WO2019198457A1 - Fuel battery cell and fuel cell stack - Google Patents

Fuel battery cell and fuel cell stack Download PDF

Info

Publication number
WO2019198457A1
WO2019198457A1 PCT/JP2019/011953 JP2019011953W WO2019198457A1 WO 2019198457 A1 WO2019198457 A1 WO 2019198457A1 JP 2019011953 W JP2019011953 W JP 2019011953W WO 2019198457 A1 WO2019198457 A1 WO 2019198457A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
separator
fuel
battery cell
diffusion layer
Prior art date
Application number
PCT/JP2019/011953
Other languages
French (fr)
Japanese (ja)
Inventor
良文 田口
勉 川島
努 藤井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019198457A1 publication Critical patent/WO2019198457A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell and a fuel cell stack.
  • the fuel cell stack has a structure in which fuel cell cells (hereinafter referred to as cells) are stacked.
  • the cell includes a polymer electrolyte membrane, a membrane electrode assembly having a pair of electrodes that sandwich the polymer electrolyte membrane, and a pair of separators that sandwich the membrane electrode assembly.
  • the polymer electrolyte membrane is composed of an electrolyte having a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group or a hydrocarbon resin ion exchange membrane.
  • the electrode is composed of a catalyst layer that is located on the electrolyte membrane side and promotes the oxidation-reduction reaction, and a gas diffusion layer that is located outside the catalyst layer and has air permeability and conductivity.
  • the catalyst layer includes, for example, platinum or an alloy of platinum and ruthenium.
  • the separator is a conductive member for preventing the fuel gas supplied to one fuel electrode of the electrode from being mixed with the oxidant gas supplied to the other air electrode of the electrode.
  • the cell is further provided with a seal member for keeping the gas tightness of the fuel gas and the oxidant gas, and an outer peripheral member for reinforcing the outer peripheral portion of the membrane electrode assembly as required.
  • the fuel cell stack is electrically connected in series by stacking the cells as described above.
  • the fuel cell stack further includes an end plate that sandwiches the cell stack. Further, in order to apply a uniform load to the cell stack, a spring module or an elastic member may be disposed between the cell stack and the end plate.
  • the fuel gas flow path, the oxidant gas flow path, and the refrigerant flow path are generally formed in the separator by compression molding, pressing, welding, or the like.
  • a flow path may be formed in the outer peripheral member of the membrane electrode assembly.
  • Patent Document 1 discloses a membrane electrode assembly in which carbon material protrusions are formed on a metal plate.
  • Patent Document 2 discloses a membrane electrode assembly in which a plate that is easy to press is manufactured by thermal spraying and different flow channel shapes are formed on the front and back sides.
  • Patent Document 3 discloses a structure in which a flow path is formed in a gas diffusion layer on a membrane electrode assembly.
  • Patent Document 1 discloses that the degree of freedom in channel design is improved by forming carbon protrusions while reducing the thickness and increasing the strength by using a metal plate for the membrane electrode assembly. ing.
  • one separator is composed of a plurality of layers, there is a problem that the resistance value increases due to the contact resistance at the interface of the plurality of layers.
  • Patent Document 2 discloses that, as a membrane electrode assembly, a plate that can be easily pressed by thermal spraying is formed to form channels having different shapes on the front and back sides. With this configuration, since there is no interface in the separator as in Patent Document 1, the resistance value can be reduced. However, when the flow paths are formed on the front and back sides of the membrane electrode assembly, the difference in thickness between the thin part and the thick part becomes large, and the deep groove in which the thickness of the thick part is more than three times that of the thin part. It is difficult to perform processing with low cost and high accuracy. Therefore, it has the subject that a thin part cannot be made thin.
  • Patent Document 3 discloses that a flow path is formed in a gas diffusion layer of a membrane electrode assembly.
  • a flow path is formed in a gas diffusion layer of a membrane electrode assembly.
  • the gas diffusion layer is in contact with the polymer electrolyte membrane via the electrode. Therefore, for example, when the rib of the flow path formed in the gas diffusion layer on the cathode electrode side faces the groove of the flow path formed in the gas diffusion layer on the anode electrode side, the polymer electrolyte membrane buckles, There exists a subject that durability of a cell falls.
  • An object of the present invention is to provide a fuel cell and a fuel cell stack that can achieve a reduction in thickness, resistance, and durability.
  • a fuel cell according to an aspect of the present invention is a fuel cell formed by sandwiching a membrane electrode assembly between a first separator and a second separator, and the membrane electrode assembly includes the first separator and the fuel cell.
  • a first gas diffusion layer provided with a first flow path is provided on the first opposing surface, and a second gas diffusion layer having a substantially flat surface is provided on the second surface opposite to the second separator.
  • a surface facing the first surface is a substantially flat surface
  • the second separator has a second flow path on a surface facing the second surface.
  • the fuel cell stack according to one aspect of the present invention is formed by stacking a plurality of fuel cells according to one aspect of the present invention.
  • FIG. 1 is a plan view of a fuel cell according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is an exploded cross-sectional view of FIG.
  • FIG. 4 is a plan view of the membrane electrode assembly according to Embodiment 1 of the present invention.
  • FIG. 5 is a plan view of the second separator according to Embodiment 1 of the present invention.
  • 6 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 7 is an enlarged view of a portion C shown in FIG.
  • FIG. 8 is a diagram showing another example of the BB cross section of FIG.
  • FIG. 9 is a diagram showing another example of the BB cross section of FIG. FIG.
  • FIG. 10 is a plan view showing another example of the fuel cell according to Embodiment 1 of the present invention.
  • FIG. 11 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 12 is a cross-sectional view corresponding to BB in FIG. 1, showing a configuration example of the fuel cell according to Embodiment 2 of the present invention.
  • FIG. 13 is a cross-sectional view corresponding to BB in FIG. 1, showing another configuration example of the fuel cell according to Embodiment 2 of the present invention.
  • FIG. 14 is a plan view showing another configuration example of the flow path of the fuel battery cell according to Embodiment 2 of the present invention.
  • FIG. 15 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 16 is a diagram schematically illustrating the definition of the main flow direction with respect to the gas diffusion layer of one pole.
  • FIG. 17 is a plan view of the first separator when the two main flow directions are the same.
  • FIG. 1 is a plan view of the fuel cell 100 of the present embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is an exploded cross-sectional view of FIG.
  • FIG. 4 is a plan view of the membrane electrode assembly 130 shown in FIG.
  • FIG. 5 is a plan view of the second separator 120 of the other pole.
  • 6 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 7 is a partially enlarged view of FIG. 8 and 9 are diagrams showing another example of the BB cross section of FIG.
  • the fuel cell 100 includes a separator on one electrode (hereinafter referred to as a first separator) 110, a separator on the other electrode (hereinafter referred to as a second separator) 120, and a membrane electrode joint It has a body 130.
  • the 1st separator 110 and the 2nd separator 120 are arrange
  • the membrane electrode assembly 130, the first separator 110, and the second separator 120 are each provided with a refrigerant supply / discharge port 140 that is a hole penetrating in the stacking direction (vertical direction in FIG. 2). It has been.
  • the first separator 110 is provided with a fuel gas supply / discharge port 141 and an oxidant gas supply / discharge port 142.
  • the fuel gas supply / discharge port 141 and the oxidant gas supply / discharge port 142 are also holes that penetrate in the stacking direction.
  • Each of the membrane electrode assembly 130 and the second separator 120 is also provided with a fuel gas supply / exhaust port 141 and an oxidant gas supply / exhaust port 142 as in the first separator 110 shown in FIG. 1 (FIG. 5). reference).
  • two fuel gas supply / discharge ports 141 are provided.
  • the fuel gas supplied from one fuel gas supply / exhaust port 141 passes through the first flow path 132 (see FIG. 2) formed between the first separator 110 and the membrane electrode assembly 130, and the membrane electrode assembly 130. Supplied to one side of the. Thereafter, the fuel gas is discharged from the other fuel gas supply / exhaust port 141.
  • the number of fuel gas supply / exhaust ports 141 is not limited to two.
  • two oxidant gas supply / exhaust ports 142 are provided.
  • the oxidant gas supplied from one oxidant gas supply / exhaust port 142 passes through the second channel 121 (see FIG. 2) formed between the second separator 120 and the membrane electrode assembly 130, and is joined to the membrane electrode. Supplied to the other side of the body 130. Thereafter, the oxidant gas is discharged from the other oxidant gas supply / exhaust port 142.
  • the number of oxidant gas supply / exhaust ports 142 is not limited to two.
  • the fuel battery cell 100 generates electric power through the reaction between the fuel gas and the oxidant gas via the membrane electrode assembly 130, and generates current through the first separator 110 and the second separator 120 made of a conductive material. It has a structure that can be taken out. Furthermore, when the several fuel battery cell 100 is laminated
  • the membrane electrode assembly 130 includes a gas diffusion layer 131 on one pole, a gas diffusion layer 133 on the other pole, a polymer electrolyte membrane 135, and an outer peripheral member 136.
  • the gas diffusion layer 131 (an example of the first gas diffusion layer) is provided on one surface (the upper surface in the drawing) of the polymer electrolyte membrane 135.
  • the gas diffusion layer 133 (an example of the second gas diffusion layer) is provided on the other surface (the lower surface in the drawing) of the polymer electrolyte membrane 135.
  • catalyst electrodes (not shown) are provided on both surfaces of the polymer electrolyte membrane 135.
  • a first flow path 132 through which fuel gas flows is formed on the surface in contact with the first separator 110.
  • the surface 134 in contact with the second separator 120 is a substantially flat surface.
  • the approximate plane is defined as a surface having no unevenness with a depth of 30% or more with respect to the thickness of the gas diffusion layer 133.
  • the surface of the substantially flat surface is a porous shape composed of carbon particles, carbon fibers, resin, and the like.
  • the composition of the gas diffusion layers 131 and 133 is not particularly limited, but is preferably composed mainly of carbon particles and a binder resin. If it is the composition, the 1st flow path 132 can be formed easily by press work, printing, etc.
  • the groove width, rib width, and groove depth of the first flow path 132 are not particularly limited, and may be any size.
  • the groove width is desirably 0.2 mm or more and 0.5 mm or less.
  • the groove width is larger than 0.5 mm, the deformation of the gas diffusion layer 131 becomes large during the lamination fastening (details will be described later). Thereby, a part of 1st flow path 132 will be obstruct
  • the groove width is less than 0.2 mm, it is difficult to discharge condensed water.
  • laminate fastening means that the first separator 110, the second separator 120, and the membrane electrode assembly 130 are laminated and fastened, and may be referred to as “assembly of fuel cell”. Or it may say that a plurality of fuel cells 100 are stacked and fastened, and may be referred to as “assembly of fuel cell stack”.
  • the shape of the first flow path 132 may be freely selected from straight (straight) or serpentine (meandering).
  • a branching part or a merging part may be formed in the first flow path 132.
  • the first flow path 132 since the first flow path 132 is formed only in the gas diffusion layer 131, the first flow path 132 does not face the polymer electrolyte membrane 135. . Therefore, buckling deformation of the polymer electrolyte membrane 135 can be prevented even when the position of the first flow path 132 is shifted beyond the groove width during lamination fastening.
  • a frame-shaped outer peripheral member 136 made of an insulating material sandwiches both surfaces of the polymer electrolyte membrane 135 at the outer peripheral portion in the surface direction of the polymer electrolyte membrane 135. It is provided as follows.
  • the outer peripheral member 136 and the polymer electrolyte membrane 135 are joined by adhesion, pressure bonding, or molding via an adhesive (not shown).
  • the joining is not necessarily required, and the outer peripheral member 136 may simply hold the polymer electrolyte membrane 135.
  • a sealing material (not shown) may be provided between the outer peripheral member 136 and the polymer electrolyte membrane 135.
  • the outer peripheral member 136 is formed with a refrigerant supply / discharge port 140, a fuel gas supply / discharge port 141, and an oxidant gas supply / discharge port 142. Further, a first connection channel 137 is formed in the outer peripheral member 136.
  • the first connection channel 137 is a channel that connects the first channel 132 and the fuel gas supply / exhaust port 141 (see FIGS. 4 and 6).
  • a plurality of first protrusions 138 are formed inside the first connection flow path 137 in order to support a load at the time of stacking and suppress deformation.
  • the first convex portion 138 shown in FIG. 4 is, for example, a cylindrical rib as shown in FIGS. 6 and 7, but the shape is not limited to the cylindrical shape, and may be other shapes such as a rectangular column or a triangular column. There may be.
  • the number of the 1st convex parts 138 is not limited to the number shown in FIG. Note that the first convex portion 138 may not be provided.
  • the portion 112 in contact with the gas diffusion layer 131 is substantially planar.
  • the approximate plane is defined as a surface having no unevenness with a depth of 30% or more with respect to the thickness of the thin portion of the first separator 110.
  • the surface treatment of the first separator 110 is not particularly limited. However, the surface arithmetic average roughness of the portion 112 in contact with the gas diffusion layer is desirably 2 ⁇ m or more and 30 ⁇ m or less.
  • the first separator 110 can be bitten into the membrane electrode assembly 130 while compressing the gas diffusion layer 131 and maintaining contact with the gas diffusion layer 131 at the time of lamination fastening. Thereby, the contact surface area of the 1st separator 110 and the membrane electrode assembly 130 can be increased. Therefore, contact resistance can be reduced.
  • the first separator 110 has a third flow path 111 through which a coolant flows on the back surface of the surface in contact with the membrane electrode assembly 130 (the surface including the portion 112 in contact with the gas diffusion layer) (FIG. 1). (See FIGS. 3, 6, and 7).
  • the first separator 110 is formed with a refrigerant supply / discharge port 140, a fuel gas supply / discharge port 141, and an oxidant gas supply / discharge port 142.
  • the third flow path 111 and the refrigerant supply / discharge port 140 communicate with each other.
  • the groove width, rib width, and groove depth of the third flow path 111 are not particularly limited. Further, the shape of the third channel 111 may be freely selected from straight (straight) or serpentine (meandering). Further, in the third flow path 111, a branching part or a merging part may be formed. Moreover, the 3rd flow path 111 and the refrigerant
  • the composition of the first separator 110 and the processing method of the first separator 110 are not particularly limited. Since the back surface of the formation surface of the third flow path 111 is a substantially flat surface, the first separator 110 can be easily manufactured by a processing method such as molding or thermal spraying regardless of the material. Therefore, a metal material can be used as the material of the first separator 110.
  • ⁇ Second separator 120> In the second separator 120, a second flow path 121 through which an oxidant gas flows is formed in a portion in contact with the membrane electrode assembly 130 in a portion in contact with the gas diffusion layer 133 (FIGS. 2, 3, and 5). (See FIG. 7).
  • the groove width, rib width, and groove depth of the second flow path 121 are not particularly limited and may be any size. However, the groove width is desirably 0.2 mm or more and 0.5 mm or less. When the groove width is larger than 0.5 mm, the deformation of the gas diffusion layer 133 becomes large at the time of stacking. Thereby, a part of 2nd flow path 121 will be obstruct
  • the shape of the second flow path 121 may be freely selected from straight (straight) or serpentine (meandering). Further, a branching part or a merging part may be formed in the second flow path 121.
  • the back surface portion 122 (an example of a substantially flat surface portion) of the surface in contact with the membrane electrode assembly 130 is a substantially flat surface.
  • This portion 122 corresponds to a portion in contact with the gas diffusion layer 133 on the surface in contact with the membrane electrode assembly 130.
  • the approximate plane is defined as a surface having no unevenness with a depth of 30% or more with respect to the thickness of the thin portion of the second separator 120.
  • the surface treatment of the second separator 120 is not particularly limited. However, the surface arithmetic average roughness of the portion 122 is preferably 2 ⁇ m or more and 30 ⁇ m or less.
  • the second separator 120 can be bitten into the membrane electrode assembly 130 while compressing the gas diffusion layer 133 and maintaining contact with the gas diffusion layer 133 at the time of stacking. Thereby, the contact surface area of the 2nd separator 120 and the membrane electrode assembly 130 can be increased. Therefore, contact resistance can be reduced.
  • the second separator 120 has a refrigerant supply / discharge port 140, a fuel gas supply / discharge port 141, and an oxidant gas supply / discharge port 142.
  • the second separator 120 is formed with a second connection channel 123.
  • the second connection channel 123 is a channel that connects the second channel 121 and the oxidant gas supply / exhaust port 142 (see FIGS. 5 to 7).
  • a plurality of third convex portions 124 are formed inside the second connection flow path 123 in order to support a load at the time of stacking and suppress deformation.
  • the third convex portion 124 shown in FIG. 5 is, for example, a cylindrical rib as shown in FIGS. 6 and 7, but the shape is not limited to the cylindrical shape, and may be other shapes such as a rectangular column or a triangular column. There may be.
  • the number of the 3rd convex parts 124 is not limited to the number shown in FIG. Note that the third convex portion 124 may be omitted.
  • the entire back surface facing the surface of the second separator 120 in contact with the gas diffusion layer 133 may be a substantially flat surface, or only the portion 122 of the back surface may be a generally flat surface. In the latter case, a flow path or the like may be formed in a portion that does not overlap the facing surface portion of the second connection flow path 123 (see FIG. 5) in the outer peripheral portion of the portion 122.
  • the composition of the second separator 120 and the processing method of the second separator 120 are not particularly limited. Since the back surface of the formation surface of the second channel 121 is a substantially flat surface, the second separator 120 can be easily manufactured by a processing method such as molding or thermal spraying regardless of the material. Therefore, a metal material can be used as the material of the second separator 120.
  • the fuel cell 100 is formed by laminating a first separator 110, a membrane electrode assembly 130, and a second separator 120 (see FIG. 2).
  • the outer peripheral member 136 is composed of an elastic body (for example, rubber) or a film-like adhesive sheet.
  • the outer peripheral member 136 has a structure that prevents leakage of refrigerant, fuel gas, and oxidant gas without using another sealing material or adhesive.
  • a sealing material or an adhesive may be provided on a part of the surface in contact with each of the first separator 110 and the second separator 120. Further, a groove for disposing the sealing material or the adhesive may be formed in the first separator 110, the second separator 120, or the outer peripheral member 136.
  • first flow path 132 is connected to the fuel gas supply / discharge port 141 and the second flow path 121 is connected to the oxidant gas supply / discharge port 142. It is not limited.
  • the first flow path 132 may be connected to the oxidant gas supply / discharge port 142, and the second flow path 121 may be connected to the fuel gas supply / discharge port 141.
  • FIG. 6 shows an example in which the main flow directions of the third flow path 111 and the first flow path 132 are substantially orthogonal, and the first flow path 132 and the second flow path 121 are parallel. It is not limited to this.
  • the main flow direction of each flow path may be the same direction or may be different.
  • FIG. 8 shows a case where the main flow directions of the third flow path 111, the first flow path 132, and the second flow path 121 are configured in parallel.
  • the refrigerant supply / discharge port 140, the fuel gas supply / discharge port 141, and the oxidant gas supply / discharge port 142 are arranged on extensions of the respective flow paths in the main flow direction.
  • the outer peripheral member 136 may be formed with a recess 123 b that constitutes a part or all of the second connection flow path 123. Furthermore, you may form the 3rd convex part 124 inside the recessed part 123b as needed.
  • the fuel cell 100 has a structure (so-called internal manifold structure) in which the refrigerant supply / exhaust port 140, the fuel gas supply / exhaust port 141, and the oxidant gas supply / exhaust port 142 are provided.
  • an external manifold structure may be used. A part or all of these supply / discharge ports are structured as separate parts (see FIGS. 10 and 11).
  • the fuel battery cell 100 is formed by sandwiching the membrane electrode assembly 130 between the first separator 110 and the second separator 120.
  • the membrane electrode assembly 130 has a gas diffusion layer 131 provided with a concavo-convex portion (first flow path 132) on the first surface facing the first separator 110.
  • the membrane electrode assembly 130 has an outer peripheral member 136 provided with an uneven portion (first connection channel 137, first convex portion 138) on the outer peripheral portion thereof.
  • the membrane electrode assembly 130 has a substantially flat gas diffusion layer 133 on the second surface opposite to the second separator 120, which is the back surface of the first surface.
  • the first separator 110 has a substantially flat surface on the surface facing the first surface of the membrane electrode assembly 130.
  • the second separator 120 has a concavo-convex portion (a second flow channel 121, a second connection flow channel 123, and a third convex portion 124) on a surface facing the second surface of the membrane electrode assembly 130.
  • the back surface (the surface in contact with the membrane electrode assembly 130) on which the third channel 111 is formed is a substantially flat surface, and no channel is formed.
  • the above configuration is not a configuration in which the flow paths are formed on both surfaces of the first separator 110 and the positions of the flow paths overlap. Therefore, in the 1st separator 110, the difference of the thickness of a thin part and a thick part can be made small.
  • the first separator 110 can be easily manufactured by a method such as molding or thermal spraying regardless of the material, the first separator 110 can be made of a metal material. As a result, the resistance and thickness of the fuel cell 100 can be reduced. Moreover, the improvement of the freedom degree of the design of a flow path and the reduction of the manufacturing cost of the fuel cell 100 are also realizable.
  • the back surface of the second separator 120 on which the second flow channel 121 is formed (the surface in contact with the membrane electrode assembly 130) is a substantially flat surface, and no flow channel is formed.
  • the above configuration is not a configuration in which the flow paths are formed on both surfaces of the second separator 120 and the positions of the flow paths overlap. Therefore, in the 2nd separator 120, the difference of the thickness of a thin part and a thick part can be made small.
  • the second separator 120 can be easily manufactured regardless of the material by a method such as molding or thermal spraying, the second separator 120 can be made of a metal material. As a result, the resistance and thickness of the fuel cell 100 can be reduced. Moreover, the improvement of the freedom degree of the design of a flow path and the reduction of the manufacturing cost of the fuel cell 100 are also realizable.
  • the first flow path 132 is provided only in the gas diffusion layer 131 on one surface (the surface in contact with the first separator 110), and on the other surface. Is not provided with a flow path. Therefore, buckling deformation of the polymer electrolyte membrane 135 due to misalignment of the flow path or the like can be prevented during the lamination fastening. As a result, high durability of the fuel battery cell 100 can be realized.
  • FIG. 12 shows a configuration example of the fuel battery cell 200 of the present embodiment, and is a cross-sectional view corresponding to BB in FIG.
  • FIG. 13 is a cross-sectional view corresponding to BB in FIG. 1, showing another configuration example of the fuel battery cell 200 of the present embodiment.
  • FIG. 14 is a plan view showing another example of the flow path configuration of the fuel battery cell 200 of the present embodiment.
  • FIG. 15 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 16 is a diagram schematically illustrating the definition of the main flow direction with respect to the gas diffusion layer of one pole.
  • FIG. 17 is a plan view of the first separator 110 when the two main flow directions are the same.
  • the main distribution directions D2 and D2 ′ are different.
  • the main flow direction D1 is defined as the normal direction of the side of the edge 101 (see FIG. 1) of the electrode region and toward the outer periphery of the fuel cell 100.
  • the edge 101 (FIG. 1) of the electrode region is a projected portion in the stacking direction of the edge of the gas diffusion layer 131 (FIG. 2).
  • the definition of the main flow directions D2 and D2 'with respect to the gas diffusion layer 131 will be described with reference to FIG. As shown in FIG. 16, even if the first flow path 132 inside the edge 101 of the electrode region is formed in a bent shape or a meandering shape, it is the direction as a whole.
  • the definitions of the main distribution directions D1 and D1 ' are the same as described above.
  • the main flow directions D1 and D1 'and the main flow directions D2 and D2' may be opposite to each other as shown in FIG. 12, but may be the same or orthogonal. It suffices if the directions of the main flow directions D2 and D2 'are different from both of the main flow directions D1 and D1'.
  • a fourth flow path 137b is formed relative to the first connection flow path 137 (the flow path formed in the outer peripheral member 136 of the membrane electrode assembly 130). ing.
  • the fourth flow path 137b constitutes part or all of the first connection flow path 137.
  • the fourth flow path 137b is formed to extend along the edge 101 of the electrode region by changing the directions of the main flow directions D1, D1 ′ and the main flow directions D2, D2 ′, the third flow direction It is possible to avoid the formation of the fourth flow path 137b so as to overlap the back surface side of the portion where the flow path 111 is formed.
  • the fourth flow path 137b formed in this way can reduce the pressure loss of the gas flowing through the first connection flow path 137 and improve the performance during power generation.
  • the fourth flow path 137b is provided at a position that does not overlap the third flow path 111 when viewed from the stacking direction, and functions as part or all of the first connection flow path 137.
  • the position of the fourth flow path 137b may be connected to the first connection flow path 137 instead of being directly connected to the first flow path 132 as shown in FIG. It may be.
  • the main flow direction D1 of the third flow path 111 and the main flow direction D2 of the first flow path 132 are in the same direction.
  • the fourth flow path 137b is also formed at a position facing a part of the third flow path 111. It will be formed. In that portion, the difference in thickness between the thin portion and the thick portion of the first separator 110 becomes large.
  • the fourth flow path 137b is formed on the back side of the surface shown in FIG.
  • the outer peripheral member 136 may be formed with a concave portion 123 b that constitutes a part or all of the second connection flow path 123. Furthermore, as shown in FIG. 13, the third convex portion 124 may be formed inside the concave portion 123 b as necessary.
  • the entire back surface of the surface in contact with the gas diffusion layer 133 may be a substantially flat surface, or only the portion 122 of the back surface may be formed. It may be a substantially flat surface. In the latter case, a channel or the like may be formed in a portion that does not overlap with the facing surface portion of the second connection channel 123 in the outer peripheral portion of the portion 122.
  • each channel of the present embodiment may freely select straight (straight) or serpentine (meandering). Further, a branching part or a merging part may be formed in each flow path.
  • each flow path may be the configuration shown in FIGS.
  • FIG. 14 is a plan view of the first separator 110 showing another configuration example of the flow path
  • FIG. 15 is a cross-sectional view taken along the line AA of FIG.
  • the first flow path 132 formed in the gas diffusion layer 131 of the membrane electrode assembly 130 communicates with the oxidant gas supply / discharge port 142.
  • the main flow directions D1 and D1 'of the third flow path 111 and the main flow directions D2 and D2' of the first flow path 132 are different from each other.
  • the fuel cell 100 has a so-called internal manifold structure in which a refrigerant supply / discharge port 140, a fuel gas supply / discharge port 141, and an oxidant gas supply / discharge port 142 are provided.
  • a part or all of the supply / discharge port may be configured as a separate part so-called external manifold structure.
  • the fuel cell 200 has an internal manifold structure in which the refrigerant supply / discharge port 140, the fuel gas supply / discharge port 141, and the oxidant gas supply / discharge port 142 are provided.
  • an external manifold structure may be used.
  • a fuel cell stack can be formed by stacking a plurality of the fuel cell cells 200 described above.
  • the third flow path 111 is not formed on the opposing surface of the portion where the fourth flow path 137b is processed, and there is a difference in thickness between the thin part and the thick part. It has a small shape. Therefore, even if the 4th channel 137b is provided, the 1st separator 110 can be manufactured easily. Moreover, since the cross-sectional area of the 1st connection flow path 137 can be expanded by the 4th flow path 137b, the pressure loss of gas can be reduced. As a result, the performance during power generation can be improved.
  • the present invention can be applied to a stationary fuel cell or a mobile fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention uses a fuel battery cell formed by sandwiching a membrane electrode conjugant between a first separator and a second separator. The membrane electrode conjugant has a first gas diffusion layer provided with a first flow passage on a first surface facing the first separator and has a substantially planar second gas diffusion layer on a second surface facing the second separator. In the first separator, a surface facing the first surface is substantially planar. The second separator has a second flow passage on a surface facing the second surface.

Description

燃料電池セルおよび燃料電池スタックFuel cell and fuel cell stack
 本発明は、燃料電池セルおよび燃料電池スタックに関する。 The present invention relates to a fuel cell and a fuel cell stack.
 燃料電池スタックは、燃料電池セル(以下、セルという)を積層した構造を有する。セルは、高分子電解質膜と、その高分子電解質膜を挟む一対の電極を有する膜電極接合体と、その膜電極接合体を挟む一対のセパレータと、を備える。 The fuel cell stack has a structure in which fuel cell cells (hereinafter referred to as cells) are stacked. The cell includes a polymer electrolyte membrane, a membrane electrode assembly having a pair of electrodes that sandwich the polymer electrolyte membrane, and a pair of separators that sandwich the membrane electrode assembly.
 高分子電解質膜は、スルホン酸基を有するフッ素樹脂系イオン交換膜や、炭化水素樹脂系イオン交換膜のような高分子イオン交換膜などを有する電解質から構成される。 The polymer electrolyte membrane is composed of an electrolyte having a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group or a hydrocarbon resin ion exchange membrane.
 電極は、電解質膜側に位置し、酸化還元反応を促進させる触媒層と、触媒層の外側に位置し、通気性および導電性を有するガス拡散層とから構成される。触媒層には、例えば、白金、または、白金とルテニウムとの合金などが含まれる。 The electrode is composed of a catalyst layer that is located on the electrolyte membrane side and promotes the oxidation-reduction reaction, and a gas diffusion layer that is located outside the catalyst layer and has air permeability and conductivity. The catalyst layer includes, for example, platinum or an alloy of platinum and ruthenium.
 セパレータは、電極の一方の燃料極に供給される燃料ガスと、電極の他方の空気極に供給される酸化剤ガスとが混ざらないようにするための導電性部材である。 The separator is a conductive member for preventing the fuel gas supplied to one fuel electrode of the electrode from being mixed with the oxidant gas supplied to the other air electrode of the electrode.
 セルには、さらに、燃料ガスおよび酸化剤ガスの気密を保つためのシール部材や、膜電極接合体の外周部を補強する外周部材が必要に応じて設けられる。 The cell is further provided with a seal member for keeping the gas tightness of the fuel gas and the oxidant gas, and an outer peripheral member for reinforcing the outer peripheral portion of the membrane electrode assembly as required.
 燃料電池スタックは、上述したようなセルを積層することで、電気的に直列に接続される。燃料電池スタックは、さらに、セルの積層体を挟むエンドプレートを有する。また、セルの積層体に均一な荷重を加えるために、セルの積層体とエンドプレートとの間に、スプリングモジュールまたは弾性部材を配置する場合もある。 The fuel cell stack is electrically connected in series by stacking the cells as described above. The fuel cell stack further includes an end plate that sandwiches the cell stack. Further, in order to apply a uniform load to the cell stack, a spring module or an elastic member may be disposed between the cell stack and the end plate.
 このような構成を有する燃料電池スタックのそれぞれのセルに、燃料ガス(水素を含む)および酸化剤ガス(酸素を含む)を供給することで、電気エネルギを継続的に取り出すことができる。そのために、セパレータには、一般的に、圧縮成形、プレス加工、溶接などによって、燃料ガス流路、酸化剤ガス流路、および冷媒流路が形成されている。また、膜電極接合体の外周部材に、流路を形成する場合もある。 Electrical energy can be continuously extracted by supplying fuel gas (including hydrogen) and oxidant gas (including oxygen) to each cell of the fuel cell stack having such a configuration. Therefore, the fuel gas flow path, the oxidant gas flow path, and the refrigerant flow path are generally formed in the separator by compression molding, pressing, welding, or the like. Moreover, a flow path may be formed in the outer peripheral member of the membrane electrode assembly.
 さらに、セパレータには、薄型化、低抵抗化、高耐久化などが求められている。このような要求を解決しようとする従来の燃料電池セルとして、例えば、特許文献1には、膜電極接合体として、金属板の上に炭素材料の凸条を形成したものが開示されている。また、特許文献2には、膜電極接合体として、溶射によりプレス容易な板を製造し、表裏で異なる流路形状を形成したものが開示されている。また、特許文献3には、膜電極接合体上のガス拡散層に流路を形成したものが開示されている。 Furthermore, the separator is required to be thin, low resistance, and high durability. As a conventional fuel cell that attempts to solve such a demand, for example, Patent Document 1 discloses a membrane electrode assembly in which carbon material protrusions are formed on a metal plate. Patent Document 2 discloses a membrane electrode assembly in which a plate that is easy to press is manufactured by thermal spraying and different flow channel shapes are formed on the front and back sides. Patent Document 3 discloses a structure in which a flow path is formed in a gas diffusion layer on a membrane electrode assembly.
特許第3534685号公報Japanese Patent No. 353485 特許第5980167号公報Japanese Patent No. 5980167 国際公開第2016/059747号International Publication No. 2016/059747
 特許文献1には、膜電極接合体に金属板を用いることで薄型化および高強度化を図りながら、カーボンの凸条を形成することにより、流路設計の自由度を向上させる旨が開示されている。しかしながら、1枚のセパレータを複数の層で構成するため、複数の層の界面における接触抵抗により、抵抗値が増大するという課題を有している。 Patent Document 1 discloses that the degree of freedom in channel design is improved by forming carbon protrusions while reducing the thickness and increasing the strength by using a metal plate for the membrane electrode assembly. ing. However, since one separator is composed of a plurality of layers, there is a problem that the resistance value increases due to the contact resistance at the interface of the plurality of layers.
 また、特許文献2には、膜電極接合体として、溶射によりプレス容易な板を形成することにより、表裏で異なる形状の流路を形成する旨が開示されている。この構成では、特許文献1のようなセパレータ内の界面がないため、抵抗値を低減することが可能である。しかし、膜電極接合体の表裏に流路を形成する際に、薄肉部と厚肉部の厚みの差が大きくなり、薄肉部に対して厚肉部の厚みが3倍以上となるような深溝加工を安価かつ高精度に行うことが困難である。そのため、薄肉部を薄くできないという課題を有している。 Further, Patent Document 2 discloses that, as a membrane electrode assembly, a plate that can be easily pressed by thermal spraying is formed to form channels having different shapes on the front and back sides. With this configuration, since there is no interface in the separator as in Patent Document 1, the resistance value can be reduced. However, when the flow paths are formed on the front and back sides of the membrane electrode assembly, the difference in thickness between the thin part and the thick part becomes large, and the deep groove in which the thickness of the thick part is more than three times that of the thin part. It is difficult to perform processing with low cost and high accuracy. Therefore, it has the subject that a thin part cannot be made thin.
 また、特許文献3には、膜電極接合体のガス拡散層に流路を形成する旨が開示されている。この構成では、電極部においてセパレータに深い溝の流路を形成する必要がないため、薄型、低抵抗のセパレータを実現できる。しかし、ガス拡散層は電極を介して高分子電解質膜と接している。そのため、例えば、カソード極側のガス拡散層に形成された流路のリブが、アノード極側のガス拡散層に形成された流路の溝と対向した場合に、高分子電解質膜が座屈し、セルの耐久性が低下するという課題がある。 Patent Document 3 discloses that a flow path is formed in a gas diffusion layer of a membrane electrode assembly. In this configuration, since it is not necessary to form a deep groove channel in the separator in the electrode portion, a thin and low resistance separator can be realized. However, the gas diffusion layer is in contact with the polymer electrolyte membrane via the electrode. Therefore, for example, when the rib of the flow path formed in the gas diffusion layer on the cathode electrode side faces the groove of the flow path formed in the gas diffusion layer on the anode electrode side, the polymer electrolyte membrane buckles, There exists a subject that durability of a cell falls.
 一方の極側のリブが他方の極の溝と対向しないような設計であっても、組立上の位置ずれによりリブと溝が対向してしまうと、座屈が起こりうる。このため、流路の溝幅を組立精度以上に小さくできない。また、特許文献3の構成では、電極の外周部にはガス拡散層がなく、セパレータ両面に流路を加工する必要があるため、上述した特許文献2と同様の課題を有している。 Even if the design is such that the rib on one pole does not face the groove on the other pole, buckling can occur if the rib and groove face each other due to misalignment in assembly. For this reason, the groove width of the channel cannot be made smaller than the assembly accuracy. Moreover, in the structure of patent document 3, since there is no gas diffusion layer in the outer peripheral part of an electrode and it is necessary to process a flow path on both surfaces of a separator, it has the same subject as patent document 2 mentioned above.
 本発明の目的は、薄型化、低抵抗化、および高耐久化を両立できる燃料電池セルおよび燃料電池スタックを提供することである。 An object of the present invention is to provide a fuel cell and a fuel cell stack that can achieve a reduction in thickness, resistance, and durability.
 本発明の一態様に係る燃料電池セルは、膜電極接合体を第1セパレータと第2セパレータとで挟み込んで形成された燃料電池セルであって、前記膜電極接合体は、前記第1セパレータと相対する第1面に、第1流路が設けられた第1ガス拡散層を有するとともに、前記第2セパレータと相対する第2面に、概平面の第2ガス拡散層を有し、前記第1セパレータにおいて、前記第1面と相対する面は、概平面であり、前記第2セパレータは、前記第2面と相対する面に、第2流路を有する。 A fuel cell according to an aspect of the present invention is a fuel cell formed by sandwiching a membrane electrode assembly between a first separator and a second separator, and the membrane electrode assembly includes the first separator and the fuel cell. A first gas diffusion layer provided with a first flow path is provided on the first opposing surface, and a second gas diffusion layer having a substantially flat surface is provided on the second surface opposite to the second separator. In one separator, a surface facing the first surface is a substantially flat surface, and the second separator has a second flow path on a surface facing the second surface.
 本発明の一態様に係る燃料電池スタックは、本発明の一態様に係る燃料電池セルを複数積層して形成されている。 The fuel cell stack according to one aspect of the present invention is formed by stacking a plurality of fuel cells according to one aspect of the present invention.
 本発明によれば、薄型化、低抵抗化、および高耐久化を両立することができる。 According to the present invention, it is possible to achieve both thinning, low resistance, and high durability.
図1は、本発明の実施の形態1に係る燃料電池セルの平面図である。FIG. 1 is a plan view of a fuel cell according to Embodiment 1 of the present invention. 図2は、図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図3は、図2の分解断面図である。FIG. 3 is an exploded cross-sectional view of FIG. 図4は、本発明の実施の形態1に係る膜電極接合体の平面図である。FIG. 4 is a plan view of the membrane electrode assembly according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態1に係る第2セパレータの平面図である。FIG. 5 is a plan view of the second separator according to Embodiment 1 of the present invention. 図6は、図1のB-B断面図である。6 is a cross-sectional view taken along the line BB of FIG. 図7は、図6に示した部分Cの拡大図である。FIG. 7 is an enlarged view of a portion C shown in FIG. 図8は、図1のB-B断面の別の例を示す図である。FIG. 8 is a diagram showing another example of the BB cross section of FIG. 図9は、図1のB-B断面の別の例を示す図である。FIG. 9 is a diagram showing another example of the BB cross section of FIG. 図10は、本発明の実施の形態1に係る燃料電池セルの別の例を示す平面図である。FIG. 10 is a plan view showing another example of the fuel cell according to Embodiment 1 of the present invention. 図11は、図10のA-A断面図である。FIG. 11 is a cross-sectional view taken along the line AA in FIG. 図12は、本発明の実施の形態2に係る燃料電池セルの構成例を示す、図1のB-Bに対応する断面図である。FIG. 12 is a cross-sectional view corresponding to BB in FIG. 1, showing a configuration example of the fuel cell according to Embodiment 2 of the present invention. 図13は、本発明の実施の形態2に係る燃料電池セルの別の構成例を示す、図1のB-Bに対応する断面図である。FIG. 13 is a cross-sectional view corresponding to BB in FIG. 1, showing another configuration example of the fuel cell according to Embodiment 2 of the present invention. 図14は、本発明の実施の形態2に係る燃料電池セルの流路の別の構成例を示す平面図である。FIG. 14 is a plan view showing another configuration example of the flow path of the fuel battery cell according to Embodiment 2 of the present invention. 図15は、図14のA-A断面図である。FIG. 15 is a cross-sectional view taken along the line AA in FIG. 図16は、一方の極のガス拡散層に対する主流通方向の定義を模式的に示す図である。FIG. 16 is a diagram schematically illustrating the definition of the main flow direction with respect to the gas diffusion layer of one pole. 図17は、2つの主流通方向を同じ向きとした場合の第1セパレータの平面図である。FIG. 17 is a plan view of the first separator when the two main flow directions are the same.
 以下、本発明の各実施の形態について、図面を参照しながら説明する。なお、各図において共通する構成要素については同一の符号を付し、それらの説明は適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the component which is common in each figure, and those description is abbreviate | omitted suitably.
 (実施の形態1)
 本発明の実施の形態1に係る燃料電池セル100について、図1~図9を用いて説明する。
(Embodiment 1)
A fuel cell 100 according to Embodiment 1 of the present invention will be described with reference to FIGS.
 図1は、本実施の形態の燃料電池セル100の平面図である。図2は、図1のA-A断面図である。図3は、図2の分解断面図である。図4は、図3に示した膜電極接合体130の平面図である。図5は、他方の極の第2セパレータ120の平面図である。図6は、図1のB-B断面図である。図7は、図6の部分拡大図である。図8、図9は、図1のB-B断面の別の例を示す図である。 FIG. 1 is a plan view of the fuel cell 100 of the present embodiment. FIG. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 3 is an exploded cross-sectional view of FIG. FIG. 4 is a plan view of the membrane electrode assembly 130 shown in FIG. FIG. 5 is a plan view of the second separator 120 of the other pole. 6 is a cross-sectional view taken along the line BB of FIG. FIG. 7 is a partially enlarged view of FIG. 8 and 9 are diagrams showing another example of the BB cross section of FIG.
 図2、図6に示すように、燃料電池セル100は、一方の極のセパレータ(以下、第1セパレータという)110、他方の極のセパレータ(以下、第2セパレータという)120、および膜電極接合体130を有する。第1セパレータ110および第2セパレータ120は、膜電極接合体130を挟むように配置されている。 As shown in FIGS. 2 and 6, the fuel cell 100 includes a separator on one electrode (hereinafter referred to as a first separator) 110, a separator on the other electrode (hereinafter referred to as a second separator) 120, and a membrane electrode joint It has a body 130. The 1st separator 110 and the 2nd separator 120 are arrange | positioned so that the membrane electrode assembly 130 may be pinched | interposed.
 図2に示すように、膜電極接合体130、第1セパレータ110、および第2セパレータ120には、それぞれ、積層方向(図2では上下方向)に貫通する穴である冷媒給排出口140が設けられている。 As shown in FIG. 2, the membrane electrode assembly 130, the first separator 110, and the second separator 120 are each provided with a refrigerant supply / discharge port 140 that is a hole penetrating in the stacking direction (vertical direction in FIG. 2). It has been.
 また、図1に示すように、第1セパレータ110には、燃料ガス給排出口141および酸化剤ガス給排出口142が設けられている。燃料ガス給排出口141および酸化剤ガス給排出口142も、冷媒給排出口140と同様に、積層方向に貫通する穴である。膜電極接合体130および第2セパレータ120のそれぞれにも、図1に示した第1セパレータ110と同様に、燃料ガス給排出口141および酸化剤ガス給排出口142が設けられている(図5参照)。 As shown in FIG. 1, the first separator 110 is provided with a fuel gas supply / discharge port 141 and an oxidant gas supply / discharge port 142. Similarly to the refrigerant supply / discharge port 140, the fuel gas supply / discharge port 141 and the oxidant gas supply / discharge port 142 are also holes that penetrate in the stacking direction. Each of the membrane electrode assembly 130 and the second separator 120 is also provided with a fuel gas supply / exhaust port 141 and an oxidant gas supply / exhaust port 142 as in the first separator 110 shown in FIG. 1 (FIG. 5). reference).
 燃料ガス給排出口141は、図1に示すように、2つ設けられている。一方の燃料ガス給排出口141から供給された燃料ガスは、第1セパレータ110と膜電極接合体130との間に形成された第1流路132(図2参照)を通じて、膜電極接合体130の一方の面に供給される。その後、燃料ガスは、他方の燃料ガス給排出口141から排出される。なお、燃料ガス給排出口141の数は、2つに限定されない。 As shown in FIG. 1, two fuel gas supply / discharge ports 141 are provided. The fuel gas supplied from one fuel gas supply / exhaust port 141 passes through the first flow path 132 (see FIG. 2) formed between the first separator 110 and the membrane electrode assembly 130, and the membrane electrode assembly 130. Supplied to one side of the. Thereafter, the fuel gas is discharged from the other fuel gas supply / exhaust port 141. The number of fuel gas supply / exhaust ports 141 is not limited to two.
 酸化剤ガス給排出口142は、図1に示すように、2つ設けられている。一方の酸化剤ガス給排出口142から供給された酸化剤ガスは、第2セパレータ120と膜電極接合体130との間に形成された第2流路121(図2参照)を通じて、膜電極接合体130の他方の面に供給される。その後、酸化剤ガスは、他方の酸化剤ガス給排出口142から排出される。なお、酸化剤ガス給排出口142の数は、2つに限定されない。 As shown in FIG. 1, two oxidant gas supply / exhaust ports 142 are provided. The oxidant gas supplied from one oxidant gas supply / exhaust port 142 passes through the second channel 121 (see FIG. 2) formed between the second separator 120 and the membrane electrode assembly 130, and is joined to the membrane electrode. Supplied to the other side of the body 130. Thereafter, the oxidant gas is discharged from the other oxidant gas supply / exhaust port 142. The number of oxidant gas supply / exhaust ports 142 is not limited to two.
 燃料電池セル100は、膜電極接合体130を介して燃料ガスと酸化剤ガスとが反応することにより発電し、導電性材料で構成された第1セパレータ110、第2セパレータ120を介して電流を取り出すことが可能な構造となっている。さらに、複数の燃料電池セル100が積層された場合、それらは、電気的に直列に接続される。 The fuel battery cell 100 generates electric power through the reaction between the fuel gas and the oxidant gas via the membrane electrode assembly 130, and generates current through the first separator 110 and the second separator 120 made of a conductive material. It has a structure that can be taken out. Furthermore, when the several fuel battery cell 100 is laminated | stacked, they are electrically connected in series.
 <膜電極接合体130>
 図3に示すように、膜電極接合体130は、一方の極のガス拡散層131、他方の極のガス拡散層133、高分子電解質膜135、および外周部材136を有する。
<Membrane electrode assembly 130>
As shown in FIG. 3, the membrane electrode assembly 130 includes a gas diffusion layer 131 on one pole, a gas diffusion layer 133 on the other pole, a polymer electrolyte membrane 135, and an outer peripheral member 136.
 ガス拡散層131(第1ガス拡散層の一例)は、高分子電解質膜135の一面(図中の上側の面)に設けられている。ガス拡散層133(第2ガス拡散層の一例)は、高分子電解質膜135の他面(図中の下側の面)に設けられている。高分子電解質膜135の両面には、図示しない触媒電極が設けられている。 The gas diffusion layer 131 (an example of the first gas diffusion layer) is provided on one surface (the upper surface in the drawing) of the polymer electrolyte membrane 135. The gas diffusion layer 133 (an example of the second gas diffusion layer) is provided on the other surface (the lower surface in the drawing) of the polymer electrolyte membrane 135. On both surfaces of the polymer electrolyte membrane 135, catalyst electrodes (not shown) are provided.
 ガス拡散層131において、第1セパレータ110と接する面には、燃料ガスが流れる第1流路132が形成されている。 In the gas diffusion layer 131, a first flow path 132 through which fuel gas flows is formed on the surface in contact with the first separator 110.
 また、ガス拡散層133において、第2セパレータ120と接する面134は、概平面となっている。ここで、概平面とは、ガス拡散層133の厚みに対して30%以上の深さの凹凸を持たない面と定義する。また、概平面の表面は、カーボン粒子、カーボン繊維、樹脂などで構成された多孔質状となっている。 In addition, in the gas diffusion layer 133, the surface 134 in contact with the second separator 120 is a substantially flat surface. Here, the approximate plane is defined as a surface having no unevenness with a depth of 30% or more with respect to the thickness of the gas diffusion layer 133. Further, the surface of the substantially flat surface is a porous shape composed of carbon particles, carbon fibers, resin, and the like.
 なお、ガス拡散層131、133の組成について特に限定はないが、主にカーボン粒子とバインダ樹脂によって構成されたものが望ましい。その組成であれば、プレス加工や印刷などにより、容易に第1流路132を形成することができる。 The composition of the gas diffusion layers 131 and 133 is not particularly limited, but is preferably composed mainly of carbon particles and a binder resin. If it is the composition, the 1st flow path 132 can be formed easily by press work, printing, etc.
 また、第1流路132の溝幅、リブ幅、溝深さについても、特に限定はなく、任意のサイズとしてよい。ただし、溝幅は、0.2mm以上、0.5mm以下が望ましい。溝幅が0.5mmより大きい場合、積層締結(詳細は後述)の際にガス拡散層131の変形が大きくなる。これにより、第1流路132の一部が閉塞され、発電時のガス圧損が上昇してしまう。その一方で、溝幅が0.2mm未満である場合、凝縮した水の排出が困難となる。 Also, the groove width, rib width, and groove depth of the first flow path 132 are not particularly limited, and may be any size. However, the groove width is desirably 0.2 mm or more and 0.5 mm or less. When the groove width is larger than 0.5 mm, the deformation of the gas diffusion layer 131 becomes large during the lamination fastening (details will be described later). Thereby, a part of 1st flow path 132 will be obstruct | occluded and the gas pressure loss at the time of electric power generation will rise. On the other hand, when the groove width is less than 0.2 mm, it is difficult to discharge condensed water.
 上記「積層締結」とは、第1セパレータ110と、第2セパレータ120と、膜電極接合体130とを積層して締結することを言い、「燃料電池セルの組み立て」と言ってもよい。あるいは、複数の燃料電池セル100を積層して締結することを言い、「燃料電池スタックの組み立て」と言ってもよい。 The above “lamination fastening” means that the first separator 110, the second separator 120, and the membrane electrode assembly 130 are laminated and fastened, and may be referred to as “assembly of fuel cell”. Or it may say that a plurality of fuel cells 100 are stacked and fastened, and may be referred to as “assembly of fuel cell stack”.
 また、第1流路132の形状は、ストレート(直線状)またはサーペンタイン(蛇行状)などを自由に選択してよい。 Also, the shape of the first flow path 132 may be freely selected from straight (straight) or serpentine (meandering).
 また、第1流路132において分岐部または合流部などが形成されてもよい。 Further, a branching part or a merging part may be formed in the first flow path 132.
 本実施の形態では、図3に示すように、ガス拡散層131のみに第1流路132を形成しているため、第1流路132が高分子電解質膜135を挟んで向きあうことがない。そのため、積層締結の際に第1流路132の位置がその溝幅以上にずれた場合でも、高分子電解質膜135の座屈変形を防止できる。 In the present embodiment, as shown in FIG. 3, since the first flow path 132 is formed only in the gas diffusion layer 131, the first flow path 132 does not face the polymer electrolyte membrane 135. . Therefore, buckling deformation of the polymer electrolyte membrane 135 can be prevented even when the position of the first flow path 132 is shifted beyond the groove width during lamination fastening.
 図3、図6、図7に示すように、高分子電解質膜135の面方向の外周部分には、絶縁材料で構成された額縁状の外周部材136が、高分子電解質膜135の両面を挟み込むように設けられている。 As shown in FIGS. 3, 6, and 7, a frame-shaped outer peripheral member 136 made of an insulating material sandwiches both surfaces of the polymer electrolyte membrane 135 at the outer peripheral portion in the surface direction of the polymer electrolyte membrane 135. It is provided as follows.
 例えば、外周部材136と高分子電解質膜135とは、図示しない接着剤を介しての接着、圧着、または成形などによって接合される。なお、必ずしも接合の必要はなく、外周部材136が高分子電解質膜135を単に挟持する構造であってもよい。その場合、外周部材136と高分子電解質膜135との間には、図示しないシール材が設けられてもよい。 For example, the outer peripheral member 136 and the polymer electrolyte membrane 135 are joined by adhesion, pressure bonding, or molding via an adhesive (not shown). The joining is not necessarily required, and the outer peripheral member 136 may simply hold the polymer electrolyte membrane 135. In that case, a sealing material (not shown) may be provided between the outer peripheral member 136 and the polymer electrolyte membrane 135.
 図4に示すように、外周部材136には、冷媒給排出口140、燃料ガス給排出口141、酸化剤ガス給排出口142が形成されている。また、外周部材136には、第1接続流路137が形成されている。第1接続流路137は、第1流路132と燃料ガス給排出口141とを接続する流路である(図4、図6参照)。 As shown in FIG. 4, the outer peripheral member 136 is formed with a refrigerant supply / discharge port 140, a fuel gas supply / discharge port 141, and an oxidant gas supply / discharge port 142. Further, a first connection channel 137 is formed in the outer peripheral member 136. The first connection channel 137 is a channel that connects the first channel 132 and the fuel gas supply / exhaust port 141 (see FIGS. 4 and 6).
 第1接続流路137の内部には、積層締結時の荷重を支え、変形を抑えるために、複数の第1凸部138(第1凸部の一例)が形成されている。図4に示す第1凸部138は、図6、図7に示すように、例えば円柱状のリブであるが、形状は、円柱状に限定されず、矩形柱または三角柱などの他の形状であってもよい。また、第1凸部138の数は、図4に示す数に限定されない。なお、第1凸部138は、無くてもよい。 A plurality of first protrusions 138 (an example of first protrusions) are formed inside the first connection flow path 137 in order to support a load at the time of stacking and suppress deformation. The first convex portion 138 shown in FIG. 4 is, for example, a cylindrical rib as shown in FIGS. 6 and 7, but the shape is not limited to the cylindrical shape, and may be other shapes such as a rectangular column or a triangular column. There may be. Moreover, the number of the 1st convex parts 138 is not limited to the number shown in FIG. Note that the first convex portion 138 may not be provided.
 <第1セパレータ110>
 第1セパレータ110において、膜電極接合体130と接する面のうち、ガス拡散層131と接する部分112(概平面部の一例)は、概平面となっている。ここで、概平面とは、第1セパレータ110の薄肉部の厚みに対して30%以上の深さの凹凸を持たない面と定義する。
<First separator 110>
Of the surface in contact with the membrane electrode assembly 130 in the first separator 110, the portion 112 in contact with the gas diffusion layer 131 (an example of a substantially planar portion) is substantially planar. Here, the approximate plane is defined as a surface having no unevenness with a depth of 30% or more with respect to the thickness of the thin portion of the first separator 110.
 第1セパレータ110の表面処理については、特に限定しない。ただし、ガス拡散層と接する部分112の表面算術平均粗さは、2μm以上、30μm以下であることが望ましい。 The surface treatment of the first separator 110 is not particularly limited. However, the surface arithmetic average roughness of the portion 112 in contact with the gas diffusion layer is desirably 2 μm or more and 30 μm or less.
 上記表面粗さにすることで、積層締結の際、ガス拡散層131を圧縮してガス拡散層131との接触を保ちながら、第1セパレータ110を膜電極接合体130に食い込ませることができる。これにより、第1セパレータ110と膜電極接合体130との接触表面積を増大させることができる。よって、接触抵抗を低減することができる。 By making the surface roughness as described above, the first separator 110 can be bitten into the membrane electrode assembly 130 while compressing the gas diffusion layer 131 and maintaining contact with the gas diffusion layer 131 at the time of lamination fastening. Thereby, the contact surface area of the 1st separator 110 and the membrane electrode assembly 130 can be increased. Therefore, contact resistance can be reduced.
 また、第1セパレータ110には、膜電極接合体130と接する面(ガス拡散層と接する部分112を含む面)の裏面に、冷媒が流れる第3流路111が形成されている(図1、図3、図6、図7参照)。 The first separator 110 has a third flow path 111 through which a coolant flows on the back surface of the surface in contact with the membrane electrode assembly 130 (the surface including the portion 112 in contact with the gas diffusion layer) (FIG. 1). (See FIGS. 3, 6, and 7).
 また、図1に示すように、第1セパレータ110には、冷媒給排出口140、燃料ガス給排出口141、酸化剤ガス給排出口142が形成されている。第3流路111と冷媒給排出口140とは連通している。 Further, as shown in FIG. 1, the first separator 110 is formed with a refrigerant supply / discharge port 140, a fuel gas supply / discharge port 141, and an oxidant gas supply / discharge port 142. The third flow path 111 and the refrigerant supply / discharge port 140 communicate with each other.
 また、第3流路111の溝幅、リブ幅、溝深さについて、特に限定はない。また、第3流路111の形状は、ストレート(直線状)またはサーペンタイン(蛇行状)などを自由に選択してよい。また、第3流路111において分岐部または合流部などが形成されてもよい。また、第3流路111と冷媒給排出口140とは、例えば図4に示した第1接続流路137と同様の第3接続流路125(図1)を介して接続されてもよい。また、その接続流路には、例えば図4に示した第1凸部138と同様の複数の第2凸部139が設けられてもよい。 Further, the groove width, rib width, and groove depth of the third flow path 111 are not particularly limited. Further, the shape of the third channel 111 may be freely selected from straight (straight) or serpentine (meandering). Further, in the third flow path 111, a branching part or a merging part may be formed. Moreover, the 3rd flow path 111 and the refrigerant | coolant supply / discharge port 140 may be connected via the 3rd connection flow path 125 (FIG. 1) similar to the 1st connection flow path 137 shown, for example in FIG. In addition, a plurality of second convex portions 139 similar to the first convex portion 138 shown in FIG. 4 may be provided in the connection flow path, for example.
 第1セパレータ110の組成および第1セパレータ110の加工方法について、特に限定はない。第3流路111の形成面の裏面は概平面であるため、材質を問わず、成形、溶射などの加工方法により、第1セパレータ110を容易に製造することができる。よって、第1セパレータ110の材料として、金属材料を用いることができる。 The composition of the first separator 110 and the processing method of the first separator 110 are not particularly limited. Since the back surface of the formation surface of the third flow path 111 is a substantially flat surface, the first separator 110 can be easily manufactured by a processing method such as molding or thermal spraying regardless of the material. Therefore, a metal material can be used as the material of the first separator 110.
 <第2セパレータ120>
 第2セパレータ120において、膜電極接合体130と接する面のうち、ガス拡散層133と接する部分に、酸化剤ガスが流れる第2流路121が形成されている(図2、図3、図5~図7参照)。
<Second separator 120>
In the second separator 120, a second flow path 121 through which an oxidant gas flows is formed in a portion in contact with the membrane electrode assembly 130 in a portion in contact with the gas diffusion layer 133 (FIGS. 2, 3, and 5). (See FIG. 7).
 第2流路121の溝幅、リブ幅、溝深さについて、特に限定はなく、任意のサイズとしてよい。ただし、溝幅は、0.2mm以上、0.5mm以下が望ましい。溝幅が0.5mmより大きい場合、積層締結時にガス拡散層133の変形が大きくなる。これにより、第2流路121の一部が閉塞され、発電時のガス圧損が上昇してしまう。その一方で、溝幅が0.2mm未満である場合、凝縮した水の排出が困難となる。 The groove width, rib width, and groove depth of the second flow path 121 are not particularly limited and may be any size. However, the groove width is desirably 0.2 mm or more and 0.5 mm or less. When the groove width is larger than 0.5 mm, the deformation of the gas diffusion layer 133 becomes large at the time of stacking. Thereby, a part of 2nd flow path 121 will be obstruct | occluded, and the gas pressure loss at the time of electric power generation will rise. On the other hand, when the groove width is less than 0.2 mm, it is difficult to discharge condensed water.
 また、第2流路121の形状は、ストレート(直線状)またはサーペンタイン(蛇行状)などを自由に選択してよい。また、第2流路121において分岐部または合流部などが形成されてもよい。 Also, the shape of the second flow path 121 may be freely selected from straight (straight) or serpentine (meandering). Further, a branching part or a merging part may be formed in the second flow path 121.
 また、第2セパレータ120において、膜電極接合体130と接する面の裏面の部分122(概平面部の一例)は、概平面となっている。この部分122は、膜電極接合体130と接する面におけるガス拡散層133と接する部分に対応している。ここで、概平面とは、第2セパレータ120の薄肉部の厚みに対して30%以上の深さの凹凸を持たない面と定義する。 Further, in the second separator 120, the back surface portion 122 (an example of a substantially flat surface portion) of the surface in contact with the membrane electrode assembly 130 is a substantially flat surface. This portion 122 corresponds to a portion in contact with the gas diffusion layer 133 on the surface in contact with the membrane electrode assembly 130. Here, the approximate plane is defined as a surface having no unevenness with a depth of 30% or more with respect to the thickness of the thin portion of the second separator 120.
 第2セパレータ120の表面処理については、特に限定しない。ただし、上記部分122の表面算術平均粗さは、2μm以上、30μm以下であることが望ましい。 The surface treatment of the second separator 120 is not particularly limited. However, the surface arithmetic average roughness of the portion 122 is preferably 2 μm or more and 30 μm or less.
 上記表面粗さにすることで、積層締結の際、ガス拡散層133を圧縮してガス拡散層133との接触を保ちながら、第2セパレータ120を膜電極接合体130に食い込ませることができる。これにより、第2セパレータ120と膜電極接合体130との接触表面積を増大させることができる。よって、接触抵抗を低減することができる。 By making the surface roughness as described above, the second separator 120 can be bitten into the membrane electrode assembly 130 while compressing the gas diffusion layer 133 and maintaining contact with the gas diffusion layer 133 at the time of stacking. Thereby, the contact surface area of the 2nd separator 120 and the membrane electrode assembly 130 can be increased. Therefore, contact resistance can be reduced.
 図5に示すように、第2セパレータ120には、冷媒給排出口140、燃料ガス給排出口141、酸化剤ガス給排出口142が形成されている。また、第2セパレータ120には、第2接続流路123が形成されている。第2接続流路123は、第2流路121と酸化剤ガス給排出口142とを接続する流路である(図5~図7参照)。 As shown in FIG. 5, the second separator 120 has a refrigerant supply / discharge port 140, a fuel gas supply / discharge port 141, and an oxidant gas supply / discharge port 142. The second separator 120 is formed with a second connection channel 123. The second connection channel 123 is a channel that connects the second channel 121 and the oxidant gas supply / exhaust port 142 (see FIGS. 5 to 7).
 第2接続流路123の内部には、積層締結時の荷重を支え、変形を抑えるために、複数の第3凸部124が形成されている。図5に示す第3凸部124は、図6、図7に示すように、例えば円柱状のリブであるが、形状は、円柱状に限定されず、矩形柱または三角柱などの他の形状であってもよい。また、第3凸部124の数は、図5に示す数に限定されない。なお、第3凸部124は、無くてもよい。 A plurality of third convex portions 124 are formed inside the second connection flow path 123 in order to support a load at the time of stacking and suppress deformation. The third convex portion 124 shown in FIG. 5 is, for example, a cylindrical rib as shown in FIGS. 6 and 7, but the shape is not limited to the cylindrical shape, and may be other shapes such as a rectangular column or a triangular column. There may be. Moreover, the number of the 3rd convex parts 124 is not limited to the number shown in FIG. Note that the third convex portion 124 may be omitted.
 なお、図3において、ガス拡散層133と接する第2セパレータ120の面に対抗する裏面全体を概平面としてもよいし、その裏面のうち部分122のみを概平面としてもよい。後者の場合、部分122の外周部分において第2接続流路123(図5参照)の対向面部と重ならない箇所には、流路などが形成されていてもよい。 In FIG. 3, the entire back surface facing the surface of the second separator 120 in contact with the gas diffusion layer 133 may be a substantially flat surface, or only the portion 122 of the back surface may be a generally flat surface. In the latter case, a flow path or the like may be formed in a portion that does not overlap the facing surface portion of the second connection flow path 123 (see FIG. 5) in the outer peripheral portion of the portion 122.
 第2セパレータ120の組成および第2セパレータ120の加工方法についても、第1セパレータ110と同様に、特に限定はない。第2流路121の形成面の裏面は概平面であるため、材質を問わず、成形、溶射などの加工方法により、第2セパレータ120を容易に製造することができる。よって、第2セパレータ120の材料として、金属材料を用いることができる。 As with the first separator 110, the composition of the second separator 120 and the processing method of the second separator 120 are not particularly limited. Since the back surface of the formation surface of the second channel 121 is a substantially flat surface, the second separator 120 can be easily manufactured by a processing method such as molding or thermal spraying regardless of the material. Therefore, a metal material can be used as the material of the second separator 120.
 <変形例>
 燃料電池セル100は、第1セパレータ110、膜電極接合体130、第2セパレータ120を積層して形成されている(図2参照)。
<Modification>
The fuel cell 100 is formed by laminating a first separator 110, a membrane electrode assembly 130, and a second separator 120 (see FIG. 2).
 図2、図3に示した外周部材136は、弾性体(例えば、ゴム)やフィルム状接着シートで構成されている。外周部材136は、別のシール材または接着剤を用いずに、冷媒、燃料ガス、酸化剤ガスのリークを防止する構造である。なお、外周部材136において、第1セパレータ110、第2セパレータ120のそれぞれと接する面の一部に、シール材または接着剤を設けてもよい。また、シール材または接着剤を配置するための溝が、第1セパレータ110、第2セパレータ120、または外周部材136に形成されてもよい。 2 and 3, the outer peripheral member 136 is composed of an elastic body (for example, rubber) or a film-like adhesive sheet. The outer peripheral member 136 has a structure that prevents leakage of refrigerant, fuel gas, and oxidant gas without using another sealing material or adhesive. In the outer peripheral member 136, a sealing material or an adhesive may be provided on a part of the surface in contact with each of the first separator 110 and the second separator 120. Further, a groove for disposing the sealing material or the adhesive may be formed in the first separator 110, the second separator 120, or the outer peripheral member 136.
 また、図4および図5では、第1流路132が燃料ガス給排出口141に接続され、第2流路121が酸化剤ガス給排出口142に接続された例を示したが、これに限定されない。第1流路132が酸化剤ガス給排出口142に接続され、第2流路121が燃料ガス給排出口141に接続されてもよい。 4 and 5 show an example in which the first flow path 132 is connected to the fuel gas supply / discharge port 141 and the second flow path 121 is connected to the oxidant gas supply / discharge port 142. It is not limited. The first flow path 132 may be connected to the oxidant gas supply / discharge port 142, and the second flow path 121 may be connected to the fuel gas supply / discharge port 141.
 また、図6では、第3流路111と第1流路132との主流通方向が概ね直交し、第1流路132と第2流路121とが平行である例を示しているが、これに限定されない。各流路の主流通方向は、同方向であってもよいし、異なっていてもよい。 6 shows an example in which the main flow directions of the third flow path 111 and the first flow path 132 are substantially orthogonal, and the first flow path 132 and the second flow path 121 are parallel. It is not limited to this. The main flow direction of each flow path may be the same direction or may be different.
 例えば、第3流路111、第1流路132、第2流路121それぞれの主流通方向を平行に構成した場合を図8に示す。この場合、冷媒給排出口140、燃料ガス給排出口141、酸化剤ガス給排出口142は、それぞれの流路の主流通方向の延長上に配置される。 For example, FIG. 8 shows a case where the main flow directions of the third flow path 111, the first flow path 132, and the second flow path 121 are configured in parallel. In this case, the refrigerant supply / discharge port 140, the fuel gas supply / discharge port 141, and the oxidant gas supply / discharge port 142 are arranged on extensions of the respective flow paths in the main flow direction.
 また、図9に示すように、外周部材136において、第2接続流路123の一部または全部を構成する凹部123bを形成してもよい。さらに、必要に応じて、凹部123bの内部に第3凸部124を形成してもよい。 Further, as shown in FIG. 9, the outer peripheral member 136 may be formed with a recess 123 b that constitutes a part or all of the second connection flow path 123. Furthermore, you may form the 3rd convex part 124 inside the recessed part 123b as needed.
 また、燃料電池セル100が、その内部に、冷媒給排出口140、燃料ガス給排出口141、酸化剤ガス給排出口142が設けられた構造(いわゆる内部マニホールド構造)である場合を例に挙げたが、外部マニホールド構造であってもよい。これらの給排出口の一部または全部が別の部品として構成された構造である(図10、図11参照)。 Further, the fuel cell 100 has a structure (so-called internal manifold structure) in which the refrigerant supply / exhaust port 140, the fuel gas supply / exhaust port 141, and the oxidant gas supply / exhaust port 142 are provided. However, an external manifold structure may be used. A part or all of these supply / discharge ports are structured as separate parts (see FIGS. 10 and 11).
 <効果>
 上述した本実施の形態の燃料電池セル100の構成をまとめると、以下のようになる。
<Effect>
The configuration of the fuel cell 100 of the present embodiment described above is summarized as follows.
 燃料電池セル100は、膜電極接合体130を第1セパレータ110および第2セパレータ120で挟み込んで形成されている。 The fuel battery cell 100 is formed by sandwiching the membrane electrode assembly 130 between the first separator 110 and the second separator 120.
 膜電極接合体130は、第1セパレータ110と相対する第1面に、凹凸部(第1流路132)が設けられたガス拡散層131を有する。 The membrane electrode assembly 130 has a gas diffusion layer 131 provided with a concavo-convex portion (first flow path 132) on the first surface facing the first separator 110.
 また、膜電極接合体130は、その外周部に凹凸部(第1接続流路137、第1凸部138)が設けられた外周部材136を有する。 Moreover, the membrane electrode assembly 130 has an outer peripheral member 136 provided with an uneven portion (first connection channel 137, first convex portion 138) on the outer peripheral portion thereof.
 また、膜電極接合体130は、前記第1面の裏面であり、第2セパレータ120と相対する第2面に、概平面のガス拡散層133を有する。 The membrane electrode assembly 130 has a substantially flat gas diffusion layer 133 on the second surface opposite to the second separator 120, which is the back surface of the first surface.
 第1セパレータ110は、膜電極接合体130の第1面と相対する面に、概平面を有する。 The first separator 110 has a substantially flat surface on the surface facing the first surface of the membrane electrode assembly 130.
 第2セパレータ120は、膜電極接合体130の第2面と相対する面に、凹凸部(第2流路121、第2接続流路123、第3凸部124)を有する。 The second separator 120 has a concavo-convex portion (a second flow channel 121, a second connection flow channel 123, and a third convex portion 124) on a surface facing the second surface of the membrane electrode assembly 130.
 上述した構成では、第1セパレータ110において、第3流路111が形成された面の裏面(膜電極接合体130と接する面)が、概平面であり、流路が形成されていない。換言すれば、上記構成は、第1セパレータ110の両面に流路が形成されて、それらの流路の位置が重なる構成ではない。そのため、第1セパレータ110において、薄肉部と厚肉部の厚みの差を小さくすることができる。 In the configuration described above, in the first separator 110, the back surface (the surface in contact with the membrane electrode assembly 130) on which the third channel 111 is formed is a substantially flat surface, and no channel is formed. In other words, the above configuration is not a configuration in which the flow paths are formed on both surfaces of the first separator 110 and the positions of the flow paths overlap. Therefore, in the 1st separator 110, the difference of the thickness of a thin part and a thick part can be made small.
 したがって、材質を問わず、成形、溶射などの方法により、第1セパレータ110を容易に製造することができるため、第1セパレータ110を金属材料で構成することができる。その結果、燃料電池セル100の低抵抗化および薄型化を実現できる。また、流路の設計の自由度の向上、および、燃料電池セル100の製造コストの削減も実現できる。 Therefore, since the first separator 110 can be easily manufactured by a method such as molding or thermal spraying regardless of the material, the first separator 110 can be made of a metal material. As a result, the resistance and thickness of the fuel cell 100 can be reduced. Moreover, the improvement of the freedom degree of the design of a flow path and the reduction of the manufacturing cost of the fuel cell 100 are also realizable.
 また、上述した構成では、第2セパレータ120において、第2流路121が形成された面(膜電極接合体130と接する面)の裏面が、概平面であり、流路が形成されていない。換言すれば、上記構成は、第2セパレータ120の両面に流路が形成されて、それらの流路の位置が重なる構成ではない。そのため、第2セパレータ120において、薄肉部と厚肉部の厚みの差を小さくすることができる。 In the above-described configuration, the back surface of the second separator 120 on which the second flow channel 121 is formed (the surface in contact with the membrane electrode assembly 130) is a substantially flat surface, and no flow channel is formed. In other words, the above configuration is not a configuration in which the flow paths are formed on both surfaces of the second separator 120 and the positions of the flow paths overlap. Therefore, in the 2nd separator 120, the difference of the thickness of a thin part and a thick part can be made small.
 したがって、材質を問わず、成形、溶射などの方法により、第2セパレータ120を容易に製造することができるため、第2セパレータ120を金属材料で構成することができる。その結果、燃料電池セル100の低抵抗化および薄型化を実現できる。また、流路の設計の自由度の向上、および、燃料電池セル100の製造コストの削減も実現できる。 Therefore, since the second separator 120 can be easily manufactured regardless of the material by a method such as molding or thermal spraying, the second separator 120 can be made of a metal material. As a result, the resistance and thickness of the fuel cell 100 can be reduced. Moreover, the improvement of the freedom degree of the design of a flow path and the reduction of the manufacturing cost of the fuel cell 100 are also realizable.
 また、上述した構成では、膜電極接合体130において、その一方の面(第1セパレータ110と接する面)のガス拡散層131のみに第1流路132が設けてられており、他方の面には流路が設けられていない。よって、積層締結の際、流路の位置ずれなどによる高分子電解質膜135の座屈変形を防止できる。その結果、燃料電池セル100の高耐久化を実現できる。 Further, in the above-described configuration, in the membrane electrode assembly 130, the first flow path 132 is provided only in the gas diffusion layer 131 on one surface (the surface in contact with the first separator 110), and on the other surface. Is not provided with a flow path. Therefore, buckling deformation of the polymer electrolyte membrane 135 due to misalignment of the flow path or the like can be prevented during the lamination fastening. As a result, high durability of the fuel battery cell 100 can be realized.
 (実施の形態2)
 本発明の実施の形態2に係る燃料電池セル200について、図12~図17を用いて説明する。
(Embodiment 2)
A fuel cell 200 according to Embodiment 2 of the present invention will be described with reference to FIGS.
 図12は、本実施の形態の燃料電池セル200の構成例を示し、図1のB-Bに対応する断面図である。図13は、本実施の形態の燃料電池セル200の別の構成例を示し、図1のB-Bに対応する断面図である。図14は、本実施の形態の燃料電池セル200の流路構成の別の例を示す平面図である。図15は、図14のA-A断面図である。図16は、一方の極のガス拡散層に対する主流通方向の定義を模式的に示す図である。図17は、2つの主流通方向を同じ向きとした場合の第1セパレータ110の平面図である。 FIG. 12 shows a configuration example of the fuel battery cell 200 of the present embodiment, and is a cross-sectional view corresponding to BB in FIG. FIG. 13 is a cross-sectional view corresponding to BB in FIG. 1, showing another configuration example of the fuel battery cell 200 of the present embodiment. FIG. 14 is a plan view showing another example of the flow path configuration of the fuel battery cell 200 of the present embodiment. FIG. 15 is a cross-sectional view taken along the line AA in FIG. FIG. 16 is a diagram schematically illustrating the definition of the main flow direction with respect to the gas diffusion layer of one pole. FIG. 17 is a plan view of the first separator 110 when the two main flow directions are the same.
 なお、図12~図17において、図1~図9と共通する構成要素には同一符号を付し、以下では、それらの説明は適宜省略する。説明しない事項は、実施の形態1と同様である。 In FIG. 12 to FIG. 17, the same reference numerals are given to the same constituent elements as those in FIG. 1 to FIG. Matters not described are the same as those in the first embodiment.
 図12に示すように、燃料電池セル200では、第1セパレータ110に設けられた第3流路111の主流通方向D1およびD1’と、ガス拡散層131に設けられた第1流路132の主流通方向D2およびD2’とが異なっている。 As shown in FIG. 12, in the fuel cell 200, the main flow directions D <b> 1 and D <b> 1 ′ of the third flow path 111 provided in the first separator 110 and the first flow path 132 provided in the gas diffusion layer 131. The main distribution directions D2 and D2 ′ are different.
 ここで、主流通方向D1は、電極領域の辺縁101(図1参照)の辺の法線方向であり、かつ、燃料電池セル100の外周向き、と定義する。各流路に対しては、流入側と排出側の2つ以上の主流通方向が定義される。電極領域の辺縁101(図1)は、ガス拡散層131(図2)の辺縁の積層方向の投影部分である。 Here, the main flow direction D1 is defined as the normal direction of the side of the edge 101 (see FIG. 1) of the electrode region and toward the outer periphery of the fuel cell 100. For each channel, two or more main flow directions on the inflow side and the discharge side are defined. The edge 101 (FIG. 1) of the electrode region is a projected portion in the stacking direction of the edge of the gas diffusion layer 131 (FIG. 2).
 例として、ガス拡散層131に対する主流通方向D2、D2’の定義について、図16を用いて説明する。図16に示すように、電極領域の辺縁101の内側の第1流路132が屈曲状や蛇行形状に形成されていても、全体としての方向である。主流通方向D1、D1’の定義についても、上記同様である。 As an example, the definition of the main flow directions D2 and D2 'with respect to the gas diffusion layer 131 will be described with reference to FIG. As shown in FIG. 16, even if the first flow path 132 inside the edge 101 of the electrode region is formed in a bent shape or a meandering shape, it is the direction as a whole. The definitions of the main distribution directions D1 and D1 'are the same as described above.
 主流通方向D1、D1’の向きおよび主流通方向D2、D2’の向きは、図12に示すように互いに反対の向きであってもよいが、同じ向きまたは直交した向きであってもよい。主流通方向D1、D1’の双方に対して、主流通方向D2、D2’の向きが異なっていればよい。 The main flow directions D1 and D1 'and the main flow directions D2 and D2' may be opposite to each other as shown in FIG. 12, but may be the same or orthogonal. It suffices if the directions of the main flow directions D2 and D2 'are different from both of the main flow directions D1 and D1'.
 図12に示すように、第1セパレータ110には、第1接続流路137(膜電極接合体130の外周部材136に形成された流路)に相対して、第4流路137bが形成されている。第4流路137bは、第1接続流路137の一部または全部を構成する。 As shown in FIG. 12, in the first separator 110, a fourth flow path 137b is formed relative to the first connection flow path 137 (the flow path formed in the outer peripheral member 136 of the membrane electrode assembly 130). ing. The fourth flow path 137b constitutes part or all of the first connection flow path 137.
 主流通方向D1、D1’と主流通方向D2、D2’との向きが異なることによって、第4流路137bを電極領域の辺縁101に沿って延在させて形成した場合にも、第3流路111が形成されている部分の裏面側に重なって第4流路137bが形成されることを避けることができる。このように形成された第4流路137bにより、第1接続流路137を流通するガスの圧力損失を下げ、発電時の性能を向上させることができる。 Even when the fourth flow path 137b is formed to extend along the edge 101 of the electrode region by changing the directions of the main flow directions D1, D1 ′ and the main flow directions D2, D2 ′, the third flow direction It is possible to avoid the formation of the fourth flow path 137b so as to overlap the back surface side of the portion where the flow path 111 is formed. The fourth flow path 137b formed in this way can reduce the pressure loss of the gas flowing through the first connection flow path 137 and improve the performance during power generation.
 第4流路137bは、積層方向からみて第3流路111と重ならない位置に設けられ、第1接続流路137の一部または全部として機能する。第4流路137bの位置は、図12に示すように第1流路132と直接接続されずに、第1接続流路137と接続されていても良く、第1流路132と直接接続していてもよい。 The fourth flow path 137b is provided at a position that does not overlap the third flow path 111 when viewed from the stacking direction, and functions as part or all of the first connection flow path 137. The position of the fourth flow path 137b may be connected to the first connection flow path 137 instead of being directly connected to the first flow path 132 as shown in FIG. It may be.
 ここで、例えば、主流通方向D1とD2を同じ向きとした場合について、図17を用いて説明する。図17に示すように、第3流路111の主流通方向D1と、第1流路132(図中の破線)の主流通方向D2とが同じ向きとなっている。この構成では、上述したとおり、第4流路137bを電極領域の辺縁101に沿って延在させて形成すると、第3流路111の一部と対向する位置にも第4流路137bが形成されてしまうことになる。その部分では、第1セパレータ110の薄肉部と厚肉部の厚みの差が大きくなってしまう。なお、図17において、第4流路137bは、図17に示す面の裏面側に形成されている。 Here, for example, the case where the main distribution directions D1 and D2 are set in the same direction will be described with reference to FIG. As shown in FIG. 17, the main flow direction D1 of the third flow path 111 and the main flow direction D2 of the first flow path 132 (broken line in the figure) are in the same direction. In this configuration, as described above, when the fourth flow path 137b is formed to extend along the edge 101 of the electrode region, the fourth flow path 137b is also formed at a position facing a part of the third flow path 111. It will be formed. In that portion, the difference in thickness between the thin portion and the thick portion of the first separator 110 becomes large. In FIG. 17, the fourth flow path 137b is formed on the back side of the surface shown in FIG.
 なお、図13に示すように、実施の形態1と同様に、第2接続流路123の一部または全部を構成する凹部123bを、外周部材136に形成してもよい。さらに、図13に示すように、必要に応じて、第3凸部124を凹部123bの内部に形成してもよい。 Note that, as shown in FIG. 13, similarly to the first embodiment, the outer peripheral member 136 may be formed with a concave portion 123 b that constitutes a part or all of the second connection flow path 123. Furthermore, as shown in FIG. 13, the third convex portion 124 may be formed inside the concave portion 123 b as necessary.
 また、実施の形態1と同様に、図12、図13に示した第2セパレータ120において、ガス拡散層133と接する面の裏面全体を概平面としてもよいし、その裏面のうち部分122のみを概平面としてもよい。後者の場合、部分122の外周部分において第2接続流路123の対向面部と重ならない箇所には、流路などが形成されていてもよい。 Similarly to the first embodiment, in the second separator 120 shown in FIGS. 12 and 13, the entire back surface of the surface in contact with the gas diffusion layer 133 may be a substantially flat surface, or only the portion 122 of the back surface may be formed. It may be a substantially flat surface. In the latter case, a channel or the like may be formed in a portion that does not overlap with the facing surface portion of the second connection channel 123 in the outer peripheral portion of the portion 122.
 また、実施の形態1と同様に、本実施の形態の各流路の形状について限定はない。すなわち、本実施の形態の各流路は、ストレート(直線状)またはサーペンタイン(蛇行状)などを自由に選択してよい。また、各流路において分岐部または合流部などが形成されてもよい。 Further, as in the first embodiment, there is no limitation on the shape of each flow path in the present embodiment. That is, each channel of the present embodiment may freely select straight (straight) or serpentine (meandering). Further, a branching part or a merging part may be formed in each flow path.
 また、本実施の形態では、各流路の構成を図14、図15に示す構成としてもよい。図14は、流路の別の構成例を示す第1セパレータ110の平面図であり、図15は、図14のA-A断面図である。 In the present embodiment, the configuration of each flow path may be the configuration shown in FIGS. FIG. 14 is a plan view of the first separator 110 showing another configuration example of the flow path, and FIG. 15 is a cross-sectional view taken along the line AA of FIG.
 図15に示すように、膜電極接合体130のガス拡散層131に形成された第1流路132は、酸化剤ガス給排出口142に連通している。また、図14に示すように、第3流路111の主流通方向D1、D1’と、第1流路132の主流通方向D2、D2’とは、異なった向きとなっている。 As shown in FIG. 15, the first flow path 132 formed in the gas diffusion layer 131 of the membrane electrode assembly 130 communicates with the oxidant gas supply / discharge port 142. As shown in FIG. 14, the main flow directions D1 and D1 'of the third flow path 111 and the main flow directions D2 and D2' of the first flow path 132 are different from each other.
 また、図14では、燃料電池セル100は内部に冷媒給排出口140、燃料ガス給排出口141、酸化剤ガス給排出口142を内部に設けた、いわゆる内部マニホールド構造となっているが、これらの給排出口の一部または全てを別の部品として構成した、いわゆる外部マニホールド構造の構成となっていてもよい。 In FIG. 14, the fuel cell 100 has a so-called internal manifold structure in which a refrigerant supply / discharge port 140, a fuel gas supply / discharge port 141, and an oxidant gas supply / discharge port 142 are provided. A part or all of the supply / discharge port may be configured as a separate part so-called external manifold structure.
 また、本実施の形態では、燃料電池セル200が、その内部に、冷媒給排出口140、燃料ガス給排出口141、酸化剤ガス給排出口142が設けられた内部マニホールド構造である場合を例に挙げたが、外部マニホールド構造であってもよい。 In this embodiment, the fuel cell 200 has an internal manifold structure in which the refrigerant supply / discharge port 140, the fuel gas supply / discharge port 141, and the oxidant gas supply / discharge port 142 are provided. However, an external manifold structure may be used.
 上述した燃料電池セル200を複数積層することにより、燃料電池スタックを形成することができる。 A fuel cell stack can be formed by stacking a plurality of the fuel cell cells 200 described above.
 <効果>
 本実施の形態では、第1セパレータ110において、第4流路137bが加工されている部分の対向面に第3流路111が形成されておらず、薄肉部と厚肉部の厚みの差が小さい形状となっている。そのため、第4流路137bが設けられていても、第1セパレータ110を容易に製造することができる。また、第4流路137bによって第1接続流路137の断面積を拡大することができるため、ガスの圧損を低減できる。その結果、発電時の性能を向上させることができる。
<Effect>
In the present embodiment, in the first separator 110, the third flow path 111 is not formed on the opposing surface of the portion where the fourth flow path 137b is processed, and there is a difference in thickness between the thin part and the thick part. It has a small shape. Therefore, even if the 4th channel 137b is provided, the 1st separator 110 can be manufactured easily. Moreover, since the cross-sectional area of the 1st connection flow path 137 can be expanded by the 4th flow path 137b, the pressure loss of gas can be reduced. As a result, the performance during power generation can be improved.
 なお、本発明は、上記実施の形態の説明に限定されず、その趣旨を逸脱しない範囲において種々の変形が可能である。 It should be noted that the present invention is not limited to the description of the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
 本発明は、定置用の燃料電池または移動体用の燃料電池などに適用することができる。 The present invention can be applied to a stationary fuel cell or a mobile fuel cell.
100 燃料電池セル
101 電極領域の辺縁
110 第1セパレータ
111 第3流路
112 ガス拡散層と接する部分
120 第2セパレータ
121 第2流路
122 部分
123 第2接続流路
123b 凹部
124 第3凸部
130 膜電極接合体
131 ガス拡散層
132 第1流路
133 ガス拡散層
134 面
135 高分子電解質膜
136 外周部材
137 第1接続流路
137b 第4流路
138 第1凸部
139 第2凸部
140 冷媒給排出口
141 燃料ガス給排出口
142 酸化剤ガス給排出口
200 燃料電池セル
100 Fuel Cell 101 Edge of Electrode Area 110 First Separator 111 Third Channel 112 Portion 120 in Contact with Gas Diffusion Layer Second Separator 121 Second Channel 122 Portion 123 Second Connection Channel 123b Recess 124 Third Projection 130 Membrane electrode assembly 131 Gas diffusion layer 132 First flow path 133 Gas diffusion layer 134 Surface 135 Polymer electrolyte membrane 136 Outer peripheral member 137 First connection flow path 137b Fourth flow path 138 First convex part 139 Second convex part 140 Refrigerant supply / discharge port 141 Fuel gas supply / discharge port 142 Oxidant gas supply / discharge port 200 Fuel cell

Claims (14)

  1. 膜電極接合体を第1セパレータと第2セパレータとで挟み込んで形成された燃料電池セルであって、
    前記膜電極接合体は、
    前記第1セパレータと相対する第1面に、第1流路が設けられた第1ガス拡散層を有するとともに、前記第2セパレータと相対する第2面に、概平面の第2ガス拡散層を有し、
    前記第1セパレータにおいて、
    前記第1面と相対する面は、概平面であり、
    前記第2セパレータは、
    前記第2面と相対する面に、第2流路を有する、
    燃料電池セル。
    A fuel battery cell formed by sandwiching a membrane electrode assembly between a first separator and a second separator,
    The membrane electrode assembly is
    A first gas diffusion layer provided with a first flow path is provided on a first surface opposite to the first separator, and a substantially planar second gas diffusion layer is provided on a second surface opposite to the second separator. Have
    In the first separator,
    The surface facing the first surface is a substantially flat surface,
    The second separator is
    Having a second flow path on a surface facing the second surface;
    Fuel cell.
  2.  前記第1ガス拡散層の外周には、前記第1流路と所定の給排口とを接続する第1接続流路が設けられた外周部材を有し、
     前記第2ガス拡散層の外周には、前記第2流路と所定の給排出口とを接続する第2接続流路が設けられた外周部材を有し、前記第1接続流路または前記第2接続流路の少なくとも一方には、複数の第1凸部が設けられている、
    請求項1に記載の燃料電池セル。
    On the outer periphery of the first gas diffusion layer, there is an outer peripheral member provided with a first connection flow path that connects the first flow path and a predetermined supply / exhaust port,
    The outer periphery of the second gas diffusion layer has an outer peripheral member provided with a second connection flow path for connecting the second flow path and a predetermined supply / discharge port, and the first connection flow path or the first At least one of the two connection flow paths is provided with a plurality of first convex portions,
    The fuel battery cell according to claim 1.
  3. 前記第2セパレータにおいて、
    前記第2面と相対する面の裏面は、概平面である、
    請求項1に記載の燃料電池セル。
    In the second separator,
    The back surface of the surface facing the second surface is a substantially flat surface.
    The fuel battery cell according to claim 1.
  4. 前記第1セパレータの前記概平面部の表面粗さは、2μm以上、30μm以下である、
    請求項1に記載の燃料電池セル。
    The surface roughness of the substantially planar portion of the first separator is 2 μm or more and 30 μm or less.
    The fuel battery cell according to claim 1.
  5. 前記第2セパレータの前記概平面部の表面粗さは、2μm以上、30μm以下である、
    請求項1に記載の燃料電池セル。
    The surface roughness of the substantially planar portion of the second separator is 2 μm or more and 30 μm or less.
    The fuel battery cell according to claim 1.
  6. 前記第1セパレータは、
    前記第1面と相対する面の裏面に、第3流路を有し、
    前記第3流路の主流通方向は、前記第1流路の主流通方向と異なる方向である、
    請求項1に記載の燃料電池セル。
    The first separator is
    On the back surface of the surface facing the first surface, there is a third flow path,
    The main flow direction of the third flow path is different from the main flow direction of the first flow path.
    The fuel battery cell according to claim 1.
  7. 前記第3流路と所定の給排口とを接続する第3接続流路には、複数の第2凸部が設けられている、
    請求項6に記載の燃料電池セル。
    The third connection flow path connecting the third flow path and the predetermined supply / exhaust port is provided with a plurality of second convex portions,
    The fuel battery cell according to claim 6.
  8. 前記第1セパレータは、
    前記第1面と相対する面の外周部分に、前記第1流路と接続される第4流路137bを有する、
    請求項1に記載の燃料電池セル。
    The first separator is
    A fourth flow path 137b connected to the first flow path on the outer peripheral portion of the surface facing the first surface;
    The fuel battery cell according to claim 1.
  9.  前記第1セパレータは、
     前記第1面と相対する面の外周部分に、前記第1流路とは離間し、前記第1接続流路と接続される位置に配置された第4流路を有する、請求項1に記載の燃料電池セル。
    The first separator is
    2. The fourth flow path according to claim 1, further comprising a fourth flow path disposed at a position connected to the first connection flow path and spaced from the first flow path in an outer peripheral portion of a surface facing the first surface. Fuel cell.
  10.  前記第1セパレータは、
    前記第1面と相対する面の外周部分に、積層方向から見て前記第3流路と重ならない位置に前記第1流路と接続される第4流路を有する請求項6に記載の燃料電池セル。
    The first separator is
    7. The fuel according to claim 6, further comprising a fourth flow path connected to the first flow path at a position not overlapping the third flow path when viewed from the stacking direction in an outer peripheral portion of a surface facing the first surface. Battery cell.
  11.  前記第1ガス拡散層の外周部には、前記膜電極接合体と、前記第1セパレータとを一体に接合する外周部材を有し、前記外周部材は前記第1流路と所定の給排口とを接続する第1接続流路を有する請求項1に記載の燃料電池セル。 The outer peripheral portion of the first gas diffusion layer has an outer peripheral member that integrally bonds the membrane electrode assembly and the first separator, and the outer peripheral member has the first flow path and a predetermined supply / exhaust port. The fuel cell according to claim 1, further comprising a first connection flow path that connects the two to each other.
  12. 前記第1流路の溝幅は、0.2mm以上、0.5mm以下である、
    請求項1に記載の燃料電池セル。
    The groove width of the first flow path is 0.2 mm or more and 0.5 mm or less.
    The fuel battery cell according to claim 1.
  13. 前記第2流路の溝幅は、0.2mm以上、0.5mm以下である、
    請求項1に記載の燃料電池セル。
    The groove width of the second flow path is 0.2 mm or more and 0.5 mm or less.
    The fuel battery cell according to claim 1.
  14. 請求項1項に記載の燃料電池セルを複数積層して形成された、
    燃料電池スタック。
    Formed by stacking a plurality of fuel cells according to claim 1;
    Fuel cell stack.
PCT/JP2019/011953 2018-04-10 2019-03-22 Fuel battery cell and fuel cell stack WO2019198457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-075550 2018-04-10
JP2018075550A JP2021114355A (en) 2018-04-10 2018-04-10 Fuel battery cell and fuel battery stack

Publications (1)

Publication Number Publication Date
WO2019198457A1 true WO2019198457A1 (en) 2019-10-17

Family

ID=68163189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011953 WO2019198457A1 (en) 2018-04-10 2019-03-22 Fuel battery cell and fuel cell stack

Country Status (2)

Country Link
JP (1) JP2021114355A (en)
WO (1) WO2019198457A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096205A1 (en) * 2010-02-05 2011-08-11 パナソニック株式会社 Polymer electrolyte fuel cell
JP2011258428A (en) * 2010-06-09 2011-12-22 Panasonic Corp Polymer electrolyte fuel cell and fuel cell stack with the same
JP2012059694A (en) * 2009-09-01 2012-03-22 Panasonic Corp Membrane electrode assembly, manufacturing method thereof, and fuel cell
JP2014170670A (en) * 2013-03-04 2014-09-18 Honda Motor Co Ltd Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059694A (en) * 2009-09-01 2012-03-22 Panasonic Corp Membrane electrode assembly, manufacturing method thereof, and fuel cell
WO2011096205A1 (en) * 2010-02-05 2011-08-11 パナソニック株式会社 Polymer electrolyte fuel cell
JP2011258428A (en) * 2010-06-09 2011-12-22 Panasonic Corp Polymer electrolyte fuel cell and fuel cell stack with the same
JP2014170670A (en) * 2013-03-04 2014-09-18 Honda Motor Co Ltd Fuel cell

Also Published As

Publication number Publication date
JP2021114355A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
CN109713344B (en) Power generation single cell
JP2018022595A (en) Fuel cell stack
JP2017139218A (en) Method of producing fuel cell stack and method of producing metal separator for fuel cell
CN109980240B (en) Power generation single cell
CN109962257B (en) Power generation single cell
KR101819798B1 (en) Fuel cell separator, fuel cell, and fuel cell battery
US10388969B2 (en) Bipolar plate for a fuel cell, and a method manufacturing the same
JP6493549B2 (en) Fuel cell stack
US10707497B2 (en) Fuel cell
US20090004537A1 (en) Fuel Cell
JP2006331783A (en) Unit cell for fuel cell
CN109755607B (en) Convex sealing structure
JP6090091B2 (en) Fuel cell
JP2011222393A (en) Fuel cell
CN109659579B (en) Joint separator for fuel cell and fuel cell stack
JP5081494B2 (en) Fuel cell
CN115149057B (en) Power generation cell and membrane electrode assembly with resin frame
JP2006147258A (en) Separator and fuel battery stack
WO2019198457A1 (en) Fuel battery cell and fuel cell stack
JP2007250228A (en) Fuel cell
US10170787B2 (en) Separator
JP5443254B2 (en) Fuel cell
JP2007012382A (en) Separator and fuel cell equipped with separator
JP2020092076A (en) Separation plate assembly for fuel cell and fuel cell stack including the same
JP7111661B2 (en) Metal separators for fuel cells, junction separators and power generation cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP