WO2019194371A1 - Method for controlling air conditioning system - Google Patents

Method for controlling air conditioning system Download PDF

Info

Publication number
WO2019194371A1
WO2019194371A1 PCT/KR2018/010139 KR2018010139W WO2019194371A1 WO 2019194371 A1 WO2019194371 A1 WO 2019194371A1 KR 2018010139 W KR2018010139 W KR 2018010139W WO 2019194371 A1 WO2019194371 A1 WO 2019194371A1
Authority
WO
WIPO (PCT)
Prior art keywords
cop
basic
operation value
modified
control configuration
Prior art date
Application number
PCT/KR2018/010139
Other languages
French (fr)
Korean (ko)
Inventor
김대형
김선택
사용철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019194371A1 publication Critical patent/WO2019194371A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans

Definitions

  • the present invention relates to a control method of an air conditioning system.
  • An air conditioning system is a system for maintaining air in a predetermined space in a state most suitable for use and purpose.
  • the air conditioning system includes a compressor, a condenser, an expansion device, and an evaporator, and a refrigerant cycle for performing the compression, condensation, expansion, and evaporation processes of the refrigerant is driven to cool or heat the predetermined space.
  • the predetermined space may be variously proposed according to the place where the air conditioning system is used.
  • the predetermined space may be an indoor space of a house or a building.
  • the predetermined space may be a boarding space in which a person boards.
  • the air conditioning system includes an indoor unit disposed in the predetermined space and an outdoor unit connected to form the indoor unit and the refrigerant cycle. Such an air conditioning system can provide harmonized air for the convenience of the user.
  • the applicant has applied for a technology related to an air conditioning system as follows.
  • Patent No. 10-1203559 Air Conditioning System with Group Control and Its Operation Method
  • the air conditioning system has a problem in that it operates so that a relatively large amount of power is consumed.
  • the efficiency is changed according to the installation conditions there is a problem that the user's reliability is lowered.
  • the present invention provides a control method of an air conditioning system that is operated to have a maximum COP at all times regardless of the installation place and installation conditions.
  • step by step to derive the operating state having the maximum COP step by step to derive the operating state having the maximum COP, and provides a control method of the air conditioning system that is operated to have the maximum COP.
  • the step of inputting the power and the set temperature the step of measuring the outdoor temperature, the indoor temperature and the outdoor humidity, the set temperature, the outdoor temperature, the indoor temperature and the outdoor humidity Determining a required amount of heat according to the method, initializing a plurality of control elements to provide the same amount of supply heat as the required amount of heat, calculating an initial COP by dividing the supply heat amount by power consumption, and an operation value of the control element.
  • the step of adjusting the maximum COP is derived.
  • the control configuration includes an inverter compressor and a fan
  • the operating value of the control configuration includes an operating frequency of the inverter compressor and a rotation speed of the fan.
  • the control configuration is operated to the basic operation value
  • the step of calculating the basic COP by dividing the amount of heat supplied by the power consumption and the control configuration to the The operation may be performed by changing from a basic operation value to a modified operation value, and calculating a modified COP by dividing the supply calories by power consumption.
  • the air conditioning system can be operated to have a maximum COP at all times.
  • FIG. 1 is a view showing the configuration of an air conditioning system according to an embodiment of the present invention.
  • FIG. 2 is a view showing a control configuration of an air conditioning system according to an embodiment of the present invention.
  • FIG. 3 is a view showing a basic control flow of the air conditioning system according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a control flow in which a maximum COP of an air conditioning system according to a first embodiment of the present invention is derived.
  • FIG. 5 is a diagram illustrating a control flow for deriving a maximum COP of an air conditioning system according to a second embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a control flow for deriving a maximum COP of an air conditioning system according to a third embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • the air conditioning system 10 may include at least one outdoor unit and at least one indoor unit.
  • the air conditioning system 10 may include at least one outdoor unit and at least one indoor unit.
  • the air conditioning system 10 includes an outdoor heat exchanger 11, a compressor 12, an indoor heat exchanger 13, and expansion valves 14 and 15. do.
  • the outdoor heat exchanger 11, the compressors 12 and 20, the indoor heat exchanger 13 and the expansion valves 14 and 15 are connected by a refrigerant pipe.
  • the outdoor heat exchanger 11 may be disposed in the outdoor space so that heat exchange between the outdoor air and the refrigerant is performed.
  • the air conditioning system 10 further includes a fan 30 installed at one side of the outdoor heat exchanger 11. By the operation of the fan 30, the outdoor air may be forced convection to heat exchange with the outdoor heat exchanger (11).
  • the compressors 12 and 20 correspond to a configuration for compressing the flowing refrigerant.
  • the compressor includes a constant speed compressor 12 having a constant compression capacity and an inverter compressor 20 having a variable compression capacity.
  • the indoor heat exchanger 13 may be disposed in an indoor space such that heat exchange between indoor air and a refrigerant occurs.
  • the indoor space may be understood as a space in which the air conditioning system 10 is installed to provide harmonious air.
  • the indoor heat exchanger 13 may be provided in plurality. Each indoor heat exchanger 13 may be arranged in different spaces, and the air conditioning system 10 may match air in different spaces.
  • FIG. 1 three indoor heat exchangers 13 are exemplarily illustrated, but the number of the indoor heat exchangers 13 is not limited thereto.
  • an indoor fan for forced convection of indoor air may be installed at one side of the indoor heat exchanger 13.
  • the expansion valves 14 and 15 include an outdoor expansion valve 14 installed adjacent to the outdoor heat exchanger 11 and an indoor expansion valve 15 installed adjacent to the indoor heat exchanger 13. do.
  • the outdoor expansion valve 14 and the indoor expansion valve 15 may be configured as a valve that can adjust the opening degree, such as an electronic expansion valve (EEV).
  • EEV electronic expansion valve
  • the indoor expansion valve 15 is provided in a number corresponding to the indoor heat exchanger 13 provided in plurality, it may be installed on one side of each indoor heat exchanger (13).
  • the indoor expansion valve 15 is operated to selectively block the refrigerant flowing into each indoor heat exchanger 13 depending on whether the indoor heat exchanger 13 is operated.
  • the air conditioning system 10 includes an accumulator 16 for filtering liquid refrigerant from among refrigerants flowing toward the compressor 12, and a flow direction of the refrigerant discharged from the compressor 12 in the outdoor heat exchanger. Further included is a flow diverting unit 17 for selectively converting to the unit 11 or the indoor heat exchanger 13.
  • the flow direction of the refrigerant by the flow switching unit 17 may be switched.
  • the flow switching unit 17 flows the refrigerant discharged from the compressor 12 to the indoor heat exchanger 13.
  • the indoor expansion valve 15 is fully open and the outdoor expansion valve 14 is partially open.
  • the refrigerant passing through the indoor heat exchanger 13 passes through the indoor expansion valve 15 without changing its state, expands while passing through the outdoor expansion valve 14, and then flows into the outdoor heat exchanger 11. Can be.
  • the flow switching unit 17 flows the refrigerant discharged from the compressor 12 to the outdoor heat exchanger 11.
  • the outdoor expansion valve 14 is fully open, and the indoor expansion valve 15 is partially open.
  • the refrigerant passing through the outdoor heat exchanger 11 passes through the outdoor expansion valve 14 without changing its state, expands while passing through the indoor expansion valve 15, and then flows into the indoor heat exchanger 13. Can be.
  • the air conditioning system 10 further includes a refrigerant amount adjusting unit for adjusting the flow amount of the refrigerant circulating in the refrigeration cycle.
  • the refrigerant amount adjusting unit includes a receiver 18 for storing at least a portion of the refrigerant circulating in the refrigerating cycle, and a receiver valve 40 for adjusting the amount of refrigerant flowing into the receiver 18.
  • the receiver 18 is understood as an apparatus capable of storing at least some of the refrigerant circulating in the air conditioning system 10, such as a tank in which the refrigerant is received.
  • the receiver valve 40 may be installed at one side of the receiver 18 to adjust the amount of refrigerant stored in the receiver 18.
  • the receiver valve 40 is installed only on the inflow side of the receiver 18, but the receiver valve 40 may be installed in various positions and forms.
  • the receiver valve 40 may be configured as a valve that can adjust the opening degree, such as an electromagnetic expansion valve (EEV).
  • EEV electromagnetic expansion valve
  • FIG. 1 shows an exemplary form constituting the air conditioning system according to the spirit of the present invention, each configuration may be added or omitted.
  • FIG. 2 is a view showing a control configuration of an air conditioning system according to an embodiment of the present invention.
  • the air conditioning system 10 As shown in FIG. 2, the air conditioning system 10 according to the spirit of the present invention is provided with a controller 100 for controlling various configurations.
  • the air conditioning system 10 includes user input units 50 and 51 for transmitting a predetermined command to the controller 100 and measurement units 52, 53, and 54 for transmitting predetermined information.
  • the user input units 50 and 51 may be understood as a configuration in which predetermined information is input to the air conditioning system 10 by a user.
  • the user input units 50 and 51 include a power supply unit 50 for inputting ON / OFF of the air conditioning system 10 and a setting temperature input unit 51 for inputting a set temperature required for the harmonic space.
  • the air conditioning system 10 may be automatically turned on / off or a set temperature may be automatically input.
  • the user input units 50 and 51 may further include a configuration in which various modes are input.
  • the measuring units 52, 53, and 54 may be understood as configurations in which various pieces of information related to the harmonic space are measured.
  • the measuring unit 52, 53, 54 includes an outdoor temperature sensor 52, an indoor temperature sensor 53, and an indoor humidity sensor 54.
  • the outdoor temperature sensor 52 may be installed at the suction side of the outdoor heat exchanger 11 to measure the outdoor temperature.
  • the indoor temperature sensor 53 and the indoor humidity sensor 54 may be installed at the suction side of the indoor heat exchanger 13 to measure the indoor temperature and the indoor humidity, respectively.
  • the controller 100 may control various configurations through commands or information transmitted from the user input units 50 and 51 and the measurement units 52, 53, and 54.
  • the controller 100 may control the inverter compressor 20, the fan 30, and the receiver valve 40 at each stage.
  • the first stage of the inverter compressor 20 is 130HZ and may be increased by 1HZ for each stage. That is, the sixth step of the inverter compressor 20 may correspond to 135HZ.
  • the first stage of the fan 30 is 700 RPM, and may be increased by 50 RPM for each stage.
  • the first stage of the receiver valve 40 may be a state in which the refrigerant flowing into the receiver 18 is completely blocked when the opening degree is zero.
  • the air conditioning system 10 includes a memory unit 55 storing various data.
  • the memory unit 55 may store an experimental operation value related to the operation of the air conditioning system 10. For example, an operating value for operating the air conditioning system 10 to have a maximum COP under a predetermined condition may be stored.
  • COP Coefficient Of Performance
  • the operation value stored in the memory unit 55 corresponds to a value having a maximum COP when the air conditioning system 10 is installed in a laboratory having a predetermined condition. That is, when the air conditioning system 10 is installed in another place, the operation having the maximum COP may not be performed as the operation value stored in the memory unit 55.
  • the present invention controls the air conditioning system 10 to operate with the maximum COP at any place.
  • the control method of the air conditioning system 10 will be described in detail.
  • FIG. 3 is a view showing a basic control flow of the air conditioning system according to an embodiment of the present invention.
  • a power source and a set temperature are input (S10). As described above, it may be input by the user through the power supply unit 50 and the set temperature input unit 51.
  • outdoor temperature, indoor temperature and outdoor humidity are measured (S20).
  • the outdoor temperature sensor 52, the indoor temperature sensor 53, and the indoor humidity sensor 54 may be measured and information about the same may be transmitted.
  • the required heat amount is determined according to the input set temperature, the measured outdoor temperature, the indoor temperature, and the outdoor humidity input as described above (S30). Such control is performed in a general air conditioning system, and a detailed description thereof will be omitted.
  • a plurality of control configurations are initially operated to provide the same amount of supply heat as the required amount of heat (S40).
  • the operation of the plurality of control configurations to the operating value stored in the memory unit 55 is referred to as initial operation.
  • the operating value stored in the memory unit 55 corresponds to a value having a maximum COP when the air conditioning system 10 is installed in a laboratory.
  • the plurality of control configurations correspond to the devices constituting the air conditioning system 10.
  • the plurality of control configurations correspond to the configuration that affects the COP of the air conditioning system 10.
  • the COP may be adjusted as the operation values of the plurality of control configurations are adjusted.
  • the supply heat amount is calculated by subtracting the subcooled enthalpy from the discharge enthalpy in the heating operation, and is calculated by subtracting the subcooled enthalpy from the suction enthalpy in the cooling operation.
  • Such calculation is performed in a general air conditioning system, and detailed description thereof will be omitted.
  • the operation value is changed (S55).
  • the changed value may be smaller than the change value of each step described above.
  • the operating value of the inverter compressor 20 may be changed by 0.5 HZ or the operating value of the fan 30 may be changed by 10 RPM.
  • the difference between the supply calorie and the required calorie is within the predetermined range. For example, it is determined that the difference between the supply calories and the required calories is equal to or less than 2%.
  • the evaporation pressure, the condensation pressure, the suction temperature, and the discharge temperature of the refrigerant are stabilized when they are not controlled. For example, when the evaporation pressure, the condensation pressure, the suction temperature, and the discharge temperature of the refrigerant are not adjusted for more than 3% for 5 minutes, it may be determined that the refrigerant is stable.
  • the air conditioning system 10 according to the spirit of the present invention is operated to derive the maximum COP (S60). At this time, the air conditioning system 10 adjusts the operation value of the control configuration to derive the maximum COP.
  • the maximum COP when the maximum COP is derived, a value at which the plurality of control configurations are operated is stored (S70). At this time, the operation value of the control configuration is referred to as the maximum operation value. Accordingly, when the same set temperature, the outdoor temperature, the indoor temperature and the outdoor humidity are input, the maximum COP derivation process may be omitted and the control configuration may be operated at the maximum operating value.
  • FIG. 4 is a diagram illustrating a control flow in which a maximum COP of an air conditioning system according to a first embodiment of the present invention is derived.
  • the air conditioning system 10 is operated at a basic operation value (S601).
  • the basic operation value may include the initial operation value. That is, when such a step is first performed, the basic operation value corresponds to the operation value stored in the memory unit 55.
  • the basic COP is calculated by dividing the amount of heat supplied by the consumed power (S602).
  • the basic COP may be referred to as an initial COP.
  • the air conditioning system 10 is operated by changing the operation value of the control configuration (S603).
  • the changed operation value is referred to as a modified operation value. That is, the control configuration is changed from the basic operation value to the modified operation value and operated.
  • the modified COP is calculated by dividing the amount of heat supplied by the power consumed (S604).
  • the supply heat amount is the same value as the required heat amount determined according to the input, the basic COP and the modified COP vary according to the power consumed.
  • the basic COP and the modified COP are compared (S605).
  • the control configuration is operated at the basic operation value
  • the correction COP is high
  • the control configuration is operated at the correction operation value.
  • the air conditioning system 10 may be operated with a new modified operation value (S602), calculate a new modified COP (S603), and compare it with the basic COP (S604).
  • the control arrangement continues to operate at the correction operation value.
  • the basic operation value is changed to the corrected operation value and stored (S607). That is, the corrected operation value becomes a new basic operation value.
  • the air conditioning system is operated again with the basic operation value (S601).
  • the basic operation value corresponds to a value different from the basic operation value in the previous step.
  • the basic COP is calculated again by dividing the supply heat by the power consumption (S602).
  • the air conditioning system 10 is operated by changing from the basic operation value to a new modified operation value (S603), and dividing the supply heat amount by power consumption to calculate a new modified COP (S604). Then, the newly calculated basic COP and the modified COP are compared (S605).
  • the air conditioning system 10 performs the steps S601 to S605 repeatedly to derive the maximum COP.
  • whether the maximum COP is determined may be determined by comparing the basic COP with the modified COP when the basic COP is higher than a predetermined number of times (S606).
  • the basic COP may be stored as the maximum COP, and the basic operation value from which the maximum COP is derived may be stored as the maximum operation value.
  • the coefficient of the control structure which affects the air conditioning system 10 COP value is limited, and the operation value of the control structure is adjusted within a limited range. That is, since the number of adjustable correction operation values is limited, the maximum COP can be derived when the steps S601 to S605 are repeatedly performed more than a predetermined number of times.
  • FIG. 5 is a diagram illustrating a control flow for deriving a maximum COP of an air conditioning system according to a second embodiment of the present invention.
  • the operating value of the control configuration includes the operating frequency of the inverter compressor 20 and the rotational speed of the fan 30, the operation value can be adjusted for each step.
  • X A, B
  • the operating values of the inverter compressor 20 and the fan 30 are numerically limited. Such numerical ranges are exemplary and are not limited thereto.
  • the inverter compressor 20 and the fan 30 are operated in the first to tenth stages.
  • the first stage of the inverter compressor 20 is 130HZ and is increased by 1HZ for each stage.
  • the first stage of the fan 30 is 700 RPM, and is increased by 50 RPM for each stage.
  • a basic operation value S611
  • the basic operation value is the initial operation value.
  • a basic COP that is, an initial COP is calculated by dividing the amount of heat supplied to consumed power (S612).
  • the initial operation value is a sixth stage of the inverter compressor 20 and a third stage of the fan 30. That is, the air conditioning system 10 is initially operated such that the inverter compressor 20 is operated at 135 HZ and the fan 30 is operated at 800 RPM.
  • the air conditioning system 10 is operated by changing the operation value of the control arrangement. First, the operation frequency of the inverter compressor 20 is increased by one step, and the rotational speed of the fan 30 is decreased by one step (S613). As such, the inverter compressor 20 and the fan 30 may be adjusted in different directions to maintain the supply capacity and to stabilize the system.
  • the inverter compressor 20 is operated in a seventh stage and the fan 30 is changed in a second stage.
  • the modified COP is calculated by dividing the supply heat by the consumed power (S614).
  • the basic COP and the modified COP are compared (S615).
  • the control arrangement continues to operate at the correction operation value. This may be understood as changing the operation value of the inverter compressor 20 to increase the operation value of the fan 30 to increase the COP.
  • the basic operation value is changed to the corrected operation value and stored (S616). That is, the seventh stage of the inverter compressor 20 and the second stage of the fan 30 are stored as basic operation values.
  • the air conditioning system 10 increases the operation frequency of the inverter compressor 20 again by one step and decreases the rotational speed of the fan 30 by one step (S613). Accordingly, the inverter compressor 20 is operated in the eighth stage and the fan 30 is operated in the first stage.
  • the operating value of the control configuration can be continuously raised or lowered in the direction in which the COP is raised. This may be done continuously until the COP is no longer raised or outside the range of rise and fall.
  • the control range of the control configuration is widely specified, and the control is determined according to the change of the COP value. Therefore, in FIG. 5, the case where the control configuration is out of the range of rise and fall is omitted.
  • the control configuration is again driven to the basic operating value (S621). That is, the inverter compressor 20 is operated in a sixth stage and the fan 30 is changed in a third stage. This may be understood as changing the operation value of the inverter compressor 20 to increase the operation value of the fan 30 to lower the COP.
  • the operation frequency of the inverter compressor 20 is decreased by one step, and the rotational speed of the fan 30 is increased by one step (S623). That is, the operation values of the inverter compressor 20 and the fan 30 are changed in a direction different from the previous one.
  • a modified COP is calculated by dividing the supply heat amount by the consumed power (S624), and comparing the basic COP with the modified COP (S625).
  • the control arrangement continues to operate at the correction operation value. That is, the inverter compressor 20 is operated in the fifth stage, and the fan 30 is operated in the fourth stage. This may be understood as changing the operating value of the inverter compressor 20 to lower the operating value of the fan 30 and raising the COP.
  • the basic operation value is changed to the corrected operation value and stored (S626). That is, the fifth stage of the inverter compressor 20 and the fourth stage of the fan 30 are stored as basic operation values.
  • the air conditioning system 10 again lowers the operation frequency of the inverter compressor 20 by one step and increases the rotational speed of the fan 30 by one step (S623). Accordingly, the inverter compressor 20 is operated in the fourth stage and the fan 30 is operated in the fifth stage. That is, as described above, the operation value of the control configuration can be continuously raised or lowered in the direction in which the COP is raised.
  • the basic COP is stored as the maximum COP without changing the operation values of the inverter compressor 20 and the fan 30 anymore (S630).
  • the air conditioning system 10 may derive the maximum COP by increasing or decreasing the operating values of the inverter compressor 20 and the fan 30.
  • FIG. 6 is a diagram illustrating a control flow for deriving a maximum COP of an air conditioning system according to a third embodiment of the present invention.
  • the operation value of the control configuration includes the opening amount of the receiver valve 40, the operation value can be adjusted for each step.
  • the air conditioning system 10 is operated with a basic operation value (S631), and a basic COP is calculated (S632).
  • the basic operating value may correspond to an operating value having the maximum COP derived in FIG. 5. That is, the maximum COP of the system is derived by changing the operation value of the receiver valve 40 at the maximum COP that can be derived by increasing or decreasing the operation values of the inverter compressor 20 and the fan 30.
  • the air conditioning system 10 may derive the maximum COP by changing operating values of the inverter compressor 20, the fan 30, and the receiver valve 40. At this time, the operating value of the inverter compressor 20 and the fan 30 which have a relatively large influence on the COP value may be adjusted first, and then the operating value of the receiver valve 40 may be adjusted.
  • the opening amount of the receiver valve 40 is increased by one step (S633).
  • the modified COP is calculated by dividing the supply heat by the consumed power (S634).
  • the basic COP and the modified COP are compared (S635).
  • the control arrangement continues to operate at the correction operation value. It can be understood that the change to increase the opening amount of the receiver valve 40 raises the COP.
  • the basic operation value is changed to the corrected operation value and stored (S636).
  • the air conditioning system 10 increases the opening amount of the receiver valve 40 again (S633). That is, the opening amount of the receiver valve 40 can be continuously increased in the direction in which the COP is raised.
  • the opening amount of the receiver valve 40 is lowered by one step (S643). That is, the operation value of the receiver valve 40 is changed in a direction different from the previous one.
  • the modified COP is calculated by dividing the amount of heat supplied by the consumed power (S644), and comparing the basic COP with the modified COP (S645).
  • the control arrangement continues to operate at the correction operation value. It can be understood that the change to lower the opening amount of the receiver valve 40 raises the COP.
  • the air conditioning system 10 lowers the opening amount of the receiver valve 40 by one step (S643). That is, the opening amount of the receiver valve 40 can be continuously lowered in the direction in which the COP is raised.
  • the basic COP is stored as the maximum COP without changing the opening amount of the receiver valve 40 anymore (S650).
  • the air conditioning system 10 may derive the maximum COP by increasing or decreasing the operation values of the inverter compressor 20, the fan 30, and the receiver valve 40.

Abstract

The present invention relates to a method for controlling an air conditioning system. The method for controlling an air conditioning system, according to idea of the present invention, comprises the steps of: inputting power and a set temperature; measuring outdoor temperature, indoor temperature, and outdoor humidity; determining a required heat quantity according to the set temperature, the outdoor temperature, the indoor temperature, and the outdoor humidity; initially operating a plurality of control components so as to provide a supply heat quantity which is the same as the required heat quantity; calculating an initial COP by dividing the supply heat quantity by power consumption; and deriving a maximum COP by regulating an operation value of the control components. The control component includes an inverter compressor and a fan, and the operation value of the control component includes the operation frequency of the inverter compressor and the rotational speed of the fan.

Description

공기조화시스템의 제어방법Control method of air conditioning system
본 발명은 공기조화시스템의 제어방법에 관한 것이다.The present invention relates to a control method of an air conditioning system.
공기조화시스템은 소정공간의 공기를 용도, 목적에 따라 가장 적합한 상태로 유지하기 위한 시스템이다. 일반적으로, 공기조화시스템에는, 압축기, 응축기, 팽창장치 및 증발기가 포함되며, 냉매의 압축, 응축, 팽창 및 증발과정을 수행하는 냉매사이클이 구동되어, 상기 소정공간을 냉방 또는 난방할 수 있다.An air conditioning system is a system for maintaining air in a predetermined space in a state most suitable for use and purpose. In general, the air conditioning system includes a compressor, a condenser, an expansion device, and an evaporator, and a refrigerant cycle for performing the compression, condensation, expansion, and evaporation processes of the refrigerant is driven to cool or heat the predetermined space.
이때, 상기 소정공간은 상기 공기조화시스템이 사용되는 장소에 따라, 다양하게 제안될 수 있다. 예를 들어, 상기 공기조화시스템이 가정이나 사무실에서 사용되는 경우, 상기 소정공간은 집 또는 건물의 실내 공간일 수 있다. 또한, 상기 공기조화시스템이 자동차에 사용되는 경우, 상기 소정공간은 사람이 탑승하는 탑승 공간일 수 있다.In this case, the predetermined space may be variously proposed according to the place where the air conditioning system is used. For example, when the air conditioning system is used in a home or an office, the predetermined space may be an indoor space of a house or a building. In addition, when the air conditioning system is used in a car, the predetermined space may be a boarding space in which a person boards.
상기 공기조화시스템에는 상기 소정공간에 배치되는 실내기와 상기 실내기와 냉매사이클을 형성하도록 연결되는 실외기가 구비된다. 이와 같은 공기조화시스템은 사용자에게 편의를 주도록 조화된 공기를 제공할 수 있다.The air conditioning system includes an indoor unit disposed in the predetermined space and an outdoor unit connected to form the indoor unit and the refrigerant cycle. Such an air conditioning system can provide harmonized air for the convenience of the user.
본 출원인은 다음과 같이 공기조화시스템에 관한 기술을 출원한 바 있다.The applicant has applied for a technology related to an air conditioning system as follows.
(1) 제 1 선행문헌 : 공개특허 10-2015-0097174호, 공기조화장치의 리모트 컨트롤 유닛 및 이를 포함하는 공기조화장치(1) First prior document: Korean Patent Laid-Open Publication No. 10-2015-0097174, a remote control unit of an air conditioner and an air conditioner including the same
(2) 제 2 선행문헌 : 등록특허 10-1203559호, 그룹제어가 가능한 공기조화시스템 및 그 동작방법(2) Second Prior Art: Patent No. 10-1203559, Air Conditioning System with Group Control and Its Operation Method
이와 같은 선행문헌들은 공기조화시스템을 제어하여 사용자에게 조화된 공기를 제공한다. 이때, 상기 제 1 선행문헌 및 상기 제 2 선행문헌은 입력되는 설정온도에 따라 각종 제어구성들이 동일하게 동작되도록 제어된다. 이는 실험에 의해 저장된 값에 따라 소비전력이 최소가 되는 최대COP를 갖도록 제어되는 것으로 이해될 수 있다.These prior documents control the air conditioning system to provide harmonious air to the user. At this time, the first prior literature and the second prior literature are controlled so that various control configurations are operated in the same manner according to the set temperature input. It can be understood that it is controlled to have a maximum COP at which the power consumption is minimum according to the value stored by the experiment.
그러나, 이와 같은 공기조화시스템은 설치되는 장소에 따라 조건이 매우 달라질 수 있다. 즉, 설치된 장소에 따라 실험에 의한 값은 최대COP를 갖도록 운전되는 값에 해당되지 않을 수 있다.However, such an air conditioning system may have very different conditions depending on where it is installed. That is, according to the installed place, the value obtained by the experiment may not correspond to the value operated to have the maximum COP.
그에 따라, 공기조화시스템은 비교적 많은 전력이 소모되도록 운전되는 문제점이 있다. 또한, 설치조건에 따라 효율이 변경되어 사용자의 신뢰성이 낮아지는 문제점이 있다.Accordingly, the air conditioning system has a problem in that it operates so that a relatively large amount of power is consumed. In addition, the efficiency is changed according to the installation conditions there is a problem that the user's reliability is lowered.
본원발명은 설치되는 장소 및 설치조건과 무관하게 언제나 최대COP를 갖도록 운전되는 공기조화시스템의 제어방법을 제공한다.The present invention provides a control method of an air conditioning system that is operated to have a maximum COP at all times regardless of the installation place and installation conditions.
또한, 입력조건에 따라 인버터 압축기 및 팬 등을 단계별로 제어하여 최대COP를 갖는 운전상태를 도출하고, 최대COP를 갖도록 운전되는 공기조화시스템의 제어방법을 제공한다.In addition, by controlling the inverter compressor, fan, etc. according to the input conditions step by step to derive the operating state having the maximum COP, and provides a control method of the air conditioning system that is operated to have the maximum COP.
본 발명의 사상에 따른 공기조화시스템의 제어방법에는 전원 및 설정온도가 입력되는 단계, 실외온도, 실내온도 및 실외습도가 측정되는 단계, 상기 설정온도, 상기 실외온도, 상기 실내온도 및 상기 실외습도에 따라 요구열량이 결정되는 단계, 상기 요구열량과 동일한 공급열량을 제공하도록 복수의 제어구성이 초기운전되는 단계, 상기 공급열량을 소비전력으로 나누어 초기COP가 계산되는 단계 및 상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계가 포함된다. 이때, 상기 제어구성에는 인버터 압축기 및 팬이 포함되고, 상기 제어구성의 운전값에는, 상기 인버터 압축기의 운전주파수 및 상기 팬의 회전속도가 포함된다.In the control method of the air conditioning system according to the spirit of the present invention, the step of inputting the power and the set temperature, the step of measuring the outdoor temperature, the indoor temperature and the outdoor humidity, the set temperature, the outdoor temperature, the indoor temperature and the outdoor humidity Determining a required amount of heat according to the method, initializing a plurality of control elements to provide the same amount of supply heat as the required amount of heat, calculating an initial COP by dividing the supply heat amount by power consumption, and an operation value of the control element. The step of adjusting the maximum COP is derived. In this case, the control configuration includes an inverter compressor and a fan, and the operating value of the control configuration includes an operating frequency of the inverter compressor and a rotation speed of the fan.
또한, 상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는, 상기 제어구성이 기본운전값으로 운전되고, 상기 공급열량을 소비전력으로 나누어 기본COP가 계산되는 단계 및 상기 제어구성이 상기 기본운전값에서 수정운전값으로 변경되어 운전되고, 상기 공급열량을 소비전력으로 나누어 수정COP가 계산되는 단계가 포함될 수 있다.Further, in the step of deriving the maximum COP by adjusting the operation value of the control configuration, the control configuration is operated to the basic operation value, the step of calculating the basic COP by dividing the amount of heat supplied by the power consumption and the control configuration to the The operation may be performed by changing from a basic operation value to a modified operation value, and calculating a modified COP by dividing the supply calories by power consumption.
또한, 상기 기본COP와 상기 수정COP를 비교하는 단계 및 상기 기본COP가 높은 경우 상기 제어구성이 상기 기본운전값으로 운전되고, 상기 수정COP가 높은 경우, 상기 제어구성이 상기 수정운전값으로 운전되는 단계가 포함될 수 있다.In addition, comparing the basic COP and the modified COP and when the basic COP is high, the control configuration is operated at the basic operation value, and when the correction COP is high, the control configuration is operated at the correction operation value. Steps may be included.
이러한 본 발명에 의하면, 공기조화시스템은 항상 최대COP를 갖도록 운전될 수 있다는 장점이 있다.According to the present invention, the air conditioning system can be operated to have a maximum COP at all times.
그에 따라, 상기 공기조화시스템의 운전에 따라 소비되는 전력이 최소화되는 장점이 있다.Accordingly, there is an advantage that the power consumed by the operation of the air conditioning system is minimized.
또한, 최대COP를 갖는 운전상태를 저장하여, 동일한 제어조건의 경우 바로 최대COP를 갖는 운전을 할 수 있다는 장점이 있다.In addition, by storing the operating state having the maximum COP, there is an advantage that the operation having the maximum COP can be performed immediately under the same control condition.
또한, 항상 최대COP를 갖도록 운전되기 때문에 사용자의 신뢰성을 확보할 수 있다는 장점이 있다.In addition, there is an advantage that it is possible to ensure the reliability of the user because it is always operated to have the maximum COP.
도 1은 본 발명의 일 실시 예에 따른 공기조화시스템의 구성을 도시한 도면이다.1 is a view showing the configuration of an air conditioning system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따른 공기조화시스템의 제어구성을 도시한 도면이다.2 is a view showing a control configuration of an air conditioning system according to an embodiment of the present invention.
도 3은 본 발명의 일 실시 예에 따른 공기조화시스템의 기본제어흐름을 도시한 도면이다.3 is a view showing a basic control flow of the air conditioning system according to an embodiment of the present invention.
도 4는 본 발명의 제 1 실시 예에 따른 공기조화시스템의 최대COP가 도출되는 제어흐름을 도시한 도면이다.4 is a diagram illustrating a control flow in which a maximum COP of an air conditioning system according to a first embodiment of the present invention is derived.
도 5는 본 발명의 제 2 실시 예에 따른 공기조화시스템의 최대COP가 도출되는 제어흐름을 도시한 도면이다.FIG. 5 is a diagram illustrating a control flow for deriving a maximum COP of an air conditioning system according to a second embodiment of the present invention.
도 6은 본 발명의 제 3 실시 예에 따른 공기조화시스템의 최대COP가 도출되는 제어흐름을 도시한 도면이다.FIG. 6 is a diagram illustrating a control flow for deriving a maximum COP of an air conditioning system according to a third embodiment of the present invention.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present invention, when it is determined that a detailed description of a related well-known configuration or function interferes with the understanding of the embodiments of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the components of the embodiment of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be "connected", "coupled" or "connected".
도 1은 본 발명의 일 실시 예에 의한 공기조화시스템의 구성을 도시한 도면이다. 상기 공기조화시스템(10)에는, 적어도 하나의 실외기 및 적어도 하나의 실내기가 구비될 수 있다. 이하에서는 설명의 편의상 실외기 및 실내기로 구분하지 않고 냉매사이클을 형성하는 각 구성으로 설명한다.1 is a view showing the configuration of an air conditioning system according to an embodiment of the present invention. The air conditioning system 10 may include at least one outdoor unit and at least one indoor unit. Hereinafter, for convenience of description, each configuration for forming a refrigerant cycle without being divided into an outdoor unit and an indoor unit will be described.
도 1에 도시된 바와 같이, 본 발명의 사상에 따른 공기조화시스템(10)에는, 실외 열교환기(11), 압축기(12), 실내 열교환기(13) 및 팽창밸브(14, 15)가 포함된다. 또한, 상기 실외 열교환기(11), 압축기(12, 20), 실내 열교환기(13) 및 팽창밸브(14, 15)는 냉매배관에 의해 연결된다.As shown in FIG. 1, the air conditioning system 10 according to the spirit of the present invention includes an outdoor heat exchanger 11, a compressor 12, an indoor heat exchanger 13, and expansion valves 14 and 15. do. In addition, the outdoor heat exchanger 11, the compressors 12 and 20, the indoor heat exchanger 13 and the expansion valves 14 and 15 are connected by a refrigerant pipe.
상기 실외 열교환기(11)는 실외 공기 및 냉매 간의 열교환이 이루어지도록 실외공간에 배치될 수 있다. 또한, 상기 공기조화시스템(10)에는, 상기 실외 열교환기(11)의 일 측에 설치된 팬(30)이 더 포함된다. 상기 팬(30)의 작동에 의해 실외공기가 상기 실외 열교환기(11)와 열교환되도록 강제대류될 수 있다.The outdoor heat exchanger 11 may be disposed in the outdoor space so that heat exchange between the outdoor air and the refrigerant is performed. In addition, the air conditioning system 10 further includes a fan 30 installed at one side of the outdoor heat exchanger 11. By the operation of the fan 30, the outdoor air may be forced convection to heat exchange with the outdoor heat exchanger (11).
상기 압축기(12, 20)는 유동되는 냉매를 압축하는 구성에 해당된다. 상기 압축기에는, 압축 용량이 일정하게 유지되는 정속 압축기(12) 및 압축 용량이 가변되는 인버터 압축기(20)가 포함된다.The compressors 12 and 20 correspond to a configuration for compressing the flowing refrigerant. The compressor includes a constant speed compressor 12 having a constant compression capacity and an inverter compressor 20 having a variable compression capacity.
상기 실내 열교환기(13)는 실내 공기 및 냉매 간의 열교환이 이루어지도록 실내공간에 배치될 수 있다. 이때, 실내공간은 상기 공기조화시스템(10)이 조화된 공기를 제공하기 위해 설치되는 공간으로 이해될 수 있다.The indoor heat exchanger 13 may be disposed in an indoor space such that heat exchange between indoor air and a refrigerant occurs. In this case, the indoor space may be understood as a space in which the air conditioning system 10 is installed to provide harmonious air.
이때, 상기 실내 열교환기(13)는 복수 개로 구비될 수 있다. 각각의 실내 열교환(13)는 서로 다른 공간에 배치될 수 있으며, 상기 공기조화시스템(10)은 서로 다른 공간의 공기를 조화시킬 수 있다.At this time, the indoor heat exchanger 13 may be provided in plurality. Each indoor heat exchanger 13 may be arranged in different spaces, and the air conditioning system 10 may match air in different spaces.
도 1에서는 예시적으로 3개의 실내 열교환기(13)를 도시하였으나 상기 실내 열교환기(13)의 개수는 이에 제한되지 않는다. 또한, 상기 실내 열교환기(13)의 일 측에는 실내공기를 강제대류시키는 실내 팬이 설치될 수 있다.In FIG. 1, three indoor heat exchangers 13 are exemplarily illustrated, but the number of the indoor heat exchangers 13 is not limited thereto. In addition, an indoor fan for forced convection of indoor air may be installed at one side of the indoor heat exchanger 13.
상기 팽창밸브(14, 15)에는, 상기 실외 열교환기(11)에 인접하여 설치되는 실외 팽창밸브(14)와, 상기 실내 열교환기(13)에 인접하여 설치되는 실내 팽창밸브(15)가 포함된다. 상기 실외 팽창밸브(14) 및 실내 팽창밸브(15)는 전자팽창밸브(EEV)와 같이 개도를 조절할 수 있는 밸브로 구성될 수 있다.The expansion valves 14 and 15 include an outdoor expansion valve 14 installed adjacent to the outdoor heat exchanger 11 and an indoor expansion valve 15 installed adjacent to the indoor heat exchanger 13. do. The outdoor expansion valve 14 and the indoor expansion valve 15 may be configured as a valve that can adjust the opening degree, such as an electronic expansion valve (EEV).
이때, 상기 실내 팽창밸브(15)는 복수 개로 구비된 상기 실내 열교환기(13)에 대응되는 개수로 마련되어, 각각의 실내 열교환기(13)의 일측에 설치될 수 있다. 상기 실내 팽창밸브(15)는 상기 실내 열교환기(13)의 가동 여부에 따라, 각 실내 열교환기(13)로 유입되는 냉매를 각각 선택적으로 차단할 수 있도록 작동된다. At this time, the indoor expansion valve 15 is provided in a number corresponding to the indoor heat exchanger 13 provided in plurality, it may be installed on one side of each indoor heat exchanger (13). The indoor expansion valve 15 is operated to selectively block the refrigerant flowing into each indoor heat exchanger 13 depending on whether the indoor heat exchanger 13 is operated.
그리고, 상기 공기조화시스템(10)에는, 상기 압축기(12)를 향하여 유동하는 냉매 중 액상의 냉매를 걸러내는 어큐뮬레이터(16)와, 상기 압축기(12)에서 토출되는 냉매의 유동 방향을 상기 실외 열교환기(11) 또는 실내 열교환기(13)로 선택적으로 전환하는 유동전환부(17)가 더 포함된다.The air conditioning system 10 includes an accumulator 16 for filtering liquid refrigerant from among refrigerants flowing toward the compressor 12, and a flow direction of the refrigerant discharged from the compressor 12 in the outdoor heat exchanger. Further included is a flow diverting unit 17 for selectively converting to the unit 11 or the indoor heat exchanger 13.
상기 공기조화시스템(10)의 운전 모드에 따라 상기 유동전환부(17)에 의한 냉매의 유동 방향이 전환될 수 있다.According to the operation mode of the air conditioning system 10, the flow direction of the refrigerant by the flow switching unit 17 may be switched.
상세하게는, 상기 공기조화시스템(10)가 난방 운전되는 경우, 상기 유동전환부(17)는 상기 압축기(12)에서 토출된 냉매를 상기 실내 열교환기(13)로 유동시킨다. 또한, 상기 실내 팽창밸브(15)는 완전히 개방되고 상기 실외 팽창밸브(14)가 부분적으로 개방된다.In detail, when the air conditioning system 10 is heated and operated, the flow switching unit 17 flows the refrigerant discharged from the compressor 12 to the indoor heat exchanger 13. In addition, the indoor expansion valve 15 is fully open and the outdoor expansion valve 14 is partially open.
따라서, 상기 실내 열교환기(13)를 통과한 냉매는 상기 실내 팽창밸브(15)를 상태 변화없이 통과하고, 상기 실외 팽창밸브(14)를 통과하면서 팽창된 후 상기 실외 열교환기(11)로 유입될 수 있다.Therefore, the refrigerant passing through the indoor heat exchanger 13 passes through the indoor expansion valve 15 without changing its state, expands while passing through the outdoor expansion valve 14, and then flows into the outdoor heat exchanger 11. Can be.
반면, 상기 공기조화시스템(10)이 냉방 운전되는 경우, 상기 유동전환부(17)는 상기 압축기(12)에서 토출된 냉매를 상기 실외 열교환기(11)로 유동시킨다. 또한, 상기 실외 팽창밸브(14)는 완전히 개방되고, 상기 실내 팽창밸브(15)가 부분적으로 개방된다.On the other hand, when the air conditioning system 10 is cooled and operated, the flow switching unit 17 flows the refrigerant discharged from the compressor 12 to the outdoor heat exchanger 11. In addition, the outdoor expansion valve 14 is fully open, and the indoor expansion valve 15 is partially open.
따라서, 상기 실외 열교환기(11)를 통과한 냉매는 상기 실외 팽창밸브(14)를 상태 변화없이 통과하고 상기 실내 팽창밸브(15)를 통과하면서 팽창된 후 상기 실내 열교환기(13)로 유입될 수 있다.Therefore, the refrigerant passing through the outdoor heat exchanger 11 passes through the outdoor expansion valve 14 without changing its state, expands while passing through the indoor expansion valve 15, and then flows into the indoor heat exchanger 13. Can be.
또한, 상기 공기조화시스템(10)에는, 냉동 사이클을 순환하는 냉매의 유동량을 조절하기 위한 냉매량 조절부가 더 포함된다. 상세하게는, 상기 냉매량 조절부에는, 상기 냉동 사이클을 순환하는 냉매 중 적어도 일부를 저장하는 리시버(18)와, 상기 리시버(18)로 유입되는 냉매량을 조절하는 리시버 밸브(40)가 포함된다.In addition, the air conditioning system 10 further includes a refrigerant amount adjusting unit for adjusting the flow amount of the refrigerant circulating in the refrigeration cycle. In detail, the refrigerant amount adjusting unit includes a receiver 18 for storing at least a portion of the refrigerant circulating in the refrigerating cycle, and a receiver valve 40 for adjusting the amount of refrigerant flowing into the receiver 18.
상기 리시버(18)는 냉매가 수용되는 탱크와 같이 상기 공기조화시스템(10)을 순환하는 냉매 중 적어도 일부를 저장할 수 있는 장치로서 이해된다. 상기 리시버 밸브(40)는 상기 리시버(18)에 저장되는 냉매량을 조절하도록 상기 리시버(18)의 일 측에 설치될 수 있다.The receiver 18 is understood as an apparatus capable of storing at least some of the refrigerant circulating in the air conditioning system 10, such as a tank in which the refrigerant is received. The receiver valve 40 may be installed at one side of the receiver 18 to adjust the amount of refrigerant stored in the receiver 18.
도 1에서는 상기 리시버 밸브(40)가 상기 리시버(18)의 유입측에만 설치되는 것으로 도시하였으나, 상기 리시버 밸브(40)는 다양한 위치 및 형태로 설치될 수 있다. 예를 들어, 상기 리시버 밸브(40)는 전자팽창밸브(EEV)와 같이 개도를 조절할 수 있는 밸브로 구성될 수 있다.In FIG. 1, the receiver valve 40 is installed only on the inflow side of the receiver 18, but the receiver valve 40 may be installed in various positions and forms. For example, the receiver valve 40 may be configured as a valve that can adjust the opening degree, such as an electromagnetic expansion valve (EEV).
도 1에서는 본 발명의 사상에 따른 공기조화시스템을 구성하는 예시적인 형태를 도시한 것으로, 각 구성이 더해지거나 생략될 수 있다.Figure 1 shows an exemplary form constituting the air conditioning system according to the spirit of the present invention, each configuration may be added or omitted.
도 2는 본 발명의 일 실시 예에 따른 공기조화시스템의 제어구성을 도시한 도면이다.2 is a view showing a control configuration of an air conditioning system according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명의 사상에 따른 공기조화시스템(10)에는 각종 구성을 제어하는 제어부(100)가 구비된다.As shown in FIG. 2, the air conditioning system 10 according to the spirit of the present invention is provided with a controller 100 for controlling various configurations.
또한, 상기 공기조화시스템(10)에는 상기 제어부(100)에 소정의 명령을 전달하는 사용자입력부(50, 51) 및 소정의 정보를 전달하는 측정부(52, 53, 54)가 포함된다.In addition, the air conditioning system 10 includes user input units 50 and 51 for transmitting a predetermined command to the controller 100 and measurement units 52, 53, and 54 for transmitting predetermined information.
상기 사용자입력부(50, 51)는 사용자에 의해 상기 공기조화시스템(10)에 소정의 정보가 입력되는 구성으로 이해될 수 있다. 상기 사용자입력부(50, 51)에는, 상기 공기조화시스템(10)의 ON/OFF가 입력되는 전원부(50) 및 조화공간에 요구되는 설정온도가 입력되는 설정온도입력부(51)가 포함된다.The user input units 50 and 51 may be understood as a configuration in which predetermined information is input to the air conditioning system 10 by a user. The user input units 50 and 51 include a power supply unit 50 for inputting ON / OFF of the air conditioning system 10 and a setting temperature input unit 51 for inputting a set temperature required for the harmonic space.
또한, 사용자에 의한 입력이 없는 경우에도 소정의 조건이 충족되면, 상기 공기조화시스템(10)이 자동으로 ON/OFF되거나 자동으로 설정온도가 입력될 수 있다. 또한, 상기 사용자입력부(50, 51)에는 각종 모드가 입력되는 구성이 더 포함될 수 있다.In addition, even when there is no input by the user, if a predetermined condition is satisfied, the air conditioning system 10 may be automatically turned on / off or a set temperature may be automatically input. In addition, the user input units 50 and 51 may further include a configuration in which various modes are input.
상기 측정부(52, 53, 54)는 조화공간과 관련된 각종 정보가 측정되는 구성으로 이해될 수 있다. 상기 측정부(52, 53, 54)에는, 실외온도센서(52), 실내온도센서(53) 및 실내습도센서(54)가 포함된다.The measuring units 52, 53, and 54 may be understood as configurations in which various pieces of information related to the harmonic space are measured. The measuring unit 52, 53, 54 includes an outdoor temperature sensor 52, an indoor temperature sensor 53, and an indoor humidity sensor 54.
상기 실외온도센서(52)는 실외온도를 측정하도록 상기 실외열교환기(11)의 흡입 측에 설치될 수 있다. 또한, 상기 실내온도센서(53) 및 상기 실내습도센서(54)는 각각 실내온도 및 실내습도를 측정하도록 상기 실내열교환기(13)의 흡입 측에 설치될 수 있다.The outdoor temperature sensor 52 may be installed at the suction side of the outdoor heat exchanger 11 to measure the outdoor temperature. In addition, the indoor temperature sensor 53 and the indoor humidity sensor 54 may be installed at the suction side of the indoor heat exchanger 13 to measure the indoor temperature and the indoor humidity, respectively.
상기 사용자입력부(50, 51) 및 상기 측정부(52, 53, 54)에서 전달된 명령 또는 정보를 통해 상기 제어부(100)는 각종 구성을 제어할 수 있다. 특히, 상기 제어부(100)는 상기 인버터 압축기(20), 상기 팬(30) 및 상기 리시버 밸브(40)를 각 단계로 제어할 수 있다.The controller 100 may control various configurations through commands or information transmitted from the user input units 50 and 51 and the measurement units 52, 53, and 54. In particular, the controller 100 may control the inverter compressor 20, the fan 30, and the receiver valve 40 at each stage.
도 2에 도시된 바와 같이, 상기 인버터 압축기(20), 상기 팬(30) 및 상기 리시버 밸브(40)는 제 1 단계에서 제 X 단계(X = A, B, C) 중 어느 하나로 운전될 수 있다. 예를 들어, 상기 인버터 압축기(20)의 제 1 단계는 130HZ이며 각 단계별로 1HZ씩 증가될 수 있다. 즉, 상기 인버터 압축기(20)의 제 6 단계는 135HZ에 해당될 수 있다.As shown in FIG. 2, the inverter compressor 20, the fan 30 and the receiver valve 40 may be operated in any one of the first stage to the X stage (X = A, B, C). have. For example, the first stage of the inverter compressor 20 is 130HZ and may be increased by 1HZ for each stage. That is, the sixth step of the inverter compressor 20 may correspond to 135HZ.
또한, 예를 들어, 상기 팬(30)의 제 1 단계는 700RPM이며, 각 단계별로 50RPM씩 증가될 수 있다. 또한, 상기 리시버 밸브(40)의 제 1 단계는 개도량이 0인 경우로 상기 리시버(18)로 유입되는 냉매를 완전히 차단한 상태일 수 있다.Also, for example, the first stage of the fan 30 is 700 RPM, and may be increased by 50 RPM for each stage. In addition, the first stage of the receiver valve 40 may be a state in which the refrigerant flowing into the receiver 18 is completely blocked when the opening degree is zero.
또한, 상기 공기조화시스템(10)에는 각종 데이터가 저장된 메모리부(55)가 포함된다. 상기 메모리부(55)에는 상기 공기조화시스템(10)의 동작에 관련된 실험적인 운전값이 저장될 수 있다. 예를 들어, 소정의 조건에서 상기 공기조화시스템(10)이 최대COP를 갖도록 운전되는 운전값이 저장될 수 있다.In addition, the air conditioning system 10 includes a memory unit 55 storing various data. The memory unit 55 may store an experimental operation value related to the operation of the air conditioning system 10. For example, an operating value for operating the air conditioning system 10 to have a maximum COP under a predetermined condition may be stored.
이때, COP(Coefficient Of Performance)는 공기조화시스템의 냉난방성능계수로 이해될 수 있다. 상기 COP는 공기조화시스템에서 공급되는 열량을 소비되는 전력으로 나누어 계산될 수 있다(COP=공급열량/소비전력). 이와 같은 COP는 공기조화시스템의 효율을 결정하는 값으로, 상기 공기조화시스템의 운전에 있어서 가장 중요한 값으로 이해될 수 있다.At this time, COP (Coefficient Of Performance) can be understood as a cooling and heating performance coefficient of the air conditioning system. The COP may be calculated by dividing the amount of heat supplied from the air conditioning system by the amount of power consumed (COP = supply calories / power consumption). This COP is a value that determines the efficiency of the air conditioning system, and can be understood as the most important value in the operation of the air conditioning system.
그러나, 상기 메모리부(55)에 저장된 운전값은 상기 공기조화시스템(10)이 소정의 조건을 갖는 실험실에 설치된 경우 최대COP를 갖는 값에 해당된다. 즉, 상기 공기조화시스템(10)이 다른 장소에 설치되는 경우에는 상기 메모리부(55)에 저장된 운전값으로는 최대COP를 갖는 운전이 되지 않을 수 있다.However, the operation value stored in the memory unit 55 corresponds to a value having a maximum COP when the air conditioning system 10 is installed in a laboratory having a predetermined condition. That is, when the air conditioning system 10 is installed in another place, the operation having the maximum COP may not be performed as the operation value stored in the memory unit 55.
그에 따라, 본 발명은 상기 공기조화시스템(10)이 어느 장소에 설치되어도 최대COP를 갖는 운전을 하도록 제어한다. 이하, 상기 공기조화시스템(10)의 제어방법에 대하여 자세하게 설명한다.Accordingly, the present invention controls the air conditioning system 10 to operate with the maximum COP at any place. Hereinafter, the control method of the air conditioning system 10 will be described in detail.
도 3은 본 발명의 일 실시 예에 따른 공기조화시스템의 기본제어흐름을 도시한 도면이다.3 is a view showing a basic control flow of the air conditioning system according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 전원 및 설정온도가 입력된다(S10). 이는 앞서 설명한 바와 같이, 사용자에 의해 상기 전원부(50) 및 상기 설정온도입력부(51)를 통해 입력될 수 있다.As shown in FIG. 3, a power source and a set temperature are input (S10). As described above, it may be input by the user through the power supply unit 50 and the set temperature input unit 51.
그리고, 실외온도, 실내온도 및 실외습도가 측정된다(S20). 이는 앞서 설명한 바와 같이, 상기 실외온도센서(52), 상기 실내온도센서(53) 및 상기 실내습도센서(54)를 통해 측정되고, 그에 대한 정보가 전달될 수 있다.Then, outdoor temperature, indoor temperature and outdoor humidity are measured (S20). As described above, the outdoor temperature sensor 52, the indoor temperature sensor 53, and the indoor humidity sensor 54 may be measured and information about the same may be transmitted.
이와 같이 입력된 상기 설정온도와 측정된 상기 실외온도, 상기 실내온도 및 상기 실외습도에 따라 요구열량이 결정된다(S30). 이와 같은 제어는 일반적인 공기조화시스템에서 수행되는 것으로 자세한 설명은 생략한다.The required heat amount is determined according to the input set temperature, the measured outdoor temperature, the indoor temperature, and the outdoor humidity input as described above (S30). Such control is performed in a general air conditioning system, and a detailed description thereof will be omitted.
본 발명의 사상에 따른 공기조화시스템은 상기 요구열량과 동일한 공급열량을 제공하도록 복수의 제어구성이 초기운전된다(S40). 이때, 상기 복수의 제어구성이 상기 메모리부(55)에 저장된 운전값으로 운전되는 것을 초기운전이라 한다. 앞서 설명한 바와 같이, 상기 메모리부(55)에 저장된 운전값은 상기 공기조화시스템(10)이 실험실에 설치된 경우 최대COP를 갖는 값에 해당된다.In the air conditioning system according to the spirit of the present invention, a plurality of control configurations are initially operated to provide the same amount of supply heat as the required amount of heat (S40). At this time, the operation of the plurality of control configurations to the operating value stored in the memory unit 55 is referred to as initial operation. As described above, the operating value stored in the memory unit 55 corresponds to a value having a maximum COP when the air conditioning system 10 is installed in a laboratory.
또한, 상기 복수의 제어구성은 상기 공기조화시스템(10)을 구성하는 장치들에 해당된다. 특히, 상기 복수의 제어구성은 상기 공기조화시스템(10)의 COP에 영향을 주는 구성에 해당된다. 자세하게는, 상기 복수의 제어구성의 운전값이 조절됨에 따라 COP가 조절될 수 있다.In addition, the plurality of control configurations correspond to the devices constituting the air conditioning system 10. In particular, the plurality of control configurations correspond to the configuration that affects the COP of the air conditioning system 10. In detail, the COP may be adjusted as the operation values of the plurality of control configurations are adjusted.
또한, 상기 공급열량은, 난방운전의 경우 토출엔탈피에서 과냉엔탈피를 뺀 값으로 계산되고, 냉방운전의 경우 흡입엔탈피에서 과냉엔탈피를 뺀 값으로 계산된다. 이와 같은 계산은 일반적인 공기조화시스템에서 수행되는 것으로 자세한 설명은 생략한다.In addition, the supply heat amount is calculated by subtracting the subcooled enthalpy from the discharge enthalpy in the heating operation, and is calculated by subtracting the subcooled enthalpy from the suction enthalpy in the cooling operation. Such calculation is performed in a general air conditioning system, and detailed description thereof will be omitted.
그리고, 상기 공급열량이 상기 요구열량과 동일한지 여부를 확인한다(S50). 이러한 과정은 상기 공기조화시스템(10)의 운전에서 전제되어야 할 것으로 반복적으로 수행될 수 있다. 즉, 기재의 편의상 해당과정을 한 번만 기재하였으나, 상기 공기조화시스템(10)이 운전되는 동안 상기 공급열량과 상기 요구열량이 동일한지 여부를 계속하여 확인한다.Then, it is checked whether or not the supply heat amount is equal to the required heat amount (S50). This process may be repeatedly performed as to be premised on the operation of the air conditioning system 10. That is, for convenience of description, the corresponding process is described only once, but while the air conditioning system 10 is operated, it is continuously checked whether the supply heat quantity and the required heat quantity are the same.
또한, 상기 공급열량과 상기 요구열량이 동일하지 않은 경우, 운전값을 변경한다(S55). 이때, 변경되는 값은 앞서 설명한 각 단계별 변경 값보다는 작을 수 있다. 예를 들어, 상기 인버터 압축기(20)의 운전값을 0.5HZ씩 변경하거나 상기 팬(30)의 운전값을 10RPM씩 변경할 수 있다.In addition, when the supply heat amount and the required heat amount are not the same, the operation value is changed (S55). In this case, the changed value may be smaller than the change value of each step described above. For example, the operating value of the inverter compressor 20 may be changed by 0.5 HZ or the operating value of the fan 30 may be changed by 10 RPM.
또한, 상기 공급열량과 상기 요구열량의 차이가 소정의 범위 이내인 경우 동일한 것으로 인식할 수 있다. 예를 들어, 상기 공급열량과 상기 요구열량의 차이가 2%이내 인 경우 동일하다고 판단한다.In addition, it can be recognized that the difference between the supply calorie and the required calorie is within the predetermined range. For example, it is determined that the difference between the supply calories and the required calories is equal to or less than 2%.
또한, 상기 공기조화시스템(10)이 안정적으로 운전되는지 여부를 확인할 수 있다. 상기 공기조화시스템(10)이 안정적으로 운전되는지 여부는 냉매의 안정 여부로 판단한다.In addition, it is possible to check whether the air conditioning system 10 is operated stably. Whether the air conditioning system 10 is operated stably is determined whether the refrigerant is stable.
즉, 냉매의 증발압, 응축압, 흡입온도 및 토출온도 등이 조절되지 않는 경우 안정되었다고 판단한다. 예를 들어, 5분 동안 냉매의 증발압, 응축압, 흡입온도 및 토출온도 등이 3%이상 조절되지 않는 경우 냉매가 안정되었다고 판단할 수 있다.That is, it is determined that the evaporation pressure, the condensation pressure, the suction temperature, and the discharge temperature of the refrigerant are stabilized when they are not controlled. For example, when the evaporation pressure, the condensation pressure, the suction temperature, and the discharge temperature of the refrigerant are not adjusted for more than 3% for 5 minutes, it may be determined that the refrigerant is stable.
그리고, 본 발명의 사상에 따른 공기조화시스템(10)은 최대COP가 도출되도록 운전된다(S60). 이때, 상기 공기조화시스템(10)은 상기 제어구성의 운전값을 조절하여 최대COP를 도출한다.Then, the air conditioning system 10 according to the spirit of the present invention is operated to derive the maximum COP (S60). At this time, the air conditioning system 10 adjusts the operation value of the control configuration to derive the maximum COP.
또한, 최대COP를 도출된 경우, 상기 복수의 제어구성이 운전되는 값을 저장한다(S70). 이때, 상기 제어구성의 운전값을 최대운전값이라 한다. 그에 따라, 동일한 상기 설정온도, 상기 실외온도, 상기 실내온도 및 상기 실외습도가 입력된 경우, 최대COP 도출과정이 생략되고 상기 제어구성이 상기 최대운전값으로 운전될 수 있다.In addition, when the maximum COP is derived, a value at which the plurality of control configurations are operated is stored (S70). At this time, the operation value of the control configuration is referred to as the maximum operation value. Accordingly, when the same set temperature, the outdoor temperature, the indoor temperature and the outdoor humidity are input, the maximum COP derivation process may be omitted and the control configuration may be operated at the maximum operating value.
이하, 상기 공기조화시스템(10)은 최대COP가 도출되도록 운전되는 실시 예에 관하여 도 4 내지 도 6에서 자세하게 설명한다.Hereinafter, the air conditioning system 10 will be described in detail with reference to FIGS. 4 to 6 with reference to an embodiment in which the maximum COP is driven to be derived.
도 4는 본 발명의 제 1 실시 예에 따른 공기조화시스템의 최대COP가 도출되는 제어흐름을 도시한 도면이다.4 is a diagram illustrating a control flow in which a maximum COP of an air conditioning system according to a first embodiment of the present invention is derived.
도 4에 도시된 바와 같이, 상기 공기조화시스템(10)은 기본운전값으로 운전된다(S601). 이때, 상기 기본운전값에는 상기 초기운전값이 포함될 수 있다. 즉, 이와 같은 단계가 처음 수행된 경우 상기 기본운전값은 상기 메모리부(55)에 저장된 운전값에 해당된다.As shown in FIG. 4, the air conditioning system 10 is operated at a basic operation value (S601). In this case, the basic operation value may include the initial operation value. That is, when such a step is first performed, the basic operation value corresponds to the operation value stored in the memory unit 55.
그리고, 상기 공급열량을 소비되는 전력으로 나누어 기본COP가 계산된다(S602). 이때, 상기 기본운전값이 상기 초기운전값인 경우, 상기 기본COP는 초기COP라 할 수 있다.Then, the basic COP is calculated by dividing the amount of heat supplied by the consumed power (S602). In this case, when the basic operation value is the initial operation value, the basic COP may be referred to as an initial COP.
그리고, 상기 공기조화시스템(10)은 상기 제어구성의 운전값을 변경하여 운전된다(S603). 이때, 변경된 운전값을 수정운전값이라 한다. 즉, 상기 제어구성이 상기 기본운전값에서 수정운전값으로 변경되어 운전된다.Then, the air conditioning system 10 is operated by changing the operation value of the control configuration (S603). In this case, the changed operation value is referred to as a modified operation value. That is, the control configuration is changed from the basic operation value to the modified operation value and operated.
그리고, 상기 공급열량을 소비되는 전력으로 나누어 수정COP가 계산된다(S604). 이때, 상기 공급열량은 입력된 사항에 따라 결정된 요구열량과 동일한 값임으로, 소비되는 전력에 따라 상기 기본COP와 상기 수정COP가 달라진다.Then, the modified COP is calculated by dividing the amount of heat supplied by the power consumed (S604). In this case, since the supply heat amount is the same value as the required heat amount determined according to the input, the basic COP and the modified COP vary according to the power consumed.
그리고, 상기 기본COP와 상기 수정COP를 비교한다(S605). 상기 기본COP가 높은 경우 상기 제어구성이 상기 기본운전값으로 운전되고, 상기 수정COP가 높은 경우, 상기 제어구성이 상기 수정운전값으로 운전된다.Then, the basic COP and the modified COP are compared (S605). When the basic COP is high, the control configuration is operated at the basic operation value, and when the correction COP is high, the control configuration is operated at the correction operation value.
즉, 상기 기본COP가 높은 경우, 상기 제어구성은 다시 상기 기본운전값으로 운전된다(S601). 그리고, 상기 공기조화시스템(10)은 새로운 수정운전값으로 운전되고(S602) 새로운 수정COP를 계산하여(S603) 상기 기본COP와 비교할 수 있다(S604).That is, when the basic COP is high, the control configuration is again driven to the basic operation value (S601). The air conditioning system 10 may be operated with a new modified operation value (S602), calculate a new modified COP (S603), and compare it with the basic COP (S604).
한편, 상기 수정COP가 높은 경우, 상기 제어구성은 계속하여 상기 수정운전값으로 운전된다. 그리고, 상기 기본운전값을 상기 수정운전값으로 변경하여 저장한다(S607). 즉, 상기 수정운전값이 새로운 기본운전값이 된다.On the other hand, when the correction COP is high, the control arrangement continues to operate at the correction operation value. The basic operation value is changed to the corrected operation value and stored (S607). That is, the corrected operation value becomes a new basic operation value.
그리고, 상기 공기조화시스템은 다시 기본운전값으로 운전된다(S601). 이때, 기본운전값은 이전 단계에서의 기본운전값과는 다른 값에 해당된다. 그리고, 상기 공급열량을 소비전력으로 나누어 다시 기본COP가 계산된다(S602).Then, the air conditioning system is operated again with the basic operation value (S601). At this time, the basic operation value corresponds to a value different from the basic operation value in the previous step. The basic COP is calculated again by dividing the supply heat by the power consumption (S602).
그리고, 상기 공기조화시스템(10)은 상기 기본운전값에서 새로운 수정운전값으로 변경되어 운전되고(S603), 상기 공급열량을 소비전력으로 나누어 새로운 수정COP가 계산된다(S604). 그리고, 새롭게 계산된 기본COP와 수정COP를 비교한다(S605).The air conditioning system 10 is operated by changing from the basic operation value to a new modified operation value (S603), and dividing the supply heat amount by power consumption to calculate a new modified COP (S604). Then, the newly calculated basic COP and the modified COP are compared (S605).
즉, 상기 공기조화시스템(10)은 S601 내지 S605의 단계를 반복하여 수행하여 최대COP를 도출한다. 이때, 상기 최대COP인지 여부는 상기 기본COP와 상기 수정COP를 비교하여 상기 기본COP가 높은 경우가 미리 결정된 횟수 이상인 경우로 결정할 수 있다(S606). 이때, 상기 기본COP를 최대COP로 저장하고, 상기 최대COP가 도출된 기본운전값을 최대운전값으로 저장할 수 있다.That is, the air conditioning system 10 performs the steps S601 to S605 repeatedly to derive the maximum COP. In this case, whether the maximum COP is determined may be determined by comparing the basic COP with the modified COP when the basic COP is higher than a predetermined number of times (S606). In this case, the basic COP may be stored as the maximum COP, and the basic operation value from which the maximum COP is derived may be stored as the maximum operation value.
자세하게는, 상기 공기조화시스템(10) COP값에 영향을 주는 제어구성의 계수가 한정되어 있고, 상기 제어구성의 운전값이 한정된 범위 내에서 조절된다. 즉, 조절가능한 수정운전값의 수가 제한되어 있기 때문에, 미리 결정된 횟수 이상으로 S601 내지 S605의 단계를 반복하여 수행하는 경우 최대COP가 도출될 수 있다.In detail, the coefficient of the control structure which affects the air conditioning system 10 COP value is limited, and the operation value of the control structure is adjusted within a limited range. That is, since the number of adjustable correction operation values is limited, the maximum COP can be derived when the steps S601 to S605 are repeatedly performed more than a predetermined number of times.
이하, 상기 제어구성의 개수 및 상기 제어구성의 제어값을 한정하여 자세하게 설명한다.Hereinafter, the number of the control structure and the control value of the control structure will be limited and described in detail.
도 5는 본 발명의 제 2 실시 예에 따른 공기조화시스템의 최대COP가 도출되는 제어흐름을 도시한 도면이다.FIG. 5 is a diagram illustrating a control flow for deriving a maximum COP of an air conditioning system according to a second embodiment of the present invention.
도 5에서는 상기 제어구성으로 상기 인버터 압축기(20) 및 상기 팬(30)이 구비된 경우에 대하여 설명한다. 또한, 상기 제어구성의 운전값에는, 상기 인버터 압축기(20)의 운전주파수 및 상기 팬(30)의 회전속도가 포함되고, 각 단계 별로 운전값이 조절될 수 있다.In FIG. 5, the case where the inverter compressor 20 and the fan 30 are provided as the control configuration will be described. In addition, the operating value of the control configuration includes the operating frequency of the inverter compressor 20 and the rotational speed of the fan 30, the operation value can be adjusted for each step.
앞서 설명한 바와 같이, 상기 인버터 압축기(20) 및 상기 팬(30)은 제 1 단계에서 제 X 단계(X = A, B) 중 어느 하나로 운전될 수 있다. 이하, 설명의 편의상 상기 인버터 압축기(20) 및 상기 팬(30)의 운전값을 수치적으로 한정한다. 이와 같은 수치범위는 예시적인 것으로 이에 한정되지 않는다.As described above, the inverter compressor 20 and the fan 30 may be operated in any one of the X stages (X = A, B) in the first stage. Hereinafter, for convenience of description, the operating values of the inverter compressor 20 and the fan 30 are numerically limited. Such numerical ranges are exemplary and are not limited thereto.
예를 들어, 상기 인버터 압축기(20) 및 상기 팬(30)은 제 1 단계 내지 제 10 단계로 운전된다. 또한, 상기 인버터 압축기(20)의 제 1 단계는 130HZ이며 각 단계별로 1HZ씩 증가된다. 또한, 상기 팬(30)의 제 1 단계는 700RPM이며, 각 단계별로 50RPM씩 증가된다.For example, the inverter compressor 20 and the fan 30 are operated in the first to tenth stages. In addition, the first stage of the inverter compressor 20 is 130HZ and is increased by 1HZ for each stage. In addition, the first stage of the fan 30 is 700 RPM, and is increased by 50 RPM for each stage.
도 4에서 설명한 바와 같이, 상기 공기조화시스템(10)은 기본운전값으로 운전되고(S611), 상기 기본운전값이 상기 초기운전값인 경우로 가정한다. 그리고, 상기 공급열량을 소비되는 전력으로 나누어 기본COP, 즉, 초기COP가 계산된다(S612). As described with reference to FIG. 4, it is assumed that the air conditioning system 10 is operated at a basic operation value (S611), and the basic operation value is the initial operation value. In addition, a basic COP, that is, an initial COP is calculated by dividing the amount of heat supplied to consumed power (S612).
예를 들어, 상기 초기운전값이 상기 인버터 압축기(20)의 제 6 단계 및 상기 팬(30)의 제 3 단계인 경우로 가정한다. 즉, 상기 공기조화시스템(10)은 상기 인버터 압축기(20)가 135HZ로 운전되고 상기 팬(30)이 800RPM으로 운전되도록 초기운전된다. For example, it is assumed that the initial operation value is a sixth stage of the inverter compressor 20 and a third stage of the fan 30. That is, the air conditioning system 10 is initially operated such that the inverter compressor 20 is operated at 135 HZ and the fan 30 is operated at 800 RPM.
그리고, 상기 공기조화시스템(10)은 상기 제어구성의 운전값을 변경하여 운전된다. 우선, 상기 인버터 압축기(20)의 운전주파수를 1단계 상승시키고, 상기 팬(30)의 회전속도를 1단계 하강시킨다(S613). 이와 같이, 상기 인버터 압축기(20)와 상기 팬(30)은 서로 다른 방향으로 조절됨에 따라 공급용량을 유지하며 시스템의 안정화를 도모할 수 있다.The air conditioning system 10 is operated by changing the operation value of the control arrangement. First, the operation frequency of the inverter compressor 20 is increased by one step, and the rotational speed of the fan 30 is decreased by one step (S613). As such, the inverter compressor 20 and the fan 30 may be adjusted in different directions to maintain the supply capacity and to stabilize the system.
즉, 상기 인버터 압축기(20)가 제 7 단계로, 상기 팬(30)이 제 2 단계로 변경되어 운전된다. 그리고, 상기 공급열량을 소비되는 전력으로 나누어 수정COP가 계산된다(S614). 그리고, 상기 기본COP와 상기 수정COP를 비교한다(S615).That is, the inverter compressor 20 is operated in a seventh stage and the fan 30 is changed in a second stage. Then, the modified COP is calculated by dividing the supply heat by the consumed power (S614). Then, the basic COP and the modified COP are compared (S615).
상기 수정COP가 높은 경우, 상기 제어구성은 계속하여 상기 수정운전값으로 운전된다. 이는 상기 인버터 압축기(20)의 운전값을 상승시키고, 상기 팬(30)의 운전값을 하강시키도록 변경한 것이 COP를 상승시킨 것으로 이해될 수 있다.If the correction COP is high, the control arrangement continues to operate at the correction operation value. This may be understood as changing the operation value of the inverter compressor 20 to increase the operation value of the fan 30 to increase the COP.
그리고, 상기 기본운전값을 상기 수정운전값으로 변경하여 저장한다(S616). 즉, 상기 인버터 압축기(20)의 제 7 단계 및 상기 팬(30)의 제 2 단계가 기본운전값으로 저장된다.  The basic operation value is changed to the corrected operation value and stored (S616). That is, the seventh stage of the inverter compressor 20 and the second stage of the fan 30 are stored as basic operation values.
그리고, 상기 공기조화시스템(10)은 다시 상기 인버터 압축기(20)의 운전주파수를 1단계 상승시키고, 상기 팬(30)의 회전속도를 1단계 하강시킨다(S613). 그에 따라, 상기 인버터 압축기(20)는 제 8 단계로, 상기 팬(30)은 제 1 단계로 운전된다.In addition, the air conditioning system 10 increases the operation frequency of the inverter compressor 20 again by one step and decreases the rotational speed of the fan 30 by one step (S613). Accordingly, the inverter compressor 20 is operated in the eighth stage and the fan 30 is operated in the first stage.
즉, COP가 상승되는 방향으로 상기 제어구성의 운전값을 계속하여 상승 또는 하강시킬 수 있다. 이는 상기 COP가 더이상 상승되지 않는 경우 또는 상승 및 하강의 범위를 벗어나는 경우까지 계속하여 수행될 수 있다. 일반적으로 상기 제어구성의 조절범위는 넓게 지정됨으로 COP값의 변화에 따라 제어가 결정된다. 따라서, 도 5에서는 상기 제어구성이 상승 및 하강의 범위를 벗어나는 경우에 대해서는 생략하고 도시하였다.That is, the operating value of the control configuration can be continuously raised or lowered in the direction in which the COP is raised. This may be done continuously until the COP is no longer raised or outside the range of rise and fall. In general, the control range of the control configuration is widely specified, and the control is determined according to the change of the COP value. Therefore, in FIG. 5, the case where the control configuration is out of the range of rise and fall is omitted.
한편, 상기 기본COP가 높은 경우, 상기 제어구성은 다시 상기 기본운전값으로 운전된다(S621). 즉, 상기 인버터 압축기(20)는 제 6 단계로, 상기 팬(30)은 제 3 단계로 변경되어 운전된다. 이는 상기 인버터 압축기(20)의 운전값을 상승시키고, 상기 팬(30)의 운전값을 하강시키도록 변경한 것이 COP를 하강시킨 것으로 이해될 수 있다.On the other hand, if the basic COP is high, the control configuration is again driven to the basic operating value (S621). That is, the inverter compressor 20 is operated in a sixth stage and the fan 30 is changed in a third stage. This may be understood as changing the operation value of the inverter compressor 20 to increase the operation value of the fan 30 to lower the COP.
따라서, 상기 인버터 압축기(20)의 운전주파수를 1단계 하강시키고, 상기 팬(30)의 회전속도를 1단계 상승시킨다(S623). 즉, 이전과 다른 방향으로 상기 인버터 압축기(20) 및 상기 팬(30)의 운전값을 변경한다.Therefore, the operation frequency of the inverter compressor 20 is decreased by one step, and the rotational speed of the fan 30 is increased by one step (S623). That is, the operation values of the inverter compressor 20 and the fan 30 are changed in a direction different from the previous one.
즉, 상기 인버터 압축기(20)가 제 5 단계로, 상기 팬(30)이 제 4 단계로 변경되어 운전된다. 그리고, 상기 공급열량을 소비되는 전력으로 나누어 수정COP가 계산되고(S624), 상기 기본COP와 상기 수정COP를 비교한다(S625).That is, the inverter compressor 20 is operated in the fifth stage and the fan 30 is changed in the fourth stage. In addition, a modified COP is calculated by dividing the supply heat amount by the consumed power (S624), and comparing the basic COP with the modified COP (S625).
상기 수정COP가 높은 경우, 상기 제어구성은 계속하여 상기 수정운전값으로 운전된다. 즉, 상기 인버터 압축기(20)는 제 5 단계로, 상기 팬(30)은 제 4 단계로 운전된다. 이는 상기 인버터 압축기(20)의 운전값을 하강시키고, 상기 팬(30)의 운전값을 상승시키도록 변경한 것이 COP를 상승시킨 것으로 이해될 수 있다.If the correction COP is high, the control arrangement continues to operate at the correction operation value. That is, the inverter compressor 20 is operated in the fifth stage, and the fan 30 is operated in the fourth stage. This may be understood as changing the operating value of the inverter compressor 20 to lower the operating value of the fan 30 and raising the COP.
그리고, 상기 기본운전값을 상기 수정운전값으로 변경하여 저장한다(S626). 즉, 상기 인버터 압축기(20)의 제 5 단계 및 상기 팬(30)의 제 4 단계가 기본운전값으로 저장된다.  The basic operation value is changed to the corrected operation value and stored (S626). That is, the fifth stage of the inverter compressor 20 and the fourth stage of the fan 30 are stored as basic operation values.
그리고, 상기 공기조화시스템(10)은 다시 상기 인버터 압축기(20)의 운전주파수를 1단계 하강시키고, 상기 팬(30)의 회전속도를 1단계 상승시킨다(S623). 그에 따라, 상기 인버터 압축기(20)는 제 4 단계로, 상기 팬(30)은 제 5 단계로 운전된다. 즉, 앞서 설명한 바와 같이, COP가 상승되는 방향으로 상기 제어구성의 운전값을 계속하여 상승 또는 하강시킬 수 있다.In addition, the air conditioning system 10 again lowers the operation frequency of the inverter compressor 20 by one step and increases the rotational speed of the fan 30 by one step (S623). Accordingly, the inverter compressor 20 is operated in the fourth stage and the fan 30 is operated in the fifth stage. That is, as described above, the operation value of the control configuration can be continuously raised or lowered in the direction in which the COP is raised.
한편, 상기 기본COP가 높은 경우, 상기 인버터 압축기(20)의 운전값을 하강시키고, 상기 팬(30)의 운전값을 상승시키도록 변경한 것이 COP를 하강시킨 것으로 이해될 수 있다. 결론적으로, 상기 인버터 압축기(20) 및 상기 팬(30)의 운전값을 변경시키는 것이 COP를 하강시키는 것으로 이해될 수 있다.On the other hand, when the basic COP is high, it may be understood that the operation value of the inverter compressor 20 is lowered and the operation value of the fan 30 is increased to lower the COP. In conclusion, it can be understood that changing the operating values of the inverter compressor 20 and the fan 30 lowers the COP.
따라서, 더이상 상기 인버터 압축기(20) 및 상기 팬(30)의 운전값을 변경하지 않고, 상기 기본COP를 최대COP로 저장한다(S630). 이와 같이, 상기 공기조화시스템(10)은 상기 인버터 압축기(20) 및 상기 팬(30)의 운전값을 상승 또는 하강시켜 최대COP를 도출할 수 있다.Therefore, the basic COP is stored as the maximum COP without changing the operation values of the inverter compressor 20 and the fan 30 anymore (S630). As such, the air conditioning system 10 may derive the maximum COP by increasing or decreasing the operating values of the inverter compressor 20 and the fan 30.
도 6은 본 발명의 제 3 실시 예에 따른 공기조화시스템의 최대COP가 도출되는 제어흐름을 도시한 도면이다.FIG. 6 is a diagram illustrating a control flow for deriving a maximum COP of an air conditioning system according to a third embodiment of the present invention.
도 6에서는 상기 제어구성으로 상기 리시버 밸브(40)가 포함된 경우에 대하여 설명한다. 또한, 상기 제어구성의 운전값에는, 상기 리시버 밸브(40)의 개도량이 포함되고, 각 단계 별로 운전값이 조절될 수 있다. 앞서 설명한 바와 같이, 상기 리시버 밸브(40)는 제 1 단계에서 제 X 단계(X = C) 중 어느 하나로 운전될 수 있다. In FIG. 6, the case where the receiver valve 40 is included in the control configuration will be described. In addition, the operation value of the control configuration includes the opening amount of the receiver valve 40, the operation value can be adjusted for each step. As described above, the receiver valve 40 may be operated in any one of the X stage (X = C) in the first stage.
도 6에 도시된 바와 같이, 상기 공기조화시스템(10)은 기본운전값으로 운전되고(S631), 기본COP가 계산된다(S632). 이때, 상기 기본운전값은 도 5에서 도출된 최대COP를 갖는 운전값에 해당될 수 있다. 즉, 상기 인버터 압축기(20) 및 상기 팬(30)의 운전값을 상승 또는 하강시켜서 도출될 수 있는 최대의 COP에서 상기 리시버 밸브(40)의 운전값을 변경하여 시스템의 최대COP를 도출한다.As shown in FIG. 6, the air conditioning system 10 is operated with a basic operation value (S631), and a basic COP is calculated (S632). In this case, the basic operating value may correspond to an operating value having the maximum COP derived in FIG. 5. That is, the maximum COP of the system is derived by changing the operation value of the receiver valve 40 at the maximum COP that can be derived by increasing or decreasing the operation values of the inverter compressor 20 and the fan 30.
따라서, 상기 공기조화시스템(10)은 상기 인버터 압축기(20), 상기 팬(30) 및 상기 리시버 밸브(40)의 운전값을 변경하여 최대COP를 도출할 수 있다. 이때, COP값에 비교적 영향을 크게 주는 상기 인버터 압축기(20) 및 상기 팬(30)의 운전값을 먼저 조절하고, 상기 리시버 밸브(40)의 운전값을 조절할 수 있다.Accordingly, the air conditioning system 10 may derive the maximum COP by changing operating values of the inverter compressor 20, the fan 30, and the receiver valve 40. At this time, the operating value of the inverter compressor 20 and the fan 30 which have a relatively large influence on the COP value may be adjusted first, and then the operating value of the receiver valve 40 may be adjusted.
우선, 상기 리시버 밸브(40)의 개도량을 1단계 상승시킨다(S633). 그리고, 상기 공급열량을 소비되는 전력으로 나누어 수정COP가 계산된다(S634). 그리고, 상기 기본COP와 상기 수정COP를 비교한다(S635).First, the opening amount of the receiver valve 40 is increased by one step (S633). Then, the modified COP is calculated by dividing the supply heat by the consumed power (S634). Then, the basic COP and the modified COP are compared (S635).
상기 수정COP가 높은 경우, 상기 제어구성은 계속하여 상기 수정운전값으로 운전된다. 이는 상기 리시버 밸브(40)의 개도량을 상승시키도록 변경한 것이 COP를 상승시킨 것으로 이해될 수 있다.If the correction COP is high, the control arrangement continues to operate at the correction operation value. It can be understood that the change to increase the opening amount of the receiver valve 40 raises the COP.
그리고, 상기 기본운전값을 상기 수정운전값으로 변경하여 저장한다(S636). 그리고, 상기 공기조화시스템(10)은 다시 상기 리시버 밸브(40)의 개도량을 상승시킨다(S633). 즉, COP가 상승되는 방향으로 상기 리시버 밸브(40)의 개도량을 계속하여 상승시킬 수 있다.The basic operation value is changed to the corrected operation value and stored (S636). In addition, the air conditioning system 10 increases the opening amount of the receiver valve 40 again (S633). That is, the opening amount of the receiver valve 40 can be continuously increased in the direction in which the COP is raised.
한편, 상기 기본COP가 높은 경우, 상기 제어구성은 다시 상기 기본운전값으로 운전된다(S641). 이는 상기 리시버 밸브(40)의 개도량을 상승시키도록 변경한 것이 COP를 하강시킨 것으로 이해될 수 있다.On the other hand, when the basic COP is high, the control configuration is again driven to the basic operation value (S641). It can be understood that the change to increase the opening amount of the receiver valve 40 lowers the COP.
따라서, 상기 리시버 밸브(40)의 개도량을 1단계 하강시킨다(S643). 즉, 이전과 다른 방향으로 상기 리시버 밸브(40)의 운전값을 변경한다. 그리고, 상기 공급열량을 소비되는 전력으로 나누어 수정COP가 계산되고(S644), 상기 기본COP와 상기 수정COP를 비교한다(S645).Therefore, the opening amount of the receiver valve 40 is lowered by one step (S643). That is, the operation value of the receiver valve 40 is changed in a direction different from the previous one. The modified COP is calculated by dividing the amount of heat supplied by the consumed power (S644), and comparing the basic COP with the modified COP (S645).
상기 수정COP가 높은 경우, 상기 제어구성은 계속하여 상기 수정운전값으로 운전된다. 이는 상기 리시버 밸브(40)의 개도량을 하강시키도록 변경한 것이 COP를 상승시킨 것으로 이해될 수 있다. 그리고, 상기 공기조화시스템(10)은 상기 리시버 밸브(40)의 개도량을 1단계 하강시킨다(S643). 즉, COP가 상승되는 방향으로 상기 리시버 밸브(40)의 개도량 계속하여 하강시킬 수 있다.If the correction COP is high, the control arrangement continues to operate at the correction operation value. It can be understood that the change to lower the opening amount of the receiver valve 40 raises the COP. In addition, the air conditioning system 10 lowers the opening amount of the receiver valve 40 by one step (S643). That is, the opening amount of the receiver valve 40 can be continuously lowered in the direction in which the COP is raised.
한편, 상기 기본COP가 높은 경우, 상기 리시버 밸브(40)의 개도량을 하강시키도록 변경한 것이 COP를 하강시킨 것으로 이해될 수 있다. 결론적으로, 상기 리시버 밸브(40)의 개도량을 변경시키는 것이 COP를 하강시키는 것으로 이해될 수 있다.On the other hand, when the basic COP is high, it can be understood that the change to lower the opening amount of the receiver valve 40 lowers the COP. In conclusion, it can be understood that changing the opening amount of the receiver valve 40 lowers the COP.
따라서, 더이상 상기 리시버 밸브(40)의 개도량을 변경하지 않고, 상기 기본COP를 최대COP로 저장한다(S650). 이와 같이, 상기 공기조화시스템(10)은 상기 인버터 압축기(20), 상기 팬(30) 및 상기 리시버 밸브(40)의 운전값을 상승 또는 하강시켜 최대COP를 도출할 수 있다.Therefore, the basic COP is stored as the maximum COP without changing the opening amount of the receiver valve 40 anymore (S650). As such, the air conditioning system 10 may derive the maximum COP by increasing or decreasing the operation values of the inverter compressor 20, the fan 30, and the receiver valve 40.

Claims (15)

  1. 전원 및 설정온도가 입력되는 단계;Inputting a power source and a set temperature;
    실외온도, 실내온도 및 실외습도가 측정되는 단계;Measuring outdoor temperature, indoor temperature, and outdoor humidity;
    상기 설정온도, 상기 실외온도, 상기 실내온도 및 상기 실외습도에 따라 요구열량이 결정되는 단계;Determining a required amount of heat according to the set temperature, the outdoor temperature, the indoor temperature, and the outdoor humidity;
    상기 요구열량과 동일한 공급열량을 제공하도록 복수의 제어구성이 초기운전되는 단계;Initially operating a plurality of control configurations to provide a supply heat quantity equal to the required heat quantity;
    상기 공급열량을 소비전력으로 나누어 초기COP가 계산되는 단계; 및Calculating an initial COP by dividing the supply calories by power consumption; And
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계;가 포함되고,Adjusting a driving value of the control configuration to derive a maximum COP;
    상기 제어구성에는 인버터 압축기 및 팬이 포함되고,The control configuration includes an inverter compressor and a fan,
    상기 제어구성의 운전값에는, 상기 인버터 압축기의 운전주파수 및 상기 팬의 회전속도가 포함되는 것을 특징으로 하는 공기조화시스템의 제어방법.And the operating frequency of the inverter compressor and the rotational speed of the fan are included in the operation value of the control configuration.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는,In the step of deriving the maximum COP by adjusting the operation value of the control configuration,
    상기 제어구성이 기본운전값으로 운전되고, 상기 공급열량을 소비전력으로 나누어 기본COP가 계산되는 단계; 및Operating the control configuration at a basic operation value, and calculating a basic COP by dividing the supply heat by power consumption; And
    상기 제어구성이 상기 기본운전값에서 수정운전값으로 변경되어 운전되고, 상기 공급열량을 소비전력으로 나누어 수정COP가 계산되는 단계;Operating the control configuration by changing from the basic operation value to a modified operation value, and dividing the supply calories by power consumption to calculate a modified COP;
    가 포함되는 것을 특징으로 하는 공기조화시스템의 제어방법.Control method of an air conditioning system, characterized in that it is included.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는,In the step of deriving the maximum COP by adjusting the operation value of the control configuration,
    상기 기본COP와 상기 수정COP를 비교하는 단계; 및Comparing the basic COP with the modified COP; And
    상기 기본COP가 높은 경우 상기 제어구성이 상기 기본운전값으로 운전되고, 상기 수정COP가 높은 경우, 상기 제어구성이 상기 수정운전값으로 운전되는 단계;When the basic COP is high, the control configuration is operated at the basic operating value, and when the corrected COP is high, the control configuration is operated at the corrected operating value;
    가 더 포함되는 것을 특징으로 하는 공기조화시스템의 제어방법.Control method of an air conditioning system, characterized in that it further comprises.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는,In the step of deriving the maximum COP by adjusting the operation value of the control configuration,
    상기 수정COP가 높은 경우, 상기 제어구성이 상기 수정운전값으로 운전되고,If the correction COP is high, the control arrangement is driven to the correction operation value,
    상기 기본운전값을 상기 수정운전값으로 변경하여 저장하는 단계가 더 포함되는 것을 특징으로 하는 공기조화시스템의 제어방법.And changing and storing the basic operation value into the modified operation value.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는,In the step of deriving the maximum COP by adjusting the operation value of the control configuration,
    상기 기본운전값을 상기 수정운전값으로 변경하여 저장하여 상기 제어구성이 새로운 기본운전값으로 운전되고, 상기 공급열량을 소비전력으로 나누어 새로운 기본COP가 계산되는 단계; 및Changing the basic operation value to the corrected operation value and storing the modified operation value so that the control configuration is operated with the new basic operation value, and the new basic COP is calculated by dividing the supply heat amount by the power consumption; And
    상기 제어구성이 상기 기본운전값에서 새로운 수정운전값으로 변경되어 운전되고, 상기 공급열량을 소비전력으로 나누어 새로운 수정COP가 계산되는 단계;Operating the control configuration by changing from the basic operation value to a new correction operation value, and dividing the supply calories by power consumption to calculate a new modified COP;
    가 포함되는 것을 특징으로 하는 공기조화시스템의 제어방법.Control method of an air conditioning system, characterized in that it is included.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 기본COP와 상기 수정COP를 비교하여 상기 기본COP가 높은 경우가 미리 결정된 횟수 이상인 경우,When the basic COP is higher than the predetermined COP by comparing the modified COP with a predetermined number of times,
    상기 기본COP를 최대COP로 저장하고, 상기 최대COP가 도출된 기본운전값을 최대운전값으로 저장하는 단계;가 더 포함하는 공기조화시스템의 제어방법.And storing the basic COP as the maximum COP and storing the basic operation value from which the maximum COP is derived as the maximum operation value.
  7. 제 6 항에 있어서,The method of claim 6,
    동일한 상기 설정온도, 상기 실외온도, 상기 실내온도 및 상기 실외습도가 입력된 경우, 상기 제어구성이 상기 최대운전값으로 초기운전되는 것을 특징으로 하는 공기조화기의 제어방법. And when the same set temperature, the outdoor temperature, the indoor temperature, and the outdoor humidity are input, the control configuration is initially operated at the maximum operating value.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는,In the step of deriving the maximum COP by adjusting the operation value of the control configuration,
    상기 인버터 압축기 및 상기 팬이 기본운전값으로 운전되고, 상기 공급열량을 소비전력으로 나누어 기본COP가 계산되는 단계; 및Calculating the basic COP by operating the inverter compressor and the fan by the basic operation value and dividing the supply heat by the power consumption; And
    상기 인버터 압축기의 운전주파수를 1단계 높이며 상기 팬의 회전속도를 1단계 낮추고, 상기 공급열량을 소비전력으로 나누어 수정COP가 계산되는 단계;Increasing the operating frequency of the inverter compressor by one step, lowering the rotational speed of the fan by one step, and calculating a modified COP by dividing the supply heat by the power consumption;
    가 포함되는 것을 특징으로 하는 공기조화시스템의 제어방법.Control method of an air conditioning system, characterized in that it is included.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는,In the step of deriving the maximum COP by adjusting the operation value of the control configuration,
    상기 기본COP와 상기 수정COP를 비교하는 단계;Comparing the basic COP with the modified COP;
    상기 기본COP가 높은 경우 상기 제어구성이 상기 기본운전값으로 운전되는 단계; 및Operating the control configuration at the basic operation value when the basic COP is high; And
    상기 인버터 압축기의 운전주파수를 1단계 낮추며 상기 팬의 회전속도를 1단계 높이고, 상기 공급열량을 소비전력으로 나누어 새로운 수정COP가 계산되는 단계;Lowering the operation frequency of the inverter compressor by one step and increasing the rotational speed of the fan by one step, and dividing the supply heat by the power consumption to calculate a new modified COP;
    가 더 포함되는 것을 특징으로 하는 공기조화시스템의 제어방법.Control method of an air conditioning system, characterized in that it further comprises.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는,In the step of deriving the maximum COP by adjusting the operation value of the control configuration,
    새로운 수정COP가 계산되고, 상기 기본COP와 상기 수정COP를 비교하는 단계; 및Calculating a new modified COP and comparing the modified COP with the basic COP; And
    상기 기본COP가 높은 경우 상기 기본COP를 최대COP로 저장하는 단계;가 더 포함하는 공기조화시스템의 제어방법.And storing the basic COP as a maximum COP when the basic COP is high.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는,In the step of deriving the maximum COP by adjusting the operation value of the control configuration,
    상기 기본COP와 상기 수정COP를 비교하여 상기 수정COP가 높은 경우, 상기 인버터 압축기의 운전주파수를 1단계 낮추며 상기 팬의 회전속도를 1단계 높이고, 상기 공급열량을 소비전력으로 나누어 새로운 수정COP가 계산되는 단계;가 더 포함되고,Comparing the basic COP and the modified COP, when the modified COP is high, the new modified COP is calculated by dividing the operating frequency of the inverter compressor by one step, increasing the rotation speed of the fan by one step, and dividing the supply heat by the power consumption. It is further included;
    상기 기본COP와 상기 수정COP를 비교하여 상기 기본COP가 높을 때까지 반복하여 수행하는 것을 특징으로 하는 공기조화시스템의 제어방법.And comparing the basic COP with the modified COP and repeatedly performing the same until the basic COP is high.
  12. 제 9 항에 있어서,The method of claim 9,
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는,In the step of deriving the maximum COP by adjusting the operation value of the control configuration,
    상기 기본COP와 상기 수정COP를 비교하여 상기 수정COP가 높은 경우, 상기 인버터 압축기의 운전주파수를 1단계 높이며 상기 팬의 회전속도를 1단계 낮추고, 상기 공급열량을 소비전력으로 나누어 새로운 수정COP가 계산되는 단계;가 더 포함되고,Comparing the basic COP and the modified COP, when the modified COP is high, a new modified COP is calculated by dividing the operating heat of the inverter compressor by one step, reducing the rotation speed of the fan by one step, and dividing the heat supply by the power consumption. It is further included;
    상기 기본COP와 상기 수정COP를 비교하여 상기 기본COP가 높을 때까지 반복하여 수행하는 것을 특징으로 하는 공기조화시스템의 제어방법.And comparing the basic COP with the modified COP and repeatedly performing the same until the basic COP is high.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 제어구성에는 시스템의 냉매량을 제어하기 위한 리시버 밸브가 더 포함되고,The control configuration further includes a receiver valve for controlling the amount of refrigerant in the system,
    상기 제어구성의 운전값에는 상기 리시버 밸브의 개도량이 포함되는 것을 특징으로 하는 공기조화시스템의 제어방법.And an opening amount of the receiver valve is included in the operation value of the control configuration.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는,In the step of deriving the maximum COP by adjusting the operation value of the control configuration,
    상기 압축기, 상기 팬 및 리시버 밸브가 기본운전값으로 운전되고, 상기 공급열량을 소비전력으로 나누어 기본COP가 계산되는 단계;Operating the compressor, the fan and the receiver valve at a basic operation value, and calculating a basic COP by dividing the supply heat by the power consumption;
    상기 인버터 압축기의 운전주파수를 1단계 높이고 상기 팬의 회전속도를 1단계 낮추고, 상기 공급열량을 소비전력으로 나누어 수정COP가 계산되는 단계;Increasing the operating frequency of the inverter compressor by one step, lowering the rotational speed of the fan by one step, and calculating a modified COP by dividing the supply heat by the power consumption;
    상기 기본COP와 상기 수정COP를 비교하여 상기 기본COP가 높은 경우 상기 기본운전값으로 운전되고, 상기 인버터 압축기의 운전주파수를 1단계 낮추며 상기 팬의 회전속도를 1단계 높이고, 상기 공급열량을 소비전력으로 나누어 새로운 수정COP가 계산되는 단계;Comparing the basic COP and the modified COP, when the basic COP is high, the basic COP is operated at the basic operation value, the operation frequency of the inverter compressor is decreased by one step, the rotational speed of the fan is increased by one step, and the supply heat amount is consumed. Dividing by and calculating a new modified COP;
    가 더 포함되는 것을 특징으로 하는 공기조화시스템의 제어방법.Control method of an air conditioning system, characterized in that it further comprises.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 제어구성의 운전값을 조절하여 최대COP가 도출되는 단계에는,In the step of deriving the maximum COP by adjusting the operation value of the control configuration,
    새로운 수정COP가 계산되고 상기 기본COP와 상기 수정COP를 비교하여 상기 기본COP가 높은 경우,When a new modified COP is calculated and the basic COP is high by comparing the modified COP with the basic COP,
    상기 리시버 밸브의 개도량을 1단계 높이고 상기 공급열량을 소비전력으로 나누어 새로운 수정COP가 계산되는 단계;Increasing the opening amount of the receiver valve by one step and dividing the supply heat amount by the power consumption to calculate a new modified COP;
    상기 기본COP와 상기 수정COP를 비교하여 상기 기본COP가 높은 경우 상기 기본운전값으로 운전되고, 상기 리시버 밸브의 개도량을 1단계 낮추고 상기 공급열량을 소비전력으로 나누어 새로운 수정COP가 계산되는 단계; 및Comparing the basic COP with the modified COP and operating at the basic operation value when the basic COP is high, calculating a new modified COP by dividing the opening amount of the receiver valve by one step and dividing the supply heat by the power consumption; And
    상기 기본COP와 상기 수정COP를 비교하여 상기 기본COP가 높은 경우, 상기 기본COP를 최대COP로 저장하는 단계;Comparing the basic COP with the modified COP and storing the basic COP as a maximum COP when the basic COP is high;
    가 더 포함되는 것을 특징으로 하는 공기조화시스템의 제어방법.Control method of an air conditioning system, characterized in that it further comprises.
PCT/KR2018/010139 2018-04-04 2018-08-31 Method for controlling air conditioning system WO2019194371A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180039152A KR102122592B1 (en) 2018-04-04 2018-04-04 Control method of air-conditioning system
KR10-2018-0039152 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019194371A1 true WO2019194371A1 (en) 2019-10-10

Family

ID=68100857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010139 WO2019194371A1 (en) 2018-04-04 2018-08-31 Method for controlling air conditioning system

Country Status (2)

Country Link
KR (1) KR102122592B1 (en)
WO (1) WO2019194371A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110925959A (en) * 2019-12-13 2020-03-27 宁波奥克斯电气股份有限公司 Air conditioner energy-saving control method and device, air conditioner and storage medium
CN111023413A (en) * 2019-12-18 2020-04-17 宁波奥克斯电气股份有限公司 Air conditioner control method and device and air conditioner
WO2022193623A1 (en) * 2021-03-15 2022-09-22 青岛海尔空调器有限总公司 Method for controlling humidifying downward air-output air conditioner, and humidifying downward air-out air conditioner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102227514B1 (en) * 2020-08-25 2021-03-12 한국산업기술시험원 Optimum operation point search system of the air conditioner components using deep reinforcement learning algorithm
CN111964217B (en) * 2020-08-26 2021-07-23 特灵空调系统(中国)有限公司 Air conditioner control method, system and storage medium
CN112283899B (en) * 2020-10-30 2022-02-22 海信(广东)空调有限公司 Air conditioner control method and air conditioner
KR20220064686A (en) * 2020-11-12 2022-05-19 엘지전자 주식회사 Air Conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696122B1 (en) * 2005-02-05 2007-03-21 엘지전자 주식회사 Apparatus and method for driving an air conditioner
KR20070045021A (en) * 2005-10-26 2007-05-02 삼성전자주식회사 Airconditioner energy diagnostic apparatus and its diagnostic method
KR20140112681A (en) * 2013-03-14 2014-09-24 엘지전자 주식회사 Method of controlling an air conditioner
JP2016102635A (en) * 2014-11-28 2016-06-02 ダイキン工業株式会社 Air conditioner system
KR101754536B1 (en) * 2016-07-21 2017-07-07 성균관대학교산학협력단 Method and apparatus for optimum control of refrigerator using building energy management system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150097174A (en) * 2014-02-18 2015-08-26 엘지전자 주식회사 remote control unit and an air conditioning apparatus including the same
JP2016003828A (en) 2014-06-18 2016-01-12 株式会社デンソー Refrigeration cycle device
KR101954147B1 (en) * 2016-09-08 2019-03-05 엘지전자 주식회사 Air conditioner and Method for controlling the same
KR101962164B1 (en) * 2017-09-13 2019-07-31 엘지전자 주식회사 Air-conditioning system and controlling method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696122B1 (en) * 2005-02-05 2007-03-21 엘지전자 주식회사 Apparatus and method for driving an air conditioner
KR20070045021A (en) * 2005-10-26 2007-05-02 삼성전자주식회사 Airconditioner energy diagnostic apparatus and its diagnostic method
KR20140112681A (en) * 2013-03-14 2014-09-24 엘지전자 주식회사 Method of controlling an air conditioner
JP2016102635A (en) * 2014-11-28 2016-06-02 ダイキン工業株式会社 Air conditioner system
KR101754536B1 (en) * 2016-07-21 2017-07-07 성균관대학교산학협력단 Method and apparatus for optimum control of refrigerator using building energy management system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110925959A (en) * 2019-12-13 2020-03-27 宁波奥克斯电气股份有限公司 Air conditioner energy-saving control method and device, air conditioner and storage medium
CN110925959B (en) * 2019-12-13 2021-10-26 宁波奥克斯电气股份有限公司 Air conditioner energy-saving control method and device, air conditioner and storage medium
CN111023413A (en) * 2019-12-18 2020-04-17 宁波奥克斯电气股份有限公司 Air conditioner control method and device and air conditioner
WO2022193623A1 (en) * 2021-03-15 2022-09-22 青岛海尔空调器有限总公司 Method for controlling humidifying downward air-output air conditioner, and humidifying downward air-out air conditioner

Also Published As

Publication number Publication date
KR20190115892A (en) 2019-10-14
KR102122592B1 (en) 2020-06-15

Similar Documents

Publication Publication Date Title
WO2019194371A1 (en) Method for controlling air conditioning system
US10760798B2 (en) HVAC unit with hot gas reheat
US5050397A (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
WO2010126329A2 (en) Air conditioner and method for operating same
AU2008259054B2 (en) Air-conditioning apparatus
US5074120A (en) Multi-type air-conditioning system with fast hot starting for heating operation
WO2010131874A2 (en) Air conditioner and method for operating same
EP3071894A1 (en) Air conditioner and method of controlling the same
WO2017185733A1 (en) Air conditioning system and valve control method therefor
US20230204239A1 (en) Zone monitoring systems and methods for a zoning system
US5009078A (en) Multi-system air conditioning machine
WO2022265140A1 (en) Localized data center cooling system provided with free cooling chiller
WO2013062242A1 (en) Air conditioner and method of operating same
WO2015034277A1 (en) Air-conditioner system for vehicle and method for controlling same
US10830472B2 (en) Systems and methods for dynamic coil calibration
WO2018182303A1 (en) Heat pump including refrigerant storage means
US20200284463A1 (en) Damper control systems and methods for a zoning system
WO2017057818A1 (en) Air conditioner and method of controlling the same
WO2020013612A1 (en) Air conditioning system
JP4105413B2 (en) Multi-type air conditioner
WO2020101217A1 (en) Air conditioner of fan motor and operating method thereof
JP3275669B2 (en) Multi-room air conditioning system
WO2017142176A1 (en) Air conditioner and control method thereof
WO2023210963A1 (en) Air conditioner and control method therefor
WO2022145700A1 (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913311

Country of ref document: EP

Kind code of ref document: A1