WO2019197110A1 - Veraschung eines partikelfilters in einem kraftfahrzeug - Google Patents

Veraschung eines partikelfilters in einem kraftfahrzeug Download PDF

Info

Publication number
WO2019197110A1
WO2019197110A1 PCT/EP2019/056229 EP2019056229W WO2019197110A1 WO 2019197110 A1 WO2019197110 A1 WO 2019197110A1 EP 2019056229 W EP2019056229 W EP 2019056229W WO 2019197110 A1 WO2019197110 A1 WO 2019197110A1
Authority
WO
WIPO (PCT)
Prior art keywords
ash
water
mixture
exhaust gas
injection
Prior art date
Application number
PCT/EP2019/056229
Other languages
English (en)
French (fr)
Inventor
Nikita Peters
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN201980014072.2A priority Critical patent/CN111742134B/zh
Priority to US16/968,205 priority patent/US11002168B2/en
Publication of WO2019197110A1 publication Critical patent/WO2019197110A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0221Details of the water supply system, e.g. pumps or arrangement of valves
    • F02M25/0222Water recovery or storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0227Control aspects; Arrangement of sensors; Diagnostics; Actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • F02M25/028Adding water into the charge intakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • F02M25/03Adding water into the cylinder or the pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/04Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by adding non-fuel substances to combustion air or fuel, e.g. additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a use of a mixture of water andarguess least another component for injection into a combustion chamber of a combustion engine Ver. Moreover, the invention relates to an internal combustion engine, in particular Otto engine, for a motor vehicle with a water injection and a method for operating an internal combustion engine with a water injection.
  • particulate filters for gasoline engines be, but its basic idea for all particulate filter in air ducts and exhaust ducts of motor vehicles used, optionally with fachüb union adjustments to the appropriate application.
  • Particulate filters for gasoline engines are installed in more and more new vehicles in the exhaust system of the exhaust system in order to filter ash particles and / or soot particles from the exhaust gas. While soot particles catching in the particulate filter can be pyrolytically removed from the particulate filter, for example by means of the passage of a very hot exhaust gas stream, the introduced ash particles generally remain there until the end of the life of the particulate filter, if they are not mechanical - for example with a manual emptying - removed. In particular, when a new particulate filter is introduced into the exhaust system, the fastest possible ashing up to a certain degree of loading is even desired.
  • the particle filters show a worse and thus insufficient filtration efficiency, as long as they do not yet have a certain minimum degree of loading with ash particles.
  • an object of the invention to achieve the fast ashing required for optimized Filtra tionseffizienz of the particulate filter in an improved manner.
  • an improved method for operating an internal combustion engine and / or an improved internal combustion engine is erforder Lich.
  • a mixture of water and at least one further component for direct or indirect injection into a combustion chamber of an internal combustion engine of a motor vehicle with the features of claim 1, by a method for operating a combus tion motor with the features of claim. 4 and a combustion engine having the features of claim 8.
  • a motor vehicle having such an internal combustion engine is the subject of claim 11.
  • Advantageous embodiments of the various aspects of the invention are protected by the respective dependent claims.
  • a mixture of water and at least one further component is used for direct or indirect injection into a combustion chamber of an internal combustion engine of a motor vehicle.
  • the further component of the mixture is an ash-forming agent.
  • the water injection has a separate injection nozzle for injection into the combustion chamber, so in addition to the fuel injector another injector.
  • a direct injection can also be understood to mean a combustion chamber, that an injection nozzle of the water injection and a fuel injector are designed to be common to the respective injection into the combustion chamber.
  • an indirect injection into the combustion chamber can be understood, for example, that an admixture of water-Aschebner mixture to the fuel-air mixture already in the common rail takes place (for example by means of a common injection nozzle) or in the intake manifold (or formulated in general in the feed) in front of the combustion chamber, a separate injection nozzle A for the water-ash-forming mixture is provided.
  • an ash-forming agent is to be understood as meaning, in particular, a substance or a mixture of substances which, particularly as part of a water-ash-forming mixture, forms ash particles upon combustion in the combustion chamber of the internal combustion engine.
  • an ash former in example, a component which has a metal salt or consists of this.
  • a nitrate e.g., magnesium nitrate
  • a sulfate e.g., magnesium sulfate
  • a chloride e.g., magnesium chloride
  • a sulfide e.g., magnesium sulfide
  • a concentration of the ash former in the mixture is between 100ppm and 2000ppm, more preferably between 200ppm and 1000ppm, to allow for an optimal compromise between fast ashing and little degradation in engine operation.
  • the ash formers upon combustion form an ash with or from a metal oxide, in particular magnesium oxide, Kalzi umoxid, zinc oxide, molybdenum oxide, silica, alumina or titanium oxide.
  • the mixture comprises an aqueous solution of the ash-forming agent in the water and / or a water-based suspension of the
  • both a solution and a suspension with the water may be provided.
  • a method for operating an internal combustion engine in a motor vehicle having in particular: a) at least one cylinder with a combustion chamber, b) a water injection with a tank and at least one injection nozzle for immediate or indirect injection of water into the combustion chamber, c) an exhaust system with at least one catalytic converter and a particle filter device comprising a particle filter for the filtration of particles, in particular soot and / or ash particles, from a guided in the exhaust system from the gas stream from the Has combustion chamber, d) a control unit for state monitoring, in particular by means of a filter state determination, and for controlling the combustion in the cylinder.
  • a filling of the tank of Wasserein injection takes place with a mixture of water and an ash generator, in particular with a water-ash-forming mixture, as used according to the above-described aspect of the invention for injection into the combustion chamber of the internal combustion engine.
  • an internal combustion engine in particular a gasoline engine, is provided for a motor vehicle, comprising: a) at least one cylinder with a combustion chamber, b) a water injection with a tank and at least one injection nozzle for direct or indirect injection of water into the combustion chamber, wherein for injection a mixture of water and an ash-forming agent, in particular according to one of the preceding claims is used, c) an exhaust system with at least one Abgaskata analyzer and a particulate filter device which a particulate filter for the filtration of particles, in particular carbon black and / or ash particles, from an exhaust gas flow in the exhaust gas from the combustion chamber, d) a control unit for condition monitoring, in particular by means of a filter state determination, and for controlling combustion in the cylinder.
  • the control unit is in particular configured to influence an operation of the water injection such that less or no water-ash-forming mixture is injected when an exhaust gas temperature in the exhaust gas flow is in a predetermined exhaust gas temperature range.
  • a temperature range is to be understood in particular as meaning that the range includes any temperature above or below a limit value (in particular belonging to the range).
  • the internal combustion engine does not differ, at least with regard to its embodied features, from a combustion engine known per se with a water injection.
  • differences may be provided according to various embodiments, in particular with regard to the control of the water injection; This control can be particularly tuned to the injection of water-ash formers mixture - instead of Water or a commonly used for water injection in the corresponding engine type water mixture. Such an adaptation of the control in comparison to known water injections is described hereinbelow at a later point.
  • a motor vehicle having an internal combustion engine according to an embodiment of the invention.
  • the invention is based inter alia on the finding that the Filtrationsef efficiency of Ottopumblefilter is dependent on the degree of loading with soot and / or ash particles.
  • a new, soot-free and ash-free built-in particle filter has a filtration efficiency of about 50% to 85%, depending on the substrate and operating point. In normal ferry operation, over the first 2,000 to 10,000 km (depending on the oil consumption and the particulate filter size) an ash charge amount is reached, which leads to an increase in the filtration efficiency to a required level of approx. 99%.
  • soot has some advantages over soot, including lower backpressure increase and lower backpressure sensitivity (soot knee, lower drop bed filtration on ash, among other things because the particles may be more rigid and / or larger than carbon black) an additional soot loading.
  • the invention is based on the finding that the desired filtration efficiency of approximately 99% should be achieved as quickly as possible. In particular, this process should not require several thousand kilometers ferry operation of the vehicle.
  • loading of the particulate filter with ash particles prior to installation in the particulate filter device of the exhaust system is not sensible.
  • the invention is based inter alia on the idea of introducing a new ash particle filter in a motor vehicle into a newly installed particulate filter in such a way that the exhaust gas stream has an increased proportion of ash, at least until the filter is sufficiently rich - that is, when the filter typically used is used and filter sizes are loaded in particular with one to two, four or eight gram ash particles to achieve the desired filtration efficiency. This is achieved in the sense of the invention by introducing an ash-forming agent into the water used anyway for the water injection.
  • the ash-forming concentration is selectable according to an embodiment according to the size of the water tank, by the concentration of the metal salts in the water. While in a known solution a high ash-ash concentration in the fuel tank requires a high proportion of naphtha (for the azeblower solution in the fuel) and thus leads to a high tendency to knock or to an increased deposit in the engine and on the catalytic converter, this can be done according to one embodiment even with a high concentration of ash formers, for example with a small water tank, avoid by always injecting only a small amount of ash-containing water into the combustion chamber.
  • the power of the engine may be necessary to limit the power of the engine for the duration of the water injection until the ash-containing water has been completely or to some extent reacted in the combustion chamber.
  • the ash concentration by water injection can always kept low who, which pulls less deposits in the injection system, combustion chamber, spark plug and / or on the exhaust valves itself. This is desirable because this Abla delay affect the engine operation and can even damage the engine by an increased tendency to knock.
  • ashing therefore preferably takes place in the lower / middle part-load operation of the engine.
  • Example Zinc-based ash formers Zinc forms up to about 500 ° C so-called.
  • Flittera cal which can be removed again, for example by means of a high-temperature regeneration of the exhaust system. From about 500 ° C, the zinc ash becomes more liquid.
  • the gas permeability of the deposits decreases; the zinc partially diffuses into deeper layers of the coating, in particular also in the particle filter. From about 900 ° C there is a viscous liquid that evenly lines the surface.
  • the deposits are glass-hard and are no longer regenerable under real operating conditions.
  • Example of magnesium-based ash formers Magnesium forms spinel with excess aluminum in the washcoat and temperatures above 600 ° C, the more the temperature exceeds 6Q0 ° C.
  • the procedural ren according to one embodiment has the following method step : Influencing the operation of the water injection, in particular by means of the control unit, such that less or no water-ash mixture is injected when a gas temperature in the exhaust gas flow is rich in a predetermined Abgastemperaturbe.
  • the predetermined exhaust gas temperature range is determined by the fact that it is above a limit temperature of in particular 700 ° C. or lower, 600 ° C lower, 500 ° C or lower, or 400 ° C or lower, it stretches.
  • the water injection in particular by means of the control unit, is metered in such a way that the concentration of the ash generator in a mixture of the injected fuel and the injected water-ash-forming agent mixture is less than 100 ppm , in particular less than 50ppm.
  • the following method steps are provided according to one embodiment: initiation of a loading operating state of the water injection if an unused and / or insufficiently ash-laden particulate filter is installed in the particulate filter device; during the loading operating state, influencing the operation of the water injection, in particular by means of the control unit, in such a way that more water-ash-forming agent mixture and / or water-ash-forming agent mixture is injected for a longer time.
  • the following method step is provided according to one embodiment: termination of the loading operating state, in particular as a function of a past time period and / or an injected amount of water-ash mixture since the release and / or from a degree of loading of the particulate filter.
  • the value for the exhaust gas lambda which is useful in the respective operating case is calculated based on the oxygen required for the oxidation of the ash in the control unit.
  • control unit in particular requires the information about the ash concentration in the water tank (deposited in the control unit), the injected amount of water (deposited in the control unit), the injected fuel quantity (stored in the control unit), and / or the lambda actual value (lambda probe signal).
  • an oxygen content in the air-fuel mixture for combustion is influenced in such a way that during combustion sufficient oxygen is provided for ash formation, in particular for the formation of metal oxide pockets.
  • a lean (or at least a leaner) exhaust lambda for example greater than 1, is set for this purpose.
  • a lambda value upstream of the catalyst of less than or equal to 1 may be used to avoid spinel formation above combustion temperatures of 600 ° C.
  • the injection nozzle is arranged on the combustion chamber of the cylinder and / or in a supply pipe for a fuel-air mixture and / or the injection nozzle for the water-ash-forming mixture is formed together with a fuel injection nozzle.
  • FIG. 2 shows an internal combustion engine according to a further exemplary embodiment of the invention with a water injection and an exhaust gas system, which has a particle filter device, in a schematic view; and 3 shows a diagram in which temporal profiles of a volume flow of the water-ash-forming mixture, an exhaust gas temperature upstream of the first lambda probe and a degree of loading, are entered for explaining a method according to an exemplary embodiment of the invention.
  • FIG. 1 shows an internal combustion engine 1 with an exhaust system 2.
  • the internal combustion engine 1 is a four-cylinder gasoline engine in the exemplary embodiment, but may also be a different type of engine, for example a diesel engine, and / or have a different number of cylinders.
  • the engine 1 is supplied by means of a charge air supply 4 with charge air (the upper double-headed arrow is simplified to the drive of fresh air 5).
  • a charge air supply 4 with charge air (the upper double-headed arrow is simplified to the drive of fresh air 5).
  • the cylinder 6 40 is provided to the cylinder heads via a common rail 8 charge air and fuel and a water-ash-forming mixture in a jointly formed fuel and water injection.
  • the exhaust gas stream is discharged from the cylinders 6 by means of the exhaust gas system 2, the exhaust gas system 2 having at least one first lambda probe 12 and downstream thereof a three-way catalytic converter 10.
  • the control circuit of the catalytic converter 10, possibly taking into account measured values of the lambda probe 12), is not the subject matter of the invention, for which reason its control is not shown here either.
  • a P filtervor direction 16 of the engine 1 is arranged downstream of the particle filter 14.
  • the aftertreated and ash-filtered exhaust gas is blown out, for example, on an exhaust into the environment (the lower double-headed arrow represents in simplified form the exhaust system for the exhaust gases 3).
  • the embodiment is described with a arranged after the catalyst 10 particulate filter 14;
  • the particulate filter device can also be operated with a particulate filter having a catalytic coating so that the catalyst 10 and the particulate filter 14 are combined.
  • the particulate filter device 16 is designed so that the particulate filter 14 can be exchanged out.
  • Newly used particulate filter 14 normally have no soot and / or ash charge, so that after replacement of the Pumblefil age 14 and also at startup of the vehicle with a new particulate filter 14 is a degree of loading BG of the particulate filter 0 (zero). However, at a loading level BG of 0 and even at a low degree of loading, the particle filter 14 only reaches a filtration efficiency FE of approx 50 & to 85%.
  • a higher filtration efficiency FE in particular in the maximum range from about 99% is required.
  • the particulate filter 14 is loaded with a certain amount of ash, which in this case corresponds to a required minimum load level BGmin.
  • BGmin minimum load level
  • the combined fuel and water injection 40 has a separate combined fuel and water injection nozzle 9 for each cylinder 6.
  • Each of the combined injection nozzles 9 is connected to a fuel pump and water pump 41 by means of a pressure line.
  • the pump 41 is fed by both a fuel tank 26 and a water tank 32.
  • the fuel supply to the pump 41 is controlled by means of a continuously variable fuel valve 27, the water to drove by means of a continuously variable water valve 33.
  • the water-ash e-mixture in the Kraftstofflei to a low-pressure fuel pump but in front of a high-pressure fuel pump, in particular via a water injection valve.
  • the internal combustion engine 1 also has a control unit 20, in which at least in the embodiment a filter operating model 22 is stored. By means of the filter operating model 22 and / or by means of sensors, not shown, a filter state monitoring 21 can take place by means of which, for example, a current degree of loading of the filter can be determined.
  • the control unit 20 is connected by means of a double dotted dashed line with the particulate filter device 16, in particular for the detection of a newly used particulate filter 14.
  • control unit 20 for controlling the valves 27 and 33 and the pump 41 is connected to these components (see double dotted dashed lines) .
  • the control unit 20 for controlling the valves 27 and 33 and the pump 41 is connected to these components (see double dotted dashed lines) .
  • Water tank 32 of the water injection 40 not coincide with pure water or the usual for a pure water injection mixture be, but with a water-ash mixture 31 according to the invention.
  • a known, modern gasoline engine is used ver, which already has the reduction of the temperature in the combustion chamber and thus also to reduce emissions via an indirect or direct water injection 30, 40 in the combustion chamber of each cylinder 6.
  • Structural adaptations of such a modern gasoline engine to the use of the water / ash mixture 31 are not required in the exemplary embodiment.
  • a proportion of 750 ppm of magnesium is added to the water in the exemplary embodiment, in particular in the form of magnesium nitrate or in the form of another magnesium salt, the magnesium nitrate or the other magnesium salt being dissolved in the water.
  • tank size or tank filling
  • ash-forming amount is balanced so that the introduced ash makers in the combination of internal combustion engine and exhaust system of the embodiment is sufficient to load the particulate filter with this tank filling with 1 -2 grams of magnesium oxide ash.
  • ash formers When other ash formers are used, other amounts of ash may be needed to fill a standard particulate filter; for CaO, ZnO or other ashes, for example, about five times the amount of ash, ie 5-10 grams.
  • FIG. 2 shows another internal combustion engine 1 according to a further exemplary embodiment of the invention.
  • the internal combustion engine 1 shown in FIG. 2 differs from the one shown in FIG. 1 mainly in that the fuel 25 and the water-ash mixture 31 are injected into the respective cylinders 6 in separate injection nozzles 29 and 39, respectively.
  • a separate fuel injection 24 and a separate water injection 30 is provided.
  • the fuel injection 24 has a separate fuel pump 28.
  • the What sereinspritzung 30 a separate water pump 34th
  • the two illustrated internal combustion engines 1 are designed correspondingly with respect to the exemplary method described with reference to FIG. 3, so that the method can be carried out for both internal combustion engines.
  • FIG. 3 shows a diagram 50 for explaining an exemplary method for operating an internal combustion engine 1 in a motor vehicle.
  • the internal combustion engine 1 can be designed in particular as shown in FIG. 1 or as shown in FIG.
  • the diagram shows the operation of the internal combustion engine of a new Fahrzeu ges, in which a brand new particulate filter 14 is installed with a loading level BG of 0.
  • the water tank 32 was filled with a water-ash-forming mixture 31 as described to Figure 1 be.
  • an ash former is introduced into the combustion chambers of the cylinders 6, so that rapid ashing of the particulate filter 14 causes a rapid increase in the degree of loading BG.
  • the operation of the water injection 30 or 40 is influenced in such a way that no more water-ash mixture mixture is injected. In this way, damage to the Lamb can be prevented 12 dasonden and / or the catalyst 10, as long as the exhaust gas temperature T remains in the harmful area.
  • the diagram 50 can also be seen that the loading operating state 58 is triggered again and thus the water injection is switched on again as soon as the exhaust gas temperature T is not critical again.
  • the water injection is switched off at the time ti.
  • the time ti can be defined, for example, by means of the filter operating model 22 in FIG Depending on the previous operation of the water injection is determined that the required load level BGmin is reached.
  • the time point ti may also be defined by the fact that the filling of the water tank 32 with water-ash-forming mixture is used up. For example, then pure water and / or the water mixture normally used for a water injection to reduce the exhaust gas temperatures can be brought into the tank 32 again.
  • the water tank 32 is filled with water or a conventional water mixture for the water injection to exhaust gas temperature reduction and to additionally an ash-T Ank is provided, from which, if necessary, ash to the water im Tank 32 can be added to assist a rapid pre ashing of the particulate filter 14, as long as necessary.
  • the addition of the ash former can be ended when the required loading level BGmin has been reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb eines Verbrennungsmotors (1) in einem Kraftfahrzeug, sowie einen Verbrennungsmotor (1), der aufweist: wenigstens einen Zylinder (6) mit einem Brennraum, eine Wassereinspritzung (30, 40) mit einem Tank (32) und wenigstens einer Einspritzdüse (9, 39) zum unmittelbaren oder mittelbaren Einspritzen von Wasser in den Brennraum, eine Abgasanlage (2) mit wenigstens einem Abgaskatalysator (10) und einer Partikelfiltervorrichtung (16), die einen Partikelfilter (14) zur Filtration von Partikeln aus einem in der Abgasanlage (2) geführten Abgasstrom aufweist, eine Steuereinheit (20) zur Zustandsüberwachung (21) und zur Steuerung der Verbrennung im Zylinder (6).

Description

Veraschung eines Partikelfilters in einem Kraftfahrzeug
Die Erfindung betrifft eine Verwendung eines Gemisches aus Wasser und wenigs tens einem weiteren Bestandteil zur Einspritzung in einen Brennraum eines Ver brennungsmotors. Außerdem betrifft die Erfindung einen Verbrennungsmotor, ins- besondere Ottomotor, für ein Kraftfahrzeug mit einer Wassereinspritzung und ein Verfahren zum Betrieb eines Verbrennungsmotors mit einer Wassereinspritzung.
In dem Bestreben, eine immer höhere Güte der Abgase von Verbrennungsmoto ren in Kraftfahrzeugen zu erreichen, indem die Emission von Schadstoffen immer weiter gesenkt wird, sind die Hersteller von Kraftfahrzeugen und insbesondere auch die Hersteller von Abgasanlagen dazu übergegangen, auch bei Ottomotoren Partikelfilter in der Abgasanlage zu verwenden, insbesondere zur Vermeidung ei ner Emission von Partikeln.
Die Erfindung ist nachfolgend im Kontext von Partikelfiltern für Ottomotoren be schrieben, ist aber ihrer Grundidee nach für sämtliche Partikelfilter in Luftführungen und Abgasführungen von Kraftfahrzeugen verwendbar, gegebenenfalls mit fachüb lichen Anpassungen an den entsprechenden Anwendungsfall.
Partikelfilter für Ottomotoren (auch Ottopartikelfilter OPF genannt) werden bei im mer mehr Neufahrzeugen in die Abgasführung der Abgasanlage eingebaut, um dort Aschepartikel und/oder Rußpartikel aus dem Abgas zu filtern. Während Ruß- partikel, die sich im Partikelfilter fangen, beispielsweise mittels des Durchzugs ei nes sehr heißen Abgasstroms pyrolytisch aus dem Partikelfilter entfernt werden können, verbleiben die eingebrachten Aschepartikel in der Regel bis zum Ende der Lebensdauer des Partikelfilters dort, wenn sie nicht mechanisch - beispielsweise bei einer manuellen Entleerung - entfernt werden. Insbesondere wenn ein neuer Partikelfilter in die Abgasanlage eingebracht wird, ist eine möglichst schnelle Veraschung bis zu einem bestimmten Beladungsgrad so gar gewünscht. Denn die Partikelfilter zeigen eine schlechtere und damit ungenü gende Filtrationseffizienz, solange sie noch nicht einen bestimmten Mindest-Bela- dungsgrad mit Aschepartikeln aufweisen. Eine Vorbeladung des Partikelfilters mit Asche vor der Montage im Fahrzeug ist aber unpraktisch in der Fertigung und feh leranfällig in der Montage, weshalb die Partikelfilter bei Neufahrzeugen oder beim Austausch in der Werkstatt typischerweise nicht mit Asche vorbeladen sind.
Um trotz eines neuen Partikelfilters möglichst schnell zu einer ausreichenden bzw. optimalen Filtrationseffizienz zu gelangen, wurden in der betriebsinternen Praxis des Anmelders Versuche durch geführt, bei welchen Fahrzeuge mit neuen Partikel filter mit einem Kraftstoff betankt wurden, der einen Zusatz aus Aschebildern ent hielt.
Als nachteilig erwies sich dabei, dass bei bestimmten Motorbetriebspunkten, und insbesondere bei bestimmten Abgastemperaturen, der vermehrte Ascheeintrag teil weise die Funktionalität des Katalysators oder die Lambdasonde schädigte.
Hiervon ausgehend ist es eine Aufgabe der Erfindung, die für eine optimierte Filtra tionseffizienz des Partikelfilters benötigte schnelle Veraschung auf eine verbesserte Weise zu erreichen. Dazu ist insbesondere ein verbessertes Verfahren zum Betrieb eines Verbrennungsmotors und/oder ein verbesserter Verbrennungsmotor erforder lich.
Gelöst wird diese Aufgabe durch die Verwendung eines Gemisches aus Wasser und wenigstens einem weiteren Bestandteil zur mittelbaren oder unmittelbaren Ein spritzung in einen Brennraum eines Verbrennungsmotors eines Kraftfahrzeugs mit den Merkmalen von Anspruch 1 , durch ein Verfahren zum Betrieb eines Verbren nungsmotors mit den Merkmalen von Anspruch 4 sowie durch einen Verbren nungsmotor mit den Merkmalen von Anspruch 8. Ein Kraftfahrzeug mit einem sol chen Verbrennungsmotor ist Gegenstand von Anspruch 11. Vorteilhafte Ausführun gen der verschiedenen Aspekte der Erfindung sind mit den jeweiligen abhängigen Ansprüchen unter Schutz gestellt. Gemäß einem Aspekt der Erfindung wird ein Gemisch aus Wasser und wenigstens einem weiteren Bestandteil verwendet zur mittelbaren oder unmittelbaren Einsprit zung in einen Brenn raum eines Verbrennungsmotors eines Kraftfahrzeugs. Der weitere Bestandteil des Gemischs ist ein Aschebildner. Unter einer unmittelbaren Einspritzung in den Brennraum kann beispielsweise zu verstehen sein, dass die Wassereinspritzung eine separate Einspritzdüse zur Ein spritzung in den Brennraum aufweist, also zusätzlich zum Kraftstoff- Injektor einen weiteren Injektor. Beispielsweise kann unter einer unmittelbaren Einspritzung einen Brennraum aber auch zu verstehen sein, dass eine Einspritzdüse der Wasserein- spritzung und ein Kraftstoff- Injektor zur jeweiligen Einspritzung in den Brennraum gemeinsam ausgebildet sind. Unter einer mittelbaren Einspritzung in den Brenn raum kann beispielsweise zu verstehen sein, dass eine Beimischung des Wasser- Aschebildner-Gemischs zum Kraftstoff-Luft-Gemisch bereits in der Common Rail erfolgt (beispielsweise mittels einer gemeinsamen Einspritzdüse) oder im Saugrohr (bzw. allgemein formuliert im Zuführrohr) vor dem Brennraum eine separate Ein spritzdüse für das Wasser-Aschebildner-Gemisch vorgesehen ist.
Unter einem Aschebildner ist vorliegend insbesondere ein Stoff oder ein Stoffge misch zu verstehen, der, insbesondere als Bestandteil eines Wasser-Aschebildner- Gemisch es, bei Verbrennung im Brennraum des Verbrennungsmotors Ascheparti- kel ausbildet. Gemäß unterschiedlichen Ausführungen kann als Aschebildner bei spielsweise ein Bestandteil verwendet werden, der ein Metallsalz aufweist oder aus diesem besteht. Beispielsweise kann ein Nitrat (z.B. Magnesiumnitrat), ein Sulfat (z.B. Magnesiumsulfat), ein Chlorid (z.B. Magnesiumchlorid) oder ein Sulfid (z.B. Magnesiumsulfid) von Magnesium, Kalzium, Zink, Molybdän, Silizium, Aluminium oder Titan verwendet werden.
Gemäß einer Ausführung beträgt eine Konzentration des Aschebildners in dem Ge misch zwischen 100ppm und 2000ppm, insbesondere zwischen 200ppm und 1000ppm, um einen optimalen Kompromiss zwischen einer schnellen Veraschung und einer geringen Beeinträchtigung des Motorbetriebs zu ermöglichen. Je nach verwendetem Aschebilder bildet der Aschebildner bei Verbrennung eine Asche mit oder aus einem Metalloxid aus, insbesondere Magnesiumoxid, Kalzi umoxid, Zinkoxid, Molybdänoxid, Siliziumoxid, Aluminiumoxid oder Titanoxid.
Welche(s) der aufgelisteten chemischen Elemente im einzelnen Anwendungsfall als Aschebildner mit dem Wasser gemischt wird/werden, liegt im Ermessen des Fachmanns und ist im Regelfall zumindest abhängig von dem Typ des Verbren nungsmotors, und/oder von den vorgesehenen Motorbetriebspunkten (insbeson dere von den vorgesehenen Betriebstemperaturen im Brennraum und in der Ab gasführung), und/oder von dem verbauten Katalysator-T ypen und/oder von der Be- schaffenheit bzw. der Größe der zur Verbesserung der Filtrationseffizienz des Par tikelfilters benötigten Aschepartikel.
Je nachdem, welche Gemischart bei dem im Einzelfall verwendeten Aschebildner- Zusatz zur Vermischung mit Wasser beständiger ist, kann gemäß unterschiedli chen Ausführungen vorgesehen sein, dass das Gemisch eine wässrige Lösung des Aschebildners in dem Wasser und/oder eine wasserbasierte Suspension des
Aschebildners und des Wassers ist. Wenn beispielsweise der Aschebildner-Zusatz mehr als eine chemische Verbindung aufweist, kann sowohl eine Lösung als auch eine Suspension mit dem Wasser vorgesehen sein.
Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zum Betrieb eines Verbrennungsmotors in einem Kraftfahrzeug bereitgestellt, wobei der Verbren nungsmotor insbesondere aufweist: a) wenigstens einen Zylinder mit einem Brenn raum, b) eine Wassereinspritzung mit einem Tank und wenigstens einer Einspritz düse zum unmittelbaren oder mittelbaren Einspritzen von Wasser in den Brenn raum, c) eine Abgasanlage mit wenigstens einem Abgaskatalysator und einer Parti- kelfiltervorrichtung, die einen Partikelfilter zur Filtration von Partikeln, insbesondere von Ruß- und/oder Aschepartikeln, aus einem in der Abgasanlage geführten Ab gasstrom aus dem Brennraum aufweist, d) eine Steuereinheit zur Zustandsüberwa- chung, insbesondere mittels einer Filterzustandsermittlung, und zur Steuerung der Verbrennung im Zylinder. Zur Durchführung des Verfahrens erfolgt ein Befüllen des Tanks der Wasserein spritzung mit einem Gemisch aus Wasser und einem Aschebildner, insbesondere mit einem Wasser-Aschebildner-Gemisch, wie es gemäß dem zuvor beschriebenen Aspekt der Erfindung zur Einspritzung in den Brennraum des Verbrennungsmotors verwendet wird.
Gemäß einem weiteren Aspekt der Erfindung wird ein Verbrennungsmotor, insbe sondere ein Ottomotor, für ein Kraftfahrzeug bereitgestellt, aufweisend: a) wenigs tens einen Zylinder mit einem Brennraum, b) eine Wassereinspritzung mit einem Tank und wenigstens einer Einspritzdüse zum unmittelbaren oder mittelbaren Ein- spritzen von Wasser in den Brennraum, wobei zum Einspritzen ein Gemisch aus Wasser und einem Aschebildner, insbesondere gemäß einem der vorhergehenden Ansprüche verwendet wird, c) eine Abgasanlage mit wenigstens einem Abgaskata lysator und einer Partikelfiltervorrichtung die einen Partikelfilter zur Filtration von Partikeln, insbesondere von Ruß- und/oder Aschepartikeln, aus einem in der Ab gasanlage geführten Abgasstrom aus dem Brennraum aufweist, d) eine Steuerein heit zur Zustandsüberwachung, insbesondere mittels einer Filterzustandsermitt lung, und zur Steuerung der Verbrennung im Zylinder.
Die Steuereinheit ist insbesondere dazu eingerichtet, einen Betrieb der Wasserein spritzung derart zu beeinflussen, dass weniger oder kein Wasser-Aschebildner-Ge- misch eingespritzt wird, wenn eine Abgastemperatur in dem Abgasstrom in einem vorbestimmten Abgastemperaturbereich liegt. Unter einem T emperaturbereich ist vorliegend insbesondere auch zu verstehen, dass der Bereich jede Temperatur oberhalb oder unterhalb eines (insbesondere zum Bereich gehörigen) Grenzwertes beinhaltet. Gemäß einer Ausführung unterscheidet sich der Verbrennungsmotor zumindest hinsichtlich seiner verkörperten Merkmale nicht von einem an sich bekannten Ver brennungsmotor mit einer Wassereinspritzung. Unterschiede können gemäß ver schiedener Ausführungen allerdings insbesondere hinsichtlich der Ansteuerung der Wassereinspritzung vorgesehen sein; diese Ansteuerung kann insbesondere abge- stimmt sein auf die Einspritzung von Wasser-Aschebildner-Gemisch - anstatt von Wasser oder einem üblicherweise zur Wassereinspritzung bei dem entsprechen den Motortyp verwendeten Wassergemisch. Eine solche Anpassung der Ansteue rung im Vergleich zu bekannten Wassereinspritzungen ist vorliegend an späterer Stelle beschrieben. Gemäß einem weiteren Aspekt der Erfindung wird ein Kraftfahrzeug bereitgestellt, das einen Verbrennungsmotor gemäß einer Ausführung der Erfindung aufweist.
Der Erfindung liegt unter anderem die Erkenntnis zu Grunde, dass die Filtrationsef fizienz von Ottopartikelfilter abhängig von deren Beladungsgrad mit Ruß- und/oder Aschepartikeln ist. Ein neuer, rußfrei und aschefrei eingebauter Partikelfilter hat je nach Substrat und Betriebspunkt eine Filtrationseffizienz von ca. 50% bis 85%. Im normalen Fährbetrieb kommt es über die ersten 2.000 bis 10.000 km (abhängig vom Ölverbrauch und der Partikelfiltergröße) zum Erreichen einer Aschebeladungs menge, die zu einer Erhöhung der Filtrationseffizienz auf ein benötigtes Maß von ca. 99 % führt. Auch Ruß erhöht die Filtrationseffizienz, aber Asche hat hierbei ge- genüber Ruß einige Vorteile, unter anderem den geringeren Gegendruckanstieg und eine geringere Gegendrucksensibilität (Rußknie; geringere Tiefbettfiltration bei Asche, u.a. weil die Partikel starrer und/oder größer sein können als bei Ruß) bei einer zusätzlichen Rußbeladung.
Der Erfindung liegt zudem unter anderem die Erkenntnis zu Grunde, dass mög- liehst schnell die gewünschte Filtrationseffizienz von ca. 99 % erreicht werden soll. Insbesondere soll dieser Vorgang nicht mehrere tausend Kilometer Fährbetrieb des Fahrzeugs erfordern. Aus den bereits genannten Gründen ist eine Beladung des Partikelfilters mit Aschepartikeln vor dem Einbau in die Partikelfiltervorrichtung der Abgasanlage aber nicht sinnvoll. Die Erfindung basiert nun unter anderem auf der Idee, bei einem neu eingebauten Partikelfilter im Kraftfahrzeug auf geeignete Weise einen Aschebildner so einzu bringen, dass der Abgasstrom einen verstärkten Ascheanteil aufweist, zumindest so lange, bis der Filter mit ausreichend - also bei typischerweise verwendeten Fil terarten und Filtergrößen insbesondere mit ein bis zwei, vier oder acht Gramm - Aschepartikeln beladen ist, um die gewünschte Filtrationseffizienz zu erreichen. Das wird im Sinne der Erfindung erreicht, indem ein Aschebildner in das für die Wassereinspritzung ohnehin verwendete Wasser eingebracht wird.
Dadurch wird sichergestellt, dass das Einbringen von Aschebildner immer dann ausgesetzt werden kann, wenn ein Motorbetriebszustand vorliegt, bei dem durch die bei der Verbrennung zusätzlich entstehenden Aschepartikel eine Schädigung der Lambdasonde und/oder eines Katalysators droht, beispielsweise bei einer zu hohen Abgastemperatur.
Die Aschebildnerkonzentration ist gemäß einer Ausführung nach der Größe des Wassertanks wählbar, durch die Konzentration der Metallsalze im Wasser. Wäh- rend bei einer bekannten Lösung eine hohe Aschebildnerkonzentration im Kraft stofftank einen hohen Naphtha-Anteil (zur Aschnebildnerlösung im Kraftstoff) erfor- dert und somit zu hoher Klopfneigung führt oder zu einer erhöhten Ablagerung im Motor und am Katalysator, lässt sich das gemäß einer Ausführung auch bei einer hohen Aschebildnerkonzentration, beispielsweise bei kleinem Wassertank, vermei- den, indem immer nur eine geringe Menge aschebildnerhaltiges Wasser mit in den Brennraum eingespritzt wird. In dem Fall kann es gemäß einer Ausführung notwen dig sein, die Leistung des Motors für die Dauer der Wassereinspritzung zu begren zen, bis das aschebildnerhaltige Wasser komplett oder bis zu einem gewissen Wert im Brennraum umgesetzt wurde. Anders als bei einer Aschebildnerbeimischung im Kraftstofftank kann also die Aschekonzentration durch Wassereinspritzung kann immer niedrig gehalten wer den, was weniger Ablagerungen in Einspritzsystem, Brennraum, Zündkerze und/o der an den Auslassventilen an sich zieht. Dies ist wünschenswert, weil diese Abla gerung den Motorbetrieb beeinflussen und durch eine erhöhte Klopfneigung den Motor sogar schädigen können.
Durch die Aschebildnerbeimischung über das Einspritzwasser erfolgt also eine ge ringere Vergiftung der Lambdasonden und der Katalysatoren, da eine geringere Aschekonzentration ebenso erreicht werden kann wie ein Ascheeintrag bei weniger schädlichen Temperaturen für die katalytischen Beschichtungen in den Katalysato- ren und an den Lambdasonden. Die Deaktivierung mit reinen Aschen ist stärker bei höheren Temperaturen. Wenn Aschen in Kombination mit unverbranntem Öl auf katalytische Beschichtungen tref- fen, reagieren die Aschen zusammen mit dem im Öl enthaltenen Phosphor bereits bei geringen Abgastemperaturen (400-600°C) mit der Beschichtung. Es entstehen schädliche Phosphatverbindungen, insbesondere im Hochlastbereich (hohe Dreh zahlen und hohe Lasten) aufgrund des zusätzlich hohen Ölverbrauchs. Gemäß ei ner Ausführung erfolgt die Veraschung daher bevorzugt im untere/mittleren Teillast- betrieb des Motors.
Unvorteilhafte T emperaturbereiche für die Veraschung sind abhängig vom Asche- bildner. Beispiel Zink-basierter Aschebildner: Zink bildet bis ca. 500°C sog. Flittera sche, die wieder abgetragen werden kann, beispielsweise mittels einer Hochtempe raturregeneration der Abgasanlage. Ab ca. 500°C wird die Zink-Asche flüssiger. Mit zunehmender Temperatur sinkt die Gasdurchlässigkeit der Ablagerungen, das Zink diffundiert teilweise in tiefere Schichten der Beschichtung aus, insbesondere auch im Partikelfilter. Ab ca. 900°C liegt eine zähe Flüssigkeit vor, die gleichmäßig die Oberfläche auskleidet. Die Ablagerungen werden glashart und sind unter realen Betriebsbedingungen nicht mehr regenerierbar.
Beispiel Magnesium-basierter Aschebildner: Magnesium bildet mit im Washcoat vorkommendem Aluminium bei Sauerstoffüberschuss und Temperaturen von über 600°C Spinell, umso mehr, je weiter die Temperatur 6Q0°C überschreitet. Um eine selektive Vorveraschung zu ermöglichen, die insbesondere nur dann, wenn das nicht für andere Komponenten wie die Lambdasonde oder ein Katalysator schäd lich ist, oder nur in einem Umfang, der nicht schadet, stattfindet, weist das Verfah ren gemäß einer Ausführung folgenden Verfahrensschritt auf: Beeinflussen des Be- triebs der Wassereinspritzung, insbesondere mittels der Steuereinheit, derart, dass weniger oder kein Wasser-Aschebildner-Gemisch eingespritzt wird, wenn eine Ab gastemperatur in dem Abgasstrom in einem vorbestimmten Abgastemperaturbe reich liegt.
Insbesondere ist dabei der vorbestimmte Abgastemperaturbereich dadurch be- stimmt, dass er sich oberhalb einer Grenztemperatur von insbesondere 700°C oder niedriger, 600°C niedriger, 500°C oder niedriger, oder 400°C oder niedriger, er streckt.
Um eine Beeinträchtigung des Motorbetriebs zu vermeiden, wird gemäß einer Aus führung die Wassereinspritzung, insbesondere mittels der Steuereinheit, derart do- siert, dass die Konzentration des Aschebildners in einem Gemisch aus dem einge spritzten Kraftstoff und dem eingespritzten Wasser-Aschebildner-Gemisch weniger als 100ppm, insbesondere weniger als 50ppm beträgt.
Um möglichst schnell eine ausreichende Aschebeladung des Partikelfilters zu errei chen, sind gemäß einer Ausführung folgende Verfahrensschritte vorgesehen: Aus- lösen eines Beladungs-Betriebszustands der Wassereinspritzung, wenn in der Par tikelfiltervorrichtung ein ungebrauchter und/oder nicht ausreichend mit Asche bela dener Partikelfilter verbaut ist; während des Beladungs-Betriebszustands, Beein flussen des Betriebs der Wassereinspritzung, insbesondere mittels der Steuerein heit, derart, dass mehr Wasser-Aschebildner-Gemisch und/oder für längere Zeit Wasser-Aschebildner-Gemisch eingespritzt wird.
Um die erhöhte Ascheproduktion nur anzuregen, solange sie nötig ist, ist gemäß einer Ausführung folgender Verfahrensschritt vorgesehen: Beenden des Bela dungs-Betriebszustands, insbesondere in Abhängigkeit von einer vergangenen Zeitdauer und/oder einer eingespritzten Menge von Wasser-Aschebildner-Gemisch seit dem Auslösen und/oder von einem Beladungsgrad des Partikelfilters.
Damit aus den im Wasser als Aschebildner gelösten Nitraten oder Sulfaten oder Chloriden oder Sulfide im Brennraum Asche (x-Oxid) entsteht, ist freier Sauerstoff notwendig. Um unter gewissen T emperaturbedingungen die Spinellbildung nicht zu fördern, ist aber bei diesen Bedingungen freier Sauerstoff eher zu vermeiden. Ge- mäß einer Ausführung wird der im jeweiligen Betriebsfall sinnvolle Wert für das Ab gaslambda basierend auf dem für die Oxidation der Asche notwendigen Sauer stoffs in der Steuereinheit berechnet. Hierbei benötigt die Steuereinheit insbeson dere die Information über die Aschekonzentration im Wassertank (in der Steuerein heit hinterlegt), die eingespritzte Wassermenge (in der Steuereinheit hinterlegt), die eingespritzte Kraftstoffmenge (in der Steuereinheit hinterlegt), und/oder den Lambda-Istwert (Lambdasondensignal).
Gemäß einer Ausführung wird ein Sauerstoffanteil im Luft-Kraftstoff-Gemisch zur Verbrennung derart beeinflusst, dass bei der Verbrennung ausreichend Sauerstoff zur Aschebildung, insbesondere zur Ausbildung von Metalloxidaschen, bereitge stellt wird. Insbesondere wird dazu ein mageres (oder zumindest ein magereres) Abgaslambda, beispielsweise von größer als 1 , eingestellt.
Bei der Verwendung eines Magnesiumsalzes als Aschebildner kann zur Vermei dung von Spinellbildung oberhalb von Verbrennungstemperaturen von 600°C eine Einstellung eines Lambdawertes vor dem Katalysator von kleiner gleich 1 vorgese- hen sein.
Gemäß unterschiedlichen Ausführungen ist die Einspritzdüse am Brennraum des Zylinders und/oder in einem Zuführrohr für ein Kraftstoff-Luft-Gemisch angeordnet und/oder ist die Einspritzdüse für das Wasser-Aschebildner-Gemisch gemeinsam mit einer Kraftstoff-Einspritzdüse ausgebildet.
Vorteilhafte Ausbildungen der verschiedenen Aspekte der Erfindung sind Gegen stand der Unteransprüche. Weitere Merkmale, Vorteile und Anwendungsmöglich keiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung im Zusam- menhang mit den Figuren. Es zeigen, teilweise in stark schematisierter Darstellung, Fig. 1 einen Verbrennungsmotor gemäß einer beispielhaften Ausführung der
Erfindung mit einer Wassereinspritzung und einer Abgasanlage, die eine Partikelfiltervorrichtung aufweist, in einer Schemaansicht;
Fig. 2 einen Verbrennungsmotor gemäß einer weiteren beispielhaften Ausfüh rung der Erfindung mit einer Wassereinspritzung und einer Abgasan lage, die eine Partikelfiltervorrichtung aufweist, in einer Schemaansicht; und Fig. 3 ein Diagramm, in welchem zeitliche Verläufe eines Volumenflusses des Wasser-Aschebildner-Gemisches, einer Abgastemperatur vor der ersten Lambdasonde und eines Beladungsgrads, eingetragen sind, zur Erläu terung eines Verfahrens gemäß einer beispielhaften Ausführung der Er- findung.
In Figur 1 ist ein Verbrennungsmotor 1 mit einer Abgasanlage 2 dargestellt. Der Verbrennungsmotor 1 ist im Ausführungsbeispiel ein Vierzylinder-Ottomotor, kann aber auch ein anderer Motortyp, beispielsweise ein Dieselmotor, sein und/oder eine andere Zylinderzahl aufweisen. Der Motor 1 wird mittels einer Ladeluftzuführung 4 mit Ladeluft versorgt (der obere doppelt gestrichene Pfeil stellt vereinfacht die Zu fuhr von Frischluft 5 dar). In die Zylinder 6 wird an den Zylinderköpfen über eine Common Rail 8 Ladeluft sowie Kraftstoff und ein Wasser-Aschebildner-Gemisch in einer gemeinsam ausgebildeten Kraftstoff- und Wassereinspritzung 40 bereitge stellt. Nach der Verbrennung wird der Abgasstrom aus den Zylindern 6 mittels der Abgas anlage 2 abgeführt, wobei die Abgasanlage 2 wenigstens eine erste Lambdasonde 12 und stromabwärts davon einen Dreiwegekatalysator 10 aufweist. Der Regelkreis des Katalysators 10, ggf. unter Berücksichtigung von Messwerten der Lamb dasonde^) 12 ist nicht Gegenstand der Erfindung, weshalb vorliegend auch deren Ansteuerung nicht dargestellt ist.
Im Abgasstrom nach dem Katalysator 10 ist ein, ggf. bezüglich Rußpartikeln rege nerierbarer, und jedenfalls austauschbarer, Partikelfilter 14 einer Partikelfiltervor richtung 16 des Verbrennungsmotors 1 angeordnet. Stromabwärtig des Partikelfil ters 14 wird das nachbehandelte und aschegefilterte Abgas beispielsweise an ei- nem Auspuff in die Umgebung ausgeblasen (der untere doppelt gestrichene Pfeil stellt vereinfacht die Auspuffanlage für die Abgase 3 dar). Das Ausführungsbeispiel ist mit einem nach dem Katalysator 10 angeordneten Partikelfilter 14 beschrieben; in anderen, nicht dargestellten beispielhaften Ausführungen der Erfindung kann die Partikelfiltervorrichtung selbstverständlich auch mit einem Partikelfilter betrieben werden, der eine katalytische Beschichtung aufweist, sodass der Katalysator 10 und der Partikelfilter 14 kombiniert ausgebildet sind. Die Partikelfiltervorrichtung 16 ist so ausgebildet, dass der Partikelfilter 14 ausge tauscht werden kann. Neu eingesetzte Partikelfilter 14 weisen im Normalfall keine Ruß- und/oder Aschebeladung auf, sodass nach einem Austausch des Partikelfil ters 14 und auch bei Inbetriebnahme des Fahrzeuges mit einem neuen Partikelfilter 14 ein Beladungsgrad BG des Partikelfilters 0 (null) beträgt. Bei einem Beladungs grad BG von 0 und auch bei einem niedrigen Beladungsgrad erreicht der Partikelfil ter 14 jedoch je nach Substrat und Betriebspunkt (im Sinne der Erfindung werden vorzugsweise an sich bekannte, gängige Partikelfilter wie beispielweise gängige Ottopartikelfilter OPF verwendet) lediglich eine Filtrationseffizienz FE von ca. 50& bis 85%. Um einen möglichst schadstoffarmen Betrieb des Verbrennungsmotors 1 zu ermöglichen und damit insbesondere auch die bestehenden Schadstoffnormen einhalten zu können, ist jedoch eine höhere Filtrationseffizienz FE, insbesondere im Maximalbereich ab ca. 99% erforderlich. Dazu ist es nötig, dass der Partikelfilter 14 mit einer bestimmten Aschemenge beladen ist, die vorliegend einem benötigten minimalen Beladungsgrad BGmin entspricht. Bei gängigen OPF-Größen und -Typen kann dafür beispielsweise eine absolute Beladung mit ca. ein bis zwei Gramm Asche erforderlich sein.
Die kombinierte Kraftstoff- und Wassereinspritzung 40 weist für jeden Zylinder 6 eine eigene kombinierte Kraftstoff- und Wassereinspritzdüse 9 auf. Jede der kombi- nierten Einspritzdüsen 9 ist mittels einer Druckleitung mit einer Kraftstoff- und Was serpumpe 41 verbunden. Die Pumpe 41 wird sowohl von einem Kraftstofftank 26 als auch von einem Wassertank 32 gespeist. Die Kraftstoffzufuhr zur Pumpe 41 wird mittels eines stufenlos regelbaren Kraftstoffventils 27 geregelt, die Wasser-Zu fuhr mittels eines stufenlos regelbaren Wasserventils 33. In einer nicht dargestellten, alternativen Ausgestaltung der kombinierten Kraftstoff und Wassereinspritzung 40 wird das Wasser-Asch e-Gemisch in die Kraftstofflei- tung nach einer N ied erd ru ck-Kraftstoff pu m pe , aber vor einer Hochdruck-Kraftstoff pumpe, insbesondere über ein Wasser-Einspritzventil, eingespritzt. Das Wasser- Asch e-Kraftstoff-Gemisch wird dann über die Hochdruck- Kraftstoff pu m pe und das Common Rail in den/die Zylinder eingespritzt. Der Verbrennungsmotor 1 weist zudem eine Steuereinheit 20 auf, in welcher zu mindest im Ausführungsbeispiel ein Filterbetriebsmodell 22 hinterlegt ist. Mittels des Filterbetriebsmodells 22 und/oder mittels nicht dargestellter Sensoren kann eine Filterzustandsüberwachung 21 erfolgen, mittels der beispielsweise ein aktuel- ler Beladungsgrad des Filters ermittelt werden kann. Die Steuereinheit 20 ist mittels einer doppelt gepunkteten Strichlinie mit der Partikelfiltervorrichtung 16 verbunden, insbesondere zur Detektion eines neu eingesetzten Partikelfilters 14. Ferner ist die Steuereinheit 20 zur Ansteuerung der Ventile 27 und 33 sowie der Pumpe 41 mit diesen Bauteilen verbunden (siehe doppelt gepunktete Strichlinien). Um mittels eines Verfahrens nach einer beispielhaften Ausführung der Erfindung eine möglichst zügige Vorveraschung des Partikelfilters 14 zu erreichen (sprich um möglichst schnell den minimal nötigen Beladungsgrad BGmin zu erreichen, und da mit eine ausreichend hohe Filtrationseffizienz FE sicherzustellen), wird nach einer Ausführung der Erfindung der Wassertank 32 der Wassereinspritzung 40 nicht mit reinem Wasser oder dem für eine reine Wassereinspritzung üblichen Gemisch be fallt, sondern mit einem Wasser-Aschebildner-Gemisch 31 im Sinne der Erfindung.
Dafür wird im Ausführungsbeispiel ein an sich bekannter, moderner Ottomotor ver wendet, der ohnehin zur Reduktion der Temperatur im Brennraum und damit auch zur Senkung der Emissionen über eine mittelbare oder unmittelbare Wasserein- spritzung 30, 40 in den Brennraum jedes Zylinders 6 verfügt. Bauliche Anpassun gen eines solchen modernen Ottomotors an die Verwendung des Wasser-Asche- bildner-Gemischs 31 sind im Ausführungsbeispiel nicht erforderlich.
Zur Fierstellung des verwendeten Wasser-Aschebildner-Gemischs 31 wird dem Wasser im Ausführungsbeispiel ein Anteil von 750ppm Magnesium zugegeben, insbesondere in Form von Magnesiumnitrat oder in Form eines anderen Magnesi umsalzes, wobei das Magnesiumnitrat oder das andere Magnesiumsalz in dem Wasser aufgelöst wird.
Das Zusammenspiel von Tankgröße (bzw. Tankbefüllung) und Aschebildner- Menge ist so austariert, dass der eingebrachte Aschebildner bei der Kombination von Verbrennungsmotor und Abgasanlage des Ausführungsbeispiels dazu aus reicht, den Partikelfilter mit dieser Tankfüllung mit 1 -2 Gramm Magnesiumoxid- Asche zu beladen.
Bei der Verwendung anderer Aschebildner können andere Aschemengen zur Be- füllung eines Standard-Partikelfilters benötigt werden, bei CaO-, ZnO- oder ande ren Aschen beispielsweise ca. die fünffache Aschemenge, also 5-10 Gramm.
Welches Metallsalz oder welche andere geeignete Verbindung oder welche Kombi nation von Elementen oder Verbindungen im Einzelfall als Aschebildner in welchen Volumenanteilen zugefügt wird, kann der Fachmann in Abhängigkeit vom Motortyp und/oder der vorliegenden Katalysatorkombination entscheiden.
In Figur 2 ist ein anderer Verbrennungsmotor 1 nach einer weiteren beispielhaften Ausführung der Erfindung gezeigt. Der in Figur 2 dargestellte Verbrennungsmotor 1 unterscheidet sich von demjenigen gemäß Figur 1 hauptsächlich dadurch, dass der Kraftstoff 25 und das Wasser-Aschebildner-Gemisch 31 in separaten Einspritzdü- sen 29 bzw. 39 in die jeweiligen Zylinder 6 eingespritzt wird. Dazu ist eine separate Kraftstoffeinspritzung 24 und eine separate Wassereinspritzung 30 vorgesehen.
Die Kraftstoffeinspritzung 24 weist eine separate Kraftstoffpumpe 28 auf. Die Was sereinspritzung 30 eine separate Wasserpumpe 34.
Über diese Unterschiede hinaus sind die beiden dargestellten Verbrennungsmoto- ren 1 hinsichtlich des zu Figur 3 beschriebenen beispielhaften Verfahrens einander entsprechend ausgebildet, sodass das Verfahren für beide Verbrennungsmotoren durch geführt werden kann.
In Figur 3 ist zur Erläuterung eines beispielhaften Verfahrens zum Betrieb eines Verbrennungsmotors 1 in einem Kraftfahrzeug ein Diagramm 50 dargestellt. Der Verbrennungsmotor 1 kann insbesondere wie in Figur 1 dargestellt oder wie in Fi gur 2 dargestellt ausgebildet sein.
In dem Diagramm 50 sind zueinander gehörige zeitliche Verläufe 52, 54 und 56 ei nes Volumenflusses Q des Wasser-Aschebildner-Gemischs 31 (Verlauf 54), einer Abgastemperatur T vor der ersten Lambdasonde 12 (Verlauf 52) und eines Bela dungsgrads (BG) des Partikelfilters 14 mit Asche (Verlauf 56) dargestellt.
Das Diagramm zeigt den Betrieb des Verbrennungsmotors eines neuen Fahrzeu ges, in welchem ein fabrikneuer Partikelfilter 14 mit einem Beladungsgrad BG von 0 eingebaut ist. Zur möglichst schnellen Vorveraschung des Partikelfilters 14 wurde der Wassertank 32 mit einem Wasser-Aschebildner-Gemisch 31 wie zu Figur 1 be schrieben befüllt.
Die Steuereinheit 20 erkennt, dass ein neuer, leerer (BG=0) Partikelfilter 14 in der Partikelfiltervorrichtung 16 verbaut ist und löst einen Beladungs-Betriebszustand 58 aus. Um den Partikelfilter 14 möglichst schnell so weit zu veraschen, dass die ge wünschte Filtrationseffizienz von 99% erreicht wird, löst die Steuereinheit 20 wäh rend des normalen Betriebs des Verbrennungsmotors 1 einen maximalen Volu menfluss Qmax der Wassereinspritzung 30 bzw. 40 aus.
Solange die Abgastemperatur T jenseits eines vorbestimmten Abgastemperaturbe- reichs oberhalb einer Grenztemperatur Tg verbleibt, wird so ein Aschebildner in die Brennkammern der Zylinder 6 eingebracht, sodass eine schnelle Veraschung des Partikelfilters 14 einen schnellen Anstieg des Beladungsgrads BG nach sich zieht.
Wenn die Abgastemperatur T den Grenzwert Tg erreicht oder über diesem liegt (und damit im vorbestimmten Abgastemperaturbereich liegt) wird der Betrieb der Wassereinspritzung 30 bzw. 40 derart beeinflusst, dass kein Wasser-Aschebildner- Gemisch mehr eingespritzt wird. Auf diese Weise kann eine Schädigung der Lamb dasonden 12 und/oder des Katalysators 10 vermieden werden, solange die Abgas temperatur T im schädlichen Bereich verbleibt.
Dem Diagramm 50 ist auch zu entnehmen, dass der Beladungs-Betriebszustand 58 wieder ausgelöst und damit die Wassereinspritzung wieder angeschaltet wird, sobald die Abgastemperatur T wieder unkritisch ist.
Abgeschaltet wird die Wassereinspritzung zum Zeitpunkt ti. Der Zeitpunkt ti kann beispielsweise dadurch definiert sein, dass mittels des Filterbetriebsmodells 22 in Abhängigkeit von dem vorhergehenden Betrieb der Wassereinspritzung ermittelt wird, dass der benötigte Beladungsgrad BGmin erreicht ist. Alternativ kann der Zeit punkt ti auch dadurch definiert sein, dass die Befüllung des Wassertanks 32 mit Wasser-Aschebildner-Gemisch aufgebraucht ist. Beispielsweise kann anschließend wieder reines Wasser und/oder das normalerweise für eine Wassereinspritzung zur Senkung der Abgastemperaturen verwendete Wassergemisch in den Tank 32 ein gebracht werden.
In einem weiteren, nicht dargestellten Ausführungsbeispiel kann vorgesehen sein, dass der Wassertank 32 nur mit Wasser oder einem herkömmlichen Wasserge- misch für die Wassereinspritzung zur Abgastemperatursenkung befüllt wird und zu sätzlich ein Aschebildner-T ank vorgesehen ist, aus welchem nötigenfalls Asche bildner zum Wasser im Tank 32 hinzugegeben werden kann, um eine zügige Vor veraschung des Partikelfilters 14 zu unterstützen, solange dies nötig ist. Beispiels weise kann das Zugeben des Aschebildners beendet werden, wenn der benötigte Beladungsgrad BGmin erreicht ist.
BEZUGSZEICHENLISTE
1 Verbrennungsmotor
2 Abgasanlage
4 Ladeluftzuführung
6 Zylinder
8 Common Rail
9 gemeinsamer Kraftstoff- und Wasserinjektor
10 Dreiwegekatalysator
12 erste Lambdasonde
14 Partikelfilter
16 Partikelfiltervorrichtung
20 Steuereinheit
21 Filterzustandsermittlung
22 Filterbetriebsmodell
24 Kraftstoffeinspritzung
25 Einfüllstutzen für Kraftstoff
26 Kraftstofftank
27 Kraftstoffventil
28 Kraftstoffpumpe
30 Wassereinspritzung
31 Einfüllstutzen für Wasser
32 Wassertank
33 Wasserventil
34 Wasserpumpe
29 Wasserinjektor
40 kombinierte Kraftstoff- und Wassereinspritzung
41 kombinierte Kraftstoff- und Wasserpumpe
50 Diagramm
52 Verlauf der Abgastemperatur T über die Zeit
54 Verlauf des Volumenflusses Q über die Zeit
56 Verlauf des Beladungsgrads BG über die Zeit
58 Beladungsbetriebszustand BG Beladungsgrad des Partikelfilters
FE Filtrationseffizienz des Partikelfilters
T Temperatur des Abgases vor der ersten Lambdasonde Q Volumenfluss des Wasser-Aschebildner-Gemischs t Zeit

Claims

ANSPRÜCHE
1. Verwendung eines Gemisches (31 ) aus Wasser und wenigstens einem weite ren Bestandteil zur mittelbaren oder unmittelbaren Einspritzung in einen Brennraum eines Verbrennungsmotors (1 ) eines Kraftfahrzeugs, dadurch gekennzeichnet, dass der weitere Bestandteil ein Aschebildner ist.
2. Verwendung gemäß Anspruch 1 , dadurch gekennzeichnet, dass
der Aschebildner ein Metallsalz aufweist.
3. Verwendung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Konzentration des Aschebildners in dem Gemisch zwischen 100ppm und 2000ppm, insbesondere zwischen 200ppm und 1000ppm beträgt.
Verwendung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Aschebildner bei Verbrennung eine Asche mit einem Metalloxid ausbildet.
4. Verwendung gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
das Gemisch (31 ) eine wässrige Lösung des Aschebildners in dem Wasser und/oder eine wasserbasierte Suspension des Aschebildners und des Was sers ist.
5. Verfahren zum Betrieb eines Verbrennungsmotors (1 ) in einem Kraftfahr zeug, wobei der Verbrennungsmotor (1 ) aufweist:
- wenigstens einen Zylinder (6) mit einem Brennraum,
- eine Wassereinspritzung (30, 40) mit einem Tank (32) und wenigstens einer Einspritzdüse (9, 39) zum unmittelbaren oder mittelbaren Einspritzen von Wasser in den Brennraum,
- eine Abgasanlage (2) mit wenigstens einem Abgaskatalysator (10) und einer Partikelfiltervorrichtung (16), die einen Partikelfilter (14) zur Filtration von Par tikeln aus einem in der Abgasanlage (2) geführten Abgasstrom aufweist,
- eine Steuereinheit (20) zur Zustandsüberwachung (21 ) und zur Steuerung der Verbrennung im Zylinder (6),
gekennzeichnet durch den Verfahrensschritt:
- Befüllen des Tanks (32) der Wassereinspritzung (30, 40) mit einem Ge misch (31 ) aus Wasser und einem Aschebildner, insbesondere gemäß einem der Ansprüche 1 bis 3.
6. Verfahren gemäß dem Anspruch 5, gekennzeichnet durch den Verfahrens schritt:
- Beeinflussen des Betriebs der Wassereinspritzung (30, 40) derart, dass we niger oder kein Wasser-Aschebildner-Gemisch (31 ) eingespritzt wird, wenn eine Abgastemperatur (T) in dem Abgasstrom in einem vorbestimmten Ab gastemperaturbereich liegt.
7. Verfahren gemäß einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass
- der vorbestimmte Abgastemperaturbereich dadurch bestimmt ist, dass er sich oberhalb einer Grenztemperatur (Tg) von insbesondere 700°C, bevorzugt 600°C oder 500°C, erstreckt.
8. Verfahren gemäß einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass
- die Wassereinspritzung (30, 40) derart dosiert wird, dass die Konzentration des Aschebildners in einem Gemisch aus dem eingespritzten Kraftstoff und dem eingespritzten Wasser-Aschebildner-Gemisch weniger als 100ppm, ins besondere weniger als 50ppm beträgt.
9. Verfahren gemäß einem der Ansprüche 5 bis 8, gekennzeichnet durch die Verfahrensschritte:
- Auslösen eines Beladungs-Betriebszustands (58) der Wassereinspritzung (30, 40), wenn in der Partikelfiltervorrichtung (16) ein ungebrauchter Partikel filter (14) verbaut ist,
- während des Beladungs-Betriebszustands (58), Beeinflussen des Betriebs der Wassereinspritzung (30,40) derart, dass mehr Wasser-Aschebildner-Ge misch (31 ) und/oder für längere Zeit Wasser-Aschebildner-Gemisch (31 ) ein gespritzt wird.
10. Verfahren gemäß dem Anspruch 9, dadurch gekennzeichnet, dass
- Erhöhen des Sauerstoffanteils im Luft-Kraftstoff-Gemisch derart, dass aus reichend Sauerstoff zur Aschebildung bereitgestellt wird.
1 1. Verbrennungsmotor (1 ), insbesondere Ottomotor, für ein Kraftfahrzeug, auf weisend:
- wenigstens einen Zylinder (8) mit einem Brennraum,
- eine Wassereinspritzung (30, 40) mit einem Tank (32) und wenigstens einer Einspritzdüse (9, 39) zum unmittelbaren oder mittelbaren Einspritzen von Wasser in den Brennraum, wobei zum Einspritzen ein Gemisch (31 ) aus Wasser und einem Aschebildner, insbesondere gemäß einem der vorherge henden Ansprüche verwendet wird,
- eine Abgasanlage (2) mit wenigstens einem Abgaskatalysator (10) und einer Partikelfiltervorrichtung (16), die einen Partikelfilter (14) zur Filtration von Par tikeln aus einem in der Abgasanlage (2) geführten Abgasstrom aufweist,
- eine Steuereinheit (20) zur Zustandsüberwachung (21 ) und zur Steuerung der Verbrennung im Zylinder (6),
dadurch gekennzeichnet, dass
die Steuereinheit (20) dazu eingerichtet ist, einen Betrieb der Wassereinsprit zung (30, 40) derart zu beeinflussen, dass weniger oder kein Wasser-Asche- bildner-Gemisch (31 ) eingespritzt wird, wenn eine Abgastemperatur (T) in dem Abgasstrom in einem vorbestimmten Abgastemperaturbereich liegt.
12. Verbrennungsmotor gemäß Anspruch 1 1 , dadurch gekennzeichnet, dass die Einspritzdüse (9, 39) am Brennraum des Zylinders (6) und/oder in einem Zuführrohr (4) für ein Kraftstoff-Luft-Gemisch angeordnet ist, oder dass die Einspritzdüse (9, 39) für das Wasser-Aschebildner-Gemisch (31 ) gemeinsam mit einer Kraftstoff-Einspritzdüse (9) ausgebildet ist.
13. Kraftfahrzeug, gekennzeichnet durch einen Verbrennungsmotor (1 ) gemäß einem der vorherigen Ansprüche 10 bis 12.
PCT/EP2019/056229 2018-04-13 2019-03-13 Veraschung eines partikelfilters in einem kraftfahrzeug WO2019197110A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980014072.2A CN111742134B (zh) 2018-04-13 2019-03-13 机动车中颗粒过滤器的灰化
US16/968,205 US11002168B2 (en) 2018-04-13 2019-03-13 Ashing a particulate filter in a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018205602.1A DE102018205602B3 (de) 2018-04-13 2018-04-13 Veraschung eines Partikelfilters in einem Kraftfahrzeug
DE102018205602.1 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019197110A1 true WO2019197110A1 (de) 2019-10-17

Family

ID=65812297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/056229 WO2019197110A1 (de) 2018-04-13 2019-03-13 Veraschung eines partikelfilters in einem kraftfahrzeug

Country Status (4)

Country Link
US (1) US11002168B2 (de)
CN (1) CN111742134B (de)
DE (1) DE102018205602B3 (de)
WO (1) WO2019197110A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423925B (zh) * 2019-02-15 2024-04-05 康明斯排放处理公司 提高柴油和汽油颗粒过滤器的分级效率的方法和装置
DE102019212640A1 (de) * 2019-08-23 2021-02-25 Robert Bosch Gmbh Verfahren zum Betreiben einer Einspritzvorrichtung einer Brennkraftmaschine und Einspritzvorrichtung
DE102020119056B4 (de) 2020-07-20 2023-06-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Brennkraftmaschine mit Wassereinspritzung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE678446C (de) * 1936-01-23 1939-07-15 Walter Rothe Brennkraftmaschine fuer feste, pulverfoermige Brennstoffe mit einer vom Arbeitszylinder abgeschnuerten Brennkammer
US20160363019A1 (en) * 2015-06-15 2016-12-15 Ford Global Technologies, Llc System and methods for reducing particulate matter emissions
WO2019048237A1 (de) * 2017-09-07 2019-03-14 Robert Bosch Gmbh Vorrichtung und verfahren zur einspritzung von wasser einer brennkraftmaschine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030226312A1 (en) * 2002-06-07 2003-12-11 Roos Joseph W. Aqueous additives in hydrocarbonaceous fuel combustion systems
US7216607B2 (en) * 2005-05-27 2007-05-15 Rival Technologies Inc. Emission control water injection system for diesel engines
US9080480B2 (en) * 2011-07-01 2015-07-14 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
SE541934C2 (en) * 2016-02-11 2020-01-07 Scania Cv Ab Use of a lubrication oil forming water-soluble ash when combusted in an engine system
SE539615C2 (en) * 2016-02-11 2017-10-17 Scania Cv Ab An engine system lubricated by means of a lubrication oil that forms ammonia-soluble ash when combusted and a vehicle corprising the engine system
DE102016103735A1 (de) 2016-03-02 2017-09-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur künstlichen Veraschung eines Partikelfilters
US10323605B2 (en) * 2016-09-07 2019-06-18 Ford Global Technologies, Llc Method and system for engine water injection
FR3059566B1 (fr) * 2016-12-07 2022-04-22 Ifp Energies Now Fluide de depollution de gaz d'echappement comportant un carbonate metallique basique soluble, son procede de preparation et son utilisation pour les moteurs a combustion interne

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE678446C (de) * 1936-01-23 1939-07-15 Walter Rothe Brennkraftmaschine fuer feste, pulverfoermige Brennstoffe mit einer vom Arbeitszylinder abgeschnuerten Brennkammer
US20160363019A1 (en) * 2015-06-15 2016-12-15 Ford Global Technologies, Llc System and methods for reducing particulate matter emissions
WO2019048237A1 (de) * 2017-09-07 2019-03-14 Robert Bosch Gmbh Vorrichtung und verfahren zur einspritzung von wasser einer brennkraftmaschine

Also Published As

Publication number Publication date
CN111742134B (zh) 2022-05-03
CN111742134A (zh) 2020-10-02
US11002168B2 (en) 2021-05-11
DE102018205602B3 (de) 2019-07-11
US20210025305A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
EP1028235B1 (de) Verfahren zur Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssystem
DE102005062120B4 (de) Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems
DE19650517C2 (de) Verfahren und Vorrichtung zur Tankentlüftung für eine direkteinspritzende Brennkraftmaschine
WO2019197110A1 (de) Veraschung eines partikelfilters in einem kraftfahrzeug
DE102013013063B4 (de) Verfahren zum Betreiben einer Kraftfahrzeugbrennkraftmaschine mit einem Abgaspartikelfilter
DE102007034709A1 (de) Abgasreinigungsvorrichtung
WO2017036705A1 (de) Verfahren und vorrichtung zum steuern einer verbrennungskraftmaschine während des kaltstarts und warmlaufs
AT521448B1 (de) Verfahren und Ottomotoranordnung mit verbesserter Partikelfilterung II
EP3412880A1 (de) Verfahren zum regenerieren eines partikelfilters in der abgasanlage eines verbrennungsmotors sowie verbrennungsmotor
WO2003100227A1 (de) Verfahren zur regenerierung eines verstopften partikelfilters
DE102015216303B3 (de) Korrektur einer eingespritzten Brennstoffmenge
DE102008034487A1 (de) Verfahren zum schnellen Entleeren des Aktivkohlefilters unter Einbeziehung eines HC-Sensors (Konzentrationsänderung)
AT521454B1 (de) Verfahren und Ottomotoranordnung mit verbesserter Partikelfilterung I
WO2002008594A1 (de) Verfahren zum betreiben eines katalysators
DE19727297C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP3495646B1 (de) Partikelfiltervorrichtung und betriebsverfahren
DE102015103917B4 (de) Verfahren und System des Beibehaltens von DPF-Regeneration zur Verbesserung der Lebensdauer eines DPF-Filters
EP3006701B1 (de) Verfahren und vorrichtung zum betreiben eines fahrzeugs, insbesondere eines nutzfahrzeugs
DE102012222104A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine, insbesondere in einem Kraftfahrzeug
DE102008045594B4 (de) Verfahren und Vorrichtung zur Zudosierung eines Reduktionsmittels in einen Abgasstrang einer Brennkraftmaschine eines Fahrzeuges
DE102009003738A1 (de) Abgasreinigungsanlage sowie Verfahren zum Zuführen von thermischer Energie zum Auslösen und/oder Unterstützen eines in einer Abgasreinigungsanlage ablaufenden Prozesses
DE102014008056B4 (de) Verfahren zum Betreiben einer Abgasanlage einer Verbrennungskraftmaschine, insbesondere für einen Kraftwagen
DE102004052062A1 (de) Verfahren und Vorrichtung zur Regenerierung von Speicherkatalysatoren
DE102019212174B3 (de) Verfahren und Vorrichtung zur Steuerung des Betriebs eines Partikelfilters eines Kraftfahrzeugs
DE102019205683B3 (de) Verfahren und Vorrichtung zur Emissionsminderung eines Kraftfahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19711553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19711553

Country of ref document: EP

Kind code of ref document: A1