WO2019194205A1 - Secondary battery diagnosing device and diagnosing method - Google Patents

Secondary battery diagnosing device and diagnosing method Download PDF

Info

Publication number
WO2019194205A1
WO2019194205A1 PCT/JP2019/014718 JP2019014718W WO2019194205A1 WO 2019194205 A1 WO2019194205 A1 WO 2019194205A1 JP 2019014718 W JP2019014718 W JP 2019014718W WO 2019194205 A1 WO2019194205 A1 WO 2019194205A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
charge
discharge
capacity
reversible capacity
Prior art date
Application number
PCT/JP2019/014718
Other languages
French (fr)
Japanese (ja)
Inventor
成岡 慶紀
Original Assignee
株式会社スリーダム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スリーダム filed Critical 株式会社スリーダム
Publication of WO2019194205A1 publication Critical patent/WO2019194205A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a rechargeable secondary battery, and more particularly, diagnosing the state of the secondary battery, and predicting the lifetime of the secondary battery based on the diagnosis, and the secondary battery Is related to keeping in good condition.
  • Secondary batteries used in recent electric vehicles and road leveling are required to be usable for a long period of time, that is, to have a long life. In addition, when a secondary battery is used over a long period of time, it is extremely important to predict its life.
  • the pole positive electrode, negative electrode
  • the pole deteriorates as the cumulative use period (or cumulative number of charge / discharge cycles) increases, and the reversible capacity decreases as the pole deteriorates.
  • the reversible capacity is a capacity that can be charged and discharged between a predetermined end-of-charge voltage and end-of-discharge voltage, that is, a capacity that can be actually used out of the capacity of the secondary battery.
  • an irreversible capacity associated with a reversible capacity which is a capacity of the secondary battery that cannot be output.
  • Patent Document 1 discloses an invention related to a technique for evaluating a lithium secondary battery.
  • a technique of “evaluating the life characteristics of a lithium secondary battery by calculating the capacity (Qt) of the lithium secondary battery after a predetermined time according to a predetermined formula” is used.
  • the lithium secondary battery can be recharged in proportion to the cumulative use period from the beginning of the life of the lithium secondary battery (at the start of use of the lithium secondary battery). Assuming that the capacity (reversible capacity) will decrease, predict the decrease in reversible capacity of lithium secondary batteries using the linear proportional relationship between the cumulative use period from the beginning of the life and the reversible capacity is doing.
  • Non-Patent Document 1 There is also a technology for predicting the decrease in reversible capacity of lithium-ion batteries on pages 21 to 26 of Volume 5 Issue 1 (issued June 27, 2008) (Non-Patent Document 1) of "GS Yuasa Technical Report”. It is disclosed. In that technology, it is assumed that the capacity (reversible capacity) of the lithium ion battery will gradually decrease according to the root rule as the cumulative use period elapses from the beginning of the life of the lithium ion battery (at the start of use of the lithium secondary battery). However, a decrease in the reversible capacity of the lithium ion battery is predicted using a root-law proportional relationship between the cumulative use period from the beginning of the life and the reversible capacity.
  • Patent Document 1 describes it as a lithium secondary battery and Non-Patent Document 1 describes it as a lithium ion battery, but these are hereinafter referred to as lithium ion secondary batteries.
  • Patent Document 1 and Non-Patent Document 1 are based on the premise that there is a proportional relationship between the cumulative use period from the beginning to the end of the life of a lithium ion secondary battery and the reversible capacity. Yes.
  • Patent Document 2 discloses an invention relating to a power storage system using a secondary battery (lithium ion secondary battery).
  • Patent Document 2 discloses a technique for detecting a scale indicating the deterioration state of the positive electrode and a scale indicating the deterioration state of the negative electrode, and claim 1 states that “the control system of the secondary battery is a deterioration of the positive electrode.
  • paragraph 0029 of Patent Document 2 states that “the present inventor has noticed that in this mechanism of battery capacity reduction, the positive electrode capacity QP after deterioration and the negative electrode capacity QN after deterioration reverse. As a result, it was found that the battery performance was significantly reduced in a shorter period of time than the expected life. " In order to monitor these measures, a means for measuring or calculating the deteriorated positive electrode potential curve VP and the deteriorated positive electrode potential curve VN is required.
  • the battery voltage VB after deterioration, the battery voltage after deterioration from the initial positive electrode potential curve VP0 and the initial negative electrode potential curve VN0 A known technique can be used such as a calculation means, etc.
  • the initial positive electrode potential curve VP0 and the initial negative electrode potential curve VN0 are obtained in advance by charging / discharging with the positive electrode, the negative electrode, or the single electrode, respectively. There is a description.
  • the deterioration state (potential) of the positive electrode and the negative electrode is determined using the reference electrode. Measure or estimate from battery voltage during charge / discharge.
  • Patent Document 1 and Non-Patent Document 1 have a drawback in that the tendency to decrease the reversible capacity when a lithium ion secondary battery is used over a long period cannot be accurately predicted.
  • the reason is that the cause of the decrease in the reversible capacity of the lithium ion secondary battery includes the deterioration of the negative electrode and the deterioration of the positive electrode. More specifically, the decrease in the reversible capacity of the lithium ion secondary battery may be caused mainly by the deterioration of the negative electrode or the deterioration of the positive electrode, depending on the respective cases. The trend of decline is different. Therefore, a complete proportional relationship is not established between the cumulative use period from the beginning of the life (BOL, Beginning Of Life) to the end of the life (EOL, End Of Life) and the reversible capacity.
  • the irreversible capacity of the positive electrode is larger than the irreversible capacity of the negative electrode.
  • the speed of deterioration of the negative electrode is faster than the speed of deterioration of the positive electrode (increase in irreversible capacity). Therefore, the irreversible capacity of the positive electrode is larger than the irreversible capacity of the negative electrode during the initial or middle period of the lithium ion secondary battery, but after a certain point (hereinafter referred to as a transition point), the irreversible capacity of the negative electrode is higher than that of the positive electrode.
  • the decrease in the reversible capacity of the lithium ion secondary battery is mainly related to the irreversible capacity of the positive electrode in the initial to middle period of the life, but is mainly related to the irreversible capacity of the negative electrode after the transition point. Further, the fact that the speed of deterioration differs between the positive electrode and the negative electrode means that the tendency of the reversible capacity to decrease is different before and after the transition point.
  • the deterioration tendency of the lithium ion secondary battery obtained based on the conventional approximation method that is, a method for deriving an approximate linear function based on all measured values from the BOL.
  • the life of a lithium ion secondary battery cannot be accurately predicted because it deviates from the tendency of deterioration.
  • the term indicating the period such as the initial stage, the middle period, and the end stage of the life is used here, these terms are merely used to represent the period relatively, and the length of the period, the start point, the end point It does not strictly specify the time.
  • the deterioration state (potential) of the positive electrode and the negative electrode is measured using the reference electrode, Or it is estimated from the battery voltage at the time of charging / discharging, but there is a disadvantage that the configuration of the device becomes complicated when using the reference electrode, and when it is estimated from the voltage of the battery at charging / discharging, an accurate value is obtained. There are disadvantages that cannot be obtained.
  • the conventional technology has a drawback that it is not possible to accurately and easily determine the transition point of the tendency to decrease the reversible capacity during the use of the lithium ion secondary battery. That is, the conventional technique has a drawback that it cannot be determined which reversible capacity of the positive electrode or the negative electrode is large, and therefore, it is not possible to determine whether the capacity dominant electrode of the lithium ion secondary battery is the positive electrode or the negative electrode.
  • the capacity-dominating electrode is the electrode that determines the reversible capacity of the lithium ion secondary battery, ie, the electrode having the smaller reversible capacity between the positive electrode and the negative electrode. Is defined as
  • the pole that is the main cause of the decrease in the reversible capacity of the lithium ion secondary battery has shifted from one pole to the other, that is, the degree of deterioration of one pole that was initially low.
  • the (irreversible capacity) becomes higher than the degree of deterioration of the other pole (irreversible capacity) (transition point), that is, the reversible capacity of one pole that was initially large is less than the reversible capacity of the other pole.
  • the time point is obtained based on the characteristics of the open circuit voltage (OCV) in the charge / discharge rest period after the discharge period of the charge / discharge cycle of the lithium ion secondary battery.
  • the lifetime is predicted based on the behavior of the lithium ion secondary battery after the transition point. Furthermore, in the present invention, in order to maximize the performance of the lithium ion secondary battery after the transition point, the control of the system related to charging / discharging of the lithium ion secondary battery is changed.
  • a diagnostic apparatus for a secondary battery that detects a capacity dominant electrode that determines a reversible capacity of a secondary battery having a positive electrode and a negative electrode.
  • a secondary battery diagnostic device having a detection means for detecting a capacity-dominating electrode that determines the reversible capacity of the secondary battery by determining which one of the reversible capacities of the secondary battery and the negative electrode is large.
  • the secondary battery diagnostic method for detecting a capacity-dominated electrode that determines the reversible capacity of the battery determines whether the reversible capacity of the positive electrode or the reversible capacity of the negative electrode is larger.
  • a method for diagnosing a secondary battery comprising a detection step of detecting a capacity dominant electrode that determines the reversible capacity of the battery.
  • the detection means is a secondary battery that is after the discharge of the charge / discharge cycle of the secondary battery is stopped and during the charge / discharge stop period.
  • Diagnostic device for secondary battery, or diagnosis for secondary battery of first mode which determines which of reversible capacity of positive electrode and reversible capacity of negative electrode is larger based on voltage characteristics of open circuit voltage (OCV)
  • the detecting step includes the reversible capacity of the positive electrode based on the voltage characteristics of the open circuit voltage (OCV) of the secondary battery after the discharge stop of the charge / discharge cycle of the secondary battery and during the charge / discharge stop period. This is a secondary battery diagnostic method for determining which of the reversible capacities of the negative electrode is larger.
  • the detection means is a secondary battery that is after the charge / discharge cycle of the secondary battery is stopped and during the charge / discharge stop period.
  • a voltage characteristic of the open circuit voltage (OCV) a measurement unit for measuring an open circuit voltage (OCV) after the elapse of a predetermined period after the discharge of the charge / discharge cycle of the secondary battery is stopped, a reversible capacity of the positive electrode and a negative electrode
  • the voltage value set in advance as the value of (OCV) is compared with the open circuit voltage (OCV) measured in the measurement step and after the elapse of a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery.
  • a diagnostic method for a secondary battery including a comparison step.
  • the open circuit voltage of the secondary battery after the discharge stop of the charge / discharge cycle of the secondary battery and during the charge / discharge stop period ( (OCV) voltage characteristic is the speed of recovery of the open circuit voltage (OCV) within a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery
  • the detection means is the charge / discharge of the secondary battery.
  • the reversible capacity of the positive electrode and the reversible capacity of the negative electrode coincide with the means for determining the speed of recovery of the open circuit voltage (OCV) within a predetermined period after the cycle discharge is stopped
  • a value of a speed set in advance as a value of a speed of recovery of the open circuit voltage (OCV) within a predetermined period after the discharge of the charge / discharge cycle of the secondary battery is stopped
  • the open circuit voltage within a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery ( CV) means for comparing with the value of the recovery speed, or in the secondary battery diagnostic method according to the second aspect, in the secondary battery diagnostic method, discharge of the secondary battery charge / discharge cycle
  • the voltage characteristic of the open circuit voltage (OCV) of the secondary battery after the stop and during the charge / discharge stop period is the recovery of the open circuit voltage (OCV) within a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery.
  • the detecting step obtains a value of a speed of recovery of the open circuit voltage (OCV) within a predetermined period after the discharge of the charge / discharge cycle of the secondary battery is stopped, and the secondary battery In the process of battery deterioration, the speed of recovery of the open circuit voltage (OCV) within a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery when the reversible capacity of the positive electrode and the reversible capacity of the negative electrode coincide.
  • the value of the speed set in advance as the value of and the obtained secondary And comparing the speed of the value of recovery of the open circuit voltage within a predetermined period after discharge stop of the charging and discharging cycle of the pond (OCV), is a diagnostic method for a secondary battery.
  • a secondary battery having determination means for determining a transition point at which a capacity dominant electrode that determines a reversible capacity of the secondary battery has shifted from one of a positive electrode and a negative electrode to the other in the course of deterioration of the secondary battery. Diagnostic equipment.
  • the capacity-dominating electrode that determines the reversible capacity of the secondary battery in the course of deterioration of the secondary battery is a positive electrode and a negative electrode. It is the diagnostic method of a secondary battery which has the determination step which determines the transition point which transfered from either one to the other.
  • the capacity dominant electrode that determines the reversible capacity of the secondary battery in the course of deterioration of the secondary battery is a positive electrode and a negative electrode.
  • the secondary battery diagnostic apparatus or the secondary battery diagnostic method according to the fifth aspect the secondary battery is deteriorated in which the transition point from any one of the above is indicated by the cumulative number of charge / discharge cycles.
  • a method for diagnosing a secondary battery, wherein a transition point at which the capacity-dominating electrode that determines the reversible capacity of the secondary battery in the process has shifted from either the positive electrode or the negative electrode to the other is indicated by the number of accumulated charge / discharge cycles. .
  • the capacity-dominating electrode that determines the reversible capacity of the secondary battery in the course of deterioration of the secondary battery is a positive electrode.
  • the capacity-dominating electrode that determines the reversible capacity of the secondary battery in the course of deterioration of the secondary battery further comprises a positive electrode and a negative electrode.
  • the reversible capacity of the secondary battery is determined in the course of deterioration of the secondary battery.
  • a secondary battery control system, or a fifth to seventh aspect, having a control means for changing the control of the secondary battery at a transition point where the capacity-dominating electrode to be shifted from one of the positive electrode and the negative electrode to the other In the secondary battery control method including the secondary battery diagnosis method, the capacity-dominating electrode that determines the reversible capacity of the secondary battery in the course of deterioration of the secondary battery is changed from one of the positive electrode and the negative electrode to the other. It is a secondary battery control method which has the control step which changes the control with respect to the said secondary battery in the transition point which shifted to (1).
  • a secondary battery charging apparatus including the secondary battery diagnostic apparatus according to the first to seventh aspects, or a secondary battery diagnostic method according to the first to seventh aspects.
  • a battery charging method is provided.
  • a tenth aspect of the present invention is a program for executing the diagnostic method for a secondary battery according to the first to seventh aspects.
  • An eleventh aspect of the present invention is a secondary battery according to the first to seventh aspects. This is a recording medium on which a program for executing the diagnostic method is recorded.
  • the use of the present invention has an effect of accurately and easily discriminating a point (transition point) at which a pole that is a main cause of a decrease in reversible capacity of a lithium ion secondary battery has shifted from one pole to the other. That is, according to the present invention, it is possible to determine which reversible capacity between the positive electrode and the negative electrode is large, and therefore, it is possible to determine whether the capacity dominant electrode of the lithium ion secondary battery is the positive electrode or the negative electrode. Further, by using the present invention, there is an effect that the configuration of the diagnostic apparatus can be simplified.
  • FIG. 1 is a graph showing the relationship between the reversible capacity of a lithium ion secondary battery and the number of charge / discharge cycles when the lithium ion secondary battery is charged and discharged at 1C at 25 ° C.
  • FIG. 2 is a graph showing the relationship between the OCV of the lithium ion secondary battery immediately after the 10 minute charge / discharge suspension period after the discharge period in the charge / discharge cycle and the number of charge / discharge cycles.
  • FIG. 3 shows the OCV of the lithium ion secondary battery during the 10-minute charge / discharge rest period after the discharge period during the second, 200th, 400th, and 600th charge / discharge cycles. It is a graph which shows the relationship with time.
  • FIG. 4 schematically shows the configuration of the diagnostic apparatus according to the embodiment of the present invention.
  • FIG. 5 is a flowchart showing the operation of the diagnostic apparatus in the first embodiment.
  • FIG. 6 is a flowchart showing the operation of the diagnostic apparatus in the second embodiment.
  • FIG. 7 is a flowchart showing the operation of the diagnostic apparatus in the third embodiment.
  • FIG. 8 is a graph showing the relationship between the capacity retention rate and the number of charge / discharge cycles when the lithium ion secondary battery is charged at 25 ° C. at 1 C and then discharged at 0.2 C.
  • FIG. 9 is a graph showing the relationship between the capacity retention rate and the number of charge / discharge cycles when the lithium ion secondary battery is charged at 25 ° C. and 1 C and then discharged at 0.2 C.
  • Lithium ion secondary battery to be used 600 mAh class Positive electrode Double-sided coated positive electrode: 92 mm x 92 mm x 2 sheets LiNi1 / 3Co1 / 3Mn1 / 3O2 (92 wt%), carbon black (4 wt%), PVdF (4 wt%) After coating 14mg / cm 2 on one side to 24 ⁇ m Al foil, press and vacuum-dry.
  • a single-side coating amount of 8.5 mg / cm 2 is applied to a 12 ⁇ m Cu foil, then pressed and vacuum dried.
  • BOL is the time before the start of use of the lithium ion secondary battery
  • EOL is the time when the capacity maintenance rate of 80% cannot be maintained.
  • the capacity-dominating electrode at the time of BOL is the positive electrode.
  • the discharge end voltage (minimum open circuit voltage) is 2.8V.
  • the voltage at the start of discharge (maximum open circuit voltage) is 4.2V.
  • OCV open circuit voltage
  • FIG. 1 is a graph showing the relationship between the reversible capacity of a lithium ion secondary battery and the number of charge / discharge cycles when the lithium ion secondary battery is charged and discharged at 1C at 25 ° C.
  • the vertical axis represents the reversible capacity (mAh) of the lithium ion secondary battery, and the horizontal axis represents the number of charge / discharge cycles as its square root.
  • the OCV of the lithium ion secondary battery immediately after the 10-minute charge / discharge pause period after the discharge period in the charge / discharge cycle is measured every predetermined charge / discharge cycle, and during the 10-minute pause period.
  • the OCV of the lithium ion secondary battery was measured in correspondence with time.
  • FIG. 2 is a graph showing the relationship between the OCV of the lithium ion secondary battery immediately after the 10-minute charge / discharge pause period after the discharge period in the charge / discharge cycle and the number of charge / discharge cycles.
  • FIG. 3 shows the OCV of the lithium ion secondary battery during the 10-minute charge / discharge rest period after the discharge period during the second, 200th, 400th, and 600th charge / discharge cycles. It is a graph which shows the relationship with time.
  • the vertical axis indicates OCV (V) immediately after the 10-minute charge / discharge pause period after the discharge period
  • the horizontal axis indicates the number of charge / discharge cycles as its square root.
  • the OCV is proportionally decreased until around the 400th charge / discharge cycle (20 on the horizontal axis of the graph), but is constant from around the 400th charge / discharge cycle.
  • the value is close to the value. That is, it can be understood from this graph that the charge / discharge characteristics of the lithium ion secondary battery changed around the 400th charge / discharge cycle.
  • the vertical axis represents OCV (V) of the lithium ion secondary battery
  • the horizontal axis represents time (seconds).
  • the time is 0, that is, immediately after the end of the discharge period, the specified minimum OCV (2.8 V) is obtained. Thereafter, the OCV of the lithium ion secondary battery naturally recovers a little during 10 minutes until the charging period starts.
  • This graph shows the characteristics of the voltage recovery. Further, in this graph, the curve related to the 400th charge / discharge cycle and the curve related to the 600th charge / discharge cycle substantially overlap each other, and therefore, it is represented as one curve.
  • the predetermined after the discharge stop of the charging / discharging cycle of a secondary battery By measuring the open circuit voltage (OCV) after the lapse of the period, the transition point from the positive electrode to the negative electrode (cumulative charge / discharge cycle number), that is, the above transition point is determined.
  • a predetermined charging / discharging suspension period is 10 minutes
  • a predetermined time point in the predetermined charging / discharging suspension period is a time point of 10 minutes.
  • FIG. 4 schematically shows a configuration of a diagnostic apparatus for determining a transition point.
  • the diagnosis device 1 that determines the transition point includes an input / output unit 2 that inputs and outputs data, a predetermined voltage (reference OCV determined by an experiment or the like) corresponding to the transition point, and the number of charge / discharge cycles performed (cumulative charge / discharge cycle).
  • the storage unit 3 that stores the number of times of a predetermined charge / discharge cycle to be measured, and the OCV immediately after the charge / discharge pause period of 10 minutes after the discharge period at the time of the predetermined charge / discharge cycle It includes a measurement unit 4 that measures (measurement OCV), a comparison unit 5 that compares the reference OCV with the measurement OCV, and a control unit 6 that controls these units.
  • the measurement unit 4 and the comparison unit 5 may be collectively referred to as detection means.
  • FIG. 5 is a flowchart showing the operation of the diagnostic apparatus in the first embodiment. This diagnostic apparatus may be realized by a program based on this flowchart. The operation of this diagnostic apparatus will be described with reference to FIG.
  • the “number of performed charge / discharge cycles (cumulative charge / discharge cycle number)” stored in the storage unit is updated every time a charge / discharge cycle is performed. Since such a configuration is well known, a description thereof will be omitted.
  • step S1.1 the initial data including the reference OCV determined by an experiment or the like and the number of times of a predetermined charge / discharge cycle in which measurement is performed is stored in the storage unit 3 via the input unit 1.
  • This reference OCV is an open circuit voltage (OCV) after the elapse of a predetermined period after the discharge of the charge / discharge cycle of the secondary battery when the reversible capacity of the positive electrode and the reversible capacity of the negative electrode coincide with each other in the process of deterioration of the secondary battery. ) Value.
  • OCV open circuit voltage
  • the number of times of a predetermined charge / discharge cycle in which measurement is performed can be appropriately set. For example, data indicating the number of times of measurement (for example, the 10th time, the 20th time,).
  • step S1.2 based on the data stored in the storage unit 3, the control unit 6 determines whether or not the current charging / discharging cycle is a predetermined charging / discharging cycle. When it is determined that it is not a predetermined charge / discharge cycle (No in step S1.2 in FIG. 5), the process waits until the next charge / discharge cycle is performed, and then the charge / discharge cycle is again performed. It is determined whether or not it is a predetermined charge / discharge cycle to be measured.
  • step S1.2 when the control unit 6 determines that the current charge / discharge cycle is a predetermined charge / discharge cycle to be measured, the process proceeds to step S1.3.
  • step S1.3 the control unit 6 uses the measurement unit 5 to measure an OCV (measurement OCV) at a time point of 10 minutes in a charge / discharge pause period of 10 minutes after the discharge period of the charge / discharge cycle.
  • OCV measurement OCV
  • step S1.4 the control unit 6 uses the comparison unit 5 to compare the reference OCV stored in the storage unit 6 with the measurement OCV measured by the measurement unit 4. If the measured OCV is not less than or equal to the reference OCV, the process returns to step S1.2. When the measured OCV is equal to or lower than the reference OCV, the process proceeds to step S1.5, and the control unit 6 determines that the number of times of the charge / discharge cycle is a transition point at which the tendency to decrease the reversible capacity changes. That is, the control unit 6 determines that the time point of the charge / discharge cycle is the time point when the capacity dominant electrode has shifted from one electrode to the other electrode.
  • the time of measuring OCV was set as 10 minutes after a discharge period
  • the time of measuring OCV is not limited to this.
  • the difference in OCV after each charge / discharge cycle becomes clear. Therefore, the OCV at any time may be used as long as the difference in OCV after each charge / discharge cycle becomes clear.
  • the above is the operation of the diagnostic apparatus for determining the transition point in the first embodiment.
  • the storage unit stores a program that causes the diagnostic apparatus to perform the above operation.
  • the transition point is determined based on the OCV increase rate ( ⁇ OCV) in a predetermined period during the charge / discharge suspension period after the end of the discharge period of the charge / discharge cycle.
  • the diagnostic device of the second embodiment has the same hardware configuration as the diagnostic device of the first embodiment, but the OCV measurement method is different from the comparison target used when determining the transition point.
  • Each unit of the diagnostic apparatus has a configuration corresponding to them.
  • the predetermined period after the end of the discharge period is 30 seconds from the time point 10 seconds later to the time point 40 seconds later, and the rate of increase in OCV per second in that 30 seconds is compared.
  • the storage unit 3 stores the OCV increase rate (reference ⁇ OCV) determined by experiments or the like.
  • This reference ⁇ OCV is the value of the open circuit voltage (OCV) within a predetermined period after the discharge of the charge / discharge cycle of the secondary battery when the reversible capacity of the positive electrode and the reversible capacity of the negative electrode coincide with each other in the process of deterioration of the secondary battery. ) Recovery speed value.
  • the measurement unit 4 includes a configuration for measuring the OCV for 30 seconds from 10 seconds to 40 seconds after the end of the discharge period. Further, the comparison unit 5 further calculates the OCV increase rate (measurement ⁇ OCV) per second for 30 seconds based on the 30-second OCV measured by the measurement unit 4, and the reference ⁇ OCV. A configuration for comparing the measured ⁇ OCV is provided. The control unit 6 has a configuration for controlling these units.
  • FIG. 6 is a flowchart showing the operation of the diagnostic apparatus in the second embodiment. The operation of this diagnostic apparatus will be described with reference to FIG.
  • step S2.1 the initial data including the reference ⁇ OCV determined by an experiment or the like and the number of times of a predetermined charge / discharge cycle for measurement is stored in the storage unit 3 via the input / output unit 2. About the time of the predetermined charging / discharging cycle which performs a measurement, it is possible to set suitably like step S1.1.
  • step S2.2 the control unit 6 determines whether or not the current charging / discharging cycle is a predetermined charging / discharging cycle in which the measurement is performed, based on the data stored in the storage unit.
  • the process waits until the next charge / discharge cycle is performed, and then the charge / discharge cycle is again performed. It is determined whether or not it is a predetermined charge / discharge cycle to be measured.
  • step S2.2 when the control unit 6 determines that the current charge / discharge cycle is a predetermined charge / discharge cycle to be measured, the process proceeds to step S2.3.
  • step S2.3 the control unit 6 uses the measurement unit 4 to measure the OCV for 30 seconds from the time point of 10 seconds to the time point of 40 seconds during the charge / discharge suspension period after the discharge period of the charge / discharge cycle. To do.
  • step S2.4 the control unit 6 uses the calculation means of the comparison unit to calculate the rate of increase of OCV per second (measurement ⁇ OCV) from the OCV measured for 30 seconds.
  • step S2.5 the control unit 6 uses the comparison unit 5 to compare the reference ⁇ OCV stored in the storage unit 3 with the measured ⁇ OCV calculated by the calculation unit of the comparison unit 5. If the measurement ⁇ OCV is not less than or equal to the reference ⁇ OCV, the process returns to step S2.2. When the measurement ⁇ OCV is equal to or smaller than the reference ⁇ OCV, the process proceeds to step S2.6, and the control unit 6 determines that the charge / discharge cycle is a transition point at which the tendency to decrease the reversible capacity changes. That is, the control unit 6 determines that the time point of the charge / discharge cycle is the time point when the capacity dominant electrode has shifted from one electrode to the other electrode.
  • the OCV measurement period for obtaining ⁇ OCV is 30 seconds from the 10 second time point to the 40 second time point in the charge / discharge pause period after the end of the discharge period. Is not limited to this.
  • the OCV measurement period for obtaining ⁇ OCV may be any period as long as the difference in ⁇ OCV during the charge / discharge suspension period after each charge / discharge cycle becomes clear.
  • the above is the operation of the diagnostic apparatus for determining the transition point in the second embodiment.
  • the storage unit stores a program that causes the diagnostic apparatus to perform the above operation.
  • the voltage (reference OCV) and the voltage increase rate ( ⁇ OCV), that is, the standard are experimentally determined.
  • a method of obtaining a numerical value (reference value) in advance and storing it in the storage unit and comparing the reference value with the actual measurement value is used, other methods are also possible.
  • the transition point of a lithium ion secondary battery in use can also be determined.
  • [first step] at the predetermined number of charge / discharge cycles, after the discharge period The OCV is measured at a time point of 10 minutes in the 10-minute charge / discharge suspension period, and [Second Step] each OCV up to a predetermined measurement number from the latest measured OCV (a predetermined number of OCVs in the past). ) Is within a predetermined deviation of the average value of those OCVs.
  • the transition obtained by the present invention is used instead of using all the measured values from the beginning of the use of the lithium ion secondary battery as in the prior art. Use the measured value after the point.
  • the diagnosis device of the third embodiment is similar in hardware configuration to the diagnosis device of the first embodiment or the second embodiment, but the measuring unit 4 is a predetermined lithium ion secondary battery after the transition point. It has a configuration for measuring or estimating the reversible capacity immediately after the charging period of the charge / discharge cycle, and the storage unit 3 is further measured or estimated as the reversible capacity (initial reversible capacity) at the BOL of the lithium ion secondary battery. The reversible capacity and the charge / discharge cycle times (cumulative charge / discharge cycle count) are stored, and the calculation means of the comparison unit 5 is further measured or estimated as the initial reversible capacity stored in the storage unit 3.
  • FIG. 7 is a flowchart showing the operation of the diagnostic apparatus in the third embodiment. Hereinafter, the operation of the diagnostic apparatus will be described with reference to FIG.
  • 3rd Embodiment includes the structure of 1st Embodiment or 2nd Embodiment as a structure which determines a transition point, since the structure has already been demonstrated, it abbreviate
  • step S3.1 the reversible capacity (initial reversible capacity) of the lithium ion secondary battery during BOL is stored in the storage unit 3 via the input / output unit 2.
  • step S3.1 data stored in step S1.1 of the first embodiment or step S2.1 of the second embodiment is also stored, but the description is omitted in FIG.
  • Step S3.2 includes the same steps as steps S1.2 to S1.4 of the first embodiment or steps S2.2 to S2.5 of the second embodiment. That is, it is determined whether or not the time point of the charge / discharge cycle, which is the target of measurement or estimation of the reversible capacity, is the time point when the capacity dominant electrode has shifted from one pole to the other, that is, the transition point.
  • step S3.2 when it is determined that the time point of the charge / discharge cycle that is the target of measurement or estimation of the reversible capacity is the transition point, the process proceeds to step S3.3.
  • step S3.3 the control unit 6 uses the measurement unit 4 to measure or estimate the reversible capacity immediately after the charging period of the predetermined charging / discharging cycle after the transition point, and to perform the measurement or estimation.
  • the number of discharge cycles (cumulative charge / discharge cycle count) and the measured or estimated reversible capacity are associated with each other and stored in the storage unit 3.
  • step S3.4 the control unit 6 uses the calculation unit of the comparison unit 5 to calculate each charge / discharge cycle based on the initial reversible capacity stored in the storage unit 3 and the measured or estimated reversible capacity.
  • the capacity maintenance rate is calculated for the number of times (cumulative charge / discharge cycle number).
  • step S3.5 the control unit 6 has a relationship between the plurality of cumulative charge / discharge cycle times and the plurality of capacity maintenance rates when a set of a predetermined number of cumulative charge / discharge cycles and the capacity maintenance rate is completed.
  • step S3.6 the control unit 6 obtains the cumulative number of charge / discharge cycles during EOL of the lithium ion secondary battery using the function obtained in step S3.5.
  • the reversible capacity of a predetermined charge / discharge cycle after the transition point is measured or estimated.
  • the reversible capacity may be measured from the BOL time of the lithium ion secondary battery.
  • the reversible capacity measured or estimated after the transition point simply use the reversible capacity measured or estimated after the transition point. What is necessary is just to comprise.
  • the above is the operation of the diagnostic apparatus for predicting the EOL of the lithium ion secondary battery in the third embodiment.
  • the storage unit stores a program that causes the diagnostic apparatus to perform the above-described operation.
  • FIG. 8 and FIG. 9 are graphs showing the relationship between the capacity retention rate and the number of charge / discharge cycles when the lithium ion secondary battery is charged at 25 ° C. and 1 C and then discharged at 0.2 C.
  • the vertical axis indicates the capacity maintenance rate (%), and the capacity maintenance rate in a fully charged state when the lithium ion secondary battery is first used is 100%.
  • the horizontal axis indicates the number of charge / discharge cycles, and the number is shown as the square root of the number. For example, 20 on the horizontal axis of the graph represents 400 times.
  • each of the plurality of points indicated by “ ⁇ ” is an actually measured point (hereinafter referred to as a measurement point).
  • a measurement point For example, the second circle from the left side of the graph of FIG. 8 indicates that the capacity maintenance rate was about 99% when the number of charge / discharge cycles was about 250, and the third circle from the left side was It indicates that the capacity retention rate was about 97.5% when the number of charge / discharge cycles was about 500.
  • the dotted straight line in the graph of FIG. 8 represents a function that is most approximated to the relationship between the measurement points derived based on all the measurement points from the time point when the number of cycles is zero.
  • the method of deriving a function based on all measurement points from the BOL is the method of the prior art described in the above “Background Art”.
  • the coefficient of determination (R 2 ) between this function and the measurement point was 0.8437.
  • FIG. 9 shows a plurality of measurement points after the point (transition point) at which the behavior of the lithium ion secondary battery obtained according to the present invention is changed among the measurement points shown in FIG.
  • the transition point of the tendency to decrease the reversible capacity of the lithium ion secondary battery is when the number of charge / discharge cycles is about 400. Therefore, the two measurement points on the left of the plurality of measurement points shown in FIG. 8 are not shown in FIG. 9 because they are before the number of charge / discharge cycles reaches 400.
  • EOL at the time when the number of charge / discharge cycles is 5600
  • EOL at the time when the number of charge / discharge cycles exceeds 6400
  • the capacity retention rate when the number of charge / discharge cycles is 0 is about 105% (indicated by “ ⁇ ” in the graph of FIG. 9).
  • the capacity maintenance rate of 105% corresponds to the reversible capacity determined based on the irreversible capacity of the negative electrode.
  • the reversible capacity of the lithium ion secondary battery before the transition point is more influenced by the positive electrode than the negative electrode (the reversible capacity of the positive electrode). Less capacity).
  • the reversible capacity determined based on the irreversible capacity of the negative electrode is more than the reversible capacity determined based on the irreversible capacity of the positive electrode, the reversible capacity determined based on the irreversible capacity of the positive electrode.
  • the capacity becomes a reversible capacity that can actually be used. That is, the actual reversible capacity when the number of charge / discharge cycles is 0 is a reversible capacity corresponding to the capacity maintenance rate of 100% shown in FIG.
  • the diagnostic device of the first embodiment or the second embodiment is applied in order to keep the lithium ion secondary battery in a good state. be able to.
  • an application example using the first embodiment will be described.
  • the transition point can be determined by applying the first embodiment or the second embodiment of the present invention.
  • step S1.4 of the first embodiment or the second embodiment In the case of No in step S2.5 of the form, control is performed mainly considering one pole, and in the case of Yes in step S1.4 of the first embodiment or step S2.5 of the second embodiment.
  • the control device can be configured to perform control mainly considering the other pole.
  • the lithium ion secondary battery is used as an example, but the present invention can also be applied to other batteries.
  • the present invention relates to a rechargeable battery that accompanies deterioration of the positive electrode and the negative electrode, which is a main cause of a decrease in reversible capacity.
  • One pole is more involved in reducing reversible capacity because it is more degraded than the other pole, but the other pole is faster to degrade than one pole, and both the one pole and the other pole are degraded.
  • the present invention can be used for diagnosing the state of a battery having the above characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

The objective of the present invention is to determine a point in time at which a pole has migrated from one pole toward another pole, which is the main cause of a reduction in the reversible capacity of a rechargeable battery. The point in time at which a pole has migrated from one pole toward another pole, which is the main cause of a reduction in the reversible capacity of a rechargeable battery, is determined on the basis of an open circuit voltage (OCV) characteristic of the battery during a prescribed charging and discharging idle period after a discharging period in a battery charging and discharging cycle.

Description

二次電池の診断装置及び診断方法Secondary battery diagnostic device and diagnostic method
 本発明は、再充電可能な二次電池に関し、更に特定的には、二次電池の状態を診断すること、およびその診断に基づいて、二次電池の寿命を予測すること、および二次電池を良好な状態に保つことに関する。 The present invention relates to a rechargeable secondary battery, and more particularly, diagnosing the state of the secondary battery, and predicting the lifetime of the secondary battery based on the diagnosis, and the secondary battery Is related to keeping in good condition.
 再充電可能な二次電池(以下、単に二次電池という)は、民生用の電源として広く用いられている。近年の電気自動車やロードレベリングなどで使用する二次電池では、長期にわたって使用できること、即ち、長い寿命を有することが要求されている。また、二次電池を長期にわたって使用する場合には、その寿命を予測することも極めて重要となっている。 Rechargeable secondary batteries (hereinafter simply referred to as secondary batteries) are widely used as consumer power sources. Secondary batteries used in recent electric vehicles and road leveling are required to be usable for a long period of time, that is, to have a long life. In addition, when a secondary battery is used over a long period of time, it is extremely important to predict its life.
 二次電池では、累積使用期間(または累積充放電サイクル回数)の増加に伴って極(正極、負極)が劣化し、極の劣化に伴って可逆容量が低下することが知られている。 In a secondary battery, it is known that the pole (positive electrode, negative electrode) deteriorates as the cumulative use period (or cumulative number of charge / discharge cycles) increases, and the reversible capacity decreases as the pole deteriorates.
 なお、可逆容量とは、所定の充電終止電圧と放電終止電圧との間で充放電できる容量、即ち、二次電池の容量のうちの実際に使用可能な容量である。また、可逆容量と関連する不可逆容量があるが、これは、二次電池の容量のうちの出力不可能な容量である。 Note that the reversible capacity is a capacity that can be charged and discharged between a predetermined end-of-charge voltage and end-of-discharge voltage, that is, a capacity that can be actually used out of the capacity of the secondary battery. In addition, there is an irreversible capacity associated with a reversible capacity, which is a capacity of the secondary battery that cannot be output.
 特開2003-178812号公報(特許文献1)には、リチウム二次電池を評価する技術に関連する発明が開示されている。特許文献1に記載の発明では、「所定時間後のリチウム二次電池の容量(Qt)を所定の式に従って算出することにより、リチウム二次電池の寿命特性を評価する」という技術を用いる。簡単に説明すると、特許文献1に記載の発明では、リチウム二次電池の寿命の始まり(リチウム二次電池の使用開始時)からの累積使用期間に比例してリチウム二次電池の再充電可能な容量(可逆容量)が低下していくと想定し、寿命の始まりからの累積使用期間と可逆容量との間の直線則的な比例関係を用いて、リチウム二次電池の可逆容量の低下を予測している。 Japanese Patent Laid-Open No. 2003-178812 (Patent Document 1) discloses an invention related to a technique for evaluating a lithium secondary battery. In the invention described in Patent Document 1, a technique of “evaluating the life characteristics of a lithium secondary battery by calculating the capacity (Qt) of the lithium secondary battery after a predetermined time according to a predetermined formula” is used. Briefly, in the invention described in Patent Document 1, the lithium secondary battery can be recharged in proportion to the cumulative use period from the beginning of the life of the lithium secondary battery (at the start of use of the lithium secondary battery). Assuming that the capacity (reversible capacity) will decrease, predict the decrease in reversible capacity of lithium secondary batteries using the linear proportional relationship between the cumulative use period from the beginning of the life and the reversible capacity is doing.
 「GS Yuasa Technical Report」の第5巻第1号(2008年6月27日発行)(非特許文献1)の第21~26ページにも、リチウムイオン電池の可逆容量の低下を予測する技術が開示されている。その技術では、リチウムイオン電池の寿命の始まり(リチウム二次電池の使用開始時)からの累積使用期間の経過と共にリチウムイオン電池の容量(可逆容量)がルート則に従って緩やかに低下していくと想定し、寿命の始まりからの累積使用期間と可逆容量との間のルート則的な比例関係を用いて、リチウムイオン電池の可逆容量の低下を予測している。 There is also a technology for predicting the decrease in reversible capacity of lithium-ion batteries on pages 21 to 26 of Volume 5 Issue 1 (issued June 27, 2008) (Non-Patent Document 1) of "GS Yuasa Technical Report". It is disclosed. In that technology, it is assumed that the capacity (reversible capacity) of the lithium ion battery will gradually decrease according to the root rule as the cumulative use period elapses from the beginning of the life of the lithium ion battery (at the start of use of the lithium secondary battery). However, a decrease in the reversible capacity of the lithium ion battery is predicted using a root-law proportional relationship between the cumulative use period from the beginning of the life and the reversible capacity.
 電池に関して、特許文献1ではリチウム二次電池と記載され、非特許文献1ではリチウムイオン電池と記載されているが、以下では、これらをリチウムイオン二次電池という。 Regarding the battery, Patent Document 1 describes it as a lithium secondary battery and Non-Patent Document 1 describes it as a lithium ion battery, but these are hereinafter referred to as lithium ion secondary batteries.
 特許文献1および非特許文献1に記載の技術は、双方とも、リチウムイオン二次電池の寿命の始めから終わりまでの累積使用期間と可逆容量との間に比例的な関係があることを前提としている。 The technologies described in Patent Document 1 and Non-Patent Document 1 are based on the premise that there is a proportional relationship between the cumulative use period from the beginning to the end of the life of a lithium ion secondary battery and the reversible capacity. Yes.
 特開2017-054692号公報(特許文献2)には、二次電池(リチウムイオン二次電池)を用いた蓄電システムに関する発明が開示されている。特許文献2には、正極の劣化状態を示す尺度および負極の劣化状態を示す尺度を検出する技術が開示されており、請求項1には、「前記二次電池の制御システムは、正極の劣化状態を示す尺度を検出する手段と、負極の劣化状態を示す尺度を検出する手段と、前記正極の前記尺度と前記負極の前記尺度との差を計算する手段と、前記差の符号を判別する手段と、前記符号に応じて前記二次電池の動作条件を変更する手段と、を有する」という記載がある。 Japanese Patent Application Laid-Open No. 2017-054692 (Patent Document 2) discloses an invention relating to a power storage system using a secondary battery (lithium ion secondary battery). Patent Document 2 discloses a technique for detecting a scale indicating the deterioration state of the positive electrode and a scale indicating the deterioration state of the negative electrode, and claim 1 states that “the control system of the secondary battery is a deterioration of the positive electrode. Means for detecting a scale indicating the state; means for detecting a scale indicating the deterioration state of the negative electrode; means for calculating a difference between the scale of the positive electrode and the scale of the negative electrode; and determining a sign of the difference And means for changing the operating condition of the secondary battery in accordance with the reference sign ”.
 上記の技術に関して、特許文献2の段落0029には「本発明者は、この電池容量低下のメカニズムにおいて、劣化後の正極容量QPと劣化後の負極容量QNとが逆転することが、急激な電池特性低下の原因であることを突き止め、その結果、想定寿命よりもより短期間で電池の性能が著しく低下する現象が起こることを見出した。」との、また、段落0031には、「なお、これらの尺度を監視するためには、劣化後の正極電位曲線VP及び劣化後の正極電位曲線VNの計測又は算出をする手段が必要となる。これについては、二次電池に正極及び負極以外の第三極を挿入して、正極及び負極の電位を計測する手段を用いることや、劣化後の電池電圧VB、初期の正極電位曲線VP0及び初期の負極電位曲線VN0から劣化後の電池電圧を算出する手段等、公知の技術を用いることができる。なお、初期の正極電位曲線VP0及び初期の負極電位曲線VN0は、それぞれ、正極又は負極、あるいは単極で充放電を実施し、あらかじめ取得しておく。」という記載がある。即ち、特許文献2に記載の技術では、劣化後の正極容量と劣化後の負極容量とが逆転することを検出するために、正極および負極の劣化状態(電位)を、参照極を使用して測定するか、または充放電時の電池の電圧から推定する。 Regarding the above technique, paragraph 0029 of Patent Document 2 states that “the present inventor has noticed that in this mechanism of battery capacity reduction, the positive electrode capacity QP after deterioration and the negative electrode capacity QN after deterioration reverse. As a result, it was found that the battery performance was significantly reduced in a shorter period of time than the expected life. " In order to monitor these measures, a means for measuring or calculating the deteriorated positive electrode potential curve VP and the deteriorated positive electrode potential curve VN is required. By using a means for measuring the potentials of the positive electrode and the negative electrode by inserting the third pole, the battery voltage VB after deterioration, the battery voltage after deterioration from the initial positive electrode potential curve VP0 and the initial negative electrode potential curve VN0 A known technique can be used such as a calculation means, etc. The initial positive electrode potential curve VP0 and the initial negative electrode potential curve VN0 are obtained in advance by charging / discharging with the positive electrode, the negative electrode, or the single electrode, respectively. There is a description. That is, in the technique described in Patent Document 2, in order to detect that the positive electrode capacity after deterioration and the negative electrode capacity after deterioration are reversed, the deterioration state (potential) of the positive electrode and the negative electrode is determined using the reference electrode. Measure or estimate from battery voltage during charge / discharge.
特開2003-178812号公報JP 2003-178812 A 特開2017-054692号公報JP 2017-054692 A
 特許文献1および非特許文献1に記載されているような従来技術では、リチウムイオン二次電池を長期にわたって使用する場合の可逆容量の低下の傾向を正確に予測できない欠点がある。その理由は、リチウムイオン二次電池の可逆容量の低下の原因は、負極の劣化と正極の劣化とを含むからである。より詳細には、リチウムイオン二次電池の可逆容量の低下は、負極の劣化が主な原因である場合と、正極の劣化が主な原因である場合とがあり、それぞれの場合によって可逆容量の低下の傾向が異なる。従って、寿命の始まり(BOL、Beginning Of Life)から寿命の終わり(EOL、End Of Life)までの累積使用期間と可逆容量との間に完全な比例的関係が成り立たないからである。 The conventional techniques described in Patent Document 1 and Non-Patent Document 1 have a drawback in that the tendency to decrease the reversible capacity when a lithium ion secondary battery is used over a long period cannot be accurately predicted. The reason is that the cause of the decrease in the reversible capacity of the lithium ion secondary battery includes the deterioration of the negative electrode and the deterioration of the positive electrode. More specifically, the decrease in the reversible capacity of the lithium ion secondary battery may be caused mainly by the deterioration of the negative electrode or the deterioration of the positive electrode, depending on the respective cases. The trend of decline is different. Therefore, a complete proportional relationship is not established between the cumulative use period from the beginning of the life (BOL, Beginning Of Life) to the end of the life (EOL, End Of Life) and the reversible capacity.
 より具体的には、リチウムイオン二次電池の正極と負極とのそれぞれの材料の構成にもよるが、一般に、リチウムイオン二次電池の使用開始時には、正極の不可逆容量が負極の不可逆容量よりも多い。また、負極の劣化(不可逆容量の増加)の速さは、正極の劣化(不可逆容量の増加)の速さよりも速い。従って、リチウムイオン二次電池の寿命の初期ないし中期には、正極の不可逆容量が負極の不可逆容量よりも多いが、或る時点(以下、移行点という)以降は、負極の不可逆容量が正極の不可逆容量よりも多くなる。即ち、リチウムイオン二次電池の可逆容量の低下は、寿命の初期ないし中期には、主に正極の不可逆容量と関連するが、移行点以降は、主に負極の不可逆容量と関連する。また、正極と負極とで劣化の速さが異なるということは、移行点より前と後とで可逆容量の低下の傾向も異なるということを意味する。従って、従来の近似法(即ち、BOLからの全ての測定値に基づいて、近似する線形的な関数を導出する手法)に基づいて求められたリチウムイオン二次電池の劣化の傾向は、実際の劣化の傾向からは逸脱したものとなり、リチウムイオン二次電池の寿命を正確に予測することができない欠点がある。 More specifically, although it depends on the composition of each material of the positive electrode and the negative electrode of the lithium ion secondary battery, generally, at the start of use of the lithium ion secondary battery, the irreversible capacity of the positive electrode is larger than the irreversible capacity of the negative electrode. Many. The speed of deterioration of the negative electrode (increase in irreversible capacity) is faster than the speed of deterioration of the positive electrode (increase in irreversible capacity). Therefore, the irreversible capacity of the positive electrode is larger than the irreversible capacity of the negative electrode during the initial or middle period of the lithium ion secondary battery, but after a certain point (hereinafter referred to as a transition point), the irreversible capacity of the negative electrode is higher than that of the positive electrode. More than irreversible capacity. That is, the decrease in the reversible capacity of the lithium ion secondary battery is mainly related to the irreversible capacity of the positive electrode in the initial to middle period of the life, but is mainly related to the irreversible capacity of the negative electrode after the transition point. Further, the fact that the speed of deterioration differs between the positive electrode and the negative electrode means that the tendency of the reversible capacity to decrease is different before and after the transition point. Therefore, the deterioration tendency of the lithium ion secondary battery obtained based on the conventional approximation method (that is, a method for deriving an approximate linear function based on all measured values from the BOL) is There is a drawback that the life of a lithium ion secondary battery cannot be accurately predicted because it deviates from the tendency of deterioration.
 また、特許文献1および非特許文献1に記載されているような従来技術では、リチウムイオン二次電池の可逆容量の減少の主な原因となる極が一方の極から他方の極へ移行した時点、即ち、初期には高かった一方の極の劣化の度合(不可逆容量)よりも、初期には低かった他方の極の劣化の度合(不可逆容量)のほうが高くなった時点(移行点)を正確かつ容易に判別できない欠点がある。 Further, in the prior art described in Patent Document 1 and Non-Patent Document 1, when the pole that is the main cause of the decrease in the reversible capacity of the lithium ion secondary battery has shifted from one pole to the other pole That is, when the degree of deterioration (irreversible capacity) of the other pole, which was initially low, is higher than the degree of deterioration of one pole (irreversible capacity), which was initially high, the time point (transition point) becomes higher. There are also disadvantages that cannot be easily identified.
 なお、ここでは寿命の初期、中期、末期などの期間を表す用語を用いたが、これらの用語は、単に、相対的に期間を表すために用いており、期間の長さ、開始時点、終了時点などを厳密に特定するものではない。 In addition, although the term indicating the period such as the initial stage, the middle period, and the end stage of the life is used here, these terms are merely used to represent the period relatively, and the length of the period, the start point, the end point It does not strictly specify the time.
 また、特許文献2に記載されているような従来技術における正極および負極の劣化状態を示す尺度を求める構成では、正極および負極の劣化状態(電位)を、参照極を使用して測定するか、または充放電時の電池の電圧から推定するが、参照極を使用する場合には装置の構成が複雑になる欠点があり、また充放電時の電池の電圧から推定する場合には正確な値が得られない欠点がある。 Further, in the configuration for obtaining a scale indicating the deterioration state of the positive electrode and the negative electrode in the prior art as described in Patent Document 2, the deterioration state (potential) of the positive electrode and the negative electrode is measured using the reference electrode, Or it is estimated from the battery voltage at the time of charging / discharging, but there is a disadvantage that the configuration of the device becomes complicated when using the reference electrode, and when it is estimated from the voltage of the battery at charging / discharging, an accurate value is obtained. There are disadvantages that cannot be obtained.
 即ち、従来技術では、リチウムイオン二次電池の使用中における可逆容量の減少の傾向の移行点を正確かつ容易に判別することができない欠点がある。即ち、従来技術では、正極と負極との何れの可逆容量が多いかを判別できない欠点、従って、リチウムイオン二次電池の容量支配極が正極であるか負極であるかを判別できない欠点がある。 That is, the conventional technology has a drawback that it is not possible to accurately and easily determine the transition point of the tendency to decrease the reversible capacity during the use of the lithium ion secondary battery. That is, the conventional technique has a drawback that it cannot be determined which reversible capacity of the positive electrode or the negative electrode is large, and therefore, it is not possible to determine whether the capacity dominant electrode of the lithium ion secondary battery is the positive electrode or the negative electrode.
 なお、ここでは、容量支配極とは、正極と負極とのうちの、リチウムイオン二次電池の可逆容量を決定するほうの極、即ち、正極と負極とのうちの可逆容量の小さいほうの電極であると定義する。 Here, the capacity-dominating electrode is the electrode that determines the reversible capacity of the lithium ion secondary battery, ie, the electrode having the smaller reversible capacity between the positive electrode and the negative electrode. Is defined as
 更には、例えば、可逆容量の減少の主因が負極の可逆容量である期間と正極の可逆容量である期間とを区別して各期間に応じた種々の制御を行う、といった構成も実現できない欠点がある。 Furthermore, for example, there is a drawback that it is not possible to realize a configuration in which various control according to each period is performed by distinguishing between a period in which the main reason for the decrease in reversible capacity is the reversible capacity of the negative electrode and a period in which the positive electrode is reversible. .
 そこで、本発明では、リチウムイオン二次電池の可逆容量の減少の主な原因となる極が一方の極から他方の極へ移行した時点、即ち、初期には低かった一方の極の劣化の度合(不可逆容量)が他方の極の劣化の度合(不可逆容量)より高くなった時点(移行点)、即ち、初期には多かった一方の極の可逆容量が他方の極の可逆容量より少なくなった時点を、リチウムイオン二次電池の充放電サイクルの放電期間後の充放電休止期間の開回路電圧(OCV)の特性に基づいて求める。 Therefore, in the present invention, when the pole that is the main cause of the decrease in the reversible capacity of the lithium ion secondary battery has shifted from one pole to the other, that is, the degree of deterioration of one pole that was initially low. When the (irreversible capacity) becomes higher than the degree of deterioration of the other pole (irreversible capacity) (transition point), that is, the reversible capacity of one pole that was initially large is less than the reversible capacity of the other pole. The time point is obtained based on the characteristics of the open circuit voltage (OCV) in the charge / discharge rest period after the discharge period of the charge / discharge cycle of the lithium ion secondary battery.
 更に、本発明では、移行点を求めた後、その移行点後のリチウムイオン二次電池の挙動に基づいて寿命の予測を行う。更に、本発明では、移行点後のリチウムイオン二次電池の性能を最大限に引き出すために、リチウムイオン二次電池の充放電と関連するシステムの制御を変更する。 Furthermore, in the present invention, after obtaining the transition point, the lifetime is predicted based on the behavior of the lithium ion secondary battery after the transition point. Furthermore, in the present invention, in order to maximize the performance of the lithium ion secondary battery after the transition point, the control of the system related to charging / discharging of the lithium ion secondary battery is changed.
 本発明の第1の態様は、正極と負極を有する二次電池の可逆容量を決定する容量支配極を検出する二次電池の診断装置において、前記二次電池の診断装置は、正極の可逆容量と負極の可逆容量のいずれが大きいか判定することにより二次電池の可逆容量を決定する容量支配極を検出する検出手段を有する、二次電池の診断装置、ないし、正極と負極を有する二次電池の可逆容量を決定する容量支配極を検出する二次電池の診断方法において、前記二次電池の診断方法は、正極の可逆容量と負極の可逆容量のいずれが大きいか判定することにより二次電池の可逆容量を決定する容量支配極を検出する検出ステップを有する、二次電池の診断方法である。 According to a first aspect of the present invention, there is provided a diagnostic apparatus for a secondary battery that detects a capacity dominant electrode that determines a reversible capacity of a secondary battery having a positive electrode and a negative electrode. And a secondary battery diagnostic device having a detection means for detecting a capacity-dominating electrode that determines the reversible capacity of the secondary battery by determining which one of the reversible capacities of the secondary battery and the negative electrode is large. In the secondary battery diagnostic method for detecting a capacity-dominated electrode that determines the reversible capacity of the battery, the secondary battery diagnostic method determines whether the reversible capacity of the positive electrode or the reversible capacity of the negative electrode is larger. A method for diagnosing a secondary battery, comprising a detection step of detecting a capacity dominant electrode that determines the reversible capacity of the battery.
 本発明の第2の態様は、第1の態様の二次電池の診断装置において、前記検出手段は、前記二次電池の充放電サイクルの放電停止後であり充放電停止期間中の二次電池の開回路電圧(OCV)の電圧特性に基づいて、正極の可逆容量と負極の可逆容量のいずれが大きいか判定する、二次電池の診断装置、ないし、第1の態様の二次電池の診断方法において、前記検出ステップは、前記二次電池の充放電サイクルの放電停止後であり充放電停止期間中の二次電池の開回路電圧(OCV)の電圧特性に基づいて、正極の可逆容量と負極の可逆容量のいずれが大きいか判定する、二次電池の診断方法である。 According to a second aspect of the present invention, in the diagnostic apparatus for a secondary battery according to the first aspect, the detection means is a secondary battery that is after the discharge of the charge / discharge cycle of the secondary battery is stopped and during the charge / discharge stop period. Diagnostic device for secondary battery, or diagnosis for secondary battery of first mode, which determines which of reversible capacity of positive electrode and reversible capacity of negative electrode is larger based on voltage characteristics of open circuit voltage (OCV) In the method, the detecting step includes the reversible capacity of the positive electrode based on the voltage characteristics of the open circuit voltage (OCV) of the secondary battery after the discharge stop of the charge / discharge cycle of the secondary battery and during the charge / discharge stop period. This is a secondary battery diagnostic method for determining which of the reversible capacities of the negative electrode is larger.
 本発明の第3の態様は、第2の態様の二次電池の診断装置において、前記検出手段は、前記二次電池の充放電サイクルの放電停止後であり充放電停止期間中の二次電池の開回路電圧(OCV)の電圧特性として、前記二次電池の充放電サイクルの放電停止後の所定期間経過後の開回路電圧(OCV)を測定する測定部と、正極の可逆容量と負極の可逆容量が一致したときの前記二次電池の充放電サイクルの放電停止後の所定期間経過後の開回路電圧(OCV)の値として予め設定されている電圧値と、前記測定部において測定された、前記二次電池の充放電サイクルの放電停止後の所定期間経過後の開回路電圧(OCV)を比較する比較部とを含む、二次電池の診断装置、ないし、第2の態様の二次電池の診断方法において、前記検出ステップは、前記二次電池の充放電サイクルの放電停止後であり充放電停止期間中の二次電池の開回路電圧(OCV)の電圧特性は、前記二次電池の充放電サイクルの放電停止後の所定期間経過後の開回路電圧(OCV) を測定する測定ステップと、正極の可逆容量と負極の可逆容量が一致したときの前記二次電池の充放電サイクルの放電停止後の所定期間経過後の開回路電圧(OCV)の値として予め設定されている電圧値と、前記測定ステップにおいて測定された、前記二次電池の充放電サイクルの放電停止後の所定期間経過後の開回路電圧(OCV)を比較する比較ステップとを含む、二次電池の診断方法である。 According to a third aspect of the present invention, in the secondary battery diagnostic apparatus according to the second aspect, the detection means is a secondary battery that is after the charge / discharge cycle of the secondary battery is stopped and during the charge / discharge stop period. As a voltage characteristic of the open circuit voltage (OCV), a measurement unit for measuring an open circuit voltage (OCV) after the elapse of a predetermined period after the discharge of the charge / discharge cycle of the secondary battery is stopped, a reversible capacity of the positive electrode and a negative electrode A voltage value set in advance as a value of an open circuit voltage (OCV) after the elapse of a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery when the reversible capacities coincide, and measured by the measurement unit A secondary battery diagnostic device, or a secondary battery according to the second aspect, comprising: a comparison unit that compares open circuit voltage (OCV) after a predetermined period of time has elapsed since the discharge of the charge / discharge cycle of the secondary battery is stopped In the battery diagnosis method, the detection step includes: The voltage characteristic of the open circuit voltage (OCV) of the secondary battery after the discharge stop of the charge / discharge cycle of the secondary battery and during the charge / discharge stop period is a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery. A measurement step of measuring a subsequent open circuit voltage (OCV) と, and an open circuit voltage after a lapse of a predetermined period after the discharge of the charge / discharge cycle of the secondary battery when the reversible capacity of the positive electrode and the reversible capacity of the negative electrode coincide with each other The voltage value set in advance as the value of (OCV) is compared with the open circuit voltage (OCV) measured in the measurement step and after the elapse of a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery. A diagnostic method for a secondary battery including a comparison step.
 本発明の第4の態様は、第2の態様の二次電池の診断装置において、前記二次電池の充放電サイクルの放電停止後であり充放電停止期間中の二次電池の開回路電圧(OCV)の電圧特性は、前記二次電池の充放電サイクルの放電停止後の所定期間内の開回路電圧(OCV)の回復の速さであり、前記検出手段は、前記二次電池の充放電サイクルの放電停止後の所定期間内の前記開回路電圧(OCV)の回復の速さの値を求める手段と、前記二次電池が劣化する過程で、正極の可逆容量と負極の可逆容量が一致したときの前記二次電池の充放電サイクルの放電停止後の所定期間内の前記開回路電圧(OCV)の回復の速さの値として予め設定されている速さの値と、求められた前記二次電池の充放電サイクルの放電停止後の所定期間内の前記開回路電圧(OCV)の回復の速さの値とを比較する手段とを含む、二次電池の診断装置、ないし、第2の態様の二次電池の診断方法において、前記二次電池の充放電サイクルの放電停止後であり充放電停止期間中の二次電池の開回路電圧(OCV)の電圧特性は、前記二次電池の充放電サイクルの放電停止後の所定期間内の開回路電圧(OCV)の回復の速さであり、前記検出ステップは、前記二次電池の充放電サイクルの放電停止後の所定期間内の前記開回路電圧(OCV)の回復の速さの値を求めるステップと、前記二次電池が劣化する過程で、正極の可逆容量と負極の可逆容量が一致したときの前記二次電池の充放電サイクルの放電停止後の所定期間内の前記開回路電圧(OCV)の回復の速さの値として予め設定されている速さの値と、求められた前記二次電池の充放電サイクルの放電停止後の所定期間内の前記開回路電圧(OCV)の回復の速さの値とを比較するステップとを含む、二次電池の診断方法である。 According to a fourth aspect of the present invention, in the diagnostic apparatus for a secondary battery of the second aspect, the open circuit voltage of the secondary battery after the discharge stop of the charge / discharge cycle of the secondary battery and during the charge / discharge stop period ( (OCV) voltage characteristic is the speed of recovery of the open circuit voltage (OCV) within a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery, and the detection means is the charge / discharge of the secondary battery. The reversible capacity of the positive electrode and the reversible capacity of the negative electrode coincide with the means for determining the speed of recovery of the open circuit voltage (OCV) within a predetermined period after the cycle discharge is stopped A value of a speed set in advance as a value of a speed of recovery of the open circuit voltage (OCV) within a predetermined period after the discharge of the charge / discharge cycle of the secondary battery is stopped, The open circuit voltage within a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery ( CV) means for comparing with the value of the recovery speed, or in the secondary battery diagnostic method according to the second aspect, in the secondary battery diagnostic method, discharge of the secondary battery charge / discharge cycle The voltage characteristic of the open circuit voltage (OCV) of the secondary battery after the stop and during the charge / discharge stop period is the recovery of the open circuit voltage (OCV) within a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery. And the detecting step obtains a value of a speed of recovery of the open circuit voltage (OCV) within a predetermined period after the discharge of the charge / discharge cycle of the secondary battery is stopped, and the secondary battery In the process of battery deterioration, the speed of recovery of the open circuit voltage (OCV) within a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery when the reversible capacity of the positive electrode and the reversible capacity of the negative electrode coincide. The value of the speed set in advance as the value of and the obtained secondary And comparing the speed of the value of recovery of the open circuit voltage within a predetermined period after discharge stop of the charging and discharging cycle of the pond (OCV), is a diagnostic method for a secondary battery.
 本発明の第5の態様は、第1~4の態様のいずれかの二次電池の診断装置において、更に、
 前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した移行点を判定する判定手段を有する、二次電池の診断装置。ないし、第1~4の態様のいずれかの二次電池の診断方法において、更に、前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した移行点を判定する判定ステップを有する、二次電池の診断方法である。
According to a fifth aspect of the present invention, in the diagnostic apparatus for a secondary battery according to any one of the first to fourth aspects,
A secondary battery having determination means for determining a transition point at which a capacity dominant electrode that determines a reversible capacity of the secondary battery has shifted from one of a positive electrode and a negative electrode to the other in the course of deterioration of the secondary battery. Diagnostic equipment. In the secondary battery diagnostic method according to any one of the first to fourth aspects, the capacity-dominating electrode that determines the reversible capacity of the secondary battery in the course of deterioration of the secondary battery is a positive electrode and a negative electrode. It is the diagnostic method of a secondary battery which has the determination step which determines the transition point which transfered from either one to the other.
 本発明の第6の態様は、第5の態様の二次電池の診断装置において、前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した移行点を、累積充放電サイクル回数により示す、二次電池の診断装置、ないし、第5の態様の二次電池の診断方法において、前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した移行点を、累積充放電サイクル回数により示す、二次電池の診断方法である。 According to a sixth aspect of the present invention, in the diagnostic device for a secondary battery according to the fifth aspect, the capacity dominant electrode that determines the reversible capacity of the secondary battery in the course of deterioration of the secondary battery is a positive electrode and a negative electrode. In the secondary battery diagnostic apparatus or the secondary battery diagnostic method according to the fifth aspect, the secondary battery is deteriorated in which the transition point from any one of the above is indicated by the cumulative number of charge / discharge cycles. A method for diagnosing a secondary battery, wherein a transition point at which the capacity-dominating electrode that determines the reversible capacity of the secondary battery in the process has shifted from either the positive electrode or the negative electrode to the other is indicated by the number of accumulated charge / discharge cycles. .
 本発明の第7の態様は、第5又は6の二次電池の診断装置において、更に、前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した移行点以降の、前記二次電池の劣化状態の計時変化を検出して、前記二次電池の寿命性能を予測する寿命予測手段を有する、二次電池の診断装置、ないし、第5又は6の二次電池の診断方法において、更に、前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した移行点以降の、前記二次電池の劣化状態の計時変化を検出して、前記二次電池の寿命性能を予測する寿命予測ステップを有する、二次電池の診断方法である。 According to a seventh aspect of the present invention, in the fifth or sixth secondary battery diagnostic apparatus, the capacity-dominating electrode that determines the reversible capacity of the secondary battery in the course of deterioration of the secondary battery is a positive electrode. And a secondary battery having a life prediction means for detecting a time change in the deterioration state of the secondary battery after the transition point from one of the negative electrode and the negative electrode to the other and predicting the life performance of the secondary battery. In the diagnostic method for a secondary battery of the fifth or sixth aspect, the capacity-dominating electrode that determines the reversible capacity of the secondary battery in the course of deterioration of the secondary battery further comprises a positive electrode and a negative electrode. A method for diagnosing a secondary battery, comprising a life prediction step for detecting a time change in the deterioration state of the secondary battery after a transition point from one to the other and predicting the life performance of the secondary battery It is.
 本発明の第8の態様は、第5~7の態様の二次電池の診断装置を含む二次電池制御システムにおいて、前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した移行点に、前記二次電池に対する制御を変更する制御手段を有する、二次電池制御システム、ないし、第5~7の態様の二次電池の診断方法を含む二次電池制御方法において、前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した移行点に、前記二次電池に対する制御を変更する制御ステップを有する、二次電池制御方法である。 According to an eighth aspect of the present invention, in the secondary battery control system including the diagnostic apparatus for the secondary battery according to the fifth to seventh aspects, the reversible capacity of the secondary battery is determined in the course of deterioration of the secondary battery. A secondary battery control system, or a fifth to seventh aspect, having a control means for changing the control of the secondary battery at a transition point where the capacity-dominating electrode to be shifted from one of the positive electrode and the negative electrode to the other In the secondary battery control method including the secondary battery diagnosis method, the capacity-dominating electrode that determines the reversible capacity of the secondary battery in the course of deterioration of the secondary battery is changed from one of the positive electrode and the negative electrode to the other. It is a secondary battery control method which has the control step which changes the control with respect to the said secondary battery in the transition point which shifted to (1).
 本発明の第9の態様は、第1~7の態様の二次電池の診断装置を含む二次電池の充電装置、ないし、第1~7の態様の二次電池の診断方法を含む二次電池の充電方法である。 According to a ninth aspect of the present invention, there is provided a secondary battery charging apparatus including the secondary battery diagnostic apparatus according to the first to seventh aspects, or a secondary battery diagnostic method according to the first to seventh aspects. A battery charging method.
 本発明の第10の態様は、第1~7の態様の二次電池の診断方法を実行するためのプログラムであり、本発明の第11の態様は、第1~7の態様の二次電池の診断方法を実行するためのプログラムを記録した記録媒体である。 A tenth aspect of the present invention is a program for executing the diagnostic method for a secondary battery according to the first to seventh aspects. An eleventh aspect of the present invention is a secondary battery according to the first to seventh aspects. This is a recording medium on which a program for executing the diagnostic method is recorded.
 本発明を用いると、リチウムイオン二次電池の可逆容量の減少の主な原因となる極が一方の極から他方の極へ移行した時点(移行点)を正確かつ容易に判別できる効果がある。即ち、本発明では、正極と負極との何れの可逆容量が多いかを判別できる効果、従って、リチウムイオン二次電池の容量支配極が正極であるか負極であるかを判別できる効果がある。また、本発明を用いることにより、診断装置の構成を簡素化できる効果がある。また、本発明では、移行点以降の二次電池の可逆容量の減少に基づいて、リチウムイオン二次電池の寿命を正確に予測することができる効果がある。更には、本発明では、二次電池の可逆容量の減少の主因が負極である期間と正極である期間とを区別できるので、例えば、各期間に応じた種々の制御を行う構成を実現できる効果がある。 The use of the present invention has an effect of accurately and easily discriminating a point (transition point) at which a pole that is a main cause of a decrease in reversible capacity of a lithium ion secondary battery has shifted from one pole to the other. That is, according to the present invention, it is possible to determine which reversible capacity between the positive electrode and the negative electrode is large, and therefore, it is possible to determine whether the capacity dominant electrode of the lithium ion secondary battery is the positive electrode or the negative electrode. Further, by using the present invention, there is an effect that the configuration of the diagnostic apparatus can be simplified. Moreover, in this invention, there exists an effect which can estimate the lifetime of a lithium ion secondary battery correctly based on the reduction | decrease in the reversible capacity | capacitance of the secondary battery after a transition point. Furthermore, in the present invention, it is possible to distinguish between a period in which the reversible capacity of the secondary battery is reduced and a period in which it is a negative electrode from a period in which it is a positive electrode. Therefore, for example, it is possible to realize a configuration that performs various controls according to each period. There is.
図1は、リチウムイオン二次電池に対して25℃で1Cでの充放電サイクルを行った際の、リチウムイオン二次電池の可逆容量と充放電サイクル回数との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the reversible capacity of a lithium ion secondary battery and the number of charge / discharge cycles when the lithium ion secondary battery is charged and discharged at 1C at 25 ° C. 図2は、充放電サイクルにおける放電期間後の10分の充放電休止期間の直後のリチウムイオン二次電池のOCVと、充放電サイクル回数との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the OCV of the lithium ion secondary battery immediately after the 10 minute charge / discharge suspension period after the discharge period in the charge / discharge cycle and the number of charge / discharge cycles. 図3は、第2回目、第200回目、第400回目、および第600回目の充放電サイクルのときの、放電期間後の10分の充放電休止期間の間のリチウムイオン二次電池のOCVと、時間との関係を示すグラフである。FIG. 3 shows the OCV of the lithium ion secondary battery during the 10-minute charge / discharge rest period after the discharge period during the second, 200th, 400th, and 600th charge / discharge cycles. It is a graph which shows the relationship with time. 図4は、本発明の実施形態の診断装置の構成を概略的に示す。FIG. 4 schematically shows the configuration of the diagnostic apparatus according to the embodiment of the present invention. 図5は、第1実施形態における診断装置の動作を示すフローチャートである。FIG. 5 is a flowchart showing the operation of the diagnostic apparatus in the first embodiment. 図6は、第2実施形態における診断装置の動作を示すフローチャートである。FIG. 6 is a flowchart showing the operation of the diagnostic apparatus in the second embodiment. 図7は、第3実施形態における診断装置の動作を示すフローチャートである。FIG. 7 is a flowchart showing the operation of the diagnostic apparatus in the third embodiment. 図8は、リチウムイオン二次電池の充電を25℃で1Cで行った後、0.2Cで放電した際の容量維持率と、充放電サイクル回数との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the capacity retention rate and the number of charge / discharge cycles when the lithium ion secondary battery is charged at 25 ° C. at 1 C and then discharged at 0.2 C. 図9は、リチウムイオン二次電池の充電を25℃で1Cで行った後、0.2Cで放電した際の容量維持率と、充放電サイクル回数との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the capacity retention rate and the number of charge / discharge cycles when the lithium ion secondary battery is charged at 25 ° C. and 1 C and then discharged at 0.2 C.
 本発明に到る過程では、下記の条件で実験を行った。 In the process of reaching the present invention, experiments were conducted under the following conditions.
 (1)使用するリチウムイオン二次電池:600mAh級
  ・正極
   両面塗工正極:92mm×92mm×2枚
   LiNi1/3Co1/3Mn1/3O2(92wt%)、カーボンブラック(4wt%)、PVdF(4wt%)
   片面塗工量14mg/cm2を24μmのAl箔に塗工後、プレスして真空乾燥
  ・負極
   両面黒鉛負極:94mm×94mm×3枚
   黒鉛(95wt%)、SBR(2.5wt%)、CMC(2.5wt%)
   片面塗工量8.5mg/cm2を12μmのCu箔に塗工後、プレスして真空乾燥。
  ・セパレータ
   3DOM社PI(ポリイミド)セパレータ:96mm×96mm×4枚
  ・電解液
   上記のものを積層した発電素子をアルミラミネート外装体に挿入し、1M LiPF6/EC+DEC(3:7)を6ml注液して封止。
(1) Lithium ion secondary battery to be used: 600 mAh class Positive electrode Double-sided coated positive electrode: 92 mm x 92 mm x 2 sheets LiNi1 / 3Co1 / 3Mn1 / 3O2 (92 wt%), carbon black (4 wt%), PVdF (4 wt%)
After coating 14mg / cm 2 on one side to 24μm Al foil, press and vacuum-dry. Negative electrode Double-sided graphite negative electrode: 94mm x 94mm x 3 sheets Graphite (95wt%), SBR (2.5wt%), CMC ( 2.5wt%)
A single-side coating amount of 8.5 mg / cm 2 is applied to a 12 μm Cu foil, then pressed and vacuum dried.
・ Separator 3DOM PI (polyimide) separator: 96mm × 96mm × 4 sheets ・ Electrolytic solution Insert the power generation element with the above layers into an aluminum laminate outer package, and add 6ml of 1M LiPF6 / EC + DEC (3: 7) Liquid and sealed.
 (2)25℃、600mAでの充放電サイクル試験の条件
   充電:600mA-4.2V、CCCV(30mA)
   充電休止:10分
   放電:600mA-2.8V、(CC)
   放電休止:10分。
(2) Conditions for charge / discharge cycle test at 25 ° C. and 600 mA Charging: 600 mA-4.2 V, CCCV (30 mA)
Charging pause: 10 minutes Discharging: 600mA-2.8V, (CC)
Discharge pause: 10 minutes.
 (3)25℃、120mAでの容量確認試験の条件
   充電:120mA-4.2V、CCCV(6.5h)
   充電休止:10分
   放電:120mA-2.8V、CC
   放電休止:10分
   600mA充放電サイクル時の250サイクル毎に実施。
(3) Conditions for capacity confirmation test at 25 ° C. and 120 mA Charging: 120 mA-4.2 V, CCCV (6.5 h)
Charging pause: 10 minutes Discharging: 120mA-2.8V, CC
Discharge pause: 10 minutes Implemented every 250 cycles at 600 mA charge / discharge cycle.
 BOLは、リチウムイオン二次電池を使用開始する前の時点とし、EOLは、容量維持率80%を維持できなくなった時点とする。また、BOL時の容量支配極を正極とする。放電終止電圧(最小の開回路電圧)を2.8Vとする。放電開始時の電圧(最大の開回路電圧)は4.2Vとする。以下では、開回路電圧をOCVと記載する。 BOL is the time before the start of use of the lithium ion secondary battery, and EOL is the time when the capacity maintenance rate of 80% cannot be maintained. In addition, the capacity-dominating electrode at the time of BOL is the positive electrode. The discharge end voltage (minimum open circuit voltage) is 2.8V. The voltage at the start of discharge (maximum open circuit voltage) is 4.2V. Hereinafter, the open circuit voltage is referred to as OCV.
 図1は、リチウムイオン二次電池に対して25℃で1Cでの充放電サイクルを行った際の、リチウムイオン二次電池の可逆容量と充放電サイクル回数との関係を示すグラフである。縦軸は、リチウムイオン二次電池の可逆容量(mAh)を示し、横軸は、充放電サイクル回数をその平方根として示す。図1のグラフの実線は、測定値に基づいて描かれたものであり、点線は、それらの測定値の関係性に最も近似する関数を示すものである。この関数は、y=-1.8898x+653.21であり、この関数と測定値との間での決定係数(R2)は0.9758であった。 FIG. 1 is a graph showing the relationship between the reversible capacity of a lithium ion secondary battery and the number of charge / discharge cycles when the lithium ion secondary battery is charged and discharged at 1C at 25 ° C. The vertical axis represents the reversible capacity (mAh) of the lithium ion secondary battery, and the horizontal axis represents the number of charge / discharge cycles as its square root. The solid line in the graph of FIG. 1 is drawn based on measured values, and the dotted line indicates a function that most closely approximates the relationship between these measured values. This function was y = −1.8898x + 6533.21, and the coefficient of determination (R 2 ) between this function and the measured value was 0.9758.
 図1のグラフの実線の部分では、充放電サイクル回数が約400回(横軸の20)の位置に変曲点(上記の移行点に対応)があった。即ち、リチウムイオン二次電池の可逆容量に影響を及ぼす極、即ち、容量支配極が一方の極(正極)から他方の極(負極)へ移行した時点は、充放電サイクル回数が約400回の時点であることが分かった。 In the solid line portion of the graph of FIG. 1, there was an inflection point (corresponding to the above transition point) at the position where the number of charge / discharge cycles was about 400 (20 on the horizontal axis). That is, when the pole that affects the reversible capacity of the lithium ion secondary battery, that is, when the capacity-dominating pole is shifted from one pole (positive electrode) to the other pole (negative electrode), the number of charge / discharge cycles is about 400 times. It turns out that it is the time.
 また、実験では、充放電サイクルにおける放電期間後の10分の充放電休止期間の直後のリチウムイオン二次電池のOCVを、所定の充放電サイクル回数毎に測定し、且つ10分の休止の間のリチウムイオン二次電池のOCVを、時間と対応させて測定した。 Further, in the experiment, the OCV of the lithium ion secondary battery immediately after the 10-minute charge / discharge pause period after the discharge period in the charge / discharge cycle is measured every predetermined charge / discharge cycle, and during the 10-minute pause period. The OCV of the lithium ion secondary battery was measured in correspondence with time.
 図2は、充放電サイクルにおける放電期間後の10分の充放電休止期間の直後のリチウムイオン二次電池のOCVと、充放電サイクル回数との関係を示すグラフである。図3は、第2回目、第200回目、第400回目、および第600回目の充放電サイクルのときの、放電期間後の10分の充放電休止期間の間のリチウムイオン二次電池のOCVと、時間との関係を示すグラフである。 FIG. 2 is a graph showing the relationship between the OCV of the lithium ion secondary battery immediately after the 10-minute charge / discharge pause period after the discharge period in the charge / discharge cycle and the number of charge / discharge cycles. FIG. 3 shows the OCV of the lithium ion secondary battery during the 10-minute charge / discharge rest period after the discharge period during the second, 200th, 400th, and 600th charge / discharge cycles. It is a graph which shows the relationship with time.
 図2のグラフの縦軸は、放電期間後の10分の充放電休止期間の直後のOCV(V)を示し、横軸は、充放電サイクル回数をその平方根として示す。図2のグラフに示されているように、OCVは、400回目の充放電サイクル(グラフ横軸の20)あたりまでは比例的に減少しているが、400回目の充放電サイクルあたりからは一定値に近い値となっている。即ち、このグラフから、400回目の充放電サイクルあたりでリチウムイオン二次電池の充放電の特性が変化したこと理解できる。 2, the vertical axis indicates OCV (V) immediately after the 10-minute charge / discharge pause period after the discharge period, and the horizontal axis indicates the number of charge / discharge cycles as its square root. As shown in the graph of FIG. 2, the OCV is proportionally decreased until around the 400th charge / discharge cycle (20 on the horizontal axis of the graph), but is constant from around the 400th charge / discharge cycle. The value is close to the value. That is, it can be understood from this graph that the charge / discharge characteristics of the lithium ion secondary battery changed around the 400th charge / discharge cycle.
 図3のグラフの縦軸は、リチウムイオン二次電池のOCV(V)を示し、横軸は、時間(秒)を示す。時間が0のとき、即ち、放電期間の終了直後は、規定された最小のOCV(2.8V)となっている。その後、充電期間が開始するまでの10分の間に、リチウムイオン二次電池のOCVは自然に少し回復する。このグラフは、その電圧の回復の特性を示すものである。また、このグラフでは、第400回目の充放電サイクルに関する曲線と第600回目の充放電サイクルに関する曲線とが実質的に重なっているので、1本の曲線のように表されている。 3, the vertical axis represents OCV (V) of the lithium ion secondary battery, and the horizontal axis represents time (seconds). When the time is 0, that is, immediately after the end of the discharge period, the specified minimum OCV (2.8 V) is obtained. Thereafter, the OCV of the lithium ion secondary battery naturally recovers a little during 10 minutes until the charging period starts. This graph shows the characteristics of the voltage recovery. Further, in this graph, the curve related to the 400th charge / discharge cycle and the curve related to the 600th charge / discharge cycle substantially overlap each other, and therefore, it is represented as one curve.
 図3のグラフからは、600秒(10分)の時点でのOCVに関しては、第2回目の充放電サイクルと関連するものが最大であり、第400回目の充放電サイクルまでに漸次的に下がり、第400回目の充放電サイクル以降はほぼ一定になることが、理解できる。即ち、このグラフからも、図2のグラフと同様に、400回目の充放電サイクルあたりでリチウムイオン二次電池の充放電の特性が変化したことが理解できる。 From the graph of FIG. 3, regarding the OCV at 600 seconds (10 minutes), the one related to the second charge / discharge cycle is the largest, and gradually decreases until the 400th charge / discharge cycle. It can be understood that the charge and discharge cycles after the 400th charge are substantially constant. That is, it can be understood from this graph that the charge / discharge characteristics of the lithium ion secondary battery changed around the 400th charge / discharge cycle as in the graph of FIG. 2.
 図1のグラフと、図2および図3のそれぞれのグラフからは、同じ結果、即ち、グラフの変化する点が400回目の充放電サイクルあたりであることが、導き出された。この結果から、図2および図3のグラフに示されているリチウムイオン二次電池の充放電の特性の変化が、容量支配極が一方の極(正極)から他方の極(負極)へ移行したことを示すことが理解できる。 1 From the graph of FIG. 1 and each of the graphs of FIG. 2 and FIG. 3, it was derived that the same result, that is, the changing point of the graph was around the 400th charge / discharge cycle. From this result, the change in the charge / discharge characteristics of the lithium ion secondary battery shown in the graphs of FIG. 2 and FIG. 3 was transferred from one electrode (positive electrode) to the other electrode (negative electrode). I can understand that
 次に、リチウムイオン二次電池の容量支配極が一方の極から他方の極へ移行した時点(移行点)を決定するための1つの実施形態(第1実施形態)について説明する。第1実施形態では、二次電池の充放電サイクルの放電停止後であり充放電停止期間中の二次電池の開回路電圧の電圧特性として、二次電池の充放電サイクルの放電停止後の所定期間経過後の開回路電圧(OCV)を測定することにより、容量支配極が正極から負極へ移行した時点(累積充放電サイクル回数)、即ち、上記の移行点を決定する。この実施形態では、所定の充放電休止期間を10分とし、所定の充放電休止期間中の所定の時点を10分の時点とする。 Next, an embodiment (first embodiment) for determining the time point (transition point) at which the capacity-dominated electrode of the lithium ion secondary battery has shifted from one electrode to the other electrode will be described. In 1st Embodiment, after the discharge stop of the charging / discharging cycle of a secondary battery, and the voltage characteristic of the open circuit voltage of the secondary battery in a charging / discharging stop period, the predetermined after the discharge stop of the charging / discharging cycle of a secondary battery By measuring the open circuit voltage (OCV) after the lapse of the period, the transition point from the positive electrode to the negative electrode (cumulative charge / discharge cycle number), that is, the above transition point is determined. In this embodiment, a predetermined charging / discharging suspension period is 10 minutes, and a predetermined time point in the predetermined charging / discharging suspension period is a time point of 10 minutes.
 図4は、移行点を決定する診断装置の構成を概略的に示す。移行点を決定する診断装置1は、データの入出力を行う入出力部2と、移行点に対応する所定電圧(実験等により決定された参照OCV)、行われた充放電サイクル回数(累積充放電サイクル回数)、および測定を行う所定の充放電サイクルの回を記憶する記憶部3と、所定の充放電サイクルの回の時の放電期間後の10分の充放電休止期間の直後のOCV(測定OCV)を測定する測定部4と、参照OCVと測定OCVとを比較する比較部5と、これら各部を制御する制御部6とを含む。この測定部4と比較部5を併せて検出手段と呼ぶ場合がある。図5は、第1実施形態における診断装置の動作を示すフローチャートである。この診断装置は、このフローチャートに基づくプログラムによって実現されてもよい。この診断装置の動作について、図5を参照して説明する。 FIG. 4 schematically shows a configuration of a diagnostic apparatus for determining a transition point. The diagnosis device 1 that determines the transition point includes an input / output unit 2 that inputs and outputs data, a predetermined voltage (reference OCV determined by an experiment or the like) corresponding to the transition point, and the number of charge / discharge cycles performed (cumulative charge / discharge cycle). The storage unit 3 that stores the number of times of a predetermined charge / discharge cycle to be measured, and the OCV immediately after the charge / discharge pause period of 10 minutes after the discharge period at the time of the predetermined charge / discharge cycle It includes a measurement unit 4 that measures (measurement OCV), a comparison unit 5 that compares the reference OCV with the measurement OCV, and a control unit 6 that controls these units. The measurement unit 4 and the comparison unit 5 may be collectively referred to as detection means. FIG. 5 is a flowchart showing the operation of the diagnostic apparatus in the first embodiment. This diagnostic apparatus may be realized by a program based on this flowchart. The operation of this diagnostic apparatus will be described with reference to FIG.
 記憶部に記憶される「行われた充放電サイクル回数(累積充放電サイクル回数)」は、充放電サイクルが行われる度に更新される構成とする。このような構成は周知であるので説明は省略する。 The “number of performed charge / discharge cycles (cumulative charge / discharge cycle number)” stored in the storage unit is updated every time a charge / discharge cycle is performed. Since such a configuration is well known, a description thereof will be omitted.
 ステップS1.1において、入力部1を介して、記憶部3に、実験等により決定された参照OCVと、測定を行う所定の充放電サイクルの回とを含む初期データを記憶する。この参照OCVは、二次電池が劣化する過程で、正極の可逆容量と負極の可逆容量が一致したときの二次電池の充放電サイクルの放電停止後の所定期間経過後の開回路電圧(OCV)の値となる。測定を行う所定の充放電サイクルの回については、適宜に設定することが可能であり、例えば、測定を行う回の回数(例えば、第10回目、第20回目、・・・など)を示すデータを記憶する構成にすることも、測定を行う回の間隔(毎回、100回毎など)を示すデータを記憶する構成にすることもできる。また、測定を毎回行う場合には、記憶部3に「測定を行う所定の充放電サイクルの回」を記憶する必要はない。 In step S1.1, the initial data including the reference OCV determined by an experiment or the like and the number of times of a predetermined charge / discharge cycle in which measurement is performed is stored in the storage unit 3 via the input unit 1. This reference OCV is an open circuit voltage (OCV) after the elapse of a predetermined period after the discharge of the charge / discharge cycle of the secondary battery when the reversible capacity of the positive electrode and the reversible capacity of the negative electrode coincide with each other in the process of deterioration of the secondary battery. ) Value. The number of times of a predetermined charge / discharge cycle in which measurement is performed can be appropriately set. For example, data indicating the number of times of measurement (for example, the 10th time, the 20th time,...). Can be configured, or data indicating the interval of measurement (every time, every 100 times, etc.) can be stored. Further, when the measurement is performed every time, it is not necessary to store “the number of predetermined charge / discharge cycles in which the measurement is performed” in the storage unit 3.
 ステップS1.2において、制御部6は、記憶部3に記憶されているデータに基づいて、現時点の充放電サイクルが、測定を行う所定の充放電サイクルの回であるか否かを判定する。所定の充放電サイクルの回ではないと判定された場合(図5のステップS1.2のNo)、次の充放電サイクルが行われる時まで待機し、その時に、再度、その充放電サイクルが、測定を行う所定の充放電サイクルの回であるか否かを判定する。 In step S1.2, based on the data stored in the storage unit 3, the control unit 6 determines whether or not the current charging / discharging cycle is a predetermined charging / discharging cycle. When it is determined that it is not a predetermined charge / discharge cycle (No in step S1.2 in FIG. 5), the process waits until the next charge / discharge cycle is performed, and then the charge / discharge cycle is again performed. It is determined whether or not it is a predetermined charge / discharge cycle to be measured.
 ステップS1.2において、現時点の充放電サイクルが、測定を行う所定の充放電サイクルの回であると制御部6が判断した場合、処理はステップS1.3へ進む。 In step S1.2, when the control unit 6 determines that the current charge / discharge cycle is a predetermined charge / discharge cycle to be measured, the process proceeds to step S1.3.
 ステップS1.3において、制御部6は、測定部5を用いて、その充放電サイクルの放電期間後の10分の充放電休止期間における10分の時点のOCV(測定OCV)を測定する。 In step S1.3, the control unit 6 uses the measurement unit 5 to measure an OCV (measurement OCV) at a time point of 10 minutes in a charge / discharge pause period of 10 minutes after the discharge period of the charge / discharge cycle.
 次に、ステップS1.4において、制御部6は、比較部5を用いて、記憶部6に記憶されている参照OCVと、測定部4により測定された測定OCVとを比較する。測定OCVが参照OCV以下ではない場合、処理はステップS1.2へ戻る。測定OCVが参照OCV以下である場合はステップS1.5へ進み、制御部6は、その充放電サイクルの回が、可逆容量の低下の傾向が変わる移行点であると判定する。即ち、制御部6は、その充放電サイクルの回の時点が、容量支配極が一方の極から他方の極へ移行した時点であると判定する。 Next, in step S1.4, the control unit 6 uses the comparison unit 5 to compare the reference OCV stored in the storage unit 6 with the measurement OCV measured by the measurement unit 4. If the measured OCV is not less than or equal to the reference OCV, the process returns to step S1.2. When the measured OCV is equal to or lower than the reference OCV, the process proceeds to step S1.5, and the control unit 6 determines that the number of times of the charge / discharge cycle is a transition point at which the tendency to decrease the reversible capacity changes. That is, the control unit 6 determines that the time point of the charge / discharge cycle is the time point when the capacity dominant electrode has shifted from one electrode to the other electrode.
 なお、第1実施形態では、OCVを測定する時点を放電期間の10分後と設定したが、OCVを測定する時点は、これには限定されない。例えば、図3のグラフに基づくと、放電期間終了からある程度の時間が経過した後は、各回の充放電サイクル後のOCVの差異が明確になる。従って、各回の充放電サイクル後のOCVの差異が明確になる時点であれば、何れの時点のOCVを用いてもよい。 In addition, in 1st Embodiment, although the time of measuring OCV was set as 10 minutes after a discharge period, the time of measuring OCV is not limited to this. For example, based on the graph of FIG. 3, after a certain amount of time has elapsed from the end of the discharge period, the difference in OCV after each charge / discharge cycle becomes clear. Therefore, the OCV at any time may be used as long as the difference in OCV after each charge / discharge cycle becomes clear.
 以上が、第1実施形態における移行点を決定する診断装置の動作である。記憶部は、診断装置に上記の動作を行わせるプログラムを記憶いしている。 The above is the operation of the diagnostic apparatus for determining the transition point in the first embodiment. The storage unit stores a program that causes the diagnostic apparatus to perform the above operation.
 次に、リチウムイオン二次電池の容量支配極が一方の極から他方の極へ移行した時点(移行点)を決定するための別の実施形態(第2実施形態)について説明する。第2実施形態では、充放電サイクルの放電期間終了後の充放電休止期間中の所定期間におけるOCVの上昇速度(ΔOCV)に基づいて移行点を決定する。 Next, another embodiment (second embodiment) for determining the time point (transition point) at which the capacity-dominated electrode of the lithium ion secondary battery has shifted from one pole to the other will be described. In the second embodiment, the transition point is determined based on the OCV increase rate (ΔOCV) in a predetermined period during the charge / discharge suspension period after the end of the discharge period of the charge / discharge cycle.
 第2実施形態の診断装置は、ハードウェアの構成としては第1実施形態の診断装置と同様の構成を有するが、OCVの測定方法と、移行点を決定する際に用いる比較対象とが異なるので、診断装置の各部は、それらに対応した構成を備える。 The diagnostic device of the second embodiment has the same hardware configuration as the diagnostic device of the first embodiment, but the OCV measurement method is different from the comparison target used when determining the transition point. Each unit of the diagnostic apparatus has a configuration corresponding to them.
 第2実施形態では、放電期間終了後の所定期間を、10秒後の時点から40秒後の時点までの30秒間とし、その30秒間における1秒あたりのOCVの上昇速度を比較するものとする。従って、記憶部3には、実験等により決定されたOCVの上昇速度(参照ΔOCV)が記憶される。この参照ΔOCVは、二次電池が劣化する過程で、正極の可逆容量と負極の可逆容量が一致したときの二次電池の充放電サイクルの放電停止後の所定期間内の前記開回路電圧(OCV)の回復の速さの値となる。測定部4は、放電期間終了後の10秒後から40秒後までの30秒間のOCVを測定する構成を備える。比較部5は更に、測定部4で測定された30秒間のOCVに基づいて、その30秒間における1秒あたりのOCVの上昇速度(測定ΔOCV)を計算する構成(計算手段)と、基準ΔOCVと測定ΔOCVとを比較する構成を備える。制御部6は、これら各部を制御する構成を備える。図6は、第2実施形態における診断装置の動作を示すフローチャートである。この診断装置の動作について、図6を参照して説明する。 In the second embodiment, the predetermined period after the end of the discharge period is 30 seconds from the time point 10 seconds later to the time point 40 seconds later, and the rate of increase in OCV per second in that 30 seconds is compared. . Accordingly, the storage unit 3 stores the OCV increase rate (reference ΔOCV) determined by experiments or the like. This reference ΔOCV is the value of the open circuit voltage (OCV) within a predetermined period after the discharge of the charge / discharge cycle of the secondary battery when the reversible capacity of the positive electrode and the reversible capacity of the negative electrode coincide with each other in the process of deterioration of the secondary battery. ) Recovery speed value. The measurement unit 4 includes a configuration for measuring the OCV for 30 seconds from 10 seconds to 40 seconds after the end of the discharge period. Further, the comparison unit 5 further calculates the OCV increase rate (measurement ΔOCV) per second for 30 seconds based on the 30-second OCV measured by the measurement unit 4, and the reference ΔOCV. A configuration for comparing the measured ΔOCV is provided. The control unit 6 has a configuration for controlling these units. FIG. 6 is a flowchart showing the operation of the diagnostic apparatus in the second embodiment. The operation of this diagnostic apparatus will be described with reference to FIG.
 ステップS2.1において、入出力部2を介して、記憶部3に、実験等により決定された参照ΔOCVと、測定を行う所定の充放電サイクルの回とを含む初期データを記憶する。測定を行う所定の充放電サイクルの回については、ステップS1.1と同様に、適宜に設定することが可能である。 In step S2.1, the initial data including the reference ΔOCV determined by an experiment or the like and the number of times of a predetermined charge / discharge cycle for measurement is stored in the storage unit 3 via the input / output unit 2. About the time of the predetermined charging / discharging cycle which performs a measurement, it is possible to set suitably like step S1.1.
 ステップS2.2において、制御部6は、記憶部に記憶されているデータに基づいて、現時点の充放電サイクルが、測定を行う所定の充放電サイクルの回であるか否かを判定する。所定の充放電サイクルの回ではないと判定された場合(図6のステップS2.2のNo)、次の充放電サイクルが行われる時まで待機し、その時に、再度、その充放電サイクルが、測定を行う所定の充放電サイクルの回であるか否かを判定する。 In step S2.2, the control unit 6 determines whether or not the current charging / discharging cycle is a predetermined charging / discharging cycle in which the measurement is performed, based on the data stored in the storage unit. When it is determined that it is not a predetermined charge / discharge cycle (No in step S2.2 in FIG. 6), the process waits until the next charge / discharge cycle is performed, and then the charge / discharge cycle is again performed. It is determined whether or not it is a predetermined charge / discharge cycle to be measured.
 ステップS2.2において、現時点の充放電サイクルが、測定を行う所定の充放電サイクルの回であると制御部6が判断した場合、処理はステップS2.3へ進む。 In step S2.2, when the control unit 6 determines that the current charge / discharge cycle is a predetermined charge / discharge cycle to be measured, the process proceeds to step S2.3.
 ステップS2.3において、制御部6は、測定部4を用いて、その充放電サイクルの放電期間後の充放電休止期間中の10秒の時点から40秒の時点までの30秒間のOCVを測定する。 In step S2.3, the control unit 6 uses the measurement unit 4 to measure the OCV for 30 seconds from the time point of 10 seconds to the time point of 40 seconds during the charge / discharge suspension period after the discharge period of the charge / discharge cycle. To do.
 ステップS2.4において、制御部6は、比較部の計算手段を用いて、その30秒間に測定されたOCVから、その30秒間における1秒あたりのOCVの上昇速度(測定ΔOCV)を計算する。 In step S2.4, the control unit 6 uses the calculation means of the comparison unit to calculate the rate of increase of OCV per second (measurement ΔOCV) from the OCV measured for 30 seconds.
 次に、ステップS2.5において、制御部6は、比較部5を用いて、記憶部3に記憶されている参照ΔOCVと、比較部5の計算手段により計算された測定ΔOCVとを比較する。測定ΔOCVが参照ΔOCV以下ではない場合、処理はステップS2.2へ戻る。測定ΔOCVが参照ΔOCV以下である場合はステップS2.6へ進み、制御部6は、その充放電サイクルの回が、可逆容量の低下の傾向が変わる移行点であると判定する。即ち、制御部6は、その充放電サイクルの回の時点が、容量支配極が一方の極から他方の極へ移行した時点であると判定する。 Next, in step S2.5, the control unit 6 uses the comparison unit 5 to compare the reference ΔOCV stored in the storage unit 3 with the measured ΔOCV calculated by the calculation unit of the comparison unit 5. If the measurement ΔOCV is not less than or equal to the reference ΔOCV, the process returns to step S2.2. When the measurement ΔOCV is equal to or smaller than the reference ΔOCV, the process proceeds to step S2.6, and the control unit 6 determines that the charge / discharge cycle is a transition point at which the tendency to decrease the reversible capacity changes. That is, the control unit 6 determines that the time point of the charge / discharge cycle is the time point when the capacity dominant electrode has shifted from one electrode to the other electrode.
 なお、第2実施形態では、ΔOCVを求めるためのOCVの測定期間を、放電期間終了後の充放電休止期間の10秒の時点から40秒の時点までの30秒間としたが、OCVの測定期間はこれに限定されない。ΔOCVを求めるためのOCVの測定期間は、各回の充放電サイクル後の充放電休止期間中のΔOCVの差異が明確になる期間であれば、何れの期間としてもよい。 In the second embodiment, the OCV measurement period for obtaining ΔOCV is 30 seconds from the 10 second time point to the 40 second time point in the charge / discharge pause period after the end of the discharge period. Is not limited to this. The OCV measurement period for obtaining ΔOCV may be any period as long as the difference in ΔOCV during the charge / discharge suspension period after each charge / discharge cycle becomes clear.
 以上が、第2実施形態における移行点を決定する診断装置の動作である。記憶部は、診断装置に上記の動作を行わせるプログラムを記憶いしている。 The above is the operation of the diagnostic apparatus for determining the transition point in the second embodiment. The storage unit stores a program that causes the diagnostic apparatus to perform the above operation.
 なお、上記の実施形態では、使用中のリチウムイオン二次電池の容量支配極の移行点を判定する方法として、実験により電圧(参照OCV)や電圧の上昇速度(ΔOCV)、即ち、基準となる数値(参照値)を予め求めておき、それを記憶部に記憶して、その参照値と実測値とを比較する方法を用いたが、それ以外の方法も可能である。 In the above embodiment, as a method of determining the transition point of the capacity dominant electrode of the lithium ion secondary battery in use, the voltage (reference OCV) and the voltage increase rate (ΔOCV), that is, the standard, are experimentally determined. Although a method of obtaining a numerical value (reference value) in advance and storing it in the storage unit and comparing the reference value with the actual measurement value is used, other methods are also possible.
 例えば、使用中のリチウムイオン二次電池の移行点を決定することもでき、第1実施形態のようにOCVを用いる場合、[第1ステップ]所定の充放電サイクル回数の時に、放電期間後の10分の充放電休止期間の10分の時点でOCVを測定し、[第2ステップ]最新の測定されたOCVから所定の測定数だけ遡ったOCVまでのそれぞれのOCV(過去の所定数のOCV)が、それらOCVの平均値の所定の偏差内にあるか否かを判定し、[第3ステップ]過去の所定数のOCVがそれらOCVの平均値の所定の偏差内にある場合に、その中の最も古いOCVを測定した時点(充放電サイクル回数)を、移行点と決定することもできる。第2実施形態のようにΔOCVを用いる場合も、上記と同様に、使用中のリチウムイオン二次電池の移行点を決定することができる。なお、このような構成の場合、移行点が決定される時期が少し遅れることになる欠点はある。 For example, the transition point of a lithium ion secondary battery in use can also be determined. When using OCV as in the first embodiment, [first step] at the predetermined number of charge / discharge cycles, after the discharge period The OCV is measured at a time point of 10 minutes in the 10-minute charge / discharge suspension period, and [Second Step] each OCV up to a predetermined measurement number from the latest measured OCV (a predetermined number of OCVs in the past). ) Is within a predetermined deviation of the average value of those OCVs. [Third Step] When a predetermined number of past OCVs are within a predetermined deviation of the average value of those OCVs, The time (number of charge / discharge cycles) at which the oldest OCV is measured can be determined as the transition point. Even when ΔOCV is used as in the second embodiment, the transition point of the lithium ion secondary battery in use can be determined in the same manner as described above. In addition, in such a structure, there exists a fault that the time at which a transition point is determined will be delayed a little.
 次に、リチウムイオン二次電池のEOLを予測するための構成(第3実施形態)について説明する。本発明では、リチウムイオン二次電池のEOLを予測する際に、従来技術のようにリチウムイオン二次電池の使用開始時からの全ての測定値を用いるのではなく、本発明により求められた移行点より後の測定値を用いる。 Next, a configuration for predicting the EOL of the lithium ion secondary battery (third embodiment) will be described. In the present invention, when predicting the EOL of a lithium ion secondary battery, the transition obtained by the present invention is used instead of using all the measured values from the beginning of the use of the lithium ion secondary battery as in the prior art. Use the measured value after the point.
 第3実施形態の診断装置は、ハードウェアの構成としては第1実施形態または第2実施形態の診断装置と同様であるが、測定部4は、移行点以降のリチウムイオン二次電池の所定の充放電サイクルの回の充電期間直後の可逆容量を測定あるいは推定する構成を備え、記憶部3は更に、リチウムイオン二次電池のBOL時の可逆容量(初期可逆容量)と、測定あるいは推定された可逆容量と、その充放電サイクルの回(累積充放電サイクル回数)とを記憶する構成を備え、比較部5の計算手段は更に、記憶部3に記憶されている初期可逆容量と測定あるいは推定された可逆容量とに基づいて容量維持率を計算する構成と、容量維持率と累積充放電サイクル回数との関係を関数にする構成とを備える。図7は、第3実施形態における診断装置の動作を示すフローチャートである。以下に、この診断装置の動作について、図7を参照して説明する。 The diagnosis device of the third embodiment is similar in hardware configuration to the diagnosis device of the first embodiment or the second embodiment, but the measuring unit 4 is a predetermined lithium ion secondary battery after the transition point. It has a configuration for measuring or estimating the reversible capacity immediately after the charging period of the charge / discharge cycle, and the storage unit 3 is further measured or estimated as the reversible capacity (initial reversible capacity) at the BOL of the lithium ion secondary battery. The reversible capacity and the charge / discharge cycle times (cumulative charge / discharge cycle count) are stored, and the calculation means of the comparison unit 5 is further measured or estimated as the initial reversible capacity stored in the storage unit 3. A configuration for calculating the capacity maintenance rate based on the reversible capacity, and a configuration using the relationship between the capacity maintenance rate and the cumulative number of charge / discharge cycles as a function. FIG. 7 is a flowchart showing the operation of the diagnostic apparatus in the third embodiment. Hereinafter, the operation of the diagnostic apparatus will be described with reference to FIG.
 なお、第3実施形態は、移行点を決定する構成として第1実施形態または第2実施形態の構成を含むが、その構成については既に説明しているので、ここでは省略する。 In addition, although 3rd Embodiment includes the structure of 1st Embodiment or 2nd Embodiment as a structure which determines a transition point, since the structure has already been demonstrated, it abbreviate | omits here.
 ステップS3.1において、入出力部2を介して、記憶部3に、リチウムイオン二次電池のBOL時の可逆容量(初期可逆容量)を記憶する。なお、ステップS3.1において、第1実施形態のステップS1.1または第2実施形態のステップS2.1において記憶されるデータも記憶されるが、図7では記載を省略している。 In step S3.1, the reversible capacity (initial reversible capacity) of the lithium ion secondary battery during BOL is stored in the storage unit 3 via the input / output unit 2. In step S3.1, data stored in step S1.1 of the first embodiment or step S2.1 of the second embodiment is also stored, but the description is omitted in FIG.
 ステップS3.2は、第1実施形態のステップS1.2~S1.4、または第2実施形態のステップS2.2~S2.5と同じステップを含む。即ち、可逆容量の測定あるいは推定の対象とされた充放電サイクルの時点が、容量支配極が一方の極から他方の極へ移行した時点、即ち、移行点であるか否かを判定する。ステップS3.2において、可逆容量の測定あるいは推定の対象とされた充放電サイクルの時点が移行点であると判定された場合、処理はステップS3.3へ進む。 Step S3.2 includes the same steps as steps S1.2 to S1.4 of the first embodiment or steps S2.2 to S2.5 of the second embodiment. That is, it is determined whether or not the time point of the charge / discharge cycle, which is the target of measurement or estimation of the reversible capacity, is the time point when the capacity dominant electrode has shifted from one pole to the other, that is, the transition point. In step S3.2, when it is determined that the time point of the charge / discharge cycle that is the target of measurement or estimation of the reversible capacity is the transition point, the process proceeds to step S3.3.
 ステップS3.3において、制御部6は、測定部4を用いて、移行点以降の所定の充放電サイクルの回の充電期間直後の可逆容量を測定あるいは推定し、その測定あるいは推定を行った充放電サイクルの回(累積充放電サイクル回数)と測定あるいは推定された可逆容量とを関連付けて、記憶部3に記憶する。 In step S3.3, the control unit 6 uses the measurement unit 4 to measure or estimate the reversible capacity immediately after the charging period of the predetermined charging / discharging cycle after the transition point, and to perform the measurement or estimation. The number of discharge cycles (cumulative charge / discharge cycle count) and the measured or estimated reversible capacity are associated with each other and stored in the storage unit 3.
 ステップS3.4において、制御部6は、比較部5の計算手段を用いて、記憶部3に記憶されている初期可逆容量と測定あるいは推定された可逆容量とに基づいて、それぞれの充放電サイクルの回(累積充放電サイクル回数)に関して、容量維持率を計算する。 In step S3.4, the control unit 6 uses the calculation unit of the comparison unit 5 to calculate each charge / discharge cycle based on the initial reversible capacity stored in the storage unit 3 and the measured or estimated reversible capacity. The capacity maintenance rate is calculated for the number of times (cumulative charge / discharge cycle number).
 ステップS3.5において、制御部6は、所定数の累積充放電サイクル回数と容量維持率との組が揃った時点で、それら複数の累積充放電サイクル回数と複数の容量維持率との関係性に最も近似する関数(一次関数)、Y=aX+b(Yは容量維持率、Xは累積充放電サイクル回数)を導出する。この関数を求める際には回帰分析を用いることができるが、回帰分析の詳細については周知であるので、ここでは説明を省略する。 In step S3.5, the control unit 6 has a relationship between the plurality of cumulative charge / discharge cycle times and the plurality of capacity maintenance rates when a set of a predetermined number of cumulative charge / discharge cycles and the capacity maintenance rate is completed. A function (linear function) that is most approximated to Y = aX + b (Y is a capacity maintenance rate, and X is a cumulative number of charge / discharge cycles) is derived. Regression analysis can be used to obtain this function, but details of the regression analysis are well known, and therefore description thereof is omitted here.
 ステップS3.6において、制御部6は、ステップS3.5で得られた関数を用いて、リチウムイオン二次電池のEOL時の累積充放電サイクル回数を求める。この実施形態では、EOLは、容量維持率80%を維持できなくなった時点としている。従って、導出した一次関数、Y=aX+b、のY=80、a=定数、b=100として、EOL時(容量維持率が80%になる時点)の累積充放電サイクル回数を求めることができる。 In step S3.6, the control unit 6 obtains the cumulative number of charge / discharge cycles during EOL of the lithium ion secondary battery using the function obtained in step S3.5. In this embodiment, the EOL is set at a point when the capacity maintenance rate of 80% cannot be maintained. Therefore, the accumulated charge / discharge cycle number at the time of EOL (when the capacity maintenance ratio becomes 80%) can be obtained by using the derived linear function, Y = aX + b, Y = 80, a = constant, and b = 100.
 なお、第3実施形態では、移行点以降の所定の充放電サイクルの回の可逆容量を測定あるいは推定する構成としたが、リチウムイオン二次電池のBOLの時点から可逆容量を測定する構成としてもよく、その場合は、複数の累積充放電サイクル回数と複数の容量維持率との関係性に最も近似する関数を導出する際に、単に、移行点以降に測定あるいは推定された可逆容量を用いるように構成すればよい。 In the third embodiment, the reversible capacity of a predetermined charge / discharge cycle after the transition point is measured or estimated. However, the reversible capacity may be measured from the BOL time of the lithium ion secondary battery. Well, in that case, when deriving a function that most closely approximates the relationship between the number of cumulative charge / discharge cycles and the capacity retention ratio, simply use the reversible capacity measured or estimated after the transition point. What is necessary is just to comprise.
 以上が、第3実施形態におけるリチウムイオン二次電池のEOLを予測する診断装置の動作である。記憶部は、診断装置に上記の動作を行わせるプログラムを記憶している。 The above is the operation of the diagnostic apparatus for predicting the EOL of the lithium ion secondary battery in the third embodiment. The storage unit stores a program that causes the diagnostic apparatus to perform the above-described operation.
 以下では、図8および図9を参照して、第3実施形態により求められるEOLと従来技術により求められるEOLとの差異を明確にするための説明を行う。 Hereinafter, with reference to FIG. 8 and FIG. 9, an explanation will be given to clarify the difference between the EOL required by the third embodiment and the EOL required by the conventional technique.
 図8および図9は、リチウムイオン二次電池の充電を25℃で1Cで行った後、0.2Cで放電した際の容量維持率と、充放電サイクル回数との関係を示すグラフである。グラフでは、縦軸が容量維持率(%)を示し、リチウムイオン二次電池を最初に使用する時の満充電の状態での容量維持率を100%としている。横軸は充放電サイクルの回数を示すが、回数は、回数の平方根として示されている。例えば、グラフの横軸の20は、400回を表す。 FIG. 8 and FIG. 9 are graphs showing the relationship between the capacity retention rate and the number of charge / discharge cycles when the lithium ion secondary battery is charged at 25 ° C. and 1 C and then discharged at 0.2 C. In the graph, the vertical axis indicates the capacity maintenance rate (%), and the capacity maintenance rate in a fully charged state when the lithium ion secondary battery is first used is 100%. The horizontal axis indicates the number of charge / discharge cycles, and the number is shown as the square root of the number. For example, 20 on the horizontal axis of the graph represents 400 times.
 図8および図9のグラフにおいて、「〇」で示す複数の点のそれぞれは、実際に測定した点(以下、測定点という)である。例えば、図8のグラフの左側から2つ目の〇は、充放電サイクル回数が約250回のときの容量維持率が約99%であったことを示し、左側から3つ目の〇は、充放電サイクル回数が約500回のときの容量維持率が約97.5%であったことを示す。 8 and 9, each of the plurality of points indicated by “◯” is an actually measured point (hereinafter referred to as a measurement point). For example, the second circle from the left side of the graph of FIG. 8 indicates that the capacity maintenance rate was about 99% when the number of charge / discharge cycles was about 250, and the third circle from the left side was It indicates that the capacity retention rate was about 97.5% when the number of charge / discharge cycles was about 500.
 図8のグラフの点線の直線は、サイクル回数が0の時点からの全ての測定点に基づいて導き出した、それら測定点の関係性に最も近似する関数を表すものである。このように、BOLからの全ての測定点に基づいて関数を導出する手法が、上記の「背景技術」に記載した従来技術の手法である。この従来技術の手法で求めた関数はy=-0.17x+100であった。この関数と測定点との間での決定係数(R2)は0.8437であった。 The dotted straight line in the graph of FIG. 8 represents a function that is most approximated to the relationship between the measurement points derived based on all the measurement points from the time point when the number of cycles is zero. Thus, the method of deriving a function based on all measurement points from the BOL is the method of the prior art described in the above “Background Art”. The function obtained by this conventional technique was y = −0.17x + 100. The coefficient of determination (R 2 ) between this function and the measurement point was 0.8437.
 このy=-0.17x+100という関数に基づくと、容量維持率が80%になる時点、即ち、規定されたEOLを迎える時点は、充放電サイクル回数が6400回(グラフ横軸の80)を越えたかなり先の時点と予測される。 Based on this function y = −0.17x + 100, when the capacity retention rate reaches 80%, that is, when the specified EOL is reached, the number of charge / discharge cycles exceeds 6400 (80 on the horizontal axis of the graph). This is expected to be a long time ago.
 図9では、図8に記載している測定点のうち、本発明に従って求められたリチウムイオン二次電池の挙動が変化する点(移行点)以降の複数の測定点を記載している。この例では、リチウムイオン二次電池の可逆容量の減少の傾向の移行点は、充放電サイクル回数が約400回のときとされている。従って、図8に示す複数の測定点のうち、左側の2つの測定点は、充放電サイクル回数が400回になる以前のものであので、図9には記載されていない。 FIG. 9 shows a plurality of measurement points after the point (transition point) at which the behavior of the lithium ion secondary battery obtained according to the present invention is changed among the measurement points shown in FIG. In this example, the transition point of the tendency to decrease the reversible capacity of the lithium ion secondary battery is when the number of charge / discharge cycles is about 400. Therefore, the two measurement points on the left of the plurality of measurement points shown in FIG. 8 are not shown in FIG. 9 because they are before the number of charge / discharge cycles reaches 400.
 図9の点線の直線は、図9に示す複数の測定点に基づいて導き出した、それら測定点の関係性に最も近似する関数を表すものである。この関数はy=-0.3321x+105.02であり、この関数と、移行点以降の複数の測定点との間での決定係数(R2)は0.9809であった。 A dotted straight line in FIG. 9 represents a function that is derived based on the plurality of measurement points shown in FIG. This function was y = −0.3321x + 105.02, and the coefficient of determination (R 2 ) between this function and a plurality of measurement points after the transition point was 0.9809.
 このy=-0.3321x+105.02という関数に基づくと、容量維持率が80%になる時点(グラフでは「●」で示す)、即ち、規定されたEOLを迎える時点は、充放電サイクル回数が約5600回の時点と予測される。 Based on this function y = −0.3321x + 105.02, when the capacity maintenance rate reaches 80% (indicated by “●” in the graph), that is, when the specified EOL is reached, the number of charge / discharge cycles is Expected to be about 5600 times.
 上記の決定係数からも判断できるように、リチウムイオン二次電池の可逆容量の減少の傾向の移行点以降の挙動については、本発明の技術により求めた関数のほうが、実際の挙動をより良く表している。従って、従来技術で求められたEOL(充放電サイクル回数が6400回を越えたかなり先の時点)よりも、本発明の技術により求められたEOL(充放電サイクル回数が5600回の時点)のほうが、理論的には、実際のEOLに近い。 As can be judged from the above determination coefficient, the behavior obtained from the transition point of the tendency of decrease in reversible capacity of the lithium ion secondary battery is better expressed by the function obtained by the technique of the present invention. ing. Therefore, EOL (at the time when the number of charge / discharge cycles is 5600) determined by the technique of the present invention is higher than EOL (at the time when the number of charge / discharge cycles exceeds 6400) determined by the prior art. Theoretically, it is close to the actual EOL.
 なお、y=-0.3321x+105.02という関数に基づくと、充放電サイクル回数が0回のときの容量維持率が約105%となるが(図9のグラフでは「●」で示す)、この105%という容量維持率は、負極の不可逆容量に基づいて決定される可逆容量に対応するものである。これについては、上記の「発明が解決しようとする課題」でも説明したように、移行点より前のリチウムイオン二次電池の可逆容量に関しては、負極よりも正極の影響のほうが大きい(正極の可逆容量のほうが少ない)。従って、移行点より前では、たとえ負極の不可逆容量に基づいて決定される可逆容量が、正極の不可逆容量に基づいて決定される可逆容量より多くとも、正極の不可逆容量に基づいて決定される可逆容量が実際に使用できる可逆容量となる。即ち、充放電サイクル回数が0回のときの実際の可逆容量は、図8に示す容量維持率100%に対応する可逆容量となる。 Note that, based on the function y = −0.3321x + 105.02, the capacity retention rate when the number of charge / discharge cycles is 0 is about 105% (indicated by “●” in the graph of FIG. 9). The capacity maintenance rate of 105% corresponds to the reversible capacity determined based on the irreversible capacity of the negative electrode. In this regard, as described above in “Problem to be Solved by the Invention”, the reversible capacity of the lithium ion secondary battery before the transition point is more influenced by the positive electrode than the negative electrode (the reversible capacity of the positive electrode). Less capacity). Therefore, before the transition point, even if the reversible capacity determined based on the irreversible capacity of the negative electrode is more than the reversible capacity determined based on the irreversible capacity of the positive electrode, the reversible capacity determined based on the irreversible capacity of the positive electrode. The capacity becomes a reversible capacity that can actually be used. That is, the actual reversible capacity when the number of charge / discharge cycles is 0 is a reversible capacity corresponding to the capacity maintenance rate of 100% shown in FIG.
 上記では第1ないし第2実施形態について説明したが、更に別の実施形態では、リチウムイオン二次電池を良好な状態に保つために、第1実施形態または第2実施形態の診断装置を応用することができる。以下では第1実施形態を用いた応用例について説明する。 Although the first and second embodiments have been described above, in still another embodiment, the diagnostic device of the first embodiment or the second embodiment is applied in order to keep the lithium ion secondary battery in a good state. be able to. Hereinafter, an application example using the first embodiment will be described.
 リチウムイオン二次電池の使用環境を制御する制御装置が、リチウムイオン二次電池を良好な状態に保つためには、移行点の前後で、即ち、容量支配極が正極である期間と容量支配極が負極である期間とで、異なる制御、例えば、充放電の際の電流や温度などを変更する制御を行う必要がある。そのような制御装置において、本発明の第1実施形態または第2実施形態を応用することで、移行点を決定することができるので、例えば、第1実施形態のステップS1.4または第2実施形態のステップS2.5においてNoの場合には、一方の極を主に考慮する制御を行い、第1実施形態のステップS1.4または第2実施形態のステップS2.5においてYesの場合には、他方の極を主に考慮する制御を行うように、制御装置を構成することができる。 In order for the control device that controls the use environment of the lithium ion secondary battery to keep the lithium ion secondary battery in a good state, before and after the transition point, that is, the period in which the capacity dominant electrode is the positive electrode and the capacity dominant electrode. It is necessary to perform different control, for example, control for changing the current, temperature, and the like at the time of charge / discharge depending on the period in which the negative electrode is negative. In such a control device, the transition point can be determined by applying the first embodiment or the second embodiment of the present invention. For example, step S1.4 of the first embodiment or the second embodiment In the case of No in step S2.5 of the form, control is performed mainly considering one pole, and in the case of Yes in step S1.4 of the first embodiment or step S2.5 of the second embodiment. The control device can be configured to perform control mainly considering the other pole.
 また、上記の実施形態では、リチウムイオン二次電池を例として用いたが、本発明は、他の電池にも適用できる。詳細には、本発明は、可逆容量の減少の主因となる正極および負極の劣化を伴う再充電可能な電池であって、使用開始後の初期には正極と負極とのうちの一方の極のほうが他方の極よりも劣化が多いため、一方の極が可逆容量の減少に大きく関与するが、一方の極よりも他方の極のほうが劣化が速く、一方の極および他方の極の双方の劣化が進むと、或る時点からは一方の極の劣化よりも他方の極の劣化のほうが多くなり、他方の極が可逆容量の減少に大きく関与するという特性を有する電池に、適用することができる。 In the above embodiment, the lithium ion secondary battery is used as an example, but the present invention can also be applied to other batteries. Specifically, the present invention relates to a rechargeable battery that accompanies deterioration of the positive electrode and the negative electrode, which is a main cause of a decrease in reversible capacity. One pole is more involved in reducing reversible capacity because it is more degraded than the other pole, but the other pole is faster to degrade than one pole, and both the one pole and the other pole are degraded. Can be applied to a battery having a characteristic that, from a certain point of time, the deterioration of the other electrode is more than the deterioration of the other electrode, and the other electrode is greatly involved in the reduction of the reversible capacity. .
 本発明は、上記のような特性を有する電池の状態を診断するために使用することができる。 The present invention can be used for diagnosing the state of a battery having the above characteristics.
1 診断装置
2 入出力部
3 記憶部
4 測定部
5 比較部
6 制御部
DESCRIPTION OF SYMBOLS 1 Diagnosis apparatus 2 Input / output part 3 Storage part 4 Measurement part 5 Comparison part 6 Control part

Claims (12)

  1.  正極と負極を有する二次電池の可逆容量を決定する容量支配極を検出する二次電池の診断装置において、前記二次電池の診断装置は、
     正極の可逆容量と負極の可逆容量のいずれが大きいか判定することにより二次電池の可逆容量を決定する容量支配極を検出する検出手段を有する、
     二次電池の診断装置。
    In the diagnostic apparatus for a secondary battery that detects a capacity-dominated electrode that determines the reversible capacity of a secondary battery having a positive electrode and a negative electrode, the diagnostic apparatus for the secondary battery includes:
    Having detection means for detecting a capacity-dominated electrode that determines the reversible capacity of the secondary battery by determining which one of the reversible capacity of the positive electrode and the reversible capacity of the negative electrode is larger,
    Secondary battery diagnostic device.
  2.  請求項1に記載の二次電池の診断装置において、
     前記検出手段は、前記二次電池の充放電サイクルの放電停止後であり充放電停止期間中の二次電池の開回路電圧(OCV)の電圧特性に基づいて、正極の可逆容量と負極の可逆容量のいずれが大きいか判定する、
     二次電池の診断装置。
    The secondary battery diagnostic device according to claim 1,
    The detection means is based on the voltage characteristics of the open circuit voltage (OCV) of the secondary battery after the discharge stop of the charge / discharge cycle of the secondary battery and during the charge / discharge stop period. Determine which of the capacities is greater,
    Secondary battery diagnostic device.
  3.  請求項2に記載の二次電池の診断装置において、
     前記検出手段は、
      前記二次電池の充放電サイクルの放電停止後であり充放電停止期間中の二次電池の開回路電圧(OCV)の電圧特性として、前記二次電池の充放電サイクルの放電停止後の所定期間経過後の開回路電圧(OCV)を測定する測定部と、
      正極の可逆容量と負極の可逆容量が一致したときの前記二次電池の充放電サイクルの放電停止後の所定期間経過後の開回路電圧(OCV)の値として予め設定されている電圧値と、前記測定部において測定された、前記二次電池の充放電サイクルの放電停止後の所定期間経過後の開回路電圧(OCV)を比較する比較部とを含む、
     二次電池の診断装置。
    The diagnostic apparatus for a secondary battery according to claim 2,
    The detection means includes
    As a voltage characteristic of the open circuit voltage (OCV) of the secondary battery after the discharge stop of the charge / discharge cycle of the secondary battery and during the charge / discharge stop period, a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery A measurement unit for measuring the open circuit voltage (OCV) after elapse of time;
    A voltage value set in advance as a value of an open circuit voltage (OCV) after elapse of a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery when the reversible capacity of the positive electrode and the reversible capacity of the negative electrode coincide with each other; A comparison unit that compares the open circuit voltage (OCV) measured after the predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery measured in the measurement unit,
    Secondary battery diagnostic device.
  4.  請求項2に記載の二次電池の診断装置において、
     前記二次電池の充放電サイクルの放電停止後であり充放電停止期間中の二次電池の開回路電圧(OCV)の電圧特性は、前記二次電池の充放電サイクルの放電停止後の所定期間内の開回路電圧(OCV)の回復の速さであり、
     前記検出手段は、
      前記二次電池の充放電サイクルの放電停止後の所定期間内の前記開回路電圧(OCV)の回復の速さの値を求める手段と、
      前記二次電池が劣化する過程で、正極の可逆容量と負極の可逆容量が一致したときの前記二次電池の充放電サイクルの放電停止後の所定期間内の前記開回路電圧(OCV)の回復の速さの値として予め設定されている速さの値と、求められた前記二次電池の充放電サイクルの放電停止後の所定期間内の前記開回路電圧(OCV)の回復の速さの値とを比較する手段とを含む、
     二次電池の診断装置。
    The diagnostic apparatus for a secondary battery according to claim 2,
    The voltage characteristic of the open circuit voltage (OCV) of the secondary battery after the discharge stop of the charge / discharge cycle of the secondary battery and during the charge / discharge stop period is a predetermined period after the discharge stop of the charge / discharge cycle of the secondary battery The speed of recovery of the open circuit voltage (OCV) in
    The detection means includes
    Means for determining a value of a speed of recovery of the open circuit voltage (OCV) within a predetermined period after stopping the discharge of the charge / discharge cycle of the secondary battery;
    Recovery of the open circuit voltage (OCV) within a predetermined period after the stop of discharge of the charge / discharge cycle of the secondary battery when the reversible capacity of the positive electrode and the reversible capacity of the negative electrode coincide with each other in the process of deterioration of the secondary battery The speed value set in advance as the speed value and the speed of recovery of the open circuit voltage (OCV) within a predetermined period after the discharge of the charge / discharge cycle of the secondary battery is determined. Including means for comparing the values,
    Secondary battery diagnostic device.
  5.  請求項1~4のいずれか一項に記載の二次電池の診断装置において、更に、
     前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した移行点を判定する判定手段を有する、
     二次電池の診断装置。
    The secondary battery diagnostic device according to any one of claims 1 to 4, further comprising:
    In a process in which the secondary battery is deteriorated, the capacity dominant electrode that determines the reversible capacity of the secondary battery has a determination unit that determines a transition point from one of the positive electrode and the negative electrode to the other.
    Secondary battery diagnostic device.
  6.  請求項5に記載の二次電池の診断装置において、前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した移行点を、累積充放電サイクル回数により示す、二次電池の診断装置。 6. The diagnostic apparatus for a secondary battery according to claim 5, wherein the capacity-dominating electrode that determines the reversible capacity of the secondary battery is transferred from one of the positive electrode and the negative electrode to the other in the course of deterioration of the secondary battery. A diagnostic device for a secondary battery that indicates the transition point by the cumulative number of charge / discharge cycles.
  7.  請求項5又は6に記載の二次電池の診断装置において、更に、
     前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した移行点以降の、前記二次電池の劣化状態の計時変化を検出して、前記二次電池の寿命性能を予測する寿命予測手段を有する、
     二次電池の診断装置。
    The diagnostic apparatus for a secondary battery according to claim 5 or 6, further comprising:
    In the process of deterioration of the secondary battery, the secondary battery is in a deteriorated state after the transition point where the capacity dominant electrode that determines the reversible capacity of the secondary battery has shifted from either the positive electrode or the negative electrode to the other. Having a life prediction means for detecting a time change and predicting a life performance of the secondary battery,
    Secondary battery diagnostic device.
  8.  請求項5~7のいずれか一項に記載の二次電池の診断装置を含む二次電池制御システムにおいて、
     前記二次電池が劣化する過程で、前記二次電池の可逆容量を決定する容量支配極が、正極と負極のいずれか一方から他方へ移行した時点に、前記二次電池に対する制御を変更する制御手段を有する、
     二次電池制御システム。
    A secondary battery control system comprising the secondary battery diagnostic device according to any one of claims 5 to 7,
    Control in which the control of the secondary battery is changed when the capacity dominant electrode that determines the reversible capacity of the secondary battery shifts from one of the positive electrode and the negative electrode to the other in the course of deterioration of the secondary battery. Having means,
    Secondary battery control system.
  9.  請求項1~7のいずれか一項に記載の二次電池の診断装置を含む二次電池の充電装置。 A secondary battery charging device including the secondary battery diagnostic device according to any one of claims 1 to 7.
  10.  正極と負極を有する二次電池の可逆容量を決定する容量支配極を検出する二次電池の診断方法において、前記二次電池の診断方法は、
     正極の可逆容量と負極の可逆容量のいずれが大きいか判定することにより二次電池の可逆容量を決定する容量支配極を検出する検出ステップを有する、
     二次電池の診断方法。
    In the secondary battery diagnostic method for detecting a capacity-dominated electrode that determines the reversible capacity of a secondary battery having a positive electrode and a negative electrode, the diagnostic method of the secondary battery includes:
    Having a detection step of detecting a capacity dominant electrode that determines the reversible capacity of the secondary battery by determining which one of the reversible capacity of the positive electrode and the reversible capacity of the negative electrode is larger,
    Secondary battery diagnostic method.
  11.  請求項10に記載の方法を実行するためのプログラム。 A program for executing the method according to claim 10.
  12.  請求項10に記載の方法を実行するためのプログラムを記録した記録媒体。 A recording medium on which a program for executing the method according to claim 10 is recorded.
PCT/JP2019/014718 2018-04-06 2019-04-03 Secondary battery diagnosing device and diagnosing method WO2019194205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-073658 2018-04-06
JP2018073658A JP7063455B2 (en) 2018-04-06 2018-04-06 Diagnostic device and diagnostic method for secondary batteries

Publications (1)

Publication Number Publication Date
WO2019194205A1 true WO2019194205A1 (en) 2019-10-10

Family

ID=68100296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014718 WO2019194205A1 (en) 2018-04-06 2019-04-03 Secondary battery diagnosing device and diagnosing method

Country Status (3)

Country Link
JP (1) JP7063455B2 (en)
TW (1) TW202004210A (en)
WO (1) WO2019194205A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210218262A1 (en) * 2019-03-18 2021-07-15 Lg Chem, Ltd. Battery Management Apparatus
CN113918889A (en) * 2021-09-23 2022-01-11 浙江大学 Lithium battery online aging diagnosis method based on charging data spatial distribution characteristics
CN114158276A (en) * 2020-02-05 2022-03-08 株式会社Lg新能源 Method of detecting lithium plating and method and apparatus for managing battery by using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7314822B2 (en) * 2020-02-06 2023-07-26 トヨタ自動車株式会社 Battery deterioration determination device, battery deterioration determination method, and battery deterioration determination program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319640A (en) * 2000-05-09 2001-11-16 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery
JP2010249797A (en) * 2009-03-26 2010-11-04 Primearth Ev Energy Co Ltd State determination device and control device of secondary battery
US20110031938A1 (en) * 2009-08-04 2011-02-10 Yosuke Ishikawa Method of Estimating Battery State of Charge
JP2017054692A (en) * 2015-09-09 2017-03-16 株式会社日立製作所 Power storage system, secondary battery control system, and secondary battery control method
JP2017227494A (en) * 2016-06-21 2017-12-28 マツダ株式会社 Diagnostic device and control device of lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319640A (en) * 2000-05-09 2001-11-16 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery
JP2010249797A (en) * 2009-03-26 2010-11-04 Primearth Ev Energy Co Ltd State determination device and control device of secondary battery
US20110031938A1 (en) * 2009-08-04 2011-02-10 Yosuke Ishikawa Method of Estimating Battery State of Charge
JP2017054692A (en) * 2015-09-09 2017-03-16 株式会社日立製作所 Power storage system, secondary battery control system, and secondary battery control method
JP2017227494A (en) * 2016-06-21 2017-12-28 マツダ株式会社 Diagnostic device and control device of lithium ion battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210218262A1 (en) * 2019-03-18 2021-07-15 Lg Chem, Ltd. Battery Management Apparatus
US11824395B2 (en) * 2019-03-18 2023-11-21 Lg Energy Solution, Ltd. Battery management apparatus
CN114158276A (en) * 2020-02-05 2022-03-08 株式会社Lg新能源 Method of detecting lithium plating and method and apparatus for managing battery by using the same
EP4043898A4 (en) * 2020-02-05 2023-04-12 Lg Energy Solution, Ltd. Method for detecting lithium plating, and method and device for managing battery by using same
CN113918889A (en) * 2021-09-23 2022-01-11 浙江大学 Lithium battery online aging diagnosis method based on charging data spatial distribution characteristics

Also Published As

Publication number Publication date
JP7063455B2 (en) 2022-05-17
TW202004210A (en) 2020-01-16
JP2019185969A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2019194205A1 (en) Secondary battery diagnosing device and diagnosing method
CN107835947B (en) Method and device for estimating state of charge of lithium ion battery
JP4561859B2 (en) Secondary battery system
KR102259967B1 (en) Apparatus and method for managing charging of battery
US11105861B2 (en) Device and method for estimating battery resistance
WO2015174279A1 (en) Secondary-battery monitoring device and method for predicting capacity of secondary battery
JP7067549B2 (en) Power storage element management device and power storage element management method
CN111175664B (en) Method for determining aging state of battery, controller and vehicle
KR101783918B1 (en) Apparatus and Method for Estimating Resistance of Secondary Battery
JP2013089423A (en) Battery control device
US20220276319A1 (en) Apparatus and method for diagnosing battery
JP7275452B2 (en) SECONDARY BATTERY OPERATION CONTROL DEVICE AND METHOD USING RELATIVE DEGREE OF ELECTRODE
WO2017170622A1 (en) Device for estimating degradation of secondary cell, and method for estimating degradation of secondary cell
CN110573370B (en) Apparatus and method for diagnosing battery deterioration
JP7358711B2 (en) Battery management method and device
JP4954791B2 (en) Voltage prediction method for power storage devices
CN111799517A (en) Method for charging secondary battery
JP5573075B2 (en) Voltage equalization device for battery pack
US11251472B2 (en) System and method for operating batteries based on electrode crystal structure change
US20220278540A1 (en) Battery charge and discharge control device and method
CN111679217A (en) Battery early warning method and device adopting coulomb efficiency in SOC (System on chip) interval
Najeeb et al. Monitoring Considerations of Second-Life Lithium-Ion Batteries inBattery Energy Storage Systems
Pop et al. Battery aging process
CN117031278A (en) Battery SOC correction method and device, household energy storage equipment and storage medium
KR20230077409A (en) Method of estimating a state of battery and control device for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781741

Country of ref document: EP

Kind code of ref document: A1