WO2019198431A1 - Image reading irregularity correction method, image reading device, image formation device, and image reading irregularity correction program - Google Patents

Image reading irregularity correction method, image reading device, image formation device, and image reading irregularity correction program Download PDF

Info

Publication number
WO2019198431A1
WO2019198431A1 PCT/JP2019/011121 JP2019011121W WO2019198431A1 WO 2019198431 A1 WO2019198431 A1 WO 2019198431A1 JP 2019011121 W JP2019011121 W JP 2019011121W WO 2019198431 A1 WO2019198431 A1 WO 2019198431A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging unit
unit
lens
imaging
Prior art date
Application number
PCT/JP2019/011121
Other languages
French (fr)
Japanese (ja)
Inventor
完司 永島
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019198431A1 publication Critical patent/WO2019198431A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/191Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a one-dimensional array, or a combination of one-dimensional arrays, or a substantially one-dimensional array, e.g. an array of staggered elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/401Compensating positionally unequal response of the pick-up or reproducing head

Definitions

  • the present disclosure relates to an image reading unevenness correction method, an image reading apparatus, an image forming apparatus, and an image reading unevenness correction program.
  • the image reading apparatus generally performs shading correction in order to correct variations in the output of each pixel of the imaging unit.
  • shading correction the white reference plate is read and corrected.
  • accuracy (non-uniformity) of the white reference plate is a problem.
  • Japanese Patent Laid-Open No. 6-291945 discloses illumination means for illuminating a document, a solid-state image sensor in which light receiving elements are arranged in a line, and an imaging optical system for forming an image of the document on the solid-state image sensor.
  • the optical system is defocused by a diffusion plate or the like when an image is formed on the solid-state imaging device.
  • An object of the present disclosure is to provide an image reading unevenness correction method, an image reading apparatus, an image display apparatus, an image forming apparatus, and an image reading unevenness correction program capable of correcting variations caused by spectral characteristics of each pixel of an imaging unit.
  • An image reading unevenness correction method includes a plurality of pixels coated with a filter film, and a bright reference plate predetermined in an imaging unit that converts an image to be read formed on the plurality of pixels into image information.
  • the first shading correction information for correcting light / dark image unevenness using image information obtained by forming an image as an image to be read and image information obtained from the imaging unit in a predetermined dark reference state From the correction result calculated by the first calculation unit and corrected by the first shading correction information, the image information obtained by blurring the image of the printed matter with the predetermined color and the predetermined density and forming the image on the imaging unit is determined in advance.
  • the second calculation unit calculates second shading correction information for correcting the reading density unevenness of each pixel of the imaging unit with respect to the predetermined color and the predetermined density. 1 With over fading correction information and the second shading correction data, the correction unit image information obtained by imaging the imaging unit images to be read is correct.
  • the image reading unevenness correction method forms an image to be read on the imaging unit in order to blur the image of the printed matter with a predetermined color and a predetermined density onto the imaging unit.
  • a blurring unit that blurs an image formed on the imaging unit may be inserted between the lens and the imaging unit.
  • the blurring portion may be a diffusing member or a lens diffusing plate.
  • the blurring unit includes a reflecting mirror that adjusts the length of the optical path, and a condenser lens, and the length of the optical path that constitutes the Keller illumination system in which the imaging lens is a collector lens. By arranging each so as to be, the image formed on the imaging unit may be blurred.
  • the blurring unit includes a condenser lens, adjusts the length of the optical path, and configures the Keller illumination system using the imaging lens as a collector lens, thereby connecting to the imaging unit.
  • the image to be imaged may be blurred.
  • the blurring unit includes a reflecting mirror that adjusts the length of the optical path, a fly array lens, a collimator lens, and a condenser lens, and a Keller illumination system using the imaging lens as a collector lens By arranging each of them so as to have the length of the optical path constituting the image, the image formed on the imaging unit may be blurred.
  • the blurring unit includes a fly array lens and a condenser lens, adjusts the length of the optical path, and configures the Keller illumination system using the imaging lens as a collimator lens.
  • the image formed on the imaging unit may be blurred.
  • the image reading unevenness correction method of the present disclosure calculates the second shading correction information for each of a plurality of predetermined colors and a plurality of types of predetermined density printed matter, and sets the density to a density other than the plurality of types of densities. On the other hand, it may be calculated by interpolation.
  • the image reading unevenness correction method of the present disclosure performs extraction of a predetermined spatial frequency using a high-pass filter or a band-pass filter.
  • An image reading apparatus includes a plurality of pixels coated with a filter film, an imaging unit that converts an image to be read formed on the plurality of pixels into image information, and a predetermined bright reference plate.
  • First shading correction information for correcting light and dark image unevenness is calculated using image information obtained by forming an image on the imaging unit and image information obtained from the imaging unit in a predetermined dark reference state.
  • a calculation unit a blur imaging unit that blurs an image to be read and forms an image on the imaging unit, and a blurred printed image having a predetermined color and a predetermined density, and an image formed by the imaging unit is blurred
  • a predetermined spatial frequency from the correction result obtained by correcting the image information obtained by forming an image on the imaging unit with the first shading correction information
  • each of the imaging unit for a predetermined color and a predetermined density is extracted.
  • Compensates for pixel reading density unevenness An image obtained by forming an image to be read on the imaging unit on the basis of the calculation results of the second calculation unit for calculating the second shading correction information and the first calculation unit and the second calculation unit A correction unit that corrects information.
  • the blur imaging unit includes a blur unit that blurs an image formed on the imaging unit between the imaging lens that forms an image to be read on the imaging unit and the imaging unit. By inserting the image, the image to be read may be blurred and formed on the imaging unit.
  • the blurring unit may be a diffusing member or a lens diffusing plate.
  • the blurring unit includes a reflecting mirror that adjusts the length of the optical path, and a condenser lens, and has a length of the optical path that constitutes a Keller illumination system in which the imaging lens is a collector lens. By disposing each, the image formed on the imaging unit may be blurred.
  • the blurring unit includes a condenser lens, adjusts the length of the optical path, and forms an image on the imaging unit by configuring a Keller illumination system using the imaging lens as a collector lens.
  • the image may be blurred.
  • the blurring unit includes a reflector that adjusts the length of the optical path, a fly array lens, a collimator lens, and a condenser lens, and constitutes a Keller illumination system in which the imaging lens is a collector lens
  • the image formed on the imaging unit may be blurred by arranging each of them so as to have the length of the optical path.
  • the blurring unit includes a fly array lens and a condenser lens, adjusts the length of the optical path, and configures a Keller illumination system using the imaging lens as a collimator lens.
  • the image formed on the image may be blurred.
  • the second calculation unit calculates the second shading correction information for each of a plurality of predetermined colors and a plurality of predetermined densities of printed matter,
  • the second shading correction information may be calculated for each density by interpolation.
  • the image reading device of the present disclosure performs extraction of a predetermined spatial frequency using a high-pass filter or a band-pass filter.
  • the image forming apparatus includes an image forming unit that forms an image on a recording medium and the image reading device according to the present disclosure, and binds an image formed on the recording medium by the image forming unit to the imaging unit. Image information converted by imaging is corrected by a correction unit.
  • the image reading unevenness correction program of the present disclosure causes a computer to function as the first calculation unit and the second calculation unit in the image reading device of the present disclosure.
  • the image reading unevenness correction program of the present disclosure causes the computer to function as the first calculation unit, the second calculation unit, and the correction unit in the image reading apparatus of the present disclosure.
  • FIG. 1 is a configuration diagram illustrating an example of an overall configuration of an image forming apparatus according to an exemplary embodiment. It is a perspective view which shows schematic structure of the in-line sensor which concerns on this embodiment. It is a block diagram which shows the structure of the control system of the in-line sensor which concerns on this embodiment. It is a figure which shows an example of the reading result which imaged and read the printed matter of the predetermined density
  • FIG. 6 is a flowchart illustrating an example of a flow of processing performed by a reading control device of the image forming apparatus according to the present embodiment. It is a figure which shows schematic structure of the 1st example which smoothes distribution of the reading light imaged on the imaging part which concerns on this embodiment. It is a figure which shows schematic structure of the 2nd example which smoothes distribution of the reading light imaged on the imaging part which concerns on this embodiment. It is a figure which shows schematic structure of the 3rd example which smoothes distribution of the reading light imaged on the imaging part which concerns on this embodiment. It is a figure which shows schematic structure of the 4th example which smoothes distribution of the reading light imaged on the imaging part which concerns on this embodiment.
  • FIG. 1 is a configuration diagram showing an example of the overall configuration of the image forming apparatus according to the present embodiment.
  • the image forming unit 11 of the image forming apparatus 10 includes a head 72M (magenta), 72K (black), and 72C on a recording medium 24 (sometimes referred to as “paper” for convenience) held on the drawing drum 70 of the drawing unit 16.
  • the image forming apparatus forms a desired color image by ejecting ink from each of (cyan) and 72Y (yellow).
  • the image forming apparatus 10 of the present embodiment employs a two-liquid reaction system in which a processing liquid is applied onto the recording medium 24 before ink ejection, and the processing liquid and the ink liquid are reacted to form an image on the recording medium 24. This is an applied image forming apparatus.
  • the CMYK symbols may be omitted when referring to all of them without distinction.
  • the image forming unit 11 mainly includes a paper feeding unit 12, a processing liquid applying unit 14, a drawing unit 16, a drying unit 18, a fixing unit 20, and a discharging unit 22.
  • the paper feed unit 12 supplies the recording medium 24 to the treatment liquid application unit 14.
  • the paper feed unit 12 is provided with a paper feed tray 50 for storing the recording medium 24, and the recording medium 24 is fed from the paper feed tray 50 to the processing liquid applying unit 14 one by one.
  • a plurality of types of recording media 24 having different paper types and sizes (paper sizes) can be used as the recording medium 24.
  • the paper supply unit 12 may include a plurality of paper trays that separately collect various recording media and may automatically switch the paper to be sent to the paper supply tray 50 from the plurality of paper trays. It is also possible for the operator to select or replace the paper tray.
  • a sheet (cut paper) is used as the recording medium 24.
  • a configuration in which a continuous paper (roll paper) is cut into a necessary size and fed is also possible.
  • the medium used as the recording medium 24 is not particularly limited, and examples thereof include high-quality paper, coated paper, and paper mainly composed of cellulose such as art paper.
  • the processing liquid application unit 14 applies the processing liquid to the recording surface of the recording medium 24.
  • the treatment liquid contains a color material aggregating agent that agglomerates the color material in the ink applied by the drawing unit 16, and the ink is separated from the color material and the solvent when the treatment liquid comes into contact with the ink. Promoted.
  • the treatment liquid application unit 14 includes a paper feed drum 52, a treatment liquid drum 54, and a treatment liquid application device 56.
  • the processing liquid drum 54 rotates while holding the recording medium 24 on the outer peripheral surface, and conveys the recording medium 24.
  • a treatment liquid coating device 56 is provided outside the treatment liquid drum 54 at a position facing the outer peripheral surface.
  • the processing liquid application device 56 includes a processing liquid container in which the processing liquid is stored, and applies the processing liquid stored in the processing container to the recording medium 24 while measuring.
  • the recording medium 24 to which the processing liquid is applied by the processing liquid applying unit 14 is transferred from the processing liquid drum 54 to the drawing drum 70 of the drawing unit 16 through the intermediate transport unit 26.
  • the drawing unit 16 includes a drawing drum 70, a sheet pressing roller 74, and heads 72M, 72K, 72C, and 72Y.
  • the recording medium 24 is conveyed in a state where the recording surface is held outwardly on the outer peripheral surface of the drawing drum 70, and ink is applied to the recording surface from the heads 72M, 72K, 72C, 72Y.
  • the heads 72M, 72K, 72C, 72Y of the present embodiment are full-line type ink jet heads each having a length corresponding to the maximum width of the image forming area in the recording medium 24.
  • a nozzle row in which a plurality of nozzles for ink ejection are arranged over the entire width of the image forming area is formed.
  • the treatment liquid application unit 14 causes the ink droplets of the corresponding color to be ejected from each of the heads 72M, 72K, 72C, and 72Y toward the recording surface of the recording medium 24 held on the drawing drum 70.
  • the ink comes into contact with the processing liquid previously applied to the recording surface.
  • the color material dispersed in the ink is aggregated to form an aggregate of the color material. Thereby, the color material flow on the recording medium 24 is prevented, and an image is formed on the recording surface of the recording medium 24.
  • the four-color configuration of CMYK is exemplified, but the combination of the ink color and the number of colors is not particularly limited, and light ink, dark ink, special color ink, and the like are added as necessary. May be.
  • a head for ejecting light-colored ink such as light cyan and light magenta, and the arrangement order of the color heads is not particularly limited.
  • the recording medium 24 on which the image is formed by the drawing unit 16 is transferred from the drawing drum 70 to the drying drum 76 of the drying unit 18 through the intermediate conveyance unit 28.
  • the drying unit 18 dries moisture contained in the solvent separated by the aggregation action of the color material.
  • the drying unit 18 includes a drying drum 76 and a solvent drying device 78.
  • the recording medium 24 is conveyed while being held on the outer peripheral surface of the drying drum 76 with the recording surface facing outward.
  • the solvent drying device 78 is disposed at a position facing the outer peripheral surface of the drying drum 76, and blows warm air toward the recording medium 24.
  • the recording medium 24 that has been dried by the drying unit 18 is transferred from the drying drum 76 to the fixing drum 84 of the fixing unit 20 via the intermediate conveyance unit 30.
  • the fixing unit 20 is provided with a halogen heater 86, a fixing roller 88, and an inline sensor 90 as an image reading device on the outer peripheral surface of the fixing drum 84.
  • the recording medium 24 is conveyed while being held on the outer peripheral surface of the fixing drum 84 with the recording surface facing outward.
  • the halogen heater 86 preheats the recording medium 24.
  • the fixing roller 88 heats and presses the recording medium 24.
  • the in-line sensor 90 is for measuring a check pattern, a moisture content, a surface temperature, a gloss level, and the like for an image fixed on the recording medium 24.
  • the in-line sensor 90 uses a line sensor, an area sensor, or the like. The image fixed to 24 is read.
  • a discharge unit 22 is provided following the fixing unit 20.
  • the discharge unit 22 includes a discharge tray 92, and a transfer drum 94, a conveyance belt 96, and a stretching roller 98 are provided between the discharge tray 92 and the fixing drum 84 of the fixing unit 20.
  • the recording medium 24 is sent to the conveying belt 96 by the transfer drum 94 and discharged to the discharge tray 92.
  • the image forming apparatus 10 includes a processing liquid for the ink loading unit that supplies ink to each head 72 and the processing liquid application unit 14 in addition to the above configuration.
  • a head maintenance unit for cleaning each head 72 (wiping of the discharge surface, purging, nozzle suction, etc.), a position detection sensor for detecting the position of the recording medium 24 on the paper transport path, and each part of the apparatus
  • the temperature sensor etc. which detect the temperature of this are provided.
  • FIG. 2 is a perspective view illustrating a schematic configuration of the inline sensor 90 according to the present embodiment.
  • the in-line sensor 90 includes a pair of light sources 38, an imaging lens 36, a diffusion member 34 as a blurring unit, an imaging unit 32, and a white reference plate 40 as a predetermined bright reference plate. It is configured.
  • the predetermined bright reference plate is, for example, a reference plate having a predetermined brightness or higher, and is not limited to the white reference plate 40, but may be replaced with a bright reference plate other than white. Good.
  • the pair of light sources 38 are arranged on the conveyance path of the paper to be read by the inline sensor 90 and illuminate the paper. Specifically, the pair of light sources 38 are elongated in a direction orthogonal to the paper transport direction. The length of the irradiation range of the light source 38 is an irradiation range having a width wider than the width of the paper to be conveyed. Further, the pair of light sources 38 are arranged symmetrically with respect to the optical axis reflected by the paper and directed toward the imaging lens 36.
  • the illumination of the paper is not limited to the pair of light sources 38, and may be a single light source or a plurality of three or more light sources. Moreover, as a light source, it is possible to apply a semiconductor light source (for example, LED etc.) or a discharge lamp.
  • the imaging lens 36 images the light irradiated from the pair of light sources 38 and reflected by the paper on the imaging unit 32.
  • the imaging unit 32 is formed on a sheet by a line sensor in which photoelectric conversion elements such as CCD (Charge-Coupled-Devices) and CMOS (Complementary Metal-Oxide-Semiconductor) are arranged in a line in a direction crossing the sheet conveyance direction. Read the image.
  • a line sensor in which photoelectric conversion elements such as CCD (Charge-Coupled-Devices) and CMOS (Complementary Metal-Oxide-Semiconductor) are arranged in a line in a direction crossing the sheet conveyance direction.
  • CCD Charge-Coupled-Devices
  • CMOS Complementary Metal-Oxide-Semiconductor
  • the diffusing member 34 is configured such that light from the pair of light sources 38 is reflected by the paper and can enter and exit an optical path (hereinafter sometimes referred to as a reading optical path) that goes to the imaging unit 32 via the imaging lens. Yes.
  • a reading optical path an optical path that goes to the imaging unit 32 via the imaging lens.
  • the diffusing member 34 is on the reading optical path, the light to be read is diffused by the diffusing member 34 so that the image to be read is blurred and formed on the imaging unit 32, and the reading light is smoothed. Since the diffusing member 34 is a light diffusing member, a light diffusing effect can be obtained even if it is inserted between the reading object and the imaging lens 36 or between the imaging lens 36 and the imaging unit 32.
  • the present invention is not limited to this.
  • a configuration in which at least one position of the imaging unit 32 and the imaging lens 36 is moved is applied as a blur imaging unit, and imaging is performed by moving at least one of the imaging unit 32 and the imaging lens 36 and shifting the focus.
  • the image formed on the unit 32 may be blurred.
  • a lens diffusion plate (LSD: Light ⁇ ⁇ ⁇ Shaping ⁇ Diffusers, Luminit) may be used instead of the diffusing member 34.
  • the white reference plate 40 can enter and exit the reading position of the imaging unit 32, and the white reference plate 40 is moved to the reading position of the imaging unit 32 during shading correction preparation for creating shading correction information for correcting density unevenness. Let On the other hand, the white reference plate 40 is retracted from the conveyance path when reading an image of a sheet.
  • FIG. 3 is a block diagram illustrating a configuration of a control system of the inline sensor 90 according to the present embodiment.
  • the inline sensor 90 is controlled by the reading control device 42.
  • the reading control device 42 is configured by a computer in which a CPU (Central Processing Unit) 42A, a ROM (Read Only Memory) 42B, a RAM (Random Access Memory) 42C, and an input / output port 42D are connected to a bus 42E.
  • the reading control device 42 corresponds to a first calculation unit, a second calculation unit, and a correction unit.
  • the ROM 42B stores various programs and information for controlling the inline sensor 90.
  • the inline sensor 90 is controlled by developing the program stored in the ROM 42B in the RAM 42C and executing it by the CPU 42A.
  • a pair of light sources 38, a diffusing member driving unit 44, a white reference plate driving unit 46, and an imaging unit 32 are connected to the input / output port 42D.
  • the light source 38 is turned on to illuminate the paper to be read, and the light emitted from the light source 38 is reflected by the paper and imaged on the imaging unit 32 via the imaging lens 36. .
  • the diffusing member driving unit 44 moves the diffusing member 34 on the reading optical path of the imaging unit 32 and blurs an image formed on the imaging unit 32.
  • the diffusing member 34 is retracted from the reading optical path of the imaging unit 32 when generating first shading correction information described later.
  • the diffusing member 34 is moved onto the reading optical path of the imaging unit 32 to blur the image formed on the imaging unit 32.
  • the white reference plate drive unit 46 drives the white reference plate 40 to move and retract the white reference plate 40 to the reading position of the imaging unit 32.
  • the imaging unit 32 reads the image to be read by forming an image formed on the sheet to be read, and generates image information representing the read image. Then, the imaging unit 32 performs A / D (analog / digital) conversion or the like on the generated image information and outputs it to the reading control device 42.
  • a / D analog / digital
  • the reading control device 42 controls the light source 38, the diffusing member driving unit 44, the white reference plate driving unit 46, and the imaging unit 32 to generate correction information such as shading correction for correcting the reading characteristics of the imaging unit 32.
  • correction information such as shading correction for correcting the reading characteristics of the imaging unit 32.
  • the image information read by the imaging unit 32 is corrected using the correction information.
  • the image information obtained by reading the white reference plate 40 (or read in a predetermined bright state) and the image obtained by reading the black reference plate (or read in a predetermined dark reference state).
  • Shading correction information is generated from the information. Then, density unevenness is corrected using this, and image information with uniform reading characteristics is acquired.
  • the shading correction information when reading a color image, white illumination or mixed illumination of R, G, and B is used.
  • the white reference plate 40 has substantially uniform reflection spectral characteristics in the visible light region. It is a thing.
  • a color image reading target is printed using inks such as cyan (C), magenta (M), and yellow (Y).
  • the image information read in a predetermined dark reference state is image information read in a state where light is not incident on the imaging unit 32 (or a predetermined dark state), and the black reference plate is read. Includes image information.
  • the color imaging unit 32 has spectral sensitivity variation (sensitivity difference with respect to each wavelength) for each pixel.
  • the larger the variation the more the corresponding pixel cannot be corrected sufficiently only by the light / dark shading correction, and the color density may be uneven.
  • a line sensor is used, and one pixel is used for reading one column of pixels arranged in a direction orthogonal to the width direction (pixel arrangement direction) of the line sensor, so that the spectral sensitivity variation is large. If there is a pixel, this influence becomes linear color density unevenness. Furthermore, when pixels having a large variation in spectral sensitivity are continuously present in the pixel row, or when a plurality of pixels are present in a relatively close range, strip-shaped color density unevenness occurs. On the other hand, when the area sensor is applied, color density unevenness corresponding to a pixel having a large variation on a one-to-one basis. Both are problems in image quality, and appropriate correction is necessary to obtain a good image.
  • the imaging unit 32 in which uneven color density occurs when the characteristics of the imaging unit 32 in which uneven color density occurs are examined, there are pixels that are solidified in a certain section on the imaging unit 32 and have uneven color density.
  • these pixels when shading correction is performed using a light and dark reference and an achromatic color (gray) of brightness between the white reference plate 40 and the black reference is read, color density unevenness does not occur, but a specific color is not generated. When read, uneven color density occurred.
  • the difference in the output of the imaging unit 32 between the portion with uneven color density and the portion without uneven color density is about 1 to 1.5 in 8-bit data (value range 0 to 255). There was a difference.
  • the direct cause of the color density unevenness is estimated to be that the pixel with the blue filter for reading yellow has a lighter color filter than the other pixels in the pixel having the color density unevenness. It is thought that the thickness error is caused.
  • a blue filter is provided for the change in density of yellow compared to other colors (magenta, cyan, black in color printing ink). It is mentioned that the output change of the imaging unit 32 is small.
  • the output change of the image pickup unit 32 provided with the blue filter even when the density of yellow is changed at medium to high density is compared with the output change of the image pickup unit 32 provided with the green filter for other colors, for example, magenta. Small.
  • an output difference of the imaging unit 32 provided with the blue filter is caused by a thickness error of the color filter, the density difference of yellow is relatively detected as compared with other colors. Concentration unevenness becomes more noticeable.
  • the ink coloring material, dye, pigment, etc.
  • the spectral characteristics with respect to reflected light or transmitted light also differ. Therefore, it is desirable to obtain correction information with higher accuracy by creating a correction printed matter that can be regarded as a reference of a specific color having a uniform density with an actual printed matter, and measuring this.
  • the printed matter has a fine density distribution. Therefore, when viewed microscopically, the density distribution is not uniform. Therefore, in a state where the optical adjustment is performed so as to read the reading target and the image is in focus, the “fine density distribution” is read by the imaging unit 32. If the “fine density distribution” is read, it is difficult to distinguish between the density distribution of the printed matter and the spectral sensitivity unevenness of the imaging unit 32, and it is impossible to correctly measure the reference density of a specific color.
  • the spectral sensitivity unevenness of each pixel of the imaging unit 32 at a predetermined reference density is accurately measured. It is necessary to.
  • the fine density distribution of the printed matter is read together, and it is a problem that the spectral sensitivity unevenness for each pixel and the fine density distribution of the printed matter cannot be separated.
  • first shading correction information for correcting light and dark image unevenness is calculated. Further, a predetermined spatial frequency is obtained from a correction result obtained by correcting image information obtained by blurring an image of a printed matter having a predetermined color and a predetermined density and forming the image on the imaging unit 32 with the first shading correction information. Extract. As a result, second shading correction information for correcting the read density unevenness of each pixel of the imaging unit 32 with respect to a predetermined color and a predetermined density is calculated. Then, using the first shading correction information and the second shading correction information, image information obtained by forming an image to be read on the imaging unit 32 is corrected.
  • Information sensitivity correction (shading correction) of each pixel with respect to the achromatic color is performed.
  • the distribution of the reading light is smoothed by blurring the image formed on the imaging unit 32 by the diffusing member 34 to obtain a predetermined color in advance.
  • Read the printed matter with the specified density For example, FIG. 4A shows an example of a reading result obtained by reading a yellow printed matter having a predetermined density blurred by the diffusion member 34 and forming an image on the imaging unit 32.
  • the second shading correction information is calculated by extracting a predetermined spatial frequency from the image information obtained by reading the printed matter using a filter (for example, a high-pass filter or a band-pass filter). Thereby, more accurate correction information can be acquired.
  • FIG. 4B shows the result of applying the low-pass filter to the reading result of FIG. 4A
  • FIG. 4C shows the result of applying the band-pass filter by further applying the high-pass filter to FIG. 4B. Further, FIG. 4C shows a range where the color density is uneven.
  • FIG. 5 is a flowchart illustrating an example of a flow of processing performed by the reading control device 42 of the image forming apparatus 10 according to the present embodiment.
  • the shading correction may be performed, for example, in the production process of the image forming apparatus 10 or when the image forming apparatus 10 is installed. Alternatively, it may be performed when instructed by the user, or may be performed every predetermined time.
  • the following steps 100 to 108 correspond to the first calculation unit, and steps 110 to 116 correspond to the second calculation unit.
  • step 100 the CPU 42A controls the white reference plate driving unit 46, moves the white reference plate 40 onto the reading optical path of the imaging unit 32, and proceeds to step 102.
  • step 102 the CPU 42A turns on the light source 38, reads the white reference plate 40 by the imaging unit 32, and proceeds to step 104. That is, image information obtained by imaging the white reference plate 40 in the bright state on the imaging unit 32 is acquired.
  • step 104 the CPU 42 ⁇ / b> A turns off the light source 38 and performs reading by the imaging unit 32 with the white reference plate 40 moving on the reading optical path of the imaging unit 32, and the process proceeds to step 106. That is, the white reference plate 40 blocks the reading optical path to prevent stray light from the outside, and the light source 38 is turned off to acquire image information obtained by the imaging unit 32 in a dark state where almost no light is incident.
  • step 106 the CPU 42 ⁇ / b> A controls the white reference plate driving unit 46 to retreat the white reference plate 40 from the reading optical path of the imaging unit 32 and proceeds to step 108.
  • step 108 the CPU 42A generates first shading correction information based on the two reading results of the reading result of the white reference plate 40 and the reading result in the dark state, and proceeds to step 110.
  • step 110 the CPU 42 ⁇ / b> A controls the diffusing member driving unit 44, moves the diffusing member 34 onto the reading optical path of the imaging unit 32, and proceeds to step 112.
  • the image formed on the imaging unit 32 is blurred and the density distribution is also blurred, so that the distribution of the reading light can be smoothed.
  • step 112 the CPU 42 ⁇ / b> A turns on the light source 38, reads the correction printed matter (printed matter printed with a predetermined color and a predetermined density) by the imaging unit 32, and proceeds to step 114.
  • the correction printed matter may be set at the reading position on the reading optical path of the imaging unit 32 by the operator, or set on the paper feed tray 50 of the image forming apparatus 10 to instruct conveyance.
  • step 114 the CPU 42A corrects the image information obtained by reading the correction printed matter having a predetermined color and a predetermined density with the first shading correction information, and proceeds to step 116.
  • the direction in which the density unevenness distribution is small is imaged.
  • the reading may be performed in accordance with the pixel arrangement direction of the unit 32. Specifically, when printing with a single-pass inkjet head, the conveyance direction of the paper is smaller than the direction perpendicular to the conveyance direction, so the conveyance direction of the printed matter for correction is the pixel alignment direction of the imaging unit 32. It may be rotated and read so as to match.
  • step 116 the CPU 42A extracts a predetermined spatial frequency from the image information corrected by the first shading correction information, generates second shading correction information, and proceeds to step 118.
  • the second shading correction information is generated by extracting a predetermined spatial frequency from the image information corrected in step 114 using a high-pass filter or a band-pass filter.
  • the image obtained by reading the correction printed matter as described above reads the printed matter having a substantially uniform density and corrects it with the first shading correction information, ideally, the entire printed portion of the image information is substantially uniform. Expected to be a density reading. However, if there is uneven reading in the imaging unit 32, the read image becomes an image including an image corresponding to uneven read pixels with respect to the ink of the printed matter.
  • the ratio of the read values of the individual pixels of the imaging unit 32 with respect to the average value of the read image of the printed portion having a substantially uniform density is obtained, and this is used as a correction coefficient, and this reciprocal is used as the second shading correction information.
  • the read image can suppress uneven density.
  • step 118 the CPU 42A stores the first shading correction information and the second shading correction information in a memory or the like, sets the correction information, and ends the series of processes.
  • the reading control device 42 corrects the image information obtained by reading by the imaging unit 32, so that the imaging unit 32 can be adapted to the actual color material and illumination characteristics. It is possible to correct variations caused by the spectral characteristics of each pixel.
  • the present invention is not limited to this.
  • by performing the above-described processing for each color and each density to generate the second shading correction information it is possible to correct the color density unevenness in each color and each density.
  • the ratio (correction coefficient) of the read value of each pixel of the imaging unit 32 is interpolated or extrapolated from the read results of one or more densities before and after the density. It may be estimated. As a result, correction coefficients are obtained for 0 to 255 for all read values, for example, 8-bit read values, for all pixels. Therefore, when various printed materials are read, an image in which color density unevenness is corrected can be obtained by multiplying the read value of each pixel by the reciprocal of this correction coefficient in accordance with the read value.
  • correction printed matter is not limited to one color per sheet, and one correction printed matter in which a plurality of colors and a plurality of density reference prints are applied to one printed matter, Second shading correction information for a plurality of colors and a plurality of densities for each color may be generated.
  • a printed matter having a reference density is created with cyan ink.
  • a printed matter with a reference density is created with magenta ink.
  • a printed matter for correcting the reference density is created with yellow ink.
  • the image is formed on the imaging unit 32.
  • a method for smoothing the distribution of reading light to be read will be described.
  • Keller illumination is configured by inserting an optical system 60 as shown in FIG. 6 while the imaging unit 32 is in focus.
  • a driving unit 68 for moving and retracting the optical system 60 on the reading optical path of the imaging unit 32 is provided.
  • an optical system 60 as a blurring portion a state in which reflecting mirrors 62 ⁇ / b> A, 62 ⁇ / b> B, 62 ⁇ / b> C and 62 ⁇ / b> D that bend an optical path and a condenser lens 64 are inserted between the imaging lens 36 and the imaging unit 32 is shown. .
  • Keller illumination is configured by retracting the imaging unit 32 with the imaging unit 32 in focus and inserting a condenser lens 64 as shown in FIG.
  • the condenser lens 64 is moved and retracted on the reading optical path of the imaging unit 32, and a driving unit 68 for moving the imaging unit 32 is provided.
  • FIG. 7 a state in which the imaging unit 32 is retracted and the condenser lens 64 is inserted between the imaging lens 36 and the imaging unit 32 as a blurring unit is shown.
  • Keller illumination is configured by inserting an optical system 61 including a fly array lens 66 and a collimator lens 67 as shown in FIG. 8 in a state where the imaging unit 32 is in focus.
  • a driving unit 68 for moving and retracting the optical system 61 including the fly array lens 66 and the collimator lens 67 on the reading optical path of the imaging unit 32 is provided.
  • FIG. 8 In the example of FIG.
  • the reflecting mirrors 62A, 62B, 62C, and 62D that bend the optical path, the fly array lens 66, the collimator lens 67, and the condenser lens 64 are formed with the imaging lens 36 and the imaging unit 32. The state of being inserted between is shown.
  • the imaging unit 32 is retracted while the imaging unit 32 is in focus, and a fly array lens 66, a collimator lens 67, and a condenser lens 64 are inserted as shown in FIG. Configure lighting.
  • the fly array lens 66, the collimator lens 67, and the condenser lens 64 are moved and retracted on the reading optical path of the imaging unit 32, and the imaging unit 32 is moved.
  • a driving unit 68 is provided.
  • FIG. 9 a state where the imaging unit 32 is moved backward as a blurring unit and the fly array lens 66, the collimator lens 67, and the condenser lens 64 are inserted between the imaging lens 36 and the imaging unit 32 is shown.
  • the methods of the first and second examples constitute a Keller illumination system in which the surface to be read is regarded as a light emitting surface and the imaging unit 32 is regarded as an illumination target.
  • the imaging lens 36 corresponds to a collector lens of the Keller illumination system
  • the condenser lens 64 of the first and second examples corresponds to a condenser lens of the Keller illumination system.
  • the focal position of the imaging lens 36 is arranged so that the reading target surface and the entrance pupil of the condenser lens 64 are conjugated (position where the imaging unit 32 is in focus).
  • the focal position of the condenser lens 64 is arranged so that the exit pupil of the imaging lens 36 and the imaging unit 32 are conjugated.
  • the distance from the imaging lens 36 to the imaging unit 32 needs to be longer than the distance between the imaging lens 36 and the imaging unit 32 when the imaging unit 32 is in focus. Therefore, in the first example, reflecting mirrors 62A, 62B, 62C, 62D and reflecting prisms are inserted before and after the condenser lens 64, and the optical path is bent so that the required optical path length is obtained. In the second example, the imaging unit 32 is moved backward so as to have a required optical path length. In this way, when the Keller illumination system is configured, when the surface to be read is regarded as a surface light source, light reflected or transmitted from each point on the surface to be read is captured by the imaging unit by the function of the lens of the Keller illumination system. 32 is reached.
  • a fly array lens 66 and a collimator lens 67 are added between the imaging lens 36 and the condenser lens 64 in the first example and the second example, respectively.
  • the collimator lens 67 is brought into the focal position of the imaging lens 36, and collimator light is incident on the fly array lens 66.
  • the optical characteristics of the Keller illumination systems of the first and second examples are provided, but the light reaching the imaging unit 32 is uniform. Improves. This is because Keller illumination makes the in-plane luminance distribution non-uniformity of the light source uniform in principle, and when a fly array lens 66 and a collimator lens 67 are added, the surface to be read is further viewed as a surface light source. In this case, a large number of secondary light sources are created from the surface light source by the fly array lens 66. This is because the nonuniformity of the luminance distribution in the angular direction of the light source is also corrected, and the uniformity is further enhanced as compared with the Keller illumination. When the position of the imaging lens 36 is moved to the reading target side so that the light emitted from the imaging lens becomes collimated light and enters the fly array lens 66, the collimator lens 67 becomes unnecessary.
  • the method using the diffusing member 34 and the lens diffusing plate of the above embodiment has a slightly weak effect.
  • the effect is strengthened, the amount of light reaching the imaging unit 32 is greatly reduced.
  • the method using the diffusing member 34 and the lens diffusing plate as in the above embodiment is significantly cheaper than the first to fourth examples. This is also because it is not necessary to change the optical distance between the imaging lens 36 and the imaging unit 32.
  • the method using the diffusing member 34 and the lens diffusing plate as in the above-described embodiment is somewhat weak in this effect, but this can be compensated by noise removal processing of the read image information.
  • this is realized by using a filter that passes the vicinity of the spatial frequency of the density unevenness in question from the image information.
  • a filter such as a bandpass filter may be applied to the first to fourth examples. Further, a high pass filter may be applied depending on the target density unevenness.
  • the production process at the time of manufacturing the imaging unit 32 may include the configuration of the in-line sensor 90 illustrated in FIG. 2, and the measurement device at the time of inspection may perform the processing in FIG. 5.
  • the inspection result of the imaging unit 32 can be shipped with the shading correction information added.
  • the shading correction of the inline sensor 90 provided in the image forming apparatus 10 has been described as an example, but the present invention is not limited to this.
  • the present invention may be applied to an image display device that displays an image by the imaging unit 32, and the display image may be corrected using the first shading correction information and the second shading correction information obtained by the processing in FIG.
  • various processors other than the CPU may execute the process of FIG. 5 executed by the CPU (42A) executing software (program) in each of the above embodiments.
  • a processor in this case, in order to execute specific processing such as PLD (Programmable Logic Device) and ASIC (Application Specific Integrated Circuit) whose circuit configuration can be changed after manufacturing FPGA (field-programmable gate array) or the like.
  • a dedicated electric circuit which is a processor having a circuit configuration designed exclusively, is exemplified. 5 may be executed by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs and a combination of a CPU and an FPGA). You may perform by combination etc.).
  • the hardware structure of these various processors is an electric circuit in which circuit elements such as semiconductor elements are combined.
  • the various programs stored in the reading control device 42 have been described as being prestored (installed) in the ROM 42B.
  • the program is provided in a form recorded in a non-transitory recording medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), and a USB (Universal Serial Bus) memory. Also good. Further, the program may be downloaded from an external device via a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

Provided is an image reading irregularity correction method in which first shading correction information for correcting image irregularity relating to shading is calculated using the following: image information obtained as a result of using a predetermined bright reference plate as an image to be read when forming an image in an imaging unit for converting an image to be read formed by a plurality of pixels coated with a filter film into image information; and image information obtained from the imaging unit while in a predetermined dark reference state. A predetermined spatial frequency is extracted from a correction result obtained by using the first shading correction information to correct image information obtained by using the imaging unit to form an image in which an image of a printed article having a predetermined color and a predetermined density is blurred, and second shading correction information for correcting reading density irregularity in each pixel of the imaging unit with respect to the predetermined color and the predetermined density is thereby calculated. A correction unit uses the first shading correction information and the second shading correction information to correct image information obtained as a result of using the imaging unit to form an image of an image to be read.

Description

画像読取むら補正方法、画像読取装置、画像形成装置、及び画像読取むら補正プログラムImage reading unevenness correction method, image reading apparatus, image forming apparatus, and image reading unevenness correction program
 本開示は、画像読取むら補正方法、画像読取装置、画像形成装置、及び画像読取むら補正プログラムに関する。 The present disclosure relates to an image reading unevenness correction method, an image reading apparatus, an image forming apparatus, and an image reading unevenness correction program.
 画像読取装置は、一般的に、撮像部の各画素の出力のばらつきを補正するためにシェーディング補正を行う。また、シェーディング補正では、白基準板を読み取って補正を行うが、白基準板の精度(不均一性)等が問題となる。 The image reading apparatus generally performs shading correction in order to correct variations in the output of each pixel of the imaging unit. In the shading correction, the white reference plate is read and corrected. However, the accuracy (non-uniformity) of the white reference plate is a problem.
 そこで、特開平6-291945号公報では、原稿を照明する照明手段と、ライン状に受光素子を配した固体撮像素子と、原稿の像を固体撮像素子に結像させるための結像光学系と、シェーディング補正板とを有した画像読取装置において、シェーディング補正板を固体撮像素子へ結像させる時に、光学系を拡散板等によりデフォーカスさせている。 Japanese Patent Laid-Open No. 6-291945 discloses illumination means for illuminating a document, a solid-state image sensor in which light receiving elements are arranged in a line, and an imaging optical system for forming an image of the document on the solid-state image sensor. In an image reading apparatus having a shading correction plate, the optical system is defocused by a diffusion plate or the like when an image is formed on the solid-state imaging device.
 しかしながら、特開平6-291945号公報では、デフォーカスさせてシェーディング補正板を読み取ることにより、シェーディング補正板の不均一性の影響を抑制できるが、画素毎の分光特性に起因するばらつきを抑制することができないため改善の余地がある。 However, in Japanese Patent Laid-Open No. 6-291945, the influence of non-uniformity of the shading correction plate can be suppressed by defocusing and reading the shading correction plate, but the variation due to the spectral characteristics of each pixel is suppressed. There is room for improvement.
 本開示は、撮像部の画素毎の分光特性に起因するばらつきを補正可能な画像読取むら補正方法、画像読取装置、画像表示装置、画像形成装置、及び画像読取むら補正プログラムを提供することを目的とする。 An object of the present disclosure is to provide an image reading unevenness correction method, an image reading apparatus, an image display apparatus, an image forming apparatus, and an image reading unevenness correction program capable of correcting variations caused by spectral characteristics of each pixel of an imaging unit. And
 本開示の画像読取むら補正方法は、フィルタ膜が塗布された複数の画素を有し、複数の画素に結像された読取対象の像を画像情報に変換する撮像部に予め定めた明基準板を読取対象の像として結像して得られる画像情報と、予め定めた暗基準状態で撮像部から得られる画像情報とを用いて、明暗の画像むらを補正するための第1シェーディング補正情報を第1算出部が算出し、予め定めた色かつ予め定めた濃度の印刷物の像をぼかして撮像部へ結像することにより得られる画像情報を第1シェーディング補正情報で補正した補正結果から、予め定めた空間周波数を抽出することにより、予め定めた色かつ予め定めた濃度に対する、撮像部の各画素の読取濃度むらを補正するための第2シェーディング補正情報を第2算出部が算出し、第1シェーディング補正情報及び第2シェーディング補正情報を用いて、読取対象の像を撮像部に結像して得られる画像情報を補正部が補正する。 An image reading unevenness correction method according to the present disclosure includes a plurality of pixels coated with a filter film, and a bright reference plate predetermined in an imaging unit that converts an image to be read formed on the plurality of pixels into image information. The first shading correction information for correcting light / dark image unevenness using image information obtained by forming an image as an image to be read and image information obtained from the imaging unit in a predetermined dark reference state From the correction result calculated by the first calculation unit and corrected by the first shading correction information, the image information obtained by blurring the image of the printed matter with the predetermined color and the predetermined density and forming the image on the imaging unit is determined in advance. By extracting the predetermined spatial frequency, the second calculation unit calculates second shading correction information for correcting the reading density unevenness of each pixel of the imaging unit with respect to the predetermined color and the predetermined density. 1 With over fading correction information and the second shading correction data, the correction unit image information obtained by imaging the imaging unit images to be read is correct.
 また、本開示の画像読取むら補正方法は、予め定めた色かつ予め定めた濃度の印刷物の像をぼかして撮像部へ結像するために、撮像部に読取対象の像を結像する結像レンズと撮像部との間に、撮像部に結像する像をぼかすぼかし部を挿入してもよい。 In addition, the image reading unevenness correction method according to the present disclosure forms an image to be read on the imaging unit in order to blur the image of the printed matter with a predetermined color and a predetermined density onto the imaging unit. A blurring unit that blurs an image formed on the imaging unit may be inserted between the lens and the imaging unit.
 また、本開示の画像読取むら補正方法において、ぼかし部は、拡散部材、またはレンズ拡散板であってもよい。 In the image reading unevenness correction method of the present disclosure, the blurring portion may be a diffusing member or a lens diffusing plate.
 また、本開示の画像読取むら補正方法では、ぼかし部が、光路の長さを調整する反射鏡、及びコンデンサレンズを含み、結像レンズをコレクタレンズとしたケラー照明系を構成する光路の長さとなるようにそれぞれを配置することにより、撮像部に結像する像をぼかしてもよい。 Further, in the image reading unevenness correction method of the present disclosure, the blurring unit includes a reflecting mirror that adjusts the length of the optical path, and a condenser lens, and the length of the optical path that constitutes the Keller illumination system in which the imaging lens is a collector lens. By arranging each so as to be, the image formed on the imaging unit may be blurred.
 また、本開示の画像読取むら補正方法では、ぼかし部が、コンデンサレンズを含み、光路の長さを調整して、結像レンズをコレクタレンズとしてケラー照明系を構成することにより、撮像部に結像する像をぼかしてもよい。 Further, in the image reading unevenness correcting method of the present disclosure, the blurring unit includes a condenser lens, adjusts the length of the optical path, and configures the Keller illumination system using the imaging lens as a collector lens, thereby connecting to the imaging unit. The image to be imaged may be blurred.
 また、本開示の画像読取むら補正方法では、ぼかし部が、光路の長さを調整する反射鏡、フライアレイレンズ、コリメータレンズ、及びコンデンサレンズを含み、結像レンズをコレクタレンズとしたケラー照明系を構成する光路の長さとなるようにそれぞれを配置することにより、撮像部に結像する像をぼかしてもよい。 Further, in the image reading unevenness correcting method of the present disclosure, the blurring unit includes a reflecting mirror that adjusts the length of the optical path, a fly array lens, a collimator lens, and a condenser lens, and a Keller illumination system using the imaging lens as a collector lens By arranging each of them so as to have the length of the optical path constituting the image, the image formed on the imaging unit may be blurred.
 また、本開示の画像読取むら補正方法では、ぼかし部が、フライアレイレンズ及びコンデンサレンズを含み、光路の長さを調整して、結像レンズをコリメータレンズとしてケラー照明系を構成することにより、撮像部に結像する像をぼかしてもよい。 Further, in the image reading unevenness correction method of the present disclosure, the blurring unit includes a fly array lens and a condenser lens, adjusts the length of the optical path, and configures the Keller illumination system using the imaging lens as a collimator lens. The image formed on the imaging unit may be blurred.
 また、本開示の画像読取むら補正方法は、第2シェーディング補正情報を、予め定めた複数の色かつ予め定めた複数種類の濃度の印刷物に対してそれぞれ算出し、複数種類の濃度以外の濃度に対しては、補間によって算出してもよい。 In addition, the image reading unevenness correction method of the present disclosure calculates the second shading correction information for each of a plurality of predetermined colors and a plurality of types of predetermined density printed matter, and sets the density to a density other than the plurality of types of densities. On the other hand, it may be calculated by interpolation.
 また、本開示の画像読取むら補正方法は、予め定めた空間周波数の抽出を、ハイパスフィルタまたはバンドパスフィルタを用いて行う。 In addition, the image reading unevenness correction method of the present disclosure performs extraction of a predetermined spatial frequency using a high-pass filter or a band-pass filter.
 本開示の画像読取装置は、フィルタ膜が塗布された複数の画素を有し、複数の画素に結像された読取対象の像を画像情報に変換する撮像部と、予め定めた明基準板を撮像部に結像して得られる画像情報と、予め定めた暗基準状態で撮像部から得られる画像情報とを用いて、明暗の画像むらを補正するための第1シェーディング補正情報を算出する第1算出部と、読取対象の像をぼかして撮像部へ結像するぼかし結像部と、予め定めた色かつ予め定めた濃度の印刷物をぼかし結像部によって結像する像をぼかした状態で撮像部に結像して得られる画像情報を第1シェーディング補正情報で補正した補正結果から、予め定めた空間周波数を抽出することにより、予め定めた色かつ予め定めた濃度に対する、撮像部の各画素の読取り濃度むらを補正するための第2シェーディング補正情報を算出する第2算出部と、第1算出部及び第2算出部の各々の算出結果に基づいて、読取対象の像を撮像部に結像して得られる画像情報を補正する補正部と、を備える。 An image reading apparatus according to the present disclosure includes a plurality of pixels coated with a filter film, an imaging unit that converts an image to be read formed on the plurality of pixels into image information, and a predetermined bright reference plate. First shading correction information for correcting light and dark image unevenness is calculated using image information obtained by forming an image on the imaging unit and image information obtained from the imaging unit in a predetermined dark reference state. 1 a calculation unit, a blur imaging unit that blurs an image to be read and forms an image on the imaging unit, and a blurred printed image having a predetermined color and a predetermined density, and an image formed by the imaging unit is blurred By extracting a predetermined spatial frequency from the correction result obtained by correcting the image information obtained by forming an image on the imaging unit with the first shading correction information, each of the imaging unit for a predetermined color and a predetermined density is extracted. Compensates for pixel reading density unevenness An image obtained by forming an image to be read on the imaging unit on the basis of the calculation results of the second calculation unit for calculating the second shading correction information and the first calculation unit and the second calculation unit A correction unit that corrects information.
 また、本開示の画像読取装置では、ぼかし結像部が、撮像部に読取対象の像を結像する結像レンズと撮像部との間に、撮像部に結像する像をぼかすぼかし部を挿入することにより、読取対象の像をぼかして撮像部へ結像してもよい。 In the image reading device of the present disclosure, the blur imaging unit includes a blur unit that blurs an image formed on the imaging unit between the imaging lens that forms an image to be read on the imaging unit and the imaging unit. By inserting the image, the image to be read may be blurred and formed on the imaging unit.
 また、本開示の画像読取装置では、ぼかし部が、拡散部材、またはレンズ拡散板であってもよい。 In the image reading device of the present disclosure, the blurring unit may be a diffusing member or a lens diffusing plate.
 また、本開示の画像読取装置では、ぼかし部が、光路の長さを調整する反射鏡、及びコンデンサレンズを含み、結像レンズをコレクタレンズとしたケラー照明系を構成する光路の長さとなるようにそれぞれを配置することにより、撮像部に結像する像をぼかしてもよい。 In the image reading apparatus of the present disclosure, the blurring unit includes a reflecting mirror that adjusts the length of the optical path, and a condenser lens, and has a length of the optical path that constitutes a Keller illumination system in which the imaging lens is a collector lens. By disposing each, the image formed on the imaging unit may be blurred.
 また、本開示の画像読取装置では、ぼかし部が、コンデンサレンズを含み、光路の長さを調整して、結像レンズをコレクタレンズとしてケラー照明系を構成することにより、撮像部に結像する像をぼかしてもよい。 In the image reading device of the present disclosure, the blurring unit includes a condenser lens, adjusts the length of the optical path, and forms an image on the imaging unit by configuring a Keller illumination system using the imaging lens as a collector lens. The image may be blurred.
 また、本開示の画像読取装置において、ぼかし部は、光路の長さを調整する反射鏡、フライアレイレンズ、コリメータレンズ、及びコンデンサレンズを含み、結像レンズをコレクタレンズとしたケラー照明系を構成する光路の長さとなるようにそれぞれを配置することにより、撮像部に結像する像をぼかしてもよい。 Further, in the image reading device of the present disclosure, the blurring unit includes a reflector that adjusts the length of the optical path, a fly array lens, a collimator lens, and a condenser lens, and constitutes a Keller illumination system in which the imaging lens is a collector lens The image formed on the imaging unit may be blurred by arranging each of them so as to have the length of the optical path.
 また、本開示の画像読取装置では、ぼかし部が、フライアレイレンズ及びコンデンサレンズを含み、光路の長さを調整して、結像レンズをコリメータレンズとしてケラー照明系を構成することにより、撮像部に結像する像をぼかしてもよい。 Further, in the image reading apparatus of the present disclosure, the blurring unit includes a fly array lens and a condenser lens, adjusts the length of the optical path, and configures a Keller illumination system using the imaging lens as a collimator lens. The image formed on the image may be blurred.
 また、本開示の画像読取装置では、第2算出部が、予め定めた複数の色かつ予め定めた複数種類の濃度の印刷物に対して第2シェーディング補正情報をそれぞれ算出し、複数種類の濃度以外の濃度に対しては補間によって第2シェーディング補正情報を算出してもよい。 In the image reading apparatus of the present disclosure, the second calculation unit calculates the second shading correction information for each of a plurality of predetermined colors and a plurality of predetermined densities of printed matter, The second shading correction information may be calculated for each density by interpolation.
 また、本開示の画像読取装置は、予め定めた空間周波数の抽出を、ハイパスフィルタまたはバンドパスフィルタを用いて行う。 In addition, the image reading device of the present disclosure performs extraction of a predetermined spatial frequency using a high-pass filter or a band-pass filter.
 また、本開示の画像形成装置は、記録媒体に画像を形成する画像形成部と、本開示の画像読取装置と、を含み、画像形成部によって記録媒体上に形成された画像を撮像部に結像することによって変換された画像情報を、補正部によって補正する。 The image forming apparatus according to the present disclosure includes an image forming unit that forms an image on a recording medium and the image reading device according to the present disclosure, and binds an image formed on the recording medium by the image forming unit to the imaging unit. Image information converted by imaging is corrected by a correction unit.
 また、本開示の画像読取むら補正プログラムは、コンピュータを、本開示の画像読取装置における第1算出部及び第2算出部として機能させる。 Also, the image reading unevenness correction program of the present disclosure causes a computer to function as the first calculation unit and the second calculation unit in the image reading device of the present disclosure.
 また、本開示の画像読取むら補正プログラムは、コンピュータを、本開示の画像読取装置における第1算出部、第2算出部、及び補正部として機能させる。 Also, the image reading unevenness correction program of the present disclosure causes the computer to function as the first calculation unit, the second calculation unit, and the correction unit in the image reading apparatus of the present disclosure.
 本開示によれば、撮像部の画素毎の分光特性に起因するばらつきを補正することが可能となる。 According to the present disclosure, it is possible to correct variations caused by the spectral characteristics of each pixel of the imaging unit.
本実施形態に係る画像形成装置の全体構成の一例を示した構成図である。1 is a configuration diagram illustrating an example of an overall configuration of an image forming apparatus according to an exemplary embodiment. 本実施形態に係るインラインセンサの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the in-line sensor which concerns on this embodiment. 本実施形態に係るインラインセンサの制御系の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the in-line sensor which concerns on this embodiment. イエローの予め定めた濃度の印刷物を拡散部材によってぼかして撮像部に結像して読み取った読取結果の一例を示す図である。It is a figure which shows an example of the reading result which imaged and read the printed matter of the predetermined density | concentration of yellow with the diffusion member, and imaged on the imaging part. 図4Aの読取結果にローパスフィルタを適用した結果を示す図である。It is a figure which shows the result of having applied the low-pass filter to the reading result of FIG. 4A. 図4Bに対して更にハイパスフィルタを適用することでバンドパスフィルタを適用した結果を示す図である。It is a figure which shows the result of having applied the band pass filter by further applying a high pass filter with respect to FIG. 4B. バンドパスフィルタを適用した結果から第2シェーディング補正情報を生成して補正した結果を示す図である。It is a figure which shows the result of having produced | generated and corrected the 2nd shading correction information from the result of applying a band pass filter. 本実施形態に係る画像形成装置の読取制御装置で行われる処理の流れの一例を示すフローチャートである。6 is a flowchart illustrating an example of a flow of processing performed by a reading control device of the image forming apparatus according to the present embodiment. 本実施形態に係る撮像部に結像する読取光の分布を平滑化する第1例の概略構成を示す図である。It is a figure which shows schematic structure of the 1st example which smoothes distribution of the reading light imaged on the imaging part which concerns on this embodiment. 本実施形態に係る撮像部に結像する読取光の分布を平滑化する第2例の概略構成を示す図である。It is a figure which shows schematic structure of the 2nd example which smoothes distribution of the reading light imaged on the imaging part which concerns on this embodiment. 本実施形態に係る撮像部に結像する読取光の分布を平滑化する第3例の概略構成を示す図である。It is a figure which shows schematic structure of the 3rd example which smoothes distribution of the reading light imaged on the imaging part which concerns on this embodiment. 本実施形態に係る撮像部に結像する読取光の分布を平滑化する第4例の概略構成を示す図である。It is a figure which shows schematic structure of the 4th example which smoothes distribution of the reading light imaged on the imaging part which concerns on this embodiment.
 以下、図面を参照して本開示の技術の実施形態を詳細に説明する。なお、本実施形態は本開示を限定するものではない。 Hereinafter, embodiments of the technology of the present disclosure will be described in detail with reference to the drawings. Note that this embodiment does not limit the present disclosure.
 まず、本開示の技術が適用される画像形成装置の全体構成について説明する。図1は、本実施形態に係る画像形成装置の全体構成の一例を示した構成図である。 First, the overall configuration of an image forming apparatus to which the technology of the present disclosure is applied will be described. FIG. 1 is a configuration diagram showing an example of the overall configuration of the image forming apparatus according to the present embodiment.
 画像形成装置10の画像形成部11は、描画部16の描画ドラム70に保持された記録媒体24(便宜上「用紙」と呼ぶ場合がある。)にヘッド72M(マゼンタ)、72K(黒)、72C(シアン)、72Y(イエロー)の各々からインクを打滴して所望のカラー画像を形成する画像形成装置である。本実施形態の画像形成装置10は、インクの打滴前に記録媒体24上に処理液を付与し、処理液とインク液を反応させて記録媒体24上に画像形成を行なう2液反応方式が適用された画像形成装置である。なお、以下では、個々を区別せずに総称する場合は、CMYKの符号を省略する場合がある。 The image forming unit 11 of the image forming apparatus 10 includes a head 72M (magenta), 72K (black), and 72C on a recording medium 24 (sometimes referred to as “paper” for convenience) held on the drawing drum 70 of the drawing unit 16. The image forming apparatus forms a desired color image by ejecting ink from each of (cyan) and 72Y (yellow). The image forming apparatus 10 of the present embodiment employs a two-liquid reaction system in which a processing liquid is applied onto the recording medium 24 before ink ejection, and the processing liquid and the ink liquid are reacted to form an image on the recording medium 24. This is an applied image forming apparatus. In the following description, the CMYK symbols may be omitted when referring to all of them without distinction.
 図1に示すように、画像形成部11は、主として、給紙部12、処理液付与部14、描画部16、乾燥部18、定着部20、及び排出部22を備えている。 As shown in FIG. 1, the image forming unit 11 mainly includes a paper feeding unit 12, a processing liquid applying unit 14, a drawing unit 16, a drying unit 18, a fixing unit 20, and a discharging unit 22.
 給紙部12は、記録媒体24を処理液付与部14に供給する。給紙部12には、記録媒体24を収納する給紙トレイ50が設けられ、この給紙トレイ50から記録媒体24が一枚ずつ処理液付与部14に給紙される。 The paper feed unit 12 supplies the recording medium 24 to the treatment liquid application unit 14. The paper feed unit 12 is provided with a paper feed tray 50 for storing the recording medium 24, and the recording medium 24 is fed from the paper feed tray 50 to the processing liquid applying unit 14 one by one.
 本実施形態に係る画像形成装置10では、記録媒体24として、紙種や大きさ(用紙サイズ)の異なる複数種類の記録媒体24を使用することができる。給紙部12において各種の記録媒体をそれぞれ区別して集積する複数の用紙トレイを備え、複数の用紙トレイの中から給紙トレイ50に送る用紙を自動で切り換える態様も可能であるし、必要に応じてオペレータが用紙トレイを選択し、若しくは交換する態様も可能である。なお、本実施形態では、記録媒体24として、枚葉紙(カット紙)を用いるが、連続用紙(ロール紙)から必要なサイズに切断して給紙する構成も可能である。また、記録媒体24として用いる媒体は特に限定されず、例えば、上質紙、コート紙、及びアート紙等のセルロースを主体とする紙等が挙げられる。 In the image forming apparatus 10 according to the present embodiment, a plurality of types of recording media 24 having different paper types and sizes (paper sizes) can be used as the recording medium 24. The paper supply unit 12 may include a plurality of paper trays that separately collect various recording media and may automatically switch the paper to be sent to the paper supply tray 50 from the plurality of paper trays. It is also possible for the operator to select or replace the paper tray. In this embodiment, a sheet (cut paper) is used as the recording medium 24. However, a configuration in which a continuous paper (roll paper) is cut into a necessary size and fed is also possible. The medium used as the recording medium 24 is not particularly limited, and examples thereof include high-quality paper, coated paper, and paper mainly composed of cellulose such as art paper.
 処理液付与部14は、記録媒体24の記録面に処理液を付与する。処理液は、描画部16で付与されるインク中の色材を凝集させる色材凝集剤を含んでおり、この処理液とインクとが接触することによって、インクは色材と溶媒との分離が促進される。 The processing liquid application unit 14 applies the processing liquid to the recording surface of the recording medium 24. The treatment liquid contains a color material aggregating agent that agglomerates the color material in the ink applied by the drawing unit 16, and the ink is separated from the color material and the solvent when the treatment liquid comes into contact with the ink. Promoted.
 図1に示すように、処理液付与部14は、給紙胴52、処理液ドラム54、及び処理液塗布装置56を備えている。処理液ドラム54は、外周面に記録媒体24を保持した状態で回転し、記録媒体24を搬送させる。処理液ドラム54の外側には、外周面に対向する位置に処理液塗布装置56が設けられている。処理液塗布装置56は、処理液が貯留された処理液容器を備えており、処理容器に収納された処理液を計量しながら記録媒体24に塗布する。 As shown in FIG. 1, the treatment liquid application unit 14 includes a paper feed drum 52, a treatment liquid drum 54, and a treatment liquid application device 56. The processing liquid drum 54 rotates while holding the recording medium 24 on the outer peripheral surface, and conveys the recording medium 24. A treatment liquid coating device 56 is provided outside the treatment liquid drum 54 at a position facing the outer peripheral surface. The processing liquid application device 56 includes a processing liquid container in which the processing liquid is stored, and applies the processing liquid stored in the processing container to the recording medium 24 while measuring.
 処理液付与部14で処理液が付与された記録媒体24は、処理液ドラム54から中間搬送部26を介して描画部16の描画ドラム70へ受け渡される。 The recording medium 24 to which the processing liquid is applied by the processing liquid applying unit 14 is transferred from the processing liquid drum 54 to the drawing drum 70 of the drawing unit 16 through the intermediate transport unit 26.
 描画部16は、描画ドラム70、用紙抑えローラ74、及びヘッド72M、72K、72C、72Yを備えている。記録媒体24は、描画ドラム70の外周面に記録面を外側に向けて保持された状態で搬送され、記録面にヘッド72M、72K、72C、72Yからインクが付与される。 The drawing unit 16 includes a drawing drum 70, a sheet pressing roller 74, and heads 72M, 72K, 72C, and 72Y. The recording medium 24 is conveyed in a state where the recording surface is held outwardly on the outer peripheral surface of the drawing drum 70, and ink is applied to the recording surface from the heads 72M, 72K, 72C, 72Y.
 本実施形態のヘッド72M、72K、72C、72Yは各々、記録媒体24における画像形成領域の最大幅に対応する長さを有するフルライン型のインクジェット方式のヘッドである。インク吐出面には、画像形成領域の全幅にわたってインク吐出用のノズルが複数配列されたノズル列が形成されている。 The heads 72M, 72K, 72C, 72Y of the present embodiment are full-line type ink jet heads each having a length corresponding to the maximum width of the image forming area in the recording medium 24. On the ink ejection surface, a nozzle row in which a plurality of nozzles for ink ejection are arranged over the entire width of the image forming area is formed.
 描画ドラム70上に保持された記録媒体24の記録面に向けてヘッド72M、72K、72C、72Yの各々から、対応する色のインクの液滴が吐出されることにより、処理液付与部14で記録面に予め付与された処理液にインクが接触する。処理液にインクが接触するとインク中に分散する色材が凝集され、色材の凝集体が形成される。これにより、記録媒体24上での色材流れなどが防止され、記録媒体24の記録面に画像が形成される。 The treatment liquid application unit 14 causes the ink droplets of the corresponding color to be ejected from each of the heads 72M, 72K, 72C, and 72Y toward the recording surface of the recording medium 24 held on the drawing drum 70. The ink comes into contact with the processing liquid previously applied to the recording surface. When the ink comes into contact with the treatment liquid, the color material dispersed in the ink is aggregated to form an aggregate of the color material. Thereby, the color material flow on the recording medium 24 is prevented, and an image is formed on the recording surface of the recording medium 24.
 なお、本実施形態では、CMYKの4色の構成を例示したが、インクの色や色数の組合せについては特に限定されず、必要に応じて淡インク、濃インク、及び特別色インク等を追加してもよい。例えば、ライトシアン及びライトマゼンタなどのライト系インクを吐出するヘッドを追加する構成も可能であり、各色ヘッドの配置順序も特に限定はない。 In this embodiment, the four-color configuration of CMYK is exemplified, but the combination of the ink color and the number of colors is not particularly limited, and light ink, dark ink, special color ink, and the like are added as necessary. May be. For example, it is possible to add a head for ejecting light-colored ink such as light cyan and light magenta, and the arrangement order of the color heads is not particularly limited.
 描画部16で画像が形成された記録媒体24は、描画ドラム70から中間搬送部28を介して乾燥部18の乾燥ドラム76へ受け渡される。 The recording medium 24 on which the image is formed by the drawing unit 16 is transferred from the drawing drum 70 to the drying drum 76 of the drying unit 18 through the intermediate conveyance unit 28.
 乾燥部18は、色材の凝集作用により分離された溶媒に含まれる水分を乾燥させる。図1に示すように乾燥部18は、乾燥ドラム76、及び溶媒乾燥装置78を備えている。記録媒体24は、乾燥ドラム76の外周面に記録面を外側に向けた状態に保持されて搬送される。溶媒乾燥装置78は、乾燥ドラム76の外周面に対向する位置に配置されており、記録媒体24に向けて温風を吹き付ける。 The drying unit 18 dries moisture contained in the solvent separated by the aggregation action of the color material. As shown in FIG. 1, the drying unit 18 includes a drying drum 76 and a solvent drying device 78. The recording medium 24 is conveyed while being held on the outer peripheral surface of the drying drum 76 with the recording surface facing outward. The solvent drying device 78 is disposed at a position facing the outer peripheral surface of the drying drum 76, and blows warm air toward the recording medium 24.
 乾燥部18で乾燥処理が行なわれた記録媒体24は、乾燥ドラム76から中間搬送部30を介して定着部20の定着ドラム84へ受け渡される。 The recording medium 24 that has been dried by the drying unit 18 is transferred from the drying drum 76 to the fixing drum 84 of the fixing unit 20 via the intermediate conveyance unit 30.
 定着部20は、定着ドラム84の外周面に、ハロゲンヒータ86、定着ローラ88、及び画像読取装置としてのインラインセンサ90が設けられている。記録媒体24は、定着ドラム84の外周面に記録面を外側に向けた状態に保持されて搬送される。 The fixing unit 20 is provided with a halogen heater 86, a fixing roller 88, and an inline sensor 90 as an image reading device on the outer peripheral surface of the fixing drum 84. The recording medium 24 is conveyed while being held on the outer peripheral surface of the fixing drum 84 with the recording surface facing outward.
 ハロゲンヒータ86は、記録媒体24を予備加熱する。定着ローラ88は、記録媒体24を加熱及び加圧する。 The halogen heater 86 preheats the recording medium 24. The fixing roller 88 heats and presses the recording medium 24.
 インラインセンサ90は、記録媒体24に定着された画像について、チェックパターンや水分量、表面温度、及び光沢度等を計測するためのものであり、例えば、ラインセンサやエリアセンサ等を用いて記録媒体24に定着された画像を読み取る。 The in-line sensor 90 is for measuring a check pattern, a moisture content, a surface temperature, a gloss level, and the like for an image fixed on the recording medium 24. For example, the in-line sensor 90 uses a line sensor, an area sensor, or the like. The image fixed to 24 is read.
 図1に示すように、定着部20に続いて排出部22が設けられている。排出部22は、排出トレイ92を備えており、排出トレイ92と定着部20の定着ドラム84との間に、渡し胴94、搬送ベルト96、及び張架ローラ98が設けられている。記録媒体24は、渡し胴94により搬送ベルト96に送られ、排出トレイ92に排出される。 As shown in FIG. 1, a discharge unit 22 is provided following the fixing unit 20. The discharge unit 22 includes a discharge tray 92, and a transfer drum 94, a conveyance belt 96, and a stretching roller 98 are provided between the discharge tray 92 and the fixing drum 84 of the fixing unit 20. The recording medium 24 is sent to the conveying belt 96 by the transfer drum 94 and discharged to the discharge tray 92.
 また、図1における記載を省略したが、本実施形態の画像形成装置10には、上記構成の他、各ヘッド72にインクを供給するインク装填部、及び処理液付与部14に対して処理液を供給する手段を備えると共に、各ヘッド72のクリーニング(吐出面のワイピング、パージ、ノズル吸引等)を行なうヘッドメンテナンス部、用紙搬送路上における記録媒体24の位置を検出する位置検出センサ、及び装置各部の温度を検出する温度センサ等を備えている。 Although not shown in FIG. 1, the image forming apparatus 10 according to the present exemplary embodiment includes a processing liquid for the ink loading unit that supplies ink to each head 72 and the processing liquid application unit 14 in addition to the above configuration. A head maintenance unit for cleaning each head 72 (wiping of the discharge surface, purging, nozzle suction, etc.), a position detection sensor for detecting the position of the recording medium 24 on the paper transport path, and each part of the apparatus The temperature sensor etc. which detect the temperature of this are provided.
 続いて、本実施形態に係る画像読取装置としてのインラインセンサ90について説明する。図2は、本実施形態に係るインラインセンサ90の概略構成を示す斜視図である。 Subsequently, the inline sensor 90 as an image reading apparatus according to the present embodiment will be described. FIG. 2 is a perspective view illustrating a schematic configuration of the inline sensor 90 according to the present embodiment.
 インラインセンサ90は、図2に示すように、一対の光源38、結像レンズ36、ぼかし部としての拡散部材34、撮像部32、及び予め定めた明基準板としての白基準板40を含んで構成されている。なお、予め定めた明基準板とは、例えば、予め定めた明るさ以上の基準板であり、白基準板40に限るものではなく、白以外の明るい他の色の基準板を代用してもよい。 As shown in FIG. 2, the in-line sensor 90 includes a pair of light sources 38, an imaging lens 36, a diffusion member 34 as a blurring unit, an imaging unit 32, and a white reference plate 40 as a predetermined bright reference plate. It is configured. The predetermined bright reference plate is, for example, a reference plate having a predetermined brightness or higher, and is not limited to the white reference plate 40, but may be replaced with a bright reference plate other than white. Good.
 一対の光源38は、インラインセンサ90の読取対象の用紙の搬送経路上に配置され、用紙を照明する。詳細には、一対の光源38は、用紙搬送方向と直交する方向に長手とされている。光源38の照射範囲の長さは、搬送される用紙の幅よりも広い幅の照射範囲とされている。また、一対の光源38は、用紙に反射されて結像レンズ36に向かう光軸に対して対称に配置されている。なお、用紙の照明は、一対の光源38に限定されるものではなく、単一の光源でもよいし、3以上の複数の光源でもよい。また、光源としては、半導体光源(例えば、LEDなど)または放電ランプなどを適用することが可能である。 The pair of light sources 38 are arranged on the conveyance path of the paper to be read by the inline sensor 90 and illuminate the paper. Specifically, the pair of light sources 38 are elongated in a direction orthogonal to the paper transport direction. The length of the irradiation range of the light source 38 is an irradiation range having a width wider than the width of the paper to be conveyed. Further, the pair of light sources 38 are arranged symmetrically with respect to the optical axis reflected by the paper and directed toward the imaging lens 36. The illumination of the paper is not limited to the pair of light sources 38, and may be a single light source or a plurality of three or more light sources. Moreover, as a light source, it is possible to apply a semiconductor light source (for example, LED etc.) or a discharge lamp.
 結像レンズ36は、一対の光源38から照射されて用紙で反射された光を撮像部32に結像する。 The imaging lens 36 images the light irradiated from the pair of light sources 38 and reflected by the paper on the imaging unit 32.
 撮像部32は、例えば、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の光電変換素子が用紙の搬送方向と交差する方向にライン状に配列されたラインセンサによって用紙に形成された画像を読み取る。本実施形態では、撮像部32は、赤(R)、緑(G)、青(B)の3色に対応するラインセンサを3列に配列したカラーラインセンサを適用した例を説明するが、これに限るものではない。例えば、2次元に光電変換素子が配列されたエリアセンサを適用してもよい。 The imaging unit 32 is formed on a sheet by a line sensor in which photoelectric conversion elements such as CCD (Charge-Coupled-Devices) and CMOS (Complementary Metal-Oxide-Semiconductor) are arranged in a line in a direction crossing the sheet conveyance direction. Read the image. In the present embodiment, an example in which the imaging unit 32 applies a color line sensor in which line sensors corresponding to three colors of red (R), green (G), and blue (B) are arranged in three rows will be described. This is not a limitation. For example, an area sensor in which photoelectric conversion elements are two-dimensionally arranged may be applied.
 拡散部材34は、一対の光源38からの光が用紙に反射されて結像レンズを介して撮像部32に向かう光路(以下、読取光路と称する場合がある)に対して出入り可能に構成されている。拡散部材34が読取光路上にある場合は、拡散部材34によって光を拡散することで読取対象の像をぼかして撮像部32に結像され、読取光が平滑化される。なお、拡散部材34は、光拡散性の部材を用いるので、読取対象から結像レンズ36の間、または結像レンズ36から撮像部32の間に入れても光拡散効果を得られるが、撮像部32から遠い位置で拡散させると、撮像部32に到達する光量が低下するため、結像レンズ36と撮像部32の間、さらには撮像部32の直前に配置することが望ましい。これにより、読取対象の像がぼけて、細かな濃度分布もぼけて読取光が平滑化される。また、本実施形態では、拡散部材34により、読取対象の像をぼかす例を説明するが、これに限定されるものではない。例えば、撮像部32及び結像レンズ36の少なくとも一方の位置を移動する構成をぼかし結像部として適用し、撮像部32及び結像レンズ36の少なくとも一方を移動してピントをずらすことにより、撮像部32に結像する像をぼかす構成としてもよい。或いは、拡散部材34の代わりに、レンズ拡散板(LSD:Light Shaping Diffusers, Luminit)を用いてもよい。 The diffusing member 34 is configured such that light from the pair of light sources 38 is reflected by the paper and can enter and exit an optical path (hereinafter sometimes referred to as a reading optical path) that goes to the imaging unit 32 via the imaging lens. Yes. When the diffusing member 34 is on the reading optical path, the light to be read is diffused by the diffusing member 34 so that the image to be read is blurred and formed on the imaging unit 32, and the reading light is smoothed. Since the diffusing member 34 is a light diffusing member, a light diffusing effect can be obtained even if it is inserted between the reading object and the imaging lens 36 or between the imaging lens 36 and the imaging unit 32. When the light is diffused at a position far from the unit 32, the amount of light reaching the imaging unit 32 is reduced. Therefore, it is desirable to dispose it between the imaging lens 36 and the imaging unit 32 and immediately before the imaging unit 32. As a result, the image to be read is blurred, the fine density distribution is also blurred, and the reading light is smoothed. In this embodiment, an example in which an image to be read is blurred by the diffusing member 34 will be described. However, the present invention is not limited to this. For example, a configuration in which at least one position of the imaging unit 32 and the imaging lens 36 is moved is applied as a blur imaging unit, and imaging is performed by moving at least one of the imaging unit 32 and the imaging lens 36 and shifting the focus. The image formed on the unit 32 may be blurred. Alternatively, a lens diffusion plate (LSD: Light レ ン ズ Shaping 板 Diffusers, Luminit) may be used instead of the diffusing member 34.
 白基準板40は、撮像部32の読取り位置に出入り可能とされ、濃度むらの補正を行うためのシェーディング補正情報を作成するシェーディング補正準備時には白基準板40を撮像部32の読取り位置上に移動させる。一方、白基準板40は、用紙の画像読取時には搬送路上から退避させる。 The white reference plate 40 can enter and exit the reading position of the imaging unit 32, and the white reference plate 40 is moved to the reading position of the imaging unit 32 during shading correction preparation for creating shading correction information for correcting density unevenness. Let On the other hand, the white reference plate 40 is retracted from the conveyance path when reading an image of a sheet.
 次に、インラインセンサ90の制御系の構成について説明する。図3は、本実施形態に係るインラインセンサ90の制御系の構成を示すブロック図である。 Next, the configuration of the control system of the inline sensor 90 will be described. FIG. 3 is a block diagram illustrating a configuration of a control system of the inline sensor 90 according to the present embodiment.
 インラインセンサ90は、読取制御装置42によって制御される。読取制御装置42は、CPU(Central Processing Unit)42A、ROM(Read Only Memory)42B、RAM(Random Access Memory)42C、及び入出力ポート42Dがバス42Eに接続されたコンピュータで構成されている。なお、読取制御装置42は、第1算出部、第2算出部及び補正部に対応する。 The inline sensor 90 is controlled by the reading control device 42. The reading control device 42 is configured by a computer in which a CPU (Central Processing Unit) 42A, a ROM (Read Only Memory) 42B, a RAM (Random Access Memory) 42C, and an input / output port 42D are connected to a bus 42E. The reading control device 42 corresponds to a first calculation unit, a second calculation unit, and a correction unit.
 ROM42Bには、インラインセンサ90を制御するための各種プログラムや情報が記憶されている。ROM42Bに記憶されたプログラムをRAM42Cに展開してCPU42Aが実行することにより、インラインセンサ90の制御が行なわれる。 The ROM 42B stores various programs and information for controlling the inline sensor 90. The inline sensor 90 is controlled by developing the program stored in the ROM 42B in the RAM 42C and executing it by the CPU 42A.
 入出力ポート42Dには、一対の光源38、拡散部材駆動部44、白基準板駆動部46、及び撮像部32が接続されている。 A pair of light sources 38, a diffusing member driving unit 44, a white reference plate driving unit 46, and an imaging unit 32 are connected to the input / output port 42D.
 光源38は、上述したように、点灯することにより、読取対象の用紙を照明し、光源38から照射された光が用紙で反射されて結像レンズ36を介して撮像部32に結像される。 As described above, the light source 38 is turned on to illuminate the paper to be read, and the light emitted from the light source 38 is reflected by the paper and imaged on the imaging unit 32 via the imaging lens 36. .
 拡散部材駆動部44は、拡散部材34を撮像部32の読取光路上に移動して、撮像部32に結像される像をぼかす。本実施形態では、後述する第1シェーディング補正情報を生成する際には、拡散部材34を撮像部32の読取光路から退避する。一方、後述する第2シェーディング補正情報を算出する際には、拡散部材34を撮像部32の読取光路上に移動して、撮像部32に結像される像をぼかす。 The diffusing member driving unit 44 moves the diffusing member 34 on the reading optical path of the imaging unit 32 and blurs an image formed on the imaging unit 32. In the present embodiment, the diffusing member 34 is retracted from the reading optical path of the imaging unit 32 when generating first shading correction information described later. On the other hand, when calculating second shading correction information to be described later, the diffusing member 34 is moved onto the reading optical path of the imaging unit 32 to blur the image formed on the imaging unit 32.
 白基準板駆動部46は、白基準板40を駆動して、撮像部32の読取り位置への白基準板40の移動と退避とを行う。 The white reference plate drive unit 46 drives the white reference plate 40 to move and retract the white reference plate 40 to the reading position of the imaging unit 32.
 撮像部32は、読取対象の用紙に形成された画像が結像されることにより、読取対象の画像を読み取って、読み取った画像を表す画像情報を生成する。そして、撮像部32は、生成した画像情報をA/D(アナログ/デジタル)変換等を行って読取制御装置42に出力する。 The imaging unit 32 reads the image to be read by forming an image formed on the sheet to be read, and generates image information representing the read image. Then, the imaging unit 32 performs A / D (analog / digital) conversion or the like on the generated image information and outputs it to the reading control device 42.
 読取制御装置42は、光源38、拡散部材駆動部44、白基準板駆動部46、及び撮像部32を制御して、撮像部32の読取特性を補正するシェーディング補正等の補正情報を生成する機能を備え、補正情報を用いて撮像部32で読み取った画像情報を補正する。 The reading control device 42 controls the light source 38, the diffusing member driving unit 44, the white reference plate driving unit 46, and the imaging unit 32 to generate correction information such as shading correction for correcting the reading characteristics of the imaging unit 32. The image information read by the imaging unit 32 is corrected using the correction information.
 ところで、一般的なシェーディング補正では、白基準板40を読み取った(もしくは予め定めた明状態で読み取った)画像情報と、黒基準板を読み取った(もしくは予め定めた暗基準状態で読み取った)画像情報とからシェーディング補正情報を生成する。そして、これを用いて濃度むらを補正し、均一な読取特性の画像情報を取得する。シェーディング補正情報は、カラーの画像を読み取る場合は、白色の照明やR、G、Bの混合照明などが用いられるが、白基準板40は、可視光域においてほぼ一様な反射分光特性を持つ物である。一方、カラー画像の読み取り対象は、シアン(C)、マゼンタ(M)、イエロー(Y)などのインクを用いて印刷されており、このインクの内、1つの色のインクで比較的濃い画像や比較的薄い画像を印刷した場合、可視光域の反射特性として、これらの画像で、その特性は波長に対して比例していないことが多い。これは、特に、インクジェットにより画像を形成する場合のように、ドットの密度で濃淡を表現する場合に顕著である。なお、予め定めた暗基準状態で読み取った画像情報とは、光が撮像部32に入射しない状態(或いは、予め定めた暗さの状態)で読み取った画像情報であり、黒基準板を読み取った画像情報も含む。 By the way, in general shading correction, the image information obtained by reading the white reference plate 40 (or read in a predetermined bright state) and the image obtained by reading the black reference plate (or read in a predetermined dark reference state). Shading correction information is generated from the information. Then, density unevenness is corrected using this, and image information with uniform reading characteristics is acquired. As the shading correction information, when reading a color image, white illumination or mixed illumination of R, G, and B is used. However, the white reference plate 40 has substantially uniform reflection spectral characteristics in the visible light region. It is a thing. On the other hand, a color image reading target is printed using inks such as cyan (C), magenta (M), and yellow (Y). Among these inks, a relatively dark image with one color ink or When relatively thin images are printed, the reflection characteristics in the visible light region are often not proportional to the wavelength in these images. This is particularly noticeable when the density is expressed by the density of dots, as in the case of forming an image by inkjet. The image information read in a predetermined dark reference state is image information read in a state where light is not incident on the imaging unit 32 (or a predetermined dark state), and the black reference plate is read. Includes image information.
 一方、カラーの撮像部32には、画素毎の分光感度ばらつき(各波長に対する感度差)が存在する。このばらつきが大きいほど、該当する画素においては、明暗のシェーディング補正だけでは十分補正ができず、色濃度むらとなる場合がある。 On the other hand, the color imaging unit 32 has spectral sensitivity variation (sensitivity difference with respect to each wavelength) for each pixel. The larger the variation, the more the corresponding pixel cannot be corrected sufficiently only by the light / dark shading correction, and the color density may be uneven.
 特に、本実施形態では、ラインセンサを用いており、1つの画素がラインセンサの幅方向(画素の配列方向)と直交する方向に並ぶ画素1列の読み取りに使われるため、分光感度ばらつきが大きい画素があると、この影響が線状の色濃度むらとなる。さらに、画素列の中に分光感度ばらつきが大きい画素が連続して存在したり、比較的近い範囲に複数存在したりすると帯状の色濃度ムラとなる。一方、エリアセンサを適用した場合は、ばらつきが大きい画素に一対一に対応した色濃度ムラになる。何れも画像品質上問題であり、良好な画像を得るために適切な補正が必要である。 In particular, in the present embodiment, a line sensor is used, and one pixel is used for reading one column of pixels arranged in a direction orthogonal to the width direction (pixel arrangement direction) of the line sensor, so that the spectral sensitivity variation is large. If there is a pixel, this influence becomes linear color density unevenness. Furthermore, when pixels having a large variation in spectral sensitivity are continuously present in the pixel row, or when a plurality of pixels are present in a relatively close range, strip-shaped color density unevenness occurs. On the other hand, when the area sensor is applied, color density unevenness corresponding to a pixel having a large variation on a one-to-one basis. Both are problems in image quality, and appropriate correction is necessary to obtain a good image.
 ここで、本実施形態において、色濃度むらが発生する撮像部32の特性を調べると、撮像部32上のある区画に固まって、色濃度むらが発生する画素があった。これらの画素では、明暗の基準を用いてシェーディング補正を行って、白基準板40と黒基準の間の明るさの無彩色(灰色)を読み取ると色濃度むらは発生しないが、特定の色を読み取ると色濃度むらが発生した。 Here, in the present embodiment, when the characteristics of the imaging unit 32 in which uneven color density occurs are examined, there are pixels that are solidified in a certain section on the imaging unit 32 and have uneven color density. In these pixels, when shading correction is performed using a light and dark reference and an achromatic color (gray) of brightness between the white reference plate 40 and the black reference is read, color density unevenness does not occur, but a specific color is not generated. When read, uneven color density occurred.
 実際に色濃度むらが発生したのは、様々な明るさのイエロー及びイエローのインクを含む色(例えば赤や緑)で印刷された読み取り対象をシェーディング補正した場合においてであった。 Actually, the color density unevenness occurred when the reading object printed with colors including yellow and yellow inks of various brightness (for example, red and green) was subjected to shading correction.
 イエローの光学濃度D(≒1.2)において、色濃度むらがある部分と無い部分とでの撮像部32の出力の差は8bitデータ(値の範囲0~255)において約1~1.5の差があった。この色濃度むらの直接の原因は、イエローを読み取る青フィルタが設けられた画素において、色濃度むらとなる画素では、他の画素に比べカラーフィルタが薄いことが推定され、青のカラーフィルタの塗布厚み誤差が起因であると考えられる。 In the yellow optical density D (≈1.2), the difference in the output of the imaging unit 32 between the portion with uneven color density and the portion without uneven color density is about 1 to 1.5 in 8-bit data (value range 0 to 255). There was a difference. The direct cause of the color density unevenness is estimated to be that the pixel with the blue filter for reading yellow has a lighter color filter than the other pixels in the pixel having the color density unevenness. It is thought that the thickness error is caused.
 さらに、イエローで色濃度むらが発生した理由として、イエローの場合、他の色(カラー印刷インクでは、マゼンタ色、シアン色、黒色)に比べてイエローの濃度変化に対して青フィルタが設けられた撮像部32の出力変化が小さいことが挙げられる。特に中~高濃度でイエローの濃度が変化しても青フィルタが設けられた撮像部32の出力変化が、他の色、例えばマゼンタ色に対する緑フィルタが設けられた撮像部32の出力変化に比べて小さい。この濃度域では、カラーフィルタの厚み誤差により青フィルタが設けられた撮像部32の出力差が生じると、相対的に、イエローの濃度差が他の色に比べてより大きく検出されるため、色濃度むらがより目立ちやすくなる。 Furthermore, as a reason for the occurrence of uneven color density in yellow, in the case of yellow, a blue filter is provided for the change in density of yellow compared to other colors (magenta, cyan, black in color printing ink). It is mentioned that the output change of the imaging unit 32 is small. In particular, the output change of the image pickup unit 32 provided with the blue filter even when the density of yellow is changed at medium to high density is compared with the output change of the image pickup unit 32 provided with the green filter for other colors, for example, magenta. Small. In this density range, if an output difference of the imaging unit 32 provided with the blue filter is caused by a thickness error of the color filter, the density difference of yellow is relatively detected as compared with other colors. Concentration unevenness becomes more noticeable.
 このような撮像部32のカラーフィルタ等のフィルタ膜の厚み誤差の影響を取り除き、良好な読取結果を得るためには、撮像部32の読取むらを高精度に測定し、補正する必要が有る。 In order to remove the influence of the thickness error of the filter film such as the color filter of the imaging unit 32 and obtain a good reading result, it is necessary to measure and correct the reading unevenness of the imaging unit 32 with high accuracy.
 しかし、読取対象となっている印刷物によって、インク(色材、染料、及び顔料など)が異なるので、反射光または透過光に対する分光特性も異なる。従って、実際の印刷物で、均一な濃度の特定色の基準と見なせる補正用印刷物を作成し、これを測定することで、より精度の高い補正情報を取得することが望ましい。 However, since the ink (coloring material, dye, pigment, etc.) differs depending on the printed material to be read, the spectral characteristics with respect to reflected light or transmitted light also differ. Therefore, it is desirable to obtain correction information with higher accuracy by creating a correction printed matter that can be regarded as a reference of a specific color having a uniform density with an actual printed matter, and measuring this.
 しかしながら、多くの実際の印刷物では、濃度の違いを表現するために、網点やディザマトリックスなどの細かい「像構造」を有する印刷を行う。さらに、印刷自体にも不均一性によるむらが含まれている。加えて、用紙には、表面の微細な凹凸、抄紙ムラなどがあり、これも濃度分布に影響する。 However, in many actual printed materials, in order to express the difference in density, printing having a fine “image structure” such as a halftone dot or a dither matrix is performed. Further, the printing itself includes unevenness due to non-uniformity. In addition, the paper has fine irregularities on the surface, papermaking unevenness, etc., which also affect the density distribution.
 よって、照明が仮に完全に均一であっても、印刷物は細かな濃度分布がある物になるため、ミクロに見れば、一様な濃度分布になっていない。そのため、読取対象を読み取るように光学調整されてピントが合った状態では、「細かな濃度分布」が撮像部32によって読み取られてしまうことになる。「細かな濃度分布」が読み取られてしまうと、印刷物の濃度分布と撮像部32の分光感度むらとを区別することが難しく、特定色の基準濃度の正しい測定が出来ない。 Therefore, even if the illumination is completely uniform, the printed matter has a fine density distribution. Therefore, when viewed microscopically, the density distribution is not uniform. Therefore, in a state where the optical adjustment is performed so as to read the reading target and the image is in focus, the “fine density distribution” is read by the imaging unit 32. If the “fine density distribution” is read, it is difficult to distinguish between the density distribution of the printed matter and the spectral sensitivity unevenness of the imaging unit 32, and it is impossible to correctly measure the reference density of a specific color.
 つまり、本来の読取対象のインクを用いた基準濃度の印刷物と、光源38とを用いて読み取りを行うことで、予め定めた基準濃度での撮像部32の画素毎の分光感度むらを正確に測定することが必要である。しかしながら、上述のように、印刷物の細かな濃度分布が一緒に読み取られてしまい、画素毎の分光感度むらと印刷物の細かな濃度分布が分離できないことが課題である。 That is, by performing reading using a printed matter having a reference density using the original ink to be read and the light source 38, the spectral sensitivity unevenness of each pixel of the imaging unit 32 at a predetermined reference density is accurately measured. It is necessary to. However, as described above, the fine density distribution of the printed matter is read together, and it is a problem that the spectral sensitivity unevenness for each pixel and the fine density distribution of the printed matter cannot be separated.
 そこで、本実施形態では、まず、明暗の画像むらを補正するための第1シェーディング補正情報を算出する。また、予め定めた色かつ予め定めた濃度の印刷物の像をぼかして撮像部32へ結像することにより得られる画像情報を第1シェーディング補正情報で補正した補正結果から、予め定めた空間周波数を抽出する。これにより、予め定めた色かつ予め定めた濃度に対する、撮像部32の各画素の読取り濃度むらを補正するための第2シェーディング補正情報を算出する。そして、第1シェーディング補正情報及び第2シェーディング補正情報を用いて、読取対象の像を撮像部32に結像して得られる画像情報を補正する。 Therefore, in the present embodiment, first shading correction information for correcting light and dark image unevenness is calculated. Further, a predetermined spatial frequency is obtained from a correction result obtained by correcting image information obtained by blurring an image of a printed matter having a predetermined color and a predetermined density and forming the image on the imaging unit 32 with the first shading correction information. Extract. As a result, second shading correction information for correcting the read density unevenness of each pixel of the imaging unit 32 with respect to a predetermined color and a predetermined density is calculated. Then, using the first shading correction information and the second shading correction information, image information obtained by forming an image to be read on the imaging unit 32 is corrected.
 詳細には、白基準板40を読み取って得られた画像情報と、撮像部32に光が入射しない状態で読み取って得られた画像情報(或いは予め定めた暗基準板を読み取って得られた画像情報)とから、無彩色に対する各画素の感度補正(シェーディング補正)を行う。 Specifically, the image information obtained by reading the white reference plate 40 and the image information obtained by reading the light without entering the imaging unit 32 (or the image obtained by reading a predetermined dark reference plate). Information), sensitivity correction (shading correction) of each pixel with respect to the achromatic color is performed.
 また、印刷物の細かな濃度分布の影響を受けないで読み取りするために、拡散部材34によって撮像部32に結像される像をぼかすことにより読取光の分布を平滑化して予め定めた色かつ予め定めた濃度の印刷物の読み取りを行う。例えば、イエローの予め定めた濃度の印刷物を拡散部材34によってぼかして撮像部32に結像して読み取った読取結果の一例を図4Aに示す。 Further, in order to perform reading without being affected by the fine density distribution of the printed matter, the distribution of the reading light is smoothed by blurring the image formed on the imaging unit 32 by the diffusing member 34 to obtain a predetermined color in advance. Read the printed matter with the specified density. For example, FIG. 4A shows an example of a reading result obtained by reading a yellow printed matter having a predetermined density blurred by the diffusion member 34 and forming an image on the imaging unit 32.
 そして、当該印刷物を読み取ることによって得られる画像情報から、フィルタ(例えば、ハイパスフィルタ、またはバンドパスフィルタ等)を用いて予め定めた空間周波数を抽出することにより、第2シェーディング補正情報を算出する。これにより、より精度の高い補正情報を取得できる。図4Aの読取結果にローパスフィルタを適用した結果を図4Bに示し、図4Bに対して更にハイパスフィルタを適用することでバンドパスフィルタを適用した結果を図4Cに示す。さらに、図4Cには色濃度むらとなる範囲を図示した。バンドパスフィルタを適用した結果から第2シェーディング補正情報を生成し、補正すると図4Dに示すように、色濃度むらを抑制できる。 The second shading correction information is calculated by extracting a predetermined spatial frequency from the image information obtained by reading the printed matter using a filter (for example, a high-pass filter or a band-pass filter). Thereby, more accurate correction information can be acquired. FIG. 4B shows the result of applying the low-pass filter to the reading result of FIG. 4A, and FIG. 4C shows the result of applying the band-pass filter by further applying the high-pass filter to FIG. 4B. Further, FIG. 4C shows a range where the color density is uneven. When the second shading correction information is generated and corrected from the result of applying the bandpass filter, color density unevenness can be suppressed as shown in FIG. 4D.
 続いて、上述のように構成された本実施形態に係る画像形成装置10の読取制御装置42で行われる詳細な処理について説明する。図5は、本実施形態に係る画像形成装置10の読取制御装置42で行われる処理の流れの一例を示すフローチャートである。なお、図5の処理は、シェーディング補正情報を算出する際に行われる。シェーディング補正は、例えば、画像形成装置10の生産工程等で行ってもよいし、画像形成装置10の設置の際に行ってもよい。或いは、利用者によって指示された場合に行ってもよいし、予め定めた時間経過毎に行ってもよい。また、以下のステップ100~108は第1算出部に対応し、ステップ110~116は第2算出部に対応する。 Subsequently, detailed processing performed by the reading control device 42 of the image forming apparatus 10 according to the present embodiment configured as described above will be described. FIG. 5 is a flowchart illustrating an example of a flow of processing performed by the reading control device 42 of the image forming apparatus 10 according to the present embodiment. Note that the process of FIG. 5 is performed when shading correction information is calculated. The shading correction may be performed, for example, in the production process of the image forming apparatus 10 or when the image forming apparatus 10 is installed. Alternatively, it may be performed when instructed by the user, or may be performed every predetermined time. The following steps 100 to 108 correspond to the first calculation unit, and steps 110 to 116 correspond to the second calculation unit.
 ステップ100では、CPU42Aが、白基準板駆動部46を制御し、白基準板40を撮像部32の読取光路上へ移動してステップ102へ移行する。 In step 100, the CPU 42A controls the white reference plate driving unit 46, moves the white reference plate 40 onto the reading optical path of the imaging unit 32, and proceeds to step 102.
 ステップ102では、CPU42Aが、光源38を点灯して撮像部32による白基準板40の読み取りを行ってステップ104へ移行する。すなわち、明状態としての白基準板40が撮像部32に結像されることによって得られる画像情報を取得する。 In step 102, the CPU 42A turns on the light source 38, reads the white reference plate 40 by the imaging unit 32, and proceeds to step 104. That is, image information obtained by imaging the white reference plate 40 in the bright state on the imaging unit 32 is acquired.
 ステップ104では、CPU42Aが、光源38を消灯して、白基準板40が撮像部32の読取光路上に移動したままの状態で、撮像部32による読み取りを行ってステップ106へ移行する。すなわち、白基準板40で読取光路を塞いで外部からの迷光を防ぎ、光源38を消灯することによって、ほぼ光が入射しない暗状態で撮像部32によって得られる画像情報を取得する。 In step 104, the CPU 42 </ b> A turns off the light source 38 and performs reading by the imaging unit 32 with the white reference plate 40 moving on the reading optical path of the imaging unit 32, and the process proceeds to step 106. That is, the white reference plate 40 blocks the reading optical path to prevent stray light from the outside, and the light source 38 is turned off to acquire image information obtained by the imaging unit 32 in a dark state where almost no light is incident.
 ステップ106では、CPU42Aが、白基準板駆動部46を制御し、白基準板40を撮像部32の読取光路上から退避してステップ108へ移行する。 In step 106, the CPU 42 </ b> A controls the white reference plate driving unit 46 to retreat the white reference plate 40 from the reading optical path of the imaging unit 32 and proceeds to step 108.
 ステップ108では、CPU42Aが、白基準板40の読取結果と暗状態の読取結果の2つの読取結果に基づいて、第1シェーディング補正情報を生成してステップ110へ移行する。 In step 108, the CPU 42A generates first shading correction information based on the two reading results of the reading result of the white reference plate 40 and the reading result in the dark state, and proceeds to step 110.
 ステップ110では、CPU42Aが、拡散部材駆動部44を制御し、拡散部材34を撮像部32の読取光路上へ移動してステップ112へ移行する。これにより、撮像部32に結像される像がぼけて、濃度分布もぼけるので、読取光の分布を平滑化することができる。 In step 110, the CPU 42 </ b> A controls the diffusing member driving unit 44, moves the diffusing member 34 onto the reading optical path of the imaging unit 32, and proceeds to step 112. Thereby, the image formed on the imaging unit 32 is blurred and the density distribution is also blurred, so that the distribution of the reading light can be smoothed.
 ステップ112では、CPU42Aが、光源38を点灯して撮像部32による補正用印刷物(予め定めた色かつ予め定めた濃度で印刷された印刷物)の読み取りを行ってステップ114へ移行する。なお、補正用印刷物は、操作者が撮像部32の読取光路上の読取位置にセットしてもよいし、画像形成装置10の給紙トレイ50にセットして搬送を指示してもよい。 In step 112, the CPU 42 </ b> A turns on the light source 38, reads the correction printed matter (printed matter printed with a predetermined color and a predetermined density) by the imaging unit 32, and proceeds to step 114. The correction printed matter may be set at the reading position on the reading optical path of the imaging unit 32 by the operator, or set on the paper feed tray 50 of the image forming apparatus 10 to instruct conveyance.
 ステップ114では、CPU42Aが、予め定めた色かつ予め定めた濃度の補正用印刷物を読み取ることによって得られる画像情報を第1シェーディング補正情報で補正してステップ116へ移行する。なお、ラインセンサを用い、かつ補正用印刷物の搬送方向によって濃度むら分布に差がある場合には、補正用印刷物の細かな濃度むら分布を低減するために、濃度むら分布が小さい方向を、撮像部32の画素並びの方向に一致させて読み取りを行ってもよい。詳細には、シングルパスインクジェットヘッドで印刷した場合、用紙の搬送方向は濃度分布の大きさが搬送方向と直交する方向よりも小さくなるので、補正用印刷物の搬送方向を撮像部32の画素並び方向に一致するように回転して読み取りを行ってもよい。 In step 114, the CPU 42A corrects the image information obtained by reading the correction printed matter having a predetermined color and a predetermined density with the first shading correction information, and proceeds to step 116. When there is a difference in density unevenness distribution depending on the conveyance direction of the correction printed matter using a line sensor, in order to reduce the fine density unevenness distribution of the correction printed matter, the direction in which the density unevenness distribution is small is imaged. The reading may be performed in accordance with the pixel arrangement direction of the unit 32. Specifically, when printing with a single-pass inkjet head, the conveyance direction of the paper is smaller than the direction perpendicular to the conveyance direction, so the conveyance direction of the printed matter for correction is the pixel alignment direction of the imaging unit 32. It may be rotated and read so as to match.
 ステップ116では、CPU42Aが、第1シェーディング補正情報で補正された画像情報から予め定めた空間周波数を抽出し、第2シェーディング補正情報を生成してステップ118へ移行する。例えば、ハイパスフィルタまたはバンドパスフィルタを用いてステップ114で補正された画像情報から予め定めた空間周波数を抽出して第2シェーディング補正情報を生成する。すなわち、上述のように補正用印刷物を読み取った画像は、ほぼ一様な濃度の印刷物を読み取って第1シェーディング補正情報で補正するので、理想的には画像情報における印刷部分全体がほぼ一様な濃度の読取値になることが期待される。しかしながら、撮像部32に読取むらがあると、読取画像は、印刷物のインクに対する読取画素むらに相当するものを含む画像になる。そこで、ほぼ一様な濃度の印刷部分の読取画像の平均値に対して、撮像部32の個々の画素の読取値の比率を求め、これを補正係数とし、この逆数を第2シェーディング補正情報として読み取り画像に乗算すれば、読取画像は濃度むらを抑制できる。 In step 116, the CPU 42A extracts a predetermined spatial frequency from the image information corrected by the first shading correction information, generates second shading correction information, and proceeds to step 118. For example, the second shading correction information is generated by extracting a predetermined spatial frequency from the image information corrected in step 114 using a high-pass filter or a band-pass filter. In other words, since the image obtained by reading the correction printed matter as described above reads the printed matter having a substantially uniform density and corrects it with the first shading correction information, ideally, the entire printed portion of the image information is substantially uniform. Expected to be a density reading. However, if there is uneven reading in the imaging unit 32, the read image becomes an image including an image corresponding to uneven read pixels with respect to the ink of the printed matter. Therefore, the ratio of the read values of the individual pixels of the imaging unit 32 with respect to the average value of the read image of the printed portion having a substantially uniform density is obtained, and this is used as a correction coefficient, and this reciprocal is used as the second shading correction information. By multiplying the read image, the read image can suppress uneven density.
 ステップ118では、CPU42Aが、第1シェーディング補正情報及び第2シェーディング補正情報をメモリ等に記憶することにより、補正情報を設定して一連の処理を終了する。 In step 118, the CPU 42A stores the first shading correction information and the second shading correction information in a memory or the like, sets the correction information, and ends the series of processes.
 このように設定された補正情報を用いて、読取制御装置42が、撮像部32が読み取ることによって得られる画像情報を補正することにより、実際の色材と照明の特性に合わせて撮像部32の画素毎の分光特性に起因するばらつきを補正することが可能となる。 Using the correction information set in this way, the reading control device 42 corrects the image information obtained by reading by the imaging unit 32, so that the imaging unit 32 can be adapted to the actual color material and illumination characteristics. It is possible to correct variations caused by the spectral characteristics of each pixel.
 また、図5の処理を、R、G、Bの各色に対して行うと、より均一な画像読取を実現することが可能となる。 Further, when the processing of FIG. 5 is performed for each of the colors R, G, and B, it is possible to realize more uniform image reading.
 なお、上記の処理では、予め定めた色かつ予め定めた濃度に対する第2シェーディング補正情報を生成する例を説明したが、これに限るものではない。例えば、上述の処理を色毎及び濃度毎に行って第2シェーディング補正情報を生成することにより、各色及び各濃度における色濃度むらを補正することが可能となる。また、濃度毎に補正用印刷物を作成しなくても幾つかの濃度に対して補正用印刷物を作成して第2シェーディング補正情報を生成し、他の濃度については補間によって第2シェーディング補正情報を生成してもよい。詳細には、一様な濃度の補正用印刷物を幾つかの濃度に対して作成し、各濃度に対して、撮像部32の個々の画素の読取値の比率を求める。そして、実際に読み取っていない濃度に対しては、その前後の1つ以上の濃度の読取結果から内挿、または外挿により、撮像部32の個々の画素の読取値の比率(補正係数)を推定してもよい。これにより、全ての画素に対して、全ての読取値、例えば8bitの読取値であれば、0~255に対して、補正係数が求められる。従って、様々な印刷物を読み取った際に、各画素の読取値に対し、読取値に応じて、この補正係数の逆数を乗算すれば、色濃度むらを補正した画像を得ることができる。 In the above processing, the example in which the second shading correction information is generated for a predetermined color and a predetermined density has been described. However, the present invention is not limited to this. For example, by performing the above-described processing for each color and each density to generate the second shading correction information, it is possible to correct the color density unevenness in each color and each density. In addition, it is possible to generate correction prints for several densities to generate second shading correction information without generating correction prints for each density, and generate second shading correction information by interpolation for other densities. It may be generated. Specifically, a correction printed matter having a uniform density is created for several densities, and the ratio of the read values of the individual pixels of the imaging unit 32 is obtained for each density. For the density that is not actually read, the ratio (correction coefficient) of the read value of each pixel of the imaging unit 32 is interpolated or extrapolated from the read results of one or more densities before and after the density. It may be estimated. As a result, correction coefficients are obtained for 0 to 255 for all read values, for example, 8-bit read values, for all pixels. Therefore, when various printed materials are read, an image in which color density unevenness is corrected can be obtained by multiplying the read value of each pixel by the reciprocal of this correction coefficient in accordance with the read value.
 また、補正用印刷物は、1枚に1色に限るものではなく、1枚の印刷物に複数の色でかつ複数の濃度の基準印刷を行ったものを適用し、1枚の補正用印刷物で、複数色でかつ各色それぞれ複数濃度に対する第2シェーディング補正情報を生成してもよい。 Further, the correction printed matter is not limited to one color per sheet, and one correction printed matter in which a plurality of colors and a plurality of density reference prints are applied to one printed matter, Second shading correction information for a plurality of colors and a plurality of densities for each color may be generated.
 なお、補正用印刷物は、カラーの撮像部32の赤に対応する出力に対しては、シアン色のインクで基準濃度の印刷物を作成する。また、緑に対応する出力に対しては、マゼンタ色のインクで基準濃度の印刷物を作成する。そして、青に対応する出力に対しては、イエロー色のインクで基準濃度の補正用印刷物を作成する。 In addition, as for the printed matter for correction, for the output corresponding to red of the color image pickup unit 32, a printed matter having a reference density is created with cyan ink. For the output corresponding to green, a printed matter with a reference density is created with magenta ink. For the output corresponding to blue, a printed matter for correcting the reference density is created with yellow ink.
 続いて、光を拡散して撮像部32へ結像する像をぼかす方法、並びに、結像レンズ36及び撮像部32の少なくとも一方を移動してピントをずらす方法以外に、撮像部32に結像する読取光の分布を平滑化する方法について説明する。 Subsequently, in addition to the method of diffusing light and blurring the image formed on the imaging unit 32, and the method of shifting the focus by moving at least one of the imaging lens 36 and the imaging unit 32, the image is formed on the imaging unit 32. A method for smoothing the distribution of reading light to be read will be described.
 上記以外の方法の第1例としては、撮像部32にピントが合った状態で、図6に示すように、光学系60を挿入することでケラー照明を構成する。この場合には、拡散部材駆動部44の代わりに、撮像部32の読取光路上への光学系60の移動と退避とを行う駆動部68を設ける。図6の例では、ぼかし部としての光学系60として、光路を折り曲げる反射鏡62A、62B、62C、62D、及びコンデンサレンズ64を結像レンズ36と撮像部32との間に挿入した様子を示す。 As a first example of a method other than the above, Keller illumination is configured by inserting an optical system 60 as shown in FIG. 6 while the imaging unit 32 is in focus. In this case, instead of the diffusing member driving unit 44, a driving unit 68 for moving and retracting the optical system 60 on the reading optical path of the imaging unit 32 is provided. In the example of FIG. 6, as an optical system 60 as a blurring portion, a state in which reflecting mirrors 62 </ b> A, 62 </ b> B, 62 </ b> C and 62 </ b> D that bend an optical path and a condenser lens 64 are inserted between the imaging lens 36 and the imaging unit 32 is shown. .
 また、第2例としては、撮像部32にピントが合った状態で撮像部32を後退させ、図7に示すように、コンデンサレンズ64を挿入することでケラー照明を構成する。この場合には、拡散部材駆動部44の代わりに、撮像部32の読取光路上へのコンデンサレンズ64の移動と退避とを行うと共に、撮像部32を移動するための駆動部68を設ける。図7の例では、ぼかし部として、撮像部32を後退させてコンデンサレンズ64を結像レンズ36と撮像部32との間に挿入した様子を示す。 As a second example, Keller illumination is configured by retracting the imaging unit 32 with the imaging unit 32 in focus and inserting a condenser lens 64 as shown in FIG. In this case, in place of the diffusing member driving unit 44, the condenser lens 64 is moved and retracted on the reading optical path of the imaging unit 32, and a driving unit 68 for moving the imaging unit 32 is provided. In the example of FIG. 7, a state in which the imaging unit 32 is retracted and the condenser lens 64 is inserted between the imaging lens 36 and the imaging unit 32 as a blurring unit is shown.
 また、第3例としては、撮像部32にピントが合った状態で、図8に示すように、フライアレイレンズ66とコリメータレンズ67を含む光学系61を挿入することでケラー照明を構成する。この場合には、拡散部材駆動部44の代わりに、撮像部32の読取光路上へのフライアレイレンズ66とコリメータレンズ67を含む光学系61の移動と退避とを行う駆動部68を設ける。図8の例では、ぼかし部としての光学系61として、光路を折り曲げる反射鏡62A、62B、62C、62D、フライアレイレンズ66、コリメータレンズ67及びコンデンサレンズ64を結像レンズ36と撮像部32との間に挿入した様子を示す。 Also, as a third example, Keller illumination is configured by inserting an optical system 61 including a fly array lens 66 and a collimator lens 67 as shown in FIG. 8 in a state where the imaging unit 32 is in focus. In this case, instead of the diffusing member driving unit 44, a driving unit 68 for moving and retracting the optical system 61 including the fly array lens 66 and the collimator lens 67 on the reading optical path of the imaging unit 32 is provided. In the example of FIG. 8, as the optical system 61 as the blurring unit, the reflecting mirrors 62A, 62B, 62C, and 62D that bend the optical path, the fly array lens 66, the collimator lens 67, and the condenser lens 64 are formed with the imaging lens 36 and the imaging unit 32. The state of being inserted between is shown.
 また、第4例としては、撮像部32にピントが合った状態で撮像部32を後退させ、図9に示すように、フライアレイレンズ66、コリメータレンズ67、及びコンデンサレンズ64を挿入してケラー照明を構成する。この場合には、拡散部材駆動部44の代わりに、撮像部32の読取光路上へのフライアレイレンズ66、コリメータレンズ67、及びコンデンサレンズ64の移動と退避とを行うと共に、撮像部32を移動するための駆動部68を設ける。図9の例では、ぼかし部として、撮像部32を後退させてフライアレイレンズ66、コリメータレンズ67、及びコンデンサレンズ64を結像レンズ36と撮像部32との間に挿入した様子を示す。 As a fourth example, the imaging unit 32 is retracted while the imaging unit 32 is in focus, and a fly array lens 66, a collimator lens 67, and a condenser lens 64 are inserted as shown in FIG. Configure lighting. In this case, instead of the diffusion member driving unit 44, the fly array lens 66, the collimator lens 67, and the condenser lens 64 are moved and retracted on the reading optical path of the imaging unit 32, and the imaging unit 32 is moved. A driving unit 68 is provided. In the example of FIG. 9, a state where the imaging unit 32 is moved backward as a blurring unit and the fly array lens 66, the collimator lens 67, and the condenser lens 64 are inserted between the imaging lens 36 and the imaging unit 32 is shown.
 第1例及び第2例の方法は、読取対象の面を発光面と見なし、撮像部32を照明対象と見なしたケラー照明系を構成するものである。結像レンズ36は、ケラー照明系のコレクタレンズに相当し、第1例及び第2例のコンデンサレンズ64はケラー照明系のコンデンサレンズに相当する。この場合、結像レンズ36の焦点位置は、読み取り対象面と、コンデンサレンズ64の入射瞳を共役にするように配置する(撮像部32にピントが合った状態の位置)。また、コンデンサレンズ64の焦点位置は、結像レンズ36の射出瞳と撮像部32を共役にするように配置する。このような配置にすると、結像レンズ36から撮像部32までの距離は、撮像部32にピントが合った状態での結像レンズ36と撮像部32との間の距離よりも長くする必要があるので、第1例ではコンデンサレンズ64の前後に、反射鏡62A、62B、62C、62Dや反射プリズムを入れて、光路を折り曲げ、必要な光路長さになるようにする。第2例では、撮像部32を後退させて必要な光路長さになるようにする。このように、ケラー照明系を構成すると、読取対象の面を面光源と見なした場合、読取対象の面の各点から反射または透過した光は、ケラー照明系のレンズの機能により、撮像部32全体に到達する。逆に、撮像部32の一つの画素には、読取対象の面の各点(全ての点)からの反射または透過した光が到達する。従って、読取対象の面の各点に濃度差があって反射または透過した光にむらがあっても、撮像部32の全ての画素に影響するため、むらの影響はなくなり、ほぼ均一な光量が撮像部32の全ての画素に到達する。これは、コンデンサレンズ64にy=f・sin(θ)の射影特性を与えているからである。実際は、ケラー照明系のレンズの中央の画素と端の画素とで、レンズの透過率差のため緩やかな変化の光量差が生じるが、これは本実施形態の特徴である「画像の空間周波数に対してのハイパスフィルタ、または、バンドパスフィルタ」を用いて読取画像から読取濃度むらを抽出することで影響しなくなる。 The methods of the first and second examples constitute a Keller illumination system in which the surface to be read is regarded as a light emitting surface and the imaging unit 32 is regarded as an illumination target. The imaging lens 36 corresponds to a collector lens of the Keller illumination system, and the condenser lens 64 of the first and second examples corresponds to a condenser lens of the Keller illumination system. In this case, the focal position of the imaging lens 36 is arranged so that the reading target surface and the entrance pupil of the condenser lens 64 are conjugated (position where the imaging unit 32 is in focus). The focal position of the condenser lens 64 is arranged so that the exit pupil of the imaging lens 36 and the imaging unit 32 are conjugated. With such an arrangement, the distance from the imaging lens 36 to the imaging unit 32 needs to be longer than the distance between the imaging lens 36 and the imaging unit 32 when the imaging unit 32 is in focus. Therefore, in the first example, reflecting mirrors 62A, 62B, 62C, 62D and reflecting prisms are inserted before and after the condenser lens 64, and the optical path is bent so that the required optical path length is obtained. In the second example, the imaging unit 32 is moved backward so as to have a required optical path length. In this way, when the Keller illumination system is configured, when the surface to be read is regarded as a surface light source, light reflected or transmitted from each point on the surface to be read is captured by the imaging unit by the function of the lens of the Keller illumination system. 32 is reached. On the contrary, the light reflected or transmitted from each point (all points) on the surface to be read reaches one pixel of the imaging unit 32. Accordingly, even if there is a difference in density at each point on the surface to be read and there is unevenness in the reflected or transmitted light, it affects all the pixels of the imaging unit 32. It reaches all the pixels of the imaging unit 32. This is because the condenser lens 64 is given a projection characteristic of y = f · sin (θ). Actually, a light amount difference of a gradual change occurs between the central pixel and the end pixel of the lens of the Keller illumination system due to the difference in the transmittance of the lens. This is a feature of the present embodiment, which is “the spatial frequency of the image. In contrast, by extracting unevenness in the reading density from the read image using a high-pass filter or a band-pass filter, the influence is eliminated.
 また、第3例及び第4例では、それぞれ第1例及び第2例に対して、結像レンズ36とコンデンサレンズ64との間にフライアレイレンズ66とコリメータレンズ67を追加する。この場合、コリメータレンズ67の焦点位置が結像レンズ36の焦点位置になるようにし、フライアレイレンズ66にコリメータ光を入射する。また、フライアレイレンズ66の射出面と撮像部32を共役にするように第3例のフライアレイレンズ66とコリメータレンズ67を含む光学系61、並びに、第4例のフライアレイレンズ66、コリメータレンズ67、及びコンデンサレンズ64を配置する。このようにフライアレイレンズ66とコリメータレンズ67を使った場合も、光学的には、第1例及び第2例のケラー照明系の特徴を有するが、さらに、撮像部32に到達する光の均一性が向上する。これは、ケラー照明が光源の面内輝度分布の不均一性を原理的に均一にするのに加え、フライアレイレンズ66とコリメータレンズ67を追加すると、さらに、読取対象の面を面光源と見なした場合、フライアレイレンズ66によって、面光源から多数の2次光源を作り出す。これにより、光源の角度方向の輝度分布の不均一性をも補正し、ケラー照明よりも均一性をさらに高めるからである。なお、結像レンズ36の位置を読取対象側に移動して、結像レンズからの射出光がコリメート光になるような位置にし、フライアレイレンズ66に入射するとコリメータレンズ67は不要になる。 Further, in the third example and the fourth example, a fly array lens 66 and a collimator lens 67 are added between the imaging lens 36 and the condenser lens 64 in the first example and the second example, respectively. In this case, the collimator lens 67 is brought into the focal position of the imaging lens 36, and collimator light is incident on the fly array lens 66. Further, the optical system 61 including the fly array lens 66 and the collimator lens 67 of the third example so that the exit surface of the fly array lens 66 and the imaging unit 32 are conjugated, and the fly array lens 66 and the collimator lens of the fourth example. 67 and a condenser lens 64 are arranged. As described above, even when the fly array lens 66 and the collimator lens 67 are used, the optical characteristics of the Keller illumination systems of the first and second examples are provided, but the light reaching the imaging unit 32 is uniform. Improves. This is because Keller illumination makes the in-plane luminance distribution non-uniformity of the light source uniform in principle, and when a fly array lens 66 and a collimator lens 67 are added, the surface to be read is further viewed as a surface light source. In this case, a large number of secondary light sources are created from the surface light source by the fly array lens 66. This is because the nonuniformity of the luminance distribution in the angular direction of the light source is also corrected, and the uniformity is further enhanced as compared with the Keller illumination. When the position of the imaging lens 36 is moved to the reading target side so that the light emitted from the imaging lens becomes collimated light and enters the fly array lens 66, the collimator lens 67 becomes unnecessary.
 以上の何れの方法でも、撮像部32上では、読取対象の画像がぼけて、印刷物の細かな濃度分布があっても、これが平均化されて目立たなくなる。 In any of the above methods, even if the image to be read is blurred on the imaging unit 32 and there is a fine density distribution of the printed matter, this is averaged and becomes inconspicuous.
 この効果は第1例~第4例で特に上記の実施形態よりも優れている。一方、上記の実施形態の拡散部材34やレンズ拡散板を用いる方法は、この効果がやや弱い。もしくは、効果を強くすると、撮像部32へ到達する光量が大幅に減る。しかし、実現する際の費用としては、上記の実施形態のように拡散部材34やレンズ拡散板を用いる方法は、第1例~第4例より大幅に安価である。また、これは、結像レンズ36と撮像部32の光学的距離を変更しなくて良いことにも因っている。また、上記の実施形態のように拡散部材34やレンズ拡散板を用いる方法は、この効果がやや弱いが、読み取った画像情報のノイズ除去処理によって、これを補うことが可能である。本実施形態では、画像情報から、問題になる濃度むらの空間周波数付近を通過させるフィルタを用いることで実現している。バンドパスフィルタ等のフィルタは第1例~第4例に適用してもよい。また、対象とする濃度むらによっては、ハイパスフィルタを適用してもよい。 This effect is superior to the above embodiment in the first to fourth examples. On the other hand, the method using the diffusing member 34 and the lens diffusing plate of the above embodiment has a slightly weak effect. Alternatively, when the effect is strengthened, the amount of light reaching the imaging unit 32 is greatly reduced. However, as a cost for the realization, the method using the diffusing member 34 and the lens diffusing plate as in the above embodiment is significantly cheaper than the first to fourth examples. This is also because it is not necessary to change the optical distance between the imaging lens 36 and the imaging unit 32. Further, the method using the diffusing member 34 and the lens diffusing plate as in the above-described embodiment is somewhat weak in this effect, but this can be compensated by noise removal processing of the read image information. In the present embodiment, this is realized by using a filter that passes the vicinity of the spatial frequency of the density unevenness in question from the image information. A filter such as a bandpass filter may be applied to the first to fourth examples. Further, a high pass filter may be applied depending on the target density unevenness.
 なお、上記の実施形態では、画像形成装置10の読取制御装置42が、図5の処理を行う例を説明したが、これに限るものではない。例えば、撮像部32の製造時の生産工程に、図2に示すインラインセンサ90の構成を備えて、検査時の測定装置が、図5の処理を行う形態としてもよい。これにより、撮像部32の検査結果に、シェーディング補正情報を加えて出荷することが可能となる。 In the above-described embodiment, the example in which the reading control device 42 of the image forming apparatus 10 performs the process of FIG. 5 has been described, but the present invention is not limited to this. For example, the production process at the time of manufacturing the imaging unit 32 may include the configuration of the in-line sensor 90 illustrated in FIG. 2, and the measurement device at the time of inspection may perform the processing in FIG. 5. As a result, the inspection result of the imaging unit 32 can be shipped with the shading correction information added.
 また、上記の実施形態では、画像形成装置10に備えたインラインセンサ90のシェーディング補正を一例として説明したが、これに限るものでない。例えば、撮像部32によって画像を表示する画像表示装置に適用して、図5の処理で得られた第1シェーディング補正情報及び第2シェーディング補正情報を用いて表示画像を補正する形態としてもよい。 In the above embodiment, the shading correction of the inline sensor 90 provided in the image forming apparatus 10 has been described as an example, but the present invention is not limited to this. For example, the present invention may be applied to an image display device that displays an image by the imaging unit 32, and the display image may be corrected using the first shading correction information and the second shading correction information obtained by the processing in FIG.
 また、上記の実施形態で説明したフローチャートで示す各処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。 Further, each process shown in the flowchart described in the above embodiment is merely an example. Therefore, unnecessary steps may be deleted, new steps may be added, or the processing order may be changed within a range that does not depart from the spirit.
 また、上記各実施形態でCPU42Aがソフトウェア(プログラム)を実行することにより実行した図5の処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(field-programmable gate array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、図5の処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より詳細には、半導体素子等の回路素子を組み合わせた電気回路である。 In addition, various processors other than the CPU may execute the process of FIG. 5 executed by the CPU (42A) executing software (program) in each of the above embodiments. As a processor in this case, in order to execute specific processing such as PLD (Programmable Logic Device) and ASIC (Application Specific Integrated Circuit) whose circuit configuration can be changed after manufacturing FPGA (field-programmable gate array) or the like. A dedicated electric circuit, which is a processor having a circuit configuration designed exclusively, is exemplified. 5 may be executed by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs and a combination of a CPU and an FPGA). You may perform by combination etc.). More specifically, the hardware structure of these various processors is an electric circuit in which circuit elements such as semiconductor elements are combined.
 また、上記各実施形態では、読取制御装置42に格納される各種プログラムは、ROM42Bに予め記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的記録媒体に記録された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 In the above embodiments, the various programs stored in the reading control device 42 have been described as being prestored (installed) in the ROM 42B. However, the present invention is not limited to this. The program is provided in a form recorded in a non-transitory recording medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), and a USB (Universal Serial Bus) memory. Also good. Further, the program may be downloaded from an external device via a network.
 その他、上記の実施形態で説明した画像形成装置10及びインラインセンサ90等の構成、動作等は一例であり、本発明の主旨を逸脱しない範囲内において状況に応じて変更可能である。 In addition, the configurations, operations, and the like of the image forming apparatus 10 and the inline sensor 90 described in the above embodiment are merely examples, and can be changed according to the situation without departing from the gist of the present invention.
 本願は2018年4月12日出願の日本出願第2018-076911号の優先権を主張すると共に、その全文を参照により本明細書に援用する。 This application claims the priority of Japanese Application No. 2018-076911 filed on Apr. 12, 2018, the entire text of which is incorporated herein by reference.

Claims (21)

  1.  フィルタ膜が塗布された複数の画素を有し、前記複数の画素に結像された読取対象の像を画像情報に変換する撮像部に予め定めた明基準板を前記読取対象の像として結像して得られる画像情報と、予め定めた暗基準状態で前記撮像部から得られる画像情報とを用いて、明暗の画像むらを補正するための第1シェーディング補正情報を第1算出部が算出し、
     予め定めた色かつ予め定めた濃度の印刷物の像をぼかして前記撮像部へ結像することにより得られる画像情報を第1シェーディング補正情報で補正した補正結果から、予め定めた空間周波数を抽出することにより、前記予め定めた色かつ予め定めた濃度に対する、前記撮像部の各画素の読取濃度むらを補正するための第2シェーディング補正情報を第2算出部が算出し、
     前記第1シェーディング補正情報及び前記第2シェーディング補正情報を用いて、読取対象の像を前記撮像部に結像して得られる画像情報を補正部が補正する画像読取むら補正方法。
    A plurality of pixels coated with a filter film are formed, and a predetermined bright reference plate is formed as an image of the reading target in an imaging unit that converts the image of the reading target formed on the plurality of pixels into image information. The first calculation unit calculates first shading correction information for correcting light / dark image unevenness using the image information obtained in this manner and the image information obtained from the imaging unit in a predetermined dark reference state. ,
    A predetermined spatial frequency is extracted from a correction result obtained by correcting image information obtained by blurring an image of a printed matter having a predetermined color and a predetermined density and forming the image on the imaging unit with the first shading correction information. Accordingly, the second calculation unit calculates second shading correction information for correcting the reading density unevenness of each pixel of the imaging unit with respect to the predetermined color and the predetermined density,
    An image reading unevenness correction method in which a correction unit corrects image information obtained by forming an image to be read on the imaging unit using the first shading correction information and the second shading correction information.
  2.  予め定めた色かつ予め定めた濃度の印刷物の像をぼかして前記撮像部へ結像するために、前記撮像部に前記読取対象の像を結像する結像レンズと前記撮像部との間に、前記撮像部に結像する像をぼかすぼかし部を挿入する請求項1に記載の画像読取むら補正方法。 In order to blur the image of a printed matter having a predetermined color and a predetermined density to form an image on the imaging unit, the imaging unit is formed between the imaging lens that forms the image to be read on the imaging unit and the imaging unit. The image reading unevenness correcting method according to claim 1, wherein a blurring portion that blurs an image formed on the imaging portion is inserted.
  3.  前記ぼかし部は、拡散部材、またはレンズ拡散板である請求項2に記載の画像読取むら補正方法。 3. The method for correcting unevenness in image reading according to claim 2, wherein the blur portion is a diffusing member or a lens diffusing plate.
  4.  前記ぼかし部は、光路の長さを調整する反射鏡、及びコンデンサレンズを含み、前記結像レンズをコレクタレンズとしたケラー照明系を構成する光路の長さとなるようにそれぞれを配置することにより、前記撮像部に結像する像をぼかす請求項2に記載の画像読取むら補正方法。 The blur part includes a reflecting mirror that adjusts the length of the optical path, and a condenser lens, and each of the blurring parts is arranged to be the length of the optical path constituting the Keller illumination system using the imaging lens as a collector lens, The image reading unevenness correction method according to claim 2, wherein an image formed on the imaging unit is blurred.
  5.  前記ぼかし部は、コンデンサレンズを含み、光路の長さを調整して、前記結像レンズをコレクタレンズとしてケラー照明系を構成することにより、前記撮像部に結像する像をぼかす請求項2に記載の画像読取むら補正方法。 The blurring unit includes a condenser lens, adjusts the length of an optical path, and configures a Keller illumination system using the imaging lens as a collector lens, thereby blurring an image formed on the imaging unit. The method for correcting unevenness in image reading as described.
  6.  前記ぼかし部は、光路の長さを調整する反射鏡、フライアレイレンズ、コリメータレンズ、及びコンデンサレンズを含み、前記結像レンズをコレクタレンズとしたケラー照明系を構成する光路の長さとなるようにそれぞれを配置することにより、前記撮像部に結像する像をぼかす請求項2に記載の画像読取むら補正方法。 The blur part includes a reflector that adjusts the length of the optical path, a fly array lens, a collimator lens, and a condenser lens, and has a length of an optical path that constitutes a Keller illumination system using the imaging lens as a collector lens. The method for correcting unevenness in image reading according to claim 2, wherein by arranging each of them, an image formed on the imaging unit is blurred.
  7.  前記ぼかし部は、フライアレイレンズ及びコンデンサレンズを含み、光路の長さを調整して、前記結像レンズをコリメータレンズとしてケラー照明系を構成することにより、前記撮像部に結像する像をぼかす請求項2に記載の画像読取むら補正方法。 The blur part includes a fly array lens and a condenser lens, adjusts the length of the optical path, and configures a Keller illumination system using the imaging lens as a collimator lens, thereby blurring an image formed on the imaging part. The image reading unevenness correcting method according to claim 2.
  8.  前記第2シェーディング補正情報は、予め定めた複数の色かつ予め定めた複数種類の濃度の印刷物に対してそれぞれ算出し、前記複数種類の濃度以外の濃度に対しては、補間によって算出する請求項1~7の何れか1項に記載の画像読取むら補正方法。 The second shading correction information is calculated for each of a plurality of predetermined colors and a plurality of predetermined densities of printed matter, and is calculated by interpolation for densities other than the plurality of types of densities. 8. The image reading unevenness correcting method according to any one of 1 to 7.
  9.  前記予め定めた空間周波数の抽出は、ハイパスフィルタまたはバンドパスフィルタを用いて行う請求項1~8の何れか1項に記載の画像読取むら補正方法。 The image reading unevenness correction method according to any one of claims 1 to 8, wherein the extraction of the predetermined spatial frequency is performed using a high-pass filter or a band-pass filter.
  10.  フィルタ膜が塗布された複数の画素を有し、前記複数の画素に結像された読取対象の像を画像情報に変換する撮像部と、
     予め定めた明基準板を前記撮像部に結像して得られる画像情報と、予め定めた暗基準状態で前記撮像部から得られる画像情報とを用いて、明暗の画像むらを補正するための第1シェーディング補正情報を算出する第1算出部と、
     読取対象の像をぼかして前記撮像部へ結像するぼかし結像部と、
     予め定めた色かつ予め定めた濃度の印刷物を前記ぼかし結像部によって結像する像をぼかした状態で前記撮像部に結像して得られる画像情報を前記第1シェーディング補正情報で補正した補正結果から、予め定めた空間周波数を抽出することにより、前記予め定めた色かつ予め定めた濃度に対する、前記撮像部の各画素の読取り濃度むらを補正するための第2シェーディング補正情報を算出する第2算出部と、
     前記第1算出部及び前記第2算出部の各々の算出結果に基づいて、読取対象の像を前記撮像部に結像して得られる画像情報を補正する補正部と、
     を備えた画像読取装置。
    An imaging unit that has a plurality of pixels coated with a filter film, and converts an image of a reading target formed on the plurality of pixels into image information;
    Using the image information obtained by forming an image of a predetermined bright reference plate on the imaging unit and the image information obtained from the imaging unit in a predetermined dark reference state to correct light and dark image unevenness A first calculation unit for calculating first shading correction information;
    A blur imaging unit that blurs an image to be read and forms the image on the imaging unit;
    Correction obtained by correcting image information obtained by forming an image formed on the image pickup unit in a state where the image formed by the blur image forming unit is blurred with a predetermined color and a predetermined density with the first shading correction information From the result, by extracting a predetermined spatial frequency, second shading correction information for correcting the read density unevenness of each pixel of the imaging unit for the predetermined color and the predetermined density is calculated. 2 calculation units;
    A correction unit that corrects image information obtained by forming an image to be read on the imaging unit based on the calculation results of the first calculation unit and the second calculation unit;
    An image reading apparatus comprising:
  11.  前記ぼかし結像部は、前記撮像部に前記読取対象の像を結像する結像レンズと前記撮像部との間に、前記撮像部に結像する像をぼかすぼかし部を挿入することにより、読取対象の像をぼかして前記撮像部へ結像する請求項10に記載の画像読取装置。 The blur imaging unit inserts a blur unit that blurs an image formed on the imaging unit between an imaging lens that forms the image to be read on the imaging unit and the imaging unit, The image reading apparatus according to claim 10, wherein an image to be read is blurred and formed on the imaging unit.
  12.  前記ぼかし部は、拡散部材、またはレンズ拡散板である請求項11に記載の画像読取装置。 12. The image reading apparatus according to claim 11, wherein the blur part is a diffusing member or a lens diffusing plate.
  13.  前記ぼかし部は、光路の長さを調整する反射鏡、及びコンデンサレンズを含み、前記結像レンズをコレクタレンズとしたケラー照明系を構成する光路の長さとなるようにそれぞれを配置することにより、前記撮像部に結像する像をぼかす請求項11に記載の画像読取装置。 The blur part includes a reflecting mirror that adjusts the length of the optical path, and a condenser lens, and each of the blurring parts is arranged to be the length of the optical path constituting the Keller illumination system using the imaging lens as a collector lens, The image reading apparatus according to claim 11, wherein an image formed on the imaging unit is blurred.
  14.  前記ぼかし部は、コンデンサレンズを含み、光路の長さを調整して、前記結像レンズをコレクタレンズとしてケラー照明系を構成することにより、前記撮像部に結像する像をぼかす請求項11に記載の画像読取装置。 The blurring unit includes a condenser lens, adjusts the length of an optical path, and configures a Keller illumination system using the imaging lens as a collector lens, thereby blurring an image formed on the imaging unit. The image reading apparatus described.
  15.  前記ぼかし部は、光路の長さを調整する反射鏡、フライアレイレンズ、コリメータレンズ、及びコンデンサレンズを含み、前記結像レンズをコレクタレンズとしたケラー照明系を構成する光路の長さとなるようにそれぞれを配置することにより、前記撮像部に結像する像をぼかす請求項11に記載の画像読取装置。 The blur part includes a reflector that adjusts the length of the optical path, a fly array lens, a collimator lens, and a condenser lens, and has a length of an optical path that constitutes a Keller illumination system using the imaging lens as a collector lens. The image reading apparatus according to claim 11, wherein an image formed on the imaging unit is blurred by arranging each of them.
  16.  前記ぼかし部は、フライアレイレンズ及びコンデンサレンズを含み、光路の長さを調整して、前記結像レンズをコリメータレンズとしてケラー照明系を構成することにより、前記撮像部に結像する像をぼかす請求項11に記載の画像読取装置。 The blur part includes a fly array lens and a condenser lens, adjusts the length of the optical path, and configures a Keller illumination system using the imaging lens as a collimator lens, thereby blurring an image formed on the imaging part. The image reading apparatus according to claim 11.
  17.  前記第2算出部は、予め定めた複数の色かつ予め定めた複数種類の濃度の印刷物に対して前記第2シェーディング補正情報をそれぞれ算出し、前記複数種類の濃度以外の濃度に対しては補間によって前記第2シェーディング補正情報を算出する請求項10~16の何れか1項に記載の画像読取装置。 The second calculation unit calculates the second shading correction information for a plurality of predetermined colors and a plurality of types of predetermined density printed matter, and interpolates for densities other than the plurality of types of densities. The image reading apparatus according to any one of claims 10 to 16, wherein the second shading correction information is calculated by:
  18.  前記予め定めた空間周波数の抽出は、ハイパスフィルタまたはバンドパスフィルタを用いて行う請求項10~17の何れか1項に記載の画像読取装置。 The image reading apparatus according to any one of claims 10 to 17, wherein the extraction of the predetermined spatial frequency is performed using a high-pass filter or a band-pass filter.
  19.  記録媒体に画像を形成する画像形成部と、
     請求項10~18の何れか1項に記載の画像読取装置と、
     を含み、
     前記画像形成部によって記録媒体上に形成された画像を前記撮像部に結像することによって変換された画像情報を、前記補正部によって補正する画像形成装置。
    An image forming unit for forming an image on a recording medium;
    The image reading device according to any one of claims 10 to 18,
    Including
    An image forming apparatus that corrects, by the correction unit, image information converted by forming an image formed on a recording medium by the image forming unit on the imaging unit.
  20.  コンピュータを、請求項10~18の何れか1項に記載の画像読取装置における第1算出部及び第2算出部として機能させるための画像読取むら補正プログラム。 An image reading unevenness correction program for causing a computer to function as the first calculation unit and the second calculation unit in the image reading apparatus according to any one of claims 10 to 18.
  21.  コンピュータを、請求項10~18の何れか1項に記載の画像読取装置における第1算出部、第2算出部、及び補正部として機能させるための画像読取むら補正プログラム。 An image reading unevenness correction program for causing a computer to function as the first calculation unit, the second calculation unit, and the correction unit in the image reading apparatus according to any one of claims 10 to 18.
PCT/JP2019/011121 2018-04-12 2019-03-18 Image reading irregularity correction method, image reading device, image formation device, and image reading irregularity correction program WO2019198431A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-076911 2018-04-12
JP2018076911 2018-04-12

Publications (1)

Publication Number Publication Date
WO2019198431A1 true WO2019198431A1 (en) 2019-10-17

Family

ID=68163550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011121 WO2019198431A1 (en) 2018-04-12 2019-03-18 Image reading irregularity correction method, image reading device, image formation device, and image reading irregularity correction program

Country Status (1)

Country Link
WO (1) WO2019198431A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200470A (en) * 1986-02-28 1987-09-04 Canon Inc Shading correcting method and its device
JPH06291945A (en) * 1993-04-06 1994-10-18 Canon Inc Picture reader
JP2000346612A (en) * 1999-06-04 2000-12-15 Sony Corp Interferometer and method for measuring interference
JP2010516088A (en) * 2007-01-09 2010-05-13 カプソ・ビジョン・インコーポレイテッド Method for correcting manufacturing variations and design imperfections in capsule cameras

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200470A (en) * 1986-02-28 1987-09-04 Canon Inc Shading correcting method and its device
JPH06291945A (en) * 1993-04-06 1994-10-18 Canon Inc Picture reader
JP2000346612A (en) * 1999-06-04 2000-12-15 Sony Corp Interferometer and method for measuring interference
JP2010516088A (en) * 2007-01-09 2010-05-13 カプソ・ビジョン・インコーポレイテッド Method for correcting manufacturing variations and design imperfections in capsule cameras

Similar Documents

Publication Publication Date Title
JP6429395B2 (en) Inkjet printing apparatus and inkjet printing control method
JP6676907B2 (en) Printing apparatus and print control method
JP6102321B2 (en) Imaging unit, color measuring device, image forming apparatus, color measuring system, and color measuring method
JP5783194B2 (en) Imaging unit, color measuring device, image forming apparatus, color measuring system, and color measuring method
US9270836B2 (en) Color measurement system to correct color data corresponding to a ratio of detected distance to a reference distance
JP5958099B2 (en) Color measuring device, image forming apparatus and program
US8922831B2 (en) Image capturing device, color measuring device, color measuring system, and image forming apparatus
WO2016093008A1 (en) Information processing device, image printing apparatus, and information processing method
US9649853B2 (en) Image processing apparatus and method for processing image
US20170057265A1 (en) Printing apparatus and imaging module
CN108886560B (en) Image recording apparatus and control method of image recording apparatus
JP5899742B2 (en) Image position inspection apparatus, image position inspection program, and image forming apparatus
WO2019198431A1 (en) Image reading irregularity correction method, image reading device, image formation device, and image reading irregularity correction program
US9764575B2 (en) Color-measuring apparatus, print control apparatus, and print control method
JP7031404B2 (en) Image reader, image forming device and abnormality detection method
JP6107199B2 (en) Image forming apparatus, color measurement method, and color measurement program
JP7126477B2 (en) IMAGE INSPECTION METHOD AND APPARATUS, PROGRAM AND IMAGE RECORDING SYSTEM
JP2018047584A (en) Inkjet recording device and image quality adjusting method
JP6763214B2 (en) Image reader, image forming device, and control program for image reader
JP5493364B2 (en) Image density measuring method, image density measuring apparatus, and image forming apparatus
JP2017149150A (en) Image forming apparatus, colorimetry apparatus, and ink jet recording device
JP6737101B2 (en) Method for detecting relative position of recording head, and image forming apparatus
JP7374046B2 (en) Image processing device, image processing method and program, reading device, and printing device
JP6409949B2 (en) Imaging unit, color measuring device, color measuring system, and image forming apparatus.
JP6816498B2 (en) Position detectors, electronic devices, and position detection methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP