WO2019196859A1 - 纳米发电机系统及供电器件 - Google Patents

纳米发电机系统及供电器件 Download PDF

Info

Publication number
WO2019196859A1
WO2019196859A1 PCT/CN2019/082034 CN2019082034W WO2019196859A1 WO 2019196859 A1 WO2019196859 A1 WO 2019196859A1 CN 2019082034 W CN2019082034 W CN 2019082034W WO 2019196859 A1 WO2019196859 A1 WO 2019196859A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
floating
nanogenerator
electrode layer
charge pump
Prior art date
Application number
PCT/CN2019/082034
Other languages
English (en)
French (fr)
Inventor
许亮
王中林
布天昭
张弛
Original Assignee
北京纳米能源与系统研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米能源与系统研究所 filed Critical 北京纳米能源与系统研究所
Publication of WO2019196859A1 publication Critical patent/WO2019196859A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the present disclosure belongs to the technical field of nano new energy and mechanical energy collection, and relates to a nano generator system and a power supply device.
  • Friction nano power generation technology is especially suitable for collecting mechanical energy of low frequency motion. It has the advantages of simple structure, low cost and rich material selection. It has potential application value in new energy technology field, and the demand for miniaturized high power energy supply devices is increasing. Under a wide range of requirements, providing a friction nanogenerator with a higher output power density has become a key technical requirement and technical difficulty.
  • the surface static charge in the friction nano-generator is generated by friction or contact between the two surfaces.
  • the friction or contact is easy to produce a high charge density, but in this case, the surface is prone to large heat generation and wear, which will greatly affect Device lifetime; at the same time, charge density is also constrained by air breakdown, which limits the surface charge density and output power density.
  • the present disclosure provides a nanogenerator system and a power supply device to at least partially solve the above-mentioned technical problems.
  • a nanogenerator system comprising:
  • An electrode layer a floating layer, a dielectric layer disposed on an upper surface and/or a lower surface of the floating layer; a charge pump coupled to the floating layer, injecting a charge into the floating layer; the floating When the layer moves relative to the electrode layer, the generator system outputs an electrical signal to the external circuit.
  • a power supply device including the nanogenerator system is provided, and in particular, the power supply device is of a unitary structure.
  • the dielectric layer can restrain the dissipation rate of charge and the constraint of air breakdown, so that the charge density of the nanogenerator is no longer mainly dependent on friction or contact, and does not cause wear due to severe friction. It is heated and not subject to air breakdown. It collects mechanical energy and accumulates a large amount of constrained charge in the floating layer by continuously injecting a small amount of electric charge to achieve high power output density, which doubles the output effect and promotes the nanometer. Practical use of generators;
  • the directional output of the charge is realized by combining the friction nano-generator with the rectifier bridge, thereby real-time and controllably injecting charge into the floating layer, and the friction nanometer
  • the structure of the generator can be contact-separated, sliding, single-electrode, and free-friction layer. The structure can be flexibly adjusted according to actual needs, and the scope of application is wide;
  • the voltage of the floating structure is near the lowest value.
  • the floating structure is first in contact state. At this time, the capacitance is large, the voltage is low, and the charge is more easily injected, and the friction nano-generator generates contact and separation motion to realize charge injection, thereby becoming an integrated power supply.
  • the device can perform real-time and controllable injection of charge into the floating layer through a single depression and release action, and collect mechanical energy into electrical energy output.
  • the same phase matching principle is also applicable to generators in other modes.
  • FIG. 1 is a schematic structural view of a nano-generator system shown in a first embodiment
  • FIG. 2 is a three-dimensional exploded view of the contact-separated floating structure shown in the first embodiment
  • FIG. 3 is a basic working principle diagram of the nano-generator system shown in the first embodiment
  • FIG. 4 is a schematic diagram showing a variation of the structure of the nanogenerator system shown in the first embodiment
  • FIG. 5 is a schematic structural view of a nano-generator system shown in a second embodiment
  • FIG. 6 is a schematic structural view of a nano-generator system shown in a third embodiment
  • FIG. 7 is a schematic structural view of a nano-generator system shown in a fourth embodiment
  • FIG. 8 is a schematic structural view of a nano-generator system shown in a fifth embodiment
  • FIGS. 9 and 10 are schematic structural views of a nano-generator system shown in a sixth embodiment.
  • FIG. 11 and 12 are schematic structural views of a nano-generator system shown in a seventh embodiment
  • FIG. 13 and FIG. 14 are schematic structural views of a nano-generator system shown in an eighth embodiment
  • Figure 15 is a schematic view showing the structure of a charge pump
  • Figure 16 is a schematic view showing the connection of a charge pump and a floating structure
  • Figure 17 is a schematic diagram showing the operation of an integrated power supply device including a charge pump
  • 21 is a schematic structural view of a power supply circuit of the nano-generator system of the present disclosure.
  • the present disclosure provides a nanogenerator system including an electrode layer; a conductive floating layer, a dielectric layer disposed on an upper surface and/or a lower surface of the floating layer; and a charge injected into the floating layer by a charge pump When the floating layer moves relative to the electrode layer under the action of an external force, the generator system outputs an electrical signal to the external circuit.
  • the charge can be injected into the floating layer in real time and controllably by the charge pump, and the dielectric layer of the floating layer can restrain the dissipation speed of the first floating layer charge and the constraint of air breakdown, so that the nanogenerator
  • the charge density of the system is no longer mainly dependent on friction or contact, does not cause wear and heat due to severe friction, and is not subject to air breakdown, etc., while collecting mechanical energy while continuously injecting a small amount of charge in the first float
  • a large amount of constrained charge is accumulated in the layer to achieve high power output density, which doubles the output effect and promotes the practical use of the nano-generator system.
  • one, two or more floating layers that can inject electric charges may be included.
  • a contact split type nanogenerator system including two floating layers is provided.
  • 1 is a schematic structural view of a contact-separated nanogenerator system according to a first embodiment of the present disclosure.
  • 2 is a three-dimensional exploded view of a contact-separated floating structure according to a first embodiment of the present disclosure.
  • the contact-separated nanogenerator system of the present embodiment includes a floating structure 100 and a charge pump 200.
  • the floating structure 100 includes: a first substrate 151; a first electrode layer 111, a first dielectric layer 112, and a first layer are sequentially disposed on the first substrate 151.
  • the second floating layer 115 is disposed opposite to the third dielectric layer 114, and is contactable, separable, or mutually slidable as the nanogenerator system
  • the two friction layers; the electrical output port 120 is respectively led out from the first electrode layer 111 and the second electrode layer 117 for connecting an external load and outputting electric energy;
  • the charge pump access port 130 is the first floating layer 113 and a port of the second floating layer 115 connected to the charge pump 200 to enable electric charge to be drawn or injected from the first floating layer 113 and the second floating layer 115; and a spring set 140 fixed to the first substrate 151 and the second substrate Above 152, used for springback after device pressing, so that two friction layers Achieve contact and separation.
  • the upper and lower surfaces of the first floating layer 113 are the first dielectric layer 112 and the third dielectric layer 114, respectively; the upper and lower surfaces of the second floating layer 115 are respectively air (may also be vacuum, oil, other gases, etc.) And a second dielectric layer 116, wherein the air is also a dielectric material.
  • the first substrate 151 and the second substrate 152 are plate-like structures, which are mainly used to support the thin film structure thereon, and may be composed of various structural materials or flexible materials, preferably polymers, inorganic oxides, and composites. Insulating material such as material, of course, the substrate structure of the present disclosure is not limited to the planar hard substrate shown in FIG. 1, and other forms such as a soft substrate may be employed.
  • the first substrate 151 and the second substrate 152 are optional components, and the substrate may not be provided when the strength of other portions of the generator system is sufficient.
  • the first electrode layer 111 and the second electrode layer 117 are a thin film structure, and may be a metal, a carbon material, or a conductive material such as ITO, and preferably have a thickness of 50 nm to 50 ⁇ m.
  • the first floating layer 113 and the second floating layer 115 may be a thin film structure or a bulk material, and may be a metal, a carbon material, or a conductive material such as ITO, or may be a semiconductor material such as silicon or GaN. Etc., its main function is to receive the injected charge and store it, which is preferably a film having a thickness of 50 nm to 50 ⁇ m.
  • the first dielectric layer 112, the third dielectric layer 114, and the second dielectric layer 116 may be a thin film structure, and may be an insulating material such as a polymer, an inorganic oxide, or a composite material, and the main function is electrical insulation. It preferably has a thickness of from 0.5 micrometers to 50 micrometers.
  • the electrical output port 120 is mainly a wire, which is taken out from the first electrode layer 111 and the second electrode layer 117, and is used for connecting an external load and outputting electric energy.
  • the charge pump access port 130 is a port that the first floating layer 113 and the second floating layer 115 are connected to the charge pump 200, and is mainly a wire, so that electric charges can be extracted from the first floating layer 113 and the second floating layer 115. Or inject.
  • the spring set 140 is mainly used for springback after the device is pressed down, which is only one way to achieve relative movement of the first floating layer 113 relative to the second electrode layer 117, and is not intended to limit the present disclosure.
  • the first substrate and the second substrate may be respectively connected to two relatively moving components to drive relative movement of the first floating layer 113 relative to the second electrode layer 117, that is, two friction layers of the nanogenerator system. Keep away from each other.
  • the second floating layer 115 also moves relative to the first electrode layer 111.
  • the charge pump 200 functions to pump charge into the corresponding floating layer to function as a charge transporter, the specific structure of which will be described later.
  • FIG. 3 is a diagram showing the basic operation of a contact-separated nanogenerator system according to a first embodiment of the present disclosure.
  • the basic working principle of the contact-separated nanogenerator system of the present embodiment will be described below with reference to FIG.
  • the external load 300 is connected to the electrical output port 120.
  • the whole work cycle is divided into four stages: I, II, III, and IV.
  • the charge pump 200 has pumped a large amount of positive charge in the second floating layer 115 (which is understood to be equivalent to the reverse flow of electrons) into the first floating layer 113, causing the two floating The layers are each loaded with a large number of equal-numbered charges.
  • the positive charge in the first floating layer 113 induces a positive potential in the first electrode layer 111 due to the inductive effect of the charge, and the negative charge in the second floating layer 115 induces a negative in the second electrode layer 117. Potential.
  • the charges may move due to the unequal potentials, thereby causing the first electrode layer 111 to carry a negative charge and the second electrode layer 117 to be carried.
  • the same amount of positive charge is the state of the device before the start of the working cycle.
  • the external force causes the upper substrate 151 to be pressed down, so that the first floating layer 113 and the second floating layer 115 are close to each other, and the inductive effect of the charges in the two portions is partially canceled, so that the two are
  • the inductive effect in the first electrode layer 111 and the second electrode layer 117 is weakened, and a part of the positive electric charge flows from the second electrode layer 117 to the first electrode layer 111 through the external load 300, and generates a current, and outputs electric energy to the load 300.
  • the upper substrate 151 continues to be pressed down, and the third dielectric layer 114 is brought into contact with the second floating layer 115.
  • the first floating layer 113 and the second floating layer 115 are in close proximity, both of which are The inductive effect is substantially canceled, and only a small amount of charge is present in the first electrode layer 111 and the second electrode layer 117, and most of the charge is transferred and neutralized by the external load 300.
  • the upper substrate 151 rebounds through the spring group 140, the distance between the first floating layer 113 and the second floating layer 115 increases, and the inductances in the first electrode layer 111 and the second electrode layer 117 are respectively enhanced, resulting in The charge is transferred by the external load 300, and the amounts of charges in the first electrode layer 111 and the second electrode layer 117 are both increased, and a reverse current is generated in the external load 300.
  • the charge pump 200 can still charge-pump the floating layer in real time and continuously and controllably to supplement the charge dissipation in the floating layer.
  • Fig. 4 is a schematic view showing a variation of the structure of the nanogenerator system shown in the first embodiment.
  • the contact separation mode is changed to the sliding friction type, wherein the first substrate 151 slides relative to the second substrate 152 to drive the relative movement of the first floating layer 113 relative to the second electrode layer 117, that is, the nanogenerator system
  • the two friction layers slide against each other.
  • the second floating layer 115 also moves relative to the first electrode layer 111.
  • an inductive nanogenerator system including two floating layers is provided.
  • Figure 5 is a schematic view showing the structure of an inductive nanogenerator system. Including: a floating structure and a charge pump 200.
  • the floating structure includes: a first substrate 151; a first floating layer 113 is disposed on the first substrate 151, and a third dielectric disposed on the surface of the first floating layer 113 is disposed. a layer 114; a second substrate 152 disposed opposite to the first substrate 151; and a discrete first electrode layer 111 and a second electrode layer 117 disposed on the second substrate 152 in sequence, at the first electrode layer 111 and the second electrode
  • the first dielectric layer 112 and the second dielectric layer 116 and the second floating layer 115 are respectively disposed on the layer 117.
  • the first floating layer 113 and the second floating layer 115 are connected to the charge pump 200.
  • the second floating layer 115 is disposed opposite to the third dielectric layer 114, and is contactable, separable, or mutually slidable.
  • the first floating layer 113 moves relative to the first electrode layer or the second electrode layer, and the first electrode layer 111 and the first electrode layer 111 A charge output is generated on the load 300 between the two electrode layers 117.
  • the first dielectric layer 112 may or may not be provided with a conductive layer.
  • a single electrode type nanogenerator system including two floating layers is provided.
  • Figure 6 is a schematic view showing the structure of a single-electrode type nanogenerator system. Including: a floating structure and a charge pump 200.
  • the floating structure includes: a first substrate 151; and a first floating layer 113, a third dielectric layer 114, and a second floating layer are sequentially stacked on the first substrate 151.
  • a second substrate 152 disposed opposite to the first substrate 151;
  • the electrode layer 117 moves, and a charge output is generated on the load 300 between the second electrode layer 117 and the ground.
  • the second dielectric layer 116 may be disposed on the surface of the second floating layer 115 in addition to the second electrode layer 117.
  • only the second electrode layer 117 is the output end of the generator system, and thus is a single-electrode structure generator system.
  • a free friction layer type nanogenerator system including two floating layers is provided.
  • FIG. 7 is a schematic structural view of a single-electrode type nanogenerator system. Including: a floating structure and a charge pump 200.
  • the floating structure includes: a first substrate 151; a first electrode layer 111 and a first dielectric layer 112 are sequentially stacked on the first substrate 151; and the second substrate 152 is The first substrate 151 is oppositely disposed; the second electrode layer 117 and the second dielectric layer 116 are sequentially stacked on the second substrate 152; the first floating layer 113, the third dielectric layer 114, and the second floating layer 115.
  • the formed stacked structure is disposed between the first dielectric layer 112 and the second dielectric layer 116, and the first floating layer 113 and the second floating layer 115 are connected to the charge pump 200; wherein, the first floating layer 113 and The first dielectric layer 112 is oppositely disposed, and the second floating layer 115 is disposed opposite to the second dielectric layer 116.
  • the stacked structure moves between the first dielectric layer 112 and the second dielectric layer 116, and the first floating layer
  • the layer 113 or the second floating layer 115 moves relative to the first electrode layer 111 and the second electrode layer 117, and a charge output is generated on the load 300 between the first electrode layer 111 and the second electrode layer 117.
  • the first electrode layer 111 and the second electrode layer 117 are output ends of the generator system, and the stacked structure formed by the first floating layer 113, the third dielectric layer 114, and the second floating layer 115 may be The first dielectric layer 112 and the second dielectric layer 116 move between each other, and thus are a free friction layered generator system.
  • the first electrode layer 111 and the second electrode layer 117 in this embodiment may also be connected to the ground, and an electrical signal is output between the first electrode layer 111 and the ground and between the second electrode layer 117 and the ground.
  • first electrode layer 111 and the second electrode layer 117 may move relative to each other or may be relatively immovable.
  • the stacked structure formed by the first floating layer 113, the third dielectric layer 114, and the second floating layer 115 may be moved relative to the first electrode layer 111 or the second electrode layer 117.
  • the embodiment is a modified structure of the fourth embodiment, wherein the first floating layer 113 is disposed on the surface of the first dielectric layer 112, and the second dielectric layer 116 is disposed on the lower surface of the second floating layer 115. It may also be provided on the surface of the second electrode layer 117. The second floating layer 115 may move between the second electrode layer 117 and the first floating layer 113.
  • the second floating layer 115 moves relative to the second electrode layer 117, and a charge output can be generated on the load 300 between the first electrode layer 111 and the second electrode layer 117.
  • a single electrode type nanogenerator system including one floating layer is provided.
  • the floating structure includes: a first floating layer 113 and a third dielectric layer 114 are stacked on the first substrate, and a second electrode layer 117 is disposed on the second substrate.
  • the third dielectric layer 114 is disposed opposite to the second electrode layer 117, and is contactable, separable, or mutually slidable as two friction layers of the nanogenerator system; the first floating layer 113 and the charge pump 200;
  • the first floating layer 113 moves relative to the second electrode layer 117, and a charge output is generated on the load 300 between the second electrode layer 117 and the ground.
  • One end of the charge pump 200 is connected to the first floating layer 113; the other end may be grounded or connected to the conductor, or may be connected to the second electrode layer 117.
  • the second dielectric layer 116 and the second floating layer 115 may be sequentially disposed on the second electrode layer 117, wherein the third dielectric layer 114 is opposite to the second floating layer 115.
  • the settings are contactable, separable or mutually slidable as the two friction layers of the nanogenerator system.
  • the first floating layer 113 and the second floating layer 115 are connected to the charge pump 200, the first floating layer 113 moves relative to the second electrode layer 117, and the second electrode layer 117 is an output end, and the load 300 between the ground and the ground A charge output is generated on it.
  • a nanogenerator system including one floating layer is provided.
  • the floating structure includes: a first electrode layer 111 , a first dielectric layer 112 , a first floating layer 113 , and a third dielectric layer 114 are sequentially stacked on the first substrate 151 .
  • the second substrate layer 117 is disposed on the second substrate; wherein the third dielectric layer 114 is disposed opposite to the second electrode layer 117, and is contactable, separable (as shown in FIG. 11) or sliding to each other (as shown in FIG. 12).
  • the first floating layer 113 is connected to the charge pump 200; the first floating layer 113 is moved relative to the second electrode layer 117 under the driving of the first substrate, at the first electrode Layer 111 and second electrode layer 117 are the output of the generator system and produce a charge output on load 300.
  • One end of the charge pump 200 is connected to the first floating layer 113; the other end may be grounded or connected to the conductor, or may be connected to the first electrode layer 111 or the second electrode layer 117.
  • the first substrate 151 and the second substrate 152 may be brought closer to each other, away from each other, or slid to each other by a mechanical structure such as a spring.
  • the third dielectric layer 114 may be disposed on the first floating layer 113, or may be disposed on the second electrode layer 117.
  • the dielectric of the upper and lower surfaces of the first floating layer 113 is such a structure.
  • the layers are a first dielectric layer 112 and air, respectively. The setting on which side has no effect on the operation of the generator system.
  • an inductive nanogenerator system including one floating layer is provided.
  • Figure 13 is a schematic view showing the structure of an inductive nanogenerator system. Including: a floating structure and a charge pump 200.
  • the floating structure includes: a first floating layer 113, a third dielectric layer 114 disposed on a surface of the first floating layer 113, and a second substrate; Provided opposite to the first substrate; a separate first electrode layer 111 and a second electrode layer 117 are disposed on the same plane on the second substrate, and the first electrode layer 111 and the second electrode layer 117 are disposed on the first floating layer 113 On the same side, the first floating layer 113 and the second electrode layer 117 are connected to the charge pump 200; wherein the second electrode layer 117, the first electrode layer 111 and the third dielectric layer 114 are oppositely disposed, can be contacted, separable or Sliding with each other, the first floating layer 113 moves relative to the first electrode layer or the second electrode layer, and a charge output is generated on the load 300 between the first electrode layer 111 and the second electrode layer 117.
  • one end of the charge pump 200 is connected to the first floating layer 113; the other end may be grounded or connected to the conductor, or may be connected to the second electrode layer 117.
  • the third dielectric layer may not be disposed on the first floating layer 113, and the first surface of the first electrode layer 111 and the second electrode layer 117 facing the first floating layer 113 may be respectively disposed.
  • the dielectric layer of the lower surface of the first floating layer 113 is air, and the upper surface can be omitted because it is disposed on the substrate.
  • the charge pump of the present disclosure comprises: a direct current or alternating current output device comprising one or more of the following: a friction nanogenerator, an electromagnetic generator, a piezoelectric generator, a thermoelectric device; and a rectifier connected to the alternating current output device The output of the AC output device is converted to DC power.
  • the structure of the charge pump 200 employed in the nanogenerator system is based on a contact split friction nanogenerator comprising: a charge pump generator 210; a charge pump rectifier bridge 220 having an input coupled to the charge pump generator 210; Port 230, as the output of charge pump rectifier bridge 220, is coupled to the nanogenerator system of the above embodiment.
  • the charge pump generator 210 includes a charge pump first substrate 211 on which a charge pump first electrode layer 212 and a charge pump friction layer 213 are disposed, and a charge pump second substrate 216 opposite to the charge pump first substrate 211.
  • a charge pump second electrode layer 214 is disposed thereon, the second electrode layer 214 is in contact with the charge pump friction layer 213, and is frictionable; and a charge pump spring set 215 is fixed to the charge pump first substrate 211 and Between the charge pump second substrate 216, the charge pump spring set 215 is used for springback after device depression, such that contact separation between the charge pump second electrode layer 214 and the charge pump friction layer 213 is achieved.
  • the charge pump first substrate 211 and the charge pump second substrate 216 are plate-like structures, which are mainly used to support the thin film structure thereon, and may be composed of various structural materials or flexible materials, preferably polymers and inorganic materials. Insulating materials such as oxides and composite materials, of course, the substrate structure of the present disclosure is not limited to the planar hard substrate shown in FIG. 15, and other forms such as a soft substrate may be employed.
  • the charge pump first electrode layer 212 and the charge pump second electrode layer 214 are a thin film structure, and may be a conductive material such as metal, carbon material or ITO, and preferably have a thickness of 50 nm to 50 ⁇ m.
  • the charge pump friction layer 213 is a thin film structure and may be an insulating material such as a polymer, an inorganic oxide or a composite material, and the main functions are electrical insulation and triboelectric charging, and the thickness thereof is preferably 0.5 ⁇ m to 100 ⁇ m.
  • the charge pump generator 210 generates an alternating current between the electrodes based on frictional electrification and electrostatic induction during the contact separation movement of the upper and lower portions.
  • the output of the charge pump generator 210 passes through the rectification of the charge pump rectifier bridge 220, producing a current flowing from the "-" end of the rectifier bridge to the "+” terminal, which in turn produces a directional shift of positive or negative charge, thereby pumping the charge.
  • FIG. 16 is a schematic diagram showing the connection of the charge pump and the nanogenerator system floating structure 100 according to the present embodiment.
  • the charge pump access port 130 is connected to the connection port 230 to implement the connection of the charge pump 200 to the floating structure 100.
  • FIG. 17 is a diagram showing the operation of an integrated power supply device including a specific structure of a charge pump according to the present embodiment.
  • the integrated power supply device comprises: a contact separation type nano generator system, and the charge pump is based on a contact separation type friction nano generator, and the work cycle includes four basic stages of I, II, III, and IV, wherein floating
  • the structure of the structure 100 is the same as that shown in FIG.
  • the contact split floating structure and the charge pump are integrated into a single device, and the charge can be injected into the floating layer in real time, continuously and controllably through a single pressing and releasing action, and the mechanical energy is collected to directly output the current and directly drive the load.
  • the stiffness of the charge pump spring set 215 is set to be greater than the spring set 140, so that the floating structure 100 is first in contact state, and the friction nano-power generation
  • the machine 210 again undergoes a contact separation motion to generate a charge pumping action.
  • This design ensures that the first floating layer 113 and the second floating layer 115 are in the closest state, at which time the voltage between the two is small, and it is easier to pump the charge.
  • the power supply device is of a unitary structure, and the floating structure matches the phase of motion between the charge pumps.
  • the integration of the contact split floating structure and the charge pump can be integrated vertically or vertically in FIG. 17, or can be integrated side by side.
  • 18 is a schematic structural view of a charge pump based on a sliding friction nanogenerator according to another embodiment.
  • 19 is a schematic structural view of a charge pump based on a single-electrode friction nanogenerator shown in another embodiment.
  • 20 is a schematic structural view of a charge pump based on a free friction layer type friction nano-generator shown in another embodiment.
  • the structures of the above different modes of friction nanogenerators are illustrated by common structures, and are not described herein again.
  • the four charge pumps shown in Figures 15 and 18-20 can be used for charge pumping in any of the nanogenerator systems of Figures 1-14.
  • other friction nano-generator structures such as electromagnetic generators, piezoelectric generators, thermoelectric devices, and other devices, devices, or devices capable of outputting current or voltage can be combined with rectifier devices.
  • the charge pump in the present disclosure is used.
  • 21 is a schematic structural view of a power supply circuit of a nano-generator system.
  • the energy storage unit 3 is charged, and a stable voltage can be output to the load via the port 4.
  • the floating structure 100 of the nanogenerator system in the above embodiment includes four basic modes, a contact separation structure, as shown in FIG. 1, FIG. 6, and FIG. 11; a sliding structure, as shown in FIG. 4 and FIG. Single-electrode structure, as shown in Figure 6, Figure 9, Figure 10; inductive and free-friction layered structure, as shown in Figure 5, Figure 7, Figure 8, Figure 13, Figure 14, each mode includes Several variations of the structure shown. These four modes respectively correspond to the corresponding mode of the friction nano-generator, and the common point is that the friction layer in the friction nano-generator can be replaced by a floating layer, and the charge is injected by the charge pump, and the floating layer passes through the dielectric layer and other The layers are insulated to preserve the charge.
  • the variation structure of the four modes is not limited to the ones listed in the drawings, and other designs that only change the number and position of the dielectric layer and the floating layer should be included in the protection scope of the present disclosure.
  • each layer in the present disclosure is not limited to the rectangular shape shown in the drawing, and may be any other shape.
  • the floating structure proposed by the present disclosure is applicable to all types of known frictional nanogenerators, and several representative structures are given above, but are not exhaustive structures.
  • the structure derived by replacing the friction material layer of the existing friction nano-generator with the floating layer and the dielectric layer should belong to the protection of the present disclosure.
  • any generator that uses the principle of floating layer charge injection and induction is within the scope of the present disclosure.
  • the charge injection technique of the present disclosure lists only a portion of any method that can inject a charge, and can be used as the technique employed in the present disclosure.
  • the charge injection method based on friction nano-generator since the friction nano-generator combined with the rectifier bridge (or other rectifying device such as diode) is a general-purpose charge-transfer technology, namely charge pump technology, as long as this principle is adopted Devices are to be covered by this patent.
  • the method based on spring stiffness matching motion phase and integrated device proposed by the present disclosure is applicable not only to contact separation devices but also to other similar devices.
  • the present disclosure provides a nano-generator system and a power supply device, using a floating layer, and a combination of a floating layer and a dielectric layer as at least one friction layer having frictional electrification and electrostatic charge storage.
  • the charge pump can inject charge into the floating layer in real time and controllably.
  • the dielectric layer can restrain the dissipation rate of charge and the constraint of air breakdown, so that the charge density of the nanogenerator is no longer dominant. Depending on friction or contact, it does not cause wear and heat due to severe friction, and is not subject to air breakdown. When mechanical energy is collected, a large amount of bound charge is accumulated in the floating layer by continuously injecting a small amount of charge.
  • the high power output density doubles the output effect and promotes the practical use of the nano-generator.
  • the friction nano-generator is used as the charge pump, and the directional output of the charge is realized by combining the friction nano-generator with the rectifier bridge.
  • Real-time, controllable injection of charge into the floating layer, and the structure of the friction nano-generator can be contact-separated Sliding type, single-electrode type, and free friction layer type, the structure can be flexibly adjusted according to actual needs, and the scope of application is wide.
  • the motion phase of the person is matched, even when the charge pump is output, the voltage of the floating structure is near the lowest value.
  • the floating structure is first in contact state, when the capacitance is large, the voltage is low, and the charge is more easily injected, and the generator of the charge pump is further subjected to contact separation movement to realize charge injection, and becomes an integrated type.
  • the power supply device can complete the real-time and controllable injection of the charge into the floating layer through a single pressing and releasing action, and collect the mechanical energy into electrical energy output.
  • the same phase matching principle is also applicable to generators in other modes.

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种纳米发电机系统及供电器件,包括:电极层;浮置层,设置在浮置层的上表面和/或下表面的介质层;电荷泵,与浮置层连接,向浮置层注入电荷;浮置层相对电极层相对运动时,发电机系统向外电路输出电信号。利用浮置层和/或浮置层和介质层的组合作为具有摩擦起电及静电荷保存作用的至少一个摩擦层的等效,通过电荷泵可以向浮置层中实时、可控制地注入电荷。

Description

纳米发电机系统及供电器件 技术领域
本公开属于纳米新能源和机械能收集的技术领域,涉及一种纳米发电机系统及供电器件。
背景技术
摩擦纳米发电技术的基本原理是相互接触或摩擦的两个表面中至少一个表面为绝缘材料时,利用摩擦或接触在两表面感应生成静电荷,当接触的两个表面分离时,静电荷的分离产生电势差,从而在感应电极中产生自由电荷的定向移动,如此可以收集环境中的机械能,并转化为电能。摩擦纳米发电技术尤其适用于收集低频运动的机械能,具有结构简单、成本低、材料选择丰富等优势,在新能源技术领域具有潜在的应用价值,在微型化高功率供能器件的需求越来越广泛的要求下,提供一种具有较高输出功率密度的摩擦纳米发电机成为一个关键的技术要求和技术难点。
表面电荷密度是影响摩擦纳米发电机的输出功率密度的重要因素。摩擦纳米发电机中的表面静电荷由两表面摩擦或接触产生,一般剧烈摩擦或接触才易于产生高的电荷密度,但这种情况下表面容易产生较大的发热和磨损,会极大的影响器件寿命;同时,电荷密度还受到空气击穿等约束,这些因素制约了表面电荷密度及输出功率密度的进一步提升。
因此,有必要提出一种具有高的输出功率密度的纳米发电机,且该纳米发电机的电荷密度不再主要依赖于摩擦或接触而产生、且不受空气击穿等的约束。
发明内容
(一)要解决的技术问题
本公开提供了一种纳米发电机系统及供电器件,以至少部分解决以上所提出的技术问题。
(二)技术方案
根据本公开的一个方面,提供了一种纳米发电机系统,包括:
电极层;浮置层,设置在所述浮置层的上表面和/或下表面的介质层;电荷泵,与所述浮置层连接,向所述浮置层注入电荷;所述浮置层相对电 极层相对运动时,发电机系统向外电路输出电信号。
根据本公开的另一个方面,提供了一种包含该纳米发电机系统的供电器件,特别的,该供电器件为一体式结构。
(三)有益效果
从上述技术方案可以看出,本公开提供的纳米发电机系统及供电器件,具有以下有益效果:
(1)利用浮置层、及浮置层和介电层的组合作为具有摩擦起电及静电荷保存作用的至少一个摩擦层的等效,通过电荷泵可以向浮置层中实时、可控制地注入电荷,介电层能够约束电荷的耗散速度以及免受空气击穿的约束,使得该纳米发电机的电荷密度不再主要依赖于摩擦或接触而产生、不会由于剧烈摩擦产生磨损和发热、且不受空气击穿等的约束,在收集机械能的同时通过持续注入少量的电荷在浮置层中积累大量约束电荷,达到高的功率输出密度,使其输出效果加倍提升,促进了纳米发电机的实用化;
(2)采用摩擦纳米发电机作为电荷泵,通过将该摩擦纳米发电机结合整流桥,实现对电荷的定向输出,从而向浮置层中进行电荷的实时、可控制地注入,且该摩擦纳米发电机的结构可以是接触-分离式、滑动式、单电极式、以及自由摩擦层式等,结构可根据实际需要进行灵活调整,适用范围广泛;
(3)通过设置作为电荷泵的摩擦纳米发电机与浮置结构的弹簧刚度等结构参数以使二者的运动相位匹配,即使电荷泵输出时,浮置结构的电压处于最低值附近。具体对于接触分离模式来说,是使浮置结构先处于接触状态,这时电容较大,电压较低,更容易注入电荷,摩擦纳米发电机再发生接触分离运动实现电荷注入,成为一体式供电器件,通过单一的下压和释放动作,即可完成电荷的实时、可控地注入浮置层,并收集机械能转变为电能输出。同样的相位匹配原理也适用于其它模式的发电机。
附图说明
图1为第一实施例所示的纳米发电机系统的结构示意图;
图2为第一实施例所示的接触分离式浮置结构的三维爆炸图;
图3为第一实施例所示的纳米发电机系统的基本工作原理图;
图4为第一实施例所示的纳米发电机系统结构的变化结构示意图;
图5为第二实施例所示的纳米发电机系统的结构示意图;
图6为第三实施例所示的纳米发电机系统的结构示意图;
图7为第四实施例所示的纳米发电机系统的结构示意图;
图8为第五实施例所示的纳米发电机系统的结构示意图;
图9和图10为第六实施例所示的纳米发电机系统的结构示意图;
图11和图12为第七实施例所示的纳米发电机系统的结构示意图;
图13和图14为第八实施例所示的纳米发电机系统的结构示意图;
图15为电荷泵结构示意图;
图16为电荷泵与浮置结构的连接示意图;
图17为包含电荷泵的一体式供电器件的工作原理图;
图18至图20为其他结构电荷泵的结构示意图;
图21为本公开的纳米发电机系统的供电电路结构示意图。
【符号说明】
1-纳米发电机系统;
100-浮置结构;
111-第一电极层;                  112-第一介电层;
113-第一浮置层;                  114-第三介电层;
115-第二浮置层;                  116-第二介电层;
117-第二电极层;                  120-电输出端口;
130-电荷泵接入端口;              140-弹簧组;
151-第一基板;                    152-第二基板;
200-电荷泵;
210-电荷泵发电机;
211-电荷泵第一基板;              212-电荷泵第一电极层;
213-电荷泵摩擦层;                214-电荷泵第二电极层;
215-电荷泵弹簧组;                216-电荷泵第二基板;
220-电荷泵整流桥;                230-连接端口;
300-负载;
2-整流桥;                        3-储能单元;
4-输出端口。
具体实施方式
本公开提供了一种纳米发电机系统,包括电极层;导电的浮置层,设置在所述浮置层的上表面和/或下表面的介电层;通过电荷泵向浮置层注入电荷;在外力作用下,所述浮置层相对电极层相对运动时,发电机系统向外电路输出电信号。通过电荷泵可以向浮置层中实时、可控制地注入电荷,浮置层的介电层能够约束第一浮置层电荷的耗散速度以及免受空气击穿的约束,使得该纳米发电机系统的电荷密度不再主要依赖于摩擦或接触而产生、不会由于剧烈摩擦产生磨损和发热、且不受空气击穿等的约束,在收集机械能的同时通过持续注入少量的电荷在第一浮置层中积累大量约束电荷,达到高的功率输出密度,使其输出效果加倍提升,促进了纳米发电机系统的实用化。
在本公开的纳米发电机系统中,可以包括1个、2个或更多个可以注入电荷的浮置层。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,进一步详细说明。
实施例一
在本公开的第一个示例性实施例中,提供了一种包括2个浮置层的接触分离式的纳米发电机系统。
图1为根据本公开第一个实施例所示的接触分离式的纳米发电机系统的结构示意图。图2为根据本公开第一个实施例所示的接触分离式浮置结构的三维爆炸图。
结合图1和图2所示,本实施例的接触分离式的纳米发电机系统,包括:浮置结构100、以及电荷泵200。
参照图1、图2所示,本实施例中,浮置结构100包括:第一基板151;在第一基板151之上依次设置有第一电极层111、第一介电层112、第一浮置层113、以及第一浮置层113表面设置的第三介电层114;第二基板152,与第一基板151相对设置;在第二基板152之上依次设置有第二电极层117、第二介电层116、以及第二浮置层115;其中,第二浮置层115与第三介电层114相对设置,可接触、可分离或者互相滑动,分别作为该纳米发电机系统的两个摩擦层;电输出端口120,从第一电极层111、第 二电极层117分别引出,用于连接外接负载并输出电能;电荷泵接入端口130,为第一浮置层113及第二浮置层115与电荷泵200连接的端口,使电荷能够从第一浮置层113和第二浮置层115抽出或注入;以及弹簧组140,固定于第一基板151与第二基板152之上,用于器件下压之后的回弹,使得两个摩擦层之间实现接触分离。
第一浮置层113的上下表面分别是第一介电层112和第三介电层114;第二浮置层115的上下表面分别是空气(也可以是真空,油,其它气体等流体)和第二介电层116,其中,空气也是一种介电材料。
本实施例中,第一基板151和第二基板152为板状结构,主要用于支持其上的薄膜结构,可以由各种结构材料或柔性材料组成,优选为聚合物、无机氧化物、复合材料等绝缘材料,当然本公开的基板结构不限于图1中所示的平面硬基板,也可采用软基板等其它形式。第一基板151和第二基板152为可选部件,在发电机系统的其他部分强度足够时可以不设置基板。
本实施例中,第一电极层111、第二电极层117为薄膜结构,可为金属、碳材料、或ITO等导电材料,其优选厚度为50纳米~50微米。
本实施例中,第一浮置层113、第二浮置层115可以为薄膜结构或者块体材料,可为金属、碳材料、或ITO等导电材料,或者可以为半导体材料,如硅、GaN等,其主要作用是接收注入的电荷并存储起来,其优选为厚度50纳米~50微米的薄膜。
本实施例中,第一介电层112、第三介电层114、第二介电层116可以为薄膜结构,可为聚合物、无机氧化物、复合材料等绝缘材料,主要作用是电绝缘,其优选厚度为0.5微米~50微米。
本实施例中,电输出端口120主要为导线,从第一电极层111和第二电极层117引出,用于连接外接负载并输出电能。电荷泵接入端口130为第一浮置层113及第二浮置层115与电荷泵200连接的端口,主要为导线,使电荷能够从第一浮置层113和第二浮置层115抽出或注入。
弹簧组140主要用于器件下压后的回弹,这只是实现第一浮置层113相对第二电极层117相对运动时的一种方式,不作为对本公开的限定。在其他实施例中可以采用第一基板与第二基板分别与两个相对运动的部件连接,带动第一浮置层113相对第二电极层117相对运动,即纳米发电机 系统的两个摩擦层互相相靠近远离。同时,第二浮置层115相对第一电极层111也相对运动。
电荷泵200的作用是将电荷泵送到相应的浮置层中,起到电荷搬运的作用,其具体结构在后续进行说明。
图3为根据本公开第一个实施例所示的接触分离式的纳米发电机系统的基本工作原理图。参照图3下面介绍本实施例的接触分离式的纳米发电机系统的基本工作原理。
如图3所示,外接负载300与电输出端口120连接。整个工作循环分为I、II、III、IV四个阶段。在图示工作循环前,电荷泵200已经将第二浮置层115中的正电荷(可理解为电子反向流动的等效)大量抽到第一浮置层113中,使两个浮置层分别带上大量等量异号电荷。由于电荷的感应效应,第一浮置层113中的正电荷会在第一电极层111中感应出正电势,第二浮置层115中的负电荷会在第二电极层117中感应出负电势。当第一电极层111和第二电极层117通过负载300连接时,由于电势不相等,电荷会发生移动,从而使第一电极层111中带上负电荷,而第二电极层117中带上等量正电荷。以上是图示工作循环开始前的器件状态。当循环开始后,在阶段I,外力使上基板151下压,使第一浮置层113和第二浮置层115相互靠近,两者中电荷的感应效应会发生部分抵消,使得两者在第一电极层111和第二电极层117中的感应效果减弱,一部分正电荷会经过外接负载300从第二电极层117流动到第一电极层111,并产生电流,输出电能给负载300。在阶段II,上基板151继续下压,并使第三介电层114与第二浮置层115接触,这时,第一浮置层113和第二浮置层115非常接近,两者的感应效应基本抵消,在第一电极层111和第二电极层117中仅存少量电荷,大部分电荷通过外接负载300转移并中和。在阶段III,上基板151通过弹簧组140回弹,第一浮置层113和第二浮置层115距离增大,在第一电极层111和第二电极层117中的感应分别增强,导致电荷通过外接负载300转移,第一电极层111和第二电极层117中的电荷量均增大,同时在外接负载300中产生反向电流。在阶段IV,弹簧组140完全回弹,最后回复到初始状态。需要强调的是,在上述四个阶段中,电荷泵200仍可实时并持续可控地对浮置层进行电荷泵送,以补充浮置层中的电荷耗散。
图4为第一个实施例所示的纳米发电机系统结构的一种变化结构示意图。该变化结构中,由接触分离模式变化为滑动摩擦式,其中,第一基板151相对第二基板152互相滑动,带动第一浮置层113相对第二电极层117相对运动,即纳米发电机系统的两个摩擦层互相滑动。同时,第二浮置层115相对第一电极层111也相对运动。
实施例二
在本公开的第二个示例性实施例中,提供了一种包括2个浮置层的感应式的纳米发电机系统。
图5为感应式的纳米发电机系统的结构示意图。包括:浮置结构以及电荷泵200。
参照图5所示,本实施例中,浮置结构包括:第一基板151;在第一基板151之上依次设置第一浮置层113、第一浮置层113表面设置的第三介电层114;第二基板152,与第一基板151相对设置;在第二基板152之上依次设置有分立的第一电极层111和第二电极层117,在第一电极层111和第二电极层117上分别设置有第一介电层112和第二介电层116、以及第二浮置层115,第一浮置层113及第二浮置层115与电荷泵200连接;其中,第二浮置层115与第三介电层114相对设置,可接触、可分离或者互相滑动,第一浮置层113相对第一电极层或者第二电极层移动,在第一电极层111与第二电极层117之间的负载300上会产生电荷输出。
本实施例中,第一介质层112可以设置导电层也可以不设置导电层。
实施例三
在本公开的第三个示例性实施例中,提供了一种包括2个浮置层的单电极式的纳米发电机系统。
图6为单电极式纳米发电机系统的结构示意图。包括:浮置结构以及电荷泵200。
参照图6所示,本实施例中,浮置结构包括:第一基板151;在第一基板151之上依次层叠设置第一浮置层113、第三介电层114和第二浮置层115;第二基板152,与第一基板151相对设置;在第二基板152之上依次层叠设置第二电极层117和第二介电层116,第一浮置层113及第二浮置层115与电荷泵200连接;其中,第二浮置层115与第二介电层116 相对设置,可接触、可分离或者互相滑动,第一浮置层113或第二浮置层115相对第二电极层117移动,在第二电极层117与地之间的负载300上会产生电荷输出。
本实施例中,第二介电层116除了设置在第二电极层117上外,也可以设置在第二浮置层115的表面。
本实施例中,只有第二电极层117是发电机系统的输出端,因此为单电极结构的发电机系统。
实施例四
在本公开的第四个示例性实施例中,提供了一种包括2个浮置层的自由摩擦层式的纳米发电机系统。
图7为单电极式纳米发电机系统的结构示意图。包括:浮置结构以及电荷泵200。
参照图7所示,本实施例中,浮置结构包括:第一基板151;在第一基板151之上依次层叠设置第一电极层111和第一介电层112;第二基板152,与第一基板151相对设置;在第二基板152之上依次层叠设置第二电极层117和第二介电层116;第一浮置层113、第三介电层114和第二浮置层115形成的层叠结构设置在第一介电层112和第二介电层116之间,第一浮置层113及第二浮置层115与电荷泵200连接;其中,第一浮置层113与第一介电层112相对设置,第二浮置层115与第二介电层116相对设置,所述层叠结构在第一介电层112和第二介电层116之间移动,第一浮置层113或第二浮置层115相对第一电极层111和第二电极层117移动,在第一电极层111和第二电极层117之间的负载300上会产生电荷输出。
本实施例中,第一电极层111和第二电极层117是发电机系统的输出端,第一浮置层113、第三介电层114和第二浮置层115形成的层叠结构可以在第一介电层112和第二介电层116之间移动,因此为自由摩擦层式结构的发电机系统。
本实施例中的第一电极层111和第二电极层117也可以各自与地连接,在第一电极层111与地之间、第二电极层117与地之间输出电信号。
本实施例中第一电极层111和第二电极层117可以相对移动,也可以相对不动。只要第一浮置层113、第三介电层114和第二浮置层115形成 的层叠结构相对第一电极层111或第二电极层117移动即可。
实施例五
参见图8,本实施例是实施例四的变形结构,其中,第一浮置层113设置在第一介电层112表面,第二介电层116设置在第二浮置层115的下表面也可以设置在第二电极层117的表面。第二浮置层115可以在第二电极层117与第一浮置层113之间移动。
本实施例中,第二浮置层115相对于第二电极层117移动,可以在第一电极层111和第二电极层117之间的负载300上产生电荷输出。
实施例六
在实施例中,提供了一种包括1个浮置层的单电极式的纳米发电机系统。
参照图9所示,本实施例中,浮置结构包括:在第一基板上层叠设置有第一浮置层113和第三介电层114,在第二基板上设置有第二电极层117;其中,第三介电层114与第二电极层117相对设置,可接触、可分离或者互相滑动,分别作为该纳米发电机系统的两个摩擦层;第一浮置层113与电荷泵200连接;第一浮置层113相对第二电极层117移动,在第二电极层117和地之间的负载300上会产生电荷输出。
电荷泵200的一端与第一浮置层113连接;另一端可以接地或者接导体,也可以与第二电极层117连接。
参见图10,本实施例中,还可以在第二电极层117上依次设置第二介电层116和第二浮置层115,其中,第三介电层114与第二浮置层115相对设置,可接触、可分离或者互相滑动,分别作为该纳米发电机系统的两个摩擦层。第一浮置层113和第二浮置层115与电荷泵200连接,第一浮置层113相对第二电极层117移动,第二电极层117为输出端,其和地之间的负载300上会产生电荷输出。
实施例七
在实施例中,提供了一种包括1个浮置层的纳米发电机系统。
参照图11所示,浮置结构包括:在第一基板151上依次层叠设置有第一电极层111、第一介电层112、第一浮置层113和第三介电层114,在第二基板上设置有第二电极层117;其中,第三介电层114与第二电极层 117相对设置,可接触、可分离(如图11所示)或者互相滑动(如图12所示),分别作为该纳米发电机系统的两个摩擦层;第一浮置层113与电荷泵200连接;在第一基板带动下第一浮置层113相对第二电极层117移动,在第一电极层111和第二电极层117为发电机系统的输出端,在负载300上会产生电荷输出。
电荷泵200的一端与第一浮置层113连接;另一端可以接地或者接导体,也可以与第一电极层111或第二电极层117连接。
第一基板151和第二基板152之间可以通过弹簧等机械结构实现互相靠近与远离或者互相滑动。
本实施例中,第三介电层114除了可以设置在第一浮置层113上外,也可以设置在第二电极层117上,这样的结构第一浮置层113的上下表面的介电层分别是第一介电层112和空气。设置在哪边对发电机系统的工作无影响。
实施例八
在本实施例中,提供了一种包括1个浮置层的感应式的纳米发电机系统。
图13为感应式的纳米发电机系统的结构示意图。包括:浮置结构以及电荷泵200。
参照图13所示,本实施例中,浮置结构包括:在第一基板上依次层叠设置第一浮置层113、第一浮置层113表面设置的第三介电层114;第二基板与第一基板相对设置;在第二基板上同一平面设置有分立的第一电极层111和第二电极层117,第一电极层111和第二电极层117置于第一浮置层113的同一侧,第一浮置层113及第二电极层117与电荷泵200连接;其中,第二电极层117、第一电极层111与第三介电层114相对设置,可接触、可分离或者互相滑动,第一浮置层113相对第一电极层或者第二电极层移动,在第一电极层111与第二电极层117之间的负载300上会产生电荷输出。
本实施例中,电荷泵200的一端与第一浮置层113连接;另一端可以接地或者接导体,也可以与第二电极层117连接。
参见图14,本实施例中,可以不在第一浮置层113设置第三介电层, 而在第一电极层111与第二电极层117面向第一浮置层113的表面分别设置第一介电层112和第二介电层116。这样的结构第一浮置层113的下表面的介电层是空气,上表面由于设置在基底上可以省略介电层。
实施例九
本公开的电荷泵包括:直流或交流输出装置,包含如下装置中的一种或几种:摩擦纳米发电机、电磁发电机、压电发电机、热电器件;以及整流器,与交流输出装置相连接,将交流输出装置的输出转变为直流电。
参见图15,纳米发电机系统中采用的电荷泵200的结构基于接触分离式摩擦纳米发电机,包括:电荷泵发电机210;电荷泵整流桥220,输入端与电荷泵发电机210相连;以及连接端口230,作为电荷泵整流桥220的输出端,与上述实施例中的纳米发电机系统相连。其中,电荷泵发电机210包括:电荷泵第一基板211,其上依次设置有电荷泵第一电极层212和电荷泵摩擦层213;电荷泵第二基板216,与电荷泵第一基板211相对设置,其上设置有电荷泵第二电极层214,该第二电极层214与电荷泵摩擦层213之间可接触、可摩擦;以及电荷泵弹簧组215,固定于电荷泵第一基板211与电荷泵第二基板216之间,该电荷泵弹簧组215用于器件下压之后的回弹,使得电荷泵第二电极层214与电荷泵摩擦层213之间实现接触分离。
本实施例中,电荷泵第一基板211和电荷泵第二基板216为板状结构,主要用于支持其上的薄膜结构,可以由各种结构材料或柔性材料组成,优选为聚合物、无机氧化物、复合材料等绝缘材料,当然本公开的基板结构不限于图15中所示的平面硬基板,也可采用软基板等其它形式。电荷泵第一电极层212、电荷泵第二电极层214为薄膜结构,可为金属、碳材料或ITO等导电材料,其优选厚度为50纳米~50微米。电荷泵摩擦层213为薄膜结构,可为聚合物、无机氧化物、复合材料等绝缘材料,主要作用是电绝缘及摩擦起电,其优选厚度为0.5微米~100微米。电荷泵发电机210在上下两部分的接触分离运动过程中,基于摩擦起电和静电感应,在两电极间产生交变的电流。电荷泵发电机210的输出经过电荷泵整流桥220的整流作用,产生从整流桥“-”端流向“+”端的电流,相应会产生正电荷或负电荷的定向移动,从而泵送电荷。
图16为根据本实施例所示的电荷泵与纳米发电机系统浮置结构100的连接示意图。电荷泵接入端口130与连接端口230对应相接,实现电荷泵200与浮置结构100的连接。
实施例十
图17为根据本实施例所示的包含电荷泵具体结构的一体式供电器件的工作原理图。参照图17所示,该一体式供电器件包含:接触分离式的纳米发电机系统,电荷泵基于接触分离式摩擦纳米发电机,工作循环包含I、II、III、IV四个基本阶段,其中浮置结构100的工作原理与图3所示原理相同。将接触分离式浮置结构和电荷泵集成为单一器件,通过单一的下压和释放动作,即可完成电荷实时、持续可控地注入浮置层,并收集机械能对外输出电流,直接带动负载。为了协调电荷泵200中的电荷泵发电机210与浮置结构100的接触分离运动相位,设定电荷泵弹簧组215的刚度大于弹簧组140,使得浮置结构100先处于接触状态,摩擦纳米发电机210再发生接触分离运动,产生电荷泵送作用。这种设计是保证第一浮置层113和第二浮置层115处于最接近状态,这时两者间电压较小,更易于泵送电荷。结合此工作原理还可以看到,电荷注入是持续的和实时可控的,可以对浮置层中的电荷耗散产生有效的补充。
优选的,该供电器件为一体式结构,浮置结构与电荷泵之间的运动相位相匹配。接触分离式浮置结构和电荷泵的集成,可以为图17中上下层叠集成,也可以左右并排集成。
图18为另一实施例的基于滑动式摩擦纳米发电机的电荷泵的结构示意图。图19为另一实施例所示的基于单电极式摩擦纳米发电机的电荷泵的结构示意图。图20为另一实施例所示的基于自由摩擦层式摩擦纳米发电机的电荷泵的结构示意图。上述不同模式的摩擦纳米发电机的结构均以常见的结构进行示意,这里不再赘述。
图15、图18-20中所示的四种电荷泵均可用于图1-图14中任意一种纳米发电机系统中的电荷泵送。除此四种电荷泵结构外,其它的摩擦纳米发电机结构、电磁发电机、压电发电机、热电器件及其它各种能输出电流或电压的装置、器件或设备,均可结合整流器件作为本公开中的电荷泵使用。
图21为纳米发电机系统的供电电路结构示意图。
参照图21所示,纳米发电机系统1的输出经过整流桥2整流后,给储能单元3充电,稳定的电压即可经端口4输出给负载。
上述实施例中的纳米发电机系统的浮置结构100包含四种基本的模式,接触分离式结构,如图1、图6、图11所示;滑动式结构,如图4、图12所示;单电极结构,如图6、图9、图10所示;感应式和自由摩擦层式结构,如图5、图7、图8、图13、图14所示,每一种模式包括图示的几种变化结构。这四种模式分别与相应模式的摩擦纳米发电机对应,其共同点在于可将摩擦纳米发电机中的摩擦层用浮置层代替,并用电荷泵注入电荷,浮置层通过介电层与其它层绝缘,从而能保存电荷。四种模式的变化结构不仅限于图中列举的形式,其它仅改变介电层和浮置层数量及位置的设计应均包括在本公开的保护范围内。
需要说明的是,本公开中每一层的形状不限于图中所示的矩形,也可以为其它任意的形状。本公开提出的浮置结构适用于所有模式的已知摩擦纳米发电机,以上给出的是几种有代表性的结构,但不是穷尽的结构。将现有的摩擦纳米发电机的摩擦材料层替换为浮置层和介电层(如两可接触表面介电层重复,可去掉一层介电层)导出的结构,应属于本公开的保护范畴之内。更进一步,只要是采用浮置层电荷注入及感应的原理的发电机,均属于本公开的范畴之内。本公开的电荷注入技术只列出了部分,任意可注入电荷的方法,均可作为本公开采用的技术。尤其是基于摩擦纳米发电机的电荷注入方法,由于摩擦纳米发电机结合整流桥(或二极管等其它整流器件)是一种通用的电荷搬运技术,即电荷泵技术,因此,只要是采用这种原理的器件,均应在本专利的保护范畴之内。本公开提出的基于弹簧刚度匹配运动相位及集成器件的方法,不仅适用于接触分离式器件,也适用于其它类似器件。
综上所述,本公开提供了一种纳米发电机系统及供电器件,利用浮置层、及浮置层和介电层的组合作为具有摩擦起电及静电荷保存作用的至少一个摩擦层的等效,通过电荷泵可以向浮置层中实时、可控制地注入电荷,介电层能够约束电荷的耗散速度以及免受空气击穿的约束,使得该纳米发电机的电荷密度不再主要依赖于摩擦或接触而产生、不会由于剧烈摩擦产 生磨损和发热、且不受空气击穿等的约束,在收集机械能的同时通过持续注入少量的电荷在浮置层中积累大量约束电荷,达到高的功率输出密度,使其输出效果加倍提升,促进了纳米发电机的实用化;采用摩擦纳米发电机作为电荷泵,通过将该摩擦纳米发电机结合整流桥,实现对电荷的定向输出,从而向浮置层中进行电荷的实时、可控制地注入,且该摩擦纳米发电机的结构可以是接触-分离式、滑动式、单电极式、以及自由摩擦层式等,结构可根据实际需要进行灵活调整,适用范围广泛;通过设置作为电荷泵的摩擦纳米发电机与浮置结构的弹簧刚度等结构参数以使二者的运动相位匹配,即使电荷泵输出时,浮置结构的电压处于最低值附近。具体对于接触分离模式来说,是使浮置结构先处于接触状态,这时电容较大,电压较低,更容易注入电荷,电荷泵的发电机再发生接触分离运动实现电荷注入,成为一体式供电器件,通过单一的下压和释放动作,即可完成电荷的实时、可控地注入浮置层,并收集机械能转变为电能输出。同样的相位匹配原理也适用于其它模式的发电机。
还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (25)

  1. 一种纳米发电机系统,包括:
    电极层;
    浮置层,设置在所述浮置层的上表面和/或下表面的介质层;
    电荷泵,与所述浮置层连接,向所述浮置层注入电荷;
    其中,所述浮置层相对电极层相对运动时,该纳米发电机系统向外电路输出电信号。
  2. 根据权利要求1所述的纳米发电机系统,其中,包括:
    第二电极层;
    层叠设置的第一浮置层和第三介电层,所述电荷泵的一端与所述第一浮置层连接;
    其中,所述第三介电层与第二电极层相对设置,可接触并可分离或者互相滑动。
  3. 根据权利要求2所述的纳米发电机系统,其中,所述电荷泵的另一端接地或者接导体,或者与所述第二电极层连接。
  4. 根据权利要求2所述的纳米发电机系统,其中,还包括:
    在所述第二电极层上依次设置的第二介电层和第二浮置层,所述第三介电层与第二浮置层相对设置,可接触并可分离或者互相滑动;
    所述第一浮置层和第二浮置层均与所述电荷泵连接。
  5. 根据权利要求2-4任一项所述的纳米发电机系统,其中,在所述第二电极层和地之间产生电荷输出。
  6. 根据权利要求2或4所述的纳米发电机系统,其中,还包括:在所述第一浮置层上层叠设置的第一介电层和第一电极层;所述第一电极层和第二电极层为该纳米发电机系统的输出端。
  7. 根据权利要求1所述的纳米发电机系统,其中,包括:
    层叠设置的第一浮置层和第三介电层,所述电荷泵的一端与所述第一浮置层连接;
    设置在同一平面的分立的第一电极层和第二电极层;与所述第三介电层相对设置;
    所述第一电极层和第二电极层为该纳米发电机系统的输出端。
  8. 根据权利要求7所述的纳米发电机系统,其中,所述电荷泵的另一端接地或者接导体,或者与所述第二电极层连接。
  9. 根据权利要求7所述的纳米发电机系统,其中,还包括:在第二电极层上层叠设置的第二介电层和第二浮置层,所述电荷泵的另一端与所述第二浮置层连接。
  10. 根据权利要求1所述的纳米发电机系统,其中,包括:
    层叠设置的第一浮置层,所述电荷泵的一端与所述第一浮置层连接;
    设置在同一平面的分立的第一电极层和第二电极层;在所述第一电极层与第二电极层面向所述第一浮置层的表面分别设置第一介电层和第二介电层;
    所述电荷泵的另一端接地或者接导体,或者与所述第二电极层连接;
    所述第一电极层和第二电极层为该纳米发电机系统的输出端。
  11. 根据权利要求1所述的纳米发电机系统,其中,包括:
    层叠设置的第一浮置层、第三介电层和第二浮置层;
    第二电极层和第二介电层;其中第二电极层和第二介电层为层叠设置,所述第二浮置层与第二介电层相对设置,可接触并可分离或者互相滑动;或者,其中第二介电层设置在所述第二浮置层表面,与所述第二电极层相对设置,可接触并可分离或者互相滑动;
    所述第一浮置层和第二浮置层均与所述电荷泵连接;
    所述第一浮置层相对第二电极层移动,在所述第二电极层与地之间产生电荷输出。
  12. 根据权利要求1所述的纳米发电机系统,其中,包括:
    层叠设置的第一电极层和第一介电层;
    层叠设置的第二电极层和第二介电层;
    第一浮置层、第三介电层和第二浮置层形成层叠结构;
    所述第一浮置层及第二浮置层均与电荷泵连接;
    其中,所述第一浮置层与第一介电层相对设置,第二浮置层与第二介电层相对设置,所述层叠结构在所述第一介电层和第二介电层之间可移动;
    所述第一电极层和第二电极层是所述纳米发电机系统的输出端;或者, 在所述第一电极层与地之间或第二电极层与地之间输出电信号。
  13. 根据权利要求1所述的纳米发电机系统,其中,包括:
    层叠设置的第一电极层、第一介电层和第一浮置层;
    第二电极层;
    第三介电层、第二浮置层和第二介电层形成层叠结构;
    所述第一浮置层及第二浮置层均与电荷泵连接;
    其中,所述第一浮置层与第三介电层相对设置,第二介电层与第二电极层相对设置,所述层叠结构在所述第三介电层和第二电极层之间可移动;
    所述第一电极层和第二电极层是所述纳米发电机系统的输出端;或者,在所述第一电极层与地之间或第二电极层与地之间输出电信号。
  14. 根据权利要求1-10任一项所述的纳米发电机系统,其中,还包括第一基板和第二基板。
  15. 根据权利要求14所述的纳米发电机系统,其中,还包括连接第一基板和第二基板的弹簧结构。
  16. 根据权利要求1-15任一项所述的纳米发电机系统,其中,
    所述电荷泵包括:直流或交流输出装置,包含如下装置中的一种或几种:摩擦纳米发电机、电磁发电机、压电发电机、热电器件;
    其中,所述交流输出装置连接整流器,将所述交流输出装置的输出转变为直流电。
  17. 根据权利要求16所述的纳米发电机系统,其中,交流输出装置为接触分离式摩擦纳米发电机。
  18. 根据权利要求1-17任一项所述的纳米发电机系统,其中,所述浮置层为薄膜结构或者块体材料。
  19. 根据权利要求18所述的纳米发电机系统,其中,所述浮置层的材料为导体材料或者半导体材料。
  20. 根据权利要求18所述的纳米发电机系统,其中,所述浮置层为厚度在50纳米~50微米的薄膜。
  21. 根据权利要求1-18任一项所述的纳米发电机系统,其中,所述介电层为薄膜结构。
  22. 根据权利要求21所述的纳米发电机系统,其中,所述介电层的 材料为聚合物、无机氧化物、复合材料等绝缘材料。
  23. 根据权利要求21所述的纳米发电机系统,其中,所述介电层的厚度为0.5微米~50微米。
  24. 一体式供电器件,其中,包括权利要求1-6、10-11、14-23任一项所述的纳米发电机系统,其中,
    所述电荷泵输出时,所述纳米发电机系统中浮置结构的电压处于最低值附近。
  25. 根据权利要求24所述的供电器件,其中,所述电荷泵为基于接触分离式摩擦纳米发电机,所述浮置结构为接触分离结构;
    所述电荷泵与所述浮置结构为上下层叠设置,或者左右并排设置。
PCT/CN2019/082034 2018-04-11 2019-04-10 纳米发电机系统及供电器件 WO2019196859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810324788.XA CN110176872B (zh) 2018-04-11 2018-04-11 纳米发电机系统及供电器件
CN201810324788.X 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019196859A1 true WO2019196859A1 (zh) 2019-10-17

Family

ID=67688950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082034 WO2019196859A1 (zh) 2018-04-11 2019-04-10 纳米发电机系统及供电器件

Country Status (2)

Country Link
CN (1) CN110176872B (zh)
WO (1) WO2019196859A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046220A (zh) * 2021-11-23 2022-02-15 北京纳米能源与系统研究所 一种发电系统及发电方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111605690B (zh) * 2020-06-01 2021-04-27 大连理工大学 一种自推进无人轻体船
CN113541526B (zh) * 2021-08-30 2023-08-29 深圳清华大学研究院 一种基于多介质的微发电机和发电机组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426425A (zh) * 2013-09-06 2015-03-18 北京纳米能源与系统研究所 具有发电单元的惯性发电装置和加速方向检测装置
CN105245128A (zh) * 2014-07-03 2016-01-13 北京纳米能源与系统研究所 一种基于摩擦发电的移动充电组件、充电外壳和充电器
CN105337528A (zh) * 2014-08-14 2016-02-17 北京纳米能源与系统研究所 一种提高摩擦发电机输出强度的方法
CN107769607A (zh) * 2016-08-23 2018-03-06 三星电子株式会社 摩擦电发电机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449811B2 (en) * 2004-11-26 2008-11-11 The University Of Tokyo Electrostatic induction conversion device
CN103780143B (zh) * 2013-05-02 2018-09-14 北京纳米能源与系统研究所 一种压电纳米发电机、眼球移动监控传感器及其监控方法
JP6286767B2 (ja) * 2013-08-07 2018-03-07 酒井 捷夫 非対称静電力を使うスイチバック型静電発電機
CN104868777B (zh) * 2014-02-20 2019-12-06 北京纳米能源与系统研究所 一种摩擦纳米发电机、发电机组和发电方法
JP2016086624A (ja) * 2014-10-27 2016-05-19 憲治 本田 充電体を用いた電池の方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426425A (zh) * 2013-09-06 2015-03-18 北京纳米能源与系统研究所 具有发电单元的惯性发电装置和加速方向检测装置
CN105245128A (zh) * 2014-07-03 2016-01-13 北京纳米能源与系统研究所 一种基于摩擦发电的移动充电组件、充电外壳和充电器
CN105337528A (zh) * 2014-08-14 2016-02-17 北京纳米能源与系统研究所 一种提高摩擦发电机输出强度的方法
CN107769607A (zh) * 2016-08-23 2018-03-06 三星电子株式会社 摩擦电发电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046220A (zh) * 2021-11-23 2022-02-15 北京纳米能源与系统研究所 一种发电系统及发电方法
CN114046220B (zh) * 2021-11-23 2024-02-02 北京纳米能源与系统研究所 一种发电系统及发电方法

Also Published As

Publication number Publication date
CN110176872A (zh) 2019-08-27
CN110176872B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2019196859A1 (zh) 纳米发电机系统及供电器件
Liu et al. Advanced designs for output improvement of triboelectric nanogenerator system
Zi et al. Nanogenerators: An emerging technology towards nanoenergy
Zhou et al. Multilayered electret films based triboelectric nanogenerator
Zi et al. Triboelectric–pyroelectric–piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing
Leng et al. Flexible interdigital-electrodes-based triboelectric generators for harvesting sliding and rotating mechanical energy
JP4835888B1 (ja) 発電装置
CN205195598U (zh) 复合纳米发电机
CN104953785B (zh) 一种能量采集器
CN109149992B (zh) 改进型摩擦纳米发电机
CN103780132B (zh) 一种脉冲摩擦发电机和摩擦发电方法
WO2014110848A1 (zh) 一种折叠式微型震动发电机及其制造方法
CN105978395B (zh) 无基底电极驻极体静电直线发电机和制造该驻极体的方法
CN108054951B (zh) 一种基于多层结构的俘能/储能一体化微纳电池
CN113315407B (zh) 一种基于摩擦纳米发电机的电能收发系统
CN113241966B (zh) 一种基于尖端放电的旋转式摩擦纳米发电装置及方法
JP2013198314A (ja) 振動発電器
US20140339954A1 (en) Vibration power generator
KR101730259B1 (ko) 마찰 전기 발전 및 전자기 에너지 발전이 가능한 하이브리드 발전 장치
CN113162460A (zh) 一种静电式旋转、直线往复运动耦合能量收集器
KR20160143219A (ko) 하이브리드 형태의 전해질을 이용한 마찰전기 에너지 발전 소자
CN108141152B (zh) 电力生成设备及生成方法
CN204906158U (zh) 一种能量采集器
CN110242005A (zh) 一种磁粘性体发电地板及其制作方法
Choy et al. Enhanced output power of a freestanding ball-based triboelectric generator through the electrophorus effect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19784531

Country of ref document: EP

Kind code of ref document: A1