WO2019198572A1 - Air discharge device - Google Patents

Air discharge device Download PDF

Info

Publication number
WO2019198572A1
WO2019198572A1 PCT/JP2019/014658 JP2019014658W WO2019198572A1 WO 2019198572 A1 WO2019198572 A1 WO 2019198572A1 JP 2019014658 W JP2019014658 W JP 2019014658W WO 2019198572 A1 WO2019198572 A1 WO 2019198572A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
flow path
airflow
downstream
hole
Prior art date
Application number
PCT/JP2019/014658
Other languages
French (fr)
Japanese (ja)
Inventor
潤 山岡
雅晴 酒井
侑児 岡村
康彦 新美
隆仁 中村
小松原 祐介
真梨恵 長濱
康揮 大森
将悟 早川
悟司 蛸谷
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018240806A external-priority patent/JP7255169B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019001901.5T priority Critical patent/DE112019001901T5/en
Priority to CN201980024754.1A priority patent/CN112020627A/en
Publication of WO2019198572A1 publication Critical patent/WO2019198572A1/en
Priority to US17/065,045 priority patent/US12005761B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates

Definitions

  • the present disclosure relates to an air blowing device including a blowing unit that blows out an air flow.
  • an air nozzle in which an auxiliary air outlet is provided around a main hole that forms an air flow serving as a working airflow, and an auxiliary air outlet that forms a support airflow that prevents the air around the main hole being drawn into the working airflow.
  • an auxiliary air outlet that forms a support airflow that prevents the air around the main hole being drawn into the working airflow.
  • the present inventors diligently studied the air drawing action when the air flow is blown out from the main hole in order to further increase the reach distance of the air flow. As a result, it has been found that the air drawing action is caused by a lateral vortex generated by a shearing force due to the velocity gradient of the working fluid when the working air current is blown from the main hole.
  • the horizontal vortex is a vortex having a vortex center perpendicular to the mainstream flow direction.
  • An object of this indication is to provide the air blowing apparatus which can lengthen the reach
  • the central portion of the working airflow is less affected by the air drawing action than the portions other than the central portion of the working airflow, and the reach of the working airflow blown out of the main hole at the central portion of the working airflow tends to be longer. is there. According to the study by the present inventors, it has been found that it is effective that the central portion of the working air current is separated from the velocity boundary layer in order to increase the reach distance of the working air current blown out from the main hole.
  • the air blowing device includes a blowing unit that blows out an air flow.
  • the blowing part has at least one main hole that blows out the airflow that becomes the working airflow, and a separation structure for separating the central portion of the thickness of the velocity boundary layer of the working airflow from the centerline of the main hole downstream of the outlet of the main hole , Including.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. It is explanatory drawing for demonstrating the velocity gradient of the airflow in the exit downstream of the 1st nozzle used as the 1st comparative example. It is explanatory drawing for demonstrating the state of the airflow in the exit downstream of the 1st nozzle used as the 1st comparative example. It is explanatory drawing for demonstrating the velocity gradient of the airflow in the exit downstream of the 2nd nozzle used as the 2nd comparative example.
  • the air blowing device 1 of this embodiment is applied to an air outlet of an air conditioning unit that air-conditions a vehicle interior.
  • the air conditioning unit is disposed inside an instrument panel provided in the foremost part of the vehicle interior.
  • the air blower outlet of an air-conditioning unit is provided in the instrument panel and its inner side.
  • the air blowing device 1 includes a blowing unit 10 that blows out an air flow.
  • the blow-out unit 10 is formed with an air flow path for guiding an air flow adjusted to a desired temperature by the air conditioning unit into the room.
  • the blowing part 10 includes a duct part 16, a hole forming part 12 that forms a main hole 14 that blows out an airflow that serves as a working airflow, and a flange part 20 that is provided outside the duct part 16.
  • the duct portion 16 is a member that forms a flow path through which an airflow blown into the room is passed.
  • the duct part 16 is comprised with the cylindrical member.
  • the shape of the duct portion 16 as viewed from the air flow direction is a flat shape having a horizontal width larger than the vertical width. Further, the duct portion 16 has a shape in which the shape along the air flow direction is narrowed from the air flow upstream side to the downstream side.
  • a partition portion 26 is provided in the duct portion 16 near the downstream portion than the upstream portion.
  • the partition portion 26 is configured in a cylindrical shape, and is arranged inside the duct portion 16 so as to have a predetermined gap with respect to the duct portion 16.
  • an inner flow path and an outer flow path are formed by the partition portion 26. That is, the duct part 16 has a double flow path structure by arranging the partition part 26 on the inside thereof.
  • the main flow path 18 is formed in the center part inside the duct part 16.
  • the main flow path 18 is configured by a space inside the partition portion 26.
  • the main flow path 18 is a flow path through which a working air current blown from a main hole 14 described later passes.
  • an auxiliary flow path 24 is formed inside the duct portion 16 at the outer portion of the main flow path 18.
  • the auxiliary flow path 24 is configured by a gap formed between the partition portion 26 and the duct portion 16.
  • the auxiliary flow path 24 is a flow path through which the support airflow blown out from the auxiliary hole 22 passes.
  • the main flow path 18 and the auxiliary flow path 24 are partitioned by the partition portion 26 described above.
  • the main flow path 18 and the auxiliary flow path 24 are in communication with each other at the upstream portion of the duct portion 16.
  • the duct part 16 is fitted into an air outlet of an air conditioning unit (not shown) on the upstream side of the air flow. Further, the duct portion 16 is connected to the outer periphery of the hole forming portion 12 at the downstream side of the air flow.
  • the hole forming part 12 is positioned at the end of the duct part 16 on the downstream side of the air flow.
  • the hole forming portion 12 is a plate-like member that constitutes an end surface of the duct portion 16 on the downstream side of the air flow, and has a predetermined thickness in the air flow direction.
  • the hole forming part 12 is also a connection part that connects the duct part 16 and the partition part 26.
  • the hole formation part 12 is comprised by the cylinder shape so that air can be blown out.
  • the shape of the hole forming portion 12 as viewed from the air flow direction is a flat shape whose horizontal width is larger than the vertical width.
  • the hole forming portion 12 has a main hole 14 opened as a single hole at the center thereof.
  • the main hole 14 is an opening for blowing out the conditioned air whose temperature is adjusted by the air conditioning unit as a working air flow into the vehicle interior.
  • the shape of the main hole 14 as viewed from the air flow direction is an oval shape whose horizontal width is larger than vertical width.
  • the main hole 14 has a shape formed by connecting parallel line segments of equal length with a pair of curved curves.
  • the main hole 14 is a hole connected to the main flow path 18.
  • the main hole 14 is formed in the partition 26 in a range located upstream from the end on the downstream side of the air flow by the thickness of the hole forming part 12.
  • the main hole 14 has an inner wall surface 141 extending along the air flow direction.
  • auxiliary holes 22 are formed in the hole forming portion 12 so as to surround the periphery of the main hole 14.
  • the auxiliary hole 22 is an opening for blowing out a support airflow for suppressing the air drawing action by the working airflow blown out from the main hole 14.
  • the plurality of auxiliary holes 22 are formed so as to surround the main hole 14 in the hole forming portion 12.
  • the plurality of auxiliary holes 22 are formed outside the portion of the hole forming portion 12 that forms the outer edge portion of the main hole 14.
  • the plurality of auxiliary holes 22 are formed so that the intervals between them are equal.
  • the plurality of auxiliary holes 22 are formed as round holes having a smaller cross-sectional area than the main hole 14.
  • the auxiliary hole 22 is a hole that continues to the auxiliary flow path 24.
  • the auxiliary hole 22 is formed in a range of the partition portion 26 and the duct portion 16 that is located upstream from the end on the downstream side of the air flow by the thickness of the hole forming portion 12.
  • the auxiliary hole 22 has an inner wall surface 221 that extends along the air flow direction.
  • the flange part 20 is a member for attaching the blowing part 10 to an instrument panel (not shown).
  • the flange portion 20 is composed of a rectangular member provided so as to protrude from the duct portion 16 with respect to the outer periphery of the duct portion 16.
  • the flange portion 20 is attached to the instrument panel by a connecting member such as a screw in a state where the upstream portion of the duct portion 16 is fitted to the air outlet of the air conditioning unit.
  • the flange portion 20 is formed with through holes 201 through which connecting members such as screws are passed in the vicinity of the four corners forming the corner portions.
  • Each of the hole forming part 12, the duct part 16, the flange part 20, and the partition part 26 constituting the blowing part 10 is made of resin.
  • the hole forming part 12, the duct part 16, the flange part 20, and the partition part 26 are formed of an integrally molded product that is integrally formed by a molding technique such as injection molding.
  • the hole formation part 12, the duct part 16, the flange part 20, and the partition part 26 may be comprised by the part separately.
  • the blowing unit 10 configured in this manner is installed on an instrument panel (not shown).
  • the instrument panel has been required to be thin in the vertical direction of the vehicle from the viewpoint of expansion of the passenger compartment and design.
  • the instrument panel tends to be provided with a large information device for notifying various information indicating the driving state of the vehicle at a central portion in the vehicle width direction or a portion facing the occupant in the vehicle longitudinal direction.
  • the air conditioning unit requires measures such as making the air outlet thin, but if the air outlet is made thin, it blows out from the air outlet due to the lateral vortex Vt generated downstream of the air outlet. The collapse of the core portion of the airflow is accelerated, and the reach distance of the airflow in the passenger compartment is shortened. For this reason, the air blowing device 1 is required to increase the reach of the airflow blown into the vehicle interior.
  • the present inventors diligently studied the air drawing action when the airflow was blown out from the main hole 14. As a result, it has been found that the air drawing action is caused by the lateral vortex Vt generated by the shearing force due to the velocity gradient of the working air flow when the working air flow is blown out from the main hole 14.
  • the air drawing action will be described with reference to FIGS. 4 and 5.
  • FIG. 4 is a schematic diagram showing a first nozzle CE1 that is a first comparative example of the air blowing device 1 of the present embodiment.
  • the first nozzle CE1 is formed of a cylindrical tube having a substantially constant cross-sectional area, and the opening on one end side forms the main hole Hm1.
  • the velocity boundary layer BL is a layer that is affected by stationary air among the airflows blown from the main hole Hm1 of the first nozzle CE1.
  • innumerable transverse vortices Vt are generated by the shearing force due to the velocity gradient.
  • innumerable transverse vortices Vt generated in the velocity boundary layer BL are synthesized in the vicinity of the central portion BLc of the thickness ⁇ of the velocity boundary layer BL and developed into a large-scale one. It was found that the air drawing action tends to be stronger.
  • the thickness ⁇ of the velocity boundary layer BL reaches a position where it becomes 99% (that is, 0.99 ⁇ U ⁇ ) of the velocity U ⁇ of the main flow (that is, potential flow) that flows outside the velocity boundary layer BL from the wall surface. Is defined as the length of The thickness ⁇ of the velocity boundary layer BL is calculated based on the following formula F1, for example.
  • 5 ⁇ ( ⁇ ⁇ x / U ⁇ ) 1/2 (F1)
  • represents a kinematic viscosity coefficient
  • x represents a position in the main flow direction
  • U ⁇ represents a main flow speed (that is, a uniform flow speed).
  • a definition formula based on the excluded thickness or a definition formula based on the momentum thickness can be used.
  • FIG. 6 is a schematic diagram showing a second nozzle CE2 which is a second comparative example of the air blowing device 1 of the present embodiment.
  • the second nozzle CE2 is configured by a cylindrical tube in which a main hole Hm2 and a plurality of auxiliary holes Hs surrounding the main hole Hm2 are formed on one end side thereof.
  • the velocity boundary layer BL of the working air flow along the inner wall surface of the main hole Hm2 downstream of the main hole Hm2. Is formed.
  • the velocity boundary layer BL it is considered that the lateral vortex Vt is likely to occur near the central portion BLc of the thickness ⁇ .
  • the main flow of the support airflow blown out from the auxiliary hole Hs is blown out in parallel with the working airflow from the main hole Hm2 in a state where there is a predetermined interval LS from the central portion BLc of the thickness ⁇ of the velocity boundary layer BL. . That is, in the second nozzle CE2, the mainstream AFs of the support airflow blown out from the auxiliary hole Hs flows away from the center portion BLc of the thickness ⁇ of the velocity boundary layer BL.
  • the main flow of the support airflow is separated from the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, and the transverse vortex Vt is not easily collapsed by the support airflow, and the development of the lateral vortex Vt generated in the velocity boundary layer BL is suppressed. It is considered that the suppression effect is difficult to obtain.
  • the inventors of the present invention can suppress the development of the lateral vortex Vt generated in the velocity boundary layer BL by bringing the main flow of the support airflow close to the vortex of the lateral vortex Vt generated in the velocity boundary layer BL of the working airflow.
  • the vortex suppressing structure is added to the blowing portion 10.
  • This vortex suppression structure is also a separation structure for separating the velocity boundary layer BL of the working airflow from the central portion of the working airflow.
  • the blowing portion 10 of the present embodiment has an enlarged portion in which the cross-sectional area Sc is larger than the opening area Sm of the main hole 14 with respect to the main flow path 18 of the duct portion 16 as a vortex suppression structure. 180 is provided.
  • the inner wall surface 181 of the partition portion 26 that forms the main flow path 18 has a shape in which the wall surface shape tapers from the portion having the largest cross-sectional area in the enlarged portion 180 toward the main hole 14.
  • the enlarged portion 180 is configured by a portion of the inner wall surface 181 of the partition portion 26 that forms the main flow path 18 that has a cross-sectional area that decreases from the air flow upstream side to the downstream side.
  • the cross-sectional area of the enlarged portion 180 is continuously reduced as it approaches the main hole 14 so as to be continuously connected to the main hole 14.
  • the enlarged portion 180 is set so that the ratio between the maximum cross-sectional area Sc and the opening area Sm of the main hole 14 is, for example, 7 to 2.
  • the cross-sectional area Sc of the enlarged portion 180 is a cross-sectional area at a portion where the flow path cross-sectional area is the largest in the main flow path 18. Specifically, the cross-sectional area Sc of the enlarged portion 180 is a cross-sectional area at the end of the partition portion 26 on the upstream side of the air flow.
  • the opening area Sm of the main hole 14 is a cross-sectional area at the end of the partitioning portion 26 on the downstream side of the air flow.
  • the blowout portion 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct portion 16, the conditioned air is passed through the main channel 18 through the main hole 18. It flows toward 14.
  • the main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14.
  • the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced.
  • the reason why the flow velocity of the air flow near the inner wall surface 181 forming the main flow path 18 is increased is that centrifugal force acts on the air flow along the wall surface by the action of the curvature of the inner wall surface 181 forming the main flow path 18.
  • the contracted flow is a phenomenon in which the difference between the flow velocity near the flow channel wall surface of the air flow and the flow velocity of the main flow is reduced by reducing the cross section of the flow channel.
  • the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14.
  • the thickness ⁇ of the velocity boundary layer BL is smaller than that of the second comparative example due to contraction of the main flow path 18.
  • the main portion of the support airflow blown out from the center portion BLc of the thickness ⁇ of the velocity boundary layer BL and the auxiliary hole 22 is mainly used. It will be in the state which approaches at the exit downstream of the hole 14. That is, in the blowout portion 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness ⁇ of the velocity boundary layer BL. Specifically, the interval LS between the main flow of the support airflow and the central portion BLc of the thickness ⁇ of the velocity boundary layer BL is smaller than that in the second comparative example.
  • the main flow of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, and the transverse vortex Vt is easily collapsed by the support airflow.
  • the effect of suppressing the development of the lateral vortex Vt that occurs in the velocity boundary layer BL downstream of the outlet of the gas can be easily obtained.
  • the development of the lateral vortex Vt generated in the velocity boundary layer BL downstream of the outlet of the main hole 14 can be suppressed by the enlarged portion 180 provided in the main flow path 18.
  • the enlarged portion 180 provided in the main channel 18 functions as a vortex suppression structure. More specifically, the enlarged portion 180 functions as a layer reduction structure that reduces the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
  • a vortex suppression structure is realized by the enlarged portion 180 provided in the main flow path 18.
  • the airflow blown out from the central part BLc of the thickness boundary ⁇ of the velocity boundary layer BL formed at the outlet downstream of the main hole 14 and the auxiliary hole 22 approaches downstream of the outlet of the main hole 14. That is, if the main flow path 18 is provided with the enlarged portion 180, the flow velocity difference between the center line CLm of the main hole 14 and the vicinity of the inner wall surface 141 is reduced due to contraction in the vicinity of the main hole 14.
  • the thickness ⁇ of the velocity boundary layer BL formed downstream from the outlet of the main hole 14 can be reduced.
  • the air blowing device 1 of the present embodiment when air-conditioned air whose temperature has been adjusted by the air-conditioning unit is blown out from the main hole 14 as a working airflow, air drawing from the surroundings is suppressed to the working airflow blown out from the main hole 14, so that air can be drawn in.
  • the temperature change of the working airflow resulting from it can be suppressed. That is, according to the air blowing device 1 of the present embodiment, an airflow having an appropriate temperature can reach a desired location. This is particularly effective in realizing spot-like air conditioning in the passenger compartment.
  • the enlarged portion 180 provided in the main flow path 18 functions as a separation structure for separating the velocity boundary layer BL of the working airflow from the central portion of the working airflow.
  • the present embodiment is different from the first embodiment in that the reduced flow fins 28 for reducing the airflow flowing through the main flow path 18 are provided inside the duct portion 16.
  • portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
  • the blowing portion 10 of the present embodiment is provided with a contracted fin 28 inside the duct portion 16.
  • the contraction fin 28 is formed at a substantially central portion of the short side of the inner wall surface 141 of the main hole 14 so that the main flow path 18 formed inside the duct portion 16 is vertically divided.
  • the main hole 14 extends along the long side of the inner wall surface 141.
  • the contracted fins 28 are connected to the inside of the duct portion 16 at both ends in the longitudinal direction.
  • the contraction fin 28 is also a structure that contracts the airflow flowing through the main flow path 18 as a layer contraction structure.
  • the contracted fins 28 are positioned at a portion where the main flow path 18 inside the duct portion 16 is formed so as not to protrude from the main hole 14.
  • the contracted fin 28 is a position that overlaps a part of the partition portion 26 in the direction perpendicular to the center line CLm of the main flow path 18 within the duct portion 16, and is inside the main hole 14. It is arranged at a position that does not overlap the wall surface 141.
  • the contracted fin 28 has a teardrop shape with a cross section having excellent aerodynamic characteristics.
  • the contracted fin 28 has a curved surface with a rounded front edge portion on the upstream side of the air flow, and a sharp curved surface on the downstream edge of the downstream side of the air flow as compared with the front edge portion.
  • the contraction fin 28 has a maximum cross-sectional thickness at a position closer to the front edge portion than to the rear edge portion.
  • blowing unit 10 of the present embodiment configured as described above, as shown in FIG. 12, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows through the main channel 18 through the main hole 18. It flows toward 14.
  • the main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14.
  • the main flow path 18 is bifurcated by the reduced flow fins 28, so that a reduced flow is generated before reaching the main hole 14.
  • the contraction fin 28 is positioned at a portion where the main flow path 18 inside the duct portion 16 is formed so as not to protrude from the main hole 14. For this reason, on the inner side of the duct portion 16, the upstream section A in which the channel cross-sectional area is reduced by the contraction fin 28, the intermediate section B in which the channel cross-sectional area is larger than the upstream section A, and the channel cross-sectional area are almost changed. A downstream section C is formed.
  • the flow cross-sectional area is reduced by the contracted fins 28 and the airflow is compressed, whereby the flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 that forms the main flow path 18.
  • the difference is sufficiently small. That is, in the upstream section A, the thickness ⁇ of the velocity boundary layer BL in the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced toward the downstream side due to the contraction effect by the contraction fins 28.
  • the flow path cross-sectional area is not small, so the thickness ⁇ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is downstream. Grows toward the side.
  • the flow path cross-sectional area is enlarged, so that the thickness ⁇ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is the downstream side. It gradually grows toward.
  • the amount of change in the thickness of the cross section on the trailing edge side on the downstream side of the air flow is smaller than that on the leading edge side. For this reason, the change in the channel cross-sectional area in the intermediate section B becomes gentler than the change in the upstream section A, and the increase amount of the thickness ⁇ of the speed boundary layer BL in the intermediate section B is the speed boundary layer BL in the upstream section A.
  • the flow path cross-sectional area is constant, so the thickness ⁇ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is slightly lower toward the downstream side. growing.
  • the increase amount of the thickness ⁇ of the velocity boundary layer BL in the downstream section C is extremely smaller than the decrease amount of the thickness ⁇ of the velocity boundary layer BL in the upstream section A.
  • the amount of decrease in the thickness ⁇ of the velocity boundary layer BL in the upstream section A by the contraction fin 28 is sufficiently larger than the increase in the thickness ⁇ of the velocity boundary layer BL in the intermediate section B and the downstream section C. .
  • the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 becomes sufficiently small.
  • the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14.
  • the thickness ⁇ of the speed boundary layer BL is smaller than that in the first embodiment.
  • the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness ⁇ of the velocity boundary layer BL.
  • the main flow of the support airflow flows in the vicinity of the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL.
  • the effect of suppressing the development of the lateral vortex Vt is easily obtained.
  • the enlarged portion 180 and the contracted fin 28 provided in the main channel 18 function as a vortex suppressing structure. More specifically, each of the enlarged portion 180 and the contracted fin 28 functions as a layer reducing structure that reduces the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
  • the air blowing device 1 of the present embodiment described above has the same configuration as that of the first embodiment, although the contracted fins 28 are added to the main flow path 18. For this reason, the air blowing apparatus 1 of this embodiment can obtain the effect obtained from a structure common to 1st Embodiment similarly to 1st Embodiment.
  • the layer contraction structure includes not only the enlarged portion 180 but also the contraction fins 28. According to this, it is possible to reduce the thickness ⁇ of the velocity boundary layer BL due to contraction while suppressing an increase in the size of the apparatus due to the expansion of the main flow path 18. Such a configuration is suitable when the installation space is greatly limited like a moving body such as a vehicle.
  • the enlarged portion 180 and the contracted fin 28 provided in the main flow path 18 function as a separation structure for separating the velocity boundary layer BL of the working airflow from the central portion of the working airflow.
  • the contracted fins 28 are exemplified with the cross-sectional shape being a teardrop shape, but are not limited thereto.
  • the contracted fins 28 may have an oval cross-sectional shape extending along the airflow of the main flow path 18.
  • the contraction fin 28 what has a grid
  • the air blowing device 1 may be configured such that only the contracted fins 28 are arranged with respect to the main flow path 18 and the enlarged portion 180 is not provided with respect to the main flow path 18.
  • the contraction fins 28 function as a layer contraction structure that reduces the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
  • the present embodiment is different from the first embodiment in that the uneven portion 30 is provided on the inner wall surface 181 that forms the main flow path 18.
  • portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
  • the concave portions and the convex portions are alternately arranged along the flow direction of the air flow in the main flow path 18 with respect to the inner wall surface 181 that forms the main flow path 18.
  • An uneven portion 30 is provided.
  • the concavo-convex portion 30 is formed in substantially the entire area inside the partition portion 26 that partitions the main flow path 18 and the auxiliary flow path 24 inside the duct portion 16.
  • the concavo-convex portion 30 is formed by a plurality of grooves 301 provided on the inner wall surface 181 that forms the main flow path 18.
  • the plurality of grooves 301 are formed so as to be arranged at predetermined intervals along the airflow direction in the main flow path 18.
  • the groove 301 is configured by a circular or polygonal depression.
  • channel 301 may be comprised by the slit groove
  • blowing unit 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16 as shown in FIG. It flows toward 14.
  • the main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14.
  • the inner wall surface 181 that forms the main flow path 18 is formed with a concavo-convex part 30 in which concave parts and convex parts are alternately arranged in the main flow direction in the main flow path 18.
  • the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14.
  • the thickness ⁇ of the speed boundary layer BL is smaller than that of the first embodiment due to the effect of reducing the friction coefficient by the uneven portion 30.
  • the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state approaching the central portion BLc of the thickness ⁇ of the velocity boundary layer BL.
  • the distance LS between the main flow of the support airflow and the central portion BLc of the thickness ⁇ of the velocity boundary layer BL is smaller than that in the first embodiment.
  • the main flow of the support airflow flows in the vicinity of the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL. The effect of suppressing the development of the lateral vortex Vt is easily obtained.
  • the enlarged portion 180 and the concavo-convex portion 30 provided in the main channel 18 function as a vortex suppressing structure. More specifically, each of the enlarged portion 180 and the concavo-convex portion 30 functions as a layer reduction structure that reduces the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
  • the uneven portion 30 is added to the inner wall surface 181 that forms the main flow path 18, but other configurations are common to the first embodiment. For this reason, the air blowing apparatus 1 of this embodiment can obtain the effect obtained from a structure common to 1st Embodiment similarly to 1st Embodiment.
  • the layer reduction structure includes not only the enlarged portion 180 but also the uneven portion 30. Accordingly, the thickness ⁇ of the velocity boundary layer BL can be made sufficiently small by the effect of reducing the friction coefficient of the inner wall surface 181 forming the main flow path 18 as well as the contraction effect by the enlarged portion 180. .
  • the uneven portion 30 is formed by a plurality of grooves 301 provided on the inner wall surface 181 of the main flow path 18. According to this, compared with the case where the uneven
  • the enlarged portion 180 and the concavo-convex portion 30 provided in the main flow path 18 function as a separation structure for separating the velocity boundary layer BL of the working airflow from the central portion of the working airflow.
  • the concavo-convex portion 30 is illustrated as being formed by the plurality of grooves 301, but is not limited thereto.
  • the uneven part 30 may be formed by a plurality of protrusions, for example.
  • vortices are generated in the gaps between the plurality of protrusions when the airflow passes near the inner wall surface 181 forming the main flow path 18. Since this vortex plays a role like a ball bearing, the effect similar to the above-mentioned third embodiment can be obtained by this modification.
  • the concavo-convex portion 30 is illustrated as being formed in substantially the entire area inside the partition portion 26 that partitions the main flow path 18 and the auxiliary flow path 24 inside the duct portion 16. It is not limited.
  • the uneven portion 30 may be formed on a part of the inside of the partition portion 26.
  • the air blowing device 1 may have a configuration in which the concavo-convex portion 30 is only disposed with respect to the main flow path 18 and the enlarged portion 180 is not provided with respect to the main flow path 18.
  • the concavo-convex portion 30 functions as a layer reduction structure that reduces the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
  • the structure including the enlarged portion 180 and the concavo-convex portion 30 is exemplified as the layer reduction structure, but the present invention is not limited to this.
  • the layer contraction structure may be, for example, a structure including the enlarged portion 180, the contracted fin 28 and the uneven portion 30, or a structure including the contracted fin 28 and the uneven portion 30.
  • FIGS. (Fourth embodiment) Next, a fourth embodiment will be described with reference to FIGS.
  • the present embodiment is different from the first embodiment in that the main hole 14 is expanded in a trumpet shape.
  • portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
  • the blowout portion 10 of the present embodiment has the main hole 14 expanded in a trumpet shape.
  • the auxiliary hole is formed on the inner wall surface 141 of the main hole 14 such that a tangent line TLm extending along the inner wall surface 141 of the main hole 14 intersects the center line CLs of the auxiliary hole 22 downstream of the auxiliary hole 22.
  • a main inclined structure 32 that is inclined with respect to the center line CLs of 22 is provided.
  • the inner wall surface 141 of the main hole 14 is inclined so that the tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14 on the entire circumference.
  • the tangent line TLm is a tangent line that extends along the inner wall surface 141 at the downstream end of the inner wall surface 141 of the main hole 14.
  • the inner wall surface 141 of the main hole 14 is desirably set within a range where the angle ⁇ m formed between the tangent line TLm and the center line CLs is an acute angle (for example, within a range of 1 ° to 30 °).
  • the cross-sectional area Sc of the main flow path 18 is smaller than the opening area Sm of the main hole 14. That is, the blowing unit 10 of the present embodiment is not provided with a configuration corresponding to the expansion unit 180 of the first embodiment.
  • the cross-sectional area Sc of the main flow path 18 is a cross-sectional area at an end portion on the upstream side of the partition portion 26.
  • the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness ⁇ of the velocity boundary layer BL. That is, as shown in FIG. 18, the main flow AFs of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL. The effect of suppressing the development of the lateral vortex Vt generated in the velocity boundary layer BL is easily obtained.
  • the main inclined structure 32 provided on the inner wall surface 141 of the main hole 14 functions as a vortex suppressing structure.
  • the main inclined structure 32 is provided on the inner wall surface 141 that forms the main hole 14.
  • the velocity boundary layer BL formed on the downstream side of the main hole 14 by spreading the flow velocity distribution in the vicinity of the inner wall surface 141 of the main hole 14 to the support airflow from the auxiliary hole 22 on the downstream side of the main hole 14.
  • the central portion BLc of the thickness ⁇ can be made closer to the air flow blown out from the auxiliary hole 22. For this reason, the development of the lateral vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the air flow blown out from the auxiliary hole 22.
  • the main inclined structure 32 functions as a separation structure for separating the velocity boundary layer BL of the working airflow from the central portion of the working airflow.
  • the inner wall surface 141 of the main hole 14 is inclined so that the tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14 on the entire circumference.
  • the air blowing device 1 has a structure in which a part of the inner wall surface 141 of the main hole 14 is inclined so that a tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14. Good.
  • the inner wall surface 141 of the main hole 14 is illustrated as extending linearly, but is not limited thereto.
  • the inner wall surface 141 of the main hole 14 may extend in a curved shape.
  • the tangent TLm is a tangent at the downstream end of the inner wall surface 141 of the main hole 14.
  • the main inclined structure 32 is applied to the main hole 14, and the enlarged portion 180, the contracted fin 28, and the uneven portion 30 described in the first to third embodiments are not applied.
  • the present invention is not limited to this.
  • the air blowing device 1 includes the expansion unit 180, the contraction fin 28, and the concavo-convex unit 30 described in the first to third embodiments. At least one layer reduction structure may be applied.
  • the air blowing device 1 includes a blowing unit 10 that blows out an air flow.
  • the blowout unit 10 includes a hole forming unit 12 that forms a main hole 14 that blows out an airflow that is a working airflow, a duct unit 16 that forms a main flow path 18 that allows the airflow blown out from the main hole 14, and an outside of the duct unit 16. It is configured including the provided flange portion 20.
  • an oval main hole 14 is opened as a single hole in the hole forming portion 12, and the hole forming portion 12 includes a plurality of holes unlike the first embodiment.
  • the auxiliary hole 22 is not formed.
  • the duct part 16 is a cylindrical member. Inside the duct portion 16, a main flow path 18 is formed in the central portion for allowing the working air current blown from the main hole 14 to pass therethrough.
  • the duct portion 16 is configured by a flat cylindrical member in which the cross-sectional area of the main flow path 18 is substantially constant. In the duct portion 16 of the present embodiment, the cross-sectional area of the main flow path 18 and the opening area of the main hole 14 are approximately the same size.
  • the present inventors consider that it is effective that the central portion of the working airflow is separated from the velocity boundary layer BL in order to increase the reach of the working airflow, and the speed of the working airflow with respect to the blowing portion 10
  • the separation structure 50 for separating the boundary layer BL from the central portion of the working airflow is added.
  • the blow-out unit 10 is provided with a structure 51 that contracts the airflow flowing through the main flow path 18 as the separation structure 50.
  • the structure 51 extends along the long side of the inner wall surface 141 of the main hole 14 at a substantially central portion of the short side of the inner wall surface 141 of the main hole 14 so that the main flow path 18 is divided vertically. Yes.
  • the structure 51 is connected to the inside of the duct portion 16 at both ends in the longitudinal direction.
  • the structure 51 has a streamlined cross section along the flow direction of the airflow flowing through the main flow path 18. Specifically, the structure 51 has a teardrop shape with excellent aerodynamic characteristics. That is, in the structure 51, the upstream end 511 on the upstream side of the air flow has a rounded curved shape, and the downstream end 512 located on the downstream side of the air flow has a sharp curved shape as compared with the upstream end 511. It has become. In the structure 51, the upstream end 511 constitutes a front edge portion, and the downstream end 512 constitutes a rear edge portion.
  • the thickness of the cross section of the structure 51 is maximum at a position closer to the front edge portion than to the rear edge portion.
  • the thickness of the cross section of the structure 51 is set so that the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14 is small.
  • the structure 51 of the present embodiment has an optimal shape in order to make the working airflow blown from the main hole 14 have a top-hat type wind speed distribution. That is, the structure 51 is configured such that the flow channel cross-sectional area on the downstream side of the main flow channel 18 is about 1/10 of that on the upstream side.
  • the shortest distance Lf2 from the inner wall surface of the main hole 14 to the structure 51 and the distance Lf1 from the inner wall surface 141 of the main hole 14 to the center line of the main hole 14 are 1: 3. It is desirable that the thickness of the cross section is set to be 3 or more.
  • the structure 51 forms a layer reduction structure that reduces the thickness ⁇ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
  • the structure 51 is positioned at a site that forms the main flow path 18 inside the duct portion 16 so as not to protrude from the main hole 14. Specifically, in the structure 51, the downstream end 512 located on the downstream side in the airflow direction is positioned inside the main hole 14.
  • blowing unit 10 configured as described above, as shown in FIG. 20, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air is directed toward the main hole 14 via the main flow path 18. Flowing.
  • the airflow flowing through the main flow path 18 is bifurcated by the structure 51, so that contraction occurs until the main hole 14 is reached. Thereby, in the main flow path 18, the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 becomes sufficiently small.
  • the structure 51 is positioned inside the duct portion 16 so as not to protrude from the main hole 14. For this reason, inside the duct portion 16, the upstream section A in which the channel cross-sectional area is reduced by the structure 51, the intermediate section B in which the channel cross-sectional area is larger than the upstream section A, and the channel cross-sectional area hardly change. A downstream section C is formed.
  • the flow path difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 that forms the main flow path 18 is obtained by reducing the cross-sectional area of the flow path by the structure 51 and compressing the airflow. Is sufficiently small. That is, in the upstream section A, the thickness ⁇ of the velocity boundary layer BL in the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced toward the downstream side due to the contraction effect by the structure 51.
  • the flow path cross-sectional area is not small, so the thickness ⁇ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is downstream. Grows toward the side.
  • the flow path cross-sectional area is enlarged, so that the thickness ⁇ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 gradually increases toward the downstream side.
  • the amount of change in the thickness of the cross section on the rear edge side on the downstream side of the air flow is smaller than that on the front edge side.
  • the change in the channel cross-sectional area in the intermediate section B becomes gentler than the change in the upstream section A, and the increase amount of the thickness ⁇ of the speed boundary layer BL in the intermediate section B is the speed boundary layer BL in the upstream section A. This is sufficiently smaller than the reduction amount of the thickness ⁇ .
  • the thickness ⁇ of the velocity boundary layer BL in the vicinity of the inner wall surface 181 that forms the main flow path 18 is slightly increased toward the downstream side.
  • the increase amount of the thickness ⁇ of the velocity boundary layer BL in the downstream section C is extremely smaller than the decrease amount of the thickness ⁇ of the velocity boundary layer BL in the upstream section A.
  • the amount of decrease in the thickness ⁇ of the velocity boundary layer BL in the upstream section A by the structure 51 is sufficiently larger than the increase in the thickness ⁇ of the velocity boundary layer BL in the intermediate section B and the downstream section C.
  • the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14.
  • the thickness ⁇ of the velocity boundary layer BL is reduced by the contracted flow in the main flow path 18.
  • the central portion BLc of the thickness ⁇ of the velocity boundary layer BL is the center line of the main hole 14 downstream of the main hole 14 outlet. It will be in the state away from CLm. Specifically, the interval LS between the central portion BLc of the thickness ⁇ of the velocity boundary layer BL of the working airflow and the center line CLm of the main hole 14 is increased.
  • the air blowing device 1 described above is provided with the separation structure 50 for separating the central portion BLc of the thickness ⁇ of the velocity boundary layer BL of the working air flow from the center line CLm of the main hole 14 downstream of the outlet of the main hole 14. . According to this, the attenuation of the flow velocity at the central portion of the working airflow is reduced, and the reach distance of the working airflow blown out from the main hole 14 can be increased.
  • a structure 51 is provided as a separation structure 50 with respect to the main flow path 18.
  • the structure 51 is provided for the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface is reduced due to the contracted flow generated in the main flow path 18.
  • the thickness ⁇ of the velocity boundary layer BL can be reduced.
  • the working airflow formed downstream from the outlet of the main hole 14 tends to have a top-hat type wind speed distribution.
  • the central portion of the thickness ⁇ of the velocity boundary layer BL of the working airflow formed downstream of the outlet of the main hole 14 is greatly separated from the center line CLm of the main hole 14. For this reason, it is possible to sufficiently suppress the attenuation of the flow velocity at the central portion of the working air flow and to increase the reach distance of the working air current.
  • the structure 51 has a streamlined cross-sectional shape along the flow direction of the airflow flowing through the main flow path 18. As described above, when the structure 51 has a streamline shape, separation of the air flow on the surface of the structure 51 accompanying the arrangement of the structure 51 is suppressed, and turbulence can be sufficiently suppressed. This is effective in increasing the reach of the working airflow.
  • the structure 51 is disposed on the inner wall surface 181 that forms the main flow path 18 so that the downstream end portion 512 located on the downstream side in the flow direction of the airflow flowing through the main flow path 18 does not protrude from the main hole 14. Has been. According to this, since the airflow blown out from the main hole 14 is not disturbed by the structure 51, the attenuation of the flow velocity at the central portion of the working airflow can be sufficiently suppressed.
  • the structure 51 is exemplified as one having a streamlined cross-sectional shape, but is not limited to this.
  • the structure 51 may have, for example, an oval shape whose cross-sectional shape extends along the airflow in the main flow path 18.
  • the structure 51 what has a grid
  • the structure 51 is disposed on the inner wall surface 181 that forms the main flow path 18 so as not to protrude outside from the main hole 14 has been described, but the present invention is not limited thereto.
  • the structure 51 may be arrange
  • concave portions and convex portions are alternately arranged along the flow direction of the air flow in the main flow path 18 with respect to the inner wall surface 181 that forms the main flow path 18.
  • An uneven portion 52 is provided. Specifically, the concavo-convex portion 52 is formed in substantially the entire area of the inner wall surface 181 that forms the main flow path 18 inside the duct portion 16.
  • grooved part 52 of this embodiment is formed similarly to the uneven
  • a concavo-convex portion 52 in which concave and convex portions are alternately arranged in the main flow direction in the main flow path 18 is formed.
  • the concavo-convex portion 52 vortices are generated in the plurality of grooves when the airflow passes near the inner wall surface 181 forming the main flow path 18.
  • grooved part 52 plays a role like a ball bearing, and the friction coefficient of the inner wall surface 181 which forms the main flow path 18 becomes small. Thereby, in the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced.
  • the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14.
  • the thickness ⁇ of the velocity boundary layer BL is reduced by the effect of reducing the friction coefficient by the uneven portion 52. That is, the central part BLc of the thickness ⁇ of the velocity boundary layer BL of the working airflow is in a state of being separated from the center line CLm of the main hole 14 downstream of the main hole 14. Specifically, the interval LS between the central portion BLc of the thickness ⁇ of the velocity boundary layer BL of the working airflow and the center line CLm of the main hole 14 is increased.
  • the uneven portion 52 provided in the main flow path 18 functions as the separation structure 50 and the layer reduction structure.
  • the uneven portion 52 is added to the inner wall surface 181 that forms the main flow path 18, a speed boundary is achieved by the effect of reducing the friction coefficient of the inner wall surface 181 that forms the main flow path 18.
  • the thickness ⁇ of the layer BL can be made sufficiently small. For this reason, the attenuation of the flow velocity in the central portion of the working airflow is reduced, and the reach distance of the working airflow blown out from the main hole 14 can be increased.
  • the concavo-convex portion 52 is illustrated as being formed by a plurality of grooves, but is not limited thereto.
  • the concavo-convex portion 52 may be formed by a plurality of protrusions, for example.
  • the concavo-convex portion 52 is illustrated as being formed on substantially the entire inner wall surface 181 that forms the main flow path 18 inside the duct portion 16, but is not limited thereto.
  • the uneven portion 52 may be formed on a part of the inner wall surface 181 that forms the main flow path 18.
  • the structure including the concavo-convex portion 52 is exemplified as the layer reduction structure, but the present invention is not limited to this.
  • the layer contraction structure may be a structure including the structure 51 and the concavo-convex portion 52, for example.
  • the blowout portion 10 of the present embodiment has a main hole 14 and its vicinity expanded in a trumpet shape. Specifically, the main hole 14 is enlarged so that the inner wall surface 141 thereof is separated from the center line CLm of the main hole 14 toward the downstream side in the airflow direction.
  • the main hole 14 If the vicinity of the main hole 14 is extremely widened, the air current may be peeled off from the wall surface, and the turbulence may increase. For this reason, it is desirable for the main hole 14 to have an angle ⁇ s formed by the center line CLm and the tangent TLm of the inner wall surface 141 set to, for example, 7 ° or less.
  • the conditioned air when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct section 16, the conditioned air is directed toward the main hole 14 via the main flow path 18. Flowing. The airflow flowing into the main flow path 18 is blown out from the main hole 14.
  • the main hole 14 is expanded in a trumpet shape, the velocity boundary layer BL of the working airflow is separated from the center line CLm of the main hole 14 at the downstream of the outlet of the main hole 14. Specifically, the interval LS between the central portion BLc of the thickness ⁇ of the velocity boundary layer BL of the working airflow and the center line CLm of the main hole 14 is increased.
  • the expanded shape of the inner wall surface 141 of the main hole 14 functions as the separation structure 50.
  • the velocity boundary layer BL of the working airflow formed downstream from the outlet of the main hole 14 is also separated from the center line CLm of the main hole 14. It becomes easy. According to this, the attenuation of the flow velocity at the central portion of the working airflow is reduced, and the reach distance of the working airflow blown out from the main hole 14 can be increased.
  • the separation structure 50 may have a structure in which at least one of the structure 51 and the uneven portion 52 is added to the structure in which the inner wall surface 141 of the main hole 14 is expanded.
  • FIGS. 1-10 Eighth embodiment
  • an eighth embodiment will be described with reference to FIGS.
  • This embodiment is different from the fifth embodiment in that an enlarged portion 180 is provided for the main flow path 18.
  • portions that are different from the fifth embodiment will be mainly described, and description of portions that are the same as those of the fifth embodiment may be omitted.
  • the blowing portion 10 is provided with not only the structure 51 but also an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14 with respect to the main flow path 18 as the separation structure 50.
  • the main channel 18 has the largest cross-sectional area on the upstream side of the air flow from the structure 51, and has the smallest cross-sectional area at the place where the structure 51 is disposed.
  • the blow-out unit 10 is configured so that, for example, the cross-sectional area is about one-tenth compared with the upstream side of the structure 51 at the place where the structure 51 is disposed.
  • the blowout portion 10 has a cross-sectional thickness set so that the inner diameter Ld2 and the inner diameter Ld1 on the upstream side are 1: 3.3 or more at the place where the structure 51 is disposed.
  • the blowout part 10 of this embodiment has the main hole 14 vicinity expanded in the trumpet shape.
  • the main hole 14 is enlarged so that the inner wall surface 141 thereof is separated from the center line CLm of the main hole 14 toward the downstream side in the airflow direction.
  • the structure 51, the enlarged portion 180, and the expanded shape of the inner wall surface 141 of the main hole 14 function as the separation structure 50.
  • the structure 51 and the enlarged portion 180 function as a layer reduction structure.
  • the main channel 18 is provided with the enlarged portion 180 having a larger cross-sectional area than the opening area of the main hole 14, a contracted flow occurs from the enlarged portion 180 to the main hole 14.
  • the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced.
  • the structure 51 is disposed in the main flow path 18, a contracted flow is also generated by the structure 51.
  • the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 becomes sufficiently small.
  • the airflow flowing into the main flow path 18 is blown out from the main hole 14.
  • a velocity boundary layer BL of the working airflow is formed downstream from the center line CLm of the main hole 14 at the outlet downstream of the main hole 14. Specifically, the interval LS between the central portion BLc of the thickness ⁇ of the velocity boundary layer BL of the working airflow and the center line CLm of the main hole 14 is increased.
  • the air blowing device 1 described above has a structure in which the layer contraction structure includes not only the structure 51 but also the enlarged portion 180, the thickness ⁇ of the velocity boundary layer BL due to contraction is reduced. Further, since the main hole 14 is expanded in a trumpet shape, the velocity boundary layer BL of the working airflow formed downstream from the outlet of the main hole 14 is also easily separated from the center line CLm of the main hole 14. Accordingly, it is possible to increase the reach distance of the working air current blown out from the main hole 14.
  • FIGS. Next, a ninth embodiment will be described with reference to FIGS.
  • the present embodiment is different from the eighth embodiment in that a vertical vortex generating mechanism 53 is provided for the upstream end 511 of the structure 51.
  • portions different from those in the eighth embodiment will be mainly described, and descriptions of portions similar to those in the eighth embodiment may be omitted.
  • the structure 51 is provided with an uneven vertical vortex generating mechanism 53 at the upstream end 511.
  • the vertical vortex generating mechanism 53 generates a vertical vortex near the upstream end 511 of the structure 51.
  • the vertical vortex is a spiral vortex in which the vortex core is oriented in the same direction as the main flow direction.
  • the vertical vortex generating mechanism 53 is composed of a plurality of concave and convex protrusions protruding from the upstream end 511. Specifically, the vertical vortex generating mechanism 53 is configured by a plurality of triangular projecting pieces formed at the upstream end 511. The protruding piece has a sharpened shape by linearly intersecting two sides extending toward the tip.
  • the blowout section 10 configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct section 16, the conditioned air is directed toward the main hole 14 via the main flow path 18. Flowing. Since the structure 51 is disposed in the main flow path 18, a contracted flow is generated by the structure 51, but there is a possibility that the airflow flowing around the structure 51 may be separated from the structure 51 and disturbed. is there.
  • the vertical vortex generating mechanism 53 since the vertical vortex generating mechanism 53 is provided at the upstream end 511 of the structure 51, when the airflow passes near the upstream end 511 of the structure 51, the vertical vortex generating mechanism 53 is provided. A vortex is generated.
  • the vertical vortex generated by the vertical vortex generating mechanism 53 is a spiral vortex whose vortex core is directed in the same direction as the airflow flowing around the structure 51, and includes a velocity component toward the surface of the structure 51. . For this reason, the airflow that flows around the structure 51 is easily pushed along the surface of the structure 51 by being pushed closer to the surface of the structure 51 by the vertical vortex generated by the vertical vortex generating mechanism 53. Become.
  • the vertical vortex generating mechanism 53 is provided at the upstream end 511 of the structure 51, so that the airflow flowing around the structure 51 flows into the vertical vortex generating mechanism 53.
  • the vertical vortex generated in this way makes it easier to flow along the surface of the structure. As a result, the turbulence of the working air flow accompanying the addition of the structure 51 can be sufficiently suppressed.
  • the structure 51 of the air blowing device 1 described in the eighth embodiment is provided with the vertical vortex generating mechanism 53.
  • the longitudinal vortex generating mechanism 53 may be added to the structure 51 described in the seventh embodiment, for example. Further, the longitudinal vortex generating mechanism 53 may be added to the contracted fin 28 described in the second embodiment, for example.
  • the blowout portion 10 is provided with not only the uneven portion 52 but also an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14 with respect to the main flow path 18 as the separation structure 50. ing.
  • the main flow path 18 has the largest cross-sectional area on the upstream side of the air flow, and has the smallest cross-sectional area in the vicinity of the main hole 14.
  • the blow-out part 10 is configured so that, for example, the opening area of the main hole 14 is about 1/10 compared to the upstream side.
  • the blow-out portion 10 has a cross-sectional thickness set such that the inner diameter Ld2 of the main hole 14 and the inner diameter Ld1 on the upstream side are 1: 3.3 or more.
  • the uneven portion 52 and the enlarged portion 180 function as the separation structure 50 and the layer reduction structure.
  • the main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area larger than the opening area of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14.
  • the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 becomes sufficiently small.
  • the airflow flowing into the main flow path 18 is blown out from the main hole 14.
  • a velocity boundary layer BL of the working airflow is formed downstream from the outlet of the main hole 14 so as to be separated from the center line CLm of the main hole 14.
  • the air blowing device 1 described above has a structure in which the layer contraction structure includes not only the concavo-convex part 52 but also the enlarged part 180, the thickness ⁇ of the velocity boundary layer BL due to contraction is reduced. As a result, the velocity boundary layer BL of the working airflow formed downstream from the outlet of the main hole 14 is also easily separated from the center line CLm of the main hole 14, so that the reach of the working airflow blown out from the main hole 14 is increased. Is possible.
  • the cross-sectional area of the main flow path 18 is reduced from the upstream side to the downstream side in the airflow direction. Specifically, an upstream flat portion 182, a contracted flow shape portion 183, and a downstream flat portion 184 are set on the inner wall surface 181 that forms the main flow path 18.
  • the upstream flat portion 182 is configured by a portion on the upstream side of the air flow in the inner wall surface 181 that forms the main flow path 18.
  • the upstream flat portion 182 has a flat shape along the airflow direction so that the cross-sectional area is substantially constant.
  • the downstream flat portion 184 is configured of a portion on the downstream side of the air flow in the inner wall surface 181 that forms the main flow path 18.
  • the downstream flat portion 184 has a flat shape along the airflow direction so that the cross-sectional area is substantially constant.
  • the downstream flat portion 184 is configured so that its cross-sectional area is about 1/10 of the cross-sectional area of the upstream flat portion 182.
  • the contracted flow shape portion 183 corresponds to the enlarged portion 180 described in the eighth embodiment.
  • the contracted flow shape portion 183 is a connection portion that connects the upstream flat portion 182 and the downstream flat portion 184.
  • the contracted flow shape portion 183 is a portion that reduces the cross-sectional area of the main flow path 18 from the upstream side to the downstream side in the airflow direction.
  • the upstream end 183a located upstream in the airflow direction is connected to the upstream flat portion 182 and the downstream end 183b located downstream in the airflow direction is connected to the downstream flat portion 184.
  • the contracted flow shape portion 183 has a shape in which the upstream end 183a and the downstream end 183b are along the flow direction of the airflow so that the connection portion between the upstream flat portion 182 and the downstream flat portion 184 is a continuous curved surface having no step. It has become.
  • the size of the structure 51 in the flow direction of the airflow is smaller than the length of the contracted flow shape section where the contracted flow shape portion 183 is set in the inner wall surface 181 forming the main flow path 18.
  • the structure 51 is disposed in the main flow path 18 so as to be contained in the contracted flow shape section of the inner wall surface 181 that forms the main flow path 18. That is, in the structure 51, the upstream end 511 located on the upstream side in the airflow direction is positioned on the downstream side of the upstream end 183a of the contracted flow shape portion 183. In addition, in the structure 51, the downstream end portion 512 located on the downstream side in the airflow direction is positioned on the upstream side of the downstream end 183 b of the contracted flow shape portion 183.
  • the blowout unit 10 configured in this manner, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows toward the main hole 14 through the main flow path 18.
  • the structure 51 is arranged, and a contracted flow shape portion 183 is provided on the inner wall surface 181 that forms the main channel 18. For this reason, in the main flow path 18, the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is sufficiently small.
  • the structure 51 in the vicinity of the downstream end portion 512 of the structure 51 in the main flow path 18, provides a concave wind speed distribution Ws1. That is, in the vicinity of the downstream end portion 512 of the structure 51 in the main flow path 18, the vicinity of the inner wall surface 181 of the main flow path 18 compared to the central portion of the main flow path 18 due to the contraction effect by the structure 51 and the contracted flow shape portion 183. The flow velocity of becomes larger. If the airflow is blown out from the main hole 14 with such a concave wind speed distribution Ws1, the core portion of the airflow blown out from the main hole 14 may be quickly collapsed.
  • the downstream end 512 of the structure 51 is positioned upstream of the downstream end 183b of the contracted flow portion 183.
  • the contracted flow is generated by the contracted flow shape portion 183 even on the downstream side of the structure 51, so that the airflow easily flows downstream of the place where the structure 51 is disposed.
  • the flow velocity once reduced at the place where the structure 51 is disposed can be recovered downstream. That is, the working airflow formed downstream from the outlet of the main hole 14 tends to be a top-hat type wind speed distribution Ws2.
  • the air blowing device 1 described above has a structure in which the layer contraction structure includes not only the structure 51 but also the enlarged portion 180, the thickness ⁇ of the velocity boundary layer BL decreases due to the contraction. Since the downstream end portion 512 of the structure 51 is positioned on the upstream side of the downstream end 183b of the contracted flow shape portion 183, the working airflow formed downstream from the outlet of the main hole 14 has a top-hat type wind speed distribution. It becomes easy. Accordingly, it is possible to increase the reach distance of the working air current blown out from the main hole 14.
  • the structure 51 is exemplified so that the structure 51 is disposed so as to be accommodated in the contracted flow shape section of the inner wall surface 181 that forms the main flow path 18, but is not limited thereto.
  • the structure 51 is configured such that the downstream end 512 is positioned upstream of the downstream end 183b of the contracted flow shape portion 183 and the upstream end 511 is contracted.
  • the shape portion 183 may be positioned on the upstream side of the upstream end 183a. According to this, the same effect as the eleventh embodiment can be obtained.
  • the upstream end 511 is positioned on the downstream side of the upstream end 183a of the contracted flow portion 183, and the downstream end 512 is It may be positioned on the downstream side of the downstream end 183b of the contracted flow shape portion 183.
  • the inner wall surface 181 forming the main flow path 18 is exemplified by the upstream flat portion 182, the contracted flow shape portion 183, and the downstream flat portion 184 being set. It is not limited. As long as the reduced flow shape portion 183 is set on the inner wall surface 181 forming the main flow path 18, the upstream flat portion 182 and the downstream flat portion 184 do not need to be set in the blowing portion 10. Moreover, as for the blowing part 10, the downstream of the contracted flow shape part 183 may be expanded in the trumpet shape. (Other embodiments) As mentioned above, although typical embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
  • the air blowing device 1 may have a structure in which a plurality of main holes 14 are formed in the hole forming portion 12.
  • the plurality of auxiliary holes 22 are arranged so as to surround the plurality of main holes 14 as a single hole group, or to surround each of the plurality of main holes 14. That's fine.
  • auxiliary hole 22 is configured by a plurality of round holes
  • the auxiliary hole 22 may be configured by, for example, a curved slit hole surrounding the main hole 14.
  • the auxiliary hole 22 is not limited to a plurality of slit holes, and can be constituted by a single slit hole.
  • the main flow path 18 and the auxiliary flow path 24 are formed inside the single duct portion 16, but the present invention is not limited to this.
  • a portion that forms the main flow path 18 and a portion that forms the auxiliary flow path 24 in the duct portion 16 may be configured separately.
  • blowout portion 10 having the flange portion 20 is exemplified, but the present invention is not limited to this.
  • the blow-out part 10 may have a configuration in which, for example, the hole forming part 12 and the duct part 16 are included and the flange part 20 is not included.
  • the air blowing device 1 of the present disclosure is applied to the air blowing port of an air conditioning unit that air-conditions the vehicle interior, but the present invention is not limited to this.
  • the air blowing device 1 according to the present disclosure is not limited to a moving body such as a vehicle, but can be widely applied to an air blowing port of an installation type air conditioning unit for home use or the like.
  • the air blowing device 1 of the present disclosure is not limited to an air conditioning unit that air-conditions a room.
  • a temperature control that blows out temperature-controlled air that adjusts the temperature of an air outlet of a humidifying device that humidifies the room, a heating element, or the like. It can also be applied to the air outlet of equipment.
  • the air blowing device includes a blowing unit that blows out an air flow.
  • the blow-out unit includes at least one main hole for blowing out an air flow as a working air flow, and a separation structure for separating the central portion of the speed boundary layer of the working air flow from the center line of the main hole downstream of the outlet of the main hole. It is configured to include.
  • the blowing part of the air blowing apparatus contains the main flow path which allows the airflow which blows off from a main hole to pass through.
  • the separation structure includes a layer contraction structure that reduces the thickness of the velocity boundary layer formed along the inner wall surface of the main flow path.
  • the working airflow formed downstream of the outlet of the main hole is likely to have a top-hat type wind speed distribution.
  • the central part of the velocity boundary layer thickness of the working airflow formed downstream from the outlet of the main hole is far away from the center line of the main hole. It is possible to sufficiently suppress the attenuation and increase the reach of the working airflow.
  • the air blowing device is provided with a structure that contracts the airflow flowing through the main channel as a layer contraction structure in the main channel.
  • the structure is provided for the main flow path, the flow velocity difference between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced due to the contracted flow generated in the main flow path.
  • the thickness can be reduced. That is, it is possible to realize a structure in which the central portion of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is separated from the center line of the main hole.
  • a contracted flow shape portion that reduces the cross-sectional area of the main flow path from the upstream side to the downstream side in the air flow direction is formed on the inner wall surface forming the main flow path.
  • the downstream end located on the downstream side in the flow direction of the airflow flowing through the main flow path is upstream of the downstream end located on the downstream side in the flow direction of the airflow flowing through the main flow path in the contracted flow shape portion. Is positioned.
  • the flow velocity is reduced at the position where the structure is arranged in the main flow path, so that a concave wind speed distribution tends to be generated on the downstream side of the structure. If the airflow is blown out from the main hole with such a concave wind speed distribution, the core portion of the airflow blown out from the main hole may be quickly collapsed.
  • the air blowing device has a contracted flow shape portion that reduces the flow passage cross-sectional area of the main flow passage from the upstream side to the downstream side in the air flow direction on the inner wall surface forming the main flow passage.
  • the upstream end located on the upstream side in the flow direction of the airflow flowing in the main flow path is downstream of the upstream end located on the upstream side in the flow direction of the airflow flowing in the main flow path in the contracted flow shape portion. Is positioned.
  • the contraction effect by the structure and the contracted flow shape portion can be obtained.
  • the air blowing device has a contracted flow shape portion that reduces the cross-sectional area of the main flow path from the upstream side to the downstream side in the air flow direction on the inner wall surface forming the main flow path.
  • the upstream end located on the upstream side in the flow direction of the airflow flowing in the main flow path is downstream of the upstream end located on the upstream side in the flow direction of the airflow flowing in the main flow path in the contracted flow shape portion. Is positioned.
  • the structure has a downstream end located downstream in the flow direction of the airflow flowing through the main flow path, and a downstream end located downstream of the flow direction of the airflow flowing through the main flow path in the contracted flow shape portion. Located upstream.
  • the structure of the air blowing device has a streamlined cross-sectional shape along the flow direction of the airflow flowing through the main flow path.
  • the structure has a streamlined shape, separation of the air current on the surface of the structure is suppressed, and turbulence can be sufficiently suppressed. This is effective in increasing the reach of the working airflow.
  • the structure of the air blowing device is provided with an uneven vertical vortex generating mechanism for generating vertical vortices at the upstream end located upstream in the flow direction of the airflow flowing through the main flow path. It has been. According to this, the airflow that flows around the structure becomes easy to flow along the surface of the structure by the vertical vortex generated by the vertical vortex generation mechanism, thereby suppressing the turbulence of the working airflow accompanying the addition of the structure be able to.
  • the structure of the air blowing device is arranged on the inner side of the main flow path so that the downstream end located on the downstream side in the flow direction of the airflow flowing through the main flow path does not protrude outside from the main hole. Is arranged. According to this, since the airflow blown out from the main hole is not disturbed by the structure, the attenuation of the flow velocity at the central portion of the working airflow can be sufficiently suppressed.
  • the air blowing device at least a part of the main flow path is provided with a concavo-convex part in which concave parts and convex parts are alternately arranged along the flow direction of the air flow in the main flow path as a layer contraction structure.
  • the structure is provided with a concavo-convex portion on a part of the inner wall surface of the main flow path, the vortex generated inside the concavo-convex portion plays a role like a ball bearing, so that the friction of the inner wall surface of the main flow path The coefficient becomes smaller.
  • the difference in flow velocity between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced, and the thickness of the velocity boundary layer can be reduced. That is, it is possible to realize a structure in which the central portion of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is separated from the center line of the main hole.
  • the main flow path is provided with an enlarged portion having a cross-sectional area larger than the opening area of the main hole as a layer reducing structure.
  • the air blowing device is enlarged so that the inner wall surface of the main hole is separated from the center line of the main hole toward the downstream side in the air flow direction.
  • the velocity boundary layer of the working airflow formed downstream of the main hole according to the shape of the inner wall surface of the main hole is also easily formed so as to be separated from the center line of the main hole. For this reason, the structure which leaves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

An air discharge device (1) equipped with a discharge section (10) for discharging a stream of air. The discharge section includes: at least one main opening (14) through which an airstream serving as an operating airstream is discharged; and a separation (50) for separating, from a center line (CLm) of the main opening, a center portion (BLc) of the thickness (δ) of the velocity boundary layer (BL) of the operating airstream downstream from an outlet of the main opening.

Description

空気吹出装置Air blowing device 関連出願への相互参照Cross-reference to related applications
 本出願は、2018年4月11日に出願された日本特許出願番号2018-76325号と、2018年10月23日に出願された日本特許出願番号2018-199383号と、2018年12月25日に出願された日本特許出願番号2018-240806号に基づくものであって、ここにその記載内容が参照により組み入れられる。 This application includes Japanese Patent Application No. 2018-76325 filed on April 11, 2018, Japanese Patent Application No. 2018-199383 filed on October 23, 2018, and December 25, 2018. Is based on Japanese Patent Application No. 2018-240806 filed in Japan, the contents of which are incorporated herein by reference.
 本開示は、気流を吹き出す吹出部を備える空気吹出装置に関する。 The present disclosure relates to an air blowing device including a blowing unit that blows out an air flow.
 従来、作動気流となる空気流を形成する主孔の周辺に、作動気流に引き込まれる主孔周りの空気の引き込みを阻む援護気流を形成する補助吹出口が設けられたエアーノズルが知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, an air nozzle is known in which an auxiliary air outlet is provided around a main hole that forms an air flow serving as a working airflow, and an auxiliary air outlet that forms a support airflow that prevents the air around the main hole being drawn into the working airflow. (For example, refer to Patent Document 1).
特開平8-318176号公報JP-A-8-318176
 本発明者らは、気流の到達距離を更に長くするために、主孔から気流を吹き出した際の空気の引き込み作用について鋭意検討した。この結果、空気の引き込み作用は、主孔から作動気流を吹き出した際、作動流体の速度勾配によるせん断力によって生ずる横渦に起因することが判った。なお、横渦は、主流の流れ方向に直交する渦心を有する渦である。 The present inventors diligently studied the air drawing action when the air flow is blown out from the main hole in order to further increase the reach distance of the air flow. As a result, it has been found that the air drawing action is caused by a lateral vortex generated by a shearing force due to the velocity gradient of the working fluid when the working air current is blown from the main hole. The horizontal vortex is a vortex having a vortex center perpendicular to the mainstream flow direction.
 本発明者らが更に検討したところ、主孔の出口下流付近では、速度境界層に生ずる無数の横渦が速度境界層の厚みの中央付近で合成して大規模なものに発達することで、空気の引き込み作用がより強くなるとの知見を得た。 As a result of further investigation by the present inventors, in the vicinity of the downstream of the main hole outlet, innumerable transverse vortices generated in the velocity boundary layer are synthesized near the center of the thickness of the velocity boundary layer and developed into a large-scale one. The knowledge that the air drawing-in action becomes stronger was obtained.
 しかしながら、上述の従来技術では、主孔の周囲に補助吹出口を設けることが開示されているだけで、本発明者らの知見について何ら示されておらず、気流の到達距離の更なる向上を見込むことが困難である。
 本開示は、主孔から吹き出す作動気流の到達距離を長くすることが可能な空気吹出装置を提供することを目的とする。
However, the above-described conventional technique only discloses providing an auxiliary air outlet around the main hole, and does not show any knowledge about the present inventors, further improving the reach of the airflow. It is difficult to expect.
An object of this indication is to provide the air blowing apparatus which can lengthen the reach | attainment distance of the working airflow which blows off from a main hole.
 ところで、作動気流の中心部分は、作動気流の中心部分以外の部分に比べて、空気の引き込み作用の影響が小さく、作動気流の中心部分で主孔から吹き出す作動気流の到達距離が長くなる傾向がある。本発明者らの検討によれば、主孔から吹き出す作動気流の到達距離を長くする上で、作動気流の中心部分と速度境界層とが離れていることが有効であることが判った。
 本開示の1つの観点によれば、空気吹出装置は、気流を吹き出す吹出部を備える。そして、吹出部は、作動気流となる気流を吹き出す少なくとも1つの主孔と、主孔の出口下流において作動気流の速度境界層の厚みの中央部分を主孔の中心線から離すための離間構造と、を含んでいる。
By the way, the central portion of the working airflow is less affected by the air drawing action than the portions other than the central portion of the working airflow, and the reach of the working airflow blown out of the main hole at the central portion of the working airflow tends to be longer. is there. According to the study by the present inventors, it has been found that it is effective that the central portion of the working air current is separated from the velocity boundary layer in order to increase the reach distance of the working air current blown out from the main hole.
According to one aspect of the present disclosure, the air blowing device includes a blowing unit that blows out an air flow. And the blowing part has at least one main hole that blows out the airflow that becomes the working airflow, and a separation structure for separating the central portion of the thickness of the velocity boundary layer of the working airflow from the centerline of the main hole downstream of the outlet of the main hole , Including.
 このように、主孔から吹き出された作動気流の中心部分と速度境界層の厚みの中央部分とを離す構造を採用すれば、作動気流の中心部分における流速の減衰が少なくなり、主孔から吹き出される作動気流の到達距離を長くすることが可能となる。なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 By adopting a structure that separates the central part of the working air current blown out from the main hole and the central part of the thickness of the velocity boundary layer in this way, the attenuation of the flow velocity in the central part of the working air flow is reduced, and the It is possible to lengthen the reach of the working airflow. Reference numerals in parentheses attached to each component and the like indicate an example of a correspondence relationship between the component and the like and specific components described in the embodiments described later.
第1実施形態に係る空気吹出装置の模式的な斜視図である。It is a typical perspective view of the air blowing apparatus which concerns on 1st Embodiment. 第1実施形態に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on 1st Embodiment. 図2のIII-III断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 第1比較例となる第1ノズルの出口下流における気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the airflow in the exit downstream of the 1st nozzle used as the 1st comparative example. 第1比較例となる第1ノズルの出口下流における気流の状態を説明するための説明図である。It is explanatory drawing for demonstrating the state of the airflow in the exit downstream of the 1st nozzle used as the 1st comparative example. 第2比較例となる第2ノズルの出口下流における気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the airflow in the exit downstream of the 2nd nozzle used as the 2nd comparative example. 第1実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the working airflow in the downstream of the exit of the main hole of the air blowing apparatus which concerns on 1st Embodiment. 第1実施形態に係る空気吹出装置の主孔の出口下流における作動気流の状態を説明するための説明図である。It is explanatory drawing for demonstrating the state of the working airflow in the downstream of the exit of the main hole of the air blowing apparatus which concerns on 1st Embodiment. 第2実施形態に係る空気吹出装置の模式的な斜視図である。It is a typical perspective view of the air blowing apparatus which concerns on 2nd Embodiment. 第2実施形態に係る空気吹出装置の模式的な正面図である。It is a typical front view of the air blowing apparatus which concerns on 2nd Embodiment. 図10のXI-XI断面図である。It is XI-XI sectional drawing of FIG. 第2実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the working airflow in the downstream of the exit of the main hole of the air blowing apparatus which concerns on 2nd Embodiment. 第3実施形態に係る空気吹出装置の模式的な断面図である。It is typical sectional drawing of the air blowing apparatus which concerns on 3rd Embodiment. 図13のXIV部分の拡大図である。It is an enlarged view of the XIV part of FIG. 第3実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the working airflow in the downstream of the exit of the main hole of the air blowing apparatus which concerns on 3rd Embodiment. 第4実施形態に係る空気吹出装置の模式的な断面図である。It is typical sectional drawing of the air blowing apparatus which concerns on 4th Embodiment. 第4実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the working airflow downstream of the exit of the main hole of the air blowing apparatus which concerns on 4th Embodiment. 第4実施形態に係る空気吹出装置の主孔の出口下流における作動気流の状態を説明するための説明図である。It is explanatory drawing for demonstrating the state of the working airflow in the downstream of the exit of the main hole of the air blowing apparatus which concerns on 4th Embodiment. 第5実施形態に係る空気吹出装置の模式的な断面図である。It is typical sectional drawing of the air blowing apparatus which concerns on 5th Embodiment. 第5実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the working airflow in the downstream of the exit of the main hole of the air blowing apparatus which concerns on 5th Embodiment. 第6実施形態に係る空気吹出装置の模式的な断面図である。It is typical sectional drawing of the air blowing apparatus which concerns on 6th Embodiment. 第6実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the working airflow in the downstream of the exit of the main hole of the air blowing apparatus which concerns on 6th Embodiment. 第7実施形態に係る空気吹出装置の模式的な断面図である。It is typical sectional drawing of the air blowing apparatus which concerns on 7th Embodiment. 第7実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the working airflow in the downstream of the exit of the main hole of the air blowing apparatus which concerns on 7th Embodiment. 第8実施形態に係る空気吹出装置の模式的な断面図である。It is typical sectional drawing of the air blowing apparatus which concerns on 8th Embodiment. 第8実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the working air current in the downstream of the exit of the main hole of the air blowing apparatus which concerns on 8th Embodiment. 第9実施形態に係る空気吹出装置の模式的な断面図である。It is typical sectional drawing of the air blowing apparatus which concerns on 9th Embodiment. 第9実施形態に係る空気吹出装置に設けられた構造物の模式的な上面図である。It is a typical top view of the structure provided in the air blowing apparatus which concerns on 9th Embodiment. 第9実施形態に係る空気吹出装置の主流路における主孔の出口下流における模式的な断面図である。It is typical sectional drawing in the outlet downstream of the main hole in the main flow path of the air blowing apparatus which concerns on 9th Embodiment. 第10実施形態に係る空気吹出装置の模式的な断面図である。It is typical sectional drawing of the air blowing apparatus which concerns on 10th Embodiment. 第11実施形態に係る空気吹出装置の模式的な断面図である。It is typical sectional drawing of the air blowing apparatus which concerns on 11th Embodiment. 第11実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。It is explanatory drawing for demonstrating the velocity gradient of the working airflow in the downstream of the exit of the main hole of the air blowing apparatus which concerns on 11th Embodiment. 第11実施形態に係る空気吹出装置の第1変形例を示す模式的な断面図である。It is typical sectional drawing which shows the 1st modification of the air blowing apparatus which concerns on 11th Embodiment. 第11実施形態に係る空気吹出装置の第2変形例を示す模式的な断面図である。It is typical sectional drawing which shows the 2nd modification of the air blowing apparatus which concerns on 11th Embodiment.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts as those described in the preceding embodiments are denoted by the same reference numerals, and the description thereof may be omitted. Further, in the embodiment, when only a part of the constituent elements are described, the constituent elements described in the preceding embodiment can be applied to the other parts of the constituent elements. The following embodiments can be partially combined with each other even if they are not particularly specified as long as they do not cause any trouble in the combination.
 (第1実施形態)
 本実施形態について、図1~図8を参照して説明する。本実施形態の空気吹出装置1は、車室内を空調する空調ユニットの空気吹出口に適用される。図示しないが空調ユニットは、車室内の最前部に設けられたインストルメントパネルの内側に配置される。そして、空調ユニットの空気吹出口は、インストルメントパネルやその内側に設けられている。
(First embodiment)
This embodiment will be described with reference to FIGS. The air blowing device 1 of this embodiment is applied to an air outlet of an air conditioning unit that air-conditions a vehicle interior. Although not shown, the air conditioning unit is disposed inside an instrument panel provided in the foremost part of the vehicle interior. And the air blower outlet of an air-conditioning unit is provided in the instrument panel and its inner side.
 図1および図2に示すように、空気吹出装置1は、気流を吹き出す吹出部10を備える。吹出部10は、その内部に空調ユニットで所望の温度に調整された気流を室内に導く空気流路が形成されている。吹出部10は、ダクト部16、作動気流となる気流を吹き出す主孔14を形成する孔形成部12、ダクト部16の外側に設けられたフランジ部20を含んで構成されている。 As shown in FIGS. 1 and 2, the air blowing device 1 includes a blowing unit 10 that blows out an air flow. The blow-out unit 10 is formed with an air flow path for guiding an air flow adjusted to a desired temperature by the air conditioning unit into the room. The blowing part 10 includes a duct part 16, a hole forming part 12 that forms a main hole 14 that blows out an airflow that serves as a working airflow, and a flange part 20 that is provided outside the duct part 16.
 ダクト部16は、室内へ吹き出す気流を通過させる流路を形成する部材である。ダクト部16は、筒状の部材で構成されている。ダクト部16は、空気の流れ方向から見た形状が、横幅が縦幅よりも大きい扁平な形状になっている。また、ダクト部16は、空気流れ方向に沿った形状が空気流れ上流側から下流側に向けて絞られた形状になっている。 The duct portion 16 is a member that forms a flow path through which an airflow blown into the room is passed. The duct part 16 is comprised with the cylindrical member. The shape of the duct portion 16 as viewed from the air flow direction is a flat shape having a horizontal width larger than the vertical width. Further, the duct portion 16 has a shape in which the shape along the air flow direction is narrowed from the air flow upstream side to the downstream side.
 図3に示すように、ダクト部16の内部には、上流側の部位よりも下流側の部位の近くに仕切部26が設けられている。この仕切部26は、筒状に構成されており、ダクト部16の内側に、ダクト部16に対して所定の隙間があくように配置されている。ダクト部16の内部は、仕切部26によって内側の流路と外側の流路とが形成されている。すなわち、ダクト部16は、その内側に仕切部26が配置されることで二重の流路構造になっている。 As shown in FIG. 3, a partition portion 26 is provided in the duct portion 16 near the downstream portion than the upstream portion. The partition portion 26 is configured in a cylindrical shape, and is arranged inside the duct portion 16 so as to have a predetermined gap with respect to the duct portion 16. Inside the duct portion 16, an inner flow path and an outer flow path are formed by the partition portion 26. That is, the duct part 16 has a double flow path structure by arranging the partition part 26 on the inside thereof.
 ダクト部16の内部には、その中央部分に主流路18が形成されている。主流路18は、仕切部26の内側の空間で構成されている。主流路18は、後述の主孔14から吹き出される作動気流を通過させる流路である。 The main flow path 18 is formed in the center part inside the duct part 16. The main flow path 18 is configured by a space inside the partition portion 26. The main flow path 18 is a flow path through which a working air current blown from a main hole 14 described later passes.
 また、ダクト部16の内部には、主流路18の外側部分に補助流路24が形成されている。補助流路24は、仕切部26とダクト部16との間に形成される隙間で構成されている。補助流路24は、補助孔22から吹き出される援護気流を通過させる流路である。 Further, an auxiliary flow path 24 is formed inside the duct portion 16 at the outer portion of the main flow path 18. The auxiliary flow path 24 is configured by a gap formed between the partition portion 26 and the duct portion 16. The auxiliary flow path 24 is a flow path through which the support airflow blown out from the auxiliary hole 22 passes.
 主流路18および補助流路24は、上述の仕切部26によって仕切られている。なお、主流路18および補助流路24は、ダクト部16における上流側の部位において互いに連通している。 The main flow path 18 and the auxiliary flow path 24 are partitioned by the partition portion 26 described above. The main flow path 18 and the auxiliary flow path 24 are in communication with each other at the upstream portion of the duct portion 16.
 ダクト部16は、空気流れ上流側の部位が図示しない空調ユニットの空気吹出口に嵌合される。また、ダクト部16は、空気流れ下流側の部位が孔形成部12の外周に連なっている。 The duct part 16 is fitted into an air outlet of an air conditioning unit (not shown) on the upstream side of the air flow. Further, the duct portion 16 is connected to the outer periphery of the hole forming portion 12 at the downstream side of the air flow.
 孔形成部12は、ダクト部16の空気流れ下流側の端部に位置付けられている。孔形成部12は、ダクト部16の空気流れ下流側の端面を構成する板状の部材であり、空気流れ方向において所定の厚みを有している。孔形成部12は、ダクト部16と仕切部26とを接続する接続部でもある。孔形成部12は、空気を吹き出すことが可能なように筒状に構成されている。孔形成部12は、空気流れ方向から見た形状が、横幅が縦幅よりも大きい扁平な形状になっている。孔形成部12には、その中央部分に主孔14が単一の孔として開口している。この主孔14は、空調ユニットで温度調整された空調風を作動気流として車室内へ吹き出すための開口である。 The hole forming part 12 is positioned at the end of the duct part 16 on the downstream side of the air flow. The hole forming portion 12 is a plate-like member that constitutes an end surface of the duct portion 16 on the downstream side of the air flow, and has a predetermined thickness in the air flow direction. The hole forming part 12 is also a connection part that connects the duct part 16 and the partition part 26. The hole formation part 12 is comprised by the cylinder shape so that air can be blown out. The shape of the hole forming portion 12 as viewed from the air flow direction is a flat shape whose horizontal width is larger than the vertical width. The hole forming portion 12 has a main hole 14 opened as a single hole at the center thereof. The main hole 14 is an opening for blowing out the conditioned air whose temperature is adjusted by the air conditioning unit as a working air flow into the vehicle interior.
 主孔14は、空気流れ方向から見た形状が、横幅が縦幅よりも大きい長円形状になっている。具体的には、主孔14は、長さの等しい平行な線分を円弧状に湾曲した一対の曲線で接続してなる形状になっている。 The shape of the main hole 14 as viewed from the air flow direction is an oval shape whose horizontal width is larger than vertical width. Specifically, the main hole 14 has a shape formed by connecting parallel line segments of equal length with a pair of curved curves.
 主孔14は、主流路18に連なる孔である。主孔14は、仕切部26において、空気流れ下流側の端から孔形成部12の厚みの分だけ上流側に位置する範囲に形成されている。主孔14は、空気流れ方向に沿って延びる内壁面141を有している。 The main hole 14 is a hole connected to the main flow path 18. The main hole 14 is formed in the partition 26 in a range located upstream from the end on the downstream side of the air flow by the thickness of the hole forming part 12. The main hole 14 has an inner wall surface 141 extending along the air flow direction.
 また、孔形成部12には、主孔14の周囲を囲むように複数の補助孔22が形成されている。補助孔22は、主孔14から吹き出される作動気流による空気の引き込み作用を抑えるための援護気流を吹き出すための開口である。 Further, a plurality of auxiliary holes 22 are formed in the hole forming portion 12 so as to surround the periphery of the main hole 14. The auxiliary hole 22 is an opening for blowing out a support airflow for suppressing the air drawing action by the working airflow blown out from the main hole 14.
 図2に示すように、複数の補助孔22は、孔形成部12において主孔14を取り囲むように形成されている。複数の補助孔22は、孔形成部12における主孔14の外縁部分を形成する部位の外側に形成されている。複数の補助孔22は、互いの間隔が等しくなるように形成されている。複数の補助孔22は、主孔14に比べて断面積が小さい丸孔として形成されている。 2, the plurality of auxiliary holes 22 are formed so as to surround the main hole 14 in the hole forming portion 12. The plurality of auxiliary holes 22 are formed outside the portion of the hole forming portion 12 that forms the outer edge portion of the main hole 14. The plurality of auxiliary holes 22 are formed so that the intervals between them are equal. The plurality of auxiliary holes 22 are formed as round holes having a smaller cross-sectional area than the main hole 14.
 補助孔22は、補助流路24に連なる孔である。補助孔22は、仕切部26およびダクト部16のうち、空気流れ下流側の端から孔形成部12の厚みの分だけ上流側に位置する範囲に形成されている。補助孔22は、空気流れ方向に沿って延びる内壁面221を有している。 The auxiliary hole 22 is a hole that continues to the auxiliary flow path 24. The auxiliary hole 22 is formed in a range of the partition portion 26 and the duct portion 16 that is located upstream from the end on the downstream side of the air flow by the thickness of the hole forming portion 12. The auxiliary hole 22 has an inner wall surface 221 that extends along the air flow direction.
 フランジ部20は、吹出部10を図示しないインストルメントパネルに対して取り付けるための部材である。フランジ部20は、ダクト部16の外周に対してダクト部16から突き出るように設けられた矩形状の部材で構成されている。フランジ部20は、ダクト部16の上流側の部位が空調ユニットの空気吹出口に嵌合された状態で、ビス等の連結部材によってインストルメントパネルに対して取り付けられる。なお、フランジ部20には、角部をなす四隅付近にビス等の連結部材を通すための貫通穴201が形成されている。 The flange part 20 is a member for attaching the blowing part 10 to an instrument panel (not shown). The flange portion 20 is composed of a rectangular member provided so as to protrude from the duct portion 16 with respect to the outer periphery of the duct portion 16. The flange portion 20 is attached to the instrument panel by a connecting member such as a screw in a state where the upstream portion of the duct portion 16 is fitted to the air outlet of the air conditioning unit. The flange portion 20 is formed with through holes 201 through which connecting members such as screws are passed in the vicinity of the four corners forming the corner portions.
 吹出部10を構成する孔形成部12、ダクト部16、フランジ部20、仕切部26それぞれは、樹脂で構成されている。孔形成部12、ダクト部16、およびフランジ部20、仕切部26は、射出成形等の成形技術によって一体に成形された一体成形物で構成されている。なお、孔形成部12、ダクト部16、フランジ部20、仕切部26は、その一部が別体で構成されていてもよい。このように構成される吹出部10は、前述したように、図示しないインストルメントパネルに設置される。 Each of the hole forming part 12, the duct part 16, the flange part 20, and the partition part 26 constituting the blowing part 10 is made of resin. The hole forming part 12, the duct part 16, the flange part 20, and the partition part 26 are formed of an integrally molded product that is integrally formed by a molding technique such as injection molding. In addition, the hole formation part 12, the duct part 16, the flange part 20, and the partition part 26 may be comprised by the part separately. As described above, the blowing unit 10 configured in this manner is installed on an instrument panel (not shown).
 ここで、近年、インストルメントパネルは、車室内の拡大や意匠性の観点で車両上下方向において薄型化が要求されている。また、インストルメントパネルは、車両幅方向の中央部分や車両前後方向において乗員に相対する部分に車両の運転状態を示す各種情報を報知するための大型の情報機器が設置される傾向がある。これらにより、空調ユニットでは、空気吹出口を薄幅にする等の対策が必要となるが、空気吹出口を薄幅にすると、空気吹出口の下流に生ずる横渦Vtによって、空気吹出口から吹き出す気流のコア部の崩壊が早まり、車室内における気流の到達距離が短くなる。このため、空気吹出装置1には、車室内へ吹き出される気流の到達距離を長くすることが求められつつある。 Here, in recent years, instrument panels have been required to be thin in the vertical direction of the vehicle from the viewpoint of expansion of the passenger compartment and design. In addition, the instrument panel tends to be provided with a large information device for notifying various information indicating the driving state of the vehicle at a central portion in the vehicle width direction or a portion facing the occupant in the vehicle longitudinal direction. As a result, the air conditioning unit requires measures such as making the air outlet thin, but if the air outlet is made thin, it blows out from the air outlet due to the lateral vortex Vt generated downstream of the air outlet. The collapse of the core portion of the airflow is accelerated, and the reach distance of the airflow in the passenger compartment is shortened. For this reason, the air blowing device 1 is required to increase the reach of the airflow blown into the vehicle interior.
 本発明者らは、車室内へ吹き出す気流の到達距離を更に長くするために、主孔14から気流を吹き出した際の空気の引き込み作用について鋭意検討した。この結果、当該空気の引き込み作用は、主孔14から作動気流を吹き出した際に、作動気流の速度勾配によるせん断力によって生ずる横渦Vtに起因することが判った。以下、空気の引き込み作用について、図4、図5を参照して説明する。 In order to further increase the reach of the airflow blown into the vehicle interior, the present inventors diligently studied the air drawing action when the airflow was blown out from the main hole 14. As a result, it has been found that the air drawing action is caused by the lateral vortex Vt generated by the shearing force due to the velocity gradient of the working air flow when the working air flow is blown out from the main hole 14. Hereinafter, the air drawing action will be described with reference to FIGS. 4 and 5.
 図4は、本実施形態の空気吹出装置1の第1比較例となる第1ノズルCE1を示す模式図である。第1ノズルCE1は、断面積が略一定となる円筒管で構成され、一端側の開口が主孔Hm1を構成している。 FIG. 4 is a schematic diagram showing a first nozzle CE1 that is a first comparative example of the air blowing device 1 of the present embodiment. The first nozzle CE1 is formed of a cylindrical tube having a substantially constant cross-sectional area, and the opening on one end side forms the main hole Hm1.
 図4に示すように、第1ノズルCE1の主孔Hm1から気流が吹き出されると、主孔Hm1の出口下流において主孔Hm1からの気流とその周囲で静止した空気との速度差に起因して速度境界層BLが形成される。速度境界層BLは、第1ノズルCE1の主孔Hm1から吹き出された気流のうち静止した空気の影響を受ける層である。 As shown in FIG. 4, when the air flow is blown out from the main hole Hm1 of the first nozzle CE1, it is caused by the difference in velocity between the air flow from the main hole Hm1 and the air stationary around it at the outlet downstream of the main hole Hm1. Thus, the velocity boundary layer BL is formed. The velocity boundary layer BL is a layer that is affected by stationary air among the airflows blown from the main hole Hm1 of the first nozzle CE1.
 速度境界層BLでは、図5に示すように、速度勾配によるせん断力によって無数の横渦Vtが生ずる。そして、本発明者らの検討によれば、速度境界層BLに生ずる無数の横渦Vtが速度境界層BLの厚みδの中央部分BLc付近で合成して大規模なものに発達することで、空気の引き込み作用がより強くなり易いことが判った。 In the velocity boundary layer BL, as shown in FIG. 5, innumerable transverse vortices Vt are generated by the shearing force due to the velocity gradient. According to the study by the present inventors, innumerable transverse vortices Vt generated in the velocity boundary layer BL are synthesized in the vicinity of the central portion BLc of the thickness δ of the velocity boundary layer BL and developed into a large-scale one. It was found that the air drawing action tends to be stronger.
 ここで、速度境界層BLの厚みδは、壁面から速度境界層BLの外側を流れる主流(すなわち、ポテンシャル流)の速度Uの99%(すなわち、0.99×U)となる位置までの長さとして定義される。速度境界層BLの厚みδは、例えば、次の式F1に基づいて算出される。 Here, the thickness δ of the velocity boundary layer BL reaches a position where it becomes 99% (that is, 0.99 × U ) of the velocity U of the main flow (that is, potential flow) that flows outside the velocity boundary layer BL from the wall surface. Is defined as the length of The thickness δ of the velocity boundary layer BL is calculated based on the following formula F1, for example.
 δ=5×(ν×x/U1/2 …(F1)
 但し、式F1では、νが動粘性係数を示し、xが主流の流れ方向の位置、Uが主流の速度(すなわち、一様流速度)を示している。なお、速度境界層BLの厚さδの定義式としては、上述の式F1以外に、例えば、排除厚さによる定義式や運動量厚さによる定義式を用いることも可能である。
δ = 5 × (ν × x / U ) 1/2 (F1)
However, in Formula F1, ν represents a kinematic viscosity coefficient, x represents a position in the main flow direction, and U represents a main flow speed (that is, a uniform flow speed). As the definition formula of the thickness δ of the velocity boundary layer BL, in addition to the formula F1 described above, for example, a definition formula based on the excluded thickness or a definition formula based on the momentum thickness can be used.
 図6は、本実施形態の空気吹出装置1の第2比較例となる第2ノズルCE2を示す模式図である。第2ノズルCE2は、その一端側に主孔Hm2および当該主孔Hm2を取り囲む複数の補助孔Hsが形成された円筒管で構成されている。図6に示すように、第2ノズルCE2の主孔Hm2および補助孔Hsから気流が吹き出されると、主孔Hm2の出口下流に主孔Hm2の内壁面に沿って作動気流の速度境界層BLが形成される。この速度境界層BLには、その厚みδの中央部分BLc付近で横渦Vtが生じ易いと考えられる。 FIG. 6 is a schematic diagram showing a second nozzle CE2 which is a second comparative example of the air blowing device 1 of the present embodiment. The second nozzle CE2 is configured by a cylindrical tube in which a main hole Hm2 and a plurality of auxiliary holes Hs surrounding the main hole Hm2 are formed on one end side thereof. As shown in FIG. 6, when an air flow is blown out from the main hole Hm2 and the auxiliary hole Hs of the second nozzle CE2, the velocity boundary layer BL of the working air flow along the inner wall surface of the main hole Hm2 downstream of the main hole Hm2. Is formed. In the velocity boundary layer BL, it is considered that the lateral vortex Vt is likely to occur near the central portion BLc of the thickness δ.
 一方、補助孔Hsから吹き出された援護気流の主流は、速度境界層BLの厚みδの中央部分BLcから所定の間隔LSがあいた状態で、主孔Hm2からの作動気流と並行して吹き出される。すなわち、第2ノズルCE2では、補助孔Hsから吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcから離れた状態で流れる。 On the other hand, the main flow of the support airflow blown out from the auxiliary hole Hs is blown out in parallel with the working airflow from the main hole Hm2 in a state where there is a predetermined interval LS from the central portion BLc of the thickness δ of the velocity boundary layer BL. . That is, in the second nozzle CE2, the mainstream AFs of the support airflow blown out from the auxiliary hole Hs flows away from the center portion BLc of the thickness δ of the velocity boundary layer BL.
 このような場合、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心から離れることになり、援護気流によって横渦Vtが崩壊され難く、速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ難いと考えられる。 In such a case, the main flow of the support airflow is separated from the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, and the transverse vortex Vt is not easily collapsed by the support airflow, and the development of the lateral vortex Vt generated in the velocity boundary layer BL is suppressed. It is considered that the suppression effect is difficult to obtain.
 本発明者らは、援護気流の主流と作動気流の速度境界層BLに生ずる横渦Vtの渦心とを近づけることで、速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られると考え、吹出部10に対して渦抑制構造を追加することとした。この渦抑制構造は、作動気流の速度境界層BLを作動気流の中心部分から離すための離間構造でもある。 The inventors of the present invention can suppress the development of the lateral vortex Vt generated in the velocity boundary layer BL by bringing the main flow of the support airflow close to the vortex of the lateral vortex Vt generated in the velocity boundary layer BL of the working airflow. In consideration, the vortex suppressing structure is added to the blowing portion 10. This vortex suppression structure is also a separation structure for separating the velocity boundary layer BL of the working airflow from the central portion of the working airflow.
 図3に示すように、本実施形態の吹出部10には、渦抑制構造として、ダクト部16の主流路18に対して、主孔14の開口面積Smよりも断面積Scが大きくなる拡大部180が設けられている。 As shown in FIG. 3, the blowing portion 10 of the present embodiment has an enlarged portion in which the cross-sectional area Sc is larger than the opening area Sm of the main hole 14 with respect to the main flow path 18 of the duct portion 16 as a vortex suppression structure. 180 is provided.
 主流路18を形成する仕切部26の内壁面181は、拡大部180のうち断面積が最も大きくなる部位から主孔14に向かって壁面形状が先細りとなる形状になっている。拡大部180は、主流路18を形成する仕切部26の内壁面181のうち、空気流れ上流側から下流側に向かって断面積が小さくなっている部位で構成されている。すなわち、拡大部180は、主孔14に対して連続的に連なるように、主孔14に近づくにつれて断面積が連続的に小さくなっている。拡大部180は、最大となる断面積Scと主孔14の開口面積Smとの比が、例えば、7対2となるように設定されている。拡大部180の断面積Scは、主流路18において最も流路断面積が大きくなる部位での断面積である。具体的には、拡大部180の断面積Scは、仕切部26の空気流れ上流側の端部における断面積である。また、主孔14の開口面積Smは、仕切部26の空気流れ下流側の端部における断面積である。 The inner wall surface 181 of the partition portion 26 that forms the main flow path 18 has a shape in which the wall surface shape tapers from the portion having the largest cross-sectional area in the enlarged portion 180 toward the main hole 14. The enlarged portion 180 is configured by a portion of the inner wall surface 181 of the partition portion 26 that forms the main flow path 18 that has a cross-sectional area that decreases from the air flow upstream side to the downstream side. In other words, the cross-sectional area of the enlarged portion 180 is continuously reduced as it approaches the main hole 14 so as to be continuously connected to the main hole 14. The enlarged portion 180 is set so that the ratio between the maximum cross-sectional area Sc and the opening area Sm of the main hole 14 is, for example, 7 to 2. The cross-sectional area Sc of the enlarged portion 180 is a cross-sectional area at a portion where the flow path cross-sectional area is the largest in the main flow path 18. Specifically, the cross-sectional area Sc of the enlarged portion 180 is a cross-sectional area at the end of the partition portion 26 on the upstream side of the air flow. The opening area Sm of the main hole 14 is a cross-sectional area at the end of the partitioning portion 26 on the downstream side of the air flow.
 このように構成される本実施形態の吹出部10では、図7に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。 As shown in FIG. 7, in the blowout portion 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct portion 16, the conditioned air is passed through the main channel 18 through the main hole 18. It flows toward 14.
 主流路18には、主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。主流路18を形成する内壁面181付近での気流の流速が大きくなる理由としては、主流路18を形成する内壁面181の曲率の作用によって壁面に沿う気流に遠心力が働くことが挙げられる。なお、縮流は、流路断面が縮小されることで気流の流路壁面付近の流速と主流の流速との差が小さくなる現象である。 The main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14. Thereby, in the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced. The reason why the flow velocity of the air flow near the inner wall surface 181 forming the main flow path 18 is increased is that centrifugal force acts on the air flow along the wall surface by the action of the curvature of the inner wall surface 181 forming the main flow path 18. The contracted flow is a phenomenon in which the difference between the flow velocity near the flow channel wall surface of the air flow and the flow velocity of the main flow is reduced by reducing the cross section of the flow channel.
 そして、主孔14および補助孔22から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、主流路18における縮流が生ずることで、第2比較例に比べて小さくなる。 Then, when the airflow is blown out from the main hole 14 and the auxiliary hole 22, the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14. The thickness δ of the velocity boundary layer BL is smaller than that of the second comparative example due to contraction of the main flow path 18.
 主孔14の出口下流に形成される作動気流の速度境界層BLの厚みδが小さいと、速度境界層BLの厚みδの中央部分BLcおよび補助孔22から吹き出された援護気流の主流とが主孔14の出口下流で近づく状態になる。すなわち、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。具体的には、援護気流の主流と速度境界層BLの厚みδの中央部分BLcとの間隔LSが、第2比較例に比べて小さくなる。 When the thickness δ of the velocity boundary layer BL of the working airflow formed downstream from the outlet of the main hole 14 is small, the main portion of the support airflow blown out from the center portion BLc of the thickness δ of the velocity boundary layer BL and the auxiliary hole 22 is mainly used. It will be in the state which approaches at the exit downstream of the hole 14. That is, in the blowout portion 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness δ of the velocity boundary layer BL. Specifically, the interval LS between the main flow of the support airflow and the central portion BLc of the thickness δ of the velocity boundary layer BL is smaller than that in the second comparative example.
 この場合、図8に示すように、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心の近くを流れることになり、援護気流によって横渦Vtが崩壊され易いので、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。 In this case, as shown in FIG. 8, the main flow of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, and the transverse vortex Vt is easily collapsed by the support airflow. The effect of suppressing the development of the lateral vortex Vt that occurs in the velocity boundary layer BL downstream of the outlet of the gas can be easily obtained.
 このように、本実施形態の空気吹出装置1では、主流路18に設けた拡大部180によって、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達を抑制可能となる。本実施形態では、主流路18に設けた拡大部180が渦抑制構造として機能する。より具体的には、拡大部180は、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。 As described above, in the air blowing device 1 according to the present embodiment, the development of the lateral vortex Vt generated in the velocity boundary layer BL downstream of the outlet of the main hole 14 can be suppressed by the enlarged portion 180 provided in the main flow path 18. In the present embodiment, the enlarged portion 180 provided in the main channel 18 functions as a vortex suppression structure. More specifically, the enlarged portion 180 functions as a layer reduction structure that reduces the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
 以上説明した空気吹出装置1では、主流路18に設けた拡大部180によって渦抑制構造が実現されている。これによると、主孔14の出口下流に形成される速度境界層BLの厚みδの中央部分BLcおよび補助孔22から吹き出される気流が主孔14の出口下流で近づく。すなわち、主流路18に拡大部180を設ける構造とすれば、主孔14付近で縮流が生ずることで主孔14の中心線CLm付近と内壁面141付近との間の流速差が小さくなり、主孔14の出口下流に形成される速度境界層BLの厚みδを小さくすることができる。 In the air blowing device 1 described above, a vortex suppression structure is realized by the enlarged portion 180 provided in the main flow path 18. According to this, the airflow blown out from the central part BLc of the thickness boundary δ of the velocity boundary layer BL formed at the outlet downstream of the main hole 14 and the auxiliary hole 22 approaches downstream of the outlet of the main hole 14. That is, if the main flow path 18 is provided with the enlarged portion 180, the flow velocity difference between the center line CLm of the main hole 14 and the vicinity of the inner wall surface 141 is reduced due to contraction in the vicinity of the main hole 14. The thickness δ of the velocity boundary layer BL formed downstream from the outlet of the main hole 14 can be reduced.
 これにより、補助孔22から吹き出される援護気流によって速度境界層BLでの横渦Vtの発達が充分に抑制される。この結果、主孔14から吹き出される作動気流への周囲からの空気の引き込みが抑えられ、主孔14から吹き出される作動気流の流速の減衰が少なくなるので、主孔14から吹き出される作動気流の到達距離が長くなる。 Thereby, the development of the transverse vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the support airflow blown out from the auxiliary hole 22. As a result, the drawing of air from the surroundings to the working airflow blown out from the main hole 14 is suppressed, and the flow velocity of the working airflow blown out from the main hole 14 is less attenuated. The reach of the air current becomes longer.
 特に、空調ユニットで温度調整された空調風を作動気流として主孔14から吹き出す場合、主孔14から吹き出される作動気流への周囲からの空気の引き込みが抑えられることで、空気の引き込み作用に起因する作動気流の温度変化を抑えることができる。すなわち、本実施形態の空気吹出装置1によれば、適温の気流を所望の箇所に到達させることができる。このことは、車室内におけるスポット的な空調を実現する上で特に有効である。なお、本実施形態では、主流路18に設けた拡大部180が作動気流の速度境界層BLを作動気流の中心部分から離すための離間構造として機能する。 In particular, when air-conditioned air whose temperature has been adjusted by the air-conditioning unit is blown out from the main hole 14 as a working airflow, air drawing from the surroundings is suppressed to the working airflow blown out from the main hole 14, so that air can be drawn in. The temperature change of the working airflow resulting from it can be suppressed. That is, according to the air blowing device 1 of the present embodiment, an airflow having an appropriate temperature can reach a desired location. This is particularly effective in realizing spot-like air conditioning in the passenger compartment. In the present embodiment, the enlarged portion 180 provided in the main flow path 18 functions as a separation structure for separating the velocity boundary layer BL of the working airflow from the central portion of the working airflow.
 (第2実施形態)
 次に、第2実施形態について、図9~図12を参照して説明する。本実施形態では、ダクト部16の内部に主流路18を流れる気流を縮流させる縮流フィン28が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the reduced flow fins 28 for reducing the airflow flowing through the main flow path 18 are provided inside the duct portion 16. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
 図9に示すように、本実施形態の吹出部10には、ダクト部16の内部に縮流フィン28が設けられている。この縮流フィン28は、図10に示すように、ダクト部16の内側に形成される主流路18が上下に分断されるように、主孔14の内壁面141の短辺の略中央部分において主孔14の内壁面141の長辺に沿って延びている。図示しないが、縮流フィン28は、その長手方向の両端部がダクト部16の内側に連結されている。縮流フィン28は、層縮小構造として主流路18を流れる気流を縮流させる構造物でもある。 As shown in FIG. 9, the blowing portion 10 of the present embodiment is provided with a contracted fin 28 inside the duct portion 16. As shown in FIG. 10, the contraction fin 28 is formed at a substantially central portion of the short side of the inner wall surface 141 of the main hole 14 so that the main flow path 18 formed inside the duct portion 16 is vertically divided. The main hole 14 extends along the long side of the inner wall surface 141. Although not shown, the contracted fins 28 are connected to the inside of the duct portion 16 at both ends in the longitudinal direction. The contraction fin 28 is also a structure that contracts the airflow flowing through the main flow path 18 as a layer contraction structure.
 図11に示すように、縮流フィン28は、主孔14から突き出ないようにダクト部16の内側の主流路18を形成する部位に位置付けられている。具体的には、縮流フィン28は、ダクト部16の内部のうち、主流路18の中心線CLmと直交する方向において、仕切部26の一部と重なり合う位置であって、主孔14の内壁面141と重なり合わない位置に配置されている。 As shown in FIG. 11, the contracted fins 28 are positioned at a portion where the main flow path 18 inside the duct portion 16 is formed so as not to protrude from the main hole 14. Specifically, the contracted fin 28 is a position that overlaps a part of the partition portion 26 in the direction perpendicular to the center line CLm of the main flow path 18 within the duct portion 16, and is inside the main hole 14. It is arranged at a position that does not overlap the wall surface 141.
 また、縮流フィン28は、その断面が空力特性に優れたティアドロップ形状になっている。すなわち、縮流フィン28は、空気流れ上流側の前縁部分が丸みを有する曲面状となり、空気流れ下流側の後縁部分が前縁部分に比べて鋭利な曲面状になっている。また、縮流フィン28は、その断面の厚みが後縁部分よりも前縁部分に近い位置で最大となっている。 Also, the contracted fin 28 has a teardrop shape with a cross section having excellent aerodynamic characteristics. In other words, the contracted fin 28 has a curved surface with a rounded front edge portion on the upstream side of the air flow, and a sharp curved surface on the downstream edge of the downstream side of the air flow as compared with the front edge portion. Further, the contraction fin 28 has a maximum cross-sectional thickness at a position closer to the front edge portion than to the rear edge portion.
 このように構成される本実施形態の吹出部10では、図12に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。 In the blowing unit 10 of the present embodiment configured as described above, as shown in FIG. 12, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows through the main channel 18 through the main hole 18. It flows toward 14.
 主流路18には、主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。加えて、主流路18は、縮流フィン28によって二股に分岐されることで、主孔14に至るまでに縮流が生ずる。 The main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14. In addition, the main flow path 18 is bifurcated by the reduced flow fins 28, so that a reduced flow is generated before reaching the main hole 14.
 前述の如く、縮流フィン28は、主孔14から突き出ないようにダクト部16の内側の主流路18を形成する部位に位置付けられている。このため、ダクト部16の内側には、縮流フィン28によって流路断面積が小さくなる上流区間A、上流区間Aよりも流路断面積が拡大する中間区間B、流路断面積が殆ど変化しない下流区間Cが形成される。 As described above, the contraction fin 28 is positioned at a portion where the main flow path 18 inside the duct portion 16 is formed so as not to protrude from the main hole 14. For this reason, on the inner side of the duct portion 16, the upstream section A in which the channel cross-sectional area is reduced by the contraction fin 28, the intermediate section B in which the channel cross-sectional area is larger than the upstream section A, and the channel cross-sectional area are almost changed. A downstream section C is formed.
 上流区間Aでは、縮流フィン28によって流路断面積が小さくなり、気流が圧縮されることで、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。すなわち、上流区間Aでは、縮流フィン28による縮流効果によって主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって小さくなる。 In the upstream section A, the flow cross-sectional area is reduced by the contracted fins 28 and the airflow is compressed, whereby the flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 that forms the main flow path 18. The difference is sufficiently small. That is, in the upstream section A, the thickness δ of the velocity boundary layer BL in the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced toward the downstream side due to the contraction effect by the contraction fins 28.
 一方、上流区間Aの下流側である中間区間Bおよび下流区間Cでは、流路断面積が小さくなっていないので、主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって大きくなる。 On the other hand, in the intermediate section B and the downstream section C, which are downstream of the upstream section A, the flow path cross-sectional area is not small, so the thickness δ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is downstream. Grows toward the side.
 具体的には、上流区間Aの下流側である中間区間Bでは、流路断面積が拡大しているので、主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって徐々に大きくなる。しかし、縮流フィン28は、空気流れ下流側の後縁側における断面の厚みの変化量が前縁側に比べて小さくなっている。このため、中間区間Bでの流路断面積の変化が上流区間Aの変化に比べて緩やかとなり、中間区間Bにおける速度境界層BLの厚みδの増加量は、上流区間Aにおける速度境界層BLの厚みδの減少量に比べて充分に小さくなる。
 また、中間区間Bの下流側である下流区間Cでは、流路断面積が一定であるため、主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって若干大きくなる。しかし、下流区間Cにおける速度境界層BLの厚みδの増加量は、上流区間Aにおける速度境界層BLの厚みδの減少量に比べて極めて小さくなる。
Specifically, in the intermediate section B, which is the downstream side of the upstream section A, the flow path cross-sectional area is enlarged, so that the thickness δ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is the downstream side. It gradually grows toward. However, in the contracted fin 28, the amount of change in the thickness of the cross section on the trailing edge side on the downstream side of the air flow is smaller than that on the leading edge side. For this reason, the change in the channel cross-sectional area in the intermediate section B becomes gentler than the change in the upstream section A, and the increase amount of the thickness δ of the speed boundary layer BL in the intermediate section B is the speed boundary layer BL in the upstream section A. This is sufficiently smaller than the reduction amount of the thickness δ.
Further, in the downstream section C, which is downstream of the intermediate section B, the flow path cross-sectional area is constant, so the thickness δ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is slightly lower toward the downstream side. growing. However, the increase amount of the thickness δ of the velocity boundary layer BL in the downstream section C is extremely smaller than the decrease amount of the thickness δ of the velocity boundary layer BL in the upstream section A.
 このように、縮流フィン28による上流区間Aにおける速度境界層BLの厚みδの減少量は、中間区間Bおよび下流区間Cにおける速度境界層BLの厚みδの増加量に比べて充分に大きくなる。 As described above, the amount of decrease in the thickness δ of the velocity boundary layer BL in the upstream section A by the contraction fin 28 is sufficiently larger than the increase in the thickness δ of the velocity boundary layer BL in the intermediate section B and the downstream section C. .
 これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。そして、主孔14および補助孔22から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、第1実施形態に比べて小さくなる。 Thereby, in the main flow path 18, the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 becomes sufficiently small. When the airflow is blown out from the main hole 14 and the auxiliary hole 22, the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14. The thickness δ of the speed boundary layer BL is smaller than that in the first embodiment.
 このため、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcにより近づいた状態で流れる。これにより、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、主流路18に設けた拡大部180および縮流フィン28が渦抑制構造として機能する。より具体的には、拡大部180および縮流フィン28それぞれが、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。 For this reason, in the blowing portion 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness δ of the velocity boundary layer BL. As a result, the main flow of the support airflow flows in the vicinity of the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL. The effect of suppressing the development of the lateral vortex Vt is easily obtained. In the present embodiment, the enlarged portion 180 and the contracted fin 28 provided in the main channel 18 function as a vortex suppressing structure. More specifically, each of the enlarged portion 180 and the contracted fin 28 functions as a layer reducing structure that reduces the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
 以上説明した本実施形態の空気吹出装置1は、主流路18に対して縮流フィン28が追加されているものの、その他の構成が第1実施形態と共通している。このため、本実施形態の空気吹出装置1は、第1実施形態と共通の構成から得られる作用効果を第1実施形態と同様に得ることができる。 The air blowing device 1 of the present embodiment described above has the same configuration as that of the first embodiment, although the contracted fins 28 are added to the main flow path 18. For this reason, the air blowing apparatus 1 of this embodiment can obtain the effect obtained from a structure common to 1st Embodiment similarly to 1st Embodiment.
 特に、本実施形態では、層縮小構造が拡大部180だけでなく縮流フィン28を含めた構造となっている。これによれば、主流路18の拡大による装置の体格増大を抑えつつ、縮流による速度境界層BLの厚みδを小さくすることが可能となる。このような構成は、車両等の移動体の如く設置スペースが大きく制限されている場合に好適である。なお、本実施形態では、主流路18に設けた拡大部180および縮流フィン28が作動気流の速度境界層BLを作動気流の中心部分から離すための離間構造として機能する。 In particular, in this embodiment, the layer contraction structure includes not only the enlarged portion 180 but also the contraction fins 28. According to this, it is possible to reduce the thickness δ of the velocity boundary layer BL due to contraction while suppressing an increase in the size of the apparatus due to the expansion of the main flow path 18. Such a configuration is suitable when the installation space is greatly limited like a moving body such as a vehicle. In the present embodiment, the enlarged portion 180 and the contracted fin 28 provided in the main flow path 18 function as a separation structure for separating the velocity boundary layer BL of the working airflow from the central portion of the working airflow.
 (第2実施形態の変形例)
 上述の第2実施形態では、縮流フィン28として、断面形状がティアドロップ形状となっているものを例示したが、これに限定されない。縮流フィン28は、例えば、断面形状が主流路18の気流に沿って延びる長円形状になっていてもよい。また、縮流フィン28としては、例えば、格子形状を有するものが採用されていてもよい。
(Modification of the second embodiment)
In the above-described second embodiment, the contracted fins 28 are exemplified with the cross-sectional shape being a teardrop shape, but are not limited thereto. For example, the contracted fins 28 may have an oval cross-sectional shape extending along the airflow of the main flow path 18. Moreover, as the contraction fin 28, what has a grid | lattice shape may be employ | adopted, for example.
 上述の第2実施形態では、主流路18に対して拡大部180が設けられている例について説明したが、これに限定されない。空気吹出装置1は、主流路18に対して縮流フィン28が配置されるだけで、主流路18に対して拡大部180が設けられていない構成になっていてもよい。この場合、縮流フィン28が、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。 In the second embodiment described above, the example in which the enlarged portion 180 is provided with respect to the main flow path 18 has been described, but the present invention is not limited to this. The air blowing device 1 may be configured such that only the contracted fins 28 are arranged with respect to the main flow path 18 and the enlarged portion 180 is not provided with respect to the main flow path 18. In this case, the contraction fins 28 function as a layer contraction structure that reduces the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
 (第3実施形態)
 次に、第3実施形態について、図13~図15を参照して説明する。本実施形態では、主流路18を形成する内壁面181に対して凹凸部30が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the uneven portion 30 is provided on the inner wall surface 181 that forms the main flow path 18. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
 図13に示すように、本実施形態の吹出部10には、主流路18を形成する内壁面181に対して、主流路18における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部30が設けられている。具体的には、凹凸部30は、ダクト部16の内部において主流路18および補助流路24を仕切る仕切部26の内側の略全域に形成されている。 As shown in FIG. 13, in the blowing portion 10 of the present embodiment, the concave portions and the convex portions are alternately arranged along the flow direction of the air flow in the main flow path 18 with respect to the inner wall surface 181 that forms the main flow path 18. An uneven portion 30 is provided. Specifically, the concavo-convex portion 30 is formed in substantially the entire area inside the partition portion 26 that partitions the main flow path 18 and the auxiliary flow path 24 inside the duct portion 16.
 図14に示すように、凹凸部30は、主流路18を形成する内壁面181に設けられた複数の溝301によって形成されている。複数の溝301は、主流路18における気流の流れ方向に沿って所定の間隔をあけて並ぶように形成されている。溝301は、円形または多角形の窪みで構成されている。なお、溝301は、例えば、主流路18における気流の流れ方向に交差して延びる断面がV字状のスリット溝で構成されていてもよい。 As shown in FIG. 14, the concavo-convex portion 30 is formed by a plurality of grooves 301 provided on the inner wall surface 181 that forms the main flow path 18. The plurality of grooves 301 are formed so as to be arranged at predetermined intervals along the airflow direction in the main flow path 18. The groove 301 is configured by a circular or polygonal depression. In addition, the groove | channel 301 may be comprised by the slit groove | channel where the cross section which cross | intersects the flow direction of the airflow in the main flow path 18 is V-shaped, for example.
 このように構成される本実施形態の吹出部10では、図15に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。 In the blowing unit 10 of the present embodiment configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16 as shown in FIG. It flows toward 14.
 主流路18には、主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。加えて、主流路18を形成する内壁面181には、主流路18における主流の流れ方向に凹部と凸部とが交互に並ぶ凹凸部30が形成されている。 The main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14. In addition, the inner wall surface 181 that forms the main flow path 18 is formed with a concavo-convex part 30 in which concave parts and convex parts are alternately arranged in the main flow direction in the main flow path 18.
 図14に示すように、凹凸部30では、気流が主流路18を形成する内壁面181付近を通過する際に、複数の溝301内に渦が生ずる。そして、凹凸部30の内側に生ずる渦がボールベアリングのような役割を果たすことで、主流路18を形成する内壁面181の摩擦係数が小さくなる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。 As shown in FIG. 14, in the concavo-convex portion 30, vortices are generated in the plurality of grooves 301 when the airflow passes near the inner wall surface 181 that forms the main flow path 18. And the vortex which arises inside the uneven | corrugated | grooved part 30 plays a role like a ball bearing, and the friction coefficient of the inner wall surface 181 which forms the main flow path 18 becomes small. Thereby, in the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced.
 そして、主孔14および補助孔22から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、凹凸部30による摩擦係数の低減効果によって、第1実施形態に比べて小さくなる。 Then, when the airflow is blown out from the main hole 14 and the auxiliary hole 22, the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14. The thickness δ of the speed boundary layer BL is smaller than that of the first embodiment due to the effect of reducing the friction coefficient by the uneven portion 30.
 このため、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。具体的には、援護気流の主流と速度境界層BLの厚みδの中央部分BLcとの間隔LSが、第1実施形態に比べて小さくなる。これにより、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、主流路18に設けた拡大部180および凹凸部30が渦抑制構造として機能する。より具体的には、拡大部180および凹凸部30それぞれが、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。 For this reason, in the blowing portion 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state approaching the central portion BLc of the thickness δ of the velocity boundary layer BL. Specifically, the distance LS between the main flow of the support airflow and the central portion BLc of the thickness δ of the velocity boundary layer BL is smaller than that in the first embodiment. As a result, the main flow of the support airflow flows in the vicinity of the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL. The effect of suppressing the development of the lateral vortex Vt is easily obtained. In the present embodiment, the enlarged portion 180 and the concavo-convex portion 30 provided in the main channel 18 function as a vortex suppressing structure. More specifically, each of the enlarged portion 180 and the concavo-convex portion 30 functions as a layer reduction structure that reduces the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
 以上説明した本実施形態の空気吹出装置1は、主流路18を形成する内壁面181に対して凹凸部30が追加されているものの、その他の構成が第1実施形態と共通している。このため、本実施形態の空気吹出装置1は、第1実施形態と共通の構成から得られる作用効果を第1実施形態と同様に得ることができる。 In the air blowing device 1 of the present embodiment described above, the uneven portion 30 is added to the inner wall surface 181 that forms the main flow path 18, but other configurations are common to the first embodiment. For this reason, the air blowing apparatus 1 of this embodiment can obtain the effect obtained from a structure common to 1st Embodiment similarly to 1st Embodiment.
 本実施形態では、層縮小構造が拡大部180だけでなく凹凸部30を含めた構造となっている。これによれば、拡大部180による縮流効果だけでなく、主流路18を形成する内壁面181の摩擦係数の低減効果によって、速度境界層BLの厚みδを充分に小さくすることが可能となる。 In the present embodiment, the layer reduction structure includes not only the enlarged portion 180 but also the uneven portion 30. Accordingly, the thickness δ of the velocity boundary layer BL can be made sufficiently small by the effect of reducing the friction coefficient of the inner wall surface 181 forming the main flow path 18 as well as the contraction effect by the enlarged portion 180. .
 特に、本実施形態では、凹凸部30が主流路18の内壁面181に設けられた複数の溝301によって形成されている。これによれば、凹凸部30を複数の突起で構成する場合に比べて、主流路18の大きさを確保可能となり、主流路18における圧力損失を抑制することができる。このことは、作動気流の到達距離の向上に大きく寄与する。なお、本実施形態では、主流路18に設けた拡大部180および凹凸部30が作動気流の速度境界層BLを作動気流の中心部分から離すための離間構造として機能する。 In particular, in this embodiment, the uneven portion 30 is formed by a plurality of grooves 301 provided on the inner wall surface 181 of the main flow path 18. According to this, compared with the case where the uneven | corrugated | grooved part 30 is comprised with a some protrusion, the magnitude | size of the main flow path 18 can be ensured and the pressure loss in the main flow path 18 can be suppressed. This greatly contributes to the improvement of the reach of the working airflow. In the present embodiment, the enlarged portion 180 and the concavo-convex portion 30 provided in the main flow path 18 function as a separation structure for separating the velocity boundary layer BL of the working airflow from the central portion of the working airflow.
 (第3実施形態の変形例)
 上述の第3実施形態では、凹凸部30が、複数の溝301によって形成されるものを例示したが、これに限定されない。凹凸部30は、例えば、複数の突起によって形成されていてもよい。凹凸部30が複数の突起によって形成される場合、気流が主流路18を形成する内壁面181付近を通過する際に複数の突起の隙間に渦が生ずる。この渦がボールベアリングのような役割を果たすため、本変形例によって上述の第3実施形態と同様の効果を得ることができる。
(Modification of the third embodiment)
In the third embodiment described above, the concavo-convex portion 30 is illustrated as being formed by the plurality of grooves 301, but is not limited thereto. The uneven part 30 may be formed by a plurality of protrusions, for example. When the concavo-convex portion 30 is formed by a plurality of protrusions, vortices are generated in the gaps between the plurality of protrusions when the airflow passes near the inner wall surface 181 forming the main flow path 18. Since this vortex plays a role like a ball bearing, the effect similar to the above-mentioned third embodiment can be obtained by this modification.
 上述の第3実施形態では、凹凸部30が、ダクト部16の内部において主流路18および補助流路24を仕切る仕切部26の内側の略全域に形成されているものを例示したが、これに限定されない。凹凸部30は、仕切部26の内側の一部に形成されていてもよい。 In the third embodiment described above, the concavo-convex portion 30 is illustrated as being formed in substantially the entire area inside the partition portion 26 that partitions the main flow path 18 and the auxiliary flow path 24 inside the duct portion 16. It is not limited. The uneven portion 30 may be formed on a part of the inside of the partition portion 26.
 上述の第3実施形態では、主流路18に対して拡大部180が設けられている例について説明したが、これに限定されない。空気吹出装置1は、主流路18に対して凹凸部30が配置されるだけで、主流路18に対して拡大部180が設けられていない構成になっていてもよい。この場合、凹凸部30が、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。 In the above-described third embodiment, the example in which the enlarged portion 180 is provided with respect to the main flow path 18 has been described, but the present invention is not limited to this. The air blowing device 1 may have a configuration in which the concavo-convex portion 30 is only disposed with respect to the main flow path 18 and the enlarged portion 180 is not provided with respect to the main flow path 18. In this case, the concavo-convex portion 30 functions as a layer reduction structure that reduces the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
 また、上述の第3実施形態では、層縮小構造として拡大部180および凹凸部30を備える構造を例示したが、これに限定されない。層縮小構造は、例えば、拡大部180、縮流フィン28、および凹凸部30を備える構造や、縮流フィン28および凹凸部30を備える構造になっていてもよい。 In the third embodiment described above, the structure including the enlarged portion 180 and the concavo-convex portion 30 is exemplified as the layer reduction structure, but the present invention is not limited to this. The layer contraction structure may be, for example, a structure including the enlarged portion 180, the contracted fin 28 and the uneven portion 30, or a structure including the contracted fin 28 and the uneven portion 30.
 (第4実施形態)
 次に、第4実施形態について、図16~図18を参照して説明する。本実施形態では、主孔14がラッパ状に拡開されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the main hole 14 is expanded in a trumpet shape. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
 図16に示すように、本実施形態の吹出部10は、主孔14がラッパ状に拡開されている。具体的には、主孔14の内壁面141には、主孔14の内壁面141に沿って延びる接線TLmが補助孔22の出口下流で補助孔22の中心線CLsと交差するように補助孔22の中心線CLsに対して傾斜する主傾斜構造32が設けられている。換言すれば、主孔14の内壁面141は、その全周において、内壁面141に沿って延びる接線TLmが主孔14の中心線CLmと交差するように傾斜している。具体的には、接線TLmは、主孔14の内壁面141の下流端において当該内壁面141に沿って延びる接線である。 As shown in FIG. 16, the blowout portion 10 of the present embodiment has the main hole 14 expanded in a trumpet shape. Specifically, the auxiliary hole is formed on the inner wall surface 141 of the main hole 14 such that a tangent line TLm extending along the inner wall surface 141 of the main hole 14 intersects the center line CLs of the auxiliary hole 22 downstream of the auxiliary hole 22. A main inclined structure 32 that is inclined with respect to the center line CLs of 22 is provided. In other words, the inner wall surface 141 of the main hole 14 is inclined so that the tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14 on the entire circumference. Specifically, the tangent line TLm is a tangent line that extends along the inner wall surface 141 at the downstream end of the inner wall surface 141 of the main hole 14.
 ここで、主孔14の出口下流に形成される速度境界層BLでは、主孔14の直後ではなく、主孔14から離れた位置で横渦Vtが生じ始める傾向がある。例えば、横渦Vtは、主孔14の短径の2倍以上離れた位置で生じ始めることがある。このため、主孔14の内壁面141は、接線TLmと中心線CLsとのなす角度θmが鋭角となる範囲内(例えば、1°~30°となる範囲内)に設定されることが望ましい。 Here, in the velocity boundary layer BL formed downstream from the outlet of the main hole 14, there is a tendency that the lateral vortex Vt starts to occur not at the position immediately after the main hole 14 but at a position away from the main hole 14. For example, the horizontal vortex Vt may begin to occur at a position separated by more than twice the minor axis of the main hole 14. Therefore, the inner wall surface 141 of the main hole 14 is desirably set within a range where the angle θm formed between the tangent line TLm and the center line CLs is an acute angle (for example, within a range of 1 ° to 30 °).
 また、本実施形態の吹出部10は、主流路18の断面積Scが、主孔14の開口面積Smよりも小さくなっている。すなわち、本実施形態の吹出部10には、第1実施形態の拡大部180に相当する構成が設けられていない。なお、主流路18の断面積Scは、仕切部26の上流側の端部における断面積である。 Further, in the blowing part 10 of the present embodiment, the cross-sectional area Sc of the main flow path 18 is smaller than the opening area Sm of the main hole 14. That is, the blowing unit 10 of the present embodiment is not provided with a configuration corresponding to the expansion unit 180 of the first embodiment. Note that the cross-sectional area Sc of the main flow path 18 is a cross-sectional area at an end portion on the upstream side of the partition portion 26.
 このように構成される本実施形態の吹出部10では、図17に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。そして、主流路18に流入した気流は、主孔14から吹き出される。この際、主孔14がラッパ状に拡開されているので、主孔14の出口下流には、作動気流の速度境界層BLが主孔14の中心線CLmから離れるように形成される。すなわち、主孔14の出口下流では、作動気流の速度境界層BLの中央部分BLcが、補助孔22から吹き出される援護気流の主流に近づく状態となる。 In the blowing unit 10 of the present embodiment configured as described above, as shown in FIG. 17, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows through the main channel 18 through the main hole 18. It flows toward 14. The airflow flowing into the main flow path 18 is blown out from the main hole 14. At this time, since the main hole 14 is expanded in a trumpet shape, a velocity boundary layer BL of the working airflow is formed downstream from the center line CLm of the main hole 14 at the outlet downstream of the main hole 14. That is, in the downstream of the outlet of the main hole 14, the central portion BLc of the velocity boundary layer BL of the working airflow approaches the mainstream of the assisting airflow blown out from the auxiliary hole 22.
 これにより、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。すなわち、図18に示すように、援護気流の主流AFsが速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、主孔14の内壁面141に設けられた主傾斜構造32が、渦抑制構造として機能する。 Thereby, in the blowing unit 10 of the present embodiment, the mainstream AFs of the support airflow blown out from the auxiliary hole 22 flows in a state of approaching the central portion BLc of the thickness δ of the velocity boundary layer BL. That is, as shown in FIG. 18, the main flow AFs of the support airflow flows near the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL. The effect of suppressing the development of the lateral vortex Vt generated in the velocity boundary layer BL is easily obtained. In the present embodiment, the main inclined structure 32 provided on the inner wall surface 141 of the main hole 14 functions as a vortex suppressing structure.
 以上説明した本実施形態の空気吹出装置1は、主孔14を形成する内壁面141に対して主傾斜構造32が設けられている。これによると、主孔14の内壁面141付近の流速分布が主孔14の出口下流にて補助孔22からの援護気流に拡がることで、主孔14の出口下流に形成される速度境界層BLの厚みδの中央部分BLcを補助孔22から吹き出される気流に近づけることができる。このため、補助孔22から吹き出される気流によって速度境界層BLでの横渦Vtの発達が充分に抑制される。 In the air blowing device 1 of the present embodiment described above, the main inclined structure 32 is provided on the inner wall surface 141 that forms the main hole 14. According to this, the velocity boundary layer BL formed on the downstream side of the main hole 14 by spreading the flow velocity distribution in the vicinity of the inner wall surface 141 of the main hole 14 to the support airflow from the auxiliary hole 22 on the downstream side of the main hole 14. The central portion BLc of the thickness δ can be made closer to the air flow blown out from the auxiliary hole 22. For this reason, the development of the lateral vortex Vt in the velocity boundary layer BL is sufficiently suppressed by the air flow blown out from the auxiliary hole 22.
 このように、本実施形態の空気吹出装置1によっても、主孔14から吹き出される気流への周囲からの空気の引き込みが抑えられて、主孔14から吹き出される気流の流速の減衰が少なくなるので、主孔14から吹き出される作動気流の到達距離が長くなる。なお、本実施形態では、主傾斜構造32が作動気流の速度境界層BLを作動気流の中心部分から離すための離間構造として機能する。 As described above, also by the air blowing device 1 of the present embodiment, the drawing of air from the surroundings into the airflow blown out from the main hole 14 is suppressed, and the flow velocity of the airflow blown out from the main hole 14 is less attenuated. Therefore, the reach of the working air current blown out from the main hole 14 is increased. In the present embodiment, the main inclined structure 32 functions as a separation structure for separating the velocity boundary layer BL of the working airflow from the central portion of the working airflow.
 (第4実施形態の変形例)
 上述の第4実施形態では、主孔14の内壁面141が、その全周において、内壁面141に沿って延びる接線TLmが主孔14の中心線CLmと交差するように傾斜しているものを例示したが、これに限定されない。空気吹出装置1は、例えば、主孔14の内壁面141の一部が、内壁面141に沿って延びる接線TLmが主孔14の中心線CLmと交差するように傾斜した構造になっていてもよい。
(Modification of the fourth embodiment)
In the above-described fourth embodiment, the inner wall surface 141 of the main hole 14 is inclined so that the tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14 on the entire circumference. Although illustrated, it is not limited to this. For example, the air blowing device 1 has a structure in which a part of the inner wall surface 141 of the main hole 14 is inclined so that a tangent line TLm extending along the inner wall surface 141 intersects the center line CLm of the main hole 14. Good.
 上述の第4実施形態では、主孔14の内壁面141が直線状に延びているものを例示したが、これに限定されない。主孔14の内壁面141は、曲線状に湾曲した状態で延びていてもよい。この場合、接線TLmは、主孔14の内壁面141の下流端における接線となる。 In the fourth embodiment described above, the inner wall surface 141 of the main hole 14 is illustrated as extending linearly, but is not limited thereto. The inner wall surface 141 of the main hole 14 may extend in a curved shape. In this case, the tangent TLm is a tangent at the downstream end of the inner wall surface 141 of the main hole 14.
 上述の第4実施形態では、主孔14に対して主傾斜構造32が適用され、第1~第3実施形態で説明した拡大部180、縮流フィン28、凹凸部30が適用されていないものを例示したが、これに限定されない。空気吹出装置1は、例えば、主孔14に対して主傾斜構造32が適用された吹出部10において、第1~第3実施形態で説明した拡大部180、縮流フィン28、凹凸部30の少なくとも1つの層縮小構造が適用されていてもよい。 In the above-described fourth embodiment, the main inclined structure 32 is applied to the main hole 14, and the enlarged portion 180, the contracted fin 28, and the uneven portion 30 described in the first to third embodiments are not applied. However, the present invention is not limited to this. For example, in the blowout unit 10 in which the main inclined structure 32 is applied to the main hole 14, the air blowing device 1 includes the expansion unit 180, the contraction fin 28, and the concavo-convex unit 30 described in the first to third embodiments. At least one layer reduction structure may be applied.
 (第5実施形態)
 次に、第5実施形態について、図19、図20を参照して説明する。本実施形態では、孔形成部12に補助孔22が設けられていない点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the auxiliary hole 22 is not provided in the hole forming portion 12. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
 図19に示すように、空気吹出装置1は、気流を吹き出す吹出部10を備える。吹出部10は、作動気流となる気流を吹き出す主孔14を形成する孔形成部12と、主孔14から吹き出す気流を通過させる主流路18を形成するダクト部16と、ダクト部16の外側に設けられたフランジ部20を含んで構成されている。 As shown in FIG. 19, the air blowing device 1 includes a blowing unit 10 that blows out an air flow. The blowout unit 10 includes a hole forming unit 12 that forms a main hole 14 that blows out an airflow that is a working airflow, a duct unit 16 that forms a main flow path 18 that allows the airflow blown out from the main hole 14, and an outside of the duct unit 16. It is configured including the provided flange portion 20.
 孔形成部12には、第1実施形態と同様に、長円形状の主孔14が単一の孔として開口している、また、孔形成部12には、第1実施形態と異なり複数の補助孔22が形成されていない。 Similar to the first embodiment, an oval main hole 14 is opened as a single hole in the hole forming portion 12, and the hole forming portion 12 includes a plurality of holes unlike the first embodiment. The auxiliary hole 22 is not formed.
 ダクト部16は、筒状の部材である。ダクト部16の内部には、その中央部分に主孔14から吹き出される作動気流を通過させる主流路18が形成されている。具体的には、ダクト部16は、主流路18の断面積が略一定となる扁平状の筒状部材で構成されている。本実施形態のダクト部16は、主流路18の断面積と主孔14の開口面積とが同程度の大きさになっている。 The duct part 16 is a cylindrical member. Inside the duct portion 16, a main flow path 18 is formed in the central portion for allowing the working air current blown from the main hole 14 to pass therethrough. Specifically, the duct portion 16 is configured by a flat cylindrical member in which the cross-sectional area of the main flow path 18 is substantially constant. In the duct portion 16 of the present embodiment, the cross-sectional area of the main flow path 18 and the opening area of the main hole 14 are approximately the same size.
 本発明者らは、作動気流の到達距離を長くする上で、作動気流の中心部分と速度境界層BLとが離れていることが有効であると考え、吹出部10に対して作動気流の速度境界層BLを作動気流の中心部分から離すための離間構造50を追加することとした。 The present inventors consider that it is effective that the central portion of the working airflow is separated from the velocity boundary layer BL in order to increase the reach of the working airflow, and the speed of the working airflow with respect to the blowing portion 10 The separation structure 50 for separating the boundary layer BL from the central portion of the working airflow is added.
 吹出部10には、離間構造50として、主流路18を流れる気流を縮流させる構造物51が設けられている。図示しないが構造物51は、主流路18が上下に分断されるように、主孔14の内壁面141の短辺の略中央部分において主孔14の内壁面141の長辺に沿って延びている。なお、構造物51は、その長手方向の両端部がダクト部16の内側に連結されている。 The blow-out unit 10 is provided with a structure 51 that contracts the airflow flowing through the main flow path 18 as the separation structure 50. Although not shown, the structure 51 extends along the long side of the inner wall surface 141 of the main hole 14 at a substantially central portion of the short side of the inner wall surface 141 of the main hole 14 so that the main flow path 18 is divided vertically. Yes. The structure 51 is connected to the inside of the duct portion 16 at both ends in the longitudinal direction.
 構造物51は、主流路18を流れる気流の流れ方向に沿った断面が流線型形状となっている。具体的には、構造物51は、空力特性に優れたティアドロップ形状になっている。すなわち、構造物51は、空気流れ上流側の上流側端部511が丸みを有する曲面状となり、空気流れ下流側に位置する下流側端部512が上流側端部511に比べて鋭利な曲面状になっている。なお、構造物51は、上流側端部511が前縁部分を構成し、下流側端部512が後縁部分を構成する。 The structure 51 has a streamlined cross section along the flow direction of the airflow flowing through the main flow path 18. Specifically, the structure 51 has a teardrop shape with excellent aerodynamic characteristics. That is, in the structure 51, the upstream end 511 on the upstream side of the air flow has a rounded curved shape, and the downstream end 512 located on the downstream side of the air flow has a sharp curved shape as compared with the upstream end 511. It has become. In the structure 51, the upstream end 511 constitutes a front edge portion, and the downstream end 512 constitutes a rear edge portion.
 また、構造物51は、その断面の厚みが後縁部分よりも前縁部分に近い位置で最大となっている。構造物51は、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδが小さくなるように断面の厚みが設定されている。本実施形態の構造物51は、主孔14から吹き出す作動気流をトップハット型の風速分布とするために最適な形状になっている。すなわち、構造物51は、主流路18の下流側の流路断面積が上流側に比べて10分の1程度となるように構成されている。具体的には、構造物51は、主孔14の内壁面から構造物51までの最短距離Lf2と主孔14の内壁面141から主孔14の中心線までの距離Lf1とが1:3.3以上となるように断面の厚みが設定されていることが望ましい。なお、本実施形態では、構造物51が主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造を構成する。 Further, the thickness of the cross section of the structure 51 is maximum at a position closer to the front edge portion than to the rear edge portion. The thickness of the cross section of the structure 51 is set so that the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14 is small. The structure 51 of the present embodiment has an optimal shape in order to make the working airflow blown from the main hole 14 have a top-hat type wind speed distribution. That is, the structure 51 is configured such that the flow channel cross-sectional area on the downstream side of the main flow channel 18 is about 1/10 of that on the upstream side. Specifically, in the structure 51, the shortest distance Lf2 from the inner wall surface of the main hole 14 to the structure 51 and the distance Lf1 from the inner wall surface 141 of the main hole 14 to the center line of the main hole 14 are 1: 3. It is desirable that the thickness of the cross section is set to be 3 or more. In the present embodiment, the structure 51 forms a layer reduction structure that reduces the thickness δ of the velocity boundary layer BL formed along the inner wall surface 141 of the main hole 14.
 加えて、構造物51は、主孔14から突き出ないようにダクト部16の内側の主流路18を形成する部位に位置付けられている。具体的には、構造物51は、気流の流れ方向の下流側に位置する下流側端部512が主孔14の内側に位置付けられている。 In addition, the structure 51 is positioned at a site that forms the main flow path 18 inside the duct portion 16 so as not to protrude from the main hole 14. Specifically, in the structure 51, the downstream end 512 located on the downstream side in the airflow direction is positioned inside the main hole 14.
 このように構成される吹出部10では、図20に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。 In the blowing unit 10 configured as described above, as shown in FIG. 20, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air is directed toward the main hole 14 via the main flow path 18. Flowing.
 主流路18を流れる気流は、構造物51によって二股に分岐されることで、主孔14に至るまでに縮流が生ずる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。 The airflow flowing through the main flow path 18 is bifurcated by the structure 51, so that contraction occurs until the main hole 14 is reached. Thereby, in the main flow path 18, the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 becomes sufficiently small.
 前述の如く、構造物51は、主孔14から突き出ないようにダクト部16の内側に位置付けられている。このため、ダクト部16の内側には、構造物51によって流路断面積が小さくなる上流区間A、上流区間Aよりも流路断面積が拡大する中間区間B、流路断面積が殆ど変化しない下流区間Cが形成される。 As described above, the structure 51 is positioned inside the duct portion 16 so as not to protrude from the main hole 14. For this reason, inside the duct portion 16, the upstream section A in which the channel cross-sectional area is reduced by the structure 51, the intermediate section B in which the channel cross-sectional area is larger than the upstream section A, and the channel cross-sectional area hardly change. A downstream section C is formed.
 上流区間Aでは、構造物51によって流路断面積が小さくなり、気流が圧縮されることで、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。すなわち、上流区間Aでは、構造物51による縮流効果によって主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって小さくなる。 In the upstream section A, the flow path difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 that forms the main flow path 18 is obtained by reducing the cross-sectional area of the flow path by the structure 51 and compressing the airflow. Is sufficiently small. That is, in the upstream section A, the thickness δ of the velocity boundary layer BL in the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced toward the downstream side due to the contraction effect by the structure 51.
 一方、上流区間Aの下流側である中間区間Bおよび下流区間Cでは、流路断面積が小さくなっていないので、主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって大きくなる。 On the other hand, in the intermediate section B and the downstream section C, which are downstream of the upstream section A, the flow path cross-sectional area is not small, so the thickness δ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 is downstream. Grows toward the side.
 具体的には、中間区間Bでは、流路断面積が拡大しているので、主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって徐々に大きくなる。しかし、構造物51は、空気流れ下流側の後縁側における断面の厚みの変化量が前縁側に比べて小さくなっている。このため、中間区間Bでの流路断面積の変化が上流区間Aの変化に比べて緩やかとなり、中間区間Bにおける速度境界層BLの厚みδの増加量は、上流区間Aにおける速度境界層BLの厚みδの減少量に比べて充分に小さくなる。
 また、下流区間Cでは、流路断面積が一定であるため、主流路18を形成する内壁面181付近の速度境界層BLの厚みδが下流側に向かって若干大きくなる。しかし、下流区間Cにおける速度境界層BLの厚みδの増加量は、上流区間Aにおける速度境界層BLの厚みδの減少量に比べて極めて小さくなる。
Specifically, in the intermediate section B, the flow path cross-sectional area is enlarged, so that the thickness δ of the velocity boundary layer BL near the inner wall surface 181 forming the main flow path 18 gradually increases toward the downstream side. However, in the structure 51, the amount of change in the thickness of the cross section on the rear edge side on the downstream side of the air flow is smaller than that on the front edge side. For this reason, the change in the channel cross-sectional area in the intermediate section B becomes gentler than the change in the upstream section A, and the increase amount of the thickness δ of the speed boundary layer BL in the intermediate section B is the speed boundary layer BL in the upstream section A. This is sufficiently smaller than the reduction amount of the thickness δ.
In the downstream section C, since the cross-sectional area of the flow path is constant, the thickness δ of the velocity boundary layer BL in the vicinity of the inner wall surface 181 that forms the main flow path 18 is slightly increased toward the downstream side. However, the increase amount of the thickness δ of the velocity boundary layer BL in the downstream section C is extremely smaller than the decrease amount of the thickness δ of the velocity boundary layer BL in the upstream section A.
 このように、構造物51による上流区間Aにおける速度境界層BLの厚みδの減少量は、中間区間Bおよび下流区間Cにおける速度境界層BLの厚みδの増加量に比べて充分に大きくなる。 Thus, the amount of decrease in the thickness δ of the velocity boundary layer BL in the upstream section A by the structure 51 is sufficiently larger than the increase in the thickness δ of the velocity boundary layer BL in the intermediate section B and the downstream section C.
 主孔14から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、主流路18における縮流によって小さくなる。 When the airflow is blown out from the main hole 14, the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14. The thickness δ of the velocity boundary layer BL is reduced by the contracted flow in the main flow path 18.
 主孔14の出口下流に形成される作動気流の速度境界層BLの厚みδが小さいと、速度境界層BLの厚みδの中央部分BLcが、主孔14の出口下流で主孔14の中心線CLmから離れた状態になる。具体的には、作動気流の速度境界層BLの厚みδの中央部分BLcと主孔14の中心線CLmとの間隔LSが大きくなる。この場合、作動気流の主流が速度境界層BLに生ずる横渦Vtの渦心から離れることで、作動気流の中心部分における流速の減衰が少なくなり、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。 If the thickness δ of the velocity boundary layer BL of the working airflow formed downstream of the main hole 14 is small, the central portion BLc of the thickness δ of the velocity boundary layer BL is the center line of the main hole 14 downstream of the main hole 14 outlet. It will be in the state away from CLm. Specifically, the interval LS between the central portion BLc of the thickness δ of the velocity boundary layer BL of the working airflow and the center line CLm of the main hole 14 is increased. In this case, since the main flow of the working air flow is separated from the vortex center of the transverse vortex Vt generated in the velocity boundary layer BL, the attenuation of the flow velocity in the central portion of the working air flow is reduced, and the reach of the working air flow blown out from the main hole 14 It can be made longer.
 以上説明した空気吹出装置1は、主孔14の出口下流において作動気流の速度境界層BLの厚みδの中央部分BLcを主孔14の中心線CLmから離すための離間構造50が設けられている。これによれば、作動気流の中心部分における流速の減衰が少なくなり、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。 The air blowing device 1 described above is provided with the separation structure 50 for separating the central portion BLc of the thickness δ of the velocity boundary layer BL of the working air flow from the center line CLm of the main hole 14 downstream of the outlet of the main hole 14. . According to this, the attenuation of the flow velocity at the central portion of the working airflow is reduced, and the reach distance of the working airflow blown out from the main hole 14 can be increased.
 特に、本実施形態の空気吹出装置1は、離間構造50として主流路18に対して構造物51が設けられている。このように、主流路18に対して構造物51を設ける構造とすれば、主流路18に生ずる縮流によって、主孔14の中心線CLm付近と内壁面付近との間の流速差が小さくなり、速度境界層BLの厚みδを小さくすることができる。 Particularly, in the air blowing device 1 of the present embodiment, a structure 51 is provided as a separation structure 50 with respect to the main flow path 18. As described above, when the structure 51 is provided for the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface is reduced due to the contracted flow generated in the main flow path 18. The thickness δ of the velocity boundary layer BL can be reduced.
 このように、速度境界層BLの厚みδを小さくすれば、主孔14の出口下流に形成される作動気流がトップハット型の風速分布になり易くなる。トップハット型の風速分布では、主孔14の出口下流に形成される作動気流の速度境界層BLの厚みδの中央部分を主孔14の中心線CLmから大きく離れることになる。このため、作動気流の中心部分における流速の減衰を充分に抑えて、作動気流の到達距離を長くすることが可能となる。 Thus, if the thickness δ of the velocity boundary layer BL is reduced, the working airflow formed downstream from the outlet of the main hole 14 tends to have a top-hat type wind speed distribution. In the top-hat type wind speed distribution, the central portion of the thickness δ of the velocity boundary layer BL of the working airflow formed downstream of the outlet of the main hole 14 is greatly separated from the center line CLm of the main hole 14. For this reason, it is possible to sufficiently suppress the attenuation of the flow velocity at the central portion of the working air flow and to increase the reach distance of the working air current.
 また、構造物51は、主流路18を流れる気流の流れ方向に沿った断面形状が流線型形状となっている。このように、構造物51を流線型形状とすれば、構造物51の配置に伴う構造物51表面での気流の剥離が抑制され乱れを充分に抑制することができる。このことは、作動気流の到達距離を長くする上で有効である。 The structure 51 has a streamlined cross-sectional shape along the flow direction of the airflow flowing through the main flow path 18. As described above, when the structure 51 has a streamline shape, separation of the air flow on the surface of the structure 51 accompanying the arrangement of the structure 51 is suppressed, and turbulence can be sufficiently suppressed. This is effective in increasing the reach of the working airflow.
 さらに、構造物51は、主流路18を流れる気流の流れ方向の下流側に位置する下流側端部512が、主孔14から外部に突き出ないように主流路18を形成する内壁面181に配置されている。これによると、主孔14から吹き出された気流が構造物51によって乱れないので、作動気流の中心部分における流速の減衰を充分に抑えることができる。 Further, the structure 51 is disposed on the inner wall surface 181 that forms the main flow path 18 so that the downstream end portion 512 located on the downstream side in the flow direction of the airflow flowing through the main flow path 18 does not protrude from the main hole 14. Has been. According to this, since the airflow blown out from the main hole 14 is not disturbed by the structure 51, the attenuation of the flow velocity at the central portion of the working airflow can be sufficiently suppressed.
 (第5実施形態の変形例)
 上述の第5実施形態では、構造物51として、断面形状が流線型形状となっているものを例示したが、これに限定されない。構造物51は、例えば、断面形状が主流路18の気流に沿って延びる長円形状になっていてもよい。また、構造物51としては、例えば、格子形状を有するものが採用されていてもよい。
(Modification of the fifth embodiment)
In the above-described fifth embodiment, the structure 51 is exemplified as one having a streamlined cross-sectional shape, but is not limited to this. The structure 51 may have, for example, an oval shape whose cross-sectional shape extends along the airflow in the main flow path 18. Moreover, as the structure 51, what has a grid | lattice shape may be employ | adopted, for example.
 上述の第5実施形態では、構造物51が主孔14から外部に突き出ないように主流路18を形成する内壁面181に配置されている例について説明したが、これに限定されない。構造物51は、例えば、下流側端部512が主孔14から外部に突き出るように主流路18に配置されていてもよい。 In the above-described fifth embodiment, the example in which the structure 51 is disposed on the inner wall surface 181 that forms the main flow path 18 so as not to protrude outside from the main hole 14 has been described, but the present invention is not limited thereto. The structure 51 may be arrange | positioned at the main flow path 18 so that the downstream edge part 512 may protrude outside from the main hole 14, for example.
 (第6実施形態)
 次に、第6実施形態について、図21、図22を参照して説明する。本実施形態では、主流路18を形成する内壁面181に対して凹凸部52が設けられている点が第5実施形態と相違している。本実施形態では、第5実施形態と異なる部分について主に説明し、第5実施形態と同様の部分について説明を省略することがある。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIGS. The present embodiment is different from the fifth embodiment in that the uneven portion 52 is provided on the inner wall surface 181 that forms the main flow path 18. In the present embodiment, portions that are different from the fifth embodiment will be mainly described, and description of portions that are the same as those of the fifth embodiment may be omitted.
 図21に示すように、本実施形態の吹出部10には、主流路18を形成する内壁面181に対して、主流路18における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部52が設けられている。具体的には、凹凸部52は、ダクト部16の内部において主流路18を形成する内壁面181の略全域に形成されている。なお、本実施形態の凹凸部52は、第3実施形態で説明した凹凸部30と同様の形成されている。 As shown in FIG. 21, in the blowing portion 10 of the present embodiment, concave portions and convex portions are alternately arranged along the flow direction of the air flow in the main flow path 18 with respect to the inner wall surface 181 that forms the main flow path 18. An uneven portion 52 is provided. Specifically, the concavo-convex portion 52 is formed in substantially the entire area of the inner wall surface 181 that forms the main flow path 18 inside the duct portion 16. In addition, the uneven | corrugated | grooved part 52 of this embodiment is formed similarly to the uneven | corrugated | grooved part 30 demonstrated in 3rd Embodiment.
 このように構成される吹出部10では、図22に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。 In the blowing unit 10 configured as described above, as shown in FIG. 22, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air is directed toward the main hole 14 via the main flow path 18. Flowing.
 主流路18を形成するダクト部16の内壁面181には、主流路18における主流の流れ方向に凹部と凸部とが交互に並ぶ凹凸部52が形成されている。凹凸部52では、気流が主流路18を形成する内壁面181付近を通過する際に、複数の溝内に渦が生ずる。そして、凹凸部52の内側に生ずる渦がボールベアリングのような役割を果たすことで、主流路18を形成する内壁面181の摩擦係数が小さくなる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。 On the inner wall surface 181 of the duct portion 16 that forms the main flow path 18, a concavo-convex portion 52 in which concave and convex portions are alternately arranged in the main flow direction in the main flow path 18 is formed. In the concavo-convex portion 52, vortices are generated in the plurality of grooves when the airflow passes near the inner wall surface 181 forming the main flow path 18. And the vortex which arises inside the uneven | corrugated | grooved part 52 plays a role like a ball bearing, and the friction coefficient of the inner wall surface 181 which forms the main flow path 18 becomes small. Thereby, in the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced.
 そして、主孔14および補助孔22から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、凹凸部52による摩擦係数の低減効果によって小さくなる。すなわち、作動気流の速度境界層BLの厚みδの中央部分BLcが、主孔14の出口下流で主孔14の中心線CLmから離れた状態になる。具体的には、作動気流の速度境界層BLの厚みδの中央部分BLcと主孔14の中心線CLmとの間隔LSが大きくなる。なお、本実施形態では、主流路18に設けた凹凸部52が離間構造50および層縮小構造として機能する。 Then, when the airflow is blown out from the main hole 14 and the auxiliary hole 22, the velocity boundary layer BL of the working airflow is formed along the inner wall surface 141 of the main hole 14 downstream of the outlet of the main hole 14. The thickness δ of the velocity boundary layer BL is reduced by the effect of reducing the friction coefficient by the uneven portion 52. That is, the central part BLc of the thickness δ of the velocity boundary layer BL of the working airflow is in a state of being separated from the center line CLm of the main hole 14 downstream of the main hole 14. Specifically, the interval LS between the central portion BLc of the thickness δ of the velocity boundary layer BL of the working airflow and the center line CLm of the main hole 14 is increased. In the present embodiment, the uneven portion 52 provided in the main flow path 18 functions as the separation structure 50 and the layer reduction structure.
 以上説明した空気吹出装置1は、主流路18を形成する内壁面181に対して凹凸部52が追加されているので、主流路18を形成する内壁面181の摩擦係数の低減効果によって、速度境界層BLの厚みδを充分に小さくすることが可能となる。このため、作動気流の中心部分における流速の減衰が少なくなり、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。 In the air blowing device 1 described above, since the uneven portion 52 is added to the inner wall surface 181 that forms the main flow path 18, a speed boundary is achieved by the effect of reducing the friction coefficient of the inner wall surface 181 that forms the main flow path 18. The thickness δ of the layer BL can be made sufficiently small. For this reason, the attenuation of the flow velocity in the central portion of the working airflow is reduced, and the reach distance of the working airflow blown out from the main hole 14 can be increased.
 (第6実施形態の変形例)
 上述の第6実施形態では、凹凸部52が、複数の溝によって形成されるものを例示したが、これに限定されない。凹凸部52は、例えば、複数の突起によって形成されていてもよい。
(Modification of the sixth embodiment)
In the above-described sixth embodiment, the concavo-convex portion 52 is illustrated as being formed by a plurality of grooves, but is not limited thereto. The concavo-convex portion 52 may be formed by a plurality of protrusions, for example.
 上述の第6実施形態では、凹凸部52が、ダクト部16の内部において主流路18を形成する内壁面181の略全域に形成されているものを例示したが、これに限定されない。凹凸部52は、主流路18を形成する内壁面181の一部に形成されていてもよい。 In the above-described sixth embodiment, the concavo-convex portion 52 is illustrated as being formed on substantially the entire inner wall surface 181 that forms the main flow path 18 inside the duct portion 16, but is not limited thereto. The uneven portion 52 may be formed on a part of the inner wall surface 181 that forms the main flow path 18.
 上述の第6実施形態では、層縮小構造として凹凸部52を備える構造を例示したが、これに限定されない。層縮小構造は、例えば、構造物51および凹凸部52を備える構造になっていてもよい。 In the above-described sixth embodiment, the structure including the concavo-convex portion 52 is exemplified as the layer reduction structure, but the present invention is not limited to this. The layer contraction structure may be a structure including the structure 51 and the concavo-convex portion 52, for example.
 (第7実施形態)
 次に、第7実施形態について、図23、図24を参照して説明する。本実施形態では、主孔14付近がラッパ状に拡開されている点が第5実施形態と相違している。本実施形態では、第5実施形態と異なる部分について主に説明し、第5実施形態と同様の部分について説明を省略することがある。
(Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIGS. This embodiment is different from the fifth embodiment in that the vicinity of the main hole 14 is expanded in a trumpet shape. In the present embodiment, portions that are different from the fifth embodiment will be mainly described, and description of portions that are the same as those of the fifth embodiment may be omitted.
 図23に示すように、本実施形態の吹出部10は、主孔14付近がラッパ状に拡開されている。具体的には、主孔14は、その内壁面141が気流の流れ方向の下流側に向かって主孔14の中心線CLmから離れるように拡大されている。 As shown in FIG. 23, the blowout portion 10 of the present embodiment has a main hole 14 and its vicinity expanded in a trumpet shape. Specifically, the main hole 14 is enlarged so that the inner wall surface 141 thereof is separated from the center line CLm of the main hole 14 toward the downstream side in the airflow direction.
 主孔14付近が極端に拡開されていると、壁面から気流が剥離し、乱れが大きくなる虞がある。このため、主孔14は、中心線CLmと内壁面141の接線TLmとのなす角度θsが、例えば、7°以下に設定されていることが望ましい。 If the vicinity of the main hole 14 is extremely widened, the air current may be peeled off from the wall surface, and the turbulence may increase. For this reason, it is desirable for the main hole 14 to have an angle θs formed by the center line CLm and the tangent TLm of the inner wall surface 141 set to, for example, 7 ° or less.
 このように構成される吹出部10では、図24に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。そして、主流路18に流入した気流は、主孔14から吹き出される。この際、主孔14がラッパ状に拡開されているので、主孔14の出口下流では、作動気流の速度境界層BLが主孔14の中心線CLmから離れる。具体的には、作動気流の速度境界層BLの厚みδの中央部分BLcと主孔14の中心線CLmとの間隔LSが大きくなる。なお、本実施形態では、主孔14の内壁面141の拡開形状が離間構造50として機能する。 As shown in FIG. 24, in the blowout section 10 configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct section 16, the conditioned air is directed toward the main hole 14 via the main flow path 18. Flowing. The airflow flowing into the main flow path 18 is blown out from the main hole 14. At this time, since the main hole 14 is expanded in a trumpet shape, the velocity boundary layer BL of the working airflow is separated from the center line CLm of the main hole 14 at the downstream of the outlet of the main hole 14. Specifically, the interval LS between the central portion BLc of the thickness δ of the velocity boundary layer BL of the working airflow and the center line CLm of the main hole 14 is increased. In the present embodiment, the expanded shape of the inner wall surface 141 of the main hole 14 functions as the separation structure 50.
 以上説明した空気吹出装置1は、主孔14がラッパ状に拡開されているので、主孔14の出口下流に形成される作動気流の速度境界層BLも主孔14の中心線CLmから離れ易くなる。これによれば、作動気流の中心部分における流速の減衰が少なくなり、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。 In the air blowing device 1 described above, since the main hole 14 is expanded in a trumpet shape, the velocity boundary layer BL of the working airflow formed downstream from the outlet of the main hole 14 is also separated from the center line CLm of the main hole 14. It becomes easy. According to this, the attenuation of the flow velocity at the central portion of the working airflow is reduced, and the reach distance of the working airflow blown out from the main hole 14 can be increased.
 (第7実施形態の変形例)
 上述の第7実施形態では、離間構造50として主孔14の内壁面141が拡開された構造を例示したが、これに限定されない。離間構造50は、例えば、主孔14の内壁面141が拡開された構造に対して、構造物51および凹凸部52の少なくとも一方が追加された構造になっていてもよい。
(Modification of the seventh embodiment)
In the above-described seventh embodiment, the structure in which the inner wall surface 141 of the main hole 14 is expanded as the separation structure 50 is illustrated, but is not limited thereto. For example, the separation structure 50 may have a structure in which at least one of the structure 51 and the uneven portion 52 is added to the structure in which the inner wall surface 141 of the main hole 14 is expanded.
 (第8実施形態)
 次に、第8実施形態について、図25、図26を参照して説明する。本実施形態では、主流路18に対して拡大部180が設けられている点が第5実施形態と相違している。本実施形態では、第5実施形態と異なる部分について主に説明し、第5実施形態と同様の部分について説明を省略することがある。
(Eighth embodiment)
Next, an eighth embodiment will be described with reference to FIGS. This embodiment is different from the fifth embodiment in that an enlarged portion 180 is provided for the main flow path 18. In the present embodiment, portions that are different from the fifth embodiment will be mainly described, and description of portions that are the same as those of the fifth embodiment may be omitted.
 図25に示すように、吹出部10には、離間構造50として、構造物51だけなく、主流路18に対して主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられている。具体的には、主流路18は、構造物51よりも空気流れ上流側で断面積が最も大きくなるとともに、構造物51が配置された箇所で断面積が最小になっている。吹出部10は、例えば、構造物51が配置された箇所で断面積が、構造物51の上流側に比べて10分の1程度となるように構成されている。具体的には、吹出部10は、構造物51が配置された箇所で内径Ld2と上流側における内径Ld1とが1:3.3以上となるように断面の厚みが設定されている。 As shown in FIG. 25, the blowing portion 10 is provided with not only the structure 51 but also an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14 with respect to the main flow path 18 as the separation structure 50. ing. Specifically, the main channel 18 has the largest cross-sectional area on the upstream side of the air flow from the structure 51, and has the smallest cross-sectional area at the place where the structure 51 is disposed. The blow-out unit 10 is configured so that, for example, the cross-sectional area is about one-tenth compared with the upstream side of the structure 51 at the place where the structure 51 is disposed. Specifically, the blowout portion 10 has a cross-sectional thickness set so that the inner diameter Ld2 and the inner diameter Ld1 on the upstream side are 1: 3.3 or more at the place where the structure 51 is disposed.
 また、本実施形態の吹出部10は、主孔14付近がラッパ状に拡開されている。具体的には、主孔14は、その内壁面141が気流の流れ方向の下流側に向かって主孔14の中心線CLmから離れるように拡大されている。なお、本実施形態では、構造物51、拡大部180、主孔14の内壁面141の拡開形状が離間構造50として機能する。また、本実施形態では、構造物51および拡大部180が層縮小構造として機能する。 Moreover, the blowout part 10 of this embodiment has the main hole 14 vicinity expanded in the trumpet shape. Specifically, the main hole 14 is enlarged so that the inner wall surface 141 thereof is separated from the center line CLm of the main hole 14 toward the downstream side in the airflow direction. In the present embodiment, the structure 51, the enlarged portion 180, and the expanded shape of the inner wall surface 141 of the main hole 14 function as the separation structure 50. In the present embodiment, the structure 51 and the enlarged portion 180 function as a layer reduction structure.
 このように構成される吹出部10では、図26に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。 In the blowing unit 10 configured as described above, as shown in FIG. 26, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct portion 16, the conditioned air is directed toward the main hole 14 via the main flow path 18. Flowing.
 主流路18には、主孔14の開口面積よりも断面積が大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。加えて、主流路18には、構造物51が配置されているので、構造物51によっても縮流が生ずる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。 Since the main channel 18 is provided with the enlarged portion 180 having a larger cross-sectional area than the opening area of the main hole 14, a contracted flow occurs from the enlarged portion 180 to the main hole 14. Thereby, in the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced. In addition, since the structure 51 is disposed in the main flow path 18, a contracted flow is also generated by the structure 51. Thereby, in the main flow path 18, the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 becomes sufficiently small.
 そして、主流路18に流入した気流は、主孔14から吹き出される。この際、主孔14がラッパ状に拡開されているので、主孔14の出口下流には、作動気流の速度境界層BLが主孔14の中心線CLmから離れるように形成される。具体的には、作動気流の速度境界層BLの厚みδの中央部分BLcと主孔14の中心線CLmとの間隔LSが大きくなる。 Then, the airflow flowing into the main flow path 18 is blown out from the main hole 14. At this time, since the main hole 14 is expanded in a trumpet shape, a velocity boundary layer BL of the working airflow is formed downstream from the center line CLm of the main hole 14 at the outlet downstream of the main hole 14. Specifically, the interval LS between the central portion BLc of the thickness δ of the velocity boundary layer BL of the working airflow and the center line CLm of the main hole 14 is increased.
 以上説明した空気吹出装置1は、層縮小構造が構造物51だけなく拡大部180を含めた構造となっているので、縮流による速度境界層BLの厚みδを小さくなる。また、主孔14がラッパ状に拡開されているので、主孔14の出口下流に形成される作動気流の速度境界層BLも主孔14の中心線CLmから離れ易くなる。これらにより、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。 Since the air blowing device 1 described above has a structure in which the layer contraction structure includes not only the structure 51 but also the enlarged portion 180, the thickness δ of the velocity boundary layer BL due to contraction is reduced. Further, since the main hole 14 is expanded in a trumpet shape, the velocity boundary layer BL of the working airflow formed downstream from the outlet of the main hole 14 is also easily separated from the center line CLm of the main hole 14. Accordingly, it is possible to increase the reach distance of the working air current blown out from the main hole 14.
 (第9実施形態)
 次に、第9実施形態について、図27~図29を参照して説明する。本実施形態では、構造物51の上流側端部511に対して縦渦発生機構53が設けられている点が第8実施形態と相違している。本実施形態では、第8実施形態と異なる部分について主に説明し、第8実施形態と同様の部分について説明を省略することがある。
(Ninth embodiment)
Next, a ninth embodiment will be described with reference to FIGS. The present embodiment is different from the eighth embodiment in that a vertical vortex generating mechanism 53 is provided for the upstream end 511 of the structure 51. In the present embodiment, portions different from those in the eighth embodiment will be mainly described, and descriptions of portions similar to those in the eighth embodiment may be omitted.
 図27および図28に示すように、構造物51には、上流側端部511に凹凸状の縦渦発生機構53が設けられている。縦渦発生機構53は、構造物51の上流側端部511付近に縦渦を発生させるものである。縦渦は、渦心が主流の流れ方向と同一方向を向いている螺旋状の渦である。 27 and 28, the structure 51 is provided with an uneven vertical vortex generating mechanism 53 at the upstream end 511. The vertical vortex generating mechanism 53 generates a vertical vortex near the upstream end 511 of the structure 51. The vertical vortex is a spiral vortex in which the vortex core is oriented in the same direction as the main flow direction.
 縦渦発生機構53は、上流側端部511から突き出た複数の凹凸状の突出片で構成されている。具体的には、縦渦発生機構53は、上流側端部511に形成された複数の三角形状の突出片で構成されている。この突出片は、先端に向かって延びる2辺が直線状に交差することで先鋭化された形状になっている。 The vertical vortex generating mechanism 53 is composed of a plurality of concave and convex protrusions protruding from the upstream end 511. Specifically, the vertical vortex generating mechanism 53 is configured by a plurality of triangular projecting pieces formed at the upstream end 511. The protruding piece has a sharpened shape by linearly intersecting two sides extending toward the tip.
 このように構成される吹出部10では、図29に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。主流路18には、構造物51が配置されているので、構造物51によって縮流が生ずることになるが、構造物51の周囲を流れる気流が構造物51から剥離して乱れてしまう虞がある。 As shown in FIG. 29, in the blowout section 10 configured as described above, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct section 16, the conditioned air is directed toward the main hole 14 via the main flow path 18. Flowing. Since the structure 51 is disposed in the main flow path 18, a contracted flow is generated by the structure 51, but there is a possibility that the airflow flowing around the structure 51 may be separated from the structure 51 and disturbed. is there.
 これに対して、本実施形態では、構造物51の上流側端部511に縦渦発生機構53が設けられているため、気流が構造物51の上流側端部511付近を通過する際に縦渦が発生する。縦渦発生機構53により発生する縦渦は、渦心が構造物51の周囲を流れる気流と同一方向を向いた螺旋状の渦であり、構造物51の表面に向かう速度成分が含まれている。このため、構造物51の周囲を流れる気流は、縦渦発生機構53にて発生した縦渦によって、構造物51の表面に近づくように押し付けられることで、構造物51の表面に沿って流れ易くなる。 On the other hand, in the present embodiment, since the vertical vortex generating mechanism 53 is provided at the upstream end 511 of the structure 51, when the airflow passes near the upstream end 511 of the structure 51, the vertical vortex generating mechanism 53 is provided. A vortex is generated. The vertical vortex generated by the vertical vortex generating mechanism 53 is a spiral vortex whose vortex core is directed in the same direction as the airflow flowing around the structure 51, and includes a velocity component toward the surface of the structure 51. . For this reason, the airflow that flows around the structure 51 is easily pushed along the surface of the structure 51 by being pushed closer to the surface of the structure 51 by the vertical vortex generated by the vertical vortex generating mechanism 53. Become.
 その他の構成は第8実施形態と同様である。本実施形態の空気吹出装置1は、第8実施形態と共通の構成を有しているので、当該共通の構成から奏される作用効果を第8実施形態と同様に得ることができる。 Other configurations are the same as those in the eighth embodiment. Since the air blowing device 1 of the present embodiment has the same configuration as that of the eighth embodiment, the effects obtained from the common configuration can be obtained similarly to the eighth embodiment.
 特に、本実施形態の空気吹出装置1は、構造物51の上流側端部511に縦渦発生機構53が設けられているので、構造物51の周囲を流れる気流が、縦渦発生機構53にて発生した縦渦によって構造物の表面に沿って流れ易くなる。この結果、構造物51の追加に伴う作動気流の乱れを充分に抑制することができる。 In particular, in the air blowing device 1 of the present embodiment, the vertical vortex generating mechanism 53 is provided at the upstream end 511 of the structure 51, so that the airflow flowing around the structure 51 flows into the vertical vortex generating mechanism 53. The vertical vortex generated in this way makes it easier to flow along the surface of the structure. As a result, the turbulence of the working air flow accompanying the addition of the structure 51 can be sufficiently suppressed.
 (第9実施形態の変形例)
 上述の第9実施形態では、第8実施形態で説明した空気吹出装置1の構造物51に縦渦発生機構53を設けたものを例示したがこれに限定されない。縦渦発生機構53は、例えば、第7実施形態で説明した構造物51に対して追加してもよい。また、縦渦発生機構53は、例えば、第2実施形態で説明した縮流フィン28に対して追加してもよい。
(Modification of the ninth embodiment)
In the above-described ninth embodiment, the structure 51 of the air blowing device 1 described in the eighth embodiment is provided with the vertical vortex generating mechanism 53. However, the present invention is not limited to this. The longitudinal vortex generating mechanism 53 may be added to the structure 51 described in the seventh embodiment, for example. Further, the longitudinal vortex generating mechanism 53 may be added to the contracted fin 28 described in the second embodiment, for example.
 (第10実施形態)
 次に、第10実施形態について、図30を参照して説明する。本実施形態では、主流路18に対して拡大部180が設けられている点が第6実施形態と相違している。本実施形態では、第6実施形態と異なる部分について主に説明し、第6実施形態と同様の部分について説明を省略することがある。
(10th Embodiment)
Next, a tenth embodiment will be described with reference to FIG. This embodiment is different from the sixth embodiment in that an enlarged portion 180 is provided for the main flow path 18. In the present embodiment, portions that are different from the sixth embodiment will be mainly described, and description of portions that are the same as the sixth embodiment may be omitted.
 図30に示すように、吹出部10には、離間構造50として、凹凸部52だけなく、主流路18に対して主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられている。具体的には、主流路18は、空気流れ上流側で断面積が最も大きくなるとともに、主孔14付近で断面積が最小になっている。吹出部10は、例えば、主孔14の開口面積が、上流側に比べて10分の1程度となるように構成されている。具体的には、吹出部10は、主孔14の内径Ld2と上流側における内径Ld1とが1:3.3以上となるように断面の厚みが設定されている。なお、本実施形態では、凹凸部52および拡大部180が離間構造50および層縮小構造として機能する。 As shown in FIG. 30, the blowout portion 10 is provided with not only the uneven portion 52 but also an enlarged portion 180 having a cross-sectional area Sc larger than the opening area Sm of the main hole 14 with respect to the main flow path 18 as the separation structure 50. ing. Specifically, the main flow path 18 has the largest cross-sectional area on the upstream side of the air flow, and has the smallest cross-sectional area in the vicinity of the main hole 14. The blow-out part 10 is configured so that, for example, the opening area of the main hole 14 is about 1/10 compared to the upstream side. Specifically, the blow-out portion 10 has a cross-sectional thickness set such that the inner diameter Ld2 of the main hole 14 and the inner diameter Ld1 on the upstream side are 1: 3.3 or more. In the present embodiment, the uneven portion 52 and the enlarged portion 180 function as the separation structure 50 and the layer reduction structure.
 このように構成される吹出部10では、図30に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。この際、気流が主流路18を形成する内壁面181付近を通過する際に凹凸部52の内側に生ずる渦がボールベアリングのような役割を果たすことで、主流路18を形成する内壁面181の摩擦係数が小さくなる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。 In the blowing unit 10 configured as described above, as shown in FIG. 30, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct portion 16, the conditioned air is directed toward the main hole 14 via the main flow path 18. Flowing. At this time, the vortex generated inside the concavo-convex portion 52 when the airflow passes in the vicinity of the inner wall surface 181 that forms the main flow path 18 plays a role like a ball bearing, so that the inner wall surface 181 that forms the main flow path 18 The coefficient of friction is reduced. Thereby, in the main flow path 18, the flow velocity difference between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is reduced.
 加えて、主流路18には、主孔14の開口面積よりも断面積が大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。そして、主流路18に流入した気流は、主孔14から吹き出される。この際、主孔14の出口下流には、作動気流の速度境界層BLが主孔14の中心線CLmから離れるように形成される。 In addition, the main flow path 18 is provided with an enlarged portion 180 having a cross-sectional area larger than the opening area of the main hole 14, so that contraction occurs from the enlarged portion 180 to the main hole 14. Thereby, in the main flow path 18, the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 becomes sufficiently small. The airflow flowing into the main flow path 18 is blown out from the main hole 14. At this time, a velocity boundary layer BL of the working airflow is formed downstream from the outlet of the main hole 14 so as to be separated from the center line CLm of the main hole 14.
 以上説明した空気吹出装置1は、層縮小構造が凹凸部52だけなく拡大部180を含めた構造となっているので、縮流による速度境界層BLの厚みδを小さくなる。これにより、主孔14の出口下流に形成される作動気流の速度境界層BLも主孔14の中心線CLmから離れ易くなるので、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。 Since the air blowing device 1 described above has a structure in which the layer contraction structure includes not only the concavo-convex part 52 but also the enlarged part 180, the thickness δ of the velocity boundary layer BL due to contraction is reduced. As a result, the velocity boundary layer BL of the working airflow formed downstream from the outlet of the main hole 14 is also easily separated from the center line CLm of the main hole 14, so that the reach of the working airflow blown out from the main hole 14 is increased. Is possible.
 (第11実施形態)
 次に、第11実施形態について、図31、図32を参照して説明する。本実施形態では、ダクト部16に縮流形状部183が設けられている点が第5実施形態と相違している。本実施形態では、第5実施形態と異なる部分について主に説明し、第5実施形態と同様の部分について説明を省略することがある。
(Eleventh embodiment)
Next, an eleventh embodiment will be described with reference to FIGS. 31 and 32. This embodiment is different from the fifth embodiment in that a contracted flow shape portion 183 is provided in the duct portion 16. In the present embodiment, portions that are different from the fifth embodiment will be mainly described, and description of portions that are the same as those of the fifth embodiment may be omitted.
 図31に示すように、吹出部10は、主流路18の流路断面積が気流の流れ方向の上流側から下流側に向かって縮小されている。具体的には、主流路18を形成する内壁面181には、上流側平坦部182、縮流形状部183、および下流側平坦部184が設定されている。 As shown in FIG. 31, in the blowing unit 10, the cross-sectional area of the main flow path 18 is reduced from the upstream side to the downstream side in the airflow direction. Specifically, an upstream flat portion 182, a contracted flow shape portion 183, and a downstream flat portion 184 are set on the inner wall surface 181 that forms the main flow path 18.
 上流側平坦部182は、主流路18を形成する内壁面181のうち空気流れ上流側の部位で構成されている。上流側平坦部182は、断面積が略一定となるように、気流の流れ方向に沿う平坦な形状になっている。 The upstream flat portion 182 is configured by a portion on the upstream side of the air flow in the inner wall surface 181 that forms the main flow path 18. The upstream flat portion 182 has a flat shape along the airflow direction so that the cross-sectional area is substantially constant.
 下流側平坦部184は、主流路18を形成する内壁面181のうち空気流れ下流側の部位で構成されている。下流側平坦部184は、断面積が略一定となるように、気流の流れ方向に沿う平坦な形状になっている。なお、下流側平坦部184は、その断面積が上流側平坦部182の断面積に比べて10分の1程度となるように構成されている。 The downstream flat portion 184 is configured of a portion on the downstream side of the air flow in the inner wall surface 181 that forms the main flow path 18. The downstream flat portion 184 has a flat shape along the airflow direction so that the cross-sectional area is substantially constant. The downstream flat portion 184 is configured so that its cross-sectional area is about 1/10 of the cross-sectional area of the upstream flat portion 182.
 縮流形状部183は、第8実施形態で説明した拡大部180に相当するものである。縮流形状部183は、上流側平坦部182および下流側平坦部184を接続する接続部である。縮流形状部183は、主流路18の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する部位である。 The contracted flow shape portion 183 corresponds to the enlarged portion 180 described in the eighth embodiment. The contracted flow shape portion 183 is a connection portion that connects the upstream flat portion 182 and the downstream flat portion 184. The contracted flow shape portion 183 is a portion that reduces the cross-sectional area of the main flow path 18 from the upstream side to the downstream side in the airflow direction.
 縮流形状部183は、気流の流れ方向の上流側に位置する上流端183aが上流側平坦部182に連なり、気流の流れ方向の下流側に位置する下流端183bが下流側平坦部184に連なっている。縮流形状部183は、上流側平坦部182および下流側平坦部184との接続部が段差のない連続した曲面となるように、上流端183aおよび下流端183bが気流の流れ方向に沿った形状になっている。 In the contracted flow shape portion 183, the upstream end 183a located upstream in the airflow direction is connected to the upstream flat portion 182 and the downstream end 183b located downstream in the airflow direction is connected to the downstream flat portion 184. ing. The contracted flow shape portion 183 has a shape in which the upstream end 183a and the downstream end 183b are along the flow direction of the airflow so that the connection portion between the upstream flat portion 182 and the downstream flat portion 184 is a continuous curved surface having no step. It has become.
 構造物51は、気流の流れ方向における大きさが、主流路18を形成する内壁面181のうち縮流形状部183が設定された縮流形状区間の長さよりも小さくなっている。構造物51は、主流路18を形成する内壁面181のうち縮流形状区間に収まるように、主流路18に配置されている。すなわち、構造物51は、気流の流れ方向の上流側に位置する上流側端部511が縮流形状部183の上流端183aの下流側に位置付けられている。加えて、構造物51は、気流の流れ方向の下流側に位置する下流側端部512が縮流形状部183の下流端183bの上流側に位置付けられている。 The size of the structure 51 in the flow direction of the airflow is smaller than the length of the contracted flow shape section where the contracted flow shape portion 183 is set in the inner wall surface 181 forming the main flow path 18. The structure 51 is disposed in the main flow path 18 so as to be contained in the contracted flow shape section of the inner wall surface 181 that forms the main flow path 18. That is, in the structure 51, the upstream end 511 located on the upstream side in the airflow direction is positioned on the downstream side of the upstream end 183a of the contracted flow shape portion 183. In addition, in the structure 51, the downstream end portion 512 located on the downstream side in the airflow direction is positioned on the upstream side of the downstream end 183 b of the contracted flow shape portion 183.
 このように構成される吹出部10では、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。主流路18には、構造物51が配置されるとともに、主流路18を形成する内壁面181に縮流形状部183が設けられている。このため、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。 In the blowout unit 10 configured in this manner, when the conditioned air whose temperature is adjusted by the air conditioning unit flows into the duct unit 16, the conditioned air flows toward the main hole 14 through the main flow path 18. In the main channel 18, the structure 51 is arranged, and a contracted flow shape portion 183 is provided on the inner wall surface 181 that forms the main channel 18. For this reason, in the main flow path 18, the difference in flow velocity between the vicinity of the center line CLm of the main hole 14 and the vicinity of the inner wall surface 181 forming the main flow path 18 is sufficiently small.
 ここで、図32に示すように、主流路18における構造物51の下流側端部512付近では、構造物51によって凹状の風速分布Ws1となる。すなわち、主流路18における構造物51の下流側端部512付近では、構造物51および縮流形状部183による縮流効果によって、主流路18の中央部分に比べて主流路18の内壁面181付近の流速が大きくなる。このような凹状の風速分布Ws1のままで気流が主孔14から吹き出されると、主孔14から吹き出す気流のコア部の崩壊が早まってしまう虞がある。 Here, as shown in FIG. 32, in the vicinity of the downstream end portion 512 of the structure 51 in the main flow path 18, the structure 51 provides a concave wind speed distribution Ws1. That is, in the vicinity of the downstream end portion 512 of the structure 51 in the main flow path 18, the vicinity of the inner wall surface 181 of the main flow path 18 compared to the central portion of the main flow path 18 due to the contraction effect by the structure 51 and the contracted flow shape portion 183. The flow velocity of becomes larger. If the airflow is blown out from the main hole 14 with such a concave wind speed distribution Ws1, the core portion of the airflow blown out from the main hole 14 may be quickly collapsed.
 これに対して、本実施形態では、構造物51の下流側端部512が縮流形状部183の下流端183bの上流側に位置付けられている。これによると、構造物51の下流側でも縮流形状部183によって縮流が生ずることで、構造物51が配置された箇所の下流に気流が流れ易くなる。これにより、構造物51が配置された箇所で一旦低下した流速を下流で回復させることができる。すなわち、主孔14の出口下流に形成される作動気流がトップハット型の風速分布Ws2になり易くなる。 In contrast, in the present embodiment, the downstream end 512 of the structure 51 is positioned upstream of the downstream end 183b of the contracted flow portion 183. According to this, the contracted flow is generated by the contracted flow shape portion 183 even on the downstream side of the structure 51, so that the airflow easily flows downstream of the place where the structure 51 is disposed. Thereby, the flow velocity once reduced at the place where the structure 51 is disposed can be recovered downstream. That is, the working airflow formed downstream from the outlet of the main hole 14 tends to be a top-hat type wind speed distribution Ws2.
 以上説明した空気吹出装置1は、層縮小構造が構造物51だけなく拡大部180を含めた構造となっているので、縮流によって速度境界層BLの厚みδが小さくなる。構造物51の下流側端部512が縮流形状部183の下流端183bの上流側に位置付けられているので、主孔14の出口下流に形成される作動気流がトップハット型の風速分布になり易くなる。これらにより、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。 Since the air blowing device 1 described above has a structure in which the layer contraction structure includes not only the structure 51 but also the enlarged portion 180, the thickness δ of the velocity boundary layer BL decreases due to the contraction. Since the downstream end portion 512 of the structure 51 is positioned on the upstream side of the downstream end 183b of the contracted flow shape portion 183, the working airflow formed downstream from the outlet of the main hole 14 has a top-hat type wind speed distribution. It becomes easy. Accordingly, it is possible to increase the reach distance of the working air current blown out from the main hole 14.
 (第11実施形態の変形例)
 上述の第11実施形態では、構造物51が主流路18を形成する内壁面181のうち縮流形状区間に収まるように配置されているものを例示したが、これに限定されない。
(Modification of the eleventh embodiment)
In the eleventh embodiment described above, the structure 51 is exemplified so that the structure 51 is disposed so as to be accommodated in the contracted flow shape section of the inner wall surface 181 that forms the main flow path 18, but is not limited thereto.
 構造物51は、例えば、図33の第1変形例に示すように、下流側端部512が縮流形状部183の下流端183bの上流側に位置付けられるとともに、上流側端部511が縮流形状部183の上流端183aの上流側に位置付けられていてもよい。これによれば、第11実施形態と同様の作用効果を得ることができる。 For example, as shown in the first modification of FIG. 33, the structure 51 is configured such that the downstream end 512 is positioned upstream of the downstream end 183b of the contracted flow shape portion 183 and the upstream end 511 is contracted. The shape portion 183 may be positioned on the upstream side of the upstream end 183a. According to this, the same effect as the eleventh embodiment can be obtained.
 また、構造物51は、例えば、図34の第2変形例に示すように、上流側端部511が縮流形状部183の上流端183aの下流側に位置付けられるとともに、下流側端部512が縮流形状部183の下流端183bの下流側に位置付けられていてもよい。 In the structure 51, for example, as shown in the second modification of FIG. 34, the upstream end 511 is positioned on the downstream side of the upstream end 183a of the contracted flow portion 183, and the downstream end 512 is It may be positioned on the downstream side of the downstream end 183b of the contracted flow shape portion 183.
 上述の第11実施形態では、主流路18を形成する内壁面181に、上流側平坦部182、縮流形状部183、および下流側平坦部184が設定されているものを例示したが、これに限定されない。吹出部10は、主流路18を形成する内壁面181に縮流形状部183が設定されていれば、上流側平坦部182および下流側平坦部184が設定されていなくてもよい。また、吹出部10は、縮流形状部183の下流側がラッパ状に拡開されていてもよい。
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
In the eleventh embodiment described above, the inner wall surface 181 forming the main flow path 18 is exemplified by the upstream flat portion 182, the contracted flow shape portion 183, and the downstream flat portion 184 being set. It is not limited. As long as the reduced flow shape portion 183 is set on the inner wall surface 181 forming the main flow path 18, the upstream flat portion 182 and the downstream flat portion 184 do not need to be set in the blowing portion 10. Moreover, as for the blowing part 10, the downstream of the contracted flow shape part 183 may be expanded in the trumpet shape.
(Other embodiments)
As mentioned above, although typical embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
 上述の実施形態では、孔形成部12に対して主孔14が1つ形成されている例について説明したが、これに限定されない。空気吹出装置1は、孔形成部12に対して複数の主孔14が形成された構造になっていてもよい。この場合、例えば、複数の補助孔22については、複数の主孔14を単一の孔群として当該孔群を取り囲むように配置したり、複数の主孔14それぞれを取り囲むように配置したりすればよい。 In the above-described embodiment, the example in which one main hole 14 is formed in the hole forming portion 12 has been described, but the present invention is not limited to this. The air blowing device 1 may have a structure in which a plurality of main holes 14 are formed in the hole forming portion 12. In this case, for example, the plurality of auxiliary holes 22 are arranged so as to surround the plurality of main holes 14 as a single hole group, or to surround each of the plurality of main holes 14. That's fine.
 上述の実施形態では、補助孔22が複数の丸孔で構成されている例について説明したが、これに限定されない。補助孔22は、例えば、主孔14の周囲を囲む曲線状のスリット孔で構成されていてもよい。この場合、補助孔22は、複数のスリット孔に限らず、単一のスリット孔で構成することが可能である。 In the above-described embodiment, the example in which the auxiliary hole 22 is configured by a plurality of round holes has been described, but the present invention is not limited to this. The auxiliary hole 22 may be configured by, for example, a curved slit hole surrounding the main hole 14. In this case, the auxiliary hole 22 is not limited to a plurality of slit holes, and can be constituted by a single slit hole.
 上述の実施形態では、単一のダクト部16の内部に主流路18および補助流路24が形成される構成になっているが、これに限定されない。空気吹出装置1は、例えば、ダクト部16における主流路18を形成する部分と補助流路24を形成する部分とが別々に構成されていてもよい。 In the above-described embodiment, the main flow path 18 and the auxiliary flow path 24 are formed inside the single duct portion 16, but the present invention is not limited to this. In the air blowing device 1, for example, a portion that forms the main flow path 18 and a portion that forms the auxiliary flow path 24 in the duct portion 16 may be configured separately.
 上述の実施形態では、吹出部10としてフランジ部20を有するものを例示したが、これに限定されない。吹出部10は、例えば、孔形成部12およびダクト部16を有し、フランジ部20を有していない構成になっていてもよい。 In the above-described embodiment, the blowout portion 10 having the flange portion 20 is exemplified, but the present invention is not limited to this. The blow-out part 10 may have a configuration in which, for example, the hole forming part 12 and the duct part 16 are included and the flange part 20 is not included.
 上述の実施形態では、車室内を空調する空調ユニットの空気吹出口に本開示の空気吹出装置1を適用するものを例示したが、これに限定されない。本開示の空気吹出装置1は、車両等の移動体に限らず、家庭用等の設置型の空調ユニットの空気吹出口等にも広く適用可能である。また、本開示の空気吹出装置1は、室内を空調する空調ユニットに限らず、例えば、室内を加湿する加湿機器の空気吹出口や、発熱体等の温度を調整する温調風を吹き出す温調機器の空気吹出口にも適用可能である。 In the above-described embodiment, an example in which the air blowing device 1 of the present disclosure is applied to the air blowing port of an air conditioning unit that air-conditions the vehicle interior is illustrated, but the present invention is not limited to this. The air blowing device 1 according to the present disclosure is not limited to a moving body such as a vehicle, but can be widely applied to an air blowing port of an installation type air conditioning unit for home use or the like. The air blowing device 1 of the present disclosure is not limited to an air conditioning unit that air-conditions a room. For example, a temperature control that blows out temperature-controlled air that adjusts the temperature of an air outlet of a humidifying device that humidifies the room, a heating element, or the like. It can also be applied to the air outlet of equipment.
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle.
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. Except in some cases, the number is not limited.
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In the above embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, positional relationship, etc. unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to etc.
 (まとめ) (Summary)
 上述の実施形態の一部または全部で示された第1の観点によれば、空気吹出装置は、気流を吹き出す吹出部を備える。吹出部は、作動気流となる気流を吹き出す少なくとも1つの主孔と、主孔の出口下流において作動気流の速度境界層の厚みの中央部分を主孔の中心線から離すための離間構造と、を含んで構成されている。 According to the first aspect shown in a part or all of the above-described embodiment, the air blowing device includes a blowing unit that blows out an air flow. The blow-out unit includes at least one main hole for blowing out an air flow as a working air flow, and a separation structure for separating the central portion of the speed boundary layer of the working air flow from the center line of the main hole downstream of the outlet of the main hole. It is configured to include.
 第2の観点によれば、空気吹出装置の吹出部は、主孔から吹き出す気流を通過させる主流路を含んでいる。離間構造は、主流路の内壁面に沿って形成される速度境界層の厚みを小さくする層縮小構造を含んでいる。 According to the 2nd viewpoint, the blowing part of the air blowing apparatus contains the main flow path which allows the airflow which blows off from a main hole to pass through. The separation structure includes a layer contraction structure that reduces the thickness of the velocity boundary layer formed along the inner wall surface of the main flow path.
 このように、速度境界層の厚みを小さくすれば、主孔の出口下流に形成される作動気流がトップハット型の風速分布になり易くなる。トップハット型の風速分布では、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を主孔の中心線から大きく離れることになるので、作動気流の中心部分における流速の減衰を充分に抑えて、作動気流の到達距離を長くすることが可能となる。 Thus, if the thickness of the velocity boundary layer is reduced, the working airflow formed downstream of the outlet of the main hole is likely to have a top-hat type wind speed distribution. In the top-hat type wind speed distribution, the central part of the velocity boundary layer thickness of the working airflow formed downstream from the outlet of the main hole is far away from the center line of the main hole. It is possible to sufficiently suppress the attenuation and increase the reach of the working airflow.
 第3の観点によれば、空気吹出装置は、主流路に、層縮小構造として主流路を流れる気流を縮流させる構造物が設けられている。このように、主流路に対して構造物を設ける構造とすれば、主流路に生ずる縮流によって、主孔の中心線付近と内壁面付近との間の流速差が小さくなり、速度境界層の厚みを小さくすることができる。すなわち、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を主孔の中心線から離す構造を実現することができる。 According to the third aspect, the air blowing device is provided with a structure that contracts the airflow flowing through the main channel as a layer contraction structure in the main channel. In this way, if the structure is provided for the main flow path, the flow velocity difference between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced due to the contracted flow generated in the main flow path. The thickness can be reduced. That is, it is possible to realize a structure in which the central portion of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is separated from the center line of the main hole.
 第4の観点によれば、空気吹出装置は、主流路を形成する内壁面に、主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部が含まれている。構造物は、主流路を流れる気流の流れ方向の下流側に位置する下流側端部が、縮流形状部のうち主流路を流れる気流の流れ方向の下流側に位置する下流端よりも上流側に位置付けられている。 According to the fourth aspect, in the air blowing device, a contracted flow shape portion that reduces the cross-sectional area of the main flow path from the upstream side to the downstream side in the air flow direction is formed on the inner wall surface forming the main flow path. include. In the structure, the downstream end located on the downstream side in the flow direction of the airflow flowing through the main flow path is upstream of the downstream end located on the downstream side in the flow direction of the airflow flowing through the main flow path in the contracted flow shape portion. Is positioned.
 主流路に対して構造物を配置すると、主流路のうち構造物が配置された箇所での流速低下が生ずることで、構造物の下流側で凹状の風速分布になり易い。このような凹状の風速分布のままで気流が主孔から吹き出されると、主孔から吹き出す気流のコア部の崩壊が早まってしまう虞がある。 When the structure is arranged with respect to the main flow path, the flow velocity is reduced at the position where the structure is arranged in the main flow path, so that a concave wind speed distribution tends to be generated on the downstream side of the structure. If the airflow is blown out from the main hole with such a concave wind speed distribution, the core portion of the airflow blown out from the main hole may be quickly collapsed.
 これに対して、構造物の下流側端部を縮流形状部の下流端よりも上流側に位置付ける場合、構造物の下流側でも縮流形状部によって縮流が生ずることで、構造物が配置された箇所の下流に気流が流れ易くなる。これによると、構造物が配置された箇所で一旦低下した流速がその下流で回復させることができるので、主孔の出口下流に形成される作動気流がトップハット型の風速分布になり易くなる。 On the other hand, when the downstream end of the structure is positioned upstream of the downstream end of the contracted flow shape portion, the flow is generated by the contracted flow shape portion on the downstream side of the structure, so that the structure is arranged. The air flow easily flows downstream of the formed portion. According to this, since the flow velocity once lowered at the place where the structure is disposed can be recovered downstream, the working airflow formed downstream from the outlet of the main hole is likely to have a top-hat type wind velocity distribution.
 第5の観点によれば、空気吹出装置は、主流路を形成する内壁面に、主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部が含まれている。構造物は、主流路を流れる気流の流れ方向の上流側に位置する上流側端部が、縮流形状部のうち主流路を流れる気流の流れ方向の上流側に位置する上流端よりも下流側に位置付けられている。このように、構造物の上流側端部を縮流形状部の上流端よりも下流側に位置付ける場合、構造物および縮流形状部それぞれによる縮流効果が得られる。 According to the fifth aspect, the air blowing device has a contracted flow shape portion that reduces the flow passage cross-sectional area of the main flow passage from the upstream side to the downstream side in the air flow direction on the inner wall surface forming the main flow passage. include. In the structure, the upstream end located on the upstream side in the flow direction of the airflow flowing in the main flow path is downstream of the upstream end located on the upstream side in the flow direction of the airflow flowing in the main flow path in the contracted flow shape portion. Is positioned. As described above, when the upstream end of the structure is positioned downstream of the upstream end of the contracted flow shape portion, the contraction effect by the structure and the contracted flow shape portion can be obtained.
 第6の観点によれば、空気吹出装置は、主流路を形成する内壁面に、主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部が含まれている。構造物は、主流路を流れる気流の流れ方向の上流側に位置する上流側端部が、縮流形状部のうち主流路を流れる気流の流れ方向の上流側に位置する上流端よりも下流側に位置付けられている。また、構造物は、主流路を流れる気流の流れ方向の下流側に位置する下流側端部が、縮流形状部のうち主流路を流れる気流の流れ方向の下流側に位置する下流端よりも上流側に位置付けられている。 According to the sixth aspect, the air blowing device has a contracted flow shape portion that reduces the cross-sectional area of the main flow path from the upstream side to the downstream side in the air flow direction on the inner wall surface forming the main flow path. include. In the structure, the upstream end located on the upstream side in the flow direction of the airflow flowing in the main flow path is downstream of the upstream end located on the upstream side in the flow direction of the airflow flowing in the main flow path in the contracted flow shape portion. Is positioned. Further, the structure has a downstream end located downstream in the flow direction of the airflow flowing through the main flow path, and a downstream end located downstream of the flow direction of the airflow flowing through the main flow path in the contracted flow shape portion. Located upstream.
 第7の観点によれば、空気吹出装置の構造物は、主流路を流れる気流の流れ方向に沿った断面形状が流線型形状となっている。このように、構造物を流線型形状とすれば、構造物表面での気流の剥離が抑制され乱れを充分に抑制することができる。このことは、作動気流の到達距離を長くする上で有効である。 According to the seventh aspect, the structure of the air blowing device has a streamlined cross-sectional shape along the flow direction of the airflow flowing through the main flow path. Thus, if the structure has a streamlined shape, separation of the air current on the surface of the structure is suppressed, and turbulence can be sufficiently suppressed. This is effective in increasing the reach of the working airflow.
 第8の観点によれば、空気吹出装置の構造物は、主流路を流れる気流の流れ方向の上流側に位置する上流側端部に、縦渦を発生させる凹凸状の縦渦発生機構が設けられている。これによると、構造物の周囲を流れる気流は、縦渦発生機構にて発生した縦渦によって構造物の表面に沿って流れ易くなることで、構造物の追加に伴う作動気流の乱れを抑制することができる。 According to the eighth aspect, the structure of the air blowing device is provided with an uneven vertical vortex generating mechanism for generating vertical vortices at the upstream end located upstream in the flow direction of the airflow flowing through the main flow path. It has been. According to this, the airflow that flows around the structure becomes easy to flow along the surface of the structure by the vertical vortex generated by the vertical vortex generation mechanism, thereby suppressing the turbulence of the working airflow accompanying the addition of the structure be able to.
 第9の観点によれば、空気吹出装置の構造物は、主流路を流れる気流の流れ方向の下流側に位置する下流側端部が、主孔から外部に突き出ないように主流路の内側に配置されている。これによると、主孔から吹き出された気流が構造物によって乱れないので、作動気流の中心部分における流速の減衰を充分に抑えることができる。 According to the ninth aspect, the structure of the air blowing device is arranged on the inner side of the main flow path so that the downstream end located on the downstream side in the flow direction of the airflow flowing through the main flow path does not protrude outside from the main hole. Is arranged. According to this, since the airflow blown out from the main hole is not disturbed by the structure, the attenuation of the flow velocity at the central portion of the working airflow can be sufficiently suppressed.
 第10の観点によれば、空気吹出装置は、主流路の少なくとも一部に、層縮小構造として主流路における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部が設けられている。このように、主流路の内壁面の一部に対して凹凸部を設ける構造とすれば、凹凸部の内側に生ずる渦がボールベアリングのような役割を果たすことで、主流路の内壁面の摩擦係数が小さくなる。このため、主孔の中心線付近と内壁面付近との間の流速差が小さくなり、速度境界層の厚みを小さくすることができる。すなわち、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を主孔の中心線から離す構造を実現することができる。 According to the tenth aspect, in the air blowing device, at least a part of the main flow path is provided with a concavo-convex part in which concave parts and convex parts are alternately arranged along the flow direction of the air flow in the main flow path as a layer contraction structure. Yes. In this way, if the structure is provided with a concavo-convex portion on a part of the inner wall surface of the main flow path, the vortex generated inside the concavo-convex portion plays a role like a ball bearing, so that the friction of the inner wall surface of the main flow path The coefficient becomes smaller. For this reason, the difference in flow velocity between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced, and the thickness of the velocity boundary layer can be reduced. That is, it is possible to realize a structure in which the central portion of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is separated from the center line of the main hole.
 第11の観点によれば、空気吹出装置は、主流路に、層縮小構造として主孔の開口面積よりも断面積が大きい拡大部が設けられている。このように、主流路に対して拡大部を設ける構造とすれば、主流路に生ずる縮流によって、主孔の中心線付近と内壁面付近との間の流速差が小さくなり、速度境界層の厚みを小さくすることができる。すなわち、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を主孔の中心線から離す構造を実現することができる。 According to the eleventh aspect, in the air blowing device, the main flow path is provided with an enlarged portion having a cross-sectional area larger than the opening area of the main hole as a layer reducing structure. Thus, if the structure is provided with an enlarged portion with respect to the main flow path, the flow velocity difference between the vicinity of the center line of the main hole and the vicinity of the inner wall surface is reduced due to the contracted flow generated in the main flow path, and the velocity boundary layer The thickness can be reduced. That is, it is possible to realize a structure in which the central portion of the thickness of the velocity boundary layer of the working airflow formed downstream from the outlet of the main hole is separated from the center line of the main hole.
 第12の観点によれば、空気吹出装置は、主孔の内壁面が気流の流れ方向の下流側に向かって主孔の中心線から離れるように拡大されている。これによると、主孔の内側の壁面形状に応じて主孔の出口下流に形成される作動気流の速度境界層も主孔の中心線から離れるように形成され易くなる。このため、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を主孔の中心線から離す構造を実現することができる。 According to the twelfth aspect, the air blowing device is enlarged so that the inner wall surface of the main hole is separated from the center line of the main hole toward the downstream side in the air flow direction. According to this, the velocity boundary layer of the working airflow formed downstream of the main hole according to the shape of the inner wall surface of the main hole is also easily formed so as to be separated from the center line of the main hole. For this reason, the structure which leaves | separates the center part of the thickness of the speed boundary layer of the working airflow formed downstream of the exit of a main hole from the centerline of a main hole is realizable.

Claims (12)

  1.  空気吹出装置であって、
     気流を吹き出す吹出部(10)を備え、
     前記吹出部は、
     作動気流となる気流を吹き出す少なくとも1つの主孔(14)と、
     前記主孔の出口下流において前記作動気流の速度境界層(BL)の厚み(δ)の中央部分(BLc)を前記主孔の中心線(CLm)から離すための離間構造(50)と、を含んで構成されている空気吹出装置。
    An air blowing device,
    It has a blowout part (10) that blows out airflow,
    The blowing section is
    At least one main hole (14) that blows out an airflow that is a working airflow;
    A separation structure (50) for separating the central portion (BLc) of the thickness (δ) of the velocity boundary layer (BL) of the working air flow from the center line (CLm) of the main air flow downstream of the outlet of the main hole; Air blower configured to include.
  2.  前記吹出部は、前記主孔から吹き出す気流を通過させる主流路(18)を含んでおり、
     前記離間構造は、前記主流路を形成する内壁面に沿って形成される速度境界層の厚みを小さくする層縮小構造(51、52)を含んでいる請求項1に記載の空気吹出装置。
    The blowout part includes a main flow path (18) that allows an airflow blown from the main hole to pass therethrough,
    The air blowing device according to claim 1, wherein the separation structure includes a layer contraction structure (51, 52) for reducing a thickness of a velocity boundary layer formed along an inner wall surface forming the main flow path.
  3.  前記主流路には、前記層縮小構造として前記主流路を流れる気流を縮流させる構造物(51)が設けられている請求項2に記載の空気吹出装置。 The air blowing device according to claim 2, wherein the main channel is provided with a structure (51) for contracting an airflow flowing through the main channel as the layer reducing structure.
  4.  前記主流路を形成する内壁面(181)には、前記主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部(183)が含まれており、
     前記構造物は、前記主流路を流れる気流の流れ方向の下流側に位置する下流側端部(512)が、前記縮流形状部のうち前記主流路を流れる気流の流れ方向の下流側に位置する下流端(183b)よりも上流側に位置付けられている請求項3に記載の空気吹出装置。
    The inner wall surface (181) forming the main flow path includes a contracted flow shape portion (183) for reducing the flow path cross-sectional area of the main flow path from the upstream side to the downstream side in the airflow direction. ,
    In the structure, the downstream end (512) located on the downstream side in the flow direction of the airflow flowing in the main flow path is located on the downstream side in the flow direction of the airflow flowing in the main flow path among the contracted flow shape portions. The air blowing device according to claim 3, wherein the air blowing device is positioned upstream of the downstream end (183b).
  5.  前記主流路を形成する内壁面(181)には、前記主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部(183)が含まれており、
     前記構造物は、前記主流路を流れる気流の流れ方向の上流側に位置する上流側端部(511)が、前記縮流形状部のうち前記主流路を流れる気流の流れ方向の上流側に位置する上流端(183a)よりも下流側に位置付けられている請求項3に記載の空気吹出装置。
    The inner wall surface (181) forming the main flow path includes a contracted flow shape portion (183) for reducing the flow path cross-sectional area of the main flow path from the upstream side to the downstream side in the airflow direction. ,
    In the structure, an upstream end portion (511) located on the upstream side in the flow direction of the airflow flowing through the main flow path is located on the upstream side in the flow direction of the airflow flowing through the main flow path in the contracted flow shape portion. The air blowing device according to claim 3, wherein the air blowing device is positioned downstream of the upstream end (183a).
  6.  前記主流路を形成する内壁面(181)には、前記主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部(183)が含まれており、
     前記構造物は、前記主流路を流れる気流の流れ方向の上流側に位置する上流側端部(511)が、前記縮流形状部のうち前記主流路を流れる気流の流れ方向の上流側に位置する上流端(183a)よりも下流側に位置付けられるとともに、前記主流路を流れる気流の流れ方向の下流側に位置する下流側端部(512)が、前記縮流形状部のうち前記主流路を流れる気流の流れ方向の下流側に位置する下流端(183b)よりも上流側に位置付けられている請求項3に記載の空気吹出装置。
    The inner wall surface (181) forming the main flow path includes a contracted flow shape portion (183) for reducing the flow path cross-sectional area of the main flow path from the upstream side to the downstream side in the airflow direction. ,
    In the structure, an upstream end portion (511) located on the upstream side in the flow direction of the airflow flowing through the main flow path is located on the upstream side in the flow direction of the airflow flowing through the main flow path in the contracted flow shape portion. The downstream end (512) positioned downstream of the upstream end (183a) and positioned downstream in the flow direction of the airflow flowing through the main flow path includes the main flow path of the contracted flow shape section. The air blowing device according to claim 3, wherein the air blowing device is positioned upstream of a downstream end (183b) positioned downstream in the flow direction of the flowing airflow.
  7.  前記構造物は、前記主流路を流れる気流の流れ方向に沿った断面形状が流線型形状となっている請求項3ないし6のいずれか1つに記載の空気吹出装置。 The air blowing device according to any one of claims 3 to 6, wherein the structure has a streamlined cross-sectional shape along a flow direction of the airflow flowing through the main flow path.
  8.  前記構造物は、前記主流路を流れる気流の流れ方向の上流側に位置する上流側端部(511)に、縦渦を発生させる凹凸状の縦渦発生機構(53)が設けられている請求項3ないし7のいずれか1つに記載の空気吹出装置。 The structure is provided with an uneven vertical vortex generating mechanism (53) for generating vertical vortices at an upstream end (511) located upstream in the flow direction of the airflow flowing through the main flow path. Item 8. The air blowing device according to any one of Items 3 to 7.
  9.  前記構造物は、前記主流路を流れる気流の流れ方向の下流側に位置する下流側端部(512)が、前記主孔から外部に突き出ないように前記主流路の内側に配置されている請求項3ないし8のいずれか1つに記載の空気吹出装置。 The said structure is arrange | positioned inside the said main flow path so that the downstream end part (512) located in the downstream of the flow direction of the airflow which flows through the said main flow path does not protrude outside from the said main hole. Item 9. The air blowing device according to any one of Items 3 to 8.
  10.  前記主流路の少なくとも一部には、前記層縮小構造として前記主流路における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部(52)が設けられている請求項2ないし9のいずれか1つに記載の空気吹出装置。 10. At least a part of the main flow path is provided with a concavo-convex part (52) in which concave parts and convex parts are alternately arranged along the air flow direction in the main flow path as the layer reducing structure. The air blowing apparatus as described in any one of these.
  11.  前記主流路には、前記層縮小構造として前記主孔の開口面積よりも断面積が大きい拡大部(180)が設けられている請求項2ないし10のいずれか1つに記載の空気吹出装置。 The air blowing device according to any one of claims 2 to 10, wherein the main channel is provided with an enlarged portion (180) having a cross-sectional area larger than an opening area of the main hole as the layer reducing structure.
  12.  前記主孔は、前記主孔の内壁面(141)が気流の流れ方向の下流側に向かって前記主孔の中心線から離れるように拡大されている請求項1ないし11のいずれか1つに記載の空気吹出装置。 The main hole is enlarged as claimed in any one of claims 1 to 11, wherein the inner wall surface (141) of the main hole is enlarged so as to be separated from the center line of the main hole toward the downstream side in the air flow direction. The air blowing device described.
PCT/JP2019/014658 2018-04-11 2019-04-02 Air discharge device WO2019198572A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019001901.5T DE112019001901T5 (en) 2018-04-11 2019-04-02 Air ejector
CN201980024754.1A CN112020627A (en) 2018-04-11 2019-04-02 Air blowing device
US17/065,045 US12005761B2 (en) 2018-04-11 2020-10-07 Air discharge device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-076325 2018-04-11
JP2018076325 2018-04-11
JP2018199383 2018-10-23
JP2018-199383 2018-10-23
JP2018-240806 2018-12-25
JP2018240806A JP7255169B2 (en) 2018-04-11 2018-12-25 air blower

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/065,045 Continuation US12005761B2 (en) 2018-04-11 2020-10-07 Air discharge device

Publications (1)

Publication Number Publication Date
WO2019198572A1 true WO2019198572A1 (en) 2019-10-17

Family

ID=68163718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014658 WO2019198572A1 (en) 2018-04-11 2019-04-02 Air discharge device

Country Status (1)

Country Link
WO (1) WO2019198572A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573449U (en) * 1992-03-03 1993-10-08 和光化成工業株式会社 Register air outlet structure
US20130115868A1 (en) * 2011-11-03 2013-05-09 Gulfstream Aerospace Corporation Ventilation system and method of assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573449U (en) * 1992-03-03 1993-10-08 和光化成工業株式会社 Register air outlet structure
US20130115868A1 (en) * 2011-11-03 2013-05-09 Gulfstream Aerospace Corporation Ventilation system and method of assembly

Similar Documents

Publication Publication Date Title
JP6396945B2 (en) Ventilation duct for ventilating the passenger compartment of a car
US11255346B2 (en) Fan and inlet guide grid for a fan
US12005761B2 (en) Air discharge device
JP6477970B2 (en) Air blowing device
US10195923B2 (en) Vehicle air conditioning unit
CN110271658B (en) Leading edge structure for an airflow control system of an aircraft
CN107021207B (en) Aircraft flow device for passive boundary layer suction
WO2019198571A1 (en) Air discharge device
WO2019216156A1 (en) Fluid discharge apparatus
CN111989525A (en) Air blowing device
WO2016189793A1 (en) Flap and aircraft
WO2019198572A1 (en) Air discharge device
KR20200122307A (en) Device for reducing drag force of transverse duct outlet flow
JP2007331743A (en) Air-blowing duct for defroster
DE112019001888T5 (en) Air ejector
WO2022228558A1 (en) Air door of air conditioning module and air conditioning module
US20210053683A1 (en) Vertical-tailless aircraft
US20170152023A1 (en) Simplified fluidic oscillator for controlling aerodynamics of an aircraft
JP6974125B2 (en) Air blower
JP5849869B2 (en) Blower
JPH11141965A (en) Air guide structure for bent part of air duct
JP2019081410A (en) register
CN210478337U (en) Air conditioner divides wind ware, air conditioner wind-guiding subassembly and vehicle
JP6781290B2 (en) Thin register for air conditioning
JP7457535B2 (en) register

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785134

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19785134

Country of ref document: EP

Kind code of ref document: A1