WO2019193996A1 - 太陽光発電装置 - Google Patents

太陽光発電装置 Download PDF

Info

Publication number
WO2019193996A1
WO2019193996A1 PCT/JP2019/012231 JP2019012231W WO2019193996A1 WO 2019193996 A1 WO2019193996 A1 WO 2019193996A1 JP 2019012231 W JP2019012231 W JP 2019012231W WO 2019193996 A1 WO2019193996 A1 WO 2019193996A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
axis
support shaft
solar
solar power
Prior art date
Application number
PCT/JP2019/012231
Other languages
English (en)
French (fr)
Inventor
宏治 森
博之 小中
正貴 小林
山本 誠司
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2019193996A1 publication Critical patent/WO2019193996A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar power generation device.
  • This application claims priority based on Japanese Patent Application No. 2018-072985 filed on Apr. 5, 2018, and incorporates all the contents described in the above Japanese application.
  • a solar power generation device In a solar power generation device, it is important to increase the light receiving intensity of the solar power generation panel as much as possible in order to increase power generation efficiency. Therefore, there is a solar power generation device having a solar tracking function that changes the attitude of the solar power generation panel and automatically tracks the light receiving surface to the sun.
  • a solar cell panel is connected to a bearing mechanism having a shaft body that is substantially parallel to the earth rotation axis (ground axis) and a shaft body that extends in a direction orthogonal to the shaft body.
  • a concentrating solar power generation device that rotates independently in an azimuth angle direction around a parallel rotation axis and a zenith angle direction around a rotation axis substantially orthogonal to the earth rotation axis is disclosed.
  • a bearing mechanism is installed at the upper end of a columnar gantry extending vertically from the ground surface, and the gantry supports the center of the solar cell panel via the bearing mechanism.
  • a photovoltaic power generation apparatus includes a photovoltaic power generation panel that has a light receiving surface and is rotatable around a first axis extending in a first direction parallel to the light receiving surface, and the first direction.
  • a support shaft that extends in a second direction that intersects the surface of the solar power generation panel so as to be rotatable about a second axis that extends in the second direction, and is erected with respect to the ground surface in the second direction.
  • a plurality of pillars that support the first support shaft at each of a plurality of separated locations, and the pillars are arranged so that the photovoltaic power generation when the photovoltaic panel takes a posture in which the light receiving surface is oriented in the horizontal direction. It is provided at a position that avoids contact with the panel.
  • 2007-19331 corresponds with the incident direction of sunlight. It is a figure explaining the solar tracking in case the vertical axis center of the solar power generation device disclosed by Unexamined-Japanese-Patent No. 2007-19331 corresponds with the incident direction of sunlight. It is a graph which shows the simulation result of the time change of the rotational speed of the panel of an azimuth direction in the case of performing inversion tracking. It is a figure explaining the sun tracking in case the axial direction of a support shaft is parallel to a ground axis. It is a figure explaining the rotation angle range of the solar rotation direction (around 2nd axis center) of the array which concerns on embodiment.
  • the photovoltaic power generation apparatus includes a photovoltaic power generation panel having a light receiving surface and rotatable about a first axis extending in a first direction parallel to the light receiving surface, and the first A support shaft that extends in a second direction that intersects the direction and supports the photovoltaic power generation panel so as to be rotatable around a second axis that extends in the second direction; A plurality of columns supporting the first support shaft at each of a plurality of locations separated from each other, and the columns support the sunlight when the photovoltaic panel takes a posture in which the light receiving surface is oriented horizontally.
  • the support shaft extends in a direction other than the vertical direction, and the photovoltaic power generation panel may interfere with the support columns even when the light receiving surface is oriented in the horizontal direction. Therefore, it is possible to track the sun even at sunrise and sunset.
  • the rotation range around the first axis of the solar power generation panel directs the light receiving surface to one side in a direction orthogonal to the first direction. It is smaller than a range of 180 ° from the first posture of the photovoltaic power generation panel to the second posture of the photovoltaic power generation panel in which the light receiving surface is directed to the other side opposite to the one side in the orthogonal direction.
  • the two directions may be directions excluding the range that the incident direction of sunlight can take.
  • the range in which the incident direction of sunlight can be determined is determined by the area where the solar power generation device is installed, the second direction is determined according to the area.
  • a band-like range in which the angle range of 23.4 ° extends north and south in the north and south directions with respect to the vertical direction is a range in which the incident direction of sunlight can be taken, and the support shaft extends in that range. It is installed so that there is no.
  • the support position of the solar power generation panel on the support shaft may be between two adjacent columns.
  • the second direction may be a direction parallel to a vertical plane extending in the north-south direction or a direction intersecting within a predetermined angle range.
  • the vertical plane extending in the north-south direction is a plane including the ground axis. Therefore, the solar trajectory in one day is substantially symmetric with respect to the vertical plane. For this reason, rotation control of the photovoltaic power generation panel in solar tracking can be simplified by making the second direction, which is the axial direction of the second axis, parallel to the vertical plane. Further, since the second direction may intersect the vertical plane within a predetermined angle range, an attachment error of the second axis can be allowed. Even if the second direction is not parallel to the vertical plane, if the difference is small, the rotation control of the photovoltaic power generation panel can be sufficiently simplified.
  • the predetermined angle range can be, for example, ⁇ 5 ° or less.
  • the second direction may be a direction parallel to the ground axis or a direction intersecting within a predetermined angle range. If the second direction is parallel to the ground axis, once the light-receiving surface faces the sun once at the start of solar tracking, such as sun, then the photovoltaic panel is virtually moved around the first axis. Even if it is not rotated, the sun tracking can be performed by rotating around the second axis. Moreover, since the angular velocity of the sun (the rotation speed of the earth) is constant, the rotation around the second axis can be made constant, and the rotation control of the photovoltaic power generation panel can be further simplified.
  • the second direction may intersect the ground axis within a predetermined angle range, an attachment error of the second axis can be allowed. Even if the second direction is not parallel to the ground axis, if the difference is small, it is possible to sufficiently simplify the rotation control of the photovoltaic power generation panel.
  • the predetermined angle range can be, for example, ⁇ 5 ° or less.
  • FIG. 1 is a perspective view showing a configuration of a photovoltaic power generation apparatus according to the present embodiment, and FIG. 2 is a side view thereof.
  • the solar power generation device 100 includes two plate-like arrays 1 and a support device 2 thereof.
  • the array 1 is an example of a photovoltaic power generation panel according to the embodiment.
  • Such an array 1 is configured by concentrating concentrating solar power generation modules 1M in a matrix on a rear frame 11.
  • the support device 2 includes two support columns 21a and 21b, a base 22, a drive shaft 23, and a support shaft 24.
  • the columns 21a and 21b extend in the vertical direction, the lower ends are fixed to the foundation 22, and are erected on the ground surface.
  • the foundation 22 is firmly embedded in the ground so that only the upper surface is visible.
  • the columns 21a and 21b are vertical.
  • the two support columns 21a and 21b are arranged at a predetermined distance from each other, and both ends of the support shaft 24 are supported on the upper ends of the support columns 21a and 21b.
  • the lengths of the columns 21a and 21b are different, and the column 21a is longer than the column 21b. That is, the support shaft 24 is supported by the support columns 21a and 21b in an inclined state.
  • the axial direction of the support shaft 24 (second direction, hereinafter also referred to as “X direction”) can be parallel to the ground axis.
  • the X direction is not limited to this.
  • the X direction can be a direction within a predetermined angle range with respect to the ground axis. This angle range can be, for example, within ⁇ 5 ° with respect to the ground axis.
  • the vertical direction including the ground axis hereinafter referred to as “north-south vertical plane” may be parallel.
  • the X direction can be a direction within a predetermined angle range with respect to the north-south vertical plane. This angular range can be within ⁇ 5 ° with respect to the north-south vertical plane, for example.
  • the X direction may not be inclined with respect to the ground surface.
  • the X direction when installing the photovoltaic power generation apparatus 100 on the equator, if the X direction is parallel to the ground axis, the X direction becomes a horizontal north-south direction, and the support shaft 24 extends horizontally. Detailed setting of the support shaft 24 in the axial direction will be described later.
  • the support columns 21a and 21b support the support shaft 24 in a rotatable manner.
  • bearing mechanisms 25a and 25b are provided at the upper ends of the columns 21a and 21b, respectively, and both ends of the support shaft 24 are rotatably connected to the bearing mechanisms 25a and 25b.
  • the bearing mechanism 25b on the column 21b side is provided with a second drive device 26b including a motor for driving the support shaft.
  • the second drive device 26b can rotate the support shaft 24 around a central axis (second axis) extending in the X direction. This center axis is the rotation center axis of the support shaft 24 and does not have to coincide with the center axis of the support shaft 24.
  • the drive shaft 23 is supported at the center of the support shaft 24 in the X direction.
  • the axial direction of the drive shaft 23 (first direction; hereinafter also referred to as “Y direction”) is a direction orthogonal to the X direction.
  • the drive shaft 23 only needs to be substantially orthogonal to the support shaft 24, and a case where the drive shaft 23 is not strictly orthogonal due to an attachment error or the like is allowed.
  • the support shaft 24 supports the drive shaft 23 in a rotatable manner.
  • a bearing mechanism 27 is provided at the X direction center portion of the support shaft 24, and the Y direction center portion of the drive shaft 23 is rotatably connected to the bearing mechanism 27.
  • the bearing mechanism 27 is provided with a first drive device 26a including a drive shaft rotating motor.
  • the first drive device 26a can rotate the drive shaft 23 around a central axis (first axis) extending in the Y direction. This central axis is the rotational central axis of the drive shaft 23 and does not have to coincide with the central axis of the drive shaft 23.
  • the drive shaft 23 is fixed near the center of the flat frame-like gantry 11. Therefore, when the support shaft 24 is rotated in the circumferential direction around the axis (hereinafter referred to as “solar circulation direction”), the drive shaft 23 and the array 1 are also integrally rotated in the solar circulation direction. Further, when the drive shaft 23 rotates in the circumferential direction around the axis (hereinafter referred to as “solar altitude direction”), the array 1 also integrally rotates in the solar altitude direction.
  • the support position of the drive shaft 23 on the support shaft 24 is an intermediate portion in the axial length direction of the support shaft 24. That is, the array 1 is supported by the support shaft 24 between the support columns 21a and 21b. Thereby, since the load of the array 1 is distributed to the two support columns 21a and 21b, the array 1 can be stably supported.
  • the first drive device 26a can rotate the drive shaft 23 in the solar altitude direction so that the light receiving surface 1a of the array 1 faces the sun. For this reason, the angular range in which the drive shaft 23 can be rotated is ⁇ 23.4 ° or more around the angle at which the light receiving surface 1a faces the sun on the day of spring or autumn.
  • the second driving device 26b can rotate the support shaft 24 by 180 ° in the solar circulation direction from a vertical posture in which the light receiving surface 1a of the array 1 is horizontally oriented toward the east side to a vertical posture in which the light receiving surface 1a is horizontally oriented toward the west side. Thereby, the sun tracking can be performed from sunrise to sunset.
  • the rotation range of the array 1 in the solar altitude direction and the solar circling direction is not limited to the above. It is good also as a rotation range where the array 1 can take the horizontal attitude
  • the array 1 can be placed in the above horizontal posture at night or during the cleaning operation of the light receiving surface 1a, etc., preventing the dirt and the like from adhering to the light receiving surface 1a, and the burden of the cleaning operation. Can be reduced.
  • Such a horizontal posture of the array 1 is realized by combining rotation in the solar altitude direction and the solar circling direction.
  • the array 1 rotates in the solar circle direction so as to pass between the columns 21 a and 21 b. That is, each of the support columns 21a and 21b is spaced apart from each other in the X direction so as to avoid contact with the array 1. Thereby, the array 1 can take a horizontal attitude
  • a box 13 is provided near the lower end of the column 21a, and a control circuit (not shown) is accommodated in the box 13.
  • the control circuit can control the first drive device 26a and the second drive device 26b to execute the sun tracking.
  • FIG. 3 is a perspective view showing an example of the configuration of the module 1M.
  • the module 1M is a concentrating solar power generation module.
  • the module 1M includes, for example, a metal-made rectangular flat-bottomed container-like casing 31, and a light collecting portion 32 attached thereon like a lid.
  • the light condensing unit 32 is configured, for example, by attaching a resin condensing lens 32f to the back surface of one transparent glass plate 32a.
  • each of the illustrated square (10 ⁇ 14) sections is a Fresnel lens as the condensing lens 32f, and can converge sunlight to a focal position.
  • a flexible printed wiring board 33 is disposed on the bottom surface 31 b of the housing 31.
  • a cell package 34 that holds cells (power generation elements) is mounted at a predetermined position on the flexible printed wiring board 33.
  • a part surrounded by a two-dot chain line “ ⁇ ” is an enlarged view of the light receiving part R.
  • a secondary lens 35 is provided on the cell package 34, and a protective plate 36 is provided around the secondary lens 35.
  • the secondary lens 35 is, for example, a ball lens.
  • the protection plate 36 is, for example, an annular metal body, and a commercially available washer can be used.
  • the protective plate 36 prevents the convergent light from causing thermal damage to the periphery of the cell when the convergent light of the sunlight deviates from the secondary lens 15. Further, even when all the convergent light is in the secondary lens 35, the protective plate 36 receives the scattered light in the housing 31 and reflects it.
  • the light receiving portions R are provided in the same number and at the same intervals corresponding to each of the condenser lenses 32f.
  • a shielding plate 37 is provided between the light receiving unit R and the light collecting unit 32.
  • a square opening 37a similar to the outer diameter of one condenser lens 32f is formed at a position corresponding to each condenser lens 32f.
  • the light converged by the condenser lens 32f passes through the opening 37a.
  • FIG. 4 is an example of a cross-sectional view showing the minimum basic configuration of the optical system.
  • the incident direction of the sunlight is perpendicular to the condenser lens 32f of the condensing unit 32, and the incident direction A S and the optical axis A X are parallel to each other (i.e., the incident direction A S and the light and the axis A X are coincident).
  • the light converged by the condenser lens 32 f passes through the opening 37 a of the shielding plate 37 and enters the secondary lens 35.
  • the secondary lens 35 guides the incident light to the cell 38.
  • the cell 38 is held in the cell package 34.
  • the protection plate 36 is attached so as to ride on the upper end of the cell package 34.
  • a light-transmitting resin 39 is enclosed between the secondary lens 35 and the cell 38.
  • the optical axis A X connecting the condenser lens 32f and the cell 38 meets the incident direction A S of sunlight, all light collected by the condenser lens 32f cell 38.
  • the cell 38 converts most of the received light into electrical energy and outputs electric power.
  • FIG. 5A is a diagram for explaining the sun trajectory at a point of 35 degrees north latitude
  • FIG. 5B is a diagram for explaining the sun trajectory at a point on the equator.
  • a virtual hemisphere centered on the point is shown above the point of interest (that is, the point where the photovoltaic power generation apparatus 100 is installed).
  • the sun passes along a trajectory indicated by a broken line in the spring equinox or autumn equinox, and follows a trajectory indicated by two solid lines in the summer solstice or winter solstice.
  • the range through which the sun can pass is a band-like region between two solid lines (a region indicated by diagonal lines in the figure, hereinafter referred to as “sun passage region”).
  • the possible range of the incident direction of sunlight is a set of directions connecting each position of the sun passage region and the center (point of interest) of the virtual hemisphere. Therefore, if the axial length direction of the support shaft 24 coincides with the direction connecting the point of interest and an arbitrary point in the sun passage region, the axial length direction of the support shaft 24 coincides with the incident direction of sunlight. To do.
  • An example is a solar power generation device disclosed in Japanese Patent Application Laid-Open No. 2007-19331.
  • This solar power generation device is configured by providing a tracking drive unit for rotating the solar cell panel at the upper end of a support column extending in the vertical direction.
  • the tracking drive unit includes a worm speed reducer that rotates the solar cell panel in the horizontal direction and a power cylinder that tilts (rotates) the solar cell panel in the elevation direction.
  • a case where the axial length direction of the support column, that is, the rotational axis by the worm reducer coincides with the incident direction of sunlight will be considered.
  • the rotational axis (hereinafter referred to as “vertical axis”) by the worm reducer extends in the vertical direction. Therefore, when the sun passes through the zenith, the vertical axis coincides with the incident direction of sunlight. At this time, as shown in FIG. 5B, the sun accurately goes up from the east, passes through the zenith, and passes along a trajectory that accurately sinks to the west.
  • 6A and 6B are diagrams illustrating solar tracking when the vertical axis of the photovoltaic power generation apparatus disclosed in Japanese Patent Application Laid-Open No. 2007-19331 coincides with the incident direction of sunlight.
  • FIG. 6A and 6B show a state in which the solar power generation device 100 is viewed horizontally from the south side. Since the earth always rotates, the vertical axis coincides with the incident direction of sunlight in a very short time of the day. On the day when the sun passes through the zenith, the sun apparently moves in the plane including the vertical axis (vertical plane parallel to the east-west direction), and therefore, as shown in FIG. Without rotating the panel 202 around the vertical axis, that is, in the horizontal direction, the panel 202 is rotated around the axis, that is, in the elevation direction, with the axis of rotation by the power cylinder 207 orthogonal to the solar passage plane. Rotate.
  • the sun tracking can be performed by rotating the panel 202 only in the elevation direction from sunrise to sunset (see FIG. 6A).
  • the photovoltaic power generation apparatus disclosed in Japanese Patent Application Laid-Open No. 2007-19331 has an elevation angle of only about 90 ° from the vertical posture with the light receiving surface facing the horizontal direction to the horizontal posture with the light receiving surface facing vertically upward.
  • the panel 202 cannot be rotated in the direction. For this reason, the sun tracking from the sunrise to the sunset is impossible only by the rotation of the panel 202 in the elevation direction. In this case, as shown in FIG.
  • the panel 202 in the horizontal posture is rotated 180 ° in the azimuth direction in the horizontal plane by the worm speed reducer 206 at a short time when the vertical axis coincides with the incident direction of sunlight.
  • the rotation direction of the elevation angle direction is reversed (hereinafter referred to as “inversion tracking”).
  • inversion tracking the operation
  • the concentrating solar power generation module has a characteristic that the power generation amount is substantially zero if the light receiving surface does not coincide with the incident direction of sunlight within an error range of about 1.0 °. (See FIG. 4). Therefore, when performing reversal tracking, the light receiving surface of the panel 202 cannot be directed vertically upward unless the rotation plane in the azimuth direction is exactly vertical (ie, horizontal) with respect to the vertical axis. An area that cannot be tracked (an area that cannot be tracked) occurs.
  • FIG. 7 is a graph showing the simulation result.
  • the vertical axis indicates the rotational angular velocity of the panel 202
  • the horizontal axis indicates time.
  • the angular velocity in the azimuth direction is 0 from the start of tracking (6:00) to around 11:00, and then increases rapidly.
  • the angular velocity reaches a peak and then decreases rapidly.
  • the angular velocity in the azimuth direction becomes 0, and after that, tracking ends (18:00) in that state.
  • the peak value of the angular velocity in the azimuth direction at 12:00 was about 600 [° / hour]. Assuming that the limit rotational speed of the worm reducer 206 is 200 [° / hour], this peak value greatly exceeds the limit value. For this reason, it turns out that rotation in the azimuth direction is not in time, and a time zone in which solar tracking is impossible occurs.
  • the axial length direction of the support shaft 24 can be a direction that excludes a possible range of the incident direction of sunlight. Thereby, it is not necessary to perform the reversal tracking as described above, and it is possible to prevent a non-trackable area from occurring. In this case, since it is not necessary to perform reverse tracking, the rotation angle range of the drive shaft 23 can be less than 180 °. Thereby, it is not necessary to use an expensive through drive having a large movable range in order to rotate the drive shaft 23.
  • the axial direction of the support shaft 24 may be a direction within the range that the incident direction of sunlight can take. In this case, if the rotation angle range of the support shaft 24 is 180 ° or more, it is possible to perform sun tracking from sunrise to sunset without performing reverse tracking.
  • the axial direction of the support shaft 24 may be a direction parallel to the north-south vertical plane.
  • the sun's trajectory in one day is substantially symmetric about the north-south vertical plane. Therefore, by making the axial direction of the support shaft 24 parallel to the north-south vertical plane, rotation control around the axis of the drive shaft 23 of the array 1 and the axis of the support shaft 24 in the solar tracking is performed. It can be simplified.
  • the axial length direction of the support shaft 24 may not be exactly parallel to the north-south vertical plane, and may intersect within an angle range of ⁇ 5 ° or less, for example. Thereby, manufacturing errors and mounting errors of the parts of the support device 2 are allowed. Even if the axial length direction of the support shaft 24 is not parallel to the north-south vertical plane, the rotation control of the array 1 can be simplified sufficiently if the difference is small.
  • the axial direction of the support shaft 24 may be parallel to the ground axis.
  • FIG. 8 is a diagram for explaining the sun tracking when the axial length direction of the support shaft 24 is parallel to the ground axis.
  • FIG. 8 shows solar tracking in the spring equinox or autumn equinox.
  • the sun apparently moves on a plane that intersects perpendicularly to the earth axis (hereinafter referred to as “solar moving surface”) (see FIGS. 5A and 5B). Therefore, if the light-receiving surface 1a of the array 1 is made parallel to the support shaft 24, the sun tracking can be performed only by rotating the array 1 around the axis of the support shaft 24, that is, in the direction of solar rotation.
  • the solar tracking can be performed by rotating the array 1 in the solar direction without actually rotating the array 1 in the solar altitude direction.
  • the solar moving surface is located north or south compared to the solar moving surface on the equinox or autumn equinox day. Therefore, if the angle in the solar altitude direction is set so as to face the sun at that day, then the solar tracking is performed by rotating in the solar circling direction without actually rotating the array 1 in the solar altitude direction. be able to.
  • the axial length direction of the support shaft 24 may not be exactly parallel to the ground axis, and may intersect within an angle range of ⁇ 5 ° or less, for example. Thereby, manufacturing errors and mounting errors of the parts of the support device 2 are allowed. Even if the axial length direction of the support shaft 24 is not parallel to the ground axis, if the difference is small, the rotation control of the array 1 can be simplified sufficiently.
  • FIG. 9 is a diagram for explaining the rotation angle range of the array 1 in the solar circling direction.
  • the solar power generation device 100 seen from the X direction is shown.
  • a rotation angle range (“Range A” in the figure) from the posture in which at least the light-receiving surface 1a of the array 1 faces the daylight direction in the summer solstice to the posture in which it enters the sunlight direction is set in the solar circulation direction. Is done. As a result, it is possible to track the sun from Hinode to Hinode throughout the year.
  • the sun rises precisely from the east in Hiji, and the sun sets precisely in the west in Hire.
  • the sun rises.
  • Sun tracking is possible from sunset to sunset.
  • the above-mentioned range A is larger than 180 ° because the sunshine duration is longer in the northern hemisphere in summer and in the southern hemisphere in winter than in spring or autumn.
  • a 360 ° rotation range is required in order to perform sun tracking continuously throughout the day in a latitude area with white night.
  • the rotation angle range in the solar circling direction can be a range from the angle at which the array 1 is positioned vertically downward to the angle at which the light receiving surface 1a is oriented in the direction of the sunset on the summer solstice (in the figure).
  • “Range B”), or an angle (0 °) at which the array 1 is positioned vertically downward may be set to a range of 360 ° (“range C” in the figure).
  • FIG. 10A is a diagram for explaining a rotation angle range in the solar altitude direction of the array 1 at a point of 35 degrees north latitude.
  • FIG. 10A shows the solar power generation device 100 viewed horizontally from the side with the drive shaft 23 in a horizontal state, that is, in a state where the Y direction coincides with the horizontal direction.
  • a range of ⁇ 23.4 ° (“range a” in the figure) is set centering on the solar altitude at least in spring or autumn (55 ° north-south at 55 ° latitude). .
  • the sun tracking can be performed throughout the year.
  • a range of 58.4 ° from the lower limit angle of the above range a that is, the solar altitude at the winter solstice; 31.6 ° at a point of 35 ° north latitude
  • range b the range of 58.4 ° from the lower limit angle of the above range a (that is, the solar altitude at the winter solstice; 31.6 ° at a point of 35 ° north latitude) to the angle at which the light receiving surface 1a is parallel to the north-south direction.
  • Range b in the figure
  • the range may be 90 ° (“range c” in the figure).
  • FIG. 10B is a diagram for explaining a rotation angle range in the solar altitude direction of the array 1 at a point on the equator.
  • the rotation angle range of the solar altitude direction of the array 1 is an angle (90 °) parallel to the north-south direction.
  • ⁇ 23.4 ° range “a ′” in the figure.
  • a larger rotation angle range including this range can also be set.
  • a range of ⁇ 45 ° centering on an angle parallel to the north-south direction can be set (range “c ′” in the figure).
  • the rotation angle range in the solar circling direction is a range including an angle for positioning the array 1 vertically downward
  • the rotation angle range in the solar altitude direction is set so that the light receiving surface 1a of the array 1 is parallel to the north-south direction.
  • the light-receiving surface 1a can be faced vertically downward. That is, the light receiving surface 1a can be directed vertically downward by making the light receiving surface 1a parallel to the north-south direction and positioning the array 1 vertically downward.
  • the array 1 take a horizontal posture, it is possible to prevent dirt and the like from adhering to the light receiving surface 1a and to reduce the burden of cleaning work.
  • FIG. 11 is a perspective view illustrating a configuration of a photovoltaic power generation apparatus according to a modification of the embodiment.
  • the photovoltaic power generation apparatus according to this modification supports the middle of the support shaft 224 that is longer than the distance between adjacent columns 221a and 221b at the upper ends of the columns 221a and 221b. That is, the support shaft 224 extends on both outer sides of the range between the columns 221a and 221b.
  • the drive shaft 23 is supported on a portion of the support shaft 224 that extends outward from the support column 221a. That is, the support position of the drive shaft 23 on the support shaft 224 is not between the support columns 221a and 221b but outside the support column 221a.
  • the array 1 rotates in the solar circulation direction outside the support column 221a.
  • the column 221a is arranged so as to avoid contact with the array 1.
  • the array 1 can take a vertical attitude
  • the configuration in which the support shaft 24 rotates about the axis is described, but the present invention is not limited to this.
  • the support shaft 24 may be fixedly supported by the support columns 21 a and 21 b, and only the fixed portion of the drive shaft 23 in the support shaft 24 may be rotatable around the axis of the support shaft 24.
  • the drive shaft 23 may not be rotated around the axis, but only the fixed portion of the mount 11 of the drive shaft 23 can be rotated around the axis of the drive shaft 23.
  • the module 1M is not limited to the concentrating solar power generation module, and may be a crystalline silicon solar power generation module.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽光発電装置は、受光面を有し、前記受光面に平行な第1方向に延びる第1軸心周りに回動可能な太陽光発電パネルと、前記第1方向に交差する第2方向に延び、前記太陽光発電パネルを前記第2方向に延びる第2軸心周りに回動可能に支持する支持軸と、地表に対して立設され、前記第2方向に離れた複数箇所それぞれにおいて前記第支持軸を支持する複数の支柱と、を備え、前記支柱は、前記太陽光発電パネルが前記受光面を水平方向に向ける姿勢をとったときに、前記太陽光発電パネルとの接触を回避する位置に設けられる。

Description

太陽光発電装置
 本発明は、太陽光発電装置に関する。本出願は、2018年4月5日出願の日本出願第2018-072985号に基づく優先権を主張し、前記日本出願に記載された全ての内容を援用するものである。
 太陽光発電装置では、発電効率を高めるために、太陽光発電パネルにおける受光強度をできるだけ高くすることが重要である。そのため、太陽光発電パネルの姿勢を変化させ、受光面を自動的に太陽に追尾させる太陽追尾機能を備えた太陽光発電装置がある。
 特許文献1には、太陽電池パネルが、地球自転軸(地軸)とほぼ平行な軸体と、当該軸体と直交する方向に延びる軸体とを有する軸受け機構に接続され、地球自転軸とほぼ平行な回転軸周りの方位角方向と、地球自転軸にほぼ直交する回転軸周りの天頂角方向とに独立して回動する集光式太陽光発電装置が開示されている。この集光式太陽光発電装置では、地表から鉛直方向に延びる柱状の架台の上端に軸受け機構が設置され、太陽電池パネルの中心を、軸受け機構を介して架台が支持する。
特開2004-153202号公報
 本開示の一態様に係る太陽光発電装置は、受光面を有し、前記受光面に平行な第1方向に延びる第1軸心周りに回動可能な太陽光発電パネルと、前記第1方向に交差する第2方向に延び、前記太陽光発電パネルを前記第2方向に延びる第2軸心周りに回動可能に支持する支持軸と、地表に対して立設され、前記第2方向に離れた複数箇所それぞれにおいて前記第支持軸を支持する複数の支柱と、を備え、前記支柱は、前記太陽光発電パネルが前記受光面を水平方向に向ける姿勢をとったときに、前記太陽光発電パネルとの接触を回避する位置に設けられる。
実施形態に係る太陽光発電装置の構成を示す斜視図である。 実施形態に係る太陽光発電装置の構成を示す側面図である。 太陽光発電モジュールの構成の一例を示す斜視図である。 太陽光発電モジュールにおける光学系の最小の基本構成を現す断面図の一例である。 北緯35度の地点における太陽の軌跡を説明する図である。 赤道上の地点における太陽の軌跡を説明する図である。 特開2007-19331号公報に開示された太陽光発電装置の鉛直軸心が太陽光の入射方向と一致する場合における太陽追尾を説明する図である。 特開2007-19331号公報に開示された太陽光発電装置の鉛直軸心が太陽光の入射方向と一致する場合における太陽追尾を説明する図である。 反転追尾を行う場合における方位角方向のパネルの回転速度の時間変化のシミュレーション結果を示すグラフである。 支持軸の軸長方向が地軸に対して平行な場合の太陽追尾を説明する図である。 実施形態に係るアレイの太陽周回方向(第2軸心周り)の回動角度範囲を説明する図である。 実施形態に係るアレイの北緯35度の地点における太陽高度方向の回動角度範囲を説明する図である。 実施形態に係るアレイの赤道上の地点における太陽高度方向の回動角度範囲を説明する図である。 実施形態の変形例に係る太陽光発電装置の構成を示す斜視図である。
 <本開示が解決しようとする課題>
 太陽追尾機能では、日出及び日入時に太陽光発電パネルの受光面を水平方向近くに向ける必要がある。しかしながら、特許文献1に開示された太陽光発電装置では、パネルの受光面を水平方向近くに向けとパネルが架台と接触してしまう。したがって、日出及び日入時には太陽追尾を実行できないという問題がある。
 <本開示の効果>
 本開示によれば、太陽光発電パネルを支持する軸を鉛直方向以外の方向に延びるよう設けつつ、日出及び日入時でも太陽追尾が可能となる。
 <本開示の実施形態の概要>
 以下、本発明の実施形態の概要を列記して説明する。
 (1) 本実施形態に係る太陽光発電装置は、受光面を有し、前記受光面に平行な第1方向に延びる第1軸心周りに回動可能な太陽光発電パネルと、前記第1方向に交差する第2方向に延び、前記太陽光発電パネルを前記第2方向に延びる第2軸心周りに回動可能に支持する支持軸と、地表に対して立設され、前記第2方向に離れた複数箇所それぞれにおいて前記第支持軸を支持する複数の支柱と、を備え、前記支柱は、前記太陽光発電パネルが前記受光面を水平方向に向ける姿勢をとったときに、前記太陽光発電パネルとの接触を回避する位置に設けられる。これにより、支持軸を複数の支柱により支持することで当該支持軸を鉛直方向以外の方向に延びるように設けつつ、太陽光発電パネルが受光面を水平方向に向けても支柱と干渉することがないため、日出及び日入時でも太陽追尾が可能となる。
 (2) また、本実施形態に係る太陽光発電装置において、前記太陽光発電パネルの前記第1軸心周りの回動範囲は、前記受光面を前記第1方向に対する直交方向の一方側に向ける前記太陽光発電パネルの第1姿勢から前記受光面を前記直交方向の前記一方側とは反対の他方側に向ける前記太陽光発電パネルの第2姿勢までの180°の範囲よりも小さく、前記第2方向は、太陽光の入射方向が取り得る範囲を除外した方向であってもよい。これにより、支持軸(第2軸心)が太陽光の入射方向に延びないので、太陽光発電パネルの受光面を支持軸と垂直にすることによる太陽追尾が不能な領域(以下、「追尾不能領域」という)が生じることを防止できる。また、太陽光発電パネルを第1軸心周りに回動させるために、可動範囲が大きく高価なスルードライブを用いる必要がない。ここで、太陽光の入射方向が取り得る範囲は、太陽光発電装置を設置する地域によって定まるので、その地域に応じて第2方向が定まる。例えば、赤道では、鉛直方向を基準に南北それぞれに23.4°の角度範囲が東西方向に延びた帯状の範囲が、太陽光の入射方向が取り得る範囲となり、支持軸はその範囲には延びないように設置される。
 (3) また、本実施形態に係る太陽光発電装置において、前記支持軸における前記太陽光発電パネルの支持位置は、隣り合う2つの前記支柱の間にあってもよい。これにより、太陽光発電パネルの荷重が2つの支柱に分散するため、太陽光発電パネルを安定して支持することができる。
 (4) また、本実施形態に係る太陽光発電装置において、前記第2方向は、南北方向へ延びる鉛直面に対して平行な方向又は所定の角度範囲内で交差する方向であってもよい。南北方向へ延びる鉛直面は、地軸を含む平面である。したがって、1日における太陽の軌跡は当該鉛直面に対して実質的に対称である。このため、第2軸の軸長方向である第2方向を当該鉛直面と平行とすることで、太陽追尾における太陽光発電パネルの回動制御を単純化することができる。また、第2方向が鉛直面に対して所定の角度範囲内で交差してもよいため、第2軸の取付誤差を許容することができる。第2方向が鉛直面に対して平行でなくても、その差が僅かであれば、十分に太陽光発電パネルの回動制御を単純化することができる。ここで、所定の角度範囲は、例えば±5°以下とすることができる。
 (5) また、本実施形態に係る太陽光発電装置において、前記第2方向は、地軸に対して平行な方向又は所定の角度範囲内で交差する方向であってもよい。第2方向が地軸と平行である場合、日出などの太陽追尾開始の時点において太陽に対して受光面を一度正対させれば、その後は太陽光発電パネルを事実上第1軸心周りに回動させなくても、第2軸心周りの回動で太陽追尾を行うことができる。また、太陽の角速度(地球の自転速度)は一定であるため、第2軸周りの回動も一定速度とすることができ、太陽光発電パネルの回動制御をより単純化することができる。また、第2方向が地軸に対して所定の角度範囲内で交差してもよいため、第2軸の取付誤差を許容することができる。第2方向が地軸に対して平行でなくても、その差が僅かであれば、十分に太陽光発電パネルの回動制御を単純化することができる。ここで、所定の角度範囲は、例えば±5°以下とすることができる。
 <本開示の実施形態の詳細>
 以下、図面を参照しつつ、本開示の実施形態の詳細を説明する。
 [1.太陽光発電装置の全体構成]
 図1は、本実施形態に係る太陽光発電装置の構成を示す斜視図であり、図2は、その側面図である。太陽光発電装置100は、2つの板状のアレイ1と、その支持装置2とを備える。アレイ1は、実施形態に係る太陽光発電パネルの一例である。かかるアレイ1は、背面側の架台11上に集光型太陽光発電モジュール1Mをマトリックス状に整列させて構成されている。
 支持装置2は、2つの支柱21a及び21bと、基礎22と、駆動軸23と、支持軸24とを備えている。支柱21a,21bは、鉛直方向に延び、下端が基礎22に固定され、地表にそれぞれ立設されている。図2において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21a,21bは鉛直となる。2つの支柱21a,21bは、互いに所定距離離れて配置されており、各支柱21a,21bの上端には支持軸24の両端が支持されている。支柱21a,21bの長さは異なっており、支柱21aが支柱21bに比べて長い。つまり、支持軸24は傾斜した状態で支柱21a,21bに支持されている。
 支持軸24の軸長方向(第2方向。以下、「X方向」ともいう。)は、地軸と平行とすることができる。なお、X方向はこれに限定されない。例えば、X方向を地軸に対して所定角度範囲内の方向とすることができる。この角度範囲は、例えば地軸に対して±5°以内とすることができる。また、X方向が地軸と平行でなくても、地軸を含む鉛直面(以下、「南北鉛直面」という。)平行な方向とすることもできる。さらに、X方向を南北鉛直面に対して所定角度範囲内の方向とすることができる。この角度範囲は、例えば南北鉛直面に対して±5°以内とすることができる。
 また、X方向は地表面に対して傾斜していなくてもよい。例えば、赤道において太陽光発電装置100を設置する場合に、X方向を地軸と平行にすると、X方向は水平な南北方向となり、支持軸24は水平に延びる。なお、支持軸24の軸長方向の詳細な設定については後述する。
 支柱21a,21bは支持軸24を回動可能に支持する。具体的には、支柱21a,21bのそれぞれの上端には、軸受機構25a,25bが設けられ、この軸受機構25a,25bに支持軸24の両端がそれぞれ回動可能に接続される。また、支柱21b側の軸受機構25bには、支持軸駆動用のモータを含む第2駆動装置26bが設けられている。第2駆動装置26bは、支持軸24を、X方向に延びる中心軸(第2軸心)を中心にして回動させることができる。なお、この中心軸は支持軸24の回転中心軸であり、支持軸24の中心軸と一致していなくてもよい。
 支持軸24のX方向中央部には、駆動軸23が支持されている。駆動軸23の軸長方向(第1方向。以下、「Y方向」ともいう。)は、X方向と直交する方向である。なお、駆動軸23は支持軸24と実質的に直交していればよく、取付誤差等によって厳密に直交していない場合も許容される。
 支持軸24は駆動軸23を回動可能に支持する。具体的には、支持軸24のX方向中央部には、軸受機構27が設けられ、この軸受機構27に駆動軸23のY方向中央部分が回動可能に接続される。また、軸受機構27には、駆動軸回動用のモータを含む第1駆動装置26aが設けられている。第1駆動装置26aは、駆動軸23を、Y方向に延びる中心軸(第1軸心)を中心にして回動させることができる。なお、この中心軸は駆動軸23の回転中心軸であり、駆動軸23の中心軸と一致していなくてもよい。
 図2に示すように、駆動軸23は平坦なフレーム状の架台11の中央付近に固定されている。したがって、支持軸24がその軸心を中心とした周方向(以下、「太陽周回方向」という。)に回動すれば、駆動軸23及びアレイ1も一体的に太陽周回方向に回動する。また、駆動軸23がその軸心を中心とした周方向(以下、「太陽高度方向」という。)に回動すれば、アレイ1も一体的に太陽高度方向に回動する。また、上記のように、支持軸24における駆動軸23の支持位置は、支持軸24の軸長方向の中間部分である。つまり、アレイ1は、支柱21a,21bの間において支持軸24に支持される。これにより、これにより、アレイ1の荷重が2つの支柱21a,21bに分散するため、アレイ1を安定して支持することができる。
 第1駆動装置26aは、アレイ1の受光面1aが太陽に正対するよう、駆動軸23を太陽高度方向に回動させることができる。このため、駆動軸23の回動可能な角度範囲は、春分又は秋分の日に受光面1aが太陽に正対する角度を中心として±23.4°以上とされる。
 第2駆動装置26bは、アレイ1の受光面1aが水平に東側を向いた鉛直姿勢から水平に西側を向いた鉛直姿勢まで、支持軸24を太陽周回方向に180°回動させることができる。これにより、日出から日入まで太陽追尾を行うことができる。
 なお、アレイ1の太陽高度方向及び太陽周回方向それぞれへの回動範囲は上記に限定されない。受光面1aが鉛直下方を向いた水平姿勢をアレイ1がとることができるような回動範囲としてもよい。これにより、夜間又は受光面1aの清掃作業中等にはアレイ1に上記の水平姿勢をとらせることができ、受光面1aへの塵埃等の汚れの付着を防止し、また、清掃作業の負担を軽減することができる。このようなアレイ1の水平姿勢は、太陽高度方向及び太陽周回方向への回動を組み合わせることで実現される。
 図2において二点鎖線にて示されるように、アレイ1は支柱21a,21bの間を通過するように太陽周回方向に回動する。つまり、支柱21a,21bのそれぞれは、アレイ1との接触を回避するように互いにX方向に離隔して配置される。これにより、アレイ1は、支柱21a,21bと接触することなく、水平姿勢をとることができる。したがって、アレイ1が受光面1aを水平方向に向けても支柱21a,21bと干渉することがないため、日出及び日入時でも太陽追尾が可能となる。
 支柱21aの下端付近にはボックス13が設けられており、ボックス13内には制御回路(図示せず)が収容されている。制御回路は、第1駆動装置26a及び第2駆動装置26bを制御し、太陽追尾を実行させることができる。
 [2.モジュールの構成例]
 図3は、モジュール1Mの構成の一例を示す斜視図である。本例では、モジュール1Mを集光型の太陽光発電モジュールとしている。図において、モジュール1Mは、例えば金属製で長方形の平底容器状の筐体31と、その上に蓋のように取り付けられる集光部32と、を備えている。集光部32は、例えば1枚の透明なガラス板32aの裏面に樹脂製の集光レンズ32fが貼り付けられて構成されている。例えば図示の正方形(10個×14個)の区画の1つ1つが、集光レンズ32fとしてのフレネルレンズであり、太陽光を焦点位置に収束させることができる。
 筐体31の底面31b上には、フレキシブルプリント配線板33が配置されている。フレキシブルプリント配線板33上の所定位置にはセル(発電素子)を保持するセルパッケージ34が搭載されている。図中の、二点鎖線の「○」で囲んでいる部位は、受光部Rの拡大図である。受光部Rにおいて、セルパッケージ34上には2次レンズ35があり、二次レンズ35の周りには保護板36がある。2次レンズ35は例えばボールレンズである。保護板36は、例えば、円環状の金属体であり、市販のワッシャを用いることができる。保護板36は2次レンズ15から太陽光の収束光が外れた場合に、収束光がセル周辺に熱的なダメージを与えることを防止している。また、保護板36は、収束光が全て2次レンズ35に入っている場合であっても、筐体31内での散乱光を受けてこれを反射する。
 受光部Rは、集光レンズ32fの各々に対応して同数、同一間隔で、設けられている。受光部Rと集光部32との間には、遮蔽板37が設けられている。遮蔽板37には、個々の集光レンズ32fに対応した位置に、1つの集光レンズ32fの外径と相似な正方形の開口37aが形成されている。集光レンズ32fによって収束する光は、開口37aを通過する。太陽光の入射方向と受光部Rの光軸とが大きくずれた場合には、ずれた位置に集光しようとする光は遮蔽板37に当たるようになっている。
 図4は、光学系の最小の基本構成を現す断面図の一例である。図4では、太陽光の入射方向が集光部32の集光レンズ32fに対して垂直であり、入射方向Aと光軸Aとが互いに平行である(つまり、入射方向Aと光軸Aとが合致している)。このとき、集光レンズ32fによって収束させられた光は、遮蔽板37の開口37aを通り抜け、2次レンズ35に入射する。2次レンズ35は、入射した光をセル38に導く。セル38は、セルパッケージ34の中に保持されている。保護板36は、セルパッケージ34の上端に乗るように取り付けられている。2次レンズ35とセル38との間には、光透過性の樹脂39が封入されている。図4に示されるように、集光レンズ32fとセル38とを結ぶ光軸Aが太陽光の入射方向Aに合致しているとき、集光レンズ32fによって集められた光の全てがセル38に導かれる。セル38は、受けた光の大部分を電気エネルギーに変換して電力を出力する。
 [3.支持軸と太陽光の入射方向との位置関係]
 図5Aは、北緯35度の地点における太陽の軌跡を説明する図であり、図5Bは、赤道上の地点における太陽の軌跡を説明する図である。図5A及び図5Bでは、注目する地点(つまり、太陽光発電装置100が設置される地点)の上空に、当該地点を中心とした仮想的な半球を示している。この仮想的な半球上を太陽が移動すると考えると、太陽は春分又は秋分において破線で示される軌跡を通り、夏至又は冬至においてそれぞれ2つの実線で示される軌跡を通る。一年において、太陽が通りうる範囲は、2つの実線の間の帯状の領域(図において斜線で示す領域。以下、「太陽通過領域」という。)である。
 ここで、支持軸24の軸長方向(X方向)が太陽光の入射方向と一致する状態を考える。図5A及び図5Bにおいて、太陽光の入射方向の取り得る範囲は、太陽通過領域の各位置と仮想半球の中心(注目地点)とを結ぶ方向の集合である。したがって、支持軸24の軸長方向が、注目地点と太陽通過領域内の任意の一点とを結ぶ方向に一致すれば、支持軸24の軸長方向が太陽光の入射方向と一致する状況が発生する。
 特開2007-19331号公報に開示された太陽光発電装置を例に挙げる。この太陽光発電装置は、鉛直方向に延びる支柱の上端に、太陽電池パネルを回動させる追尾駆動部を設けて構成されている。この追尾駆動部は、水平方向へ太陽電池パネルを旋回させるウォーム減速機と、仰角方向へ太陽電池パネルを傾倒(回動)させるパワーシリンダとを備えている。以下、特開2007-19331号公報に開示された太陽光発電装置において、支柱の軸長方向、即ち、ウォーム減速機による回転軸心が、太陽光の入射方向に一致するケースを検討する。
 特開2007-19331号公報開示の太陽光発電装置は、ウォーム減速機による回転軸心(以下、「鉛直軸心」という)が鉛直方向に延びる。したがって、太陽が天頂を通る場合に、鉛直軸心と太陽光の入射方向が一致する。このとき、図5Bに示すように、太陽は正確に東から上って、天頂を通過し、正確に西に沈む軌跡を通る。図6A及び図6Bは、特開2007-19331号公報に開示された太陽光発電装置の鉛直軸心が太陽光の入射方向と一致する場合における太陽追尾を説明する図である。図6A及び図6Bでは、南側から水平に太陽光発電装置100を見た様子を示している。地球は常に自転しているため、鉛直軸心が太陽光の入射方向と一致するのは、1日のうちの極めて短い時間である。太陽が天頂を通る日には、太陽は見かけ上、鉛直軸心を含む平面(東西方向に平行な鉛直面)内を移動するため、図6Aに示すように、太陽追尾においてウォーム減速機206によって鉛直軸心周り、即ち、水平方向にパネル202を回動させず、パワーシリンダ207による回転軸心を太陽通過平面に対して直交させた状態で、その軸心周り、即ち仰角方向にパネル202を回動させる。
 ここで、仰角方向の回動角度範囲が180°以上の場合、日出から日入まで仰角方向にのみパネル202を回動させることで太陽追尾が可能である(図6A参照)。しかし、特開2007-19331号公報開の太陽光発電装置は、その構造上、受光面が水平方向をむいた鉛直姿勢から、受光面が鉛直上方を向いた水平姿勢までの約90°しか仰角方向にパネル202を回動させることができない。このため、仰角方向のパネル202の回動だけでは、日出から日入までの太陽追尾は不可能である。この場合、図6Bに示すように、鉛直軸心が太陽光の入射方向と一致する僅かな時間に、水平姿勢としたパネル202を、ウォーム減速機206によって水平面内で方位角方向に180°回動させ、さらに仰角方向の回動方向を反転させる(以下、「反転追尾」という)。これにより、日出から日入までの太陽の軌跡を追うための動作範囲を確保できる。
 集光型の太陽光発電モジュールは、受光面が太陽光の入射方向に、1.0°程度の誤差範囲内で一致していなければ実質的に発電量が0となってしまうという特性を有している(図4参照)。したがって、反転追尾を行う場合、方位角方向の回転面が、鉛直軸心に対して正確に垂直(即ち、水平)でなければ、鉛直上方にパネル202の受光面を向けることができず、太陽追尾が不能な領域(追尾不能領域)が生じてしまう。
 また、上記の誤差範囲を含めても、鉛直軸心が太陽光の入射方向に一致する時間は極めて短い。かかる状況において太陽追尾を実現するためには、この僅かな時間に、パネル202を方位角方向に180°回転させる必要がある。これには高速な回転速度が要求されるため、回転が追いつかず、太陽追尾が不能な時間帯が生じる可能性がある。
 発明者は、反転追尾を行う場合における方位角方向のパネル202の回転速度の時間変化のシミュレーションを行った。図7は、このシミュレーション結果を示すグラフである。図7において、縦軸はパネル202の回転角速度を示し、横軸は時間を示している。図に示すように、方位角方向の角速度は、追尾開始(6:00)から11時付近までは0であり、その後急激に増加する。12時において角速度はピークに達し、その後急激に減少する。13:00付近には方位角方向の角速度が0となり、以後、その状態のまま追尾終了(18:00)に至る。
 12時における方位角方向の角速度のピーク値は、約600[°/時間]であった。ウォーム減速機206における限界の回転速度が200[°/時間]と想定すると、このピーク値は限界値を大きく超える。このため、方位角方向の回転が間に合わず、太陽追尾が不能な時間帯が生じることがわかる。
 本実施形態に係る太陽光発電装置100において、支持軸24の軸長方向は、太陽光の入射方向が取り得る範囲を除外した方向とされることができる。これにより、上記のような反転追尾を行う必要がなく、追尾不能領域が生じることを防止できる。なお、この場合、反転追尾を行う必要がないため、駆動軸23の回動角度範囲は180°未満とすることができる。これにより、駆動軸23を回動させるために、可動範囲が大きく高価なスルードライブを用いる必要がない。
 なお、支持軸24の軸長方向は、太陽光の入射方向が取り得る範囲内の方向であってもよい。この場合、支持軸24の回動角度範囲が180°以上であれば、反転追尾を行わなくても日出から日入まで太陽追尾を行うことができる。
 また、好ましくは、支持軸24の軸長方向は、南北鉛直面に対して平行な方向であってもよい。1日における太陽の軌跡は、南北鉛直面について実質的に対称である。したがって、支持軸24の軸長方向を、南北鉛直面に対して平行にすることにより、太陽追尾におけるアレイ1の駆動軸23の軸心周り及び支持軸24の軸心周りそれぞれの回動制御を単純化することができる。また、支持軸24の軸長方向が南北鉛直面に対して正確に平行でなくてもよく、例えば、±5°以下の角度範囲で交差してもよい。これにより、支持装置2の部品の製造誤差及び取付誤差が許容される。支持軸24の軸長方向が南北鉛直面に対して平行でなくても、その差が僅かであれば、十分にアレイ1の回動制御を単純化することができる。
 さらに好ましくは、支持軸24の軸長方向は、地軸に対して平行であってもよい。図8は、支持軸24の軸長方向が地軸に対して平行な場合の太陽追尾を説明する図である。図8では、春分又は秋分における太陽追尾を示している。太陽は見かけ上、地軸に垂直に交わる平面(以下、「太陽移動面」という)上を移動する(図5A及び図5B参照)。したがって、アレイ1の受光面1aを支持軸24に平行にすれば、支持軸24の軸心周り、つまり、太陽周回方向にアレイ1を回動させるだけで、太陽追尾が可能となる。また、太陽の角速度(つまり、地球の自転速度)は実質的に一定であるので、太陽周回方向へのアレイ1の回転速度は一定となり、アレイ1の回動制御が単純化される。春分及び秋分では、太陽は正確に東から昇り西に沈む。したがって、受光面1aを支持軸24の軸長方向に平行にすれば、アレイ1を太陽高度方向に事実上回動させなくても、太陽周回方向に回動させることで太陽追尾が可能である。春分及び秋分以外の日では、太陽移動面は、春分又は秋分の日における太陽移動面に比べて北又は南に位置する。したがって、太陽高度方向の角度をその日における太陽に正対するように設定すれば、その後はアレイ1を太陽高度方向に事実上回動させなくても、太陽周回方向への回動で太陽追尾を行うことができる。
 また、支持軸24の軸長方向が地軸に対して正確に平行でなくてもよく、例えば、±5°以下の角度範囲で交差してもよい。これにより、支持装置2の部品の製造誤差及び取付誤差が許容される。支持軸24の軸長方向が地軸に対して平行でなくても、その差が僅かであれば、十分にアレイ1の回動制御を単純化することができる。
 [4.アレイの回動角度範囲の設定]
 以下、支持軸24の軸長方向が地軸と平行な太陽光発電装置100におけるアレイ1の回動角度範囲について説明する。
 アレイ1の太陽高度方向及び太陽周回方向それぞれの回動角度範囲は、太陽通過領域(図5A及び図5B参照)を通る太陽を追尾できるように設定される。図9は、アレイ1の太陽周回方向の回動角度範囲を説明する図である。図9では、X方向から見た太陽光発電装置100を示している。太陽周回方向には、少なくともアレイ1の受光面1aが夏至における日出の方向を向いた姿勢から日入の方向を向いた姿勢までの回動角度範囲(図中、「範囲A」)が設定される。これにより、一年を通して日出から日入まで太陽追尾を行うことができる。春分又は秋分においては、日出では太陽が正確に東から昇り、日入では太陽が正確に西に沈む。つまり、春分又は秋分においては、受光面1aが水平に東を向いた鉛直姿勢から水平に西を向いた鉛直姿勢までの180°の範囲でアレイ1を太陽周回方向に回動させれば日出から日入までの太陽追尾が可能である。赤道上の地点を除き、北半球では夏において、南半球では冬において、春分又は秋分よりも日照時間が長いため、上記の範囲Aは180°よりも大きい範囲である。例えば、白夜がある緯度の地域において1日中継続して太陽追尾を行うためには、360°の回動範囲が必要となる。
 また、太陽周回方向の回動角度範囲は、アレイ1を鉛直下方に位置づける角度から受光面1aが夏至における日入の方向を向いた姿勢とする角度までの範囲とすることもできるし(図中、「範囲B」)、アレイ1を鉛直下方に位置づける角度(0°)から360°の範囲とすることもできる(図中、「範囲C」)。
 図10Aは、北緯35度の地点におけるアレイ1の太陽高度方向の回動角度範囲を説明する図である。図10Aでは、駆動軸23を水平状態とした、即ち、Y方向を水平方向と一致させた状態で、側方から水平に見た太陽光発電装置100を示している。太陽高度方向には、少なくとも春分又は秋分における太陽高度(北緯35度の地点では南中高度55°)を中心として、±23.4°の範囲(図中、「範囲a」)が設定される。これにより、一年を通じて太陽追尾を行うことができる。また、上記の範囲aの下限角度(つまり、冬至における太陽高度。北緯35度の地点では31.6°。)から、受光面1aが南北方向に平行となる角度までの58.4°の範囲とすることもできるし(図中、「範囲b」)、この範囲bを含む、例えば、受光面1aが水平となる角度(0°)から南北方向に平行となる角度(90°)までの90°の範囲とすることもできる(図中、「範囲c」)。
 緯度によって太陽高度は変わるため、アレイ1の太陽高度方向の回動角度範囲は、緯度に応じて設定される。図10Bは、赤道上の地点におけるアレイ1の太陽高度方向の回動角度範囲を説明する図である。図10Bに示されるように、赤道上の地点においては、一年を通じて太陽追尾を実施するためには、アレイ1の太陽高度方向の回動角度範囲が、南北方向に平行となる角度(90°)を中心として±23.4°に設定される必要がある(図中の範囲「a’」)。また、この範囲を含むさらに大きい回動角度範囲を設定することもできる。例えば、南北方向に平行となる角度を中心として±45°の範囲とすることもできる(図中の範囲「c’」)。
 上記のように、太陽周回方向の回動角度範囲を、アレイ1を鉛直下方に位置づける角度を含む範囲とし、太陽高度方向の回動角度範囲を、アレイ1の受光面1aを南北方向に平行となる角度を含む範囲とすることで、受光面1aを鉛直下方に向けることができる。つまり、受光面1aを南北方向に平行とし、アレイ1を鉛直下方に位置づけることで、受光面1aを鉛直下方に向けることができる。アレイ1にかかる水平姿勢をとらせることで、受光面1aへの塵埃等の汚れの付着を防止し、また、清掃作業の負担を軽減することができる。
 [5.変形例]
 上記の実施形態では、支柱21a,21bの間を渡すように支持軸24を設け、隣り合う支柱21a,21bの間において、支持軸24が駆動軸23を支持する構成について述べたが、これに限定されない。図11は、実施形態の変形例に係る太陽光発電装置の構成を示す斜視図である。この変形例に係る太陽光発電装置は、隣り合う支柱221a,221bの間の距離よりも長い支持軸224の途中を、支柱221a,221bの上端において支持する。つまり、支柱221a,221bの間の範囲の両外側に、支持軸224が延びている。支持軸224のうち、支柱221aから外側に延びた部分には、駆動軸23が支持されている。つまり、支持軸224における駆動軸23の支持位置は、支柱221a,221bの間にはなく、支柱221aよりも外側にある。
 この変形例では、アレイ1は支柱221aの外側において太陽周回方向に回動する。ここで、支柱221aは、アレイ1との接触を回避するように配置される。これにより、アレイ1は、支柱221aと接触することなく、鉛直姿勢をとることができる。したがって、アレイ1が受光面1aを水平方向に向けても支柱221aと干渉することがないため、日出及び日入時でも太陽追尾が可能となる。
 [6.その他の変形例]
 また、上記の実施形態では、支持軸24が軸心周りに回動する構成について述べたが、これに限定されない。支持軸24は支柱21a,21bに固定支持され、支持軸24における駆動軸23の固定部位のみが支持軸24の軸心周りに回動可能な構成とすることも可能である。また、駆動軸23が軸心周りに回動するのではなく、駆動軸23の架台11の固定部位のみが駆動軸23の軸心周りに回動可能な構成とすることもできる。
 また、モジュール1Mは、集光型太陽光発電モジュールに限られず、結晶シリコン太陽光発電モジュールであってもよい。
 [7.補記]
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 1 アレイ
 1a 受光面
 1M 集光型太陽光発電モジュール
 11 架台
 13 ボックス
 2 支持装置
 21a,21b 支柱
 22 基礎
 23 駆動軸
 24 支持軸
 25a,25b 軸受機構
 26a 第1駆動装置
 26b 第2駆動装置
 27 軸受機構
 31 筐体
 31b 底面
 32 集光部
 32a ガラス板
 32f 集光レンズ
 33 フレキシブルプリント配線板
 34 セルパッケージ
 35 二次レンズ
 36 保護板
 37 遮蔽板
 37a 開口
 38 セル
 39 樹脂
 100 太陽光発電装置
 202 パネル
 206 ウォーム減速機
 207 パワーシリンダ
 221a,221b 支柱
 224 支持軸
 R 受光部
 

Claims (5)

  1.  受光面を有し、前記受光面に平行な第1方向に延びる第1軸心周りに回動可能な太陽光発電パネルと、
     前記第1方向に交差する第2方向に延び、前記太陽光発電パネルを前記第2方向に延びる第2軸心周りに回動可能に支持する支持軸と、
     地表に対して立設され、前記第2方向に離れた複数箇所それぞれにおいて前記第支持軸を支持する複数の支柱と、
     を備え、
     前記支柱は、前記太陽光発電パネルが前記受光面を水平方向に向ける姿勢をとったときに、前記太陽光発電パネルとの接触を回避する位置に設けられる、
     太陽光発電装置。
  2.  前記太陽光発電パネルの前記第1軸心周りの回動範囲は、前記受光面を前記第1方向に対する直交方向の一方側に向ける前記太陽光発電パネルの第1姿勢から前記受光面を前記直交方向の前記一方側とは反対の他方側に向ける前記太陽光発電パネルの第2姿勢までの180°の範囲よりも小さく、
     前記第2方向は、太陽光の入射方向が取り得る範囲を除外した方向である、
     請求項1に記載の太陽光発電装置。
  3.  前記支持軸における前記太陽光発電パネルの支持位置は、隣り合う2つの前記支柱の間にある、
     請求項1又は請求項2に記載の太陽光発電装置。
  4.  前記第2方向は、南北方向へ延びる鉛直面に対して平行な方向又は所定の角度範囲内で交差する方向である、
     請求項1から請求項3の何れか1項に記載の太陽光発電装置。
  5.  前記第2方向は、地軸に対して平行な方向又は所定の角度範囲内で交差する方向である、
     請求項1から請求項4の何れか1項に記載の太陽光発電装置。
     
PCT/JP2019/012231 2018-04-05 2019-03-22 太陽光発電装置 WO2019193996A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-072985 2018-04-05
JP2018072985 2018-04-05

Publications (1)

Publication Number Publication Date
WO2019193996A1 true WO2019193996A1 (ja) 2019-10-10

Family

ID=68100587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012231 WO2019193996A1 (ja) 2018-04-05 2019-03-22 太陽光発電装置

Country Status (2)

Country Link
TW (1) TW201944015A (ja)
WO (1) WO2019193996A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324210A (ja) * 2002-04-30 2003-11-14 Yoshitaka Karasawa パネル分割型、太陽追尾式ソーラーパネルシステム
JP2004153202A (ja) * 2002-11-01 2004-05-27 Daido Steel Co Ltd 集光式太陽光発電装置
JP2013021287A (ja) * 2011-07-08 2013-01-31 Topper Sun Energy Technology Co Ltd 太陽追尾機能を有するソーラー発電装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324210A (ja) * 2002-04-30 2003-11-14 Yoshitaka Karasawa パネル分割型、太陽追尾式ソーラーパネルシステム
JP2004153202A (ja) * 2002-11-01 2004-05-27 Daido Steel Co Ltd 集光式太陽光発電装置
JP2013021287A (ja) * 2011-07-08 2013-01-31 Topper Sun Energy Technology Co Ltd 太陽追尾機能を有するソーラー発電装置

Also Published As

Publication number Publication date
TW201944015A (zh) 2019-11-16

Similar Documents

Publication Publication Date Title
JP5569447B2 (ja) 太陽光発電装置
US7923624B2 (en) Solar concentrator system
KR101162844B1 (ko) 태양광 발전 장치
KR100961248B1 (ko) 태양추적형 태양광 발전장치
US20110056484A1 (en) Self-erecting gimbal mounted solar radiation collectors
US9660122B2 (en) Compact LCPV solar electric generator
KR20080109754A (ko) 추적 태양 전력 시스템
US20090084375A1 (en) Aligned multiple flat mirror reflector array for concentrating sunlight onto a solar cell
JP5089474B2 (ja) 追尾集光型太陽電池装置
RU2377472C1 (ru) Солнечная энергетическая установка
WO2009049454A1 (fr) Dispositif de génération d'énergie photovoltaïque, du type à huit diagrammes taichi, doté de contrepoids
RU2286517C1 (ru) Солнечная фотоэлектрическая установка
WO2010034038A2 (en) Systems and methods of collecting solar energy including configuration and/or tracking features
US8648551B2 (en) Device for continuously reorienting a solar panel
US20130146124A1 (en) Large-scale integrated radiant energy collector
CN103208947B (zh) 一种屋顶太阳能聚光发电系统
US20150244310A1 (en) Micro-Concentrator Solar Array Using Micro-Electromechanical Systems (MEMS) Based Reflectors
KR20110133759A (ko) 2축 추적식 태양광 발전 장치
WO2019193996A1 (ja) 太陽光発電装置
CN103149946A (zh) 阵列式镜组定向反射控制系统
RU2740437C1 (ru) Концентраторная солнечная энергетическая установка
KR101191456B1 (ko) 태양광 추적 장치
US20090086348A1 (en) System for simultaneously turning and tilting an array of mirror concentrators
TW201921837A (zh) 太陽光發電系統
KR20140015805A (ko) 태양광 발전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP