X通信的方法的一种流程示意图;
图7为本申请实施例中D2X通信的方法的一种流程示意图;
图8为本申请实施例中D2X通信的方法的一种流程示意图;
图9为本申请实施例中D2X通信的方法的一种流程示意图;
图10为本申请实施例中映射关系的一种示意图;
图11为本申请实施例中服务器的一种结构示意图;
图12为本申请实施例中网关的一种结构示意图;
图13为本申请实施例中D2X终端的一种结构示意图;
图14为本申请实施例中执行D2X通信的方法的装置的一种结构示意图;
图15为本申请实施例中车载终端的一种结构示意图;
图16为本申请实施例中服务器的一种结构示意图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块,本申请中所出现的模块的划分,仅仅是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本申请方案的目的。
本申请供了一种设备到任意D2X通信的方法、装置及存储介质,可用于车联网、工业控制应用等技术领域,例如可以应用于D2X通信,D2X通信可以是D2D通信、D2I通信、D2N通信、D2C通信、D2P通信等互联互通的通信场景,D2X通信也可以是V2X通信,例如V2V通信、V2I通信、V2N通信、V2C通信、V2P通信等互联互通的通信场景。本申请实施例中的D2X终端可以是V2X终端。以下基于图1所示的一种通信系统架构图对本申请中涉及的设备进行介绍。图1所示的通信系统包括服务器、网关和多个D2X终端。
D2X终端在周期性发送自身的状态信息,该状态信息可以包括标识信息(如车的ID)、位置信息、移动速度、加速度、移动方向或可能的行进路线等状态信息,也可以称之为周期信号。
网关用于在网络层以上实现网络互连,在本申请实施例中,网关可用于D2X终端与服务器之间的交互,例如转发D2X终端的上行数据包至服务器,以及转发服务器的下行数据包至D2X终端,也可以用于D2X终端加入多播组。
服务器用于提供访问商业逻辑的途径以供D2X终端使用,在本申请实施例中,服务器可用于配置地理位置信息与多播地址的映射关系,对映射关系进行加密处理后下发给对应的D2X终端,也用于对待加入多播组的D2X终端进行身份验证。
现有机制中,服务器在匹配多播地址时,是基于车辆反馈的地理位置,而车辆的移动性较强,服务器需要随时识别车辆变化的地理位置,向车辆实时反馈与地理位置相匹配的多播地址。故,现有机制存在以下问题:1、服务器无法快速地、准确地为车辆提供合适的多播地 址,从而无法保证该车辆正常的V2V通信。2、由于在服务器注册的车辆数量巨大,服务器要检测数量庞大的车辆的位置信息,并对应反馈多播地址,需要占用大量资源。3、由于基站部署密度不均匀,所以归属用户服务器(home subscriber server,HSS)的地理位置划分粒度也不均匀,而服务器获取的地理位置取决于基站部署密度及其定位的粒度,目前4G以下的网络的定位精度一般低于全球定位系统(global position system,GPS)的米级定位精度。最终导致匹配的多播地址准确度不高。
为解决上述技术问题,本申请主要采用以下技术方案:
服务器对初始映射关系中的多播地址进行加密伪装处理,得到一个伪装的映射关系,使得UE无法感知到真实的多播地址,但依然能够通过选择的多播地址加入多播组,UE无法在所加入的多播组内进行恶意传播。另外,对于同一地理区域部署的同一种D2X业务,服务器只需要存储一份地理位置信息与初始多播地址的初始映射关系,后续在针对不同的UE分别对初始映射关系进行加密,得到地理位置信息与伪多播地址的映射关系,然后向对应的D2X终端下发即可,从而可以减少数据存储负荷。此外,映射关系中的位置信息是预先根据蜂窝网络或GPS的经纬度划分的,不需要基于D2X终端动态向服务器更新UE的实时位置信息,服务器也不需要为D2X终端决策多播地址。而是由D2X终端根据自身的位置信息自行去决策多播地址,进而最终的多播地址的准确性较高。
参照图2,介绍本申请提供一种设备到任意D2X通信的方法,所述方法包括:
201、服务器获取映射关系。
其中,所述映射关系包括地理位置信息与伪多播地址的映射关系,该映射关系包括多组地理位置信息与伪多播地址的映射关系。映射关系中的位置信息为预先根据蜂窝网络或GPS的经纬度划分的,服务器不需要基于D2X终端动态向服务器更新D2X终端的实时位置信息。例如图3a所示的一种映射关系,图3a中揭示了地理位置1、地理位置2、…地理位置n共n个地理位置与n个伪多播地址的映射关系,n为正整数。
在一些实施方式中,服务器可对初始映射关系中的初始多播地址加密,得到伪多播地址,进而得到所述映射关系。其中,所述映射关系中的伪多播地址可根据以下实现方式之一得到:
根据所述D2X终端的身份信息、第一时间戳和初始多播地址加密得到。
或者,根据所述D2X终端的身份信息和初始多播地址加密得到。
或者,根据第一时间戳和初始多播地址加密得到。
或者,根据D2X业务信息和初始多播地址加密得到。
还可以引入其他信息生成伪多播地址,本申请实施例不作限定。
在一些实施方式中,该D2X终端的身份信息可以是D2X终端的终端标识、MAC地址等唯一标识身份的信息,就具体本申请实施例不作限定。该第一时间戳可以是D2X终端向服务器发送验证请求的时间戳,可以是服务器生成该伪多播地址的时间戳,也可以是按照其它规则生成的,具体本申请不作限定。该D2X业务信息可以是D2X业务的业务类型、D2X业务的优先级、D2X业务的部署范围或D2X业务的业务标识等信息。本申请实施例中,服务器可以以D2X业务为粒度,或通过区分D2X业务的优先级,按照同一类型或级别的D2X业务为粒度来区分对应的多播地址。
可见,通过引入D2X终端的身份信息和时间戳,对初始多播地址加密,生成随机的伪多 播地址,这样能够增加伪多播地址的安全性和抗破解性,可保证不同D2X终端在不同时间,同一D2X终端在不同时间请求的多播地址列表均不同。服务器和网关可以通过共享的密钥看到映射关系中的真实多播地址。
可选的,在一些实施方式中,在服务器对初始多播地址加密时,当所述服务器和网关在同一信任域时,服务器可采用第一密钥对所述映射关系中的多播地址加密,所述第一密钥为所述服务器和所述网关之间共享的密钥;或者,当所述服务器和网关在不同信任域时,服务器可采用第二密钥对所述映射关系中的多播地址加密,所述第二密钥为所述服务器的独享密钥。
202、服务器向网关发送所述映射关系。
203、网关从服务器接收映射关系,向D2X终端发送所述映射关系。
204、D2X终端从网关获取来自所述服务器的映射关系,根据当前的位置信息和所述映射关系确定目标伪多播地址,向网关发送第一消息。
在本申请实施例中,网关在仅充当D2X终端与服务器之间的转发消息的角色时,可省略网关的转发操作,认为是D2X终端向服务器发送消息,D2X终端从服务器接收消息,服务器向D2X发送消息,服务器从D2X终端接收消息。
D2X终端可以是首次请求获取所述映射关系,也可以是再次请求获取更新的映射关系。
该第一消息携带所述目标伪多播地址和所述D2X终端的第一身份信息。
如图3b所示,D2X终端根据GPS定位获知D2X终端当前的位置信息(例如为深圳市罗湖区深南东路),然后将该位置信息与所述映射关系进行匹配,匹配得到地理位置2覆盖了该D2X终端订阅的D2X业务。也可以由用户自行根据D2X终端的位置信息判断映射关系中与之匹配的地理位置。那么,该用户可在D2X终端的可视面板中选择地理位置2所在的图标。
205、网关从所述D2X终端接收第一消息,授权所述D2X终端加入所述目标伪多播地址对应的多播组。
所述网关从所述D2X终端接收第一消息之后,所述网关授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,所述网关还需要获取所述目标伪多播地址的明文(即所述目标伪多播地址解密得到的目标多播地址)。当所述网关与所述服务器在同一信任域时,从所述第一消息中解密得到目标多播地址;或者,当所述网关与所述服务器在不同信任域时,所述网关将所述第一消息转发给所述服务器,待服务器解密得到目标多播地址后,从所述服务器接收解密得到的目标多播地址;或者,当所述网关与所述服务器在同一信任域时,所述网关也可将第一消息转发给所述服务器,待服务器对所述目标伪多播地址解密,得到目标多播地址后,从所述服务器接收解密得到的目标多播地址。本申请实施例不对网关获取所述映射关系中的目标伪多播地址对应的目标多播地址的方式。
206、D2X终端加入所述目标伪多播地址对应的多播组后,向所述网关发送D2X消息。
从所述D2X终端接收第一消息之后,所述方法还包括:
网关接收所述D2X终端发送的D2X消息,将所述D2X消息的目的地址更新为所述目标伪多播地址,并向所述多播组内发送更新目的地址后的所述D2X消息。
本申请实施例中,服务器对初始映射关系中的多播地址进行加密伪装处理,得到一个伪装的映射关系,使得D2X终端无法感知到真实的多播地址,但依然能够根据自身的位置信息 从所述映射关系中决策一个目标伪多播地址,并根据决策的目标伪多播地址加入多播组,且D2X终端无法在所加入的多播组内进行恶意传播。此外,对于同一地理区域部署的同一种D2X业务,服务器只需要存储一份位置信息与多播地址的初始映射关系,后续在针对不同的D2X终端分别对初始映射关系进行加密和下发即可,从而可以减少数据存储负荷。映射关系中的位置信息是预先根据蜂窝网络或GPS的经纬度划分的,不需要基于D2X终端动态向服务器更新D2X终端的实时位置信息,服务器也不需要为D2X终端决策多播地址。而是由D2X终端根据自身的位置信息自行去决策多播地址,进而最终的多播地址的准确性较高,也减少服务器的运算负荷。
可选的,在本申请的一些实施例中,下面按照所述服务器和所述网关在同一信任域时,以及所述服务器和所述网关在不同信任域时,分别介绍D2X终端向网关发送第一消息,以请求加入目标多播地址对应的多播组,以及D2X终端在该多播组内发送D2X消息的流程。图4为所述服务器和所述网关在同一信任域时,D2X终端加入目标多播地址对应的多播组,以及在该多播组内发送D2X消息的流程。图5为所述服务器和所述网关在不同信任域时,D2X终端加入目标多播地址对应的多播组,以及在该多播组内发送D2X消息的流程。
如图4所示,所述服务器和所述网关在同一信任域时,网关从所述D2X终端接收第一消息之后,网关可直接从该第一消息携带的目标映射关系中获取目标多播地址,本申请实施例包括:
307a、所述网关对所述第一消息中密文的目标伪多播地址解密,得到明文的目标多播地址。
所述网关可采用第一密钥对所述目标映射关系中的目标伪多播地址进行解密,进而得到明文的目标多播地址。在得到明文的目标多播地址后,网关授权该D2X终端加入目标多播地址对应的多播组。该第一密钥为服务器与网关之间的共享密钥,该第一密钥可用于服务器与网关之间的通信交互,需要第一密钥解密的映射关系对于服务器和网关均可以视为明文。
308、所述D2X终端向网关发送D2X消息,该D2X消息中携带目标映射关系。
309a、所述网关对该D2X消息中携带的目标映射关系进行解密,识别出该D2X终端已加入多播组,则将所述D2X消息中的目的地址更新为目标伪多播地址。
310、所述网关向所述多播组内发送更新目的地址后的所述D2X消息。
如图5所示,所述服务器和所述网关在不同信任域时,网关从所述D2X终端接收第一消息之后,需要将该第一消息转发给服务器,并从服务器获取解密后得到的目标多播地址,该目标多播地址是对目标伪多播地址解密后得到。本申请实施例包括:
307b、所述服务器从网关接收第一消息,对该第一消息中的目标映射关系进行解密,得到明文的目标多播地址,并将该目标多播地址发送至网关。
所述服务器可采用第二密钥对该第一消息中的目标映射关系中的目标伪多播地址进行解密,进而得到明文的目标多播地址。该第二密钥为所述服务器的独享密钥。
308b、所述网关从所述服务器接收明文的目标多播地址,授权D2X终端加入所述目标多播地址对应的多播组。
309、所述D2X终端向网关发送D2X消息,该D2X消息中携带目标映射关系。
310、所述网关对该D2X消息中携带的目标映射关系进行解密,识别出该D2X终端已加入 多播组,将所述D2X消息中的目的地址更新为目标伪多播地址。
311、所述网关向所述多播组内发送更新目的地址后的所述D2X消息。
由图4和图5所对应的实施例可知,服务器与网关在同一信任域时,引入共享密钥生成伪多播地址,或者在服务器与网关不同信任域时,引入独享密钥生成伪多播地址,均能够保证D2X终端在不感知到真实的映射关系的前提下,依然能够准确的加入多播组。由于D2X不感知真实的映射关系,一定程度上能够防止D2X终端向多播组内进行恶意的D2X消息广播。即使D2X终端在某个地区的不同物理位置都遍历一遍,也不能获取到其它D2X终端的具体物理位置,进而无法推导出该地区内其它D2X终端的移动轨迹。
需要说明的是,图4所对应的实施例中,当服务器与网关处于相同信任域时,服务器在对映射关系中的初始多播地址进行加密时,除了使用第一密钥加密外,还可以使用第二密钥进行加密,相应的,当网关接收来自D2X终端的第一消息或D2X消息后,需要转发给服务器进行解密。本申请实施例中,第二密钥还可以有更高的权限,即充当第一密钥的功能。
可选的,在本申请的一些实施例中,由于上述映射关系中的某个地理位置信息基本是固定不变的,对应该地理位置信息的初始多播地址也是静态不变的,一般情况下,服务器加密初始多播地址的密钥在一定时间内也是固定不变的。所以,不论采用共享密钥还是独享对该段明文加密,对映射关系中的初始多播地址进行加密之后得到的密文的伪多播地址的内容都是静态、固定不变的,恶意D2X终端通过寻找规律后也可能破解出真实的多播地址。仅对初始多播地址进行加密,虽然恶意D2X终端无法解析出该映射关系中密文的伪多播地址所对应的真实多播地址,但是由于恶意D2X终端能获取到映射关系中的地理位置信息,所以,恶意D2X终端依然能找到地理位置信息对应的密文的伪多播地址。
为进一步增强上述映射关系中固定内容的密文(即伪多播地址)的防破解性,本申请实施例中,服务器可在对初始多播地址加密时,在初始多播地址基础上引入D2X终端的身份信息、时间戳、D2X业务信息等信息,通过加密生成具备一定随机性、动态变化的伪多播地址。所以最终针对每个D2X终端所加密后得到的映射关系总是不同的。例如,服务器可在初始多播地址的基础上增加D2X终端的身份信息和时间戳,由于不同D2X终端的身份信息不同,时间戳是动态变化的,所以,最终加密生成的伪多播地址也是不同的。
例如,D2X终端1和D2X终端2均订阅了同一个V2X业务a,服务器接收D2X终端1和D2X终端2在同一地区a发送的验证请求后,会为D2X终端1和D2X终端2分别下发映射关系。其中,D2X终端1的身份信息为ID1、D2X终端向服务器发送验证请求的时间戳为201801020930,D2X终端2的身份信息为ID2、D2X终端向服务器发送验证请求的时间戳为201801020929。虽然服务器侧在该地区a针对该V2X业务a仅设置了一份映射关系0,服务器基于该映射关系0为D2X终端1生成映射关系1,以及为D2X终端2生成映射关系2。映射关系1中的伪多播地址由ID1、201801020930和多播地址a加密得到,映射关系2中的伪多播地址由ID2、201801020929和多播地址a加密得到。可见,D2X终端1和D2X终端2得到的映射关系不同。如果D2X终端1为恶意D2X终端,即使D2X终端1能够截取到服务器下发给其他D2X终端的映射关系,由于时间戳和D2X终端身份信息的可变性和无规律性,该D2X终端1也较难破解截取到的映射关系。
在服务器将D2X终端的身份信息、时间戳等信息引入伪多播地址的基础上,在后续D2X 终端向多播组内发送D2X消息时,网关或服务器还可以对发送D2X消息的D2X终端进行身份合法性的验证。例如图6中的步骤304中,服务器验证D2X终端身份通过后,对D2X终端的标识信息、第一时间戳和初始多播地址加密,生成伪多播地址,得到加密后的映射关系并下发给该D2X终端。下面按照所述服务器和所述网关在同一信任域时,以及所述服务器和所述网关在不同信任域时,分别介绍D2X终端向网关发送第一消息,以请求加入目标多播地址对应的多播组,以及D2X终端在该多播组内发送D2X消息的流程。图6为所述服务器和所述网关在同一信任域时,D2X终端加入目标多播地址对应的多播组,以及在该多播组内发送D2X消息的流程。图7为所述服务器和所述网关在不同信任域时,D2X终端加入目标多播地址对应的多播组,以及在该多播组内发送D2X消息的流程。图6和图7中网关接收到的第一消息还包括所述D2X终端的第一身份信息和所述D2X终端选择的目标映射关系,该目标映射关系包括密文的目标伪多播地址,该密文的目标伪多播地址可包括密文的D2X终端的身份信息(为便于后续判断,简称为第二身份信息),还可以包括第一时间戳等。
在图4对应的实施例的步骤307a基础上,所述网关从所述D2X终端接收第一消息之后,所述授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,还需要对D2X终端的身份合法性进行验证。如图6所示,所述服务器和所述网关在同一信任域时,网关从所述D2X终端接收第一消息之后,网关可直接从该第一消息中获取第一身份信息、第二身份信息和目标多播地址,并由网关自行判断D2X终端身份的合法性,本申请实施例包括:
307a’、所述网关对所述目标映射关系解密,得到明文的目标多播地址、以及所述目标映射关系中携带的第二身份信息。当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,网关确定所述D2X终端合法。也就是说,发送第一消息的该D2X终端是该目标映射关系的合法接收终端,该第一消息中携带的目标映射关系是服务器基于该D2X终端的验证请求发送给该D2X终端的。
本申请实施例中,网关验证第一身份信息和第二身份信息的目的是为了防止加入多播组的D2X终端冒充多播组内其他D2X终端。同时防止有中间人攻击或者窃取到先前D2X终端收到的密文的映射关系,然后再以该密文的映射关系发到网关,通过增加对D2X终端的身份合法性进行验证,以防止密文的映射关系中的D2X终端的身份信息与发起加入组请求的D2X终端的身份信息不一致所引起的安全隐患,本申请实施例能够防篡改或中间人攻击。
在图5对应的实施例的步骤307b基础上,所述网关从所述D2X终端接收第一消息之后,所述授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,还需要对D2X终端的身份合法性进行验证。如图7所示,所述服务器和所述网关在不同信任域时,网关从所述D2X终端接收第一消息之后,需要将该第一消息转发给服务器,由服务器判断D2X终端的身份的合法性,若合法,则向网关提供解密后得到的目标多播地址,本申请实施例包括:
307b’、所述服务器对所述目标映射关系解密,得到明文的目标多播地址、以及所述目标映射关系中携带的D2X终端的第二身份信息,当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,确定所述D2X终端合法。
本申请实施例中,服务器验证第一身份信息和第二身份信息的目的是为了防止加入多播组的D2X终端冒充多播组内其他D2X终端。同时防止有中间人攻击或者窃取到先前D2X终端收到的密文的映射关系,然后再以该密文的映射关系发到网关,通过增加对D2X终端的身份 合法性进行验证,以防止密文的映射关系中的D2X终端的身份信息与发起加入组请求的D2X终端的身份信息不一致所引起的安全隐患,本申请实施例能够防篡改或中间人攻击。
可选的,在本申请的一些实施例中,当地理位置信息划分粒度变化或者地理位置信息发生更新时,服务器还可以获取更新的映射关系,加密更新的映射关系后,下发给曾经申请过映射关系的合法D2X终端。下面分别介绍更新映射关系流程中,如何防止伪服务器向D2X终端下发更新的映射关系所带来的安全性问题。
如图8所示,本申请实施例包括:
801、服务器获取更新的映射关系,向D2X终端发送更新消息。
该映射关系可以是服务器自行更新,也可以是从CF获取的,具体本申请不作限定。该更新消息携带更新的映射关系,该更新消息用于指示D2X终端更新本地存储的映射关系。
802、D2X终端接收到来自服务器的更新消息后,向CF发送验证消息。
该验证消息中携带服务器的标识信息和签名信息。
803、CF对服务器的签名信息验证通过后,向D2X终端返回确认消息。
804、D2X终端接收到来自CF的确认消息后,更新本地存储的映射关系。
805、D2X终端向服务器发送更新确认响应。
如图9所示,本申请实施例包括:
901、服务器获取更新的映射关系,向D2X终端发送更新消息。
该更新消息用于指示DX为更新映射关系做好准备。
902、DD2X终端接收到来自服务器的更新消息后,向CF发送验证消息。
该验证消息携带服务器的标识信息和签名信息。
903、CF对服务器的签名信息验证通过后,向D2X终端返回确认消息。
904、D2X终端接收到来自CF的确认消息后,向服务器发送更新请求。
905、服务器接收来自D2X终端的更新请求后,验证D2X终端的身份成功后,加密更新的映射关系,向D2X终端发送该加密的更新的映射关系。
906、D2X接收来自服务器发送的更新的映射关系,更新本地保存的映射关系。
图8和图9所对应的实施例中,当D2X终端收到来自服务器的更新消息后,先去CF处验证发送该更新消息的服务器的身份是否合法,只有在CF验证通过后,D2X终端才会去执行更新映射关系的操作,这样能够避免D2X接收到伪服务器的恶意信息,避免因为更新了仿冒的映射关系后加入恶意的多播组中所带来的安全性问题。此外,D2X在更新本地的映射关系后,可以向网关发送加入组请求,以申请加入多播组,整个流程可以参考图2-图7中任意实施例中的介绍,此处不作赘述。
可选的,在本申请的一些实施例中,所述映射关系中的地理位置信息可以是D2X终端的物理位置或指示D2X终端的物理位置的随机数。例如服务器分配随机数给D2X终端,后续D2X终端可根据当前地理位置选择加入对应的多播组时,向网关发送加入组请求,网关将该加入组请求转发给服务器,以向服务器请求获取真实的多播地址。或者服务器可预先同步随机数与多播地址的映射关系至网关,网关接收到D2X终端的加入组请求后,网关直接根据本地保存的映射关系获取到真实的多播地址,然后授权该D2X终端加入该真实的多播地址对应的多播组。具体解析图10所示。
图10中,服务器保存了D2X终端(例如UEa、UEb、UEc和UEd)的映射关系,映射关系中包括地理位置和随机数。例如,UEa的映射关系包括:地理位置A1和随机数(UEa-R1)、地理位置A2和随机数(UEa-R2)、地理位置A3和随机数(UEa-R3)、地理位置A4和随机数(UEa-R4),以及地理位置A5和随机数(UEa-R5)。UEb的映射关系包括:地理位置A1和随机数(UEb-R1)、地理位置A2和随机数(UEb-R2)、地理位置A3和随机数(UEb-R3)、地理位置A4和随机数(UEb-R4),以及地理位置A5和随机数(UEb-R5)。UEc和UEd同理,不作赘述。由图10可知,UEa、UEb、UEc和UEd四者均对应地理位置A1、地理位置A2、地理位置A3和地理位置A4。可见,服务器为每个UE都预先配置了相应的映射关系,能够为每个UE在不同的地理位置时提供不同的映射关系,以让这些UE能够准确的加入到当前地理位置对应的多播组。
上述各实施例中所介绍的技术特征,例如映射关系、地理位置信息、伪多播地址、初始多播地址、时间戳、目标伪多播地址、加密、解密、D2X的终端身份信息等技术特征、也同样适用于本申请中的图11-图16任一所对应的实施例,后续类似之处不再赘述。
以上介绍了本申请中一种软件升级管理的方法,下面分别介绍执行上述软件升级管理的服务器和终端。
如图11所示的一种服务器的结构示意图,本申请实施例中的服务器能够实现对应于上述图2-图10中任一所对应的实施例中由服务器所执行的设备到任意D2X通信的方法中的步骤。服务器实现的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。所述服务器可包括收发模块和处理模块,所述处理模块的功能实现可参考图2-图11中任一所所对应的实施例中由服务器获取映射关系、加密初始多播地址、解密目标多播地址、确定所述D2X终端合法等操作,此处不作赘述。所述收发模块的功能实现可参考图2-图11中任一所所对应的实施例中由服务器获取/接收映射关系、发送映射关系、发送目标多播地址、接收第一消息等操作,处理模块可用于控制所述收发模块的收发操作。
一些实施方式中,所述处理模块用于获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
所述收发模块用于向D2X终端发送所述处理模块获取的映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址以及加入所述目标伪多播地址对应的多播组。
本申请实施例中,服务器的处理模块对初始映射关系中的多播地址进行加密伪装处理,得到一个伪装的映射关系,使得D2X终端无法感知到真实的多播地址,但依然能够根据自身的位置信息从所述映射关系中决策一个目标伪多播地址,并根据决策的目标伪多播地址加入多播组,且D2X终端无法在所加入的多播组内进行恶意传播。此外,对于同一地理区域部署的同一种D2X业务,服务器只需要存储一份位置信息与多播地址的初始映射关系,后续在针对不同的D2X终端分别对初始映射关系进行加密和下发即可,从而可以减少数据存储负荷。映射关系中的位置信息是预先根据蜂窝网络或GPS的经纬度划分的,不需要基于D2X终端动态向服务器更新D2X终端的实时位置信息,服务器也不需要为D2X终端决策多播地址。而是 由D2X终端根据自身的位置信息自行去决策多播地址,进而最终的多播地址的准确性较高,也减少服务器的运算负荷。
一些实施方式中,所述处理模块用于:
对初始映射关系中的初始多播地址加密,得到伪多播地址,以得到所述映射关系。
一些实施方式中,所述映射关系中的伪多播地址根据以下项之一加密得到:
所述D2X终端的身份信息、第一时间戳和初始多播地址;
或者,所述D2X终端的身份信息和初始多播地址;
或者,第一时间戳和初始多播地址。
一些实施方式中,所述映射关系中的伪多播地址根据D2X业务信息和初始多播地址加密得到。
一些实施方式中,所述处理模块在所述收发模块向身份合法的D2X终端发送所述映射关系之后,还用于:
通过所述收发模块从所述网关接收来自所述D2X终端的第一消息,所述第一消息携带所述目标伪多播地址;
对所述目标伪多播地址解密,得到目标多播地址;
通过所述收发模块向所述网关发送所述目标多播地址。
一些实施方式中,所述第一消息还包括所述D2X终端的第一身份信息和所述D2X终端选择的目标映射关系;所述处理模块用于:
对所述目标映射关系解密,得到所述目标映射关系中携带的D2X终端的第二身份信息;
所述处理模块对所述第一消息解密之后,在所述收发模块向所述网关发送解密得到的所述目标伪多播地址之前,还用于:
当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,确定所述D2X终端合法。
一些实施方式中,所述映射关系中的地理位置信息包括D2X终端的物理位置或指示D2X终端的物理位置的随机数。
如图12所示的一种网关的结构示意图,本申请实施例中的网关能够实现对应于上述图2-图10中任一所对应的实施例中由网关所执行的设备到任意D2X通信的方法中的步骤。服务器实现的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。所述服务器可包括收发模块和处理模块,所述处理模块的功能实现可参考图2-图10中任一所所对应的实施例中由网关接收映射关系、解密目标多播地址、确定所述D2X终端合法等操作,此处不作赘述。所述收发模块的功能实现可参考图2-图10中任一所所对应的实施例中由网关接收映射关系、发送映射关系、发送目标多播地址、接收第一消息、授权所述D2X终端加入多播组等操作,处理模块可用于控制所述收发模块的收发操作。
一些实施方式中,所述收发模块用于从所述服务器接收映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;向D2X终端发送所述映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址;从所述D2X终端接收第一消息,所 述第一消息包括所述目标伪多播地址;
所述处理模块用于授权所述D2X终端加入所述目标伪多播地址对应的多播组。
本申请实施例中,网关的收发模块下发给D2X终端的映射关系是经过服务器加密伪装处理的,所以D2X终端无法感知到该映射关系中真实的多播地址,但依然能够根据自身的位置信息从所述映射关系中决策一个目标伪多播地址,网关的收发模块在获取到D2X终端决策的目标伪多播地址后,网关的处理模块授权该D2X终端加入多播组,既能够保证D2X加入多播组进行D2X通信,又能够实现D2X终端无法在所加入的多播组内进行恶意传播的目的。
一些实施方式中,所述处理模块在所述收发模块从所述D2X终端接收第一消息之后,还用于:
通过所述收发模块从所述D2X终端接收D2X消息;
将所述D2X消息的目的地址更新为所述目标伪多播地址,通过所述收发模块向所述多播组内发送更新目的地址后的所述D2X消息。
一些实施方式中,所述处理模块在所述收发模块从所述D2X终端接收第一消息之后,授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,还用于:
当所述服务器和所述网关在同一信任域时,从所述第一消息中解密得到目标多播地址;
或者,当所述服务器和所述网关在不同信任域时,通过所述收发模块向所述服务器发送所述第一消息,通过所述收发模块从所述服务器接收解密得到的目标多播地址。
一些实施方式中,所述第一消息还包括所述D2X终端的第一身份信息和所述D2X终端选择的目标映射关系;所述处理模块在所述收发模块从所述D2X终端接收第一消息之后,所述授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,还用于:
对所述目标映射关系解密,得到所述目标映射关系中携带的D2X终端的第二身份信息;
当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,确定所述D2X终端合法。
本申请涉及的D2X终端,可以是指向用户提供语音和/或数据连通性的设备。例如,D2X终端可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,或者D2X终端可以是便携式、袖珍式、手持式、计算机内置的或者机载的移动装置。例如D2X终端可以是汽车、无人机、个人数字助理(personal digital assistant,PDA)等智能设备。D2X终端也可以称为订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、用户装备(User Equipment)、销售终端(英文全称:Point of Sales,英文简称:POS)、车载电脑等任意终端,它们可通过网络交换语音和/或数据。如图13所示的一种D2X终端的结构示意图,本申请实施例中的D2X终端能够实现对应于上述图2-图10中任一所对应的实施例中由D2X终端所执行的设备到任意D2X通信的方法中的步骤。D2X终端实现的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。所述服务器可包括收发模块和处理模块,所述处理模块的功能实现可参考图2-图10中任一所所对应的实施例中由D2X终端接收映射关系、选择目标伪多播地址、加入多播组、更新映射关系等操作,此处不 作赘述。所述收发模块的功能实现可参考图2-图10中任一所所对应的实施例中由网关接收映射关系、发送目标伪多播地址、发送第一消息、发送D2X消息、接收第二消息、发送第三消息、接收第一响应、发送第四消息等操作,处理模块可用于控制所述收发模块的收发操作。
一些实施方式中,所述收发模块用于从服务器获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
所述处理模块用于根据当前的位置信息和所述映射关系确定目标伪多播地址,通过所述收发模块向网关发送携带所述目标伪多播地址的第一消息;
所述收发模块还用于所述处理模块控制所述D2X终端加入所述目标伪多播地址对应的多播组后,向所述网关发送D2X消息,以向所述多播组内发送所述D2X消息。
本申请实施例中,由于D2X终端的收发模块获取的映射关系伪装的,所以D2X终端的处理模块不需要感知到真实的多播地址,但依然能够根据自身的位置信息从所述映射关系中决策一个目标伪多播地址,并根据决策的目标伪多播地址加入多播组,且D2X终端无法在所加入的多播组内进行恶意传播。另外,映射关系中的位置信息是预先根据蜂窝网络或GPS的经纬度划分的,D2X终端不需要动态的向服务器更新自身的实时位置信息,D2X终端可根据自身的位置信息自行去决策多播地址,进而最终的多播地址的准确性较高,也减少消息的发送。
一些实施方式中,所述映射关系中的伪多播地址根据以下项之一加密得到:
所述D2X终端的身份信息、第一时间戳和初始多播地址;
或者,所述D2X终端的身份信息和初始多播地址;
或者,第一时间戳和初始多播地址。
一些实施方式中,所述映射关系中的伪多播地址根据D2X业务信息和初始多播地址加密得到。
一些实施方式中,所述收发模块从服务器获取映射关系之后,还用于:
从服务器接收第二消息,所述第二消息用于指示更新的映射关系;
向D2X管理平台发送第三消息,所述第三消息携带所述服务器的签名信息和所述服务器的标识信息;
从所述D2X管理平台接收第一响应,所述第一响应用于指示发送所述第二消息的服务器身份验证通过;
向所述服务器发送第四消息,所述第四消息用于请求所述更新的映射关系;
从所述服务器接收所述更新的映射关系,更新本地保存的映射关系。
图14为本申请实施例提供的执行设备到任意D2X通信的方法的终端的一种结构示意图,其中,可包括至少一个处理器、至少一个收发器、存储器、至少一个总线。其中,至少一个处理器、至少一个收发器和存储器可通过总线或其它方式连接,其中,图14中以通过总线连接为例。
存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器(英文全称:Non-Volatile Random Access Memory,英文缩写:NVRAM)。存储器存储有操作系统和程序指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,程序指令可包括各种操作指令,用于实现各种操作。 操作系统可包括各种系统程序,用于实现各种基础任务以及处理基于硬件的任务。
处理器可以控制软件升级管理的设备的操作,处理器还可以称为中央处理单元(英文全称:Central Processing Unit,英文简称:CPU)。具体的应用中,软件升级管理的设备的各个组件通过总线耦合在一起,其中总线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图14中将各种总线都可称为总线。
需要说明的是,在本申请各实施例(包括图11、图12、图13所示的各实施例)中所有的收发模块对应的实体设备可以为收发器,所有的处理模块对应的实体设备可以为处理器。图11、图12、图13所示的各装置均可以具有如图14所示的结构,当其中一种装置具有如图14所示的结构时,图14中的处理器和收发器实现前述对应该装置的装置实施例提供的处理模块和收发模块相同或相似的功能,图14中的存储器存储处理器执行上述设备到任意D2X通信的方法时需要调用的程序代码。其中,该收发器也可以用接收器和发送器代替,可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器,例如该收发器可以为射频(英文全称:Radio Frequency,英文简称:RF)电路。所述存储器可以集成在所述处理器中,也可以与所述处理器分开设置。
上述本申请各实施例揭示的方法可以应用于图14所示的处理器中,或者由图14所示的处理器实现。例如,在一些实施方式中,图14中的处理器可通过调用存储器存储的程序指令,上述处理器具体执行本申请实施例中的设备到任意D2X通信的方法时需要调用的程序代码。
例如,当服务器具有如图14所示的结构时,图14中的存储器存储处理器执行上述由服务器执行设备到任意D2X通信的方法时需要调用的程序代码。具体来说,图14中的处理器能够调用存储器中的程序代码执行以下操作:
获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
通过所述收发器向D2X终端发送所述处理模块获取的映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址以及加入所述目标伪多播地址对应的多播组。
例如,当网关具有如图14所示的结构时,图14中的存储器存储处理器执行上述由网关执行设备到任意D2X通信的方法时需要调用的程序代码。具体来说,图14中的处理器能够调用存储器中的程序代码执行以下操作:
通过所述收发器从所述服务器接收映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;向D2X终端发送所述映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址;从所述D2X终端接收第一消息,所述第一消息包括所述目标伪多播地址;
授权所述D2X终端加入所述目标伪多播地址对应的多播组。
例如,当D2X终端具有如图14所示的结构时,图14中的存储器存储处理器执行上述由D2X终端执行设备到任意D2X通信的方法时需要调用的程序代码。具体来说,图14中的处理器能够调用存储器中的程序代码执行以下操作:
通过所述图14中的收发器从服务器获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
根据当前的位置信息和所述映射关系确定目标伪多播地址,通过所述图14中的收发器向 网关发送携带所述目标伪多播地址的第一消息;
控制所述D2X终端加入所述目标伪多播地址对应的多播组后,通过所述图14中的收发器向所述网关发送D2X消息,以向所述多播组内发送所述D2X消息。
本申请实施例还提供了另一种D2X终端,以车载终端为例:图15示出的是与本申请实施例提供的车载终端相关的部分结构的框图。参考图15,车载终端至少包括:RF电路1515、存储器1520和处理器1580。本领域技术人员可以理解,图15中示出的车载终端结构并不构成对车载终端的限定,可以包括比图15所示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图15对车载终端的各个构成部件进行具体的介绍:
RF电路1515可用于收发信息过程中信号的接收和发送,特别地,将来自服务器的信息接收后,给处理器1580处理;另外,将车载终端的信息发送给服务器。通常,RF电路1515包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(英文全称:low noise amplifier,英文简称:LNA)、双工器等。此外,RF电路1515还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(英文全称:global system of mobile communication,英文简称:GSM)、通用分组无线服务(英文全称:general packet radio service,英文简称:GPRS)、码分多址(英文全称:code division multiple Access,英文简称:CDMA)、宽带码分多址(英文全称:wideband code division multiple access,英文简称:WCDMA)、长期演进(英文全称:long term evolution,英文简称:LTE)、电子邮件、短消息服务(英文全称:short messaging service,英文简称:SMS)等。该RF电路1515可以对应图13中的收发模块或图14中所示的收发器。
存储器1520可用于存储软件程序以及模块,处理器1580通过运行存储在存储器1520的软件程序以及模块,从而执行车载终端的各种功能应用以及数据处理。存储器1520可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据车载终端的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1580是车载终端的控制中心,可用于控制车载终端的操作。具体的,处理器1580可利用各种接口和线路连接整个车载终端的各个部分,通过运行或执行存储在存储器1520内的软件程序和/或模块,以及调用存储在存储器1520内的数据,执行车载终端的各种功能和处理数据,从而对车载终端进行整体监控。该处理器1580可以对应图13中的处理模块或图14中所示的处理器。
车载终端还可以包括输入/输出单元1530、电源1590、显示单元1540、音频电路1560、扬声器1561,传声器1562、以及无线保真(英文全称:wireless fidelity,英文简称:Wi-Fi)模块1570。
其中,输入/输出单元1530可用于接收输入的数字或字符信息,以及通过外接接口输出数字或字符信息。具体地,输入/输出单元1530可包括触控面板1531以及其他输入设备1532。 触控面板1531,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1531上或在触控面板1531附近的操作),并根据预先设定的程式驱动相应的连接装置。
电源1590用于为车载终端中的各个部件供电,电源1590可以通过电源管理系统与处理器1580逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
显示单元1540可用于显示由用户输入的信息或提供给用户的信息以及车载终端的各种菜单。显示单元1540可包括显示面板1541,可选的,可以采用液晶显示器(英文全称:Liquid Crystal Display,英文简称:LCD)、有机发光二极管(英文全称:Organic Light-Emitting Diode,英文简称:OLED)等形式来配置显示面板1541。进一步的,触控面板1531可覆盖显示面板1541,当触控面板1531检测到在其上或附近的触摸操作后,传送给处理器1580以确定触摸事件的类型,随后处理器1580根据触摸事件的类型在显示面板1541上提供相应的视觉输出。虽然在图15中,触控面板1531与显示面板1541是作为两个独立的部件来实现车载终端的输入和输入功能,但是在某些实施例中,可以将触控面板1531与显示面板1541集成而实现车载终端的输入和输出功能。
音频电路1560、扬声器1561,传声器1562可提供用户与车载终端之间的音频接口。音频电路1560可将接收到的音频数据转换后的电信号,传输到扬声器1561,由扬声器1561转换为声音信号输出;另一方面,传声器1562将收集的声音信号转换为电信号,由音频电路1560接收后转换为音频数据,再将音频数据输出处理器1580处理后,经RF电路1515以发送给比如另一车载终端,或者将音频数据输出至存储器1520以便进一步处理。
Wi-Fi属于短距离无线传输技术,车载终端通过Wi-Fi模块1570可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图15示出了WiFi模块1570,但是可以理解的是,其并不属于车载终端的必须构成,完全可以根据需要在不改变申请的本质的范围内而省略。
尽管未示出,车载终端还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本申请实施例中,该车载终端所包括的处理器1280还具有控制执行以上由D2X终端执行的设备到任意D2X通信的方法流程。
本申请实施例提供的另一种服务器,如图16所示的结构示意图,该服务器1620可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(英文全称:central processing units,英文简称:CPU)1622(例如,一个或一个以上处理器)、输入输出接口1658和存储器1632,服务器还可以包括一个或一个以上存储应用程序1642或数据1644的存储介质1630(例如一个或一个以上海量存储设备)。
其中,中央处理器1622可以设置为与存储介质1630通信,在服务器1620上执行存储介质1630中的一系列指令操作。其中,CPU1622可以对应图11中的处理模块或图12中的处理模块或图14中所示的处理器,存储介质1630可对应图14中所示的存储器。
输入输出接口1658可以对应图11中的收发模块或图12中的收发模块或图14中所示的收发器。
存储器1632和存储介质1630可以是短暂存储或持久存储,存储在存储介质1630的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对服务器中的一系列指令操 作。
服务器1620还可以包括一个或一个以上电源1626,一个或一个以上有线或无线网络接口1650,一个或一个以上输入输出接口1658,和/或,一个或一个以上操作系统1641,例如Windows Server,Mac OS X,Unix,Linux,FreeBSD等等。
上述各实施例中由服务器所执行的步骤可以基于该图16所示的服务器结构。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或软件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
在上述实施例中,可以全部或部分地通过软件、硬件、软件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上对本申请所提供的技术方案进行了详细介绍,本申请中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (33)

  1. 一种设备到任意D2X通信的方法,所述方法由服务器执行,其特征在于,所述方法包括:
    获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
    向D2X终端发送所述映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址以及加入所述目标伪多播地址对应的多播组。
  2. 根据权利要求1所述的方法,其特征在于,所述获取映射关系,包括:
    对初始映射关系中的初始多播地址加密,得到伪多播地址,以得到所述映射关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述映射关系中的伪多播地址根据以下项之一加密得到:
    所述D2X终端的身份信息、第一时间戳和初始多播地址;
    或者,所述D2X终端的身份信息和初始多播地址;
    或者,第一时间戳和初始多播地址。
  4. 根据权利要求1或2所述的方法,其特征在于,所述映射关系中的伪多播地址根据D2X业务信息和初始多播地址加密得到。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述向身份合法的D2X终端发送所述映射关系之后,所述方法还包括:
    从所述网关接收来自所述D2X终端的第一消息,所述第一消息携带所述目标伪多播地址;
    对所述目标伪多播地址解密,得到目标多播地址;
    向所述网关发送所述目标多播地址。
  6. 根据权利要求5所述的方法,其特征在于,所述第一消息还包括所述D2X终端的第一身份信息和所述D2X终端选择的目标映射关系;所述对所述第一消息解密,包括:
    对所述目标映射关系解密,得到所述目标映射关系中携带的D2X终端的第二身份信息;
    所述对所述第一消息解密之后,所述向所述网关发送解密得到的所述目标伪多播地址之前,方法还包括:
    当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,确定所述D2X终端合法。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述映射关系中的地理位置信息包括D2X终端的物理位置或指示D2X终端的物理位置的随机数。
  8. 一种设备到任意D2X通信的方法,所述方法由网关执行,其特征在于,所述方法包括:
    从所述服务器接收映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
    向D2X终端发送所述映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址;
    从所述D2X终端接收第一消息,所述第一消息包括所述目标伪多播地址;
    授权所述D2X终端加入所述目标伪多播地址对应的多播组。
  9. 根据权利要求8所述的方法,其特征在于,所述从所述D2X终端接收第一消息之后,所述方法还包括:
    从所述D2X终端接收D2X消息,将所述D2X消息的目的地址更新为所述目标伪多播地址,并向所述多播组内发送更新目的地址后的所述D2X消息。
  10. 根据权利要求9所述的方法,其特征在于,所述从所述D2X终端接收第一消息之后,所述授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,还包括:
    当所述服务器和所述网关在同一信任域时,从所述第一消息中解密得到目标多播地址;
    或者,当所述服务器和所述网关在不同信任域时,向所述服务器发送所述第一消息,从所述服务器接收解密得到的目标多播地址。
  11. 根据权利要求10所述的方法,其特征在于,所述第一消息还包括所述D2X终端的第一身份信息和所述D2X终端选择的目标映射关系;所述从所述D2X终端接收第一消息之后,所述授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,方法还包括:
    对所述目标映射关系解密,得到所述目标映射关系中携带的D2X终端的第二身份信息;
    当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,确定所述D2X终端合法。
  12. 一种设备到任意D2X通信的方法,所述方法由D2X终端执行,其特征在于,所述方法包括:
    从服务器获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
    根据当前的位置信息和所述映射关系确定目标伪多播地址,向网关发送携带所述目标伪多播地址的第一消息;
    加入所述目标伪多播地址对应的多播组后,向所述网关发送D2X消息,以向所述多播组内发送所述D2X消息。
  13. 根据权利要求12所述的方法,其特征在于,所述映射关系中的伪多播地址根据以下项之一加密得到:
    所述D2X终端的身份信息、第一时间戳和初始多播地址;
    或者,所述D2X终端的身份信息和初始多播地址;
    或者,第一时间戳和初始多播地址。
  14. 根据权利要求12所述的方法,其特征在于,所述映射关系中的伪多播地址根据D2X业务信息和初始多播地址加密得到。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述从服务器获取映射关系之后,所述方法还包括:
    从服务器接收第二消息,所述第二消息用于指示更新的映射关系;
    向D2X管理平台发送第三消息,所述第三消息携带所述服务器的签名信息和所述服务器的标识信息;
    从所述D2X管理平台接收第一响应,所述第一响应用于指示发送所述第二消息的服务器身份验证通过;
    向所述服务器发送第四消息,所述第四消息用于请求所述更新的映射关系;
    从所述服务器接收所述更新的映射关系,更新本地保存的映射关系。
  16. 根据权利要求14或15所述的方法,其特征在于,所述映射关系中的地理位置信息包括D2X终端的物理位置或指示D2X终端的物理位置的随机数。
  17. 一种服务器,其特征在于,所述服务器包括:
    处理模块,用于获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
    收发模块,用于向D2X终端发送所述处理模块获取的映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址以及加入所述目标伪多播地址对应的多播组。
  18. 根据权利要求17所述的服务器,其特征在于,所述处理模块用于:
    对初始映射关系中的初始多播地址加密,得到伪多播地址,以得到所述映射关系。
  19. 根据权利要求17或18所述的服务器,其特征在于,所述映射关系中的伪多播地址根据以下项之一加密得到:
    所述D2X终端的身份信息、第一时间戳和初始多播地址;
    或者,所述D2X终端的身份信息和初始多播地址;
    或者,第一时间戳和初始多播地址。
  20. 根据权利要求17或18所述的服务器,其特征在于,所述映射关系中的伪多播地址根据D2X业务信息和初始多播地址加密得到。
  21. 根据权利要求17-20中任一项所述的服务器,其特征在于,所述处理模块在所述收发模块向身份合法的D2X终端发送所述映射关系之后,还用于:
    通过所述收发模块从所述网关接收来自所述D2X终端的第一消息,所述第一消息携带所述目标伪多播地址;
    对所述目标伪多播地址解密,得到目标多播地址;
    通过所述收发模块向所述网关发送所述目标多播地址。
  22. 根据权利要求21所述的服务器,其特征在于,所述第一消息还包括所述D2X终端的第一身份信息和所述D2X终端选择的目标映射关系;所述处理模块用于:
    对所述目标映射关系解密,得到所述目标映射关系中携带的D2X终端的第二身份信息;
    所述处理模块对所述第一消息解密之后,在所述收发模块向所述网关发送解密得到的所述目标伪多播地址之前,还用于:
    当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,确定所述D2X终端合法。
  23. 根据权利要求17-22中任一项所述的服务器,其特征在于,所述映射关系中的地理位置信息包括D2X终端的物理位置或指示D2X终端的物理位置的随机数。
  24. 一种网关,其特征在于,所述网关包括:
    收发模块,用于从所述服务器接收映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;向D2X终端发送所述映射关系,以使所述D2X终端根据当前的位置信息和所述映射关系确定目标伪多播地址;从所述D2X终端接收第一消息,所述第一消息包括所述目标伪多播地址;
    处理模块,用于授权所述D2X终端加入所述目标伪多播地址对应的多播组。
  25. 根据权利要求24所述的网关,其特征在于,所述处理模块在所述收发模块从所述D2X终端接收第一消息之后,还用于:
    通过所述收发模块从所述D2X终端接收D2X消息;
    将所述D2X消息的目的地址更新为所述目标伪多播地址,通过所述收发模块向所述多播组内发送更新目的地址后的所述D2X消息。
  26. 根据权利要求25所述的网关,其特征在于,所述处理模块在所述收发模块从所述D2X终端接收第一消息之后,授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,还用于:
    当所述服务器和所述网关在同一信任域时,从所述第一消息中解密得到目标多播地址;
    或者,当所述服务器和所述网关在不同信任域时,通过所述收发模块向所述服务器发送所述第一消息,通过所述收发模块从所述服务器接收解密得到的目标多播地址。
  27. 根据权利要求26所述的网关,其特征在于,所述第一消息还包括所述D2X终端的第一身份信息和所述D2X终端选择的目标映射关系;所述处理模块在所述收发模块从所述D2X终端接收第一消息之后,所述授权所述D2X终端加入所述目标伪多播地址对应的多播组之前,还用于:
    对所述目标映射关系解密,得到所述目标映射关系中携带的D2X终端的第二身份信息;
    当确定所述第一身份信息与解密得到的所述第二身份信息匹配或一致时,确定所述D2X终端合法。
  28. 一种D2X终端,其特征在于,所述D2X终端包括:
    收发模块,用于从服务器获取映射关系,所述映射关系包括地理位置信息与伪多播地址的映射关系;
    处理模块,用于根据当前的位置信息和所述映射关系确定目标伪多播地址,通过所述收发模块向网关发送携带所述目标伪多播地址的第一消息;
    所述收发模块还用于所述处理模块控制所述D2X终端加入所述目标伪多播地址对应的多播组后,向所述网关发送D2X消息,以向所述多播组内发送所述D2X消息。
  29. 根据权利要求28所述的D2X终端,其特征在于,所述映射关系中的伪多播地址根据以下项之一加密得到:
    所述D2X终端的身份信息、第一时间戳和初始多播地址;
    或者,所述D2X终端的身份信息和初始多播地址;
    或者,第一时间戳和初始多播地址。
  30. 根据权利要求29所述的D2X终端,其特征在于,所述映射关系中的伪多播地址根据D2X业务信息和初始多播地址加密得到。
  31. 根据权利要求29或30所述的D2X终端,其特征在于,所述收发模块从服务器获取映射关系之后,还用于:
    从服务器接收第二消息,所述第二消息用于指示更新的映射关系;
    向D2X管理平台发送第三消息,所述第三消息携带所述服务器的签名信息和所述服务器的标识信息;
    从所述D2X管理平台接收第一响应,所述第一响应用于指示发送所述第二消息的服务器身份验证通过;
    向所述服务器发送第四消息,所述第四消息用于请求所述更新的映射关系;
    从所述服务器接收所述更新的映射关系,更新本地保存的映射关系。
  32. 一种计算机装置,其特征在于,所述计算机装置包括:
    至少一个处理器、存储器和收发器;
    其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码来执行如权利要求1-7中任一项所述服务器的操作,或者执行如权利要求8-11中任一项所述网关的操作,或者执行如权利要求12-16中任一项所述终端的操作。
  33. 一种计算机存储介质,其特征在于,其包含指令,当其在计算机上运行时,使得计算机执行如权利要求1-7中任一项所述服务器的操作,或者执行如权利要求8-11中任一项所述网关的操作,或者执行如权利要求12-16中任一项所述终端的操作。
PCT/CN2019/082952 2018-04-19 2019-04-17 一种设备到任意d2x通信的方法、装置及存储介质 WO2019201257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810355901.0 2018-04-19
CN201810355901.0A CN110392076B (zh) 2018-04-19 2018-04-19 一种车辆到任意v2x通信的方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2019201257A1 true WO2019201257A1 (zh) 2019-10-24

Family

ID=68239289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082952 WO2019201257A1 (zh) 2018-04-19 2019-04-17 一种设备到任意d2x通信的方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN110392076B (zh)
WO (1) WO2019201257A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462661A (zh) * 2020-11-27 2021-03-09 星控物联科技(山东)有限公司 工业数据采集控制器及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106060180A (zh) * 2016-08-24 2016-10-26 电子科技大学 一种针对IPv6的基于地理位置和应用信息的寻址方法
CN107276902A (zh) * 2017-06-12 2017-10-20 北京邮电大学 地理位置与ip地址结合的车联网路由寻址方法
WO2018031458A1 (en) * 2016-08-09 2018-02-15 Intel IP Corporation Systems, methods, and devices for identifying locations of nearby road side units for vehicle-to-anything communications

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2918086A1 (en) * 2012-11-07 2015-09-16 Interdigital Patent Holdings, Inc. Reliable multicast/broadcast for p2p communications
US10554708B2 (en) * 2015-03-27 2020-02-04 Qualcomm Incorporated Point-to-multipoint broadcast assisted vehicle-to-X broadcast
CN106302622B (zh) * 2015-06-12 2021-01-26 中兴通讯股份有限公司 车联网系统及其中的业务实现方法和装置
JP2018523322A (ja) * 2015-06-24 2018-08-16 インテル アイピー コーポレーション Vehicle‐to‐anything(v2x)通信の拡張サポート
CN105245608B (zh) * 2015-10-23 2018-05-08 同济大学 基于自编码网络的车联网网络节点筛选及其通达性路由构建方法
WO2017079412A1 (en) * 2015-11-03 2017-05-11 Axiom, Inc. Methods and apparatus for system having denial of services (dos) resistant multicast
CN107277044B (zh) * 2017-07-21 2019-06-11 北京深思数盾科技股份有限公司 发布与接入网络加密锁服务的方法以及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031458A1 (en) * 2016-08-09 2018-02-15 Intel IP Corporation Systems, methods, and devices for identifying locations of nearby road side units for vehicle-to-anything communications
CN106060180A (zh) * 2016-08-24 2016-10-26 电子科技大学 一种针对IPv6的基于地理位置和应用信息的寻址方法
CN107276902A (zh) * 2017-06-12 2017-10-20 北京邮电大学 地理位置与ip地址结合的车联网路由寻址方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462661A (zh) * 2020-11-27 2021-03-09 星控物联科技(山东)有限公司 工业数据采集控制器及其控制方法

Also Published As

Publication number Publication date
CN110392076B (zh) 2021-01-29
CN110392076A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
CN110678770B (zh) 定位信息验证
US20190173951A1 (en) Vehicle communication using publish-subscribe messaging protocol
JP6379267B2 (ja) マシンツーマシンブートストラッピング
US10924268B2 (en) Key distribution method, and related device and system
US9319835B2 (en) Securely managed location-and-tracking service access
US8195817B2 (en) Authentication of the geographic location of wireless communication devices
US10140435B2 (en) Method for distribution of licenses based on geographical location
US9065908B2 (en) Method and system for ensuring user and/or device anonymity for location based services (LBS)
KR101883437B1 (ko) 요구되는 노드 경로들 및 암호 서명들을 이용한 보안 패킷 전송을 위한 정책
US20190268764A1 (en) Data transmission method, apparatus, and system
WO2011105350A1 (ja) 無線通信装置及び認証処理方法
US11588622B2 (en) Securing outside-vehicle communication using IBC
US20230095543A1 (en) Cross platform credential sharing
JP2009075688A (ja) 携帯装置の位置に関する情報とファイル用暗号鍵とを管理するためのプログラムおよび方法
JP2014527206A (ja) モバイルネット
WO2019201257A1 (zh) 一种设备到任意d2x通信的方法、装置及存储介质
US11330431B2 (en) Targeted advertising with privacy and anti-replay protection
WO2022155793A1 (zh) 一种消息发送方法、接收方法和装置
GB2588600A (en) Method to transmit messages between user equipments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788006

Country of ref document: EP

Kind code of ref document: A1