WO2019196020A1 - 电致变色元件、装置、制品及其制造和使用方法 - Google Patents

电致变色元件、装置、制品及其制造和使用方法 Download PDF

Info

Publication number
WO2019196020A1
WO2019196020A1 PCT/CN2018/082579 CN2018082579W WO2019196020A1 WO 2019196020 A1 WO2019196020 A1 WO 2019196020A1 CN 2018082579 W CN2018082579 W CN 2018082579W WO 2019196020 A1 WO2019196020 A1 WO 2019196020A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
electrochromic
flexible conductive
ion storage
conductive yarn
Prior art date
Application number
PCT/CN2018/082579
Other languages
English (en)
French (fr)
Inventor
葛仪文
姚磊
许扬羽
黄鑫鑫
许裕杰
陈昕
黎子滔
Original Assignee
香港纺织及成衣研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港纺织及成衣研发中心有限公司 filed Critical 香港纺织及成衣研发中心有限公司
Priority to US15/733,737 priority Critical patent/US11868018B2/en
Priority to PCT/CN2018/082579 priority patent/WO2019196020A1/zh
Publication of WO2019196020A1 publication Critical patent/WO2019196020A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/20Physical properties optical
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/01Surface features
    • D10B2403/011Dissimilar front and back faces
    • D10B2403/0114Dissimilar front and back faces with one or more yarns appearing predominantly on one face, e.g. plated or paralleled yarns
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0243Fabric incorporating additional compounds enhancing functional properties
    • D10B2403/02431Fabric incorporating additional compounds enhancing functional properties with electronic components, e.g. sensors or switches
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes

Definitions

  • the invention belongs to the field of textile electrochromic technology, and in particular to electrochromic devices and methods of making and using same.
  • the current electrochromic textile process is becoming more and more mature, and it is no problem to make the fibrous device flexible and electrochromic.
  • the electrochromic layer for the fibrous device is mainly composed of a thick layer of organic polymer, and the color changing layer is not located on the surface layer of the clothing/fabric.
  • the preparation methods of the existing electrochromic layer coated on the textile are limited to methods such as sol-gel, inkjet printing and transfer printing, which leads to cumbersome steps in the process of producing electrochromic textiles, Conducive to mass production.
  • a novel electrochromic yarn structure employed in the present application for example, a conductive yarn coated (coated) with an inorganic electrochromic material and an ion storage coated with an ion storage layer on the surface A combination of yarns (as counter electrodes).
  • the present application does not employ a preparation method currently used in the art and an organic electrochromic material coating, but is not used in the field of textile electrochromic technology. Electroplating process. The process directly electroplates inorganic electrochromic materials such as metal oxides and/or alloy oxides onto the conductive yarn.
  • Electroplating is a low cost and rapid process in which the thickness of the layer of electrochromic material formed is relatively thin relative to the organic electrochromic material. Moreover, since the electrochromic material is directly coated on the surface layer of the conductive yarn by electroplating, a clear color development effect can be achieved when applied to the textile. At the same time, the original flexibility and morphological structure of the conductive yarn can be maintained, and the obtained electrochromic layer has good fastness.
  • the color-changing layer/electrochromic (material) layer of the device disclosed herein can be located on the outer surface layer of a single yarn (the ion storage (material) layer of the device can also be located On the outer surface layer of a single yarn, the ion storage layer of the device can absorb and retain hydrogen, lithium or sodium ions in the external environment, and release the absorbed ions by changing the polarity of the voltage to the electrochromic layer, thereby occurring Electrochromism.
  • a single electrochromic yarn and ion storage yarn can be embedded in a conventional fabric to weave different patterns.
  • the electrochromic yarn and thus the woven pattern are discolored by external ions under low voltage bias.
  • the electrochromic device of the present application is capable of operating at low voltage, and is a low-energy, comfortable and safe electrochromic device.
  • the present application discloses methods of making electrochromic elements, methods of making electrochromic devices, articles comprising electrochromic elements or devices.
  • a method for manufacturing an electrochromic element comprising the steps of: providing a flexible conductive yarn comprising a first flexible conductive yarn and a second flexible conductive yarn; Electrochromic layer and ion storage layer are respectively coated on the first flexible conductive yarn and the second flexible conductive yarn by an electroplating process to separately prepare an electrochromic yarn and an ion storage yarn, thereby obtaining an electrochromic yarn and an ion storage.
  • An electrochromic element of yarn comprising the steps of: providing a flexible conductive yarn comprising a first flexible conductive yarn and a second flexible conductive yarn; Electrochromic layer and ion storage layer are respectively coated on the first flexible conductive yarn and the second flexible conductive yarn by an electroplating process to separately prepare an electrochromic yarn and an ion storage yarn, thereby obtaining an electrochromic yarn and an ion storage.
  • An electrochromic element of yarn comprising the steps of: providing a flexible conductive yarn comprising a first flexible conductive yarn and a second flexible conductive yarn; Electrochromic
  • the electroplating process comprises the steps of: providing a mixture of metal powder, an oxidizing agent and a dispersing solvent and reacting it to obtain a plating solution; immersing the first flexible conductive yarn and the second flexible conductive yarn in a plating solution for electroplating; taking out the first a flexible conductive yarn and a second flexible conductive yarn, removing excess plating solution, and optionally drying; and annealing the first flexible conductive yarn and the second flexible conductive yarn.
  • the method further comprises adding a catalyst to the mixture.
  • the metal powder used to prepare the electrochromic yarn or the ion storage yarn is selected from the group consisting of titanium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, cobalt, lanthanum, cerium, lanthanum, Nickel or any combination thereof.
  • electroplating is performed using a three electrode plating system.
  • the electroplating is carried out at room temperature for 1-15 minutes.
  • the annealing time is from 15 to 90 minutes and the temperature is from 60 to 100 °C.
  • the flexible conductive yarn comprises a flexible conductive yarn made of metal.
  • the flexible conductive yarn comprises a flexible non-conductive organic polymer imparted with electrical conductivity by a conductive material.
  • the flexible non-conductive organic polymer comprises nylon, polyester, spandex, fibers or any combination of the foregoing.
  • a method of fabricating an electrochromic device comprising:
  • the electrochromic element comprising an electrochromic yarn and an ion storage yarn according to the method of any of the above first aspects of the invention; providing a power source; and powering the first flexible conductive yarn and the second first flexible The conductive yarns are electrically connected.
  • the positive electrode of the power source is electrically connected to the second flexible conductive yarn
  • the negative electrode of the power source is electrically connected to the first flexible conductive yarn
  • an electrochromic device comprising: an electrochromic yarn, an ion storage yarn, and a power source, the electrochromic yarn comprising a first flexible conductive yarn and coated on the first An electrochromic layer on a surface layer of a flexible conductive yarn, the ion storage yarn comprising a second flexible conductive yarn and an ion storage layer coated on a surface layer of the second flexible conductive yarn, and the first flexible conductive layer
  • the yarn is electrically connected to a negative electrode of the power source
  • the second flexible conductive yarn is electrically connected to a positive electrode of the power source.
  • the electrochromic yarn and the ion storage yarn are manufactured according to the method of any of the above first aspects of the invention.
  • the electrochromic device operates at a low voltage.
  • the low voltage is -0.8V to +0.8V.
  • the first flexible conductive yarn and/or the second flexible conductive yarn are made of metal.
  • the first flexible conductive yarn and/or the second flexible conductive yarn comprise a flexible non-conductive organic polymer imparted with electrical conductivity by a conductive material.
  • the flexible non-conductive organic polymer comprises nylon, polyester, spandex, fibers or any combination of the foregoing.
  • the electrochromic layer comprises an inorganic metal oxide or alloy oxide or a combination thereof.
  • the ion storage layer comprises an inorganic metal oxide or alloy oxide or a combination thereof.
  • the electrochromic device undergoes electrochromism in an external environment with hydrogen, lithium and/or sodium ions.
  • an electrochromic element produced by the method according to any of the above-mentioned first aspects of the invention or a method according to any of the above-mentioned second aspects of the invention
  • An electrochromic device or an article of an electrochromic device according to any of the above-described third aspects of the invention is disclosed.
  • the article is a textile product.
  • the electrochromic yarn and the ion storage yarn are embedded in a fabric of a textile product to form a woven pattern.
  • the electrochromic yarn is embedded outside the fabric and the ion storage yarn is embedded inside the fabric such that the color change of the electrochromic element can be observed from the outside when the textile product is worn by a user.
  • the article is used to indicate an indicator of the presence of hydrogen, lithium and/or sodium ions in the external environment.
  • a method of using an article according to any of the embodiments of the fourth aspect of the present application comprising the steps of: actively or passively bringing the article with hydrogen, lithium, and/or Contacting an external liquid environment of sodium ions, the ion storage layer on the ion storage yarn absorbing hydrogen, lithium and/or sodium ions in an external liquid environment in the presence of a voltage; and changing the polarity of the applied voltage to The ion storage layer is caused to release absorbed ions to the electrochromic layer to cause electrochromism.
  • the device can realize multi-cycle discoloration and has special practicability, and the preparation method is easy to operate, easy to realize industrial mass production, and has wide application potential in color-changing textiles and other discoloration fields.
  • FIG. 1 is a schematic view of an electrochromic device in accordance with an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a three-electrode plating system used in accordance with an embodiment of the present application.
  • FIG. 3 is a schematic plating flow diagram in accordance with an embodiment of the present application.
  • FIG. 4 is a schematic diagram showing the results of changes before and after changing the polarity of a voltage, according to an embodiment of the present application.
  • the electrochromic device 7 comprises an electrochromic yarn 6 and an ion storage yarn 18, which may also be collectively referred to as an electrochromic element.
  • the electrochromic yarn 6 comprises a conductive yarn 5 and an electrochromic layer 4 (also referred to as an electrochromic material layer/coating) on the surface/surface of the conductive yarn 5 (for example coated/coated).
  • the ion storage yarn 18 includes a conductive yarn 1 and an ion storage layer 17 (or referred to as an ion storage material layer/coating) on (eg, coated/coated) the surface/surface of the conductive yarn 1.
  • the conductive yarns 1, 5 are preferably flexible (referred to as flexible conductive yarns in this case) and can be retained after the surface/surface is coated with an electrochromic layer (or material) and an ion storage layer (or material)
  • the original flexible and morphological structure is easy to integrate into the general fabric material.
  • bonding herein is meant the act of inserting/weaving/knitting, etc., forming the electrochromic yarn and the ion storage yarn into a portion of the fabric or into or on the fabric or as part of the fabric.
  • the flexible conductive yarn may comprise or may be a metal, such as made of metal, or a flexible non-conductive organic polymer comprising electrical conductivity imparted by a conductive material such as a metal.
  • Flexible non-conductive organic polymers can include nylon, polyester, spandex, fibers, or any combination of the foregoing.
  • the flexible conductive yarns 1, 5 used in the present invention are made of metal, or are flexible yarns which are coated/impregnated with a conductive material (for example, metal particles) to impart conductivity.
  • a conductive material for example, metal particles
  • the material of the yarn that can be used includes a non-conductive organic polymer such as nylon, polyester, spandex, Fiber or any combination of the foregoing.
  • exemplary conductive metal particles in the flexible conductive yarns 1, 5 include silver, copper, gold, iron, aluminum, zinc, nickel, tin, and particles comprising a combination of at least one of the foregoing metals.
  • the flexible conductive yarns 1, 5 are made of metal, for example, iron and an iron alloy such as stainless steel (alloy of carbon, iron and chromium) can be used.
  • the conductive yarns 1, 5 are silver coated nylon yarns.
  • the electrical resistivity of the conductive yarn may generally be -300 ⁇ /m, but is not limited thereto.
  • One skilled in the art can select a suitable resistivity depending on the particular application.
  • the yarn may have a maximum cross-sectional diameter of 2 nanometers or more, for example up to 2 centimeters. In one embodiment, the yarn may have a maximum cross-sectional diameter of from about 5 to about 500 microns.
  • the width (diameter) of the conductive yarn can be selected in accordance with the fiber/yarn/texture or other considerations of the fabric into which the electrochromic yarn and the ion storage yarn are to be embedded/woven.
  • the electrochromic yarn and the ion storage yarn formed by the present invention have no significant change in diameter by visual observation as compared with the conductive yarn before being coated with the electrochromic layer or the ion storage layer.
  • the formed electrochromic yarn and the ion storage yarn are less different from the general fabric, so that the user feels more comfortable.
  • Electrochromic layer 4 and ion storage layer 17 comprise a metal oxide or alloy oxide or a combination thereof.
  • the electrochromic layer 4 and the ion storage layer 17 comprise oxides of titanium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, cobalt, ruthenium, osmium, iridium, nickel or any combination thereof and/or Or alloy oxide.
  • the electrochromic layer 4 comprises tungsten oxide (WO 3 ).
  • the ion storage layer 17 also includes tungsten oxide (WO 3 ). The materials of the electrochromic layer 4 and the ion storage layer 17 may be the same or different.
  • the flexible conductive yarn of the present invention can be used as an electrochromic yarn or an ion storage yarn after electroplating a metal oxide depending on the polarity of the connected power source electrode.
  • the flexible conductive yarn of the present invention acts as an electrochromic yarn when it is connected to the negative electrode of the power source by electroplating the metal oxide, and as an ion storage yarn when connected to the positive electrode of the power source.
  • the basic structure of the electrochromic device of the present invention comprises an electrochromic yarn 6 and an ion storage yarn 18 and a power source 8 electrically connected to the electrochromic yarn 6 and the ion storage yarn 18.
  • the positive and negative terminals of the power source 8 are connected to the conductive material/structure of the conductive yarns 1, 5.
  • the electrochromic yarn 6 and the ion storage yarn 18 are arranged in parallel (eg, incorporated into/on the fabric) in parallel. There may be a certain distance between the electrochromic yarn 6 and the ion storage yarn 18 (for example, the environment 3 (or external environment may be present) therebetween, or may be in contact with each other (for example, in the electrochromic layer 4 and the ion storage layer 17) The thickness is sufficient for insulation). Any number of electrochromic yarn-ion storage yarn pairs may be present, depending on the desired weave pattern and display effect.
  • the ion storage layer 17 can absorb foreign ions in the environment 3 by supplying a voltage to the conductive yarns 1, 5. Thereafter, by changing the polarity of the applied voltage, the ion storage layer 17 releases the absorbed ions to the electrochromic layer 3 to cause electrochromism.
  • external ions preferably, hydrogen, lithium, and/or sodium ions
  • the electrochromic device 7 comprises an electrochromic yarn 6, an ion storage yarn 18 and a power source 8 electrically connected to the electrochromic yarn 6 and the ion storage yarn 18, wherein the electrochromic material layer 4 is preferably And the ion storage layer 17 are respectively coated on the outer surface of the conductive yarns 1, 5 by electroplating to form the electrochromic yarn 6 and the ion storage yarn 18, wherein the electrochromic material layer 4 comprises an inorganic electrochromic material/coating
  • the layer, ion storage layer 17 comprises an inorganic ion storage material/coating.
  • FIG. 2 is a schematic diagram of a three-electrode plating system 16 used in accordance with an embodiment of the present application.
  • Figure 3 illustrates an electroplating process in accordance with one embodiment of the present application. The electroplating process of the present invention will be described below with reference to Figs. 2 and 3.
  • Electroplating of the electrochromic layer and the ion storage layer is preferably carried out by means of the three-electrode plating system 16 shown in FIG.
  • the three-electrode plating system 16 includes a counter electrode 9 and a reference electrode 10 and includes an electrochemical analyzer system 11 and a power supply source 13.
  • the conductive yarn 14 is connected to the three-electrode system 16 (connected to the negative output terminal 12 of the power supply source 13) as shown and immersed in the plating solution 15 for plating.
  • the example method includes the following steps:
  • Formulating a plating solution mixing a metal powder, an oxidizing agent (for example, hydrogen peroxide), a dispersing solvent (for example, 1:1 water and isopropyl alcohol), and preferably, a certain amount of a catalyst (for example, platinum powder) to uniformly react the mixture , obtaining a solution including impurities and metal/alloy oxide required for electroplating, and obtaining a plating solution after depositing/filtering off impurities (S100);
  • an oxidizing agent for example, hydrogen peroxide
  • a dispersing solvent for example, 1:1 water and isopropyl alcohol
  • a catalyst for example, platinum powder
  • Plating immersing the conductive yarn in a plating solution for electroplating (for example, using a three-electrode plating system), the plating time may be 1-15 minutes, and the temperature may be room temperature (S200);
  • Drying take out the conductive yarn, rinse the excess plating solution on the surface with water, and dry it, for example, hanging to dry (S300);
  • Annealing The dried conductive yarn is subjected to warm annealing, for example, an annealing time of 15 to 90 minutes, and a temperature of 60 to 100 ° C (S400).
  • the (inorganic) electrochromic layer 4 and the (inorganic) ion storage layer 17 in the present invention are applied to the flexible conductive yarns 5, 14, 17 by electroplating by an electroplating process.
  • the color uniformity of the electrochromic yarn 6 and the ion storage yarn 18 of the electrochromic layer 4 and the ion storage layer 17 are not significantly different, and the flexibility and formability of the flexible yarn are retained and Has good fastness (electrochromic layer and ion storage layer are not easy to fall off).
  • the above-described embodiments exemplarily describe the electroplating process of the electrochromic yarn 6, and the ion storage yarn 18 can be obtained by the same electroplating process.
  • the electrochromic device 7 of the invention has particular utility, in particular all or part of an article (especially textiles, fabrics) can be formed, for example electrochromic yarns and ion storage yarns can be embedded in/on the fabric of the textile product.
  • a weave pattern is formed.
  • the electrochromic layer 4 in the electrochromic device 7 is located on the outer surface of the conductive yarn 5 (more preferably, the electrochromic yarn 6 can be embedded outside the fabric so that its discoloration can be observed, and the ion storage yarn 18 Can be embedded inside/inside the fabric so that the exterior is not visible).
  • the ion storage layer 17 can be stored by absorbing external hydrogen ions, lithium ions and/or sodium ions in the environment 3 and releasing the absorbed ions to the electrochromic layer 4 by changing the polarity of the voltage to cause the electrochromic layer 4 Discoloration.
  • the electrochromic yarn 6 and the ion storage yarn 18 are arranged in parallel (e.g., incorporated into/on the fabric) in parallel. There may be a distance between the electrochromic yarn 6 and the ion storage yarn 18 (eg, environment 3 (or external environment) may be present), or may be in contact (eg, in the thickness of the electrochromic layer 4 and the ion storage layer 17). Enough for insulation). Any number of electrochromic yarn-ion storage yarn pairs may be present, depending on the desired weave pattern and display effect.
  • the electrochromic elements and devices of the present invention can be embedded/bonded into umbrellas, jacket fabrics, swimwear fabrics, lab coats, and the like into corresponding articles. It can also be embedded/incorporated into other articles depending on the desired application.
  • This embodiment provides an exemplary electroplating process for the electrochromic yarn 6, comprising the following steps:
  • Electroplating A three-electrode plating system 16 using Pt and Ag/AgCl as the counter electrode 9 and the reference electrode 10 and including the electrochemical analyzer system 11 and the power supply source 13.
  • the conductive yarn 14 is attached to the three-electrode system 16 and immersed in the plating solution 15 prepared as above. Electroplating was performed using 0.5 V using an electrochemical analyzer system 11, and deposition was performed for 200 seconds.
  • Annealing The dried yarn 14 was annealed at 80 ° C for an annealing time of 45 minutes.
  • the ion storage yarn 18 can be obtained in a similar electroplating process, and the obtained ion storage yarn 18 and electrochromic yarn 6 are connected to a power source, thereby obtaining an electrochromic device 7.
  • the electrochromic device 7 obtained in this embodiment can be preserved and discolored by absorbing foreign hydrogen, lithium or sodium ions.
  • the electrochromic device 7 exhibits an electrochromic effect in an environment with H + or a liquid with Na + .
  • the electrochromic device 7 of the present application exhibits an electrochromic effect by contacting a sulfuric acid solution (0.1 M).
  • the electrochromic device 7 of the present application exhibits an electrochromic effect by contacting a sulfate gel (0.1 M).
  • the electrochromic device 7 of the present embodiment has an operating voltage of -0.8 V to +0.8 V.
  • the electrochromic layer 4 absorbs ions in the environment and is approximately black. Conversely, by changing the polarity, in the case of a positive voltage, the electrochromic layer 4 can release the absorbed ions and become approximately transparent.
  • Figure 4 schematically illustrates this process. This electrochromic process can be repeated.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

一种电致变色元件、装置、制品及制造方法。电致变色装置(7)包括:电致变色纱(6)、离子储存纱(18)和电源(8),电致变色纱(6)包含第一柔性导电纱(5)和涂布于第一柔性导电纱(5)的表层上的电致变色层(4),离子储存纱(18)包含第二柔性导电纱(1)和涂布于第二柔性导电纱(1)的表层上的离子储存层(17),第一柔性导电纱(5)与电源(8)的负极电连接,第二柔性导电纱(1)与电源(8)的正极电连接。电致变色装置(7)能实现清晰的显色效果,且使电致变色材料具有良好的牢度。制备方法操作简易,易实现工业化批量生产。

Description

电致变色元件、装置、制品及其制造和使用方法 技术领域
本发明属于纺织电致变色技术领域,特别地涉及电致变色装置及其制造和使用方法。
背景技术
在二十一世纪,可穿戴式装置已经变成了人们生活中不可或缺的一部分。穿戴式装置的成功,间接推动了智能衣物的需求。随着追踪生命迹象的智能衣物的出现,有更多的机构开始着手研究更多智能衣物的应用。其中,最为火热的是智能衣物显示器。因此,近几年,大量的研究都集中在纤维状器件与材料及其在织物上的应用,越来越多的产品与科技成果被集成在服装上,这都使得产品的使用更加贴近生活并且更加方便。
目前的电致变色纺织物工艺日趋成熟,把纤维状器件做到柔性和电致变色已经不成问题。但是,在现有的技术中,用于纤维状器件的电致变色层,主要是由一层较厚的有机聚合物组成,而且该变色层不是位于衣物/织物的表层。在应用到纺织物时,不但会影响到智能纺织物的外观和舒适性,而且会令纺织物的造型有所限制。另一方面,现有涂布在纺织物上的电致变色层的制备方法仅限于溶胶-凝胶、喷墨印刷和转移印花等方法,这导致生产电致变色纺织品过程中的步骤繁琐,不利于批量生产。
发明内容
不同于现有技术,本申请采用的一种新颖的电致变色纱线结构,例如,采用无机电致变色材料涂覆(涂层)的导电纱与表面上涂布了离子储存层的离子储存纱(作为反电极)的组合。此外,与上述现有技术的电致变色层不同,本申请没有采用本领域中目前通常使用的制备方法以及有机电致变色材 料涂层,而是采用了还未被纺织电致变色技术领域使用的电镀工艺。该工艺直接把无机电致变色材料(如金属氧化物和/或合金氧化物)电镀在导电纱上。电镀是一个低成本和快速的过程,所形成的电致变色材料层的厚度相对于有机电致变色材料较薄。而且,由于电致变色材料通过电镀直接涂布在导电纱的表层上,所以在应用到纺织物时,能实现较清晰的显色效果。同时,可以保持导电纱原有的柔性及形态结构,并且所获得的电致变色层具有良好的牢度。
另外,与现有技术的电致变色装置不同,本申请公开的装置的变色层/电致变色(材料)层能够位于单个纱的外层表层上(装置的离子储存(材料)层也可以位于单个纱的外层表层上),该装置的离子储存层可以吸收外来环境中的氢、锂或钠离子并加以保存,且通过改变电压极性向电致变色层释放出已吸收的离子,从而发生电致变色。因此,可将单个电致变色纱和离子储存纱嵌入一般织物上以编织不同图案。电致变色纱并且因此所编织的图案在低电压偏置下因外部离子而变色。本申请的电致变色装置能够在低电压下工作,为低能耗且舒适、安全的电致变色装置。
本申请公开了制造电致变色元件的方法、制造电致变色装置的方法、包含电致变色元件或装置的制品。
根据本申请的第一方面,公开了一种用于制造电致变色元件的方法,包括下列步骤:提供柔性导电纱,所述柔性导电纱包括第一柔性导电纱和第二柔性导电纱;以及以电镀工艺在第一柔性导电纱和第二柔性导电纱上分别涂布电致变色层和离子储存层,以分别制备电致变色纱和离子储存纱,从而获得包括电致变色纱和离子储存纱的电致变色元件。
优选地,电镀工艺包括如下步骤:提供金属粉末、氧化剂和分散溶剂的混合物并使其反应,以获得电镀液;将第一柔性导电纱和第二柔性导电纱浸入电镀液进行电镀;取出第一柔性导电纱和第二柔性导电纱,去除多余的电镀液,并任选地进行干燥;以及对所述第一柔性导电纱和第二柔性导电纱进行退火。
优选地,所述方法还包括将催化剂添加到所述混合物中。
优选地,用于制备所述电致变色纱或所述离子储存纱的金属粉末选自:钛、钒、铌、钽、铬、钼、钨、锰、铁、钴、铑、锇、铪、镍或其任何组合。
优选地,采用三电极电镀系统进行电镀。
优选地,电镀在室温下进行,持续1-15分钟。
优选地,退火时间为15-90分钟,并且温度为60-100℃。
优选地,柔性导电纱包括由金属制造的柔性导电纱。
优选地,柔性导电纱包括由导电材料赋予导电性的柔性非导电有机聚合物。
优选地,所述柔性非导电有机聚合物包括尼龙、涤纶、氨纶、纤维或前述的任何组合。
根据本申请的第二方面,公开了一种制造电致变色装置的方法,所述方法包括:
根据本发明上述第一方面的任一实施方案所述的方法制造包括电致变色纱和离子储存纱的电致变色元件;提供电源;以及将电源与第一柔性导电纱和第二第一柔性导电纱电连接。
优选地,将电源的正极与第二柔性导电纱电连接,并且将电源的负极与第一柔性导电纱电连接。
根据本申请的第三个方面,公开了一种电致变色装置,包括:电致变色纱、离子储存纱和电源,所述电致变色纱包含第一柔性导电纱和涂布于所述第一柔性导电纱的表层上的电致变色层,所述离子储存纱包含第二柔性导电纱和涂布于所述第二柔性导电纱的表层上的离子储存层,并且所述第一柔性导电纱与电源的负极电连接,所述第二柔性导电纱与电源的正极电连接。
优选地,所述电致变色纱和离子储存纱根据本发明上述第一方面的任一实施例所述的方法制造。
优选地,所述电致变色装置在低电压下工作。
优选地,所述低电压为-0.8V至+0.8V。
优选地,所述第一柔性导电纱和/或所述第二柔性导电纱由金属制成。
优选地,所述第一柔性导电纱和/或所述第二柔性导电纱包括由导电材料 赋予导电性的柔性非导电有机聚合物。
优选地,所述柔性非导电有机聚合物包括尼龙、涤纶、氨纶、纤维或前述的任何组合。
优选地,所述电致变色层包括无机金属氧化物或合金氧化物或其组合。
优选地,所述离子储存层包括无机金属氧化物或合金氧化物或其组合。
优选地,所述电致变色装置在带有氢、锂和/或钠离子的外部环境下发生电致变色。
根据本发明的第四方面,公开了一种包括根据本发明上述第一方面的任一实施方案的方法制造的电致变色元件或根据本发明上述第二方面的任一实施方案的方法制造的电致变色装置或根据本发明上述第三方面的任一实施方案所述的电致变色装置的制品。
优选地,所述制品为纺织类产品。
优选地,所述电致变色纱和所述离子储存纱被嵌入纺织类产品的织物上以形成编织图案。
优选地,所述电致变色纱被嵌入在织物外侧而所述离子储存纱被嵌入在织物内侧,使得在所述纺织类产品被用户穿戴时,电致变色元件的变色能从外部观察到。
优选地,所述制品用于指示外部环境存在氢、锂和/或钠离子的指示器。
根据本申请的第五方面,公开了使用根据本申请第四方面的任一实施方案所述的制品的方法,包括以下步骤:主动地或被动地使所述制品与包含氢、锂和/或钠离子的外部液体环境接触,所述离子储存纱上的离子储存层在存在电压的情况下吸收外部液体环境中的氢、锂和/或钠离子;以及改变所施加的电压的极性,以使离子储存层向所述电致变色层释放吸收的离子以发生电致变色。
该装置可以实现多次循环变色,并具有特别的实用性,且制备方法操作简易,易实现工业化批量生产,在变色纺织品及其它变色领域应用潜力广泛。
附图说明
为了更清楚地说明本发明,下面将结合附图对本发明进行更详细的介绍。显而易见地,下面描述中的附图仅仅示意了本发明的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施方案,而不偏离本发明的精神,其中:
图1为根据本申请实施例的电致变色装置的示意图。
图2为在根据本申请实施例中所使用的三电极电镀系统的示意图。
图3为根据本申请实施例的示意性电镀流程图。
图4是根据本申请一个实施方案的示出改变电压极性前后的变化结果的示意图。
具体实施方式
下面将结合实施例,对本发明进行更加清楚、完整的示例性描述。
电致变色纱和离子储存纱
如图1所示,电致变色装置7包括电致变色纱6和离子储存纱18,电致变色纱6和离子储存纱18也可以统称为电致变色元件。电致变色纱6包括导电纱5和位于(例如涂布/涂覆于)导电纱5表层/表面上的电致变色层4(或称为电致变色材料层/涂层)。离子储存纱18包括导电纱1和位于(例如涂布/涂覆于)导电纱1表层/表面上的离子储存层17(或称为离子储存材料层/涂层)。
导电纱1、5优选地是柔性的(在这种情况下称为柔性导电纱),能够在表层/表面被涂布有电致变色层(或材料)和离子储存层(或材料)之后保留原有的柔性及形态结构,以便于结合到一般的织物材料中。此处“结合”是指嵌入/编织/针织等将电致变色纱和离子储存纱形成为织物的一部分或者使其进入织物中/上或者使其作为织物的组成部分的动作。柔性导电纱可以包含或可以是金属,例如由金属制成,或者是包括由导电材料(例如金属)赋予导电性的柔性非导电有机聚合物。柔性非导电有机聚合物可包括尼龙、涤纶、氨纶、纤维或前述的任何组合。
优选地,本发明中使用的柔性导电纱1、5由金属制成,或者是以导电材料涂布/浸渍导电材料(例如金属颗粒)而赋予导电性的柔性纱。在柔性导电纱1、5是以非导电材料涂布/浸渍导电材料而赋予导电性的柔性导电纱的情况下,可使用的纱的材料包括非导电有机聚合物,例如尼龙、涤纶、氨纶、纤维或前述的任何组合。在这种情况下,柔性导电纱1、5中的示例性导电金属颗粒包括银、铜、金、铁、铝、锌、镍、锡及包含前述金属中的至少之一的组合的颗粒。在柔性导电纱1、5由金属制成的情况下,可例如使用铁和铁合金,例如不锈钢(碳、铁和铬的合金)。在一个实施例中,导电纱1、5是以银涂布的尼龙纱。
导电纱的电阻率通常可以为~300Ω/m,但并不限于此。根据具体应用,本领域技术人员可以选择合适的电阻率。除了基于制造考虑和预期用途的实用考虑外,对导电纱的长度和宽度(横截面直径)没有特别的限制。纱的最大横截面直径可为2纳米或更大,例如高达2厘米。在一个实施方案中,纱的最大横截面直径可为约5-500微米。例如,可以根据电致变色纱和离子储存纱要被嵌入/编织入的织物的纤维/纱/质地或其他考量来选择导电纱的宽度(直径)。
本发明所形成的电致变色纱和离子储存纱与被涂布电致变色层或离子储存层之前的导电纱相比,在直径上用肉眼观察无显著变化。此外,所形成的电致变色纱和离子存储纱与一般织物手感差别较小,从而用户感受较为舒适。
电致变色层4和离子储存层17包括金属氧化物或合金氧化物或其组合。优选地,电致变色层4和离子储存层17包括钛、钒、铌、钽、铬、钼、钨、锰、铁、钴、铑、锇、铪、镍或其任何组合的氧化物和/或合金氧化物。在一个实施方案中,电致变色层4包括氧化钨(WO 3)。在一个实施方案中,离子储存层17也包括氧化钨(WO 3)。电致变色层4和离子储存层17的材料可以相同或不同。取决于所连接的电源电极的极性,本发明的柔性导电纱经电镀金属氧化物后可以作为电致变色纱或离子储存纱。在一个更加具体的实施方案中,本发明的柔性导电纱经电镀金属氧化物后当连接到电源负极时作为电致变色纱,而当连接到电源正极时作为离子储存纱。
电致变色装置
如图1所示,本发明的电致变色装置的基本结构包括电致变色纱6和离子储存纱18以及与电致变色纱6和离子储存纱18电连接的电源8。在物理上,电源8的正负极连接到导电纱1、5的导电材料/结构上。
优选地,电致变色纱6和离子储存纱18在应用中(例如,结合到织物中/上)是平行排布的。电致变色纱6和离子储存纱18之间可以存在一定距离(例如其间可以存在环境3(或称为外部环境)),或者可以相互接触(例如,在电致变色层4和离子储存层17的厚度足以绝缘的情况下)。可以存在任意数量的电致变色纱-离子储存纱对,这取决于期望的编织图案和显示效果。
在环境3中存在外部离子(优选地,氢、锂和/或钠离子)的情况下,通过向导电纱1、5供以电压,离子储存层17能够吸收环境3中的外来离子,在这之后,通过改变所施加的电压的极性,使离子储存层17向电致变色层3释放已吸收的离子从而发生电致变色。
电镀
如图1所示,电致变色装置7包括电致变色纱6、离子储存纱18和与电致变色纱6和离子储存纱18电连接的电源8,其中优选地将电致变色材料层4和离子储存层17以电镀的工艺分别涂布在导电纱1、5的外层表面上来形成电致变色纱6和离子储存纱18,其中电致变色材料层4包含无机电致变色材料/涂层,离子储存层17包含无机离子储存材料/涂层。
图2为在根据本申请的一个实施方案中所使用的三电极电镀系统16的示意图。图3示意了根据本申请的一个实施方案的电镀流程。下面结合图2和图3说明本发明的电镀工艺。
优选借助图2所示的三电极电镀系统16来实施电致变色层和离子储存层的电镀。三电极电镀系统16包括反电极9和参考电极10并且包括电化学分析仪系统11和电力供应源13。将导电纱14如图所示地连接到三电极系统16(连接到电力供应源13的负极输出端12)并浸入电镀液15中进行电镀。
下面说明电镀方法,如图3所示,示例方法包括如下步骤:
配制电镀液:将金属粉末、氧化剂(例如过氧化氢)、分散溶剂(例如1:1的水和异丙醇)以及优选地,一定量的催化剂(例如铂粉)混合均匀,使混合物发生反应,得到包括杂质和电镀所需要的金属/合金氧化物的溶液,在沉积/过滤掉杂质之后得到电镀液(S100);
电镀:将导电纱浸入电镀液进行电镀(例如,利用三电极电镀系统),电镀时间可以为1-15分钟,温度可以为室温(S200);
干燥:取出导电纱,用水冲洗表面上多余的电镀液,并干燥,例如悬挂晾干(S300);以及
退火:对经干燥的导电纱进行加温退火,例如退火时间为15-90分钟,且温度为60-100℃(S400)。
通过电镀工艺,本发明中的(无机)电致变色层4和(无机)离子储存层17以电镀的方式涂布在柔性导电纱5、14、17上。感官上来说,电镀了电致变色层4和离子储存层17的电致变色纱6和离子储存纱18的纱的颜色均匀度没有明显差异,并且保留了柔性纱的柔性和可造型性而且还具有良好牢度(电致变色层和离子储存层不易脱落)。特别指出的是,上述的实施方案示例性地描述了电致变色纱6的电镀工艺,而离子储存纱18可采用相同的电镀工艺获得。
制品
本发明的电致变色装置7具有特别的实用性,尤其可以形成制品(特别是纺织品、织物)的全部或一部分,例如电致变色纱和离子储存纱可以嵌入纺织类产品的织物中/上以形成编织图案。例如,电致变色装置7中的电致变色层4位于导电纱5的外层表面(更优选地,电致变色纱6可以嵌入在织物外侧,以便能观察到其变色,而离子储存纱18可以嵌入在织物内部/内侧,使得外部不可见)。离子储存层17可以通过吸收环境3中的外来的氢离子、锂离子和/或钠离子加以储存并且通过改变电压极性而向电致变色层4释放出所吸收的离子而使电致变色层4变色。
如上所述,优选地,电致变色纱6和离子储存纱18在应用中(例如,结合到织物中/上)是平行排布的。电致变色纱6和离子储存纱18之间可以存在一定距离(例如可以存在环境3(或称为外部环境)),或者可以接触(例如,在电致变色层4和离子储存层17的厚度足以绝缘的情况下)。可以存在任意数量的电致变色纱-离子储存纱对,这取决于期望的编织图案和显示效果。
举例来说,本发明的电致变色元件和装置可以嵌入/结合到伞面上、冲锋衣面料、泳衣面料、实验工作服面料等中成为相应的制品。取决于期望应用,还可以嵌入/结合到其他制品中。
使用方法
主动地或被动地使本发明的制品或装置与包含氢、锂和/或钠离子的外部液体环境接触(例如,雨滴(可能是酸雨,包含氢离子)下落到包含电致变色元件/装置的伞面上,用户出汗(包括钠离子)而浸湿包含电致变色元件/装置的衣服面料,不明液体(可能是酸,包含氢离子和其他离子)泼洒到包含电致变色元件/装置的实验工作服面料上,或者主动地使包含电致变色元件/装置的物品/制品,例如布与包含氢、锂和/或钠离子的外部液体环境接触),当向所述第一柔性导电纱和第二柔性导电纱施加电压时,所述离子储存纱上的离子储存层吸收外部液体环境中的氢、锂和/或钠离子,而后改变所施加的电压的极性,使离子储存层向所述电致变色层释放吸收的离子从而发生电致变色。
上述制品的使用可以认为是作为指示器/警示器,证明/指示目标离子的存在。
下面通过实施例进一步对本发明进行说明。
实施例1
本实施例提供了一种示例性的电致变色纱6的电镀工艺,包括如下步骤:
1、配制电镀液:将钨粉(1.8克,美国Alfa Aeser)与H 2O 2(氧化剂)溶液(30%,60mL,Tokyo Chemical Industry,日本)、水和铂(催化剂)混 合,并持续搅拌12小时。该溶液搅拌、反应后变成淡黄色。在过滤沉淀物后,获得WO 3固体被除去的澄清溶液(电镀液15)。
2、电镀:利用三电极的电镀系统16,其以Pt和Ag/AgCl为反电极9和参考电极10并且包括电化学分析仪系统11和电力供应源13。将导电纱14连接到三电极系统16,并浸在如上制备的电镀液15内。利用电化学分析仪系统11,使用0.5V进行电镀,进行200秒沉积。
3、干燥:从电镀液15中取出纱14,用去离子水冲洗残留在纱14上的多余电镀液,悬挂晾干。
4、退火:将经干燥的纱14以80℃进行加温退火,退火时间为45分钟。
可以以类似的电镀工艺获得离子储存纱18,并将获得的离子储存纱18和电致变色纱6与电源连接,从而获得电致变色装置7。
本实施例获得的电致变色装置7可以通过吸收外来的氢、锂或钠离子加以保存并变色。所述电致变色装置7在带有H +或带有Na +的液体的环境展现出电致变色效果。在一个实施例中,本申请的电致变色装置7通过接触硫酸溶液(0.1M)展现出电致变色效果。在另一个实施例中,本申请的电致变色装置7通过接触硫酸凝胶(0.1M)展现出电致变色效果。
本实施例的电致变色装置7的工作电压为-0.8V至+0.8V。在本实施例中,在施加负电压的情况下,电致变色层4吸收环境中的离子,并近似呈黑色。相反,通过改变极性,在正电压的情况下,电致变色层4可以释放出已吸收的离子,变成近似透明的。图4示意性地示出该过程。该电致变色过程可以重复进行。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方案,上述的具体实施方案仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多其它形式,这些均属于本发明的保护之内。此外应理解,在阅读了本发明的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定 的范围。

Claims (28)

  1. 一种用于制造电致变色元件的方法,其特征在于,所述方法包括下列步骤:
    提供柔性导电纱,所述柔性导电纱包括第一柔性导电纱和第二柔性导电纱;以及
    以电镀工艺在第一柔性导电纱和第二柔性导电纱上分别涂布电致变色层和离子储存层,以分别制备电致变色纱和离子储存纱,从而获得包括电致变色纱和离子储存纱的电致变色元件。
  2. 根据权利要求1所述的方法,所述电镀工艺包括如下步骤:
    提供金属粉末、氧化剂和分散溶剂的混合物并使其反应,以获得电镀液;
    将所述第一柔性导电纱和所述第二柔性导电纱浸入所述电镀液进行电镀;
    取出所述第一柔性导电纱和所述第二柔性导电纱,去除多余的电镀液,并任选地进行干燥;以及
    对所述第一柔性导电纱和所述第二柔性导电纱进行退火。
  3. 根据权利要求2所述的方法,还包括将催化剂添加到所述混合物中。
  4. 根据权利要求2或3所述的方法,其特征在于,用于制备所述电致变色纱或所述离子储存纱的所述金属粉末选自:钛、钒、铌、钽、铬、钼、钨、锰、铁、钴、铑、锇、铪、镍或其任何组合。
  5. 根据权利要求2或3所述的方法,其特征在于,采用三电极电镀系统进行电镀。
  6. 根据权利要求2或3所述的方法,其特征在于,电镀在室温下进行,持续1-15分钟。
  7. 根据权利要求2或3所述的方法,其特征在于,退火时间为15-90分钟,并且温度为60-100℃。
  8. 根据权利要求1-3中任一项所述的方法,其特征在于,所述柔性导电纱包括由金属制造的柔性导电纱。
  9. 根据权利要求1-3中任一项所述的方法,其特征在于,所述柔性导电纱包括由导电材料赋予导电性的柔性非导电有机聚合物。
  10. 根据权利要求9所述的方法,其特征在于,所述柔性非导电有机聚合物包括尼龙、涤纶、氨纶、纤维或前述的任何组合。
  11. 一种制造电致变色装置的方法,其特征在于,所述方法包括:
    根据权利要求1-10中任一项所述的方法制造包括电致变色纱和离子储存纱的电致变色元件;
    提供电源;以及
    将电源与第一柔性导电纱和第二柔性导电纱电连接。
  12. 根据权利要求11所述的方法,其特征在于,将电源的正极与第二柔性导电纱电连接,并且将电源的负极与第一柔性导电纱电连接。
  13. 一种电致变色装置,其特征在于,包括:电致变色纱、离子储存纱和电源,所述电致变色纱包含第一柔性导电纱和涂布于所述第一柔性导电纱的表层上的电致变色层,所述离子储存纱包含第二柔性导电纱和涂布于所述第二柔性导电纱的表层上的离子储存层,并且所述第一柔性导电纱与所述电源的负极电连接,所述第二柔性导电纱与所述电源的正极电连接。
  14. 根据权利要求13所述的电致变色装置,其特征在于,所述电致变色纱和离子储存纱根据权利要求1-10中任一项所述的方法制造。
  15. 根据权利要求13或14所述的电致变色装置,其特征在于,所述电致变色装置在低电压下工作。
  16. 根据权利要求15所述的电致变色装置,其特征在于,所述低电压为-0.8V至+0.8V。
  17. 根据权利要求13或14所述的电致变色装置,其特征在于,所述第一柔性导电纱和/或所述第二柔性导电纱由金属制成。
  18. 根据权利要求13或14所述的电致变色装置,其特征在于,所述第一柔性导电纱和/或所述第二柔性导电纱包括由导电材料赋予导电性的柔性非导电有机聚合物。
  19. 根据权利要求18所述的电致变色装置,其特征在于,所述柔性非 导电有机聚合物包括尼龙、涤纶、氨纶、纤维或前述的任何组合。
  20. 根据权利要求13或14所述的电致变色装置,其特征在于,所述电致变色层包括无机金属氧化物或合金氧化物或其组合。
  21. 根据权利要求13或14所述的电致变色装置,其特征在于,所述离子储存层包括无机金属氧化物或合金氧化物或其组合。
  22. 根据权利要求13或14所述的电致变色装置,其特征在于,所述电致变色装置在带有氢、锂和/或钠离子的外部环境下发生电致变色。
  23. 一种包括根据权利要求1-10中任一项所述的方法制造的电致变色元件或根据权利要求11-12中任一项所述的方法制造的电致变色装置或根据权利要求13-22中任一项所述的电致变色装置的制品。
  24. 根据权利要求23所述的制品,其特征在于,所述制品为纺织类产品。
  25. 根据权利要求23或24所述的制品,其特征在于,所述电致变色纱和所述离子储存纱被嵌入纺织类产品的织物上以形成编织图案。
  26. 根据权利要求25所述的制品,其特征在于,所述电致变色纱被嵌入在织物外侧而所述离子储存纱被嵌入在织物内侧,使得在所述纺织类产品被用户穿戴时,电致变色元件的变色能从外部观察到。
  27. 根据权利要求23或24所述的制品,其特征在于,所述制品用于指示外部环境存在氢、锂和/或钠离子的指示器。
  28. 使用根据权利要求23-27中任一项所述的制品的方法,包括以下步骤:
    主动地或被动地使所述制品与包含氢、锂和/或钠离子的外部液体环境接触,所述离子储存纱上的离子储存层在存在电压的情况下吸收外部液体环境中的氢、锂和/或钠离子;和
    改变所施加的电压的极性,以使离子储存层向所述电致变色层释放吸收的离子以发生电致变色。
PCT/CN2018/082579 2018-04-10 2018-04-10 电致变色元件、装置、制品及其制造和使用方法 WO2019196020A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/733,737 US11868018B2 (en) 2018-04-10 2018-04-10 Electrochromic elements, devices and products, and methods for manufacturing and utilizing the same
PCT/CN2018/082579 WO2019196020A1 (zh) 2018-04-10 2018-04-10 电致变色元件、装置、制品及其制造和使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082579 WO2019196020A1 (zh) 2018-04-10 2018-04-10 电致变色元件、装置、制品及其制造和使用方法

Publications (1)

Publication Number Publication Date
WO2019196020A1 true WO2019196020A1 (zh) 2019-10-17

Family

ID=68163442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082579 WO2019196020A1 (zh) 2018-04-10 2018-04-10 电致变色元件、装置、制品及其制造和使用方法

Country Status (2)

Country Link
US (1) US11868018B2 (zh)
WO (1) WO2019196020A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830090A (zh) * 2010-03-29 2010-09-15 中国人民解放军总后勤部军需装备研究所 一种基于反射型电致变色器件的变色迷彩织物及其制备方法
CN102759835A (zh) * 2012-07-18 2012-10-31 西安科技大学 一种纤维状柔性电致变色器件及其制备方法
CN103257501A (zh) * 2012-02-16 2013-08-21 中国人民解放军总后勤部军需装备研究所 一种基于聚苯胺的电致变色织物及其制备方法
CN103496233A (zh) * 2013-09-27 2014-01-08 上海工程技术大学 一种新型电致变色双层织物的制备方法
US20160258110A1 (en) * 2015-03-04 2016-09-08 Umm AI-Qura University Method of making conductive cotton using organic conductive polymer
CN106773437A (zh) * 2017-03-14 2017-05-31 武汉纺织大学 一种电致变色织物及其制备方法
CN107024814A (zh) * 2017-02-09 2017-08-08 中国科学技术大学 一种电致变色器件及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016356A1 (en) * 1993-01-05 1994-07-21 Martin Marietta Corporation Improved electrode for display devices
US5779657A (en) * 1995-07-21 1998-07-14 Daneshvar; Yousef Nonstretchable wound cover and protector
US6072619A (en) * 1999-03-22 2000-06-06 Visson Ip, Llc Electro-optical light modulating device
US20040201878A1 (en) * 2002-07-25 2004-10-14 Enki Technologies Llc Electrooptic devices
US20050137542A1 (en) * 2003-12-19 2005-06-23 Kimberly-Clark Worldwide, Inc. Live graphics on absorbent articles using electrochromic displays
US20060281382A1 (en) * 2005-06-10 2006-12-14 Eleni Karayianni Surface functional electro-textile with functionality modulation capability, methods for making the same, and applications incorporating the same
EP2095442A4 (en) * 2006-11-29 2011-08-17 Mahiar Hamedi INTEGRATED ELECTRONIC CIRCUITS
TW200907129A (en) * 2007-08-14 2009-02-16 Ming-Tsai Liang Electrochromic fiber and electrochromic fabric
EP2414892B1 (en) * 2009-03-31 2014-06-11 University of Connecticut Flexible electrochromic device, electrodes therefor, and method of manufacture
WO2012118588A2 (en) * 2011-03-02 2012-09-07 University Of Connecticut Stretchable devices and methods of manufacture and use thereof
KR102550736B1 (ko) * 2015-10-02 2023-07-04 삼성전자주식회사 스마트 의류, 사용자 단말, 이를 포함하는 시스템 및 스마트 의류의 디자인 변경방법
US10273600B1 (en) * 2017-08-24 2019-04-30 Apple Inc. Devices having fabric with adjustable appearance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830090A (zh) * 2010-03-29 2010-09-15 中国人民解放军总后勤部军需装备研究所 一种基于反射型电致变色器件的变色迷彩织物及其制备方法
CN103257501A (zh) * 2012-02-16 2013-08-21 中国人民解放军总后勤部军需装备研究所 一种基于聚苯胺的电致变色织物及其制备方法
CN102759835A (zh) * 2012-07-18 2012-10-31 西安科技大学 一种纤维状柔性电致变色器件及其制备方法
CN103496233A (zh) * 2013-09-27 2014-01-08 上海工程技术大学 一种新型电致变色双层织物的制备方法
US20160258110A1 (en) * 2015-03-04 2016-09-08 Umm AI-Qura University Method of making conductive cotton using organic conductive polymer
CN107024814A (zh) * 2017-02-09 2017-08-08 中国科学技术大学 一种电致变色器件及其制备方法
CN106773437A (zh) * 2017-03-14 2017-05-31 武汉纺织大学 一种电致变色织物及其制备方法

Also Published As

Publication number Publication date
US11868018B2 (en) 2024-01-09
US20210033940A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CN105826570B (zh) 一种导电无纺布及其制备方法和用途
Li et al. Lightweight, highly bendable and foldable electrochromic films based on all-solution-processed bilayer nanowire networks
CN103462602B (zh) 一种用于测试心电信号的纺织电极的制备方法
He et al. Surface functionalization of Ag/polypyrrole-coated cotton fabric by in situ polymerization and magnetron sputtering
CN108597892A (zh) 一种纳米多孔铜负载形貌可控铜基氧化物复合材料及其制备方法及应用
Liu et al. A flexible and knittable fiber supercapacitor for wearable energy storage with high energy density and mechanical robustness
CN107680707B (zh) 一种核壳结构的复合金属纳米线及其制备方法与应用
Bobade et al. Nanoarchitectonics of Bi2CuO4 electrodes for asymmetric Bi2CuO4//AC solid-state device in supercapacitor application
CN112768257A (zh) 一种镍钴氧化物柔性电极及其制备方法和应用
WO2019196020A1 (zh) 电致变色元件、装置、制品及其制造和使用方法
Mierzwa et al. Electrochemistry and spectroelectrochemistry with electrospun indium tin oxide nanofibers
CN110764330A (zh) 一种柔性长丝电致变色纤维及其制备方法和用途
Joshi et al. Review of indium-free, transparent and flexible metallic fibers for wearable electronics
Shahidi et al. In situ deposition of nickel nano particles on polyester fabric and its application as a flexible electrode in supercapacitor
CN110361902B (zh) 电致变色元件、装置、制品及其制造和使用方法
Prasad et al. Molybdenum induced defective WO3 multifunctional nanostructure as an electrochromic energy storage device: Novel assembled photovoltaic-electrochromic Mo–WO3 film
CN110389479A (zh) 用于涂覆电致变色薄膜的电沉积法以及电致变色器件
CN109087817A (zh) 一种基于柔性涤纶线衬底的电极及其制备方法和可穿戴超级电容器
CN108877992A (zh) 一种基于超长银铂合金空心纳米线透明导电电极的制备方法
CN108400020A (zh) 一类层状钙钛矿型纳米氧化物的超级电容器电极材料
Zhao et al. Ultrasound-assisted preparation of highly dispersion sulfonated graphene and its antistatic properties
CN103346017B (zh) 一种染料敏化太阳能电池光阳极及其制备方法
Cheng et al. Fabrication of the Ag/silk fibers for electrically conductive textiles
CN109183393A (zh) 石墨烯改性导电蛋白质纤维及其制备方法和用途
CN109853240A (zh) 一种复合导电纤维及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914335

Country of ref document: EP

Kind code of ref document: A1