WO2019197606A1 - Monitoring unit - Google Patents

Monitoring unit Download PDF

Info

Publication number
WO2019197606A1
WO2019197606A1 PCT/EP2019/059412 EP2019059412W WO2019197606A1 WO 2019197606 A1 WO2019197606 A1 WO 2019197606A1 EP 2019059412 W EP2019059412 W EP 2019059412W WO 2019197606 A1 WO2019197606 A1 WO 2019197606A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
container
monitoring unit
sensor platform
ship
Prior art date
Application number
PCT/EP2019/059412
Other languages
German (de)
French (fr)
Inventor
Harry Evers
Original Assignee
Hamburger Hafen & Logistik Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamburger Hafen & Logistik Ag filed Critical Hamburger Hafen & Logistik Ag
Priority to EP19718309.8A priority Critical patent/EP3774533A1/en
Publication of WO2019197606A1 publication Critical patent/WO2019197606A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/002Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for goods other than bulk goods
    • B63B25/004Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for goods other than bulk goods for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • B63B79/15Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers for monitoring environmental variables, e.g. wave height or weather data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/30Monitoring properties or operating parameters of vessels in operation for diagnosing, testing or predicting the integrity or performance of vessels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/18Improving safety of vessels, e.g. damage control, not otherwise provided for preventing collision or grounding; reducing collision damage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/008Docking stations for unmanned underwater vessels, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/25UAVs specially adapted for particular uses or applications for manufacturing or servicing
    • B64U2101/26UAVs specially adapted for particular uses or applications for manufacturing or servicing for manufacturing, inspections or repairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging

Definitions

  • the invention relates to a drone-based infrastructure, taking into account security-related and legal issues relating to drones. This will allow companies to plan aeronautical maneuvering in urban areas, with due regard to legal and aviation safety, without having a direct line of sight to the drone.
  • the system can be used in particular for applications in the port area, in the city and other ports. The basis for this is the establishment of a complete software value chain (SaaS - Software as a Service), Infrastructure (laaS - Infrastructure as a Service), drones (DaaS - Drone as a Service) and de - ren operation.
  • container ships can be provided with mobile systems on board, which contain all system components and have been completely autonomously integrated with the complete equipment in HHLA containers. They can be accommodated in a container. Such containers are brought in at the top level during the loading of the ships and thus represent the take-off and landing platform for the at least one drone. They open and close automatically when a mission is carried out and serve as the basis as well as self-sufficient energy and charging center for the drones. Communication with the bridge through local communication paths via a remote control and visualization unit and with an operations center is provided by satellite communication. Through an externally mounted antenna (SatNav and Com), which is introduced within the container, both the location and the communication with the control center (locally or locally locally) is continuously possible.
  • StNav and Com an externally mounted antenna
  • One or several containers can be loaded on board, which network with each other. This applies both to a ship and worldwide. This means that every container as well as the control center continuously knows the position, speed and direction of the ships. The same applies to the drones in the local system, who can network each other and perform a mission as a flock.
  • Quadrocopters, industrial drones, wing aircraft, submarine drones are also subsumed to include drift-stable drones (balloons) that have been stabilized on a flexible connection line for a long period of time behind the ship at application-specific heights between e.g. 100 - 500 meters are pulled.
  • the flexible connection enables power supply and communication between drone and base (container) - the boost results from a gas filling of the drone, which thus has a high load capacity and allows a very long mission duration.
  • the drones are equipped with different sensors that enable a comprehensive automatic realization of the applications. These include in particular:
  • drones are used with automatic control (BLOS) to perform specific missions.
  • BLOS automatic control
  • the drones are launched and landed on stationary or mobile base stations / containers, ie during the journey, at the berth or in the countryside in a fixed location without any connection to the means of transport. This shows that takeoff and landing position are not stationary and change.
  • the drone receives therefore the position, speed and direction of the base for the calculation of the necessary duration of flight in relation to the own mission as well as the conditions (wind, battery, distance etc.) for the safe landing.
  • the operations center can store all recorded information centrally and use it for other applications in its own area or offer it to third parties.
  • the types of data are listed as examples in the following application scenarios.
  • the drones stand between the ship's side wall and quay and send their data regarding distance, speed, rotation rates to the ship's control console and the navigation system. This supplements the available data set for controlling the automatic system with several redundant sensor information and increases the security of the process.
  • the drones can digitize the infrastructure of the port area (buildings, cranes, wharf, signage etc.) as well as the passage to the berth in each harbor. so that a complete picture of the port with high resolution is created.
  • the data sets and images of the ports are continuously updated and supplemented, so that the operations center gradually has a worldwide 3-D database of all ports that can be used for further applications (including training measures).
  • the drones While traveling in coastal areas, the drones rise above the ship and allow the identification of obstacles and boats that can not be detected by the radar. This is due to the use of other sensors to identify objects (thermal image / infrared and high-resolution camera) and altitude, so that much earlier an obstacle can be detected and the curvature of the horizon becomes less important.
  • fishing boats (especially in the dark) can be detected early, and attacks by pirates can be detected, which identify and capture people on the boats, potentially preventing deterrents from entering.
  • a man-over-board scenario can also be supported, the person geo-referenced stored and calculated using the observed drift with an extrapolation, the current position to find the person.
  • inspection flights are carried out around the ship in order to detect any damage and shifts in the containers at an early stage - a difference image is derived between the reference image from the port when taking off and the current image and the captain can be warned in good time.
  • the highly accurate position and the change in the position of the measuring sensor can be detected and the flow in the direction and speed derived be used to drift the sensors. It is also possible to deploy depth sensors, which are merely connected to a buoy on the surface and pass on their data to the drone.
  • This data base can be collected as a data pool via the operations center itself or on behalf of third parties, so that a worldwide data cadastre is created, which is available for different applications.
  • the transfer of data can be done in the port as a complete data exchange or, if necessary, in direct upload also online via satellite.
  • Submarine drones can also be used to determine the depths of the fairways in the coastal area and in the harbor area.
  • a separate infrastructure can be integrated on board the ships.
  • flying drones with corresponding sensors can be used for this purpose.
  • the system can have a drone system control center, which is provided as laaS - Infrastructure as a Service.
  • the drones can be provided with DaaS - Drone-as-a-Service as a service for use cases, so that in particular drone flights for various use cases are feasible. Beyond-Line-of-Sight (BLOS) flights with drones are particularly suitable as use cases.
  • the system also has at least one centralized and / or decentralized control and evaluation software, which can be provided with SaaS - Software-as-a-Service as an online platform.
  • FIG. 1 shows an embodiment with a ship 1, which has a flying drone 2 and additionally or alternatively a floating drone 3, which is autonomously movable away from the ship 1 and has sensors for detecting features in the environment of the ship 1.
  • the sensor data are wired or preferably wirelessly to a receiver which contains, for example, in one of the charging and Ltdunikations convinced for supplying the drone 2.3 with electrical energy and communication and serving as a provision and launch and landing platform container 4 can, sent and are there for forwarding to an operating center 5 eg via wireless communication using satellite 6 and / or the command center 7 of the ship 1 available.
  • the visibility of the Skipper can be extended beyond the with radar and visually detectable area (line-of.Sight) out and it can also within the field of view with the traditional means unrecognizable obstacles are detected. These include, for example, small vehicles and floating debris in the water, such as lost containers, and shoals.
  • the sensor platform which can be moved autonomously in the vicinity of the ship 1, which is referred to as drone 2, 3, can also support port mowers.
  • the drone 2 can also be stationed at the harbor during a harbor maneuver and accompany a boarding ship 1, the operating center of the drone 2 being ashore at the port operator and not on the ship 1 as in the aforementioned case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Traffic Control Systems (AREA)

Abstract

A monitoring unit for a vehicle, in particular a ship (1) or a rail vehicle, having a sensor platform (2,3) able to be moved autonomously by the vehicle, which sensor platform has sensors for recording features in the surroundings of the vehicle and is connected to the vehicle in a wireless or wired manner. The monitoring unit may in particular be designed to provide hazard notifications using the sensor data recorded by the sensors with regard to features in the surroundings of the vehicle. A monitoring device having a monitoring unit and a container (4) that has a charging unit for charging the sensor platform with electrical energy and a communication unit for communicating with the sensor platform and an operations or control centre (5), wherein the container (4) is designed as a launching and landing platform for the sensor platform.

Description

Überwachungseinheit  monitoring unit
Die Erfindung betrifft eine drohnenbasierte Infrastruktur unter Berücksichtigung von sicherheitsrelevanten und rechtlichen Fragen in Bezug auf Drohnen. Hierdurch wird es möglich, dass Unternehmen die Planung von Flugmanövern mit Drohnen im urba- nen Raum unter Beachtung der Rechtslage und der Flugsicherheit durchführen, ohne eine direkte Sichtverbindung zur Drohne zu haben. Das System kann insbesondere für Anwendungen im Hafenbereich, in der City und weiteren Häfen eingesetzt werden. Grundlage hierfür ist die Etablierung einer kom- pletten Wertschöpfungskette Software (SaaS - Software-as-a-Service), Infrastruktur (laaS - Infrastructure-as-a-Service), Drohnen (DaaS - Drohne-as-a-Service) und de- ren Betrieb. The invention relates to a drone-based infrastructure, taking into account security-related and legal issues relating to drones. This will allow companies to plan aeronautical maneuvering in urban areas, with due regard to legal and aviation safety, without having a direct line of sight to the drone. The system can be used in particular for applications in the port area, in the city and other ports. The basis for this is the establishment of a complete software value chain (SaaS - Software as a Service), Infrastructure (laaS - Infrastructure as a Service), drones (DaaS - Drone as a Service) and de - ren operation.
Parallel wird die Automatisierung und damit Digitalisierung des Schiffbetriebes, der Fahrten, der Anlegemanöver im Hafen sowie damit verbundener Prozesse durch Dritte ermöglicht. Die Möglichkeiten von autonomen Fahrten für Containerschiffe ist hierbei eine Perspektive, die bereits wissenschaftlich intensiv analysiert und erforscht wird. In parallel, the automation and thus digitization of the ship's operations, the journeys, the docking maneuvers in the port as well as related processes by third parties are made possible. The possibilities of autonomous cruises for container ships are a perspective that has already been scientifically intensively analyzed and researched.
Eine Analogie ist im Bestreben der Automobilhersteller zu sehen Autos zukünftig mit immer höheren Automatisierungsgraden eigenständig im Verkehr zu betreiben und den Fahrer damit weiter zu entlasten. An analogy is to be seen in the endeavor of the automobile manufacturers to operate cars independently in the future with ever higher degrees of automation in traffic and thereby relieve the driver further.
Hierzu wird erfindungsgemäß der Nutzung von Drohnen auf Containerschiffen (welt- weit über 5000 Schiffe) vorgeschlagen, die nicht nur im Hafenbereich sondern auch im Küstenbereich und auf den Meeren außerhalb der 7-Meilenzone eingesetzt wer- den können. Hierbei kann das komplette Zusammenspiel der System komponenten vorteilhaft (SaaS, laaS, DaaS) zur Anwendung kommen, um einen sicheren, einfa- chen und zuverlässigen Betrieb zu gewährleisten. For this purpose, the use of drones on container ships (more than 5000 ships worldwide) is proposed according to the invention, which can be used not only in the port area but also in the coastal area and on the seas outside the 7-mile zone. Here, the complete interaction of the system components advantageous (SaaS, laaS, DaaS) for safe, easy and reliable operation.
Containerschiffen können im Hafen während der Ent- und Beladung mobile Systeme bedarfsorientiert mit an Bord gegeben werden, die alle Systemkomponenten enthal- ten und völlig autonom mit der Komplettausrüstung in Containern der HHLA integriert worden sind. Sie können in einem Container untergebracht werden. Solche Contai- ner werden in der obersten Ebene bei der Beladung der Schiffe eingebracht und stel- len damit die Start- und Landeplattform für die mindestens eine Drohne dar. Sie öff- nen und schließen sich automatisch, sofern ein Einsatz durchgeführt wird und dienen als Basis sowie autarke Energie- und Ladezentrale für die Drohnen. Eine Kommuni- kation mit der Brücke durch lokale Kommunikationswege über eine abgesetzte Steuer- und Visualisierungseinheit sowie mit einer Betriebszentrale ist durch Satelli- tenkommunikation gegeben. Durch eine extern angebrachte Antenne (SatNav und Com), die innerhalb des Containers eingeführt ist, wird sowohl die Ortung als auch die Kommunikation mit der Leitstelle (lokal vor Ort oder dezentral) kontinuierlich er möglicht. During loading and unloading, container ships can be provided with mobile systems on board, which contain all system components and have been completely autonomously integrated with the complete equipment in HHLA containers. They can be accommodated in a container. Such containers are brought in at the top level during the loading of the ships and thus represent the take-off and landing platform for the at least one drone. They open and close automatically when a mission is carried out and serve as the basis as well as self-sufficient energy and charging center for the drones. Communication with the bridge through local communication paths via a remote control and visualization unit and with an operations center is provided by satellite communication. Through an externally mounted antenna (SatNav and Com), which is introduced within the container, both the location and the communication with the control center (locally or locally locally) is continuously possible.
Es können ein oder auch mehrere Container an Bord geladen werden, die sich unter- einander vernetzten. Dies gilt sowohl auf einem Schiff und auch weltweit miteinan- der. Damit kennt jeder Container als auch die Zentrale kontinuierlich die Position, Geschwindigkeit und Richtung der Schiffe. Gleiches gilt für die Drohnen untereinan- der im lokalen System, die sich gegenseitig vernetzen und als Schwarm eine Mission ausführen können. One or several containers can be loaded on board, which network with each other. This applies both to a ship and worldwide. This means that every container as well as the control center continuously knows the position, speed and direction of the ships. The same applies to the drones in the local system, who can network each other and perform a mission as a flock.
Es ist auch möglich, die Systeme fix zu installieren und damit eine kontinuierliche Einrüstung ab Werk oder auch nachträglich zu realisieren. It is also possible to install the systems permanently and thus to implement a continuous installation from the factory or subsequently.
Prinzipiell gelten die Ausführungen bzgl. der Schiffe auch beim Einsatz bzw. dem Transport der Container auf Zügen, LKW oder anderen Transportmitteln. Dabei ist der Einsatz der Drohnen während des Transportes selber, an vorgegebenen Orten (geofencing) oder auch manuell durch die Leitstelle möglich. Dies gilt im zivilen wie auch im militärischen Einsatzbereich. Unter Drohnen sind alle möglichen Ausprägungen zu verstehen: neben den In principle, the statements regarding ships also apply to the use or transport of containers on trains, trucks or other means of transport. The use of the drones during transport itself, at predetermined locations (geofencing) or manually by the control center is possible. This applies to both civilian and military applications. Under drones are all possible forms to understand: in addition to the
Quadrocoptern, Industriedrohnen, Flächenflügler, Unterwasserdrohnen sind auch auftriebsstabile Drohnen (Ballone) zu subsummieren, die an einer flexiblen Verbin- dungsleine lagestabilisiert über einen langen Zeitraum hinter dem Schiff in anwen- dungs-spezifischen Höhen zwischen z.B. 100 - 500 Meter hergezogen werden. Die flexible Verbindung ermöglicht die Stromversorgung und Kommunikation zwischen Drohne und Basis (Container) - der Auftrieb resultiert durch eine Gasfüllung der Drohne, die damit eine hohe Tragfähigkeit besitzt und eine sehr lange Missionsdauer ermöglicht. Quadrocopters, industrial drones, wing aircraft, submarine drones are also subsumed to include drift-stable drones (balloons) that have been stabilized on a flexible connection line for a long period of time behind the ship at application-specific heights between e.g. 100 - 500 meters are pulled. The flexible connection enables power supply and communication between drone and base (container) - the boost results from a gas filling of the drone, which thus has a high load capacity and allows a very long mission duration.
Die Drohnen werden missionsabhängig mit unterschiedlichen Sensoren ausgestattet, die eine umfassende automatische Realisierung der Anwendungen ermöglichen. Hierzu zählen insbesondere: Depending on the mission, the drones are equipped with different sensors that enable a comprehensive automatic realization of the applications. These include in particular:
Ortungssysteme (Satellitennavigation GRS, Galileo, GLONASS und derglei- chen)  Positioning systems (satellite navigation GRS, Galileo, GLONASS and the like)
Inertialsysteme zur Lagestabilisierung  Inertial systems for position stabilization
Kommunikation (local evtl. WLAN - G5 und IRIDIUM o.ä. zur weltweiten Anbin- dung)  Communication (local possibly WLAN - G5 and IRIDIUM or similar for worldwide connection)
Video  Video
Camera (normal und Infrarot)  Camera (normal and infrared)
Radar  radar
Abstandsradar  distance radar
Licht/Blitzlicht  Light / flash
Lidar/Laser  Lidar / Laser
Datenspeicher  data storage
Meßsonden zum Abwerfen  Measuring probes for dropping
Unabhängig davon werden die Drohnen mit der automatischen Steuerung (BLOS) eingesetzt, die spezifische Missionen ausführen. Regardless, drones are used with automatic control (BLOS) to perform specific missions.
Start und Landung der Drohnen erfolgt auf stationären oder auch mobilen Basisplät- zen/Containern, d.h. während der Fahrt, am Liegeplatz oder abgesetzt auf dem Land an einem festen Standort ohne Verbindung zum Transportmittel. Hierbei ergibt sich, dass Start und Landeposition nicht stationär sind und sich ändern. Die Drohne erhält daher kontinuierlich die Position, Geschwindigkeit und Richtung der Basis zur Be- rechnung der notwendigen Flugdauer in Relation zur eigenen Mission sowie der Rahmenbedingungen (Wind, Batterie, Entfernung etc.) zur sicheren Landung. The drones are launched and landed on stationary or mobile base stations / containers, ie during the journey, at the berth or in the countryside in a fixed location without any connection to the means of transport. This shows that takeoff and landing position are not stationary and change. The drone receives therefore the position, speed and direction of the base for the calculation of the necessary duration of flight in relation to the own mission as well as the conditions (wind, battery, distance etc.) for the safe landing.
Nachfolgend werden Szenarien aufgeführt und mit einer spezifischen Sensorik be- schrieben, die an Bord der Drohnen zum Einsatz kommt. Scenarios are listed below and described with a specific sensor system used on board the drones.
Anwendunqsszenarien Anwendunqsszenarien
Die Betriebszentrale kann als weltweiter Datensammler alle aufgenommenen Infor- mationen zentral ablegen und für weitere Anwendungen im eigenen Bereich nutzen als auch für Dritte anbieten. Welche Daten dies sind, wird in folgenden Anwendungs- szenarien exemplarisch aufgeführt.  As a global data collector, the operations center can store all recorded information centrally and use it for other applications in its own area or offer it to third parties. The types of data are listed as examples in the following application scenarios.
Einsatz im Hafenbereich mit mindestens zwei oder mehr Drohnen zur Qualitätssiche- rung der Ladung nach dem Ladevorgang - Digitalisierung (Schiffs-Scan) der 3-D Po- sitionierung aller Container auf dem Schiff und Lagereferenz zueinander. Generie- rung eines„Digital Twin“ des Schiffes im aktuelle Ladezustand mit den Containern - damit können die Container weltweit auch eineindeutig zugeordnet und später durch Bildvergleich wieder identifiziert werden, da kein Container eine 100%-Übereinstim- mung (Farbe, Farbschäden, Rost, Beschriftung und Formveränderung in geringem Maße) mit einem zweiten Container hat. (Digital Container-Foodprint). Use in the harbor area with at least two or more drones for quality assurance of the cargo after the loading process - Digitization (ship scan) of the 3-D positioning of all containers on the ship and position reference to each other. Generation of a "Digital Twin" of the ship in the current state of charge with the containers - this means that the containers can also be unambiguously assigned worldwide and later identified again by image comparison, since no container has a 100% agreement (color, color damage, rust, Labeling and shape change to a small extent) with a second container. (Digital container food print).
Als Ergebnis des Schiffs-Scan können dreidimensionale nachträgliche Betrachtun- gen der Schiffe im Detail bis 0,5 cm durch eine entsprechende aufbereitete Software und 3D-Brillen erfolgen. As a result of the ship's scan, three-dimensional retrospective observations of the ships can be made in detail down to 0.5 cm through appropriate prepared software and 3D glasses.
Bei einem automatisierten An- oder Ablegemanöver stehen die Drohnen zwischen Bordwand und Kai und senden ihre Daten bzgl. Abstand, Geschwindigkeit, Dreh raten an den Leitstand des Schiffes und das Navigationssystem . Damit wird das verfüg- bare Datenset zur Ansteuerung des automatischen Systems um mehrere redundante Sensorinformationen ergänzt und erhöht die Sicherheit des Prozesses. During an automated mooring maneuver, the drones stand between the ship's side wall and quay and send their data regarding distance, speed, rotation rates to the ship's control console and the navigation system. This supplements the available data set for controlling the automatic system with several redundant sensor information and increases the security of the process.
Die Drohnen können in jedem Hafen die Infrastruktur des Hafenbereiches (Gebäude, Krane, Kai, Beschilderung etc.) sowie die Passage bis zum Anlegeplatz digitalisieren, so dass auch ein komplettes Bild des Hafen mit hoher Auflösung entsteht. Die Da- tensätze und Bilder der Häfen werden kontinuierlich aktualisiert und ergänzt, so dass die Betriebszentrale sukzessive über eine weltweite 3-D Datenbank aller Häfen ver- fügt, die zu weiteren Anwendungen (u.a. zu Schulungsmaßnahmen) herangezogen werden kann. The drones can digitize the infrastructure of the port area (buildings, cranes, wharf, signage etc.) as well as the passage to the berth in each harbor. so that a complete picture of the port with high resolution is created. The data sets and images of the ports are continuously updated and supplemented, so that the operations center gradually has a worldwide 3-D database of all ports that can be used for further applications (including training measures).
Während der Fahrt im Küstenbereichen steigen die Drohnen über dem Schiff auf und ermöglichen die Identifizierung von Hindernissen und Booten, die durch das Radar nicht erfasst werden können. Dies liegt an der Nutzung von anderen Sensoren zur Identifizierung von Objekten (Wärmebild/Infrarot und Kamera mit hoher Auflösung) sowie an der Flughöhe, so dass sehr viel früher ein Hindernis entdeckt werden kann und die Krümmung des Horizontes an Bedeutung verliert. While traveling in coastal areas, the drones rise above the ship and allow the identification of obstacles and boats that can not be detected by the radar. This is due to the use of other sensors to identify objects (thermal image / infrared and high-resolution camera) and altitude, so that much earlier an obstacle can be detected and the curvature of the horizon becomes less important.
Hierbei können Fischerboote (gerade in der Dunkelheit) frühzeitig entdeckt sowie An- griffe durch Piraten bemerkt, die Personen auf den Booten identifiziert und erfasst und damit auch durch die Abschreckung Enterungen potentiell verhindert werden. Auch ein Mann-über-Bord Szenario kann begleitet werden, die Person geo-referen- ziert gespeichert und unter Nutzung der beobachteten Drift mit einer Extrapolation die aktuelle Position zur Auffindung der Person berechnet werden. Here, fishing boats (especially in the dark) can be detected early, and attacks by pirates can be detected, which identify and capture people on the boats, potentially preventing deterrents from entering. A man-over-board scenario can also be supported, the person geo-referenced stored and calculated using the observed drift with an extrapolation, the current position to find the person.
Parallel werden Inspektionsflüge um das Schiff durchgeführt, um etwaige Schäden und Verschiebungen der Container früh zu erkennen - hierbei wird zwischen Refe- renzbild aus dem Hafen beim Ablegen und der aktuellen Aufnahme ein Differenzbild abgeleitet und der Kapitän kann frühzeitig gewarnt werden. At the same time, inspection flights are carried out around the ship in order to detect any damage and shifts in the containers at an early stage - a difference image is derived between the reference image from the port when taking off and the current image and the captain can be warned in good time.
Es ist auch möglich, abseits der aktuellen Fahrroute (ca. 500 Meter) autonome Mess- sensoren auszubringen und durch die Drohnen abzuwerfen und Umweltdaten abzu- leiten. Die Messsensoren erfassen dann Luft- und Wassertemperatur, Wasserqualität und weitere Daten, die durch die Drohne direkt erfasst und gesammelt werden. It is also possible to deploy autonomous measuring sensors away from the current driving route (about 500 meters) and to drop them through the drones and derive environmental data. The sensors then record air and water temperature, water quality and other data collected and collected directly by the drone.
Durch die zeitlich begrenzte aber über mehrere Minuten mögliche Beobachtung der abgesetzten Sensoren kann die hochgenaue Position und die Änderung der Position des Messensors erfasst und die Strömung in Richtung und Geschwindigkeit abgelei- tet werden, mit der die Sensoren driften. Es ist auch möglich Tiefensensoren auszu- bringen, die lediglich mit einer Boje auf der Oberfläche verbunden sind und ihre Da- ten hierüber an die Drohne weitergeben. Due to the time-limited but over several minutes possible observation of the remote sensors, the highly accurate position and the change in the position of the measuring sensor can be detected and the flow in the direction and speed derived be used to drift the sensors. It is also possible to deploy depth sensors, which are merely connected to a buoy on the surface and pass on their data to the drone.
Diese Datenbasis kann als Datenpool über die Betriebszentrale selber oder im Auf- trag Dritter gesammelt werden, so dass ein weltweites Daten kataster entsteht, wel- ches für unterschiedliche Anwendungen bereit steht. Die Übertragung der Daten kann im Hafen als kompletter Datenaustausch erfolgen oder bei Bedarf im direkten Upload auch Online über Satellit. This data base can be collected as a data pool via the operations center itself or on behalf of third parties, so that a worldwide data cadastre is created, which is available for different applications. The transfer of data can be done in the port as a complete data exchange or, if necessary, in direct upload also online via satellite.
Auch Unterwasserdrohnen können zum Einsatz kommen, um die Tiefen der Fahrrin- nen im küstennahmen Bereich und im Hafenbereich zu ermitteln. Hierzu kann eine gesonderte Infrastruktur an Bord der Schiffe integriert werden. Teilweise können auch fliegende Drohnen mit entsprechender Sensorik hierfür zum Einsatz kommen. Submarine drones can also be used to determine the depths of the fairways in the coastal area and in the harbor area. For this purpose, a separate infrastructure can be integrated on board the ships. Partly, flying drones with corresponding sensors can be used for this purpose.
Das System kann einen Leitstand für Drohnensystem haben, der als laaS - Infra- struktur as a Service bereitgestellt wird. Zudem können die Drohnen mit DaaS - Drone-as-a-Service als Dienstleistung für Use-Cases bereitsgestellt werden, so dass insbesondere Drohnenflüge für diverse Use Cases durchführbar sind. Als Use-Cases kommen insbesondere Beyond-Line-of-Sight (BLOS) Flüge mit Drohnen in Betracht. Das System hat zudem mindestens eine zentrale und/oder dezentrale Steuerungs- und Auswertesoftware, die mit SaaS - Software-as-a-Service als Online Plattform bereitgestellt werden kann. The system can have a drone system control center, which is provided as laaS - Infrastructure as a Service. In addition, the drones can be provided with DaaS - Drone-as-a-Service as a service for use cases, so that in particular drone flights for various use cases are feasible. Beyond-Line-of-Sight (BLOS) flights with drones are particularly suitable as use cases. The system also has at least one centralized and / or decentralized control and evaluation software, which can be provided with SaaS - Software-as-a-Service as an online platform.
Figur 1 zeigt ein Ausführungsbeispiel mit einem Schiff 1 , das eine fliegende Drohne 2 sowie zusätzlich oder alternativ eine schwimmende Drohne 3 hat, die autonom vom Schiff 1 fortbewegbar ist und Sensoren zur Erfassung von Merkmalen in der Umge- bung des Schiffes 1 hat. Die Sensordaten werden drahtgebunden oder bevorzugt drahtlos an einen Empfänger, der z.B. in einem die Lade- und Kommunikationsge- räte zur Versorgung der Drohne 2,3 mit elektrischer Energie und zur Kommunikation enthält und als Bereitstellungs- und Start- und Landeplattform dienenden Container 4 angeordnet sein kann, geschickt und stehen dort zur Weiterleitung an eine Betriebs- zentrale 5 z.B. über drahltlose Kommunikation mittels Satelliten 6 und/oder die Kom- mandozentrale 7 des Schiffes 1 zur Verfügung. Damit kann die Sichtweite des Schiffsführers über die mit Radar und visuell erfassbaren Bereich (Line-of.Sight) hin aus erweitert werden und es können auch innerhalb der Sichtweite mit den her kömmlichen Mitteln nicht erkennbare Hindernisse erkannt werden. Hierzu zählen bei spielsweise Kleinfahrzeuge und im Wasser befindliches Treibgut, wie verlorene Con- tainer, und Untiefen. Mit der autonom in der Umgebung des Schiffes 1 fortbeweg ba- ren Sensorplattform, die als Drohne 2, 3 bezeichnet wird, lassen sich auch Hafenma- növer unterstützen. Die Drohne 2 kann bei einem Hafenmanöver aber auch am Ha- fen stationiert sein und ein einfahrendes Schiff 1 begleiten, wobei die Betriebszent- rale der Drohne 2 an Land beim Hafenbetreiber ist und nicht wie im vorgenannten Fall auf dem Schiff 1. 1 shows an embodiment with a ship 1, which has a flying drone 2 and additionally or alternatively a floating drone 3, which is autonomously movable away from the ship 1 and has sensors for detecting features in the environment of the ship 1. The sensor data are wired or preferably wirelessly to a receiver which contains, for example, in one of the charging and Kommunikationsgeräte for supplying the drone 2.3 with electrical energy and communication and serving as a provision and launch and landing platform container 4 can, sent and are there for forwarding to an operating center 5 eg via wireless communication using satellite 6 and / or the command center 7 of the ship 1 available. Thus, the visibility of the Skipper can be extended beyond the with radar and visually detectable area (line-of.Sight) out and it can also within the field of view with the traditional means unrecognizable obstacles are detected. These include, for example, small vehicles and floating debris in the water, such as lost containers, and shoals. The sensor platform, which can be moved autonomously in the vicinity of the ship 1, which is referred to as drone 2, 3, can also support port mowers. The drone 2 can also be stationed at the harbor during a harbor maneuver and accompany a boarding ship 1, the operating center of the drone 2 being ashore at the port operator and not on the ship 1 as in the aforementioned case.

Claims

Patentansprüche claims
1. Überwachungseinheit für ein Fahrzeug, insbesondere ein Schiff oder ein Bahn- fahrzeug, mit einer autonom vom Fahrzeug bewegbaren Sensorplattform, die Sensoren zur Erfassung von Merkmalen in der Umgebung des Fahrzeuges hat und mit dem Fahrzeug drahtlos oder drahtgebunden gekoppelt ist. A monitoring unit for a vehicle, in particular a ship or a rail vehicle, having a sensor platform which can be moved autonomously by the vehicle and has sensors for detecting features in the surroundings of the vehicle and is coupled to the vehicle wirelessly or by wire.
2. Überwachungseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass die Überwachungseinheit zur Bereitstellung von Gefahrenmeldungen anhand der mit den Sensoren erfassten Sensordaten zu Merkmalen in der Umgebung des Fahrzeuges ausgebildet ist. 2. Monitoring unit according to claim 1, characterized in that the monitoring unit is designed to provide danger messages based on the sensor data recorded with the sensors to features in the environment of the vehicle.
3. Überwachungseinheit nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Überwachungseinheit eine fliegende Drohne oder ein schwimmende Unterwasserboot als Sensorplattform hat. 3. Monitoring unit according to one of the preceding claims, character- ized in that the monitoring unit has a flying drone or a floating underwater boat as a sensor platform.
4. Überwachungseinrichtung mit einer Überwachungseinheit nach einem der vor- hergehenden Ansprüche und einem Container, der eine Ladeeinheit zur Aufla- dung der Sensorplattform mit elektrischer Energie sowie eine Kommunikations- einheit zur Kommunikation mit der Sensorplattform und einer Betriebs- oder Kommandozentrale hat, wobei der Container als Start- und Landeplattform für die Sensorplattform ausgebildet ist. 4. Monitoring device having a monitoring unit according to one of the preceding claims and a container having a charging unit for charging the sensor platform with electrical energy and a communication unit for communicating with the sensor platform and an operating or command center, wherein the container is designed as a take-off and landing platform for the sensor platform.
5. Überwachungseinrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Container ein Dach hat, das zum Öffnen und Schließen ausgebildet ist, um die Sensorplattform im Inneren des Containers zu lagern und für den Überwa- chungsflug aus den Container herauszulassen. 5. Monitoring device according to claim 4, characterized in that the container has a roof which is designed to open and close to store the sensor platform in the interior of the container and let out for the surveillance flight from the container.
PCT/EP2019/059412 2018-04-13 2019-04-12 Monitoring unit WO2019197606A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19718309.8A EP3774533A1 (en) 2018-04-13 2019-04-12 Monitoring unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018108808 2018-04-13
DE102018108808.6 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019197606A1 true WO2019197606A1 (en) 2019-10-17

Family

ID=66223706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/059412 WO2019197606A1 (en) 2018-04-13 2019-04-12 Monitoring unit

Country Status (2)

Country Link
EP (1) EP3774533A1 (en)
WO (1) WO2019197606A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021123992A1 (en) 2021-09-16 2023-03-16 HHLA Sky GmbH Mobile device for sending and receiving drones

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2365824A (en) * 2000-08-14 2002-02-27 Mentor Subsea Tech Serv Inc Drone vessel for remotely operated vehicles
US20120080556A1 (en) * 2010-10-05 2012-04-05 Lockheed Martin Corporation Systems and Methods for Autonomous Operations of Unmanned Aerial Vehicles
WO2016059555A1 (en) * 2014-10-13 2016-04-21 Systems Engineering Associates Corporation Systems and methods for deployment and operation of vertical take-off and landing (vtol) unmanned aerial vehicles
WO2017123768A1 (en) * 2016-01-12 2017-07-20 Planck Aerosystems, Inc. Methods and apparatus for unmanned aircraft-based object detection
DE102016219473A1 (en) * 2016-10-07 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft Drone for a vehicle
JP2019036010A (en) * 2017-08-10 2019-03-07 善郎 水野 Collision avoidance support system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2365824A (en) * 2000-08-14 2002-02-27 Mentor Subsea Tech Serv Inc Drone vessel for remotely operated vehicles
US20120080556A1 (en) * 2010-10-05 2012-04-05 Lockheed Martin Corporation Systems and Methods for Autonomous Operations of Unmanned Aerial Vehicles
WO2016059555A1 (en) * 2014-10-13 2016-04-21 Systems Engineering Associates Corporation Systems and methods for deployment and operation of vertical take-off and landing (vtol) unmanned aerial vehicles
WO2017123768A1 (en) * 2016-01-12 2017-07-20 Planck Aerosystems, Inc. Methods and apparatus for unmanned aircraft-based object detection
DE102016219473A1 (en) * 2016-10-07 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft Drone for a vehicle
JP2019036010A (en) * 2017-08-10 2019-03-07 善郎 水野 Collision avoidance support system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021123992A1 (en) 2021-09-16 2023-03-16 HHLA Sky GmbH Mobile device for sending and receiving drones
WO2023041677A1 (en) 2021-09-16 2023-03-23 HHLA Sky GmbH Mobile structure for dispatching and accommodating drones
DE102021123992B4 (en) 2021-09-16 2023-06-22 HHLA Sky GmbH Mobile device for sending and receiving drones

Also Published As

Publication number Publication date
EP3774533A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
US11505292B2 (en) Perimeter ranging sensor systems and methods
EP3639105B1 (en) Autonomous and assisted docking systems and methods
US20240116610A1 (en) Multiple autonomous underwater vehicle systems and methods
US20190361457A1 (en) Autonomous and assisted docking systems and methods
US11846940B2 (en) Methods and apparatus for vehicle control
Murphy et al. Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma
DE102018131113B4 (en) watercraft
US8370002B2 (en) Multi-mission remote aerial refueling operator system
CN106143821A (en) A kind of unmanned boat boat-carrying hangar system
AU2012200639A1 (en) Methods and systems for predicting ship motion
CN112669572B (en) Unmanned ship system for intelligent inspection of river basin bank
US11320821B2 (en) Drone for industrial activities
DE3843043A1 (en) Management method and device for disaster and environmental protection
WO2019197606A1 (en) Monitoring unit
Chensky et al. Water environment monitoring with an autonomous unmanned surface vessel
Ambroziak et al. Hybrid vtol uav autonomous operations from mobile landing pad
Schuchardt et al. Mission management and landing assistance for an unmanned rotorcraft for maritime operations
KR102643642B1 (en) Towing Swarm Robots for a Large Vessel
Pettke et al. Certification of Unmanned Aircraft (UA)
RU221915U1 (en) ELECTRICALLY PORT UNCREWED VESSEL
DE102023102820B3 (en) Sonar measuring device
US20240319746A1 (en) Autonomous and assisted docking systems and methods
Gajjar et al. A07: On-ship landing and takeoff of Unmanned Aerial Vehicles (UAV’S)
Marszałkiewicz Possibility of use of the river badge ship as a potential aircraft carrier in the security of logistic and critical infrastructure
Andrews Robot ships

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19718309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019718309

Country of ref document: EP