WO2019198573A1 - Air discharge device - Google Patents

Air discharge device Download PDF

Info

Publication number
WO2019198573A1
WO2019198573A1 PCT/JP2019/014659 JP2019014659W WO2019198573A1 WO 2019198573 A1 WO2019198573 A1 WO 2019198573A1 JP 2019014659 W JP2019014659 W JP 2019014659W WO 2019198573 A1 WO2019198573 A1 WO 2019198573A1
Authority
WO
WIPO (PCT)
Prior art keywords
edge
vortex
hole
pair
auxiliary
Prior art date
Application number
PCT/JP2019/014659
Other languages
French (fr)
Japanese (ja)
Inventor
潤 山岡
雅晴 酒井
侑児 岡村
将悟 早川
康揮 大森
悟司 蛸谷
卓 金子
真梨恵 長濱
康彦 新美
小松原 祐介
隆仁 中村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018240807A external-priority patent/JP7255170B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019001888.4T priority Critical patent/DE112019001888B4/en
Priority to CN201980024855.9A priority patent/CN111989525B/en
Publication of WO2019198573A1 publication Critical patent/WO2019198573A1/en
Priority to US17/064,831 priority patent/US20210016634A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H1/3407Nozzles; Air-diffusers providing an air stream in a fixed direction, e.g. using a grid or porous panel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H1/3457Outlets providing a vortex, i.e. a spirally wound air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/072Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser of elongated shape, e.g. between ceiling panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0612Induction nozzles without swirl means

Definitions

  • the present disclosure relates to an air blowing device that blows out airflow.
  • the present inventors diligently studied the air drawing action when the working airflow was blown out from the outlet. As a result, it was found that the air drawing action is caused by a lateral vortex generated by a shearing force due to the velocity gradient of the working airflow when the working airflow is blown out from the outlet.
  • the transverse vortex is a vortex having a vortex center perpendicular to the flow direction of the working airflow.
  • the center of the vortex is hereinafter also referred to as the vortex axis.
  • An object of the present disclosure is to provide an air blowing device capable of suppressing the air drawing action of the working air current blown out from the air outlet and increasing the reach of the working air current.
  • an air blowing device includes a duct portion that forms a flow path for allowing a working air flow blown toward a blowing target, and a working air flow outlet on the air flow downstream side of the duct portion.
  • the hole forming portion has a vortex generating structure that generates an auxiliary vortex having a vortex characteristic that is different from the lateral vortex generated on the downstream side of the outlet of the blowout hole by the working airflow, including the vortex rotation direction and the vortex axis direction.
  • the vortex generating structure is formed in the hole forming portion so that the auxiliary vortex collides with the horizontal vortex in a state where at least one of the rotation direction of the vortex and the direction of the vortex axis has a vortex characteristic different from that of the horizontal vortex.
  • the air blowing device forms a duct portion that forms a flow path for allowing the working air flow to pass therethrough, and a blowout hole that serves as an air outlet for the working air current on the downstream side of the air flow of the duct portion.
  • a vortex generating structure for generating auxiliary vortices having different vortex characteristics including the rotation direction of the vortex and the direction of the vortex axis from the horizontal vortex generated on the downstream side of the outlet of the blowout hole by the working airflow.
  • the vortex generating structure includes a plurality of vortex generators arranged side by side along the peripheral edge surrounding the blowout hole in the hole forming portion, and when the airflow passes around the vortex generator, At least one of the vortex axis directions has a structure in which an auxiliary vortex different from the horizontal vortex is generated.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. It is explanatory drawing for demonstrating the velocity gradient of the airflow in the exit downstream of the 1st blower outlet used as the 1st comparative example. It is explanatory drawing for demonstrating the state of the horizontal vortex and the working airflow in the downstream of the exit of the 1st blower outlet used as the 1st comparative example.
  • FIG. 27 is a sectional view taken along line XXVII-XXVII in FIG. 26. It is a typical front view of the air blowing apparatus which concerns on the 5th modification of 4th Embodiment.
  • FIG. 29 is a sectional view taken along line XXIX-XXIX in FIG. 28. It is a typical front view of the air blowing apparatus which concerns on 5th Embodiment.
  • FIG. 31 is a sectional view taken along the line XXXI-XXXI in FIG. 30. It is a typical perspective view of the vortex generator which concerns on 5th Embodiment.
  • FIG. 35 is a cross-sectional view of XXXV-XXXV in FIG. 34. It is a typical front view of the air blowing apparatus which concerns on the 2nd modification of 5th Embodiment. It is a typical front view of the air blowing apparatus which concerns on the 3rd modification of 5th Embodiment. It is a typical front view of the air blowing apparatus which concerns on the 4th modification of 5th Embodiment.
  • FIG. 39 is a sectional view of XXXIX-XXXIX in FIG. 38. It is a typical front view of the air blowing apparatus which concerns on the 5th modification of 5th Embodiment. It is a typical perspective view of the vortex generator used as the 1st modification of 5th Embodiment. It is a typical perspective view of the vortex generator used as the 2nd modification of 5th Embodiment. It is a typical perspective view of the vortex generator used as the 3rd modification of 5th Embodiment. It is a typical perspective view of the vortex generator used as the 4th modification of 5th Embodiment. It is explanatory drawing for demonstrating the opening shape of the blowing hole of the air blowing apparatus which concerns on 6th Embodiment.
  • the air blowing device 1 of this embodiment is applied to an air outlet of an air conditioning unit that air-conditions a vehicle interior. And the blower outlet of an air-conditioning unit is provided inside the instrument panel or the instrument panel.
  • the air blowing device 1 serves as a duct portion 14 that forms a flow path 18 for allowing the working airflow Waf blown toward the blowing target 2 to pass therethrough, and a blowout port for the working airflow Waf.
  • a hole forming portion 12 that forms the blowout hole 10 and a flange portion 40 are included.
  • the duct part 14 is a cylindrical member.
  • the portion of the duct portion 14 upstream of the air flow is fitted into an air outlet of an air conditioning unit (not shown), and the portion of the air flow downstream side is connected to the outer periphery of the hole forming portion 12.
  • a flow path 18 is formed inside the duct portion 14.
  • the hole forming part 12 is positioned on the air flow downstream side of the duct part 14.
  • the hole formation part 12 is comprised by the cylinder shape so that air can be blown out.
  • the blowout hole 10 is opened as a single hole at the end of the hole forming portion 12.
  • the blowing hole 10 has an opening shape that opens toward the blowing target 2 in order to blow out the working airflow Waf.
  • the opening shape of the blowout hole 10 is a flat shape.
  • the flat shape is a shape in which a pair of long edge portions 102 facing in the direction of the short axis Ss and a pair of short edge portions 104 facing in the direction of the long axis Ls are connected.
  • the short axis Ss is orthogonal to the long axis Ls.
  • the blow hole 10 is formed such that the short edge portion 104 is shorter than the long edge portion 102.
  • the short axis Ss is a center line that passes through the respective center points of the opposed long edge portions 102
  • the long axis Ls is a center line that passes through the respective center points of the opposed short edge portions 104.
  • the flat shape is, for example, an elliptical shape formed by combining a circular arc and a straight line, an elliptical shape formed by combining a circular arc having a large curvature radius and a circular arc having a small curvature radius, or a polygonal shape such as a hexagon combined with a straight line. Including a rectangular shape with rounded corners.
  • the shape of the long edge part 102 and the short edge part 104 is not limited to a straight line or a circular arc, and there may be an unevenness
  • the opening shape of the blowout hole 10 includes a pair of long edges 102 extending linearly in the direction of the short axis Ss, and a pair of short edges 104 extending in an arc shape in the direction of the long axis Ls. Are formed in a row.
  • the short edge portion 104 is a substantially semicircular arc, and the diameter thereof is smaller than that of the long edge portion 102.
  • the peripheral edge portion 100 surrounding the blowout hole 10 includes a first edge portion 102a and a second edge portion 102b that face each other with a predetermined gap therebetween, and a first edge portion 102a and a second edge portion. It is comprised by the 3rd edge part 104a and the 4th edge part 104b which connect the both ends of 102b.
  • the 3rd edge part 104a is a site
  • the fourth edge 104b is a part that connects the other ends of the first edge 102a and the second edge 102b.
  • the first edge portion 102a and the second edge portion 102b extend in a straight line with a certain interval.
  • the first edge portion 102a and the second edge portion 102b are longer in length along the edge than the third edge portion 104a and the fourth edge portion 104b, and the distance between the third edge portion 104a and the fourth edge portion 104b. It is opposed at a smaller interval.
  • the first edge portion 102a and the second edge portion 102b constitute the pair of long edge portions 102 described above.
  • the third edge 104a and the fourth edge 104b are curved in an arc shape.
  • the third edge portion 104a and the fourth edge portion 104b are shorter in length along the edge than the first edge portion 102a and the second edge portion 102b, and the distance between the first edge portion 102a and the second edge portion 102b. It is opposed at a larger interval.
  • the third edge portion 104a and the fourth edge portion 104b constitute the pair of short edge portions 104 described above.
  • the hole forming part 12 has a plurality of auxiliary holes 202 formed as the vortex generating structure 20. Specifically, the plurality of auxiliary holes 202 are formed along the pair of long edge portions 102 and the pair of short edge portions 104 along the entire peripheral edge portion 100 of the blowout hole 10 with a certain interval. Yes.
  • the area of the opening of the auxiliary hole 202 is smaller than the area of the opening of the blowing hole 10.
  • the auxiliary hole 202 has a circular shape. As shown in FIG. 3, the auxiliary hole 202 is formed through the inside of the hole forming portion 12 along the extending direction of the flow path 18.
  • the hole forming portion 12 may be formed so that the upstream side of the air flow extends to the flange portion 40. In this case, the auxiliary hole 202 is formed through the hole forming portion 12 to the flange portion 40.
  • the flange portion 40 is provided so as to protrude from the duct portion 14 with respect to the outer periphery of the duct portion 14.
  • the flange portion 40 is configured by a rectangular member with rounded corners.
  • the flange part 40 is a member for attaching with respect to the instrument panel which is not shown in figure.
  • the flange portion 40 is attached to the instrument panel by a connecting member such as a screw in a state where the upstream portion of the duct portion 14 is fitted to the air outlet of the air conditioning unit.
  • the flange portion 40 is provided with through holes 402 through which connecting members such as screws are passed in the vicinity of the four corners forming the corner portions.
  • Each of the hole formation part 12, the duct part 14, and the flange part 40 which comprises the air blowing apparatus 1 is comprised with resin.
  • the hole forming portion 12, the duct portion 14, and the flange portion 40 are formed of an integrally molded product that is integrally formed by a molding technique such as injection molding.
  • the hole formation part 12, the duct part 14, and the flange part 40 may be comprised in the part separately.
  • the air blowing device 1 configured as described above is installed on an instrument panel (not shown) as described above.
  • the air blowing device 1 is attached to the air conditioning unit inside the instrument panel installed at the foremost part in the passenger compartment.
  • the conditioned air whose temperature is adjusted by the air conditioning unit is blown out from the air blowing device 1.
  • the conditioned air may not only be used for air conditioning of the entire vehicle interior, but may be required to be directly blown out to passengers in the vehicle interior.
  • it is necessary not only to blow out to the occupants of the driver seat in the front row in the vehicle interior, but also to blow out to the occupants of the rear seat in the rear row, and the working airflow Waf is required to increase the reach distance.
  • the present inventors examined a factor that shortens the reach of the working airflow Waf.
  • the innumerable lateral vortex Vt generated in the velocity boundary layer BL is synthesized and developed into a large-scale one, so that the air drawing action becomes stronger.
  • the knowledge that it becomes one of the factors for shortening the reach of Waf was obtained.
  • the air drawing action is caused by the lateral vortex Vt generated by the shearing force due to the velocity gradient of the working airflow Waf when the working airflow Waf is blown out.
  • the horizontal vortex Vt generated by the air drawing action and the working airflow Waf will be described with reference to FIGS. 4 and 5.
  • FIG. 4 is a schematic view showing a first outlet serving as a first comparative example of the air blowing device 1 of the present embodiment.
  • the opening shape of the blowout hole 10 of the first blowout port is an oval shape formed by combining a circular arc and a straight line.
  • the thing equivalent to the auxiliary hole 202 is not provided in the hole formation part 12 of a 1st blower outlet.
  • the velocity boundary layer BL is a layer that is affected by stationary air among the airflows blown from the blowout holes 10.
  • the present inventors collide an auxiliary vortex Vs having a vortex characteristic different from that of the horizontal vortex Vt with the lateral vortex Vt generated in the velocity boundary layer BL of the working airflow Waf in a state where the vortex characteristics are different, thereby causing the lateral vortex Vt to collide. Therefore, it was considered that the reach of the working airflow Waf can be increased. Therefore, the vortex generating structure 20 for generating the auxiliary vortex Vs is formed in the hole forming portion 12.
  • the vortex characteristics indicate the vortex flow state including the vortex rotation direction, vortex axis direction, vortex flow velocity, fluid viscosity, vortex radius, and the like.
  • the air blowing device 1 of the present embodiment when the conditioned air whose temperature has been adjusted by the air conditioning unit flows into the duct portion 14, the conditioned air flows into the blowing hole 10 and the auxiliary hole 202 through the flow path 18.
  • a velocity boundary layer BL of the working airflow Waf is formed downstream of the outlet of the blowout hole 10.
  • the velocity boundary layer BL extends so as to be continuous with the inner wall surface 110 of the blowing hole 10 at the downstream side of the outlet of the blowing hole 10.
  • innumerable transverse vortices Vt are generated downstream of the outlet of the blowout hole 10.
  • the countless transverse vortex Vt generated downstream of the outlet of the blow hole 10 has a vortex axis that intersects the flow direction of the working air flow Waf, and goes straight in the same direction as the flow direction of the working air flow Waf. In addition to the component, it has a rotation component from the inside to the outside of the blowing hole 10.
  • the velocity boundary layer BL of the auxiliary airflow Saf is formed on the downstream side of the outlet of the auxiliary hole 202.
  • the velocity boundary layer BL extends so as to be continuous with the inner wall surface 210 of the auxiliary hole 202 at the downstream side of the outlet of the auxiliary hole 202.
  • the countless auxiliary vortex Vs generated downstream of the auxiliary hole 202 has a vortex axis that intersects the flow direction of the auxiliary airflow Saf, and in addition to the straight component that goes in the same direction as the flow direction of the auxiliary airflow Saf, 202 has a rotational component from the inside to the outside.
  • a part of the auxiliary vortex Vs differs from the transverse vortex Vt in at least the direction of rotation of the vortex characteristics.
  • the flow direction of the auxiliary airflow Saf is the same flow direction as that of the working airflow Waf.
  • the auxiliary vortex Vs having a different vortex rotation direction collides with the horizontal vortex Vt.
  • the horizontal vortex Vt and the auxiliary vortex Vs collide the horizontal vortex Vt is greatly disturbed, so that it is difficult to synthesize the horizontal vortex Vt. That is, the development of the lateral vortex Vt generated downstream of the outlet of the blow hole 10 is suppressed. As a result, the air draw-in effect in the working airflow Waf is suppressed, so that the working airflow Waf has a long reach.
  • the vortex generating structure 20 is realized by the auxiliary holes 202 formed in the hole forming portion 12. Thereby, the drawing-in action of the air drawn into the working airflow Waf is suppressed, and the attenuation of the flow velocity of the working airflow Waf is reduced, so that the working airflow Waf has a long reach.
  • the working air current Waf suppresses the air pull-in action from the surroundings, so that the temperature change of the working air current Waf can be suppressed. it can. That is, according to the air blowing device 1 of the present embodiment, an airflow having an appropriate temperature can be reached at a desired location, which is particularly effective in realizing spot-like air conditioning in the passenger compartment.
  • the opening shape of the blowout hole 10 includes a pair of long edges 102 extending linearly in the direction of the short axis Ss and a pair of short edges extending in an arc shape in the direction of the long axis Ls. It is a flat shape formed continuously with the portion 104.
  • the number of the plurality of auxiliary holes 202 formed along the peripheral edge portion 100 surrounding the blowing hole 10 is a pair of long edge portions as compared with the number formed along the edge sides of the pair of short edge portions 104. Many are formed along the edge side of 102. That is, the ratio of the openings of the plurality of auxiliary holes 202 in the hole forming portion 12 is larger than the ratio per predetermined area in the entire pair of short edges 104 side in the entire pair of long edges 102 side. The area per predetermined area is larger.
  • the opening shape of the blowout hole 10 is a flat shape
  • a lateral vortex Vt is generated downstream of the short edge portion 104 and downstream of the long edge portion 102.
  • the lateral vortex Vt generated downstream of the outlet of the short edge portion 104 reaches the arrival of the working airflow Waf as compared with the lateral vortex Vt generated downstream of the outlet of the long edge portion 102. It was found that the effect on distance was small.
  • the lateral vortex Vt generated downstream of the short edge 104 is separated from the potential core P of the working airflow Waf as compared to the lateral vortex Vt generated downstream of the long edge 102.
  • the reach distance of the working airflow Waf is the distance from the lateral vortex Vt generated downstream of the outlet of the long edge portion 102 and the lateral vortex Vt generated downstream of the outlet of the short edge portion 104 and the potential airflow Waf from the potential core P. It seems to be affected.
  • the lateral vortex Vt generated downstream of the outlet of the long edge portion 102 has an influence on the reach of the working airflow Waf as compared with the lateral vortex Vt generated downstream of the outlet of the short edge portion 104. Can be said to be large.
  • the present inventors have the case where the auxiliary holes 202 are formed along the entire peripheral edge portion 100 of the blowout hole 10 even when the plurality of auxiliary holes 202 are formed to be biased toward the edge of the long edge portion 102. It was considered that the reach of the working airflow Waf was comparable.
  • FIG. 10 is an explanatory diagram for explaining the potential core P of the airflow at the outlet downstream of the second outlet, which is the second comparative example.
  • the opening shape of the blowout hole 10 of the second blowout port is formed in an oval shape having a shape obtained by combining a circular arc and a straight line.
  • the auxiliary hole 202 is not formed in the peripheral edge portion 100 of the outlet hole 10 of the second outlet.
  • a potential core P that is a region where the airflow is less disturbed and the airflow speed and airflow pressure are stable is generated around the blowout hole 10.
  • the potential core P is a region that is not easily affected by ambient air. Therefore, the working airflow Waf is unlikely to decrease in wind speed in the potential core P, and has the longest reach.
  • the potential core P becomes smaller as the cross-sectional shape in the direction orthogonal to the flow direction of the working airflow Waf moves away from the blowout hole 10. Further, when the shape of the blowout hole 10 is a flat shape, the potential core P converges from a flat shape toward the downstream of the flow of the working air flow Waf to a circular shape toward the center of the flat shape. .
  • the plurality of lateral vortices Vt generated downstream of the outlet hole 10 are generated along the inner wall surface 110 of the outlet hole 10, the plurality of lateral vortices Vt have a flat shape close to the shape of the outlet hole 10. To spread. Therefore, the lateral vortex Vt generated downstream of the short edge 104 is generated at a position farther from the potential core P than the lateral vortex Vt generated downstream of the long edge 102.
  • the present inventors collide an auxiliary vortex Vs having a vortex characteristic different from that of the horizontal vortex Vt into the lateral vortex Vt generated downstream of the outlet of the long edge portion 102 in a state where the vortex characteristic is different, thereby We thought that the reach could be increased. Therefore, the present inventors decided to form the plurality of auxiliary holes 202 so as to be biased toward the edge side of the long edge portion 102.
  • the opening shape of the blowing hole 10 is a flat shape
  • the lateral vortex Vt generated downstream of the outlet of the short edge portion 104 is compared with the lateral vortex Vt generated downstream of the outlet of the long edge portion 102. It is generated at a position away from the potential core P of the working airflow Waf. Therefore, the lateral vortex Vt generated downstream of the short edge portion 104 has less influence on the reach of the working airflow Waf than the lateral vortex Vt generated downstream of the long edge portion 102.
  • the plurality of auxiliary holes 202 are formed so as to be biased toward the edge sides of the pair of long edge portions 102.
  • the auxiliary vortex Vs generated downstream of the auxiliary hole 202 collides with the horizontal vortex Vt generated downstream of the pair of long edge portions 102 in a state where the vortex rotation direction is different.
  • the lateral vortex Vt having a large influence on the reach of the working airflow Waf collides with the auxiliary vortex Vs, the lateral vortex Vt is greatly disturbed, so that it is difficult to synthesize the lateral vortex Vt.
  • the air pulling action in the working airflow Waf is suppressed, so that the working airflow Waf has a long reach.
  • the number of the plurality of auxiliary holes 202 is less on the edge side of the pair of short edges 104 than in the first embodiment. Therefore, compared with the case where it forms along the whole peripheral part 100 of the blowing hole 10, the collision of the horizontal vortex Vt and the auxiliary vortex Vs can be suppressed. As a result, it is possible to reduce aerodynamic noise caused by the collision between the lateral vortex Vt and the auxiliary vortex Vs while increasing the reach distance of the working airflow Waf.
  • the auxiliary hole 202 having the same shape and size is formed to be biased toward the edge side of the long edge portion 102
  • the present invention is not limited to this.
  • the auxiliary hole 202 formed on the edge side of the short edge portion 104 is longer than the edge side of the pair of short edge portions 104 so that the auxiliary vortex Vs is easily generated on the edge side of the pair of long edge portions 102.
  • the auxiliary hole 202 formed on the edge side of the edge 102 may be different in shape and size.
  • the auxiliary hole 202 formed on the edge side of the short edge portion 104 has one larger than the auxiliary hole 202 formed on the edge side of the long edge portion 102 and the other formed smaller,
  • One may be formed in a circular shape and the other may be formed in a polygonal shape.
  • the vortex characteristics of the lateral vortex Vt generated downstream of the outlet of the auxiliary hole 202 vary depending on the shape and size of the auxiliary hole 202. For this reason, it is desirable that the shape and size of the auxiliary hole 202 be appropriately set according to the use application of the air blowing device 1.
  • FIGS. 1-10 a third embodiment will be described with reference to FIGS.
  • This embodiment is different from the second embodiment in that a plurality of auxiliary holes 202 are formed on the edge side of the long edge portion 102 and are not formed on the edge sides of the pair of short edge portions 104.
  • portions different from those in the second embodiment will be mainly described, and description of portions similar to those in the second embodiment may be omitted.
  • the plurality of auxiliary holes 202 are not formed along the edge sides of the pair of short edges 104, but along the edges of the pair of long edges 102. Only formed.
  • the auxiliary vortex Vs generated along the pair of long edges 102 collides with the lateral vortex Vt generated downstream of the long edge 102, thereby generating downstream of the long edge 102. Development of the transverse vortex Vt can be suppressed.
  • FIG. 13 shows the reach of the working airflow Waf when the auxiliary hole 202 is formed along the edge side of the pair of short edges 104 and when the auxiliary hole 202 is not formed.
  • the left graph of FIG. 13 shows the arrival rate of the working airflow Waf when the auxiliary hole 202 is formed
  • the right graph of FIG. 13 shows the arrival rate of the working airflow Waf when the auxiliary hole 202 is not formed. Show.
  • the reach of the working airflow Waf is the same when the auxiliary hole 202 is formed along the edge side of the pair of short edges 104 and when the auxiliary hole 202 is not formed.
  • FIG. 14 shows aerodynamic noise generated by the collision of the lateral vortex Vt and the auxiliary vortex Vs when the auxiliary hole 202 is formed along the edge side of the pair of short edges 104 and when the auxiliary hole 202 is not formed.
  • the left graph of FIG. 14 shows aerodynamic noise when the auxiliary hole 202 is formed
  • the right graph of FIG. 14 shows aerodynamic noise when the auxiliary hole 202 is not formed.
  • aerodynamic noise can be reduced compared with the case where the auxiliary hole 202 is formed.
  • the instrument panel is required to be downsized from the viewpoint of expansion of the passenger compartment and design.
  • the instrument panel tends to be provided with a large information device for displaying a vehicle state or the like at a center portion in the vehicle width direction or a portion facing the passenger in the vehicle front-rear direction. Therefore, it is necessary to take measures such as making the blow hole 10 thin.
  • the auxiliary hole 202 is not formed along the edge sides of the pair of short edges 104. Therefore, in the hole forming portion 12, the forming portion for forming the auxiliary hole 202 is unnecessary on the edge side of the pair of short edge portions 104. As a result, the hole forming portion 12 and the duct portion 14 can be formed smaller than those in the first embodiment and the second embodiment, and an effect of improving the degree of freedom of installation and the degree of freedom of mounting of the air blowing device 1 can be obtained. it can.
  • auxiliary hole 202 is formed in a circular shape.
  • the present invention is not limited to this.
  • the auxiliary hole 202 may be formed in a slit shape.
  • the opening shape of the blowing hole 10 includes a pair of long edge portions 102 extending in the short axis Ss direction and a pair of short edge portions 104 extending in the long axis Ls direction. They may all be connected in a straight line and formed in a rectangular shape.
  • the vortex generating structure 20 is the first embodiment in that the concave portions 206 and the convex portions 208 are alternately arranged along the peripheral edge portion 100 including the blowout hole 10 in the hole forming portion 12. It is different from the form. In the present embodiment, portions different from the first embodiment will be mainly described, and description of portions similar to the first embodiment may be omitted.
  • the vortex generating structure 20 includes a plurality of concave and convex portions 204 in which concave portions 206 and convex portions 208 are alternately arranged along the peripheral edge portion 100 including the blowout hole 10 in the hole forming portion 12. Is formed. Further, the opening shape of the blowout hole 10 is formed by a pair of sawtooth-shaped long edges 102 extending in the direction of the short axis Ss and a pair of short edges 104 extending in an arc shape in the direction of the long axis Ls. It is a flat shape.
  • the sawtooth shape is a shape in which the bases of a plurality of triangles are continuously arranged.
  • the triangle is a substantially isosceles triangle having one base and two equal sides, and the base is arranged along the long edge portion 102 without a gap. Further, the vertices of the substantially isosceles triangle are formed so as to protrude from the pair of long edge portions 102 toward the vertices of the substantially isosceles triangle of the opposing long edge portion 102. The area of each approximately isosceles triangle is smaller than the area of the opening of the blow hole 10 so as not to hinder the flow of the working airflow Waf blown from the blow hole 10.
  • the plurality of concavo-convex portions 204 are not formed along the edge sides of the pair of short edge portions 104 but are formed only along the edge sides of the pair of long edge portions 102.
  • the plurality of uneven portions 204 may be formed along the short edge portion 104 in addition to the long edge portion 102.
  • the plurality of concavo-convex portions 204 are configured in a plate shape having a thickness in the air flow direction. That is, the plurality of concavo-convex portions 204 have a rectangular shape when the cross section is the cross section.
  • the plate surface on the downstream side of the air flow of the plurality of concave and convex portions 204 is flush with the end surface on the downstream side of the air flow in the portion of the hole forming portion 12 where the peripheral edge portion 100 is formed.
  • the plurality of concavo-convex portions 204 have a plate surface on the downstream side of the air flow that is flush with an end surface of the hole forming portion 12 where the blowout holes 10 are opened.
  • the air blowing device 1 of the present embodiment when the conditioned air whose temperature has been adjusted by the air conditioning unit flows into the duct portion 14, the conditioned air flows into the blowing hole 10 through the flow path 18.
  • the countless transverse vortex Vt generated downstream of the outlet of the blow hole 10 has a vortex axis that intersects the flow direction of the working air flow Waf and goes straight in the same direction as the flow direction of the working air flow Waf. In addition to the component, it has a rotation component from the inside to the outside of the blowing hole 10.
  • innumerable auxiliary vortices Vs are generated on the downstream side of the air flow of the plurality of concave and convex portions 204 having a substantially isosceles triangle shape and on the respective equilateral sides of the substantially isosceles triangle.
  • the auxiliary vortex Vs has a vortex axis perpendicular to the equilateral sides of a substantially isosceles triangle.
  • the rotation directions of the auxiliary vortex Vs generated on the respective equilateral sides of the substantially isosceles triangle are opposite to each other. That is, innumerable auxiliary vortices Vs have different vortex characteristics and at least the vortex rotation direction and vortex axis direction of the transverse vortex Vt.
  • the auxiliary vortex Vs having a different vortex rotation direction and vortex axis from the lateral vortex Vt collides with the lateral vortex Vt at the outlet downstream of the blowout hole 10, which is downstream of the uneven portion 204.
  • the horizontal vortex Vt and the auxiliary vortex Vs collide the horizontal vortex Vt is greatly disturbed, so that it is difficult to synthesize the horizontal vortex Vt. That is, the development of the lateral vortex Vt generated downstream of the outlet of the blow hole 10 is suppressed. As a result, the air draw-in effect in the working airflow Waf is suppressed, so that the working airflow Waf has a long reach.
  • the plurality of uneven portions 204 are not formed along the edge sides of the pair of short edges 104 but are formed only along the edges of the pair of long edges 102. Therefore, the collision of the lateral vortex Vt and the auxiliary vortex Vs can be suppressed as compared with the case where the plurality of uneven portions 204 are formed along the entire peripheral edge portion 100. Thereby, the aerodynamic noise generated by the collision of the lateral vortex Vt and the auxiliary vortex Vs can be reduced while increasing the reach distance of the working airflow Waf.
  • the edge side of a pair of short edge part 104 is for forming the uneven
  • a forming part is unnecessary.
  • the hole formation part 12 and the duct part 14 can be formed small, and installation of the air blowing apparatus 1 is free. The effect of improving the degree of freedom and mounting can be obtained.
  • the plurality of concavo-convex portions 204 are configured as a plate having a thickness in the air flow direction. Accordingly, for example, the auxiliary vortex Vs is likely to be generated when the airflow passes between the concavo-convex portions 204 as compared to a case where the plurality of concavo-convex portions 204 are formed to extend to the flange portion 40, for example. Thereby, the drawing-in action of the air drawn into the working airflow Waf is suppressed, and the working airflow Waf has a long reach distance.
  • the plurality of concavo-convex portions 204 have a plate surface on the downstream side of the air flow that is flush with an end surface on the downstream side of the air flow at a portion forming the peripheral edge portion 100 in the hole forming portion 12. According to this, the position where the auxiliary vortex Vs is generated by the concavo-convex portion 204 approaches the position where the horizontal vortex Vt starts to occur in the hole forming portion 12, and the auxiliary vortex Vs easily collides with the horizontal vortex Vt. Can be sufficiently suppressed.
  • the present invention is not limited to this.
  • the plurality of uneven portions 204 may be formed in a rectangular shape.
  • grooved part 204 may be formed in circular arc shape.
  • grooved part 204 may be formed in a wave shape.
  • the shape of the plurality of concavo-convex portions 204 may be formed in a substantially regular triangle shape or a substantially right triangle shape.
  • the shape of the plurality of concave and convex portions 204 may be formed by combining triangular shapes, rectangular shapes, arc shapes, wave shapes, and the like.
  • the concave portion 206 and the convex portion 208 may be formed side by side with a certain gap.
  • the vertices of approximately isosceles triangles are formed so as to protrude toward the vertices of approximately isosceles triangles of the opposed long edge portions 102 in the plurality of uneven portions 204 .
  • the apex of a substantially isosceles triangle may be formed inside the duct portion 14 so as to protrude in the upstream direction of the air flow.
  • the plurality of uneven portions 204 may be formed to be inclined in the air flow upstream direction of the duct portion 14.
  • the vertex of a substantially isosceles triangle may protrude outside the duct part 14 toward the air flow downstream direction.
  • the plurality of uneven portions 204 may be formed to be inclined in the air flow downstream direction of the duct portion 14.
  • the present invention is not limited to this.
  • the shape of the plurality of concavo-convex portions 204 on the opening side of the blowout hole 10 is a triangular shape
  • the shape of the inner portion of the hole forming portion 12 is a triangular pyramid or a triangular prism shape, and the like from the end of the hole forming portion 12 It may be formed by extending the inside of the duct portion 14 toward the air flow upstream.
  • the shape of the plurality of concavo-convex portions 204 is formed to protrude toward the inside of the blowout hole 10
  • the plurality of concavo-convex portions 204 are formed to be recessed from the peripheral edge portion 100 of the blowout hole 10 toward the outside of the blowout hole 10, or the plurality of concavo-convex portions 204 are formed to protrude outward from the blowout hole 10. It may be formed by alternately arranging noodles.
  • the vortex generating structure 20 has been described with respect to the example including the plurality of uneven portions 204, but is not limited thereto.
  • the vortex generating structure 20 may include a plurality of auxiliary holes 202 exemplified in the first embodiment in addition to the plurality of uneven portions 204.
  • the present embodiment is different from the first embodiment in that the vortex generating structure 20 has a structure including a plurality of vortex generators 22.
  • portions different from the first embodiment will be mainly described, and description of portions similar to the first embodiment may be omitted.
  • the vortex generating structure 20 is formed by a plurality of vortex generators 22 arranged side by side along the peripheral edge portion 100 including the blowout hole 10 in the hole forming portion 12.
  • the opening shape of the blowout hole 10 is a flat shape, and is formed by a pair of long edge portions 102 extending linearly and a pair of short edge portions 104 extending in an arc shape.
  • the plurality of vortex generators 22 are formed of a disk-shaped member having a circular shape when viewed from the opening direction of the blowout hole 10.
  • the plurality of vortex generators 22 are arranged side by side along the peripheral edge portion 100 including the blowout hole 10 at equal intervals inside the blowout hole 10.
  • the plurality of vortex generators 22 have a smaller area than the area of the opening of the blowout hole 10 so as not to hinder the flow of the working airflow Waf blown from the blowout hole 10.
  • the plurality of vortex generators 22 may be arranged side by side along the peripheral edge 100 including the blowout holes 10 at unequal intervals inside the blowout holes 10.
  • the plurality of vortex generators 22 are supported by a support portion 23 extending in a predetermined direction orthogonal to the opening direction of the blow hole 10 inside the blow hole 10 so as not to directly contact the peripheral edge portion 100. . Specifically, each of the plurality of vortex generators 22 is connected to a tip portion of a rod-like support portion 23 that protrudes inward from the peripheral edge portion 100.
  • the plurality of vortex generators 22 are arranged so as to be biased toward the edge sides of the pair of long edge portions 102 rather than the edge sides of the pair of short edge portions 104. Specifically, the plurality of vortex generators 22 are not disposed along the edge sides of the pair of short edges 104 but are disposed along the edges of the pair of long edges 102. The plurality of vortex generators 22 may be formed along the short edge portion 104 in addition to the long edge portion 102.
  • the plurality of vortex generators 22 are configured by a plate-like member having a thickness in the opening direction of the blowout hole 10.
  • the plurality of vortex generators 22 are circular when viewed from the opening direction of the blowing hole 10 and are viewed from a direction orthogonal to the opening direction of the blowing hole 10. It is comprised with the disk-shaped member used as a square shape.
  • the plate surface on the downstream side of the air flow of the plurality of vortex generators 22 is flush with the end surface on the downstream side of the air flow of the hole forming portion 12 where the peripheral edge portion 100 is formed.
  • the plate surface on the downstream side of the air flow is flush with the end surface of the hole forming portion 12 where the blowout hole 10 opens.
  • the air blowing device 1 configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct portion 14, the conditioned air flows into the blowing hole 10 through the flow path 18. Then, when the working airflow Waf is blown out from the blowing hole 10, innumerable transverse vortices Vt are generated downstream of the outlet of the blowing hole 10.
  • a plurality of vortex generators 22 are arranged inside the blowing hole 10. For this reason, a part of the conditioned air flowing into the blowout hole 10 through the flow path 18 is blown into the room after passing around the plurality of vortex generators 22.
  • the airflow flowing along the plate surface of the vortex generators 22 is peeled off from the outer edge, so that all-round separated vortices having various vortex axes are generated. .
  • innumerable auxiliary vortices Vs are generated on the downstream side of the air flow of the plurality of vortex generators 22.
  • the auxiliary vortex Vs is generated on the downstream side of the air flow of the vortex generator 22.
  • the auxiliary vortex Vs differs from the transverse vortex Vt in vortex characteristics at least in the direction of the vortex rotation and the direction of the vortex axis.
  • the auxiliary vortex Vs whose vortex rotation direction and vortex axis direction are different from the horizontal vortex Vt collides with the horizontal vortex Vt.
  • the horizontal vortex Vt and the auxiliary vortex Vs collide the horizontal vortex Vt is greatly disturbed, so that it is difficult to synthesize the horizontal vortex Vt. That is, the development of the lateral vortex Vt generated downstream of the outlet of the blow hole 10 is suppressed. As a result, the air draw-in effect in the working airflow Waf is suppressed, so that the working airflow Waf has a long reach.
  • the plurality of vortex generators 22 are arranged along the edge sides of the pair of long edges 102 and are not arranged on the edges of the pair of short edges 104. For this reason, compared with the case where the some vortex generator 22 is formed along the whole peripheral part 100, the collision of the horizontal vortex Vt and the auxiliary vortex Vs can be suppressed. Thereby, the aerodynamic noise generated by the collision of the lateral vortex Vt and the auxiliary vortex Vs can be reduced. Moreover, the reduction of the opening area of the blowing hole 10 accompanying the addition of the plurality of vortex generators 22 can be suppressed.
  • the plurality of vortex generators 22 of the present embodiment extend in a predetermined direction orthogonal to the opening direction of the blow hole 10 inside the blow hole 10 so as not to be in direct contact with the peripheral edge portion 100. It is supported by the support part 23.
  • the vortex generator 22 can be spaced apart from the peripheral part 100.
  • the auxiliary vortex Vs can be generated in substantially the entire outer peripheral edge of the vortex generator 22.
  • the plurality of vortex generators 22 are configured by a plate-like member having a thickness in the opening direction of the blowout hole 10. According to this, the auxiliary vortex Vs is easily generated when the airflow passes between the vortex generators 22. As a result, the auxiliary vortex Vs can easily collide with the horizontal vortex Vt, so that the development of the horizontal vortex Vt can be sufficiently suppressed.
  • the plate surface on the downstream side of the air flow is flush with the end surface on the downstream side of the air flow of the portion forming the peripheral edge 100 in the hole forming portion 12. According to this, the position where the auxiliary vortex Vs is generated by the vortex generator 22 approaches the position where the horizontal vortex Vt starts to be generated in the hole forming portion 12, and the auxiliary vortex Vs easily collides with the horizontal vortex Vt. The development of Vt can be sufficiently suppressed.
  • the plurality of vortex generators 22 are illustrated as being connected to the distal end portion of the rod-like support portion 23 protruding inward from the peripheral edge portion 100, but the present invention is not limited to this.
  • the plurality of vortex generators 22 are, for example, L-shaped extending from the inner wall surface of the duct portion 14 forming the flow path 18 toward the blowout hole 10 as shown in the first modification of FIGS. 34 and 35. It may be supported by the support part 23.
  • each of the plurality of vortex generators 22 is supported by separate support portions 23 , but the present invention is not limited to this.
  • at least a part of the plurality of vortex generators 22 may be supported by a support portion 23 that extends along the extending direction of the pair of long edge portions 102. Good.
  • the plurality of vortex generators 22 are supported by a support portion 23 at least partially extending in a direction orthogonal to the extending direction of the pair of long edge portions 102. May be.
  • the louver 24 for adjusting the air direction or the air volume when the louver 24 for adjusting the air direction or the air volume is arranged inside the blow hole 10 or the flow path 18, the louver 24 A plurality of vortex generators 22 may be supported.
  • the louver 24 constitutes a support portion that supports the plurality of vortex generators 22. According to this, even if the attitude of the louver 24 is changed to change the wind direction or the like, the attitude of the plurality of vortex generators 22 can be changed following the change. That is, it is possible to change the postures of the plurality of vortex generators 22 in accordance with the change in wind direction without providing a dedicated mechanism.
  • the plurality of vortex generators 22 are configured by a plate-like member having a thickness in the opening direction of the blowout hole 10, and the blowout hole 10 is opened in the hole forming portion 12.
  • the present invention is not limited to this. That is, even when the plurality of vortex generators 22 are configured by plate-like members, the plate surface may not be flush with the end surface of the hole forming portion 12 where the blowing holes 10 are opened. Good.
  • the plurality of vortex generators 22 may be arranged side by side in the opening direction of the blowout hole 10 as shown in the fifth modification of FIG. In this case, the plurality of vortex generators 22 may be arranged so as to overlap each other in the opening direction of the blowout hole 10 or may be arranged so as not to overlap each other.
  • the plurality of vortex generators 22 are illustrated as being formed of a disk-shaped member having a circular shape when viewed from the opening direction of the blowout hole 10, but the present invention is not limited to this.
  • the plurality of vortex generators 22 may be formed of a member whose shape when the plurality of vortex generators 22 are viewed from the opening direction of the blowout hole 10 is an ellipse or a polygon.
  • the plurality of vortex generators 22 may be configured by a member whose shape viewed from a direction orthogonal to the opening direction of the blowout hole 10 is a circular shape, a conical shape, or a polygonal shape, for example.
  • the plurality of vortex generators 22 may be composed of spheres 221 as shown in the first modification of FIG. Further, the plurality of vortex generators 22 may be configured by polyhedrons such as an octahedron 222 shown in the second modification of FIG. 42 and a hexahedron 223 shown in the third modification of FIG. 43. Furthermore, the plurality of vortex generators 22 may be configured by a mesh-like body 224 formed in a mesh shape, as shown in the fourth modified example of FIG.
  • the vortex generating structure 20 has been described with respect to the example constituted by a plurality of vortex generators 22, but is not limited thereto.
  • the vortex generating structure 20 may be configured to include at least one of the plurality of auxiliary holes 202 and the plurality of uneven portions 204 in addition to the plurality of vortex generators 22.
  • the air blowing device 1 of the present embodiment is different from the third embodiment in the opening shape of the blowing holes 10.
  • portions different from the third embodiment will be mainly described, and description of portions similar to the third embodiment may be omitted.
  • the blowout hole 10 includes a first edge 102 a and a second edge 102 b that constitute a pair of long edges 102, and a third edge 104 a and a second edge that constitute a pair of short edges 104. It consists of four edges 104b.
  • the first edge portion 102a and the second edge portion 102b are different from each other in the direction of the long axis Ls.
  • the first edge portion 102a and the second edge portion 102b are curved so that the interval at the central portion in the direction of the long axis Ls is smaller than the interval at both ends in the direction of the long axis Ls.
  • the third edge portion 104a and the fourth edge portion 104b are curved so that the interval at the central portion in the direction of the short axis Ss is larger than the interval at both ends in the direction of the short axis Ss.
  • the third edge portion 104a and the fourth edge portion 104b are shorter in length along the edge than the first edge portion 102a and the second edge portion 102b, and the first edge portion 102a and the second edge portion 102b. It is opposed at an interval larger than the interval.
  • the third edge portion 104a is connected to one end of the first edge portion 102a and the second edge portion 102b so that the connection portion between the first edge portion 102a and the second edge portion 102b has a roundness.
  • the fourth edge portion 104b is connected to the other ends of the first edge portion 102a and the second edge portion 102b so that the connection portion between the first edge portion 102a and the second edge portion 102b is rounded. Yes.
  • blowout hole 10 configured as described above has a distorted shape with respect to the oval shape, the connection between the first edge portion 102a and the second edge portion 102b and the third edge portion 104a and the fourth edge portion 104b.
  • the part is rounded. For this reason, the development of the lateral vortex Vt in the vicinity of the outlet downstream of the outlet hole 10 is easily suppressed as compared with the outlet hole 10 including a corner portion.
  • blowout holes 10 that are curved so that the distance between the central portions of the first edge portion 102a and the second edge portion 102b is smaller than the distance between both end portions in the direction of the long axis Ls. Although illustrated, it is not limited to this.
  • the first edge portion 102a and the second edge portion 102b of the blowout hole 10 are spaced from each other at both ends in the direction of the long axis Ls. You may curve so that it may become larger than the space
  • the first edge portion 102a and the second edge portion 102b of the blowout hole 10 are spaced apart at one end side in the direction of the long axis Ls. You may curve so that it may become larger than the space
  • the blowout hole 10 has the first edge 102a and the second edge 102b because the first edge 102a and the second edge 102b are curved in the same direction.
  • the interval between the edges 102b may be kept constant.
  • the blowout hole 10 has the first edge portion 102 a and the second edge portion 102 b refracted in the same direction by the first edge portion 102 a and the second edge portion 102 b.
  • the interval between the edges 102b may be kept constant.
  • the blowout hole 10 is provided with recesses 102c and 102d that are recessed so as to be away from the first edge 102a and the second edge 102b. May be.
  • the blowout hole 10 is provided with protrusions 102e and 102f protruding so as to approach the first edge 102a and the second edge 102b. May be.
  • each of the above-described modified examples exemplifies a part of the opening shape of the blowing hole 10, and a shape other than the above-described shape may be adopted as the opening shape of the blowing hole 10.
  • the vortex generating structure 20 illustrated the opening shape of the blowing hole 10 in the air blowing apparatus 1 comprised with the some auxiliary hole 202, it is not limited to this.
  • the opening shape of the blowout hole 10 shown in the sixth embodiment and its modification can also be applied to the air blowing device 1 in which the vortex generating structure 20 includes a plurality of concavo-convex portions 204 and a plurality of vortex generators 22. .
  • this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
  • the auxiliary hole 202 may have an elliptical shape or a polygonal shape.
  • the shape of the auxiliary hole 202 may be formed in a slit shape.
  • the opening shape of the blowout hole 10 has been described with respect to an example in which a pair of linear long edge portions 102 and a pair of arcuate short edge portions 104 are continuously formed. It is not limited to this.
  • the opening shape of the blowout hole 10 may be formed by connecting a pair of arc-shaped long edges 102 and a pair of straight short edges 104. Further, as shown in the second modified example of the third embodiment, it may be formed in a rectangular shape including a pair of straight long edges 102 and a pair of straight short edges 104.
  • the opening shape of the blowout hole 10 may be formed in a circular shape, an elliptical shape, or a polygonal shape.
  • an air blowing apparatus has the duct part which forms the flow path for allowing a working air current to pass through, and the air flow downstream of a duct part.
  • a hole forming part for forming a blowout hole serving as a blowout port for the working airflow is provided.
  • This hole forming portion has a vortex generating structure for generating auxiliary vortices having different vortex characteristics including the rotational direction of the vortex and the direction of the vortex axis from the lateral vortex.
  • This vortex generating structure is formed in the hole forming portion so that the auxiliary vortex collides with the horizontal vortex in a state where at least one of the rotation direction of the vortex and the direction of the vortex axis has a vortex characteristic different from that of the horizontal vortex.
  • the vortex generating structure includes a plurality of auxiliary holes formed side by side along the peripheral edge surrounding the blowout hole, and the airflow blown from the plurality of auxiliary holes causes at least the horizontal vortex to
  • the structure is such that auxiliary vortices with different vortex rotation directions are generated.
  • the peripheral portion connects the first edge and the second edge extending opposite to each other at a predetermined interval, and one end of each of the first edge and the second edge. And a fourth edge that connects the other ends of the first edge and the second edge.
  • the first edge portion and the second edge portion constitute a pair of long edge portions that face each other at an interval smaller than the interval between the third edge portion and the fourth edge portion.
  • the third edge and the fourth edge constitute a pair of short edges facing each other at a larger interval than the interval between the first edge and the second edge.
  • the plurality of auxiliary holes are formed on the edge side of the pair of long edge portions so that the plurality of auxiliary vortices are less likely to be generated on the edge side of the pair of short edge portions than the edge side of the pair of long edge portions. It is formed unevenly. According to this, since the collision of the lateral vortex and the auxiliary vortex can be suppressed as compared with the case where the auxiliary hole is formed along the entire peripheral portion of the outlet hole, the lateral vortex and Aerodynamic noise generated by the collision of the auxiliary vortex can be reduced.
  • the blowout hole has a flat opening shape
  • the peripheral part of the blowout hole includes a pair of long edges and a pair of short edges connected to the pair of long edges
  • the plurality of auxiliary holes are formed so as to be biased toward the edge sides of the pair of long edge portions.
  • the plurality of auxiliary holes are formed on the edge sides of the pair of long edges and are not formed on the edges of the pair of short edges.
  • the vortex generating structure includes a plurality of concave and convex portions formed by alternately arranging concave portions and convex portions along a peripheral edge portion including the blowout holes, and an air current is generated between the concave and convex portions.
  • the transverse vortex has a structure in which auxiliary vortices having different vortex rotation directions and vortex axis directions are generated.
  • the peripheral portion connects the first edge and the second edge extending opposite to each other at a predetermined interval, and one end of each of the first edge and the second edge. And a fourth edge that connects the other ends of the first edge and the second edge.
  • the first edge portion and the second edge portion constitute a pair of long edge portions that face each other at an interval smaller than the interval between the third edge portion and the fourth edge portion.
  • the third edge and the fourth edge constitute a pair of short edges facing each other at a larger interval than the interval between the first edge and the second edge.
  • the plurality of concavo-convex portions are arranged on the edge side of the pair of long edge portions so that the plurality of auxiliary vortices are less likely to be generated on the edge side of the pair of short edge portions than the edge side of the pair of long edge portions. It is formed unevenly. According to this, the collision of the lateral vortex and the auxiliary vortex can be suppressed as compared with the case where the concavo-convex portion is formed along the entire peripheral edge of the blowout hole. Aerodynamic noise generated by the collision of the auxiliary vortex can be reduced.
  • the blowout hole has a flat opening shape
  • the peripheral portion of the blowout hole includes a pair of long edges and a pair of short edges connected to the pair of long edges,
  • the plurality of uneven portions are formed so as to be biased toward the edge sides of the pair of long edge portions.
  • the plurality of concavo-convex portions are formed on the edge sides of the pair of long edge portions and are not formed on the edge sides of the pair of short edge portions.
  • grooved part is comprised by the plate shape which has thickness in an air flow direction.
  • grooved part is formed so that it may extend
  • the drawing-in action of the air drawn into the working airflow blown out from the blowing hole is suppressed, and the reach distance of the working airflow blown out from the blowing hole becomes long.
  • the plate surface on the downstream side in the air flow is flush with the end surface on the downstream side in the air flow of the portion forming the peripheral edge in the hole forming portion. According to this, since the position where the auxiliary vortex is generated by the uneven portion approaches the position where the horizontal vortex starts to occur in the hole forming portion and the auxiliary vortex easily collides with the horizontal vortex, the development of the horizontal vortex is sufficiently suppressed. be able to.
  • the vortex generating structure includes a plurality of vortex generators arranged side by side along the peripheral edge surrounding the blowout hole in the hole forming portion.
  • the auxiliary vortex is generated in which at least one of the vortex rotation direction and the vortex axis direction is different from the horizontal vortex.
  • the plurality of vortex generators are supported by the support portion inside the blowout hole so as not to directly contact the peripheral edge portion.
  • a vortex generator can be spaced apart from a peripheral part.
  • an auxiliary vortex can be generated between the vortex generator and the peripheral portion, so that even if a horizontal vortex is generated between the vortex generator and the peripheral portion, the development of the horizontal vortex is suppressed. be able to.
  • the peripheral portion connects the first edge and the second edge extending opposite to each other at a predetermined interval, and one end of each of the first edge and the second edge. And a fourth edge that connects the other ends of the first edge and the second edge.
  • the first edge portion and the second edge portion constitute a pair of long edge portions that face each other at an interval smaller than the interval between the third edge portion and the fourth edge portion.
  • the third edge and the fourth edge constitute a pair of short edges facing each other at a larger interval than the interval between the first edge and the second edge.
  • the plurality of vortex generators are arranged on the edge side of the pair of long edges so that a plurality of auxiliary vortices are less likely to be generated on the edge side of the pair of short edges compared to the edges of the pair of long edges. It is formed to be biased. According to this, since the collision of the horizontal vortex and the auxiliary vortex can be suppressed as compared with the case where the vortex generator is formed along the entire peripheral edge of the blowout hole, And aerodynamic noise generated by the collision of the auxiliary vortex can be reduced.
  • the plurality of vortex generators are formed on the edge sides of the pair of long edges and are not formed on the edges of the pair of short edges. According to this, it is possible to suppress a decrease in the opening area of the blowout hole due to the addition of the plurality of vortex generators.
  • the plurality of vortex generators are constituted by plate-like members having a thickness in the opening direction of the blowout holes. According to this, an auxiliary vortex is easily generated when the airflow passes between the vortex generators. As a result, the auxiliary vortex easily collides with the horizontal vortex, so that the development of the horizontal vortex can be sufficiently suppressed.
  • an opening direction is a normal line direction of the surface enclosed by the edge part of a blowing hole.
  • the plate surface on the downstream side of the air flow is flush with the end surface on the downstream side of the air flow of the portion forming the peripheral edge in the hole forming portion. According to this, the position where the auxiliary vortex is generated by the vortex generator is close to the position where the horizontal vortex begins to occur in the hole forming part, and the auxiliary vortex easily collides with the horizontal vortex. can do.

Abstract

An air discharge device (1) equipped with a duct portion (14) forming a flow path (18) enabling the passage of an operating airstream discharged toward a discharge recipient (2), and a hole formation portion (12) forming a discharge hole (10) serving as a discharge opening for the operating airstream on the airflow downstream side of the duct portion. The hole formation portion has a swirl generation structure (20) for generating an auxiliary swirl for which the swirl characteristics, including the swirl rotation direction and the swirl axis direction, differ from a lateral swirl generated on the downstream side of the opening of the discharge hole by the operating airstream. The swirl generation structure is formed in the hole formation portion such that the auxiliary swirl collides with the lateral swirl while having a swirl characteristic, that is, the swirl rotation direction and/or the swirl axis direction, that is different from that of the lateral swirl.

Description

空気吹出装置Air blowing device 関連出願への相互参照Cross-reference to related applications
 本出願は、2018年4月11日に出願された日本特許出願番号2018-76325号と、2018年7月18日に出願された日本特許出願番号2018-135299号と、2018年10月23日に出願された日本特許出願番号2018-199383号と、2018年12月25日に出願された日本特許出願番号2018-240807号に基づくものであって、ここにその記載内容が参照により組み入れられる。 This application includes Japanese Patent Application No. 2018-76325 filed on April 11, 2018, Japanese Patent Application No. 2018-135299 filed on July 18, 2018, and October 23, 2018. Based on Japanese Patent Application No. 2018-199383 filed in Japan and Japanese Patent Application No. 2018-240807 filed on Dec. 25, 2018, the contents of which are incorporated herein by reference.
 本開示は、気流を吹き出す空気吹出装置に関する。 The present disclosure relates to an air blowing device that blows out airflow.
 従来、作動気流となる気流の到達距離を長くするために、作動気流を形成する吹出口の周辺に、作動気流に引き込まれる空気の引き込みを阻む援護気流を形成する補助吹出口が設けられたエアーノズルが知られている(例えば、特許文献1参照)。 Conventionally, in order to increase the reach of the airflow that becomes the working airflow, the air provided with an auxiliary air outlet that forms a support airflow that prevents the air drawn into the working airflow around the air outlet that forms the working airflow. Nozzles are known (see, for example, Patent Document 1).
特開平8-318176号公報JP-A-8-318176
 本発明者らは、作動気流の到達距離をさらに長くするために、吹出口から作動気流を吹き出した際の空気の引き込み作用について、鋭意検討した。この結果、空気の引き込み作用は、吹出口から作動気流を吹き出した際、作動気流の速度勾配によるせん断力によって発生する横渦に起因することが分かった。横渦とは、作動気流の流れ方向に直交する渦の中心を有する渦である。渦の中心を以下、渦軸とも呼ぶ。 In order to further increase the reach of the working airflow, the present inventors diligently studied the air drawing action when the working airflow was blown out from the outlet. As a result, it was found that the air drawing action is caused by a lateral vortex generated by a shearing force due to the velocity gradient of the working airflow when the working airflow is blown out from the outlet. The transverse vortex is a vortex having a vortex center perpendicular to the flow direction of the working airflow. The center of the vortex is hereinafter also referred to as the vortex axis.
 本発明者らがさらに検討したところ、吹出口の出口下流付近では、速度境界層に発生する無数の横渦が合成して大規模なものに発達することで、空気の引き込み作用がより強くなるとの知見を得た。 As a result of further investigation by the present inventors, in the vicinity of the outlet downstream of the blower outlet, an infinite number of transverse vortices generated in the velocity boundary layer are synthesized and developed into a large-scale one, and the air drawing action becomes stronger. I got the knowledge.
 しかしながら、上述の従来技術では、吹出口の周囲に補助吹出口を設けることが開示されているだけで、本発明者らの知見については何ら示されていない。このため、気流の到達距離の更なる向上を見込むことが困難である。
 本開示は、吹出口から吹き出す作動気流の空気の引き込み作用を抑えて、作動気流の到達距離を長くすることが可能な空気吹出装置を提供することを目的としている。
However, the above-described prior art only discloses providing an auxiliary air outlet around the air outlet, and does not show any knowledge of the inventors. For this reason, it is difficult to expect further improvement in the reach of the airflow.
An object of the present disclosure is to provide an air blowing device capable of suppressing the air drawing action of the working air current blown out from the air outlet and increasing the reach of the working air current.
 本開示の1つの観点によれば、空気吹出装置は、吹出対象へ向けて吹き出す作動気流を通過させるための流路を形成するダクト部と、ダクト部の空気流れ下流側に作動気流の吹出口となる吹出穴を形成する穴形成部と、を備える。穴形成部は、作動気流によって吹出穴の出口下流側に発生する横渦とは渦の回転方向および渦軸の方向を含む渦特性が異なる補助渦を発生させる渦発生構造を有する。渦発生構造は、補助渦が渦の回転方向および渦軸の方向の少なくとも一方が横渦と異なる渦特性を有する状態で、横渦に衝突するように穴形成部に形成されている。 According to one aspect of the present disclosure, an air blowing device includes a duct portion that forms a flow path for allowing a working air flow blown toward a blowing target, and a working air flow outlet on the air flow downstream side of the duct portion. A hole forming part for forming a blowout hole. The hole forming portion has a vortex generating structure that generates an auxiliary vortex having a vortex characteristic that is different from the lateral vortex generated on the downstream side of the outlet of the blowout hole by the working airflow, including the vortex rotation direction and the vortex axis direction. The vortex generating structure is formed in the hole forming portion so that the auxiliary vortex collides with the horizontal vortex in a state where at least one of the rotation direction of the vortex and the direction of the vortex axis has a vortex characteristic different from that of the horizontal vortex.
 本開示の別の観点によれば、空気吹出装置は、作動気流を通過させるための流路を形成するダクト部と、ダクト部の空気流れ下流側に作動気流の吹出口となる吹出穴を形成する穴形成部と、作動気流によって吹出穴の出口下流側に発生する横渦とは渦の回転方向および渦軸の方向を含む渦特性が異なる補助渦を発生させる渦発生構造と、を備える。渦発生構造は、穴形成部のうち吹出穴を囲む周縁部に沿って並んで配置される複数の渦発生体を含み、渦発生体の周囲を気流が通過する際に、渦の回転方向および渦軸の方向の少なくとも一方が横渦とは異なる補助渦が発生する構造になっている。 According to another aspect of the present disclosure, the air blowing device forms a duct portion that forms a flow path for allowing the working air flow to pass therethrough, and a blowout hole that serves as an air outlet for the working air current on the downstream side of the air flow of the duct portion. And a vortex generating structure for generating auxiliary vortices having different vortex characteristics including the rotation direction of the vortex and the direction of the vortex axis from the horizontal vortex generated on the downstream side of the outlet of the blowout hole by the working airflow. The vortex generating structure includes a plurality of vortex generators arranged side by side along the peripheral edge surrounding the blowout hole in the hole forming portion, and when the airflow passes around the vortex generator, At least one of the vortex axis directions has a structure in which an auxiliary vortex different from the horizontal vortex is generated.
 このように構成される空気吹出装置では、吹出穴から気流が吹き出されると、吹出穴の出口下流には作動気流によって横渦が発生する。また、当該空気吹出装置では、吹出穴から気流が吹き出されると、渦発生構造によって補助渦が発生する。横渦および補助渦は異なる渦特性を有するため、横渦および補助渦が衝突すると、横渦の発達が抑制される。その結果、作動気流に引き込まれる空気の引き込み作用が抑制され、作動気流の流速の減衰が小さくなるため、吹出穴から吹き出す作動気流の到達距離が長くなる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
In the air blowing device configured as described above, when an air flow is blown out from the blowing hole, a lateral vortex is generated by the working air flow downstream of the outlet of the blowing hole. Moreover, in the said air blowing apparatus, when an airflow is blown out from the blowing hole, an auxiliary vortex will be generated by the vortex generating structure. Since the horizontal vortex and the auxiliary vortex have different vortex characteristics, when the horizontal vortex and the auxiliary vortex collide, the development of the horizontal vortex is suppressed. As a result, the drawing-in action of the air drawn into the working airflow is suppressed, and the attenuation of the flow velocity of the working airflow is reduced, so that the reach distance of the working airflow blown out from the blowout hole is increased.
Reference numerals in parentheses attached to each component and the like indicate an example of a correspondence relationship between the component and the like and specific components described in the embodiments described later.
第1実施形態に係る空気吹出装置の模式的な斜視図である。It is a typical perspective view of the air blowing apparatus which concerns on 1st Embodiment. 第1実施形態に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on 1st Embodiment. 図2のIII-III断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 第1比較例となる第1吹出口の出口下流における気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the airflow in the exit downstream of the 1st blower outlet used as the 1st comparative example. 第1比較例となる第1吹出口の出口下流における横渦および作動気流の状態を説明するための説明図である。It is explanatory drawing for demonstrating the state of the horizontal vortex and the working airflow in the downstream of the exit of the 1st blower outlet used as the 1st comparative example. 第1実施形態に係る空気吹出装置の吹出穴の出口下流における気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the airflow in the outlet downstream of the blowing hole of the air blowing apparatus which concerns on 1st Embodiment. 第1実施形態に係る空気吹出装置の吹出穴の出口下流における横渦および補助渦の状態を説明するための説明図である。It is explanatory drawing for demonstrating the state of a horizontal vortex and an auxiliary vortex in the outlet downstream of the blowing hole of the air blowing apparatus which concerns on 1st Embodiment. 第2実施形態に係る空気吹出装置の模式的な斜視図である。It is a typical perspective view of the air blowing apparatus which concerns on 2nd Embodiment. 第2実施形態に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on 2nd Embodiment. 第2比較例となる第2吹出口の出口下流における作動気流のポテンシャルコアを説明するための説明図である。It is explanatory drawing for demonstrating the potential core of the working airflow in the downstream of the exit of the 2nd blower outlet used as the 2nd comparative example. 第3実施形態に係る空気吹出装置の模式的な斜視図である。It is a typical perspective view of the air blowing apparatus which concerns on 3rd Embodiment. 第3実施形態に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on 3rd Embodiment. 第3実施形態に係る空気吹出装置において、穴形成部の短縁部側の補助穴がある場合とない場合で、作動気流到達率へ及ぼす影響を比較した図面である。In the air blowing device which concerns on 3rd Embodiment, it is drawing which compared the influence which acts on the working airflow arrival rate with and without the case where there is an auxiliary hole on the short edge side of the hole forming portion. 第3実施形態に係る空気吹出装置において、穴形成部の短縁部側の補助穴がある場合とない場合で、空力騒音低減効果を比較した図面である。In the air blowing device which concerns on 3rd Embodiment, it is drawing which compared the aerodynamic noise reduction effect with the case where there is an auxiliary hole by the side of the short edge of a hole formation part, and the case where it does not exist. 第3実施形態の第1変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 1st modification of 3rd Embodiment. 第3実施形態の第2変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 2nd modification of 3rd Embodiment. 第4実施形態に係る空気吹出装置の模式的な斜視図である。It is a typical perspective view of the air blowing apparatus which concerns on 4th Embodiment. 第4実施形態に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on 4th Embodiment. 図18のXIX-XIX断面図である。It is XIX-XIX sectional drawing of FIG. 第4実施形態に係る空気吹出装置の吹出穴の出口下流における気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the airflow in the exit downstream of the blowing hole of the air blowing apparatus which concerns on 4th Embodiment. 第4実施形態に係る空気吹出装置の吹出穴の出口下流における横渦と補助渦の状態を説明するための説明図である。It is explanatory drawing for demonstrating the state of the side vortex and auxiliary vortex in the downstream of the exit of the blowing hole of the air blowing apparatus which concerns on 4th Embodiment. 第4実施形態に係る空気吹出装置の渦発生構造の空気流れ下流における補助渦の状態を説明するための説明図である。It is explanatory drawing for demonstrating the state of the auxiliary vortex in the air flow downstream of the vortex generating structure of the air blowing apparatus which concerns on 4th Embodiment. 第4実施形態の第1変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 1st modification of 4th Embodiment. 第4実施形態の第2変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 2nd modification of 4th Embodiment. 第4実施形態の第3変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 3rd modification of 4th Embodiment. 第4実施形態の第4変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 4th modification of 4th Embodiment. 図26のXXVII-XXVII断面図である。FIG. 27 is a sectional view taken along line XXVII-XXVII in FIG. 26. 第4実施形態の第5変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 5th modification of 4th Embodiment. 図28のXXIX-XXIX断面図である。FIG. 29 is a sectional view taken along line XXIX-XXIX in FIG. 28. 第5実施形態に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on 5th Embodiment. 図30のXXXI-XXXI断面図である。FIG. 31 is a sectional view taken along the line XXXI-XXXI in FIG. 30. 第5実施形態に係る渦発生体の模式的な斜視図である。It is a typical perspective view of the vortex generator which concerns on 5th Embodiment. 第5実施形態に係る渦発生体の下流に形成される補助渦を説明するための説明図である。It is explanatory drawing for demonstrating the auxiliary vortex formed downstream of the vortex generator which concerns on 5th Embodiment. 第5実施形態の第1変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 1st modification of 5th Embodiment. 図34のXXXV-XXXV断面図である。FIG. 35 is a cross-sectional view of XXXV-XXXV in FIG. 34. 第5実施形態の第2変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 2nd modification of 5th Embodiment. 第5実施形態の第3変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 3rd modification of 5th Embodiment. 第5実施形態の第4変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 4th modification of 5th Embodiment. 図38のXXXIX-XXXIX断面図である。FIG. 39 is a sectional view of XXXIX-XXXIX in FIG. 38. 第5実施形態の第5変形例に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on the 5th modification of 5th Embodiment. 第5実施形態の第1変形例となる渦発生体の模式的な斜視図である。It is a typical perspective view of the vortex generator used as the 1st modification of 5th Embodiment. 第5実施形態の第2変形例となる渦発生体の模式的な斜視図である。It is a typical perspective view of the vortex generator used as the 2nd modification of 5th Embodiment. 第5実施形態の第3変形例となる渦発生体の模式的な斜視図である。It is a typical perspective view of the vortex generator used as the 3rd modification of 5th Embodiment. 第5実施形態の第4変形例となる渦発生体の模式的な斜視図である。It is a typical perspective view of the vortex generator used as the 4th modification of 5th Embodiment. 第6実施形態に係る空気吹出装置の吹出穴の開口形状を説明するための説明図である。It is explanatory drawing for demonstrating the opening shape of the blowing hole of the air blowing apparatus which concerns on 6th Embodiment. 第6実施形態の第1変形例となる吹出穴を説明するための説明図である。It is explanatory drawing for demonstrating the blowing hole used as the 1st modification of 6th Embodiment. 第6実施形態の第2変形例となる吹出穴を説明するための説明図である。It is explanatory drawing for demonstrating the blowing hole used as the 2nd modification of 6th Embodiment. 第6実施形態の第3変形例となる吹出穴を説明するための説明図である。It is explanatory drawing for demonstrating the blowing hole used as the 3rd modification of 6th Embodiment. 第6実施形態の第4変形例となる吹出穴を説明するための説明図である。It is explanatory drawing for demonstrating the blowing hole used as the 4th modification of 6th Embodiment. 第6実施形態の第5変形例となる吹出穴を説明するための説明図である。It is explanatory drawing for demonstrating the blowing hole used as the 5th modification of 6th Embodiment. 第6実施形態の第6変形例となる吹出穴を説明するための説明図である。It is explanatory drawing for demonstrating the blowing hole used as the 6th modification of 6th Embodiment.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts as those described in the preceding embodiments are denoted by the same reference numerals, and the description thereof may be omitted. Further, in the embodiment, when only a part of the constituent elements are described, the constituent elements described in the preceding embodiment can be applied to the other parts of the constituent elements. The following embodiments can be partially combined with each other even if they are not particularly specified as long as they do not cause any trouble in the combination.
 (第1実施形態)
 本実施形態について、図1~図7を参照して説明する。本実施形態の空気吹出装置1は、車室内を空調する空調ユニットの空気吹出口に適用される。そして、空調ユニットの吹出口は、インストルメントパネルやインストルメントパネルの内側に設けられている。
(First embodiment)
This embodiment will be described with reference to FIGS. The air blowing device 1 of this embodiment is applied to an air outlet of an air conditioning unit that air-conditions a vehicle interior. And the blower outlet of an air-conditioning unit is provided inside the instrument panel or the instrument panel.
 図1~図3に示すように、空気吹出装置1は、吹出対象2に向けて吹き出す作動気流Wafを通過させるための流路18を形成するダクト部14と、作動気流Wafの吹出口となる吹出穴10を形成する穴形成部12と、フランジ部40と、を含んで構成されている。 As shown in FIGS. 1 to 3, the air blowing device 1 serves as a duct portion 14 that forms a flow path 18 for allowing the working airflow Waf blown toward the blowing target 2 to pass therethrough, and a blowout port for the working airflow Waf. A hole forming portion 12 that forms the blowout hole 10 and a flange portion 40 are included.
 ダクト部14は、筒状の部材である。ダクト部14は、その空気流れ上流の部位が図示しない空調ユニットの空気吹出口に嵌合され、空気流れ下流側の部位が穴形成部12の外周に連なっている。また、ダクト部14の内部には、流路18が形成されている。 The duct part 14 is a cylindrical member. The portion of the duct portion 14 upstream of the air flow is fitted into an air outlet of an air conditioning unit (not shown), and the portion of the air flow downstream side is connected to the outer periphery of the hole forming portion 12. A flow path 18 is formed inside the duct portion 14.
 穴形成部12は、ダクト部14の空気流れ下流側に位置付けられている。穴形成部12は、空気を吹き出すことが可能なように筒状に構成されている。 The hole forming part 12 is positioned on the air flow downstream side of the duct part 14. The hole formation part 12 is comprised by the cylinder shape so that air can be blown out.
 吹出穴10は、穴形成部12の端部に単一の穴として開口している。この吹出穴10は、作動気流Wafを吹き出すために、吹出対象2に向けて開口する開口形状を有している。 The blowout hole 10 is opened as a single hole at the end of the hole forming portion 12. The blowing hole 10 has an opening shape that opens toward the blowing target 2 in order to blow out the working airflow Waf.
 吹出穴10の開口形状は、扁平形状である。ここで、扁平形状とは、短軸Ssの方向に対向する一対の長縁部102と、長軸Lsの方向に対向する一対の短縁部104とが連なっている構成される形状である。短軸Ssは、長軸Lsと直交している。吹出穴10は、短縁部104が長縁部102よりも長さが短くなって形成されている。なお、短軸Ssは、対向する長縁部102のそれぞれの中心点を通過する中心線で、長軸Lsは、対向する短縁部104のそれぞれの中心点を通過する中心線である。 The opening shape of the blowout hole 10 is a flat shape. Here, the flat shape is a shape in which a pair of long edge portions 102 facing in the direction of the short axis Ss and a pair of short edge portions 104 facing in the direction of the long axis Ls are connected. The short axis Ss is orthogonal to the long axis Ls. The blow hole 10 is formed such that the short edge portion 104 is shorter than the long edge portion 102. The short axis Ss is a center line that passes through the respective center points of the opposed long edge portions 102, and the long axis Ls is a center line that passes through the respective center points of the opposed short edge portions 104.
 扁平形状は、例えば、円弧および直線を結合した形状からなる長円形状、曲率半径の大きい円弧および曲率半径の小さい円弧を結合した曲線形状からなる楕円形状、直線を結合した六角形等の多角形状、角部が丸められた長方形状等の形状を包含する。また、長縁部102および短縁部104の形状は直線や円弧に限定されず、凹凸があるものでもよい。 The flat shape is, for example, an elliptical shape formed by combining a circular arc and a straight line, an elliptical shape formed by combining a circular arc having a large curvature radius and a circular arc having a small curvature radius, or a polygonal shape such as a hexagon combined with a straight line. Including a rectangular shape with rounded corners. Moreover, the shape of the long edge part 102 and the short edge part 104 is not limited to a straight line or a circular arc, and there may be an unevenness | corrugation.
 図2に示すように、吹出穴10の開口形状は、短軸Ssの方向において直線状に延びる一対の長縁部102と、長軸Lsの方向において円弧状に延びる一対の短縁部104とが連なって形成されている。短縁部104は、略半円の円弧であり、その直径が長縁部102より長さが小さくなっている。 As shown in FIG. 2, the opening shape of the blowout hole 10 includes a pair of long edges 102 extending linearly in the direction of the short axis Ss, and a pair of short edges 104 extending in an arc shape in the direction of the long axis Ls. Are formed in a row. The short edge portion 104 is a substantially semicircular arc, and the diameter thereof is smaller than that of the long edge portion 102.
 より具体的には、吹出穴10を囲む周縁部100は、所定の間隔をあけた状態で互いに対向する第1縁部102aおよび第2縁部102bと、第1縁部102aおよび第2縁部102bの両端を接続する第3縁部104aおよび第4縁部104bで構成されている。第3縁部104aは、第1縁部102aおよび第2縁部102bの一端同士を接続する部位である。また、第4縁部104bは、第1縁部102aおよび第2縁部102bの他端同士を接続する部位である。 More specifically, the peripheral edge portion 100 surrounding the blowout hole 10 includes a first edge portion 102a and a second edge portion 102b that face each other with a predetermined gap therebetween, and a first edge portion 102a and a second edge portion. It is comprised by the 3rd edge part 104a and the 4th edge part 104b which connect the both ends of 102b. The 3rd edge part 104a is a site | part which connects the ends of the 1st edge part 102a and the 2nd edge part 102b. The fourth edge 104b is a part that connects the other ends of the first edge 102a and the second edge 102b.
 第1縁部102aおよび第2縁部102bは、一定の間隔をあけた状態で直線状に延びている。第1縁部102aおよび第2縁部102bは、縁に沿う長さが第3縁部104aおよび第4縁部104bよりも長くなるとともに、第3縁部104aと第4縁部104bとの間隔よりも小さい間隔で対向している。第1縁部102aおよび第2縁部102bは、上述の一対の長縁部102を構成する。 The first edge portion 102a and the second edge portion 102b extend in a straight line with a certain interval. The first edge portion 102a and the second edge portion 102b are longer in length along the edge than the third edge portion 104a and the fourth edge portion 104b, and the distance between the third edge portion 104a and the fourth edge portion 104b. It is opposed at a smaller interval. The first edge portion 102a and the second edge portion 102b constitute the pair of long edge portions 102 described above.
 また、第3縁部104aおよび第4縁部104bは、円弧状に湾曲している。第3縁部104aおよび第4縁部104bは、縁に沿う長さが第1縁部102aおよび第2縁部102bよりも短くなるとともに、第1縁部102aと第2縁部102bとの間隔よりも大きい間隔で対向している。第3縁部104aおよび第4縁部104bは、上述の一対の短縁部104を構成する。 Further, the third edge 104a and the fourth edge 104b are curved in an arc shape. The third edge portion 104a and the fourth edge portion 104b are shorter in length along the edge than the first edge portion 102a and the second edge portion 102b, and the distance between the first edge portion 102a and the second edge portion 102b. It is opposed at a larger interval. The third edge portion 104a and the fourth edge portion 104b constitute the pair of short edge portions 104 described above.
 穴形成部12は、渦発生構造20として、複数の補助穴202が形成されている。具体的には、複数の補助穴202は、一対の長縁部102および一対の短縁部104に沿って、吹出穴10の周縁部100の全体に一定の間隔をあけて並んで形成されている。 The hole forming part 12 has a plurality of auxiliary holes 202 formed as the vortex generating structure 20. Specifically, the plurality of auxiliary holes 202 are formed along the pair of long edge portions 102 and the pair of short edge portions 104 along the entire peripheral edge portion 100 of the blowout hole 10 with a certain interval. Yes.
 補助穴202の開口部の面積は、吹出穴10の開口部の面積に比べて小さい。また、補助穴202の形状は、円形状である。図3に示すように、補助穴202は、流路18の延伸方向に沿って、穴形成部12の内部を貫通して形成されている。なお、穴形成部12は、空気流れ上流側がフランジ部40まで延伸するように形成されていてもよい。この場合、補助穴202は、穴形成部12をフランジ部40まで貫通して形成される。 The area of the opening of the auxiliary hole 202 is smaller than the area of the opening of the blowing hole 10. The auxiliary hole 202 has a circular shape. As shown in FIG. 3, the auxiliary hole 202 is formed through the inside of the hole forming portion 12 along the extending direction of the flow path 18. The hole forming portion 12 may be formed so that the upstream side of the air flow extends to the flange portion 40. In this case, the auxiliary hole 202 is formed through the hole forming portion 12 to the flange portion 40.
 フランジ部40は、ダクト部14の外周に対して、ダクト部14から突き出るように設けられている。フランジ部40は、角部が丸められた長方形状の部材で構成されている。フランジ部40は、図示しないインストルメントパネルに対して取り付けるための部材である。フランジ部40は、ダクト部14の上流側の部位が空調ユニットの空気吹出口に嵌合された状態で、ビス等の連結部材によってインストルメントパネルに対して取り付けられる。なお、フランジ部40には、角部をなす四隅付近にビス等の連結部材を通すための貫通穴402が設けられている。 The flange portion 40 is provided so as to protrude from the duct portion 14 with respect to the outer periphery of the duct portion 14. The flange portion 40 is configured by a rectangular member with rounded corners. The flange part 40 is a member for attaching with respect to the instrument panel which is not shown in figure. The flange portion 40 is attached to the instrument panel by a connecting member such as a screw in a state where the upstream portion of the duct portion 14 is fitted to the air outlet of the air conditioning unit. The flange portion 40 is provided with through holes 402 through which connecting members such as screws are passed in the vicinity of the four corners forming the corner portions.
 空気吹出装置1を構成する穴形成部12、ダクト部14、フランジ部40のそれぞれは、樹脂で構成されている。穴形成部12、ダクト部14、およびフランジ部40は、射出成形等の成形技術によって一体に成形された一体成形物で構成されている。なお、穴形成部12、ダクト部14、およびフランジ部40は、その一部が別体で構成されていてもよい。このように構成される空気吹出装置1は、前述したように、図示しないインストルメントパネルに設置される。 Each of the hole formation part 12, the duct part 14, and the flange part 40 which comprises the air blowing apparatus 1 is comprised with resin. The hole forming portion 12, the duct portion 14, and the flange portion 40 are formed of an integrally molded product that is integrally formed by a molding technique such as injection molding. In addition, the hole formation part 12, the duct part 14, and the flange part 40 may be comprised in the part separately. The air blowing device 1 configured as described above is installed on an instrument panel (not shown) as described above.
 ここで、空気吹出装置1は、車室内の最前部に設置されたインストルメントパネルの内側の空調ユニットに取り付けられる。この場合、空調ユニットで温度調整された空調風は、空気吹出装置1から吹き出される。このときに、空調風は、車室内全体の空調に用いられるだけではなく、車室内の搭乗者に直接吹き出されることが求められることがある。この場合、車室内の最前列となる運転席の着座者に吹き出すだけでなく、後列となる後部座席の着座者にも吹き出す必要があり、作動気流Wafは到達距離を長くすることが求められる。 Here, the air blowing device 1 is attached to the air conditioning unit inside the instrument panel installed at the foremost part in the passenger compartment. In this case, the conditioned air whose temperature is adjusted by the air conditioning unit is blown out from the air blowing device 1. At this time, the conditioned air may not only be used for air conditioning of the entire vehicle interior, but may be required to be directly blown out to passengers in the vehicle interior. In this case, it is necessary not only to blow out to the occupants of the driver seat in the front row in the vehicle interior, but also to blow out to the occupants of the rear seat in the rear row, and the working airflow Waf is required to increase the reach distance.
 そのため、本発明者らは、作動気流Wafの到達距離が短くなる要因を検討した。そして、吹出穴10の出口下流付近では、速度境界層BLに発生する無数の横渦Vtが合成して大規模なものに発達することで、空気の引き込み作用がより強くなることが、作動気流Wafの到達距離が短くなる要因の一つとなるとの知見を得た。 Therefore, the present inventors examined a factor that shortens the reach of the working airflow Waf. In the vicinity of the outlet downstream of the blowout hole 10, the innumerable lateral vortex Vt generated in the velocity boundary layer BL is synthesized and developed into a large-scale one, so that the air drawing action becomes stronger. The knowledge that it becomes one of the factors for shortening the reach of Waf was obtained.
 空気の引き込み作用は、作動気流Wafを吹き出した際に、作動気流Wafの速度勾配によるせん断力によって発生する横渦Vtに起因する。以下、空気の引き込み作用および作動気流Wafによって発生する横渦Vtについて、図4および図5を参照して説明する。 The air drawing action is caused by the lateral vortex Vt generated by the shearing force due to the velocity gradient of the working airflow Waf when the working airflow Waf is blown out. Hereinafter, the horizontal vortex Vt generated by the air drawing action and the working airflow Waf will be described with reference to FIGS. 4 and 5.
 図4は、本実施形態の空気吹出装置1の第1比較例となる第1吹出口を示す模式図である。第1吹出口の吹出穴10の開口形状は、円弧と直線を結合した形状からなる長円形状である。なお、第1比較例では、補助穴202に相当するものは、第1吹出口の穴形成部12に設けられていない。 FIG. 4 is a schematic view showing a first outlet serving as a first comparative example of the air blowing device 1 of the present embodiment. The opening shape of the blowout hole 10 of the first blowout port is an oval shape formed by combining a circular arc and a straight line. In addition, in the 1st comparative example, the thing equivalent to the auxiliary hole 202 is not provided in the hole formation part 12 of a 1st blower outlet.
 図4に示すように、ダクト部14の吹出穴10から気流が吹き出されると、吹出穴10の出口下流において、吹出穴10からの気流とその周囲で静止している空気との速度差に起因して速度境界層BLが形成される。速度境界層BLは、吹出穴10から吹き出された気流のうち、静止した空気の影響を受ける層である。 As shown in FIG. 4, when an airflow is blown out from the blowout hole 10 of the duct portion 14, a speed difference between the airflow from the blowout hole 10 and the air stationary around the airflow is provided downstream of the blowout hole 10. As a result, the velocity boundary layer BL is formed. The velocity boundary layer BL is a layer that is affected by stationary air among the airflows blown from the blowout holes 10.
 速度境界層BLでは、図5に示すように、速度勾配によるせん断力によって、無数の横渦Vtが発生する。本発明者らの検討によれば、速度境界層BLに発生する無数の横渦Vtが合成して大規模なものに発達することで、空気の引き込み作用がより強くなることが分かっている。 In the velocity boundary layer BL, an infinite number of transverse vortices Vt are generated by the shearing force due to the velocity gradient, as shown in FIG. According to the study by the present inventors, it has been found that the inducing action of air becomes stronger when the innumerable transverse vortex Vt generated in the velocity boundary layer BL is synthesized and developed into a large scale.
 本発明者らは、作動気流Wafの速度境界層BLに発生する横渦Vtに、横渦Vtとは渦特性が異なる補助渦Vsを、渦特性が異なる状態で衝突させることで、横渦Vtの発達を抑制でき、作動気流Wafの到達距離を長くすることができると考えた。そこで、補助渦Vsを発生させるための渦発生構造20を穴形成部12に形成することとした。 The present inventors collide an auxiliary vortex Vs having a vortex characteristic different from that of the horizontal vortex Vt with the lateral vortex Vt generated in the velocity boundary layer BL of the working airflow Waf in a state where the vortex characteristics are different, thereby causing the lateral vortex Vt to collide. Therefore, it was considered that the reach of the working airflow Waf can be increased. Therefore, the vortex generating structure 20 for generating the auxiliary vortex Vs is formed in the hole forming portion 12.
 ここで、渦特性とは、渦の回転方向、渦軸の向き、渦の流れ速度、流体の粘性、渦の半径等を含む渦の流れ状態を示すものである。 Here, the vortex characteristics indicate the vortex flow state including the vortex rotation direction, vortex axis direction, vortex flow velocity, fluid viscosity, vortex radius, and the like.
 第1実施形態に係る空気吹出装置1の吹出穴10の出口下流における作動気流Wafの状態を図6および図7を参照して説明する。 The state of the working airflow Waf downstream of the outlet of the air outlet 10 of the air outlet 1 according to the first embodiment will be described with reference to FIGS.
 本実施形態の空気吹出装置1では、空調ユニットで温度調整された空調風がダクト部14に流入すると、空調風が流路18を介して吹出穴10および補助穴202に流れる。 In the air blowing device 1 of the present embodiment, when the conditioned air whose temperature has been adjusted by the air conditioning unit flows into the duct portion 14, the conditioned air flows into the blowing hole 10 and the auxiliary hole 202 through the flow path 18.
 図6に示すように、吹出穴10から作動気流Wafが吹き出されると、吹出穴10の出口下流に作動気流Wafの速度境界層BLが形成される。この速度境界層BLは、吹出穴10の出口下流において吹出穴10の内壁面110に連なるように延びる。これにより、吹出穴10の出口下流に無数の横渦Vtが発生する。 As shown in FIG. 6, when the working airflow Waf is blown out from the blowout hole 10, a velocity boundary layer BL of the working airflow Waf is formed downstream of the outlet of the blowout hole 10. The velocity boundary layer BL extends so as to be continuous with the inner wall surface 110 of the blowing hole 10 at the downstream side of the outlet of the blowing hole 10. As a result, innumerable transverse vortices Vt are generated downstream of the outlet of the blowout hole 10.
 図7に示すように、吹出穴10の出口下流に発生する無数の横渦Vtは、作動気流Wafの流れ方向に交差する渦軸を有し、作動気流Wafの流れ方向と同じ方向に向かう直進成分に加えて、吹出穴10の内側から外側に向かう回転成分を有する。 As shown in FIG. 7, the countless transverse vortex Vt generated downstream of the outlet of the blow hole 10 has a vortex axis that intersects the flow direction of the working air flow Waf, and goes straight in the same direction as the flow direction of the working air flow Waf. In addition to the component, it has a rotation component from the inside to the outside of the blowing hole 10.
 また、補助穴202から補助気流Safが吹き出されると、補助穴202の出口下流側に補助気流Safの速度境界層BLが形成される。この速度境界層BLは、補助穴202の出口下流において補助穴202の内壁面210に連なるように延びる。これにより、補助穴202の出口下流側に無数の補助渦Vsが発生する。 Further, when the auxiliary airflow Saf is blown out from the auxiliary hole 202, the velocity boundary layer BL of the auxiliary airflow Saf is formed on the downstream side of the outlet of the auxiliary hole 202. The velocity boundary layer BL extends so as to be continuous with the inner wall surface 210 of the auxiliary hole 202 at the downstream side of the outlet of the auxiliary hole 202. Thereby, innumerable auxiliary vortices Vs are generated on the downstream side of the outlet of the auxiliary hole 202.
 補助穴202の出口下流に発生する無数の補助渦Vsは、補助気流Safの流れ方向に交差する渦軸を有し、補助気流Safの流れ方向と同じ方向に向かう直進成分に加えて、補助穴202の内側から外側に向かう回転成分を有する。補助渦Vsの一部は、横渦Vtと渦特性のうち少なくとも渦の回転方向が異なる。なお、補助気流Safの流れ方向は、作動気流Wafと同じ流れ方向である。 The countless auxiliary vortex Vs generated downstream of the auxiliary hole 202 has a vortex axis that intersects the flow direction of the auxiliary airflow Saf, and in addition to the straight component that goes in the same direction as the flow direction of the auxiliary airflow Saf, 202 has a rotational component from the inside to the outside. A part of the auxiliary vortex Vs differs from the transverse vortex Vt in at least the direction of rotation of the vortex characteristics. The flow direction of the auxiliary airflow Saf is the same flow direction as that of the working airflow Waf.
 このため、補助穴202の出口下流(すなわち、吹出穴10の出口下流)では、横渦Vtに、横渦Vtとは渦の回転方向が異なる補助渦Vsが衝突する。横渦Vtおよび補助渦Vsが衝突すると、横渦Vtが大きく乱れることで、横渦Vtの合成が生じ難くなる。すなわち、吹出穴10の出口下流に発生する横渦Vtの発達が抑制される。この結果、作動気流Wafにおける空気の引き込み作用が抑えられるので、作動気流Wafは到達距離が長くなる。 For this reason, at the outlet downstream of the auxiliary hole 202 (that is, downstream of the outlet hole 10), the auxiliary vortex Vs having a different vortex rotation direction collides with the horizontal vortex Vt. When the horizontal vortex Vt and the auxiliary vortex Vs collide, the horizontal vortex Vt is greatly disturbed, so that it is difficult to synthesize the horizontal vortex Vt. That is, the development of the lateral vortex Vt generated downstream of the outlet of the blow hole 10 is suppressed. As a result, the air draw-in effect in the working airflow Waf is suppressed, so that the working airflow Waf has a long reach.
 以上、説明した空気吹出装置1では、穴形成部12に形成した補助穴202によって、渦発生構造20が実現されている。これにより、作動気流Wafに引き込まれる空気の引き込み作用が抑制され、作動気流Wafの流速の減衰が小さくなるため、作動気流Wafは到達距離が長くなる。 In the air blowing device 1 described above, the vortex generating structure 20 is realized by the auxiliary holes 202 formed in the hole forming portion 12. Thereby, the drawing-in action of the air drawn into the working airflow Waf is suppressed, and the attenuation of the flow velocity of the working airflow Waf is reduced, so that the working airflow Waf has a long reach.
 また、空調ユニットで温度調整された空調風を作動気流Wafとして吹出穴10から吹き出す場合、作動気流Wafは周囲からの空気の引き込み作用が抑制されるので、作動気流Wafの温度変化を抑えることができる。すなわち、本実施形態の空気吹出装置1によれば、適温の気流を所望の場所に到達させることができるため、車室内におけるスポット的な空調を実現するうえで特に有効である。 In addition, when the conditioned air whose temperature is adjusted by the air conditioning unit is blown out from the blow hole 10 as the working air current Waf, the working air current Waf suppresses the air pull-in action from the surroundings, so that the temperature change of the working air current Waf can be suppressed. it can. That is, according to the air blowing device 1 of the present embodiment, an airflow having an appropriate temperature can be reached at a desired location, which is particularly effective in realizing spot-like air conditioning in the passenger compartment.
 (第2実施形態)
 次に、第2実施形態について、図8~図10を参照して説明する。本実施形態では、複数の補助穴202が、長縁部102の縁側に偏って形成されている点で第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分については説明を省略することがある。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. This embodiment is different from the first embodiment in that a plurality of auxiliary holes 202 are formed to be biased toward the edge of the long edge portion 102. In the present embodiment, portions different from the first embodiment will be mainly described, and description of portions similar to the first embodiment may be omitted.
 図8および図9に示すように、吹出穴10の開口形状は、短軸Ssの方向において直線状に延びる一対の長縁部102と、長軸Lsの方向において円弧状に延びる一対の短縁部104とが連なって形成されている扁平な形状である。 As shown in FIGS. 8 and 9, the opening shape of the blowout hole 10 includes a pair of long edges 102 extending linearly in the direction of the short axis Ss and a pair of short edges extending in an arc shape in the direction of the long axis Ls. It is a flat shape formed continuously with the portion 104.
 また、吹出穴10を囲む周縁部100に沿って形成される複数の補助穴202の数は、一対の短縁部104の縁側に沿って形成される数と比較して、一対の長縁部102の縁側に沿って多く形成されている。つまり、穴形成部12における複数の補助穴202の開口部の占める割合が、一対の短縁部104側の全体における所定面積あたりの割合と比較して、一対の長縁部102側の全体における所定面積あたりのほうが大きくなっている。 In addition, the number of the plurality of auxiliary holes 202 formed along the peripheral edge portion 100 surrounding the blowing hole 10 is a pair of long edge portions as compared with the number formed along the edge sides of the pair of short edge portions 104. Many are formed along the edge side of 102. That is, the ratio of the openings of the plurality of auxiliary holes 202 in the hole forming portion 12 is larger than the ratio per predetermined area in the entire pair of short edges 104 side in the entire pair of long edges 102 side. The area per predetermined area is larger.
 ここで、吹出穴10の開口形状が扁平形状の場合、吹出穴10から作動気流Wafが吹き出されると、短縁部104の出口下流および長縁部102の出口下流に横渦Vtが発生する。そして、本発明者らが鋭意検討した結果、短縁部104の出口下流に発生する横渦Vtは、長縁部102の出口下流に発生する横渦Vtと比較して、作動気流Wafの到達距離へ及ぼす影響が小さいことが分かった。 Here, when the opening shape of the blowout hole 10 is a flat shape, when the working airflow Waf is blown out from the blowout hole 10, a lateral vortex Vt is generated downstream of the short edge portion 104 and downstream of the long edge portion 102. . As a result of intensive studies by the present inventors, the lateral vortex Vt generated downstream of the outlet of the short edge portion 104 reaches the arrival of the working airflow Waf as compared with the lateral vortex Vt generated downstream of the outlet of the long edge portion 102. It was found that the effect on distance was small.
 このことは、長縁部102の出口下流に発生する横渦Vtに比べて、短縁部104の出口下流に発生する横渦Vtが、作動気流WafのポテンシャルコアPから離れていることに起因すると考えられる。すなわち、作動気流Wafの到達距離は、長縁部102の出口下流に発生する横渦Vtおよび短縁部104の出口下流に発生する横渦Vtと、作動気流WafのポテンシャルコアPからの距離に影響を受けると考えられる。このような考えによれば、長縁部102の出口下流に発生する横渦Vtは、短縁部104の出口下流に発生する横渦Vtと比較して、作動気流Wafの到達距離へ及ぼす影響が大きいといえる。 This is because the lateral vortex Vt generated downstream of the short edge 104 is separated from the potential core P of the working airflow Waf as compared to the lateral vortex Vt generated downstream of the long edge 102. I think that. That is, the reach distance of the working airflow Waf is the distance from the lateral vortex Vt generated downstream of the outlet of the long edge portion 102 and the lateral vortex Vt generated downstream of the outlet of the short edge portion 104 and the potential airflow Waf from the potential core P. It seems to be affected. According to such an idea, the lateral vortex Vt generated downstream of the outlet of the long edge portion 102 has an influence on the reach of the working airflow Waf as compared with the lateral vortex Vt generated downstream of the outlet of the short edge portion 104. Can be said to be large.
 そこで、本発明者らは、複数の補助穴202が、長縁部102の縁側に偏って形成されていても、吹出穴10の周縁部100の全体に沿って補助穴202を形成した場合と同程度の作動気流Wafの到達距離が得られると考えた。 Therefore, the present inventors have the case where the auxiliary holes 202 are formed along the entire peripheral edge portion 100 of the blowout hole 10 even when the plurality of auxiliary holes 202 are formed to be biased toward the edge of the long edge portion 102. It was considered that the reach of the working airflow Waf was comparable.
 以下、ポテンシャルコアPについて、図10を参照して説明する。図10は、第2比較例となる第2吹出口の出口下流における気流のポテンシャルコアPを説明するための説明図である。第2吹出口の吹出穴10の開口形状は、円弧と直線を結合した形状からなる長円形状で形成されている。第2吹出口の吹出穴10の周縁部100には、補助穴202は形成されていない。 Hereinafter, the potential core P will be described with reference to FIG. FIG. 10 is an explanatory diagram for explaining the potential core P of the airflow at the outlet downstream of the second outlet, which is the second comparative example. The opening shape of the blowout hole 10 of the second blowout port is formed in an oval shape having a shape obtained by combining a circular arc and a straight line. The auxiliary hole 202 is not formed in the peripheral edge portion 100 of the outlet hole 10 of the second outlet.
 図10に示すように、作動気流Wafが吹出穴10から吹き出されると、吹出穴10の出口下流に吹出穴10の周縁部100に沿って、無数の横渦Vtが発生する。そして横渦Vtは、吹出穴10からの距離が遠くなるにつれて、無数の横渦Vtが合成して発達し、空気を引き込み作用が強くなっていく。これにより、作動気流Wafは風速が低下していく。 As shown in FIG. 10, when the working airflow Waf is blown out from the blowing hole 10, countless transverse vortices Vt are generated along the peripheral edge portion 100 of the blowing hole 10 downstream of the outlet hole 10. Then, as the distance from the blow hole 10 increases, the horizontal vortex Vt develops by combining innumerable horizontal vortices Vt, and the action of drawing air becomes stronger. As a result, the wind speed of the working airflow Waf decreases.
 ここで、吹出穴10の出口下流には、吹出穴10を中心に、気流の乱れが少なく、気流速度や気流圧力が安定している領域となるポテンシャルコアPが発生する。ポテンシャルコアPは周囲の空気の影響を受け難い領域である。そのため、作動気流Wafは、ポテンシャルコアPの中では風速が低下し難く、最も到達距離が長くなる。 Here, at the outlet downstream of the blowout hole 10, a potential core P that is a region where the airflow is less disturbed and the airflow speed and airflow pressure are stable is generated around the blowout hole 10. The potential core P is a region that is not easily affected by ambient air. Therefore, the working airflow Waf is unlikely to decrease in wind speed in the potential core P, and has the longest reach.
 ここで、ポテンシャルコアPは、作動気流Wafの流れ方向に対して直交方向の断面形状が吹出穴10から離れるにつれて小さくなっていく。また、吹出穴10の形状が扁平形状の場合、ポテンシャルコアPは、当該断面形状が作動気流Wafの流れ下流に向かって扁平形状からその扁平形状の中心に向かって円形状へと収束していく。 Here, the potential core P becomes smaller as the cross-sectional shape in the direction orthogonal to the flow direction of the working airflow Waf moves away from the blowout hole 10. Further, when the shape of the blowout hole 10 is a flat shape, the potential core P converges from a flat shape toward the downstream of the flow of the working air flow Waf to a circular shape toward the center of the flat shape. .
 これに対して、吹出穴10の出口下流に発生する複数の横渦Vtは、吹出穴10の内壁面110に沿って発生するため、複数の横渦Vtは吹出穴10の形状に近い扁平形状に広がる。よって、短縁部104の出口下流に発生する横渦Vtは、長縁部102の出口下流に発生する横渦Vtと比較して、ポテンシャルコアPから離れた位置に発生する。 On the other hand, since the plurality of lateral vortices Vt generated downstream of the outlet hole 10 are generated along the inner wall surface 110 of the outlet hole 10, the plurality of lateral vortices Vt have a flat shape close to the shape of the outlet hole 10. To spread. Therefore, the lateral vortex Vt generated downstream of the short edge 104 is generated at a position farther from the potential core P than the lateral vortex Vt generated downstream of the long edge 102.
 本発明者らは、長縁部102の出口下流に発生する横渦Vtに、横渦Vtとは渦特性が異なる補助渦Vsを、渦特性が異なる状態で衝突させることで、作動気流Wafの到達距離を長くすることができると考えた。そこで、本発明者らは、複数の補助穴202を長縁部102の縁側に偏って形成することとした。 The present inventors collide an auxiliary vortex Vs having a vortex characteristic different from that of the horizontal vortex Vt into the lateral vortex Vt generated downstream of the outlet of the long edge portion 102 in a state where the vortex characteristic is different, thereby We thought that the reach could be increased. Therefore, the present inventors decided to form the plurality of auxiliary holes 202 so as to be biased toward the edge side of the long edge portion 102.
 本実施形態では、吹出穴10の開口形状が扁平形状であるため、短縁部104の出口下流に発生する横渦Vtは、長縁部102の出口下流に発生する横渦Vtと比較して、作動気流WafのポテンシャルコアPから離れた位置に発生する。そのため、短縁部104の出口下流に発生する横渦Vtは、長縁部102の出口下流に発生する横渦Vtと比較して、作動気流Wafの到達距離へ及ぼす影響が小さい。 In this embodiment, since the opening shape of the blowing hole 10 is a flat shape, the lateral vortex Vt generated downstream of the outlet of the short edge portion 104 is compared with the lateral vortex Vt generated downstream of the outlet of the long edge portion 102. It is generated at a position away from the potential core P of the working airflow Waf. Therefore, the lateral vortex Vt generated downstream of the short edge portion 104 has less influence on the reach of the working airflow Waf than the lateral vortex Vt generated downstream of the long edge portion 102.
 複数の補助穴202は、一対の長縁部102の縁側に偏って形成されている。そして、当該補助穴202の出口下流に発生する補助渦Vsは、一対の長縁部102の出口下流に発生する横渦Vtと渦の回転方向が異なる状態で衝突する。作動気流Wafの到達距離へ及ぼす影響が大きい横渦Vtが補助渦Vsに衝突すると、当該横渦Vtが大きく乱れることで、横渦Vtの合成が生じ難くなる。この結果、作動気流Wafにおける空気の引き作用が抑えられるので、作動気流Wafは到達距離が長くなる。 The plurality of auxiliary holes 202 are formed so as to be biased toward the edge sides of the pair of long edge portions 102. The auxiliary vortex Vs generated downstream of the auxiliary hole 202 collides with the horizontal vortex Vt generated downstream of the pair of long edge portions 102 in a state where the vortex rotation direction is different. When the lateral vortex Vt having a large influence on the reach of the working airflow Waf collides with the auxiliary vortex Vs, the lateral vortex Vt is greatly disturbed, so that it is difficult to synthesize the lateral vortex Vt. As a result, the air pulling action in the working airflow Waf is suppressed, so that the working airflow Waf has a long reach.
 ここで、横渦Vtが補助渦Vsに衝突すると、横渦Vtおよび補助渦Vsの衝突により空力騒音が生じる。本実施形態において、複数の補助穴202の数は、第1実施形態と比較して、一対の短縁部104の縁側が少なく形成されている。そのため、吹出穴10の周縁部100の全体に沿って形成される場合と比較して、横渦Vtおよび補助渦Vsの衝突を抑制できる。その結果、作動気流Wafの到達距離を長くしつつ、横渦Vtおよび補助渦Vsの衝突により生じる空力騒音を低減できる。 Here, when the lateral vortex Vt collides with the auxiliary vortex Vs, aerodynamic noise is generated by the collision of the lateral vortex Vt and the auxiliary vortex Vs. In the present embodiment, the number of the plurality of auxiliary holes 202 is less on the edge side of the pair of short edges 104 than in the first embodiment. Therefore, compared with the case where it forms along the whole peripheral part 100 of the blowing hole 10, the collision of the horizontal vortex Vt and the auxiliary vortex Vs can be suppressed. As a result, it is possible to reduce aerodynamic noise caused by the collision between the lateral vortex Vt and the auxiliary vortex Vs while increasing the reach distance of the working airflow Waf.
 (第2実施形態の変形例)
 上述の第2実施形態では、形状や大きさが同様である補助穴202が、長縁部102の縁側に偏って形成されている例について説明したが、これに限定されない。例えば、一対の短縁部104の縁側に比べて、一対の長縁部102の縁側で補助渦Vsが発生し易くなるように、短縁部104の縁側に形成される補助穴202は、長縁部102の縁側に形成される補助穴202と形状や大きさが異なってもよい。具体的には、短縁部104の縁側に形成される補助穴202は、長縁部102の縁側に形成される補助穴202と比べて、一方が大きく、他方が小さく形成されるものや、一方が円形状で形成され、他方が多角形状で形成されるものでもよい。
(Modification of the second embodiment)
In the above-described second embodiment, the example in which the auxiliary hole 202 having the same shape and size is formed to be biased toward the edge side of the long edge portion 102 has been described, but the present invention is not limited to this. For example, the auxiliary hole 202 formed on the edge side of the short edge portion 104 is longer than the edge side of the pair of short edge portions 104 so that the auxiliary vortex Vs is easily generated on the edge side of the pair of long edge portions 102. The auxiliary hole 202 formed on the edge side of the edge 102 may be different in shape and size. Specifically, the auxiliary hole 202 formed on the edge side of the short edge portion 104 has one larger than the auxiliary hole 202 formed on the edge side of the long edge portion 102 and the other formed smaller, One may be formed in a circular shape and the other may be formed in a polygonal shape.
 補助穴202の形状や大きさによって、補助穴202の出口下流に発生する横渦Vtの渦特性は異なる。このため、補助穴202の形状や大きさは、空気吹出装置1の使用用途などに応じて適宜設定することが望ましい。 The vortex characteristics of the lateral vortex Vt generated downstream of the outlet of the auxiliary hole 202 vary depending on the shape and size of the auxiliary hole 202. For this reason, it is desirable that the shape and size of the auxiliary hole 202 be appropriately set according to the use application of the air blowing device 1.
 (第3実施形態)
 次に、第3実施形態について、図11~図16を参照して説明する。本実施形態では、複数の補助穴202が長縁部102の縁側に形成され、一対の短縁部104の縁側には形成されていない点で第2実施形態と相違している。本実施形態では、第2実施形態と異なる部分について主に説明し、第2実施形態と同様の部分については説明を省略することがある。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. This embodiment is different from the second embodiment in that a plurality of auxiliary holes 202 are formed on the edge side of the long edge portion 102 and are not formed on the edge sides of the pair of short edge portions 104. In the present embodiment, portions different from those in the second embodiment will be mainly described, and description of portions similar to those in the second embodiment may be omitted.
 具体的には、図11および図12に示すように、複数の補助穴202は、一対の短縁部104の縁側に沿っては形成されておらず、一対の長縁部102の縁側に沿ってのみ形成されている。 Specifically, as shown in FIGS. 11 and 12, the plurality of auxiliary holes 202 are not formed along the edge sides of the pair of short edges 104, but along the edges of the pair of long edges 102. Only formed.
 本実施形態では、長縁部102の出口下流に発生する横渦Vtに、一対の長縁部102に沿って発生する補助渦Vsを衝突させることで、長縁部102の出口下流に発生する横渦Vtの発達を抑制することができる。 In the present embodiment, the auxiliary vortex Vs generated along the pair of long edges 102 collides with the lateral vortex Vt generated downstream of the long edge 102, thereby generating downstream of the long edge 102. Development of the transverse vortex Vt can be suppressed.
 ここで、図13は、一対の短縁部104の縁側に沿って補助穴202が形成されている場合および形成されていない場合について、作動気流Wafの到達率を示す。図13の左グラフは、補助穴202が形成されている場合の作動気流Wafの到達率を示し、図13の右グラフは、補助穴202が形成されていない場合の作動気流Wafの到達率を示す。図13に示すように、補助穴202が、一対の短縁部104の縁側に沿って形成されている場合と形成されていない場合とでは、同程度の作動気流Wafの到達率となる。 Here, FIG. 13 shows the reach of the working airflow Waf when the auxiliary hole 202 is formed along the edge side of the pair of short edges 104 and when the auxiliary hole 202 is not formed. The left graph of FIG. 13 shows the arrival rate of the working airflow Waf when the auxiliary hole 202 is formed, and the right graph of FIG. 13 shows the arrival rate of the working airflow Waf when the auxiliary hole 202 is not formed. Show. As shown in FIG. 13, the reach of the working airflow Waf is the same when the auxiliary hole 202 is formed along the edge side of the pair of short edges 104 and when the auxiliary hole 202 is not formed.
 また、図14は、一対の短縁部104の縁側に沿って補助穴202が形成されている場合および形成されていない場合について、横渦Vtおよび補助渦Vsの衝突により生じる空力騒音を示す。図14の左グラフは、補助穴202が形成されている場合の空力騒音を示し、図14の右グラフは、補助穴202が形成されていない場合の空力騒音を示す。図14に示すように、補助穴202が、一対の短縁部104の縁側に沿って形成されていない場合、補助穴202が形成される場合と比較して空力騒音を低減できる。 FIG. 14 shows aerodynamic noise generated by the collision of the lateral vortex Vt and the auxiliary vortex Vs when the auxiliary hole 202 is formed along the edge side of the pair of short edges 104 and when the auxiliary hole 202 is not formed. The left graph of FIG. 14 shows aerodynamic noise when the auxiliary hole 202 is formed, and the right graph of FIG. 14 shows aerodynamic noise when the auxiliary hole 202 is not formed. As shown in FIG. 14, when the auxiliary hole 202 is not formed along the edge side of a pair of short edge part 104, aerodynamic noise can be reduced compared with the case where the auxiliary hole 202 is formed.
 ここで、インストルメントパネルは、車室内の拡大や意匠性の観点で小型化が要求されている。また、インストルメントパネルは、車両幅方向の中央部分や車両前後方向において搭乗者に相対する部分に、車両状態や等を表示するための大型の情報機器が設置される傾向がある。これらにより、吹出穴10を薄幅にする等の対策が必要となる。 Here, the instrument panel is required to be downsized from the viewpoint of expansion of the passenger compartment and design. In addition, the instrument panel tends to be provided with a large information device for displaying a vehicle state or the like at a center portion in the vehicle width direction or a portion facing the passenger in the vehicle front-rear direction. Therefore, it is necessary to take measures such as making the blow hole 10 thin.
 本実施形態によれば、補助穴202は、一対の短縁部104の縁側に沿っては形成されない。そのため、穴形成部12において、一対の短縁部104の縁側は、補助穴202を形成するための形成部分が不要となる。その結果、穴形成部12やダクト部14は、第1実施形態や第2実施形態よりも小さく形成することができ、空気吹出装置1の設置自由度、搭載自由度の向上効果を得ることができる。 According to the present embodiment, the auxiliary hole 202 is not formed along the edge sides of the pair of short edges 104. Therefore, in the hole forming portion 12, the forming portion for forming the auxiliary hole 202 is unnecessary on the edge side of the pair of short edge portions 104. As a result, the hole forming portion 12 and the duct portion 14 can be formed smaller than those in the first embodiment and the second embodiment, and an effect of improving the degree of freedom of installation and the degree of freedom of mounting of the air blowing device 1 can be obtained. it can.
 (第3実施形態の変形例)
 上述の第3実施形態では、補助穴202の形状について、円形状に形成されている例について説明したが、これに限定されない。例えば、図15の第1変形例に示すように、補助穴202の形状は、スリット状に形成されていてもよい。
(Modification of the third embodiment)
In the third embodiment described above, an example in which the auxiliary hole 202 is formed in a circular shape has been described. However, the present invention is not limited to this. For example, as shown in the first modification of FIG. 15, the auxiliary hole 202 may be formed in a slit shape.
 また、上述の第3実施形態では、吹出穴10の開口形状について、短軸Ssの方向において直線状に延びる一対の長縁部102と、長軸Lsの方向において円弧状に延びる一対の短縁部104がと連なって形成されている例について説明したが、これに限定されない。例えば、図16の第2変形例に示すように、吹出穴10の開口形状は、短軸Ss方向において延びる一対の長縁部102と、長軸Ls方向において延びる一対の短縁部104とがすべて直線で連なって長方形状に形成されていてもよい。 Moreover, in the above-mentioned 3rd Embodiment, about the opening shape of the blowing hole 10, a pair of long edge part 102 extended linearly in the direction of the short axis Ss, and a pair of short edge extended in circular arc shape in the direction of the long axis Ls Although the example in which the portion 104 is formed continuously is described, it is not limited to this. For example, as shown in the second modification of FIG. 16, the opening shape of the blowout hole 10 includes a pair of long edge portions 102 extending in the short axis Ss direction and a pair of short edge portions 104 extending in the long axis Ls direction. They may all be connected in a straight line and formed in a rectangular shape.
 (第4実施形態)
 次に、第4実施形態について、図17~図22を参照して説明する。本実施形態では、渦発生構造20が、穴形成部12のうち吹出穴10を含む周縁部100に沿って、凹部206と凸部208とが交互に並ぶ構造になっている点で第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分については説明を省略することがある。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. In the present embodiment, the vortex generating structure 20 is the first embodiment in that the concave portions 206 and the convex portions 208 are alternately arranged along the peripheral edge portion 100 including the blowout hole 10 in the hole forming portion 12. It is different from the form. In the present embodiment, portions different from the first embodiment will be mainly described, and description of portions similar to the first embodiment may be omitted.
 図17および図18に示すように、渦発生構造20は、穴形成部12のうち吹出穴10を含む周縁部100に沿って凹部206と凸部208とが交互に並ぶ複数の凹凸部204で形成されている。また、吹出穴10の開口形状は、短軸Ssの方向に延びる一対の鋸歯形状の長縁部102と、長軸Lsの方向において円弧状に延びる一対の短縁部104とが連なって形成されている扁平な形状である。ここで、鋸歯形状とは、複数の三角形の底辺を連続させて並べた形状である。 As shown in FIGS. 17 and 18, the vortex generating structure 20 includes a plurality of concave and convex portions 204 in which concave portions 206 and convex portions 208 are alternately arranged along the peripheral edge portion 100 including the blowout hole 10 in the hole forming portion 12. Is formed. Further, the opening shape of the blowout hole 10 is formed by a pair of sawtooth-shaped long edges 102 extending in the direction of the short axis Ss and a pair of short edges 104 extending in an arc shape in the direction of the long axis Ls. It is a flat shape. Here, the sawtooth shape is a shape in which the bases of a plurality of triangles are continuously arranged.
 具体的には、三角形は1つの底辺と2つの等辺を有する略二等辺三角形であって、底辺を長縁部102に沿って隙間なく並べた形状である。また、略二等辺三角形の頂点は、一対の長縁部102において、対向する長縁部102の略二等辺三角形の頂点に向けて突出して形成されている。各略二等辺三角形の面積は、吹出穴10から吹き出す作動気流Wafの流れの妨げにならないように、吹出穴10の開口部の面積に比べて小さいものである。 Specifically, the triangle is a substantially isosceles triangle having one base and two equal sides, and the base is arranged along the long edge portion 102 without a gap. Further, the vertices of the substantially isosceles triangle are formed so as to protrude from the pair of long edge portions 102 toward the vertices of the substantially isosceles triangle of the opposing long edge portion 102. The area of each approximately isosceles triangle is smaller than the area of the opening of the blow hole 10 so as not to hinder the flow of the working airflow Waf blown from the blow hole 10.
 また、複数の凹凸部204は一対の短縁部104の縁側に沿っては形成されておらず、一対の長縁部102の縁側に沿ってのみ形成されている。 Further, the plurality of concavo-convex portions 204 are not formed along the edge sides of the pair of short edge portions 104 but are formed only along the edge sides of the pair of long edge portions 102.
 なお、複数の凹凸部204は、長縁部102に加えて、短縁部104に沿って形成されていてもよい。 Note that the plurality of uneven portions 204 may be formed along the short edge portion 104 in addition to the long edge portion 102.
 吹出穴10の断面について、図19を参照して説明する。図19に示すように、複数の凹凸部204は、空気流れ方向に厚みを有する板状で構成されている。つまり、複数の凹凸部204は、その断面であったときに、長方形状を有している。 The cross section of the blowout hole 10 will be described with reference to FIG. As shown in FIG. 19, the plurality of concavo-convex portions 204 are configured in a plate shape having a thickness in the air flow direction. That is, the plurality of concavo-convex portions 204 have a rectangular shape when the cross section is the cross section.
 また、複数の凹凸部204は、空気流れ下流側の板面が、穴形成部12のうち周縁部100を形成する部位の空気流れ下流側の端面と面一になっている。換言すれば、複数の凹凸部204は、空気流れ下流側の板面が、穴形成部12のうち吹出穴10が開口する端面と面一になっている。 In addition, the plate surface on the downstream side of the air flow of the plurality of concave and convex portions 204 is flush with the end surface on the downstream side of the air flow in the portion of the hole forming portion 12 where the peripheral edge portion 100 is formed. In other words, the plurality of concavo-convex portions 204 have a plate surface on the downstream side of the air flow that is flush with an end surface of the hole forming portion 12 where the blowout holes 10 are opened.
 第4実施形態に係る空気吹出装置1の吹出穴10の出口下流における作動気流Waf、横渦Vt、補助渦Vsそれぞれの状態を図20~図22を参照して説明する。 The states of the working airflow Waf, the lateral vortex Vt, and the auxiliary vortex Vs downstream of the outlet hole 10 of the air blowing device 1 according to the fourth embodiment will be described with reference to FIGS.
 本実施形態の空気吹出装置1では、空調ユニットで温度調整された空調風がダクト部14に流入されると、空調風は、流路18を介して吹出穴10に流れる。 In the air blowing device 1 of the present embodiment, when the conditioned air whose temperature has been adjusted by the air conditioning unit flows into the duct portion 14, the conditioned air flows into the blowing hole 10 through the flow path 18.
 図20に示すように、吹出穴10から作動気流Wafが吹き出されると、速度境界層BLが形成される。これにより、吹出穴10の出口下流に無数の横渦Vtが発生する。 As shown in FIG. 20, when the working airflow Waf is blown out from the blowout hole 10, the velocity boundary layer BL is formed. As a result, innumerable transverse vortices Vt are generated downstream of the outlet of the blowout hole 10.
 図21に示すように、吹出穴10の出口下流に発生する無数の横渦Vtは、作動気流Wafの流れ方向に交差する渦軸を有し、作動気流Wafの流れ方向と同じ方向に向かう直進成分に加えて、吹出穴10の内側から外側に向かう回転成分を有する。 As shown in FIG. 21, the countless transverse vortex Vt generated downstream of the outlet of the blow hole 10 has a vortex axis that intersects the flow direction of the working air flow Waf and goes straight in the same direction as the flow direction of the working air flow Waf. In addition to the component, it has a rotation component from the inside to the outside of the blowing hole 10.
 また、略二等辺三角形状の複数の凹凸部204の隙間から作動気流Wafが吹き出されると、複数の凹凸部204の空気流れ下流側に無数の補助渦Vsが発生する。 Further, when the working airflow Waf is blown out from the gaps between the plurality of uneven portions 204 having a substantially isosceles triangle shape, countless auxiliary vortices Vs are generated on the downstream side of the air flow of the plurality of uneven portions 204.
 図22に示すように、無数の補助渦Vsは、略二等辺三角形状の複数の凹凸部204の空気流れ下流側であって、略二等辺三角形のそれぞれの等辺側に発生する。この補助渦Vsは、略二等辺三角形の等辺に直交する渦軸を有する。また、略二等辺三角形のそれぞれの等辺側に発生する補助渦Vsの渦の回転方向は、互いに逆方向である。つまり、無数に発生する補助渦Vsは、横渦Vtと渦特性のうち少なくとも渦の回転方向および渦軸の方向が異なる。 As shown in FIG. 22, innumerable auxiliary vortices Vs are generated on the downstream side of the air flow of the plurality of concave and convex portions 204 having a substantially isosceles triangle shape and on the respective equilateral sides of the substantially isosceles triangle. The auxiliary vortex Vs has a vortex axis perpendicular to the equilateral sides of a substantially isosceles triangle. Further, the rotation directions of the auxiliary vortex Vs generated on the respective equilateral sides of the substantially isosceles triangle are opposite to each other. That is, innumerable auxiliary vortices Vs have different vortex characteristics and at least the vortex rotation direction and vortex axis direction of the transverse vortex Vt.
 このため、凹凸部204の出口下流である吹出穴10の出口下流では、横渦Vtに、横渦Vtとは渦の回転方向および渦軸およびの方向が異なる補助渦Vsが衝突する。横渦Vtおよび補助渦Vsが衝突すると、横渦Vtが大きく乱れることで、横渦Vtの合成が生じ難くなる。すなわち、吹出穴10の出口下流に発生する横渦Vtの発達が抑制される。この結果、作動気流Wafにおける空気の引き込み作用が抑えられるので、作動気流Wafは到達距離が長くなる。 For this reason, the auxiliary vortex Vs having a different vortex rotation direction and vortex axis from the lateral vortex Vt collides with the lateral vortex Vt at the outlet downstream of the blowout hole 10, which is downstream of the uneven portion 204. When the horizontal vortex Vt and the auxiliary vortex Vs collide, the horizontal vortex Vt is greatly disturbed, so that it is difficult to synthesize the horizontal vortex Vt. That is, the development of the lateral vortex Vt generated downstream of the outlet of the blow hole 10 is suppressed. As a result, the air draw-in effect in the working airflow Waf is suppressed, so that the working airflow Waf has a long reach.
 また、本実施形態では、複数の凹凸部204は、一対の短縁部104の縁側に沿っては形成されておらず、一対の長縁部102の縁側に沿ってのみ形成されている。そのため、周縁部100の全体に沿って複数の凹凸部204が形成される場合と比較して、横渦Vtおよび補助渦Vsの衝突を抑制できる。これにより、作動気流Wafの到達距離を長くしつつ、横渦Vtおよび補助渦Vsの衝突により生じる空力騒音を低減できる。 Further, in the present embodiment, the plurality of uneven portions 204 are not formed along the edge sides of the pair of short edges 104 but are formed only along the edges of the pair of long edges 102. Therefore, the collision of the lateral vortex Vt and the auxiliary vortex Vs can be suppressed as compared with the case where the plurality of uneven portions 204 are formed along the entire peripheral edge portion 100. Thereby, the aerodynamic noise generated by the collision of the lateral vortex Vt and the auxiliary vortex Vs can be reduced while increasing the reach distance of the working airflow Waf.
 また、本実施形態では、複数の凹凸部204は、一対の長縁部102の縁側に沿ってのみ形成されているため、一対の短縁部104の縁側は、凹凸部204を形成するための形成部分が不要となる。これにより、穴形成部12やダクト部14は、周縁部100の全体に沿って複数の凹凸部204が形成される場合と比較して、小さく形成することができ、空気吹出装置1の設置自由度、搭載自由度の向上効果を得ることができる。 Moreover, in this embodiment, since the several uneven | corrugated | grooved part 204 is formed only along the edge side of a pair of long edge part 102, the edge side of a pair of short edge part 104 is for forming the uneven | corrugated | grooved part 204. A forming part is unnecessary. Thereby, compared with the case where the several uneven | corrugated | grooved part 204 is formed along the whole peripheral part 100, the hole formation part 12 and the duct part 14 can be formed small, and installation of the air blowing apparatus 1 is free. The effect of improving the degree of freedom and mounting can be obtained.
 また、複数の凹凸部204は、空気流れ方向に厚みを有する板状で構成されている。これにより、例えば複数の凹凸部204がフランジ部40まで延伸するように形成されている場合などと比較して、凹凸部204の間を気流が通過する際に補助渦Vsが発生しやすくなる。これにより、作動気流Wafに引き込まれる空気の引き込み作用が抑制され、作動気流Wafは到達距離が長くなる。 Further, the plurality of concavo-convex portions 204 are configured as a plate having a thickness in the air flow direction. Accordingly, for example, the auxiliary vortex Vs is likely to be generated when the airflow passes between the concavo-convex portions 204 as compared to a case where the plurality of concavo-convex portions 204 are formed to extend to the flange portion 40, for example. Thereby, the drawing-in action of the air drawn into the working airflow Waf is suppressed, and the working airflow Waf has a long reach distance.
 また、複数の凹凸部204は、空気流れ下流側の板面が、穴形成部12における周縁部100を形成する部位の空気流れ下流側の端面と面一になっている。これによると、凹凸部204によって補助渦Vsを発生させる位置が、穴形成部12における横渦Vtが生じ始める位置と接近し、補助渦Vsが横渦Vtに衝突し易くなるので、横渦Vtの発達を充分に抑制することができる。 In addition, the plurality of concavo-convex portions 204 have a plate surface on the downstream side of the air flow that is flush with an end surface on the downstream side of the air flow at a portion forming the peripheral edge portion 100 in the hole forming portion 12. According to this, the position where the auxiliary vortex Vs is generated by the concavo-convex portion 204 approaches the position where the horizontal vortex Vt starts to occur in the hole forming portion 12, and the auxiliary vortex Vs easily collides with the horizontal vortex Vt. Can be sufficiently suppressed.
 (第4実施形態の変形例)
 上述の第4実施形態では、複数の凹凸部204の形状について、略二等辺三角形を連続させて並べた鋸歯形状に形成されている例について説明したが、これに限定されない。例えば、図23の第1変形例に示すように、複数の凹凸部204の形状は、矩形状に形成されてもよい。また、図24の第2変形例に示すように、複数の凹凸部204の形状は、円弧状に形成されてもよい。また、図25の第3変形例に示すように、複数の凹凸部204の形状は、波状に形成されてもよい。また、複数の凹凸部204の形状は、略正三角形状や略直角三角形状で形成されてもよい。その他に、複数の凹凸部204の形状は、三角形状、矩形状、円弧状、波形状などを組み合わせて形成されてもよい。また、凹部206と凸部208が一定の隙間を有しながら並んで形成されてもよい。
(Modification of the fourth embodiment)
In the fourth embodiment described above, the example in which the plurality of uneven portions 204 are formed in a sawtooth shape in which substantially isosceles triangles are continuously arranged has been described. However, the present invention is not limited to this. For example, as shown in the first modified example of FIG. 23, the plurality of uneven portions 204 may be formed in a rectangular shape. Moreover, as shown in the 2nd modification of FIG. 24, the shape of the some uneven | corrugated | grooved part 204 may be formed in circular arc shape. Moreover, as shown in the 3rd modification of FIG. 25, the shape of the some uneven | corrugated | grooved part 204 may be formed in a wave shape. Moreover, the shape of the plurality of concavo-convex portions 204 may be formed in a substantially regular triangle shape or a substantially right triangle shape. In addition, the shape of the plurality of concave and convex portions 204 may be formed by combining triangular shapes, rectangular shapes, arc shapes, wave shapes, and the like. Further, the concave portion 206 and the convex portion 208 may be formed side by side with a certain gap.
 また、上述の第4実施形態では、複数の凹凸部204について、略二等辺三角形の頂点が、対向する長縁部102の略二等辺三角形の頂点に向けて突出して形成されている例について説明したが、これに限定されない。例えば、図26の第4変形例に示すように、略二等辺三角形の頂点が、ダクト部14の内部であって空気流れ上流方向に向けて突出して形成されていてもよい。具体的には、第4変形例の断面について図27に示すように、複数の凹凸部204は、ダクト部14の空気流れ上流方向に傾いて形成されていてもよい。また、図28の第5変形例に示すように、略二等辺三角形の頂点が、ダクト部14の外部であって空気流れ下流方向に向けて突出して形成されていてもよい。具体的には、第5変形例の断面について図29に示すように、複数の凹凸部204は、ダクト部14の空気流れ下流方向に傾いて形成されていてもよい。 Further, in the above-described fourth embodiment, an example in which the vertices of approximately isosceles triangles are formed so as to protrude toward the vertices of approximately isosceles triangles of the opposed long edge portions 102 in the plurality of uneven portions 204 is described. However, it is not limited to this. For example, as shown in a fourth modification of FIG. 26, the apex of a substantially isosceles triangle may be formed inside the duct portion 14 so as to protrude in the upstream direction of the air flow. Specifically, as shown in FIG. 27 regarding the cross section of the fourth modified example, the plurality of uneven portions 204 may be formed to be inclined in the air flow upstream direction of the duct portion 14. Moreover, as shown in the 5th modification of FIG. 28, the vertex of a substantially isosceles triangle may protrude outside the duct part 14 toward the air flow downstream direction. Specifically, as shown in FIG. 29 regarding the cross section of the fifth modified example, the plurality of uneven portions 204 may be formed to be inclined in the air flow downstream direction of the duct portion 14.
 また、上述の第4実施形態では、複数の凹凸部204の形状について、板状に形成されている例について説明したが、これに限定されない。例えば、複数の凹凸部204の吹出穴10の開口側における形状が三角形状であれば、穴形成部12の内側部分の形状は三角錐や三角柱の形状などで、穴形成部12の端部から空気流れ上流に向かって、ダクト部14部の内部を延伸して形成されてもよい。 In the above-described fourth embodiment, the example in which the plurality of concave and convex portions 204 are formed in a plate shape has been described. However, the present invention is not limited to this. For example, if the shape of the plurality of concavo-convex portions 204 on the opening side of the blowout hole 10 is a triangular shape, the shape of the inner portion of the hole forming portion 12 is a triangular pyramid or a triangular prism shape, and the like from the end of the hole forming portion 12 It may be formed by extending the inside of the duct portion 14 toward the air flow upstream.
 また、複数の凹凸部204の形状について、吹出穴10の内側に向けて突出して形成されている例について説明したが、これに限定されない。複数の凹凸部204は、吹出穴10の周縁部100から吹出穴10の外側に向けて窪んで形成されたものや、複数の凹凸部204が吹出穴10の内側に突出したものと外側に窪んだものとが交互に並んで形成されたものでもよい。 Moreover, although the example in which the shape of the plurality of concavo-convex portions 204 is formed to protrude toward the inside of the blowout hole 10 has been described, it is not limited thereto. The plurality of concavo-convex portions 204 are formed to be recessed from the peripheral edge portion 100 of the blowout hole 10 toward the outside of the blowout hole 10, or the plurality of concavo-convex portions 204 are formed to protrude outward from the blowout hole 10. It may be formed by alternately arranging noodles.
 また、上述の第4実施形態では、渦発生構造20について、複数の凹凸部204で構成される例について説明したが、これに限定されない。渦発生構造20は、複数の凹凸部204に加えて、第1実施形態で例示した複数の補助穴202を含んで構成されていてもよい。 In the above-described fourth embodiment, the vortex generating structure 20 has been described with respect to the example including the plurality of uneven portions 204, but is not limited thereto. The vortex generating structure 20 may include a plurality of auxiliary holes 202 exemplified in the first embodiment in addition to the plurality of uneven portions 204.
 (第5実施形態)
 次に、第5実施形態について、図30、図31を参照して説明する。本実施形態では、渦発生構造20が、複数の渦発生体22を含む構造になっている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分については説明を省略することがある。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the vortex generating structure 20 has a structure including a plurality of vortex generators 22. In the present embodiment, portions different from the first embodiment will be mainly described, and description of portions similar to the first embodiment may be omitted.
 図30に示すように、渦発生構造20は、穴形成部12のうち吹出穴10を含む周縁部100に沿って並んで配置された複数の渦発生体22で形成されている。また、吹出穴10の開口形状は、扁平な形状であって、直線状に延びる一対の長縁部102と、円弧状に延びる一対の短縁部104とが連なって形成されている。 30, the vortex generating structure 20 is formed by a plurality of vortex generators 22 arranged side by side along the peripheral edge portion 100 including the blowout hole 10 in the hole forming portion 12. Moreover, the opening shape of the blowout hole 10 is a flat shape, and is formed by a pair of long edge portions 102 extending linearly and a pair of short edge portions 104 extending in an arc shape.
 複数の渦発生体22は、吹出穴10の開口方向から見た形状が円形状となる円盤状の部材で構成されている。複数の渦発生体22は、吹出穴10の内側において、等間隔をあけて吹出穴10を含む周縁部100に沿って並んで配置されている。複数の渦発生体22は、吹出穴10から吹き出す作動気流Wafの流れの妨げにならないように、吹出穴10の開口部の面積に比べて小さい面積になっている。なお、複数の渦発生体22は、吹出穴10の内側において、不等な間隔をあけて吹出穴10を含む周縁部100に沿って並んで配置されていてもよい。 The plurality of vortex generators 22 are formed of a disk-shaped member having a circular shape when viewed from the opening direction of the blowout hole 10. The plurality of vortex generators 22 are arranged side by side along the peripheral edge portion 100 including the blowout hole 10 at equal intervals inside the blowout hole 10. The plurality of vortex generators 22 have a smaller area than the area of the opening of the blowout hole 10 so as not to hinder the flow of the working airflow Waf blown from the blowout hole 10. The plurality of vortex generators 22 may be arranged side by side along the peripheral edge 100 including the blowout holes 10 at unequal intervals inside the blowout holes 10.
 複数の渦発生体22は、周縁部100に対して直に接しないように、吹出穴10の内側において、吹出穴10の開口方向と直交する所定の方向に延びる支持部23によって支持されている。具体的には、複数の渦発生体22は、それぞれ周縁部100から内側に向けて突き出る棒状の支持部23の先端部分に接続されている。 The plurality of vortex generators 22 are supported by a support portion 23 extending in a predetermined direction orthogonal to the opening direction of the blow hole 10 inside the blow hole 10 so as not to directly contact the peripheral edge portion 100. . Specifically, each of the plurality of vortex generators 22 is connected to a tip portion of a rod-like support portion 23 that protrudes inward from the peripheral edge portion 100.
 また、複数の渦発生体22は、一対の短縁部104の縁側よりも一対の長縁部102の縁側に偏って配置されている。具体的には、複数の渦発生体22は、一対の短縁部104の縁側に沿って配置されておらず、一対の長縁部102の縁側に沿って配置されている。なお、複数の渦発生体22は、長縁部102に加えて、短縁部104に沿って形成されていてもよい。 Further, the plurality of vortex generators 22 are arranged so as to be biased toward the edge sides of the pair of long edge portions 102 rather than the edge sides of the pair of short edge portions 104. Specifically, the plurality of vortex generators 22 are not disposed along the edge sides of the pair of short edges 104 but are disposed along the edges of the pair of long edges 102. The plurality of vortex generators 22 may be formed along the short edge portion 104 in addition to the long edge portion 102.
 図31に示すように、複数の渦発生体22は、吹出穴10の開口方向に厚みを有する板状部材で構成されている。具体的には、複数の渦発生体22は、図32に示すように、吹出穴10の開口方向から見た形状が円形状となり、且つ、吹出穴10の開口方向に直交する方向から見た形状が四角形状となる円盤状の部材で構成されている。 As shown in FIG. 31, the plurality of vortex generators 22 are configured by a plate-like member having a thickness in the opening direction of the blowout hole 10. Specifically, as shown in FIG. 32, the plurality of vortex generators 22 are circular when viewed from the opening direction of the blowing hole 10 and are viewed from a direction orthogonal to the opening direction of the blowing hole 10. It is comprised with the disk-shaped member used as a square shape.
 また、複数の渦発生体22は、空気流れ下流側の板面が、穴形成部12のうち周縁部100を形成する部位の空気流れ下流側の端面と面一になっている。換言すれば、複数の渦発生体22は、空気流れ下流側の板面が、穴形成部12のうち吹出穴10が開口する端面と面一になっている。 Also, the plate surface on the downstream side of the air flow of the plurality of vortex generators 22 is flush with the end surface on the downstream side of the air flow of the hole forming portion 12 where the peripheral edge portion 100 is formed. In other words, in the plurality of vortex generators 22, the plate surface on the downstream side of the air flow is flush with the end surface of the hole forming portion 12 where the blowout hole 10 opens.
 このように構成される空気吹出装置1では、空調ユニットで温度調整された空調風がダクト部14に流入すると、空調風が流路18を介して吹出穴10に流れる。そして、吹出穴10から作動気流Wafが吹き出されると、吹出穴10の出口下流に無数の横渦Vtが発生する。 In the air blowing device 1 configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct portion 14, the conditioned air flows into the blowing hole 10 through the flow path 18. Then, when the working airflow Waf is blown out from the blowing hole 10, innumerable transverse vortices Vt are generated downstream of the outlet of the blowing hole 10.
 本実施形態の空気吹出装置1は、吹出穴10の内側に複数の渦発生体22が配置されている。このため、流路18を介して吹出穴10に流れる空調風の一部は、複数の渦発生体22の周囲を通過した後に室内に吹き出される。空調風が複数の渦発生体22の周囲を通過する際には、渦発生体22の板面に沿って流れる気流が外縁から剥離することで、様々な渦軸を有する全周剥離渦が生ずる。これにより、図33に示すように、複数の渦発生体22の空気流れ下流側に無数の補助渦Vsが発生する。補助渦Vsは、渦発生体22の空気流れ下流側に発生する。なお、補助渦Vsは、横渦Vtと渦特性のうち少なくとも渦の回転方向および渦軸の方向が異なる。 In the air blowing device 1 of the present embodiment, a plurality of vortex generators 22 are arranged inside the blowing hole 10. For this reason, a part of the conditioned air flowing into the blowout hole 10 through the flow path 18 is blown into the room after passing around the plurality of vortex generators 22. When the conditioned air passes around the plurality of vortex generators 22, the airflow flowing along the plate surface of the vortex generators 22 is peeled off from the outer edge, so that all-round separated vortices having various vortex axes are generated. . Thereby, as shown in FIG. 33, innumerable auxiliary vortices Vs are generated on the downstream side of the air flow of the plurality of vortex generators 22. The auxiliary vortex Vs is generated on the downstream side of the air flow of the vortex generator 22. The auxiliary vortex Vs differs from the transverse vortex Vt in vortex characteristics at least in the direction of the vortex rotation and the direction of the vortex axis.
 このため、吹出穴10の出口下流では、横渦Vtに、横渦Vtとは渦の回転方向および渦軸の方向が異なる補助渦Vsが衝突する。横渦Vtおよび補助渦Vsが衝突すると、横渦Vtが大きく乱れることで、横渦Vtの合成が生じ難くなる。すなわち、吹出穴10の出口下流に発生する横渦Vtの発達が抑制される。この結果、作動気流Wafにおける空気の引き込み作用が抑えられるので、作動気流Wafは到達距離が長くなる。 Therefore, on the downstream side of the outlet of the blowout hole 10, the auxiliary vortex Vs whose vortex rotation direction and vortex axis direction are different from the horizontal vortex Vt collides with the horizontal vortex Vt. When the horizontal vortex Vt and the auxiliary vortex Vs collide, the horizontal vortex Vt is greatly disturbed, so that it is difficult to synthesize the horizontal vortex Vt. That is, the development of the lateral vortex Vt generated downstream of the outlet of the blow hole 10 is suppressed. As a result, the air draw-in effect in the working airflow Waf is suppressed, so that the working airflow Waf has a long reach.
 また、複数の渦発生体22は、一対の長縁部102の縁側に沿って配置され、一対の短縁部104の縁側に配置されていない。このため、周縁部100の全体に沿って複数の渦発生体22が形成される場合と比較して、横渦Vtおよび補助渦Vsの衝突を抑制できる。これにより、横渦Vtおよび補助渦Vsの衝突により生じる空力騒音を低減できる。また、複数の渦発生体22の追加に伴う吹出穴10の開口面積の減少を抑えることができる。 Further, the plurality of vortex generators 22 are arranged along the edge sides of the pair of long edges 102 and are not arranged on the edges of the pair of short edges 104. For this reason, compared with the case where the some vortex generator 22 is formed along the whole peripheral part 100, the collision of the horizontal vortex Vt and the auxiliary vortex Vs can be suppressed. Thereby, the aerodynamic noise generated by the collision of the lateral vortex Vt and the auxiliary vortex Vs can be reduced. Moreover, the reduction of the opening area of the blowing hole 10 accompanying the addition of the plurality of vortex generators 22 can be suppressed.
 ここで、渦発生体22を周縁部100に対して直に形成すると、渦発生体22と周縁部100とが直に接する部位では気流が生じないので、補助渦Vsを発生させることができない。 Here, if the vortex generator 22 is formed directly with respect to the peripheral portion 100, an air flow does not occur at the portion where the vortex generator 22 and the peripheral portion 100 are in direct contact, and therefore the auxiliary vortex Vs cannot be generated.
 これに対して、本実施形態の複数の渦発生体22は、周縁部100に対して直に接しないように、吹出穴10の内側において吹出穴10の開口方向と直交する所定の方向に延びる支持部23によって支持されている。このように、渦発生体22を支持部23で支持する構成とすれば、渦発生体22を周縁部100から離間させることができる。これにより、渦発生体22の外周縁の略全域で補助渦Vsを発生させることが可能となる。このため、仮に、渦発生体22と周縁部100との間に横渦Vtが生じたとしても、渦発生体22の外周縁で生ずる補助渦Vsによって、横渦Vtの発達を抑制することができる。 On the other hand, the plurality of vortex generators 22 of the present embodiment extend in a predetermined direction orthogonal to the opening direction of the blow hole 10 inside the blow hole 10 so as not to be in direct contact with the peripheral edge portion 100. It is supported by the support part 23. Thus, if it is set as the structure which supports the vortex generator 22 with the support part 23, the vortex generator 22 can be spaced apart from the peripheral part 100. FIG. As a result, the auxiliary vortex Vs can be generated in substantially the entire outer peripheral edge of the vortex generator 22. For this reason, even if a lateral vortex Vt is generated between the vortex generator 22 and the peripheral edge 100, the development of the lateral vortex Vt can be suppressed by the auxiliary vortex Vs generated at the outer periphery of the vortex generator 22. it can.
 また、複数の渦発生体22は、吹出穴10の開口方向に厚みを有する板状部材で構成されている。これによると、渦発生体22の間を気流が通過する際に補助渦Vsが発生し易くなる。この結果、補助渦Vsが横渦Vtに衝突し易くなることで、横渦Vtの発達を充分に抑制することができる。 Further, the plurality of vortex generators 22 are configured by a plate-like member having a thickness in the opening direction of the blowout hole 10. According to this, the auxiliary vortex Vs is easily generated when the airflow passes between the vortex generators 22. As a result, the auxiliary vortex Vs can easily collide with the horizontal vortex Vt, so that the development of the horizontal vortex Vt can be sufficiently suppressed.
 特に、複数の渦発生体22は、空気流れ下流側の板面が、穴形成部12における周縁部100を形成する部位の空気流れ下流側の端面と面一になっている。これによると、渦発生体22によって補助渦Vsを発生させる位置が、穴形成部12における横渦Vtが生じ始める位置と接近し、補助渦Vsが横渦Vtに衝突し易くなるので、横渦Vtの発達を充分に抑制することができる。 Particularly, in the plurality of vortex generators 22, the plate surface on the downstream side of the air flow is flush with the end surface on the downstream side of the air flow of the portion forming the peripheral edge 100 in the hole forming portion 12. According to this, the position where the auxiliary vortex Vs is generated by the vortex generator 22 approaches the position where the horizontal vortex Vt starts to be generated in the hole forming portion 12, and the auxiliary vortex Vs easily collides with the horizontal vortex Vt. The development of Vt can be sufficiently suppressed.
 (第5実施形態の変形例)
 上述の第5実施形態では、複数の渦発生体22が周縁部100から内側に向けて突き出る棒状の支持部23の先端部分に接続されているものを例示したが、これに限定されない。複数の渦発生体22は、例えば、図34および図35の第1変形例に示すように、ダクト部14のうち流路18を形成する内壁面から吹出穴10に向かって延びるL字状の支持部23によって支持されていてもよい。
(Modification of the fifth embodiment)
In the fifth embodiment described above, the plurality of vortex generators 22 are illustrated as being connected to the distal end portion of the rod-like support portion 23 protruding inward from the peripheral edge portion 100, but the present invention is not limited to this. The plurality of vortex generators 22 are, for example, L-shaped extending from the inner wall surface of the duct portion 14 forming the flow path 18 toward the blowout hole 10 as shown in the first modification of FIGS. 34 and 35. It may be supported by the support part 23.
 上述の第5実施形態では、複数の渦発生体22それぞれが別個の支持部23で支持されているものを例示したが、これに限定されない。複数の渦発生体22は、例えば、図36の第2変形例に示すように、少なくとも一部が、一対の長縁部102の延在方向に沿って延びる支持部23によって支持されていてもよい。 In the above-described fifth embodiment, the example in which each of the plurality of vortex generators 22 is supported by separate support portions 23 is illustrated, but the present invention is not limited to this. For example, as shown in the second modified example of FIG. 36, at least a part of the plurality of vortex generators 22 may be supported by a support portion 23 that extends along the extending direction of the pair of long edge portions 102. Good.
 また、複数の渦発生体22は、例えば、図37の第3変形例に示すように、少なくとも一部が、一対の長縁部102の延在方向に直交する方向に延びる支持部23によって支持されていてもよい。 Further, for example, as shown in a third modification of FIG. 37, the plurality of vortex generators 22 are supported by a support portion 23 at least partially extending in a direction orthogonal to the extending direction of the pair of long edge portions 102. May be.
 図38および図39の第4変形例に示すように、吹出穴10の内側または流路18に対して風向または風量を調整するためのルーバ24が配置されている場合、当該ルーバ24に対して複数の渦発生体22が支持される構成になっていてもよい。この場合、ルーバ24が複数の渦発生体22を支持する支持部を構成する。これによれば、ルーバ24の姿勢を変更して風向等を変化させたとしても、それに追従して複数の渦発生体22の姿勢を変化させることができる。すなわち、専用の機構を設けることなく、風向変化に合わせて複数の渦発生体22の姿勢を変化させることが可能となる。 As shown in the fourth modified example of FIGS. 38 and 39, when the louver 24 for adjusting the air direction or the air volume is arranged inside the blow hole 10 or the flow path 18, the louver 24 A plurality of vortex generators 22 may be supported. In this case, the louver 24 constitutes a support portion that supports the plurality of vortex generators 22. According to this, even if the attitude of the louver 24 is changed to change the wind direction or the like, the attitude of the plurality of vortex generators 22 can be changed following the change. That is, it is possible to change the postures of the plurality of vortex generators 22 in accordance with the change in wind direction without providing a dedicated mechanism.
 上述の第5実施形態では、複数の渦発生体22が、吹出穴10の開口方向に厚みを有する板状部材で構成され、その板面が、穴形成部12のうち吹出穴10が開口する端面と面一になっているものを例示したが、これに限定されない。すなわち、複数の渦発生体22が板状部材で構成されている場合であっても、その板面が、穴形成部12のうち吹出穴10が開口する端面と面一になっていなくてもよい。また、複数の渦発生体22は、図40の第5変形例に示すように、吹出穴10の開口方向に並んで配置されていてもよい。この場合、複数の渦発生体22は、吹出穴10の開口方向において互いに重なり合うように配置されていてもよいし、互いに重なり合わないように配置されていてもよい。 In the above-described fifth embodiment, the plurality of vortex generators 22 are configured by a plate-like member having a thickness in the opening direction of the blowout hole 10, and the blowout hole 10 is opened in the hole forming portion 12. Although the example which is flush with the end face is illustrated, the present invention is not limited to this. That is, even when the plurality of vortex generators 22 are configured by plate-like members, the plate surface may not be flush with the end surface of the hole forming portion 12 where the blowing holes 10 are opened. Good. In addition, the plurality of vortex generators 22 may be arranged side by side in the opening direction of the blowout hole 10 as shown in the fifth modification of FIG. In this case, the plurality of vortex generators 22 may be arranged so as to overlap each other in the opening direction of the blowout hole 10 or may be arranged so as not to overlap each other.
 上述の第5実施形態では、複数の渦発生体22が吹出穴10の開口方向から見た形状が円形状となる円盤状の部材で構成されているものを例示したが、これに限定されない。複数の渦発生体22は、例えば、複数の渦発生体22が吹出穴10の開口方向から見た形状が楕円や多角形状となる部材で構成されていてもよい。また、複数の渦発生体22は、例えば、吹出穴10の開口方向に直交する方向から見た形状が円形状、円錐形状、多角形状となる部材で構成されていてもよい。 In the fifth embodiment described above, the plurality of vortex generators 22 are illustrated as being formed of a disk-shaped member having a circular shape when viewed from the opening direction of the blowout hole 10, but the present invention is not limited to this. For example, the plurality of vortex generators 22 may be formed of a member whose shape when the plurality of vortex generators 22 are viewed from the opening direction of the blowout hole 10 is an ellipse or a polygon. In addition, the plurality of vortex generators 22 may be configured by a member whose shape viewed from a direction orthogonal to the opening direction of the blowout hole 10 is a circular shape, a conical shape, or a polygonal shape, for example.
 例えば、複数の渦発生体22は、図41の第1変形例で示すように、球体221で構成されていてもよい。また、複数の渦発生体22は、図42の第2変形例で示す八面体222、図43の第3変形例で示す六面体223等の多面体で構成されていてもよい。さらに、複数の渦発生体22は、図44の第4変形例で示すように、メッシュ状に形成された網状体224で構成されていてもよい。 For example, the plurality of vortex generators 22 may be composed of spheres 221 as shown in the first modification of FIG. Further, the plurality of vortex generators 22 may be configured by polyhedrons such as an octahedron 222 shown in the second modification of FIG. 42 and a hexahedron 223 shown in the third modification of FIG. 43. Furthermore, the plurality of vortex generators 22 may be configured by a mesh-like body 224 formed in a mesh shape, as shown in the fourth modified example of FIG.
 上述の第5実施形態では、渦発生構造20について、複数の渦発生体22で構成される例について説明したが、これに限定されない。渦発生構造20は、複数の渦発生体22に加えて、複数の補助穴202および複数の凹凸部204の少なくとも一方を含んで構成されていてもよい。 In the above-described fifth embodiment, the vortex generating structure 20 has been described with respect to the example constituted by a plurality of vortex generators 22, but is not limited thereto. The vortex generating structure 20 may be configured to include at least one of the plurality of auxiliary holes 202 and the plurality of uneven portions 204 in addition to the plurality of vortex generators 22.
 (第6実施形態)
 次に、第6実施形態について、図45を参照して説明する。本実施形態の空気吹出装置1は、吹出穴10の開口形状が第3実施形態と異なっている。本実施形態では、第3実施形態と異なる部分について主に説明し、第3実施形態と同様の部分については説明を省略することがある。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIG. The air blowing device 1 of the present embodiment is different from the third embodiment in the opening shape of the blowing holes 10. In the present embodiment, portions different from the third embodiment will be mainly described, and description of portions similar to the third embodiment may be omitted.
 図45に示すように、吹出穴10は、一対の長縁部102を構成する第1縁部102aおよび第2縁部102bと、一対の短縁部104を構成する第3縁部104aおよび第4縁部104bで構成されている。 As shown in FIG. 45, the blowout hole 10 includes a first edge 102 a and a second edge 102 b that constitute a pair of long edges 102, and a third edge 104 a and a second edge that constitute a pair of short edges 104. It consists of four edges 104b.
 第1縁部102aおよび第2縁部102bは、互いの間隔が長軸Lsの方向において異なっている。すなわち、第1縁部102aおよび第2縁部102bは、長軸Lsの方向の中央部分における間隔が、長軸Lsの方向の両端部における間隔よりも小さくなるように湾曲している。 The first edge portion 102a and the second edge portion 102b are different from each other in the direction of the long axis Ls. In other words, the first edge portion 102a and the second edge portion 102b are curved so that the interval at the central portion in the direction of the long axis Ls is smaller than the interval at both ends in the direction of the long axis Ls.
 一方、第3縁部104aおよび第4縁部104bは、短軸Ssの方向の中央部分における間隔が、短軸Ssの方向の両端部における間隔よりも大きくなるように湾曲している。なお、第3縁部104aおよび第4縁部104bは、縁に沿う長さが第1縁部102aおよび第2縁部102bよりも短くなるとともに、第1縁部102aと第2縁部102bとの間隔よりも大きい間隔で対向している。 On the other hand, the third edge portion 104a and the fourth edge portion 104b are curved so that the interval at the central portion in the direction of the short axis Ss is larger than the interval at both ends in the direction of the short axis Ss. The third edge portion 104a and the fourth edge portion 104b are shorter in length along the edge than the first edge portion 102a and the second edge portion 102b, and the first edge portion 102a and the second edge portion 102b. It is opposed at an interval larger than the interval.
 第3縁部104aは、第1縁部102aおよび第2縁部102bとの接続部分が丸みを有するように、第1縁部102aおよび第2縁部102bの一端に接続されている。同様に、第4縁部104bは、第1縁部102aおよび第2縁部102bとの接続部分が丸みを有するように、第1縁部102aおよび第2縁部102bの他端に接続されている。 The third edge portion 104a is connected to one end of the first edge portion 102a and the second edge portion 102b so that the connection portion between the first edge portion 102a and the second edge portion 102b has a roundness. Similarly, the fourth edge portion 104b is connected to the other ends of the first edge portion 102a and the second edge portion 102b so that the connection portion between the first edge portion 102a and the second edge portion 102b is rounded. Yes.
 このように構成される吹出穴10は、長円形状に対して歪な形状となるものの、第1縁部102aおよび第2縁部102bと第3縁部104aおよび第4縁部104bとの接続部分が丸みを有している。このため、吹出穴10に角部が含まれるものに比べて、吹出穴10の出口下流付近での横渦Vtの発達が抑制され易くなる。 Although the blowout hole 10 configured as described above has a distorted shape with respect to the oval shape, the connection between the first edge portion 102a and the second edge portion 102b and the third edge portion 104a and the fourth edge portion 104b. The part is rounded. For this reason, the development of the lateral vortex Vt in the vicinity of the outlet downstream of the outlet hole 10 is easily suppressed as compared with the outlet hole 10 including a corner portion.
 (第6実施形態の変形例)
 上述の第6実施形態では、第1縁部102aおよび第2縁部102bの中央部分における間隔が、長軸Lsの方向の両端部の間隔よりも小さくなるように湾曲している吹出穴10を例示したが、これに限定されない。
(Modification of the sixth embodiment)
In the above-described sixth embodiment, the blowout holes 10 that are curved so that the distance between the central portions of the first edge portion 102a and the second edge portion 102b is smaller than the distance between both end portions in the direction of the long axis Ls. Although illustrated, it is not limited to this.
 例えば、図46の第1変形例に示すように、吹出穴10の第1縁部102aおよび第2縁部102bは、長軸Lsの方向の中央部分における間隔が、長軸Lsの方向の両端部における間隔よりも大きくなるように湾曲していてもよい。 For example, as shown in the first modification of FIG. 46, the first edge portion 102a and the second edge portion 102b of the blowout hole 10 are spaced from each other at both ends in the direction of the long axis Ls. You may curve so that it may become larger than the space | interval in a part.
 また、例えば、図47の第2変形例に示すように、吹出穴10の第1縁部102aおよび第2縁部102bは、長軸Lsの方向の一端側における間隔が、長軸Lsの方向の他端側における間隔よりも大きくなるように湾曲していてもよい。 Further, for example, as shown in the second modification of FIG. 47, the first edge portion 102a and the second edge portion 102b of the blowout hole 10 are spaced apart at one end side in the direction of the long axis Ls. You may curve so that it may become larger than the space | interval in the other end side.
 また、例えば、図48の第3変形例に示すように、吹出穴10は、第1縁部102aおよび第2縁部102bそれぞれが同じ方向に湾曲することで、第1縁部102aおよび第2縁部102bの間隔が一定に維持されていてもよい。 Further, for example, as shown in the third modification of FIG. 48, the blowout hole 10 has the first edge 102a and the second edge 102b because the first edge 102a and the second edge 102b are curved in the same direction. The interval between the edges 102b may be kept constant.
 また、例えば、図49の第4変形例に示すように、吹出穴10は、第1縁部102aおよび第2縁部102bそれぞれが同じ方向に屈折することで、第1縁部102aおよび第2縁部102bの間隔が一定に維持されていてもよい。 For example, as shown in the fourth modification of FIG. 49, the blowout hole 10 has the first edge portion 102 a and the second edge portion 102 b refracted in the same direction by the first edge portion 102 a and the second edge portion 102 b. The interval between the edges 102b may be kept constant.
 また、例えば、図50の第5変形例に示すように、吹出穴10は、第1縁部102aおよび第2縁部102bに対して互いに遠ざかるように窪んだ窪部102c、102dが設けられていてもよい。 Further, for example, as shown in the fifth modified example of FIG. 50, the blowout hole 10 is provided with recesses 102c and 102d that are recessed so as to be away from the first edge 102a and the second edge 102b. May be.
 また、例えば、図51の第6変形例に示すように、吹出穴10は、第1縁部102aおよび第2縁部102bに対して互いに近付くように突き出た突出部102e、102fが設けられていてもよい。 Further, for example, as shown in the sixth modification of FIG. 51, the blowout hole 10 is provided with protrusions 102e and 102f protruding so as to approach the first edge 102a and the second edge 102b. May be.
 ここで、上記した各変形例は、吹出穴10の開口形状の一部を例示したものであり、吹出穴10の開口形状として、上記したもの以外の形状が採用されていてもよい。 Here, each of the above-described modified examples exemplifies a part of the opening shape of the blowing hole 10, and a shape other than the above-described shape may be adopted as the opening shape of the blowing hole 10.
 また、第6実施形態およびその変形例では、渦発生構造20が複数の補助穴202で構成される空気吹出装置1における吹出穴10の開口形状を例示したが、これに限定されない。第6実施形態およびその変形例で示した吹出穴10の開口形状は、渦発生構造20が複数の凹凸部204、複数の渦発生体22で構成される空気吹出装置1にも適用可能である。
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
Moreover, in 6th Embodiment and its modification, although the vortex generating structure 20 illustrated the opening shape of the blowing hole 10 in the air blowing apparatus 1 comprised with the some auxiliary hole 202, it is not limited to this. The opening shape of the blowout hole 10 shown in the sixth embodiment and its modification can also be applied to the air blowing device 1 in which the vortex generating structure 20 includes a plurality of concavo-convex portions 204 and a plurality of vortex generators 22. .
(Other embodiments)
As mentioned above, although typical embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
 上述の実施形態では、補助穴202の形状について、円形状に形成されている例について説明したが、これに限定されない。例えば、補助穴202の形状は、楕円形状や多角形状に形成されていてもよい。その他に、第3実施形態の第1変形例で示したように、補助穴202の形状は、スリット状に形成されていてもよい。 In the above-described embodiment, the example in which the auxiliary hole 202 is formed in a circular shape has been described. However, the present invention is not limited to this. For example, the auxiliary hole 202 may have an elliptical shape or a polygonal shape. In addition, as shown in the first modification of the third embodiment, the shape of the auxiliary hole 202 may be formed in a slit shape.
 また、上述の実施形態では、吹出穴10の開口形状について、直線状の一対の長縁部102と、円弧状の一対の短縁部104とが連なって形成されている例について説明したが、これに限定されない。例えば、吹出穴10の開口形状は、円弧状の一対の長縁部102と、直線状の一対の短縁部104とが連なって形成されていてもよい。また、第3実施形態の第2変形例で示したように、直線状の一対の長縁部102および直線状の一対の短縁部104で構成される長方形状に形成されていてもよい。 In the above-described embodiment, the opening shape of the blowout hole 10 has been described with respect to an example in which a pair of linear long edge portions 102 and a pair of arcuate short edge portions 104 are continuously formed. It is not limited to this. For example, the opening shape of the blowout hole 10 may be formed by connecting a pair of arc-shaped long edges 102 and a pair of straight short edges 104. Further, as shown in the second modified example of the third embodiment, it may be formed in a rectangular shape including a pair of straight long edges 102 and a pair of straight short edges 104.
 また、上述の実施形態では、吹出穴10の形状は扁平形状で形成されている例について説明したが、これに限定されない。例えば、吹出穴10の開口形状は、円形状、楕円形状、多角形状に形成されていてもよい。 In the above-described embodiment, the example in which the shape of the blowout hole 10 is a flat shape has been described. However, the present invention is not limited to this. For example, the opening shape of the blowout hole 10 may be formed in a circular shape, an elliptical shape, or a polygonal shape.
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle.
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. Except in some cases, the number is not limited.
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In the above embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, positional relationship, etc. unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to etc.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、空気吹出装置は、作動気流を通過させるための流路を形成するダクト部と、ダクト部の空気流れ下流側に作動気流の吹出口となる吹出穴を形成する穴形成部を備える。この穴形成部は、横渦とは渦の回転方向および渦軸の方向を含む渦特性が異なる補助渦を発生させる渦発生構造を有する。この渦発生構造は、補助渦が渦の回転方向および渦軸の方向の少なくとも一方が横渦と異なる渦特性を有する状態で、横渦に衝突するように穴形成部に形成されている。
(Summary)
According to the 1st viewpoint shown by one part or all part of the above-mentioned embodiment, an air blowing apparatus has the duct part which forms the flow path for allowing a working air current to pass through, and the air flow downstream of a duct part. A hole forming part for forming a blowout hole serving as a blowout port for the working airflow is provided. This hole forming portion has a vortex generating structure for generating auxiliary vortices having different vortex characteristics including the rotational direction of the vortex and the direction of the vortex axis from the lateral vortex. This vortex generating structure is formed in the hole forming portion so that the auxiliary vortex collides with the horizontal vortex in a state where at least one of the rotation direction of the vortex and the direction of the vortex axis has a vortex characteristic different from that of the horizontal vortex.
 第2の観点によれば、渦発生構造は、吹出穴を囲む周縁部に沿って並んで形成される複数の補助穴を含み、複数の補助穴から吹き出される気流によって、横渦とは少なくとも渦の回転方向の異なる補助渦が発生する構造になっている。この構造により発生する補助渦を横渦に衝突させることで、横渦の発達を抑制することができる。これにより、吹出穴から吹き出される作動気流に引き込まれる空気の引き込み作用が抑制され、吹出穴から吹き出される作動気流は到達距離が長くなる。 According to the second aspect, the vortex generating structure includes a plurality of auxiliary holes formed side by side along the peripheral edge surrounding the blowout hole, and the airflow blown from the plurality of auxiliary holes causes at least the horizontal vortex to The structure is such that auxiliary vortices with different vortex rotation directions are generated. By causing the auxiliary vortex generated by this structure to collide with the horizontal vortex, the development of the horizontal vortex can be suppressed. Thereby, the drawing-in action of the air drawn into the working airflow blown out from the blowing hole is suppressed, and the working airflow blown out from the blowing hole has a long reach distance.
 第3の観点によれば、周縁部は、所定の間隔をあけた状態で対向して延びる第1縁部および第2縁部と、第1縁部および第2縁部それぞれの一端同士を接続する第3縁部と、第1縁部および第2縁部それぞれの他端同士を接続する第4縁部とを有する。第1縁部および第2縁部は、第3縁部と第4縁部との間隔よりも小さい間隔で対向する一対の長縁部を構成している。第3縁部および第4縁部は、第1縁部と第2縁部との間隔よりも大きい間隔で対向する一対の短縁部を構成している。複数の補助穴は、周縁部のうち、一対の長縁部の縁側に比べて、一対の短縁部の縁側で複数の補助渦が発生し難くなるように、一対の長縁部の縁側に偏って形成されている。これによると、補助穴が吹出穴の周縁部全体に沿って形成される場合と比較して、横渦および補助渦の衝突を抑制できるので、作動気流の到達距離を長くしつつ、横渦および補助渦の衝突により生じる空力騒音を低減できる。 According to the third aspect, the peripheral portion connects the first edge and the second edge extending opposite to each other at a predetermined interval, and one end of each of the first edge and the second edge. And a fourth edge that connects the other ends of the first edge and the second edge. The first edge portion and the second edge portion constitute a pair of long edge portions that face each other at an interval smaller than the interval between the third edge portion and the fourth edge portion. The third edge and the fourth edge constitute a pair of short edges facing each other at a larger interval than the interval between the first edge and the second edge. The plurality of auxiliary holes are formed on the edge side of the pair of long edge portions so that the plurality of auxiliary vortices are less likely to be generated on the edge side of the pair of short edge portions than the edge side of the pair of long edge portions. It is formed unevenly. According to this, since the collision of the lateral vortex and the auxiliary vortex can be suppressed as compared with the case where the auxiliary hole is formed along the entire peripheral portion of the outlet hole, the lateral vortex and Aerodynamic noise generated by the collision of the auxiliary vortex can be reduced.
 第4の観点によれば、吹出穴は扁平な開口形状を有し、吹出穴の周縁部は、一対の長縁部と、一対の長縁部に連なる一対の短縁部を含んでおり、複数の補助穴は、一対の長縁部の縁側に偏って形成されている。これにより、補助穴が吹出穴の周縁部全体に沿って形成される場合と比較して、横渦および補助渦の衝突を抑制できる。その結果、作動気流の到達距離を長くしつつ、横渦および補助渦の衝突により生じる空力騒音を低減できる。 According to the fourth aspect, the blowout hole has a flat opening shape, and the peripheral part of the blowout hole includes a pair of long edges and a pair of short edges connected to the pair of long edges, The plurality of auxiliary holes are formed so as to be biased toward the edge sides of the pair of long edge portions. Thereby, compared with the case where an auxiliary hole is formed along the whole peripheral part of a blowing hole, the collision of a horizontal vortex and an auxiliary vortex can be suppressed. As a result, it is possible to reduce the aerodynamic noise caused by the collision of the lateral vortex and the auxiliary vortex while increasing the reach of the working airflow.
 第5の観点によれば、複数の補助穴は、一対の長縁部の縁側に形成され、一対の短縁部の縁側に形成されていない。これにより、穴形成部においては、一対の短縁部の縁側は補助穴を形成するための形成部分が不要となる。その結果、作動気流の到達距離を長くしつつ、空力騒音を低減し、穴形成部を小さくすることができ、空気吹出装置の設置自由度、搭載自由度の向上効果を得ることができる。 According to the fifth aspect, the plurality of auxiliary holes are formed on the edge sides of the pair of long edges and are not formed on the edges of the pair of short edges. Thereby, in the hole formation part, the formation part for forming an auxiliary hole becomes unnecessary on the edge side of a pair of short edge part. As a result, the aerodynamic noise can be reduced and the hole forming portion can be reduced while increasing the reach of the working airflow, and the effect of improving the degree of freedom in installing and mounting the air blowing device can be obtained.
 第6の観点によれば、渦発生構造は、吹出穴を含む周縁部に沿って、凹部と凸部とが交互に並んで形成される複数の凹凸部を含み、凹凸部の間を気流が通過する際に、横渦とは渦の回転方向および渦軸の向きの異なる補助渦が発生する構造になっている。この構造により発生する補助渦を、作動気流を大きく崩壊させる横渦に衝突させることで、横渦の発達を抑制することができる。これにより、吹出穴から吹き出される作動気流に引き込まれる空気の引き込み作用が抑制され、吹出穴から吹き出される作動気流は到達距離が長くなる。 According to the sixth aspect, the vortex generating structure includes a plurality of concave and convex portions formed by alternately arranging concave portions and convex portions along a peripheral edge portion including the blowout holes, and an air current is generated between the concave and convex portions. When passing, the transverse vortex has a structure in which auxiliary vortices having different vortex rotation directions and vortex axis directions are generated. By causing the auxiliary vortex generated by this structure to collide with the lateral vortex that greatly collapses the working airflow, the development of the lateral vortex can be suppressed. Thereby, the drawing-in action of the air drawn into the working airflow blown out from the blowing hole is suppressed, and the working airflow blown out from the blowing hole has a long reach distance.
 第7の観点によれば、周縁部は、所定の間隔をあけた状態で対向して延びる第1縁部および第2縁部と、第1縁部および第2縁部それぞれの一端同士を接続する第3縁部と、第1縁部および第2縁部それぞれの他端同士を接続する第4縁部とを有する。第1縁部および第2縁部は、第3縁部と第4縁部との間隔よりも小さい間隔で対向する一対の長縁部を構成している。第3縁部および第4縁部は、第1縁部と第2縁部との間隔よりも大きい間隔で対向する一対の短縁部を構成している。複数の凹凸部は、周縁部のうち、一対の長縁部の縁側に比べて、一対の短縁部の縁側で複数の補助渦が発生し難くなるように、一対の長縁部の縁側に偏って形成されている。これによると、凹凸部が吹出穴の周縁部全体に沿って形成される場合と比較して、横渦および補助渦の衝突を抑制できるので、作動気流の到達距離を長くしつつ、横渦および補助渦の衝突により生じる空力騒音を低減できる。 According to the seventh aspect, the peripheral portion connects the first edge and the second edge extending opposite to each other at a predetermined interval, and one end of each of the first edge and the second edge. And a fourth edge that connects the other ends of the first edge and the second edge. The first edge portion and the second edge portion constitute a pair of long edge portions that face each other at an interval smaller than the interval between the third edge portion and the fourth edge portion. The third edge and the fourth edge constitute a pair of short edges facing each other at a larger interval than the interval between the first edge and the second edge. The plurality of concavo-convex portions are arranged on the edge side of the pair of long edge portions so that the plurality of auxiliary vortices are less likely to be generated on the edge side of the pair of short edge portions than the edge side of the pair of long edge portions. It is formed unevenly. According to this, the collision of the lateral vortex and the auxiliary vortex can be suppressed as compared with the case where the concavo-convex portion is formed along the entire peripheral edge of the blowout hole. Aerodynamic noise generated by the collision of the auxiliary vortex can be reduced.
 第8の観点によれば、吹出穴は扁平な開口形状を有し、吹出穴の周縁部は、一対の長縁部と、一対の長縁部に連なる一対の短縁部を含んでおり、複数の凹凸部は、一対の長縁部の縁側に偏って形成されている。これにより、凹凸部が吹出穴の周縁部全体に沿って形成される場合と比較して、横渦および補助渦の衝突を抑制できる。その結果、作動気流の到達距離を長くしつつ、横渦および補助渦の衝突により生じる空力騒音を低減できる。 According to the eighth aspect, the blowout hole has a flat opening shape, and the peripheral portion of the blowout hole includes a pair of long edges and a pair of short edges connected to the pair of long edges, The plurality of uneven portions are formed so as to be biased toward the edge sides of the pair of long edge portions. Thereby, compared with the case where an uneven | corrugated | grooved part is formed along the whole peripheral part of a blowing hole, the collision of a horizontal vortex and an auxiliary vortex can be suppressed. As a result, it is possible to reduce the aerodynamic noise caused by the collision of the lateral vortex and the auxiliary vortex while increasing the reach of the working airflow.
 第9の観点によれば、複数の凹凸部は、一対の長縁部の縁側に形成され、一対の短縁部の縁側に形成されていない。これにより、穴形成部においては、一対の短縁部の縁側は凹凸部を形成するための形成部分が不要となる。その結果、作動気流の到達距離を長くしつつ、空力騒音を低減し、穴形成部を小さくすることができ、空気吹出装置の設置自由度、搭載自由度の向上効果を得ることができる。 According to the ninth aspect, the plurality of concavo-convex portions are formed on the edge sides of the pair of long edge portions and are not formed on the edge sides of the pair of short edge portions. Thereby, in the hole formation part, the formation part for forming an uneven | corrugated | grooved part becomes unnecessary on the edge side of a pair of short edge part. As a result, the aerodynamic noise can be reduced and the hole forming portion can be reduced while increasing the reach of the working airflow, and the effect of improving the degree of freedom in installing and mounting the air blowing device can be obtained.
 第10の観点によれば、複数の凹凸部は、空気流れ方向に厚みを有する板状で構成されている。これにより、複数の凹凸部がフランジ部まで延伸するように形成されている場合などと比較して、凹凸部の間を気流が通過する際に補助渦が発生しやすくなる。これにより、吹出穴から吹き出される作動気流に引き込まれる空気の引き込み作用が抑制され、吹出穴から吹き出される作動気流の到達距離が長くなる。 According to the 10th viewpoint, the several uneven | corrugated | grooved part is comprised by the plate shape which has thickness in an air flow direction. Thereby, compared with the case where the several uneven | corrugated | grooved part is formed so that it may extend | extend to a flange part, it becomes easy to generate | occur | produce an auxiliary | assistant vortex when an airflow passes between uneven | corrugated | grooved parts. Thereby, the drawing-in action of the air drawn into the working airflow blown out from the blowing hole is suppressed, and the reach distance of the working airflow blown out from the blowing hole becomes long.
 第11の観点によれば、複数の凹凸部は、空気流れ下流側の板面が、穴形成部における周縁部を形成する部位の空気流れ下流側の端面と面一になっている。これによると、凹凸部によって補助渦を発生させる位置が、穴形成部における横渦が生じ始める位置と接近し、補助渦が横渦に衝突し易くなるので、横渦の発達を充分に抑制することができる。 According to the eleventh aspect, in the plurality of concave and convex portions, the plate surface on the downstream side in the air flow is flush with the end surface on the downstream side in the air flow of the portion forming the peripheral edge in the hole forming portion. According to this, since the position where the auxiliary vortex is generated by the uneven portion approaches the position where the horizontal vortex starts to occur in the hole forming portion and the auxiliary vortex easily collides with the horizontal vortex, the development of the horizontal vortex is sufficiently suppressed. be able to.
 第12の観点によれば、渦発生構造は、穴形成部のうち吹出穴を囲む周縁部に沿って並んで配置される複数の渦発生体を含んでいる。渦発生構造は、渦発生体の周囲を気流が通過する際に、渦の回転方向および渦軸の方向の少なくとも一方が横渦とは異なる前記補助渦が発生する構造になっている。この構造により発生する補助渦を、作動気流を大きく崩壊させる横渦に衝突させることで、横渦の発達を抑制することができる。これにより、吹出穴から吹き出される作動気流に引き込まれる空気の引き込み作用が抑制され、吹出穴から吹き出される作動気流は到達距離が長くなる。 According to the twelfth aspect, the vortex generating structure includes a plurality of vortex generators arranged side by side along the peripheral edge surrounding the blowout hole in the hole forming portion. In the vortex generating structure, when the airflow passes around the vortex generator, the auxiliary vortex is generated in which at least one of the vortex rotation direction and the vortex axis direction is different from the horizontal vortex. By causing the auxiliary vortex generated by this structure to collide with the lateral vortex that greatly collapses the working airflow, the development of the lateral vortex can be suppressed. Thereby, the drawing-in action of the air drawn into the working airflow blown out from the blowing hole is suppressed, and the working airflow blown out from the blowing hole has a long reach distance.
 第13の観点によれば、複数の渦発生体は、周縁部に対して直に接しないように、吹出穴の内側において支持部によって支持されている。このように、渦発生体を支持部で支持する構成とすれば、渦発生体を周縁部から離間させることができる。これにより、渦発生体と周縁部との間でも補助渦を発生させることが可能となるので、渦発生体と周縁部との間に横渦が生じたとしても当該横渦の発達を抑制することができる。 According to the thirteenth aspect, the plurality of vortex generators are supported by the support portion inside the blowout hole so as not to directly contact the peripheral edge portion. Thus, if it is set as the structure which supports a vortex generator with a support part, a vortex generator can be spaced apart from a peripheral part. As a result, an auxiliary vortex can be generated between the vortex generator and the peripheral portion, so that even if a horizontal vortex is generated between the vortex generator and the peripheral portion, the development of the horizontal vortex is suppressed. be able to.
 第14の観点によれば、周縁部は、所定の間隔をあけた状態で対向して延びる第1縁部および第2縁部と、第1縁部および第2縁部それぞれの一端同士を接続する第3縁部と、第1縁部および第2縁部それぞれの他端同士を接続する第4縁部とを有する。第1縁部および第2縁部は、第3縁部と第4縁部との間隔よりも小さい間隔で対向する一対の長縁部を構成している。第3縁部および第4縁部は、第1縁部と第2縁部との間隔よりも大きい間隔で対向する一対の短縁部を構成している。複数の渦発生体は、周縁部のうち、一対の長縁部の縁側に比べて、一対の短縁部の縁側で複数の補助渦が発生し難くなるように、一対の長縁部の縁側に偏って形成されている。これによると、渦発生体が吹出穴の周縁部全体に沿って形成される場合と比較して、横渦および補助渦の衝突を抑制できるので、作動気流の到達距離を長くしつつ、横渦および補助渦の衝突により生じる空力騒音を低減できる。 According to the fourteenth aspect, the peripheral portion connects the first edge and the second edge extending opposite to each other at a predetermined interval, and one end of each of the first edge and the second edge. And a fourth edge that connects the other ends of the first edge and the second edge. The first edge portion and the second edge portion constitute a pair of long edge portions that face each other at an interval smaller than the interval between the third edge portion and the fourth edge portion. The third edge and the fourth edge constitute a pair of short edges facing each other at a larger interval than the interval between the first edge and the second edge. The plurality of vortex generators are arranged on the edge side of the pair of long edges so that a plurality of auxiliary vortices are less likely to be generated on the edge side of the pair of short edges compared to the edges of the pair of long edges. It is formed to be biased. According to this, since the collision of the horizontal vortex and the auxiliary vortex can be suppressed as compared with the case where the vortex generator is formed along the entire peripheral edge of the blowout hole, And aerodynamic noise generated by the collision of the auxiliary vortex can be reduced.
 第15の観点によれば、複数の渦発生体は、一対の長縁部の縁側に形成され、一対の短縁部の縁側に形成されていない。これによれば、複数の渦発生体の追加に伴う吹出穴の開口面積の減少を抑えることができる。 According to the fifteenth aspect, the plurality of vortex generators are formed on the edge sides of the pair of long edges and are not formed on the edges of the pair of short edges. According to this, it is possible to suppress a decrease in the opening area of the blowout hole due to the addition of the plurality of vortex generators.
 第16の観点によれば、複数の渦発生体は、吹出穴の開口方向に厚みを有する板状部材で構成されている。これによると、渦発生体の間を気流が通過する際に補助渦が発生し易くなる。この結果、補助渦が横渦に衝突し易くなることで、横渦の発達を充分に抑制することができる。なお、開口方向とは、吹出穴の縁部で囲まれる面の法線方向である。 According to the sixteenth aspect, the plurality of vortex generators are constituted by plate-like members having a thickness in the opening direction of the blowout holes. According to this, an auxiliary vortex is easily generated when the airflow passes between the vortex generators. As a result, the auxiliary vortex easily collides with the horizontal vortex, so that the development of the horizontal vortex can be sufficiently suppressed. In addition, an opening direction is a normal line direction of the surface enclosed by the edge part of a blowing hole.
 第17の観点によれば、複数の渦発生体は、空気流れ下流側の板面が、穴形成部における周縁部を形成する部位の空気流れ下流側の端面と面一になっている。これによると、渦発生体によって補助渦を発生させる位置が、穴形成部における横渦が生じ始める位置と接近し、補助渦が横渦に衝突し易くなるので、横渦の発達を充分に抑制することができる。 According to the seventeenth aspect, in the plurality of vortex generators, the plate surface on the downstream side of the air flow is flush with the end surface on the downstream side of the air flow of the portion forming the peripheral edge in the hole forming portion. According to this, the position where the auxiliary vortex is generated by the vortex generator is close to the position where the horizontal vortex begins to occur in the hole forming part, and the auxiliary vortex easily collides with the horizontal vortex. can do.

Claims (17)

  1.  空気吹出装置であって、
     吹出対象(2)へ向けて吹き出す作動気流を通過させるための流路(18)を形成するダクト部(14)と、
     前記ダクト部の空気流れ下流側に前記作動気流の吹出口となる吹出穴(10)を形成する穴形成部(12)と、を備え、
     前記穴形成部は、前記作動気流によって前記吹出穴の出口下流側に発生する横渦とは渦の回転方向および渦軸の方向を含む渦特性が異なる補助渦を発生させる渦発生構造(20)を有し、
     前記渦発生構造は、前記補助渦が渦の回転方向および渦軸の方向の少なくとも一方が前記横渦と異なる前記渦特性を有する状態で、前記横渦に衝突するように前記穴形成部に形成されている空気吹出装置。
    An air blowing device,
    A duct portion (14) that forms a flow path (18) for passing a working air flow blown toward the blow target (2);
    A hole forming portion (12) that forms a blowout hole (10) serving as a blowout port for the working airflow on the air flow downstream side of the duct portion;
    The hole forming section generates a vortex generating structure (20) that generates an auxiliary vortex having a vortex characteristic different from a lateral vortex generated on the downstream side of the outlet of the blowout hole by the working airflow, including a vortex rotation direction and a vortex axis direction. Have
    The vortex generating structure is formed in the hole forming portion so that the auxiliary vortex collides with the horizontal vortex in a state where at least one of the rotational direction of the vortex and the direction of the vortex axis has the vortex characteristic different from the horizontal vortex. Air blowing device.
  2.  前記渦発生構造は、前記穴形成部のうち前記吹出穴を囲む周縁部(100)に沿って並んで形成される複数の補助穴(202)を含み、複数の前記補助穴から吹き出される気流によって、渦の回転方向および渦軸の方向の少なくとも一方が前記横渦とは異なる複数の前記補助渦が発生する構造になっている請求項1に記載の空気吹出装置。 The vortex generating structure includes a plurality of auxiliary holes (202) formed side by side along a peripheral edge (100) surrounding the blowout hole in the hole forming portion, and an air flow blown out from the plurality of auxiliary holes The air blowing device according to claim 1, wherein a plurality of auxiliary vortices are generated in which at least one of a rotation direction of the vortex and a direction of the vortex axis is different from the horizontal vortex.
  3.  前記穴形成部のうち前記吹出穴を囲む周縁部は、所定の間隔をあけた状態で対向して延びる第1縁部(102a)および第2縁部(102b)と、前記第1縁部および前記第2縁部それぞれの一端同士を接続する第3縁部(104a)と、前記第1縁部および前記第2縁部それぞれの他端同士を接続する第4縁部(104b)とを有し、
     前記第1縁部および前記第2縁部は、前記第3縁部と前記第4縁部との間隔よりも小さい間隔で対向する一対の長縁部を構成しており、
     前記第3縁部および前記第4縁部は、前記第1縁部と前記第2縁部との間隔よりも大きい間隔で対向する一対の短縁部を構成しており、
     複数の前記補助穴は、前記穴形成部における前記吹出穴を囲む周縁部のうち、前記一対の長縁部の縁側に比べて、前記一対の短縁部の縁側で複数の前記補助渦が発生し難くなるように、前記一対の長縁部の縁側に偏って形成されている請求項2に記載の空気吹出装置。
    Of the hole forming portion, a peripheral portion surrounding the blowout hole includes a first edge portion (102a) and a second edge portion (102b) extending opposite to each other at a predetermined interval, and the first edge portion and There is a third edge (104a) that connects one end of each of the second edges, and a fourth edge (104b) that connects the other ends of each of the first and second edges. And
    The first edge and the second edge constitute a pair of long edges facing each other at an interval smaller than the interval between the third edge and the fourth edge,
    The third edge and the fourth edge constitute a pair of short edges facing each other at a larger interval than the interval between the first edge and the second edge,
    The plurality of auxiliary holes generate a plurality of auxiliary vortices on the edge side of the pair of short edge portions compared to the edge side of the pair of long edge portions in the peripheral edge portion surrounding the blowout hole in the hole forming portion. The air blowing device according to claim 2, wherein the air blowing device is formed so as to be biased toward an edge side of the pair of long edge portions so as to be difficult to perform.
  4.  前記吹出穴は、扁平な開口形状を有し、
     前記穴形成部のうち前記吹出穴を囲む周縁部は、前記吹出穴の短軸の方向に対向する一対の長縁部(102)および長軸の方向に対向するものであって、前記一対の長縁部に連なるとともに前記一対の長縁部よりも長さが小さい一対の短縁部(104)を含んでおり、
     複数の前記補助穴は、前記穴形成部における前記吹出穴を囲む周縁部のうち、前記一対の長縁部の縁側に比べて、前記一対の短縁部の縁側で複数の前記補助渦が発生し難くなるように、前記一対の長縁部の縁側に偏って形成されている請求項2に記載の空気吹出装置。
    The blowing hole has a flat opening shape,
    Of the hole forming portion, a peripheral portion surrounding the blowout hole is a pair of long edge portions (102) facing the short axis direction of the blowout hole and facing the long axis direction, A pair of short edges (104) that are continuous with the long edges and are shorter than the pair of long edges,
    The plurality of auxiliary holes generate a plurality of auxiliary vortices on the edge side of the pair of short edge portions compared to the edge side of the pair of long edge portions in the peripheral edge portion surrounding the blowout hole in the hole forming portion. The air blowing device according to claim 2, wherein the air blowing device is formed so as to be biased toward an edge side of the pair of long edge portions so as to be difficult to perform.
  5.  複数の前記補助穴は、前記一対の長縁部の縁側に形成され、前記一対の短縁部の縁側に形成されていない請求項3または4に記載の空気吹出装置。 The air blowing device according to claim 3 or 4, wherein the plurality of auxiliary holes are formed on an edge side of the pair of long edge portions and are not formed on an edge side of the pair of short edge portions.
  6.  前記渦発生構造は、前記穴形成部のうち前記吹出穴を囲む周縁部に沿って、凹部(206)と凸部(208)とが交互に並んで形成される複数の凹凸部(204)を含み、前記凹凸部の間を気流が通過する際に、渦の回転方向および渦軸の方向の少なくとも一方が前記横渦とは異なる前記補助渦が発生する構造になっている請求項1または2に記載の空気吹出装置。 The vortex generating structure includes a plurality of concave and convex portions (204) formed by alternately arranging concave portions (206) and convex portions (208) along a peripheral portion surrounding the blowing hole in the hole forming portion. The auxiliary vortex is generated in which at least one of the rotation direction of the vortex and the direction of the vortex axis is different from the transverse vortex when the airflow passes between the uneven portions. The air blowing device described in 1.
  7.  前記穴形成部のうち前記吹出穴を囲む周縁部は、所定の間隔をあけた状態で対向して延びる第1縁部(102a)および第2縁部(102b)と、前記第1縁部および前記第2縁部それぞれの一端同士を接続する第3縁部(104a)と、前記第1縁部および前記第2縁部それぞれの他端同士を接続する第4縁部(104b)とを有し、
     前記第1縁部および前記第2縁部は、前記第3縁部と前記第4縁部との間隔よりも小さい間隔で対向する一対の長縁部を構成しており、
     前記第3縁部および前記第4縁部は、前記第1縁部と前記第2縁部との間隔よりも大きい間隔で対向する一対の短縁部を構成しており、
     複数の前記凹凸部は、前記穴形成部における前記吹出穴を囲む周縁部のうち、前記一対の長縁部の縁側に比べて、前記一対の短縁部の縁側で複数の前記補助渦が発生し難くなるように、前記一対の長縁部の縁側に偏って形成されている請求項6に記載の空気吹出装置。
    Of the hole forming portion, a peripheral portion surrounding the blowout hole includes a first edge portion (102a) and a second edge portion (102b) extending opposite to each other at a predetermined interval, and the first edge portion and There is a third edge (104a) that connects one end of each of the second edges, and a fourth edge (104b) that connects the other ends of each of the first and second edges. And
    The first edge and the second edge constitute a pair of long edges facing each other at an interval smaller than the interval between the third edge and the fourth edge,
    The third edge and the fourth edge constitute a pair of short edges facing each other at a larger interval than the interval between the first edge and the second edge,
    The plurality of concavo-convex portions generate a plurality of auxiliary vortices on the edge side of the pair of short edge portions, compared to the edge side of the pair of long edge portions, in the peripheral portion surrounding the blowing hole in the hole forming portion. The air blowing device according to claim 6, wherein the air blowing device is formed so as to be biased toward an edge side of the pair of long edge portions so as to be difficult to perform.
  8.  前記吹出穴は、扁平な開口形状を有し、
     前記穴形成部のうち前記吹出穴を囲む周縁部は、前記吹出穴の短軸の方向に対向する一対の長縁部(102)および長軸の方向に対向するものであって、前記一対の長縁部に連なるとともに前記一対の長縁部よりも長さが小さい一対の短縁部(104)を含んでおり、
     複数の前記凹凸部は、前記穴形成部における前記吹出穴を囲む周縁部のうち、前記一対の長縁部の縁側に比べて、前記一対の短縁部の縁側で複数の前記補助渦が発生し難くなるように、前記一対の長縁部の縁側に偏って形成されている請求項6に記載の空気吹出装置。
    The blowing hole has a flat opening shape,
    Of the hole forming portion, a peripheral portion surrounding the blowout hole is a pair of long edge portions (102) facing the short axis direction of the blowout hole and facing the long axis direction, A pair of short edges (104) that are continuous with the long edges and are shorter than the pair of long edges,
    The plurality of concavo-convex portions generate a plurality of auxiliary vortices on the edge side of the pair of short edge portions, compared to the edge side of the pair of long edge portions, in the peripheral portion surrounding the blowing hole in the hole forming portion. The air blowing device according to claim 6, wherein the air blowing device is formed so as to be biased toward an edge side of the pair of long edge portions so as to be difficult to perform.
  9.  複数の前記凹凸部は、前記一対の長縁部に形成され、前記一対の短縁部に形成されていない請求項7または8に記載の空気吹出装置。 The air blowing device according to claim 7 or 8, wherein the plurality of concave and convex portions are formed on the pair of long edge portions and are not formed on the pair of short edge portions.
  10.  複数の前記凹凸部は、前記吹出穴の内側に向けて突き出るとともに、板状に形成される請求項6ないし9のいずれか1つに記載の空気吹出装置。 10. The air blowing device according to claim 6, wherein the plurality of concave and convex portions protrude toward the inside of the blowing hole and are formed in a plate shape.
  11.  複数の前記凹凸部は、空気流れ下流側の板面が、前記穴形成部のうち前記吹出穴を囲む周縁部を形成する部位の空気流れ下流側の端面と面一になっている請求項10に記載の空気吹出装置。 11. The plurality of concave and convex portions have a plate surface on the downstream side of the air flow that is flush with an end surface on the downstream side of the air flow in a portion of the hole forming portion that forms a peripheral portion surrounding the blowout hole. The air blowing device described in 1.
  12.  空気吹出装置であって、
     吹出対象(2)へ向けて吹き出す作動気流を通過させるための流路(18)を形成するダクト部(14)と、
     前記ダクト部の空気流れ下流側に前記作動気流の吹出口となる吹出穴(10)を形成する穴形成部(12)と、
     前記作動気流によって前記吹出穴の出口下流側に発生する横渦とは渦の回転方向および渦軸の方向を含む渦特性が異なる補助渦を発生させる渦発生構造(20)と、を備え、
     前記渦発生構造は、前記穴形成部のうち前記吹出穴を囲む周縁部(100)に沿って並んで配置される複数の渦発生体(22)を含み、前記渦発生体の周囲を気流が通過する際に、渦の回転方向および渦軸の方向の少なくとも一方が前記横渦とは異なる前記補助渦が発生する構造になっている空気吹出装置。
    An air blowing device,
    A duct portion (14) that forms a flow path (18) for passing a working air flow blown toward the blow target (2);
    A hole forming portion (12) for forming a blowout hole (10) serving as a blowout port for the working airflow on the air flow downstream side of the duct portion;
    A vortex generating structure (20) for generating auxiliary vortices having different vortex characteristics including the rotational direction of the vortex and the direction of the vortex axis from the lateral vortex generated on the outlet downstream side of the outlet hole by the working airflow;
    The vortex generating structure includes a plurality of vortex generators (22) arranged side by side along a peripheral edge portion (100) surrounding the blowout hole in the hole forming portion, and an air current is generated around the vortex generator. An air blowing device having a structure in which, when passing, at least one of a rotating direction of a vortex and a direction of a vortex axis generates the auxiliary vortex different from the horizontal vortex.
  13.  複数の前記渦発生体は、前記穴形成部のうち前記吹出穴を囲む周縁部に対して直に接しないように、前記吹出穴の内側において支持部(23、24)によって支持されている請求項12に記載の空気吹出装置。 The plurality of vortex generators are supported by support portions (23, 24) on the inner side of the blowout hole so as not to directly contact a peripheral portion surrounding the blowout hole in the hole forming portion. Item 13. The air blowing device according to Item 12.
  14.  前記穴形成部のうち前記吹出穴を囲む周縁部は、所定の間隔をあけた状態で対向して延びる第1縁部(102a)および第2縁部(102b)と、前記第1縁部および前記第2縁部それぞれの一端同士を接続する第3縁部(104a)と、前記第1縁部および前記第2縁部それぞれの他端同士を接続する第4縁部(104b)とを有し、
     前記第1縁部および前記第2縁部は、前記第3縁部と前記第4縁部との間隔よりも小さい間隔で対向する一対の長縁部を構成しており、
     前記第3縁部および前記第4縁部は、前記第1縁部と前記第2縁部との間隔よりも大きい間隔で対向する一対の短縁部を構成しており、
     複数の前記渦発生体は、前記穴形成部における前記吹出穴を囲む周縁部のうち、前記一対の長縁部の縁側に比べて、前記一対の短縁部の縁側で複数の前記補助渦が発生し難くなるように、前記一対の長縁部の縁側に偏って形成されている請求項12または13に記載の空気吹出装置。
    Of the hole forming portion, a peripheral portion surrounding the blowout hole includes a first edge portion (102a) and a second edge portion (102b) extending opposite to each other at a predetermined interval, and the first edge portion and There is a third edge (104a) that connects one end of each of the second edges, and a fourth edge (104b) that connects the other ends of each of the first and second edges. And
    The first edge and the second edge constitute a pair of long edges facing each other at an interval smaller than the interval between the third edge and the fourth edge,
    The third edge and the fourth edge constitute a pair of short edges facing each other at a larger interval than the interval between the first edge and the second edge,
    The plurality of vortex generators includes a plurality of auxiliary vortices on an edge side of the pair of short edges compared to an edge side of the pair of long edges in a peripheral edge surrounding the outlet hole in the hole forming portion. The air blowing device according to claim 12 or 13, wherein the air blowing device is formed so as to be biased toward an edge side of the pair of long edge portions so as not to be generated.
  15.  複数の前記渦発生体は、前記一対の長縁部の縁側に形成され、前記一対の短縁部の縁側に形成されていない請求項14に記載の空気吹出装置。 The air blowing device according to claim 14, wherein the plurality of vortex generators are formed on an edge side of the pair of long edge portions and are not formed on an edge side of the pair of short edge portions.
  16.  複数の前記渦発生体は、前記吹出穴の開口方向に厚みを有する板状部材で構成されている請求項12ないし15のいずれか1つに記載の空気吹出装置。 The air blowing device according to any one of claims 12 to 15, wherein the plurality of vortex generators are configured by a plate-like member having a thickness in an opening direction of the blowing hole.
  17.  複数の前記渦発生体は、空気流れ下流側の板面が、前記穴形成部のうち前記吹出穴を囲む周縁部を形成する部位の空気流れ下流側の端面と面一になっている請求項16に記載の空気吹出装置。 The plurality of vortex generators have a plate surface on the downstream side of the air flow that is flush with an end surface on the downstream side of the air flow in a portion of the hole forming portion that forms a peripheral portion surrounding the blowout hole. 16. The air blowing device according to 16.
PCT/JP2019/014659 2018-04-11 2019-04-02 Air discharge device WO2019198573A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019001888.4T DE112019001888B4 (en) 2018-04-11 2019-04-02 air ejection device
CN201980024855.9A CN111989525B (en) 2018-04-11 2019-04-02 Air blowing device
US17/064,831 US20210016634A1 (en) 2018-04-11 2020-10-07 Air discharge device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018076325 2018-04-11
JP2018-076325 2018-04-11
JP2018135299 2018-07-18
JP2018-135299 2018-07-18
JP2018-199383 2018-10-23
JP2018199383 2018-10-23
JP2018240807A JP7255170B2 (en) 2018-04-11 2018-12-25 air blower
JP2018-240807 2018-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/064,831 Continuation US20210016634A1 (en) 2018-04-11 2020-10-07 Air discharge device

Publications (1)

Publication Number Publication Date
WO2019198573A1 true WO2019198573A1 (en) 2019-10-17

Family

ID=68163635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014659 WO2019198573A1 (en) 2018-04-11 2019-04-02 Air discharge device

Country Status (2)

Country Link
DE (1) DE112019001888B4 (en)
WO (1) WO2019198573A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117439A1 (en) * 2019-12-13 2021-06-17 株式会社デンソー Air-blowing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124430B2 (en) 2018-05-11 2022-08-24 株式会社デンソー Fluid blower

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08230452A (en) * 1995-02-21 1996-09-10 Nippon Plast Co Ltd Blow-out device for air conditioner for car
JPH08318176A (en) * 1995-05-25 1996-12-03 Mitsubishi Electric Corp Air nozzle
JP2003025836A (en) * 2001-06-26 2003-01-29 J Eberspaesher Gmbh & Co Kg Heater disposed in space to be heated, in particular, cabin of vehicle
JP2017116228A (en) * 2015-12-25 2017-06-29 富士電機株式会社 Air curtain device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710880B1 (en) 1993-10-07 1995-11-24 Valeo Thermique Habitacle Blowing nozzle for a heating-ventilation and / or air conditioning device in the passenger compartment of a motor vehicle.
DE202006006596U1 (en) 2006-04-25 2006-07-27 Dr. Schneider Engineering Gmbh Air jet/nozzle for directing a current of air from an air feeder shaft/pipe into heating/ventilation/air-conditioning facilities in a motor vehicle's passenger areas has a housing inserted in paneling
WO2014017208A1 (en) 2012-07-24 2014-01-30 学校法人福岡大学 Fluid transportation device and fluid transportation method
US20150328960A1 (en) 2014-05-15 2015-11-19 GM Global Technology Operations LLC Hvac vent utilizing vortex ring air flow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08230452A (en) * 1995-02-21 1996-09-10 Nippon Plast Co Ltd Blow-out device for air conditioner for car
JPH08318176A (en) * 1995-05-25 1996-12-03 Mitsubishi Electric Corp Air nozzle
JP2003025836A (en) * 2001-06-26 2003-01-29 J Eberspaesher Gmbh & Co Kg Heater disposed in space to be heated, in particular, cabin of vehicle
JP2017116228A (en) * 2015-12-25 2017-06-29 富士電機株式会社 Air curtain device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117439A1 (en) * 2019-12-13 2021-06-17 株式会社デンソー Air-blowing device

Also Published As

Publication number Publication date
DE112019001888T5 (en) 2020-12-17
DE112019001888B4 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
US20210016634A1 (en) Air discharge device
WO2019198573A1 (en) Air discharge device
JPH09300943A (en) Air-conditioning register
US11255346B2 (en) Fan and inlet guide grid for a fan
KR102087820B1 (en) Hvac door with dentil features
US11718157B2 (en) Air discharge device
WO2019093229A1 (en) Air discharge device
WO2019216156A1 (en) Fluid discharge apparatus
US20050176363A1 (en) Air duct outlets having return air passageways that facilitate oscillating air flow
WO2019198571A1 (en) Air discharge device
JP2019200038A (en) Fluid blowing device
JP2020034258A (en) Attachment and airflow blowout port structure
JP3215315B2 (en) register
US7278912B2 (en) Air duct outlets having self-oscillating air deflection members
WO2019198572A1 (en) Air discharge device
US20090298412A1 (en) Air duct outlets that produce self-oscillating air flow
JP2006194572A (en) Air capacity unit
JP2021139548A (en) register
WO2019216157A1 (en) Fluid discharge apparatus
WO2020137280A1 (en) Air blowing device
JP6813973B2 (en) Chamber duct for air conditioning
JP2004042866A (en) Vehicular side mirror
JP4594033B2 (en) Blowing device for air conditioning, and discharge part forming cylinder used for the same
JP2012162997A (en) Propeller fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784783

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19784783

Country of ref document: EP

Kind code of ref document: A1