WO2019193920A1 - Electric compressor for vehicle - Google Patents

Electric compressor for vehicle Download PDF

Info

Publication number
WO2019193920A1
WO2019193920A1 PCT/JP2019/009260 JP2019009260W WO2019193920A1 WO 2019193920 A1 WO2019193920 A1 WO 2019193920A1 JP 2019009260 W JP2019009260 W JP 2019009260W WO 2019193920 A1 WO2019193920 A1 WO 2019193920A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
vehicle
collision
housing
scroll
Prior art date
Application number
PCT/JP2019/009260
Other languages
French (fr)
Japanese (ja)
Inventor
健郎 塚本
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2019193920A1 publication Critical patent/WO2019193920A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures

Definitions

  • the present invention relates to a vehicular electric compressor.
  • Patent Document 1 there is an electric compressor incorporated in a refrigerant cycle of a car air conditioner and driven by an electric motor.
  • An object of the present invention is to improve safety after a vehicle collision.
  • An electric compressor for a vehicle is provided.
  • a compressor mounted on a vehicle and driven by a built-in electric motor;
  • a control unit provided in the compressor for driving and controlling the compressor;
  • a detection unit that is provided in the compressor and detects a collision of the vehicle, The control unit When the detection unit detects a vehicle collision, the driving of the compressor is limited thereafter.
  • the driving of the compressor is limited thereafter, so that the safety after the vehicle collision is improved.
  • FIG. 1 is a cross-sectional view of the compressor along the front-rear direction and the vertical direction.
  • the compressor 11 is an electric scroll compressor used in a refrigerant circuit of a car air conditioner, for example, and sucks in a refrigerant (heat medium), compresses it, and then discharges it.
  • the compressor 11 is integrated with a front housing 12, a center housing 13, and a rear housing 14 arranged in order from the front side along the front-rear direction so as to maintain airtightness.
  • a suction port (not shown) for sucking refrigerant is formed in the upper portion of the front housing 12, and a discharge port 16 for discharging compressed refrigerant is formed in the upper portion of the rear housing 14.
  • the front housing 12 includes a suction chamber 21 communicating with a suction port (not shown), and an electric motor 22 is accommodated in the suction chamber 21.
  • the rotating shaft 23 of the electric motor 22 is rotatably supported at the front side by the front housing 12 and is rotatably supported by the center housing 13 at the rear side.
  • a fixed scroll 24 and a movable scroll 25 are accommodated in the center housing 13.
  • the disk-shaped fixed scroll 24 is fixed so as to close the rear side of the center housing 13, and a spiral fixed-side wrap 26 is formed on the front surface.
  • the disc-shaped movable scroll 25 is disposed in front of the fixed scroll 24, and a spiral movable side wrap 27 is formed on the rear surface.
  • the front surface of the fixed scroll 24 and the rear surface of the movable scroll 25 face each other, and the fixed side wrap 26 and the movable side wrap 27 are engaged with each other.
  • a pressure chamber 28 for compressing the refrigerant is formed by a section surrounded by the front surface of the fixed scroll 24, the fixed side wrap 26, the rear surface of the movable scroll 25, and the movable side wrap 27. When viewed from the front-rear direction, the pressure chamber 28 is a crescent-shaped sealed space.
  • a back pressure chamber 29 is formed on the front side of the movable scroll 25.
  • the back pressure chamber 29 is supplied with high-pressure oil, which will be described later, so that the movable scroll 25 is pressed against the fixed scroll 24 and the hermeticity of the pressure chamber 28 is enhanced.
  • a boss 31 is formed on the front surface of the movable scroll 25, an eccentric crank end 32 is formed at the rear end of the rotary shaft 23, and the crank end 32 is fitted into the boss 31 in a rotatable state. Yes.
  • the rotating motion of the rotating shaft 23 is transmitted to the movable scroll 25 as a turning motion by the crank end portion 32.
  • the movable scroll 25 is prevented from rotating, for example, via a ball coupling, and is allowed to revolve with respect to the fixed scroll 24.
  • a discharge hole 33 penetrating in the front-rear direction is formed in the center of the fixed scroll 24, and a discharge valve 34 capable of opening and closing the rear end side of the discharge hole 33 is provided on the rear surface of the fixed scroll 24.
  • the discharge valve 34 is an elastically deformable plate material, and closes the rear end side of the discharge hole 33 on the lower end side with the upper end side fastened to the rear surface of the fixed scroll 24 via the bolt 35.
  • the pressure chamber 28 When the pressure chamber 28 is located at the center of the scroll, the pressure chamber 28 communicates with the discharge hole 33 and discharges the compressed refrigerant.
  • the discharge valve 34 When receiving the discharge pressure, the discharge valve 34 causes the lower end side to bend backward by elastic deformation, thereby discharging the refrigerant.
  • a baffle 36 is formed at a position where a refrigerant containing oil is discharged from the discharge valve 34 and collides with it, and the refrigerant and the oil are separated by the collision.
  • the baffle 36 is formed in a U shape with the upper side opened so as to surround the lower end side of the discharge valve 34.
  • the rear housing 14 covers the discharge side of the fixed scroll 24 and forms a separation chamber 41 for separating the refrigerant and the oil and a storage chamber 42 for storing the separated oil.
  • the separation chamber 41 communicates with the discharge hole 33 and communicates with the discharge port 16.
  • the separation chamber 41 and the storage chamber 42 are continuous sections, a shielding portion 43 that protrudes toward the lower end of the baffle 36 is formed on the inner peripheral surface of the rear housing 14. There is a gap 44 between the baffle 36 and the shielding portion, and the separated oil drops from the lower part of the inner peripheral surface of the baffle 36 to the lower storage chamber 42 through the gap 44.
  • the shielding part 43 prevents the refrigerant scattered from the baffle 36 from flowing into the storage chamber 42 and winding up the oil.
  • an oil return channel 45 communicating with the bottom of the storage chamber 42 is formed.
  • the center housing 13 is formed with an oil return channel 46, one of which communicates with the oil return channel 45 and the other which communicates with the back pressure chamber 29. Therefore, the oil stored in the storage chamber 42 receives the discharge pressure of the separation chamber 41 and is supplied to the back pressure chamber 29 through the oil return channel 45 and the oil return channel 46 in order. As a result, a back pressure is applied to the movable scroll 25 to lubricate each sliding portion including the bearing.
  • an oil return passage 47 that extends along the front-rear direction and communicates with the back pressure chamber 29 is formed inside the rotary shaft 23. Accordingly, the oil supplied to the back pressure chamber 29 is further supplied to the front end side of the rotating shaft 23 via the oil return passage 47. Thereby, each sliding part including a bearing is lubricated.
  • An inverter accommodating chamber 51 is formed on the front end side of the front housing 12 (housing) and is closed by a front cover 52.
  • an inverter 53 for controlling the drive of the electric motor 22 is accommodated.
  • the inverter 53 includes a substrate 54, a control circuit 55 (control unit), a switching element 56, an electronic component 57, and an acceleration sensor 58 (detection unit).
  • the substrate 54 is supported by the front housing 12 by, for example, screwing in the inverter accommodating chamber 51.
  • the control circuit 55 includes a CPU, RAM, ROM and the like.
  • the switching element 56 is a drive circuit configured by, for example, an IPM (Intelligent Power Module).
  • the electronic component 57 is a component such as a coil or a capacitor.
  • the acceleration sensor 58 detects acceleration in three axis directions. For example, the displacement of the movable electrode relative to the fixed electrode is detected as a change in capacitance, converted into a voltage signal proportional to the acceleration / deceleration and the direction, and output. Note that acceleration is processed as a positive value and deceleration is processed as a negative value.
  • FIG. 2 is a flowchart illustrating an example of the control process.
  • step S101 it is determined whether or not there is a drive command from the vehicle-side main controller. When there is a drive command from the main controller on the vehicle side, the process proceeds to step S102. On the other hand, when there is no drive command from the main controller on the vehicle side, the process returns to the main program as it is.
  • step S103 drive control of the electric motor 22 is performed according to a drive command from the main controller.
  • the inverter 53 controls the on / off of the compressor 11 and the rotation speed when the compressor 11 is on in accordance with the drive command.
  • step S104 the acceleration a detected by the acceleration sensor 58 is read.
  • step S105 it is determined whether or not the absolute value of the acceleration a is greater than or equal to a predetermined value a1. When the absolute value of the acceleration a is greater than or equal to the predetermined value a1, it is determined that the vehicle has collided and the process proceeds to step S106. On the other hand, when the absolute value of the acceleration a is less than the predetermined value a1, it is determined that no collision has occurred and the process returns to the predetermined main program.
  • the predetermined value a1 is a value for detecting an impact such as when the vehicle collides with an obstacle at a speed of, for example, 25 [km / h] or more, and is in a range of 150 to 500 [m / s 2 ], for example, 15 It is set in the range of 51 to 51 [G].
  • the acceleration a acting on the acceleration sensor 58 varies depending on the structure of the vehicle body and the type of vehicle. A vehicle having a large crushable zone easily absorbs collision energy, but a vehicle that cannot sufficiently secure the crushable zone does not easily absorb collision energy. . Therefore, it is desirable to adjust the predetermined value a1 according to the structure of the vehicle body and the vehicle type.
  • step S107 the driving of the compressor 11 is stopped and then the process returns to a predetermined main program.
  • the acceleration sensor 58 is provided on the substrate 54 on which the control circuit 55 is mounted, space saving can be realized as compared with the case where the acceleration sensor 58 is provided on the front housing 12, the center housing 13, the rear housing 14, and the like. Further, it is not necessary to redesign the front housing 12, the center housing 13, the rear housing 14, and the like, and can be easily added to the existing compressor 11. In addition, since the acceleration sensor 58 can immediately detect that an abnormality has occurred in the substrate 54 due to an impact when a collision occurs, the abnormality detection accuracy is improved.
  • the acceleration sensor 58 is attached to a highly rigid housing such as the front housing 12, the center housing 13, and the rear housing 14, an impact at the time of occurrence of a collision acts directly, so that the acceleration tends to increase.
  • the acceleration sensor 58 is attached to the substrate 54 accommodated in the housing like the inverter 53, the impact is indirectly acting, so that the acceleration is hardly increased. Therefore, when the acceleration sensor 58 is attached to the substrate 54, the maximum measurable acceleration can be reduced as compared with the case where the acceleration sensor 58 is attached to the housing, and the sensor can be realized with a cheaper sensor.
  • the substrate 54 is supported in the inverter housing chamber 51 by, for example, screwing with respect to the front housing 12. Therefore, if the acceleration sensor 58 is provided in the vicinity of the support point of the substrate 54, the impact at the time of occurrence of the collision acts on the acceleration sensor 58 so quickly, and the responsiveness is improved. On the other hand, if the acceleration sensor 58 is provided at a position away from the support point of the substrate 54, the substrate 54 bends with respect to the impact in the direction perpendicular to the plane, so that the impact energy is absorbed. Therefore, the maximum acceleration that can be measured can be reduced, and can be realized with a cheaper sensor.
  • FIG. 3 is a flowchart showing a modification.
  • the process of step S201 is newly added, the process is the same as the process of FIG. 2 described above, and thus the description of the common parts is omitted.
  • step S201 the electric motor 22 is driven and controlled in accordance with a drive command from the main controller, and then the process returns to a predetermined main program.
  • the inverter 53 decelerates the rotational speed of the compressor 11 by reducing and correcting the drive command. In this way, even if only the drive of the compressor 11 is limited, the energization current to the electric motor 22 is reduced, so that the safety is improved while leaving the air conditioning function.
  • the subsequent drive of the compressor 11 is restricted, but a return condition may be added.
  • a return condition may be added.
  • the scroll type compressor 11 is employed, but the present invention is not limited to this. As long as the compressor 11 is mounted on the vehicle and driven by the built-in electric motor 22, it can be applied to any other form of compressor.

Abstract

[Problem] To improve safety after a vehicle collision. [Solution] The present invention comprises: a compressor 11 that is mounted in a vehicle and that is driven by a built-in electric motor; a control circuit 55 that is provided to the compressor 11 and that executes drive control of the compressor 11; and an acceleration sensor 58 that is provided to the compressor 11 and that detects a vehicle collision. If a vehicle collision has been detected by the acceleration sensor 58, the control circuit 55 restricts the driving of the compressor 11 thereafter.

Description

車両用電動圧縮機Electric compressor for vehicles
 本発明は、車両用電動圧縮機に関するものである。 The present invention relates to a vehicular electric compressor.
 特許文献1に示されるように、カーエアコンの冷媒サイクルに組み込まれ、電動モータによって駆動される電動圧縮機がある。 As shown in Patent Document 1, there is an electric compressor incorporated in a refrigerant cycle of a car air conditioner and driven by an electric motor.
特開2015-105578号公報Japanese Patent Laying-Open No. 2015-105578
 車両が衝突した場合、その後の電動圧縮機に安全保護の対策がなされていないと、電動圧縮機の駆動が継続されたり停止が遅れたりすることが考えられる。
 本発明の課題は、車両衝突後の安全性を向上させることである。
When the vehicle collides, if the subsequent electric compressor is not provided with safety protection measures, it is conceivable that the driving of the electric compressor is continued or stopped.
An object of the present invention is to improve safety after a vehicle collision.
 本発明の一態様に係る車両用電動圧縮機は、
 車両に搭載されており、内蔵された電動モータによって駆動される圧縮機と、
 圧縮機に設けられ、圧縮機を駆動制御する制御部と、
 圧縮機に設けられ、車両の衝突を検知する検知部と、を備え、
 制御部は、
 検知部で車両の衝突を検知した場合、以降は圧縮機の駆動を制限する。
An electric compressor for a vehicle according to an aspect of the present invention is provided.
A compressor mounted on a vehicle and driven by a built-in electric motor;
A control unit provided in the compressor for driving and controlling the compressor;
A detection unit that is provided in the compressor and detects a collision of the vehicle,
The control unit
When the detection unit detects a vehicle collision, the driving of the compressor is limited thereafter.
 本発明によれば、車両の衝突を検知した場合、以降は圧縮機の駆動を制限するので、車両衝突後の安全性が向上する。 According to the present invention, when the collision of the vehicle is detected, the driving of the compressor is limited thereafter, so that the safety after the vehicle collision is improved.
圧縮機における前後方向及び上下方向に沿った断面図である。It is sectional drawing along the front-back direction and the up-down direction in a compressor. 制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of a control process. 変形例を示すフローチャートである。It is a flowchart which shows a modification.
 以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each drawing is schematic and may differ from an actual one. Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the configurations are not specified as follows. That is, the technical idea of the present invention can be variously modified within the technical scope described in the claims.
《一実施形態》
 《構成》
 以下の説明では、互いに直交する三方向を、便宜的に、前後方向、左右方向、上下方向とする。
 図1は、圧縮機における前後方向及び上下方向に沿った断面図である。
 圧縮機11は、例えばカーエアコンの冷媒回路で用いられる電動型のスクロール圧縮機であり、冷媒(熱媒体)を吸入し、圧縮してから排出する。
<< One Embodiment >>
"Constitution"
In the following description, three directions orthogonal to each other are referred to as a front-rear direction, a left-right direction, and a vertical direction for convenience.
FIG. 1 is a cross-sectional view of the compressor along the front-rear direction and the vertical direction.
The compressor 11 is an electric scroll compressor used in a refrigerant circuit of a car air conditioner, for example, and sucks in a refrigerant (heat medium), compresses it, and then discharges it.
 圧縮機11は、前後方向に沿って前側から順に並んだ、フロントハウジング12と、センタハウジング13と、リアハウジング14と、によって気密性を保つように一体化されている。フロントハウジング12の上部には、冷媒を吸入する吸入口(図示省略)が形成され、リアハウジング14の上部には、圧縮された冷媒を排出する排出口16が形成されている。
 フロントハウジング12は、吸入口(図示省略)に連通した吸入室21を備え、この吸入室21に電動モータ22が収容されている。電動モータ22の回転軸23は、前側がフロントハウジング12によって回転自在に支持され、後側がセンタハウジング13によって回転自在に支持されている。
The compressor 11 is integrated with a front housing 12, a center housing 13, and a rear housing 14 arranged in order from the front side along the front-rear direction so as to maintain airtightness. A suction port (not shown) for sucking refrigerant is formed in the upper portion of the front housing 12, and a discharge port 16 for discharging compressed refrigerant is formed in the upper portion of the rear housing 14.
The front housing 12 includes a suction chamber 21 communicating with a suction port (not shown), and an electric motor 22 is accommodated in the suction chamber 21. The rotating shaft 23 of the electric motor 22 is rotatably supported at the front side by the front housing 12 and is rotatably supported by the center housing 13 at the rear side.
 センタハウジング13には、固定スクロール24と、可動スクロール25と、が収容されている。
 円板状の固定スクロール24は、センタハウジング13の後側を閉塞するように固定され、前面に渦巻き状の固定側ラップ26が形成されている。円板状の可動スクロール25は、固定スクロール24よりも前側に配置され、後面に渦巻き状の可動側ラップ27が形成されている。固定スクロール24の前面と可動スクロール25の後面とが対向し、固定側ラップ26と可動側ラップ27とが噛み合っている。固定側ラップ26の先端は、図示しないチップシールを介して可動スクロール25の後面に摺動可能に接触し、可動側ラップ27の先端は、図示しないチップシールを介して固定スクロール24の前面に摺動可能に接触している。固定スクロール24の前面、固定側ラップ26、可動スクロール25の後面、及び可動側ラップ27で囲まれた区画によって、冷媒を圧縮するための圧力室28が形成されている。前後方向から見ると、圧力室28は、三日月状の密閉空間となる。
A fixed scroll 24 and a movable scroll 25 are accommodated in the center housing 13.
The disk-shaped fixed scroll 24 is fixed so as to close the rear side of the center housing 13, and a spiral fixed-side wrap 26 is formed on the front surface. The disc-shaped movable scroll 25 is disposed in front of the fixed scroll 24, and a spiral movable side wrap 27 is formed on the rear surface. The front surface of the fixed scroll 24 and the rear surface of the movable scroll 25 face each other, and the fixed side wrap 26 and the movable side wrap 27 are engaged with each other. The tip of the fixed side wrap 26 slidably contacts the rear surface of the movable scroll 25 via a tip seal (not shown), and the tip of the movable side wrap 27 slides on the front surface of the fixed scroll 24 via a tip seal (not shown). Contact is possible. A pressure chamber 28 for compressing the refrigerant is formed by a section surrounded by the front surface of the fixed scroll 24, the fixed side wrap 26, the rear surface of the movable scroll 25, and the movable side wrap 27. When viewed from the front-rear direction, the pressure chamber 28 is a crescent-shaped sealed space.
 可動スクロール25の前側には、背圧室29が形成されている。背圧室29には、後述する高圧のオイルが供給されることにより、可動スクロール25を固定スクロール24へ押し付け、圧力室28の密閉性を高めている。
 可動スクロール25の前面には、ボス31が形成され、回転軸23の後端には、偏心させたクランク端部32が形成され、クランク端部32がボス31に回転自在の状態で嵌め込まれている。回転軸23の回転運動は、クランク端部32によって旋回運動として可動スクロール25に伝達される。可動スクロール25は、例えばボールカップリングを介して自転が阻止され、且つ固定スクロール24に対する公転が許容されている。
A back pressure chamber 29 is formed on the front side of the movable scroll 25. The back pressure chamber 29 is supplied with high-pressure oil, which will be described later, so that the movable scroll 25 is pressed against the fixed scroll 24 and the hermeticity of the pressure chamber 28 is enhanced.
A boss 31 is formed on the front surface of the movable scroll 25, an eccentric crank end 32 is formed at the rear end of the rotary shaft 23, and the crank end 32 is fitted into the boss 31 in a rotatable state. Yes. The rotating motion of the rotating shaft 23 is transmitted to the movable scroll 25 as a turning motion by the crank end portion 32. The movable scroll 25 is prevented from rotating, for example, via a ball coupling, and is allowed to revolve with respect to the fixed scroll 24.
 固定スクロール24の中央には、前後方向に貫通した吐出孔33が形成され、固定スクロール24の後面には、吐出孔33の後端側を開閉可能な吐出弁34が設けられている。吐出弁34は、弾性変形可能な板材であり、上端側がボルト35を介して固定スクロール24の後面に締結された状態で、下端側で吐出孔33の後端側を塞いでいる。
 固定スクロール24に対して可動スクロール25が公転すると、圧力室28は、前後方向から見て、スクロール中心に向かって変位してゆき、且つ容積が縮小してゆく。圧力室28は、スクロール外側にあるときに吸入室21と連通して冷媒を吸入し、スクロール中心にあるときに吐出孔33と連通して圧縮した冷媒を吐出する。吐出弁34は、吐出圧を受けるときに、弾性変形によって下端側が後方に撓むことで冷媒を吐出させる。
A discharge hole 33 penetrating in the front-rear direction is formed in the center of the fixed scroll 24, and a discharge valve 34 capable of opening and closing the rear end side of the discharge hole 33 is provided on the rear surface of the fixed scroll 24. The discharge valve 34 is an elastically deformable plate material, and closes the rear end side of the discharge hole 33 on the lower end side with the upper end side fastened to the rear surface of the fixed scroll 24 via the bolt 35.
When the movable scroll 25 revolves with respect to the fixed scroll 24, the pressure chamber 28 is displaced toward the scroll center as seen from the front-rear direction, and the volume is reduced. The pressure chamber 28 communicates with the suction chamber 21 when the pressure chamber 28 is outside the scroll, and sucks the refrigerant. When the pressure chamber 28 is located at the center of the scroll, the pressure chamber 28 communicates with the discharge hole 33 and discharges the compressed refrigerant. When receiving the discharge pressure, the discharge valve 34 causes the lower end side to bend backward by elastic deformation, thereby discharging the refrigerant.
 次に、オイル分離構造について説明する。
 固定スクロール24の後面には、オイルを含んだ冷媒が吐出弁34から吐出されて衝突する位置に、その衝突によって冷媒とオイルとを分離させるバッフル36が形成されている。固定スクロール24を吐出側の正面から見ると、バッフル36は、吐出弁34の下端側を囲むように上側が開いたU字状に形成されている。
 リアハウジング14は、固定スクロール24の吐出側を覆い、冷媒とオイルとを分離させる分離室41と、分離したオイルを貯留する貯留室42と、を形成している。分離室41は、吐出孔33に連通し、排出口16に連通している。分離室41と貯留室42とは連続した区画であるが、リアハウジング14の内周面には、バッフル36の下端に向かって突出した遮蔽部43が形成されている。バッフル36と遮蔽部との間には、隙間44があり、分離されたオイルは、バッフル36における内周面の下部から、隙間44を介して下方の貯留室42へと滴下する。一方、遮蔽部43は、バッフル36から飛び散った冷媒が貯留室42へと流れ込み、オイルを巻き上げることを防いでいる。
Next, the oil separation structure will be described.
On the rear surface of the fixed scroll 24, a baffle 36 is formed at a position where a refrigerant containing oil is discharged from the discharge valve 34 and collides with it, and the refrigerant and the oil are separated by the collision. When the fixed scroll 24 is viewed from the front side on the discharge side, the baffle 36 is formed in a U shape with the upper side opened so as to surround the lower end side of the discharge valve 34.
The rear housing 14 covers the discharge side of the fixed scroll 24 and forms a separation chamber 41 for separating the refrigerant and the oil and a storage chamber 42 for storing the separated oil. The separation chamber 41 communicates with the discharge hole 33 and communicates with the discharge port 16. Although the separation chamber 41 and the storage chamber 42 are continuous sections, a shielding portion 43 that protrudes toward the lower end of the baffle 36 is formed on the inner peripheral surface of the rear housing 14. There is a gap 44 between the baffle 36 and the shielding portion, and the separated oil drops from the lower part of the inner peripheral surface of the baffle 36 to the lower storage chamber 42 through the gap 44. On the other hand, the shielding part 43 prevents the refrigerant scattered from the baffle 36 from flowing into the storage chamber 42 and winding up the oil.
 リアハウジング14には、貯留室42の底部に連通するオイル戻し流路45が形成されている。センタハウジング13には、一方がオイル戻し流路45に連通し、他方が背圧室29に連通するオイル戻し流路46が形成されている。したがって、貯留室42に貯留されたオイルは、分離室41の吐出圧を受けて、オイル戻し流路45、オイル戻し流路46を順に経て背圧室29に供給される。これにより、可動スクロール25に背圧を与え、軸受を含む各摺動部の潤滑が行なわれる。また、回転軸23の内方には、前後方向に沿って延び背圧室29に連通するオイル戻し流路47が形成されている。したがって、背圧室29に供給されたオイルは、さらにオイル戻し流路47を経て、回転軸23の前端側へ供給される。これにより、軸受を含む各摺動部の潤滑が行なわれる。 In the rear housing 14, an oil return channel 45 communicating with the bottom of the storage chamber 42 is formed. The center housing 13 is formed with an oil return channel 46, one of which communicates with the oil return channel 45 and the other which communicates with the back pressure chamber 29. Therefore, the oil stored in the storage chamber 42 receives the discharge pressure of the separation chamber 41 and is supplied to the back pressure chamber 29 through the oil return channel 45 and the oil return channel 46 in order. As a result, a back pressure is applied to the movable scroll 25 to lubricate each sliding portion including the bearing. In addition, an oil return passage 47 that extends along the front-rear direction and communicates with the back pressure chamber 29 is formed inside the rotary shaft 23. Accordingly, the oil supplied to the back pressure chamber 29 is further supplied to the front end side of the rotating shaft 23 via the oil return passage 47. Thereby, each sliding part including a bearing is lubricated.
 次に、制御系について説明する。
 フロントハウジング12(ハウジング)の前端側には、インバータ収容室51が形成され、フロントカバー52によって閉塞されている。インバータ収容室51には、電動モータ22の駆動制御を行なうインバータ53が収容されている。インバータ53は、基板54と、制御回路55(制御部)と、スイッチング素子56と、電子部品57と、加速度センサ58(検知部)と、を備える。
 基板54は、インバータ収容室51内で、フロントハウジング12に例えばねじ止めによって支持されている。
Next, the control system will be described.
An inverter accommodating chamber 51 is formed on the front end side of the front housing 12 (housing) and is closed by a front cover 52. In the inverter accommodating chamber 51, an inverter 53 for controlling the drive of the electric motor 22 is accommodated. The inverter 53 includes a substrate 54, a control circuit 55 (control unit), a switching element 56, an electronic component 57, and an acceleration sensor 58 (detection unit).
The substrate 54 is supported by the front housing 12 by, for example, screwing in the inverter accommodating chamber 51.
 制御回路55は、CPU、RAM、ROM等を含む。
 スイッチング素子56は、例えばIPM(Intelligent Power Module)によって構成された駆動回路である。
 電子部品57は、コイル、コンデンサ等の部品である。
 加速度センサ58は、三軸方向の加速度を検出する。例えば、固定電極に対する可動電極の位置変位を静電容量の変化として検出し、加減速度と方向に比例した電圧信号に変換して出力する。なお、加速を正の値として処理し、減速を負の値として処理する。
The control circuit 55 includes a CPU, RAM, ROM and the like.
The switching element 56 is a drive circuit configured by, for example, an IPM (Intelligent Power Module).
The electronic component 57 is a component such as a coil or a capacitor.
The acceleration sensor 58 detects acceleration in three axis directions. For example, the displacement of the movable electrode relative to the fixed electrode is detected as a change in capacitance, converted into a voltage signal proportional to the acceleration / deceleration and the direction, and output. Note that acceleration is processed as a positive value and deceleration is processed as a negative value.
 次に、制御回路55で実行される制御処理について説明する。
 図2は、制御処理の一例を示すフローチャートである。
 ステップS101では、車両側のメインコントローラから駆動指令があるか否かを判定する。車両側のメインコントローラから駆動指令があるときにはステップS102に移行する。一方、車両側のメインコントローラから駆動指令がないときには、そのままメインプログラムに復帰する。
 ステップS102では、車両の衝突検知状態を表す衝突フラグがFc=0にリセットされているか否かを判定する。衝突フラグは、初期設定でFc=0にリセットされており、この状態を維持しているときには、車両の衝突は検知されていないと判断してステップS103に移行する。一方、衝突フラグがFc=1にセットされているときには、車両の衝突が検知されていると判断して、そのまま所定のメインプログラムに復帰する。
Next, control processing executed by the control circuit 55 will be described.
FIG. 2 is a flowchart illustrating an example of the control process.
In step S101, it is determined whether or not there is a drive command from the vehicle-side main controller. When there is a drive command from the main controller on the vehicle side, the process proceeds to step S102. On the other hand, when there is no drive command from the main controller on the vehicle side, the process returns to the main program as it is.
In step S102, it is determined whether or not the collision flag indicating the collision detection state of the vehicle has been reset to Fc = 0. The collision flag is reset to Fc = 0 in the initial setting, and when this state is maintained, it is determined that no vehicle collision is detected, and the process proceeds to step S103. On the other hand, when the collision flag is set to Fc = 1, it is determined that a vehicle collision is detected, and the process returns to the predetermined main program as it is.
 ステップS103では、メインコントローラからの駆動指令に応じて電動モータ22を駆動制御する。インバータ53は、駆動指令に応じて、圧縮機11のオンオフ、及びオン時の回転速度を制御する。
 ステップS104では、加速度センサ58で検出した加速度aを読込む。
 ステップS105では、加速度aの絶対値が所定値a1以上であるか否かを判定する。加速度aの絶対値が所定値a1以上であるときには、車両が衝突したと判断してステップS106に移行する。一方、加速度aの絶対値が所定値a1未満であるときには、衝突は生じていないと判断して所定のメインプログラムに復帰する。
In step S103, drive control of the electric motor 22 is performed according to a drive command from the main controller. The inverter 53 controls the on / off of the compressor 11 and the rotation speed when the compressor 11 is on in accordance with the drive command.
In step S104, the acceleration a detected by the acceleration sensor 58 is read.
In step S105, it is determined whether or not the absolute value of the acceleration a is greater than or equal to a predetermined value a1. When the absolute value of the acceleration a is greater than or equal to the predetermined value a1, it is determined that the vehicle has collided and the process proceeds to step S106. On the other hand, when the absolute value of the acceleration a is less than the predetermined value a1, it is determined that no collision has occurred and the process returns to the predetermined main program.
 所定値a1は、車両が例えば25[km/h]以上の速度で障害物に衝突するときのような衝撃を検知する値であり、例えば150~500[m/s]の範囲、つまり15~51[G]の範囲で設定されている。加速度センサ58に作用する加速度aは、車体の構造や車種によっても異なり、クラッシャブルゾーンの大きい車両は衝突エネルギーを吸収しやすいが、クラッシャブルゾーンを十分に確保できない車両は衝突エネルギーを吸収しにくい。したがって、車体の構造や車種に応じて、所定値a1を調整することが望ましい。
 ステップS106では、衝突フラグをFc=1にセットする。
 ステップS107では、圧縮機11の駆動を停止させてから所定のメインプログラムに復帰する。
The predetermined value a1 is a value for detecting an impact such as when the vehicle collides with an obstacle at a speed of, for example, 25 [km / h] or more, and is in a range of 150 to 500 [m / s 2 ], for example, 15 It is set in the range of 51 to 51 [G]. The acceleration a acting on the acceleration sensor 58 varies depending on the structure of the vehicle body and the type of vehicle. A vehicle having a large crushable zone easily absorbs collision energy, but a vehicle that cannot sufficiently secure the crushable zone does not easily absorb collision energy. . Therefore, it is desirable to adjust the predetermined value a1 according to the structure of the vehicle body and the vehicle type.
In step S106, the collision flag is set to Fc = 1.
In step S107, the driving of the compressor 11 is stopped and then the process returns to a predetermined main program.
 《作用》
 次に、一実施形態の主要な作用効果について説明する。
 車両が衝突した場合、その後の圧縮機11に安全保護の対策がなされていないと、車両側のメインコントローラからの駆動指令を受けて、圧縮機11の駆動が継続されたり停止が遅れたりすることが考えられる。
 そこで本実施形態では、加速度センサ58の検出値に応じて車両の衝突を検知したときに(S105で“Yes”)、圧縮機11の駆動を停止し(S107)、以降も駆動を停止
した状態を維持する(S101で“No”)。これにより、圧縮機11の駆動が継続されたり停止が遅れたりすることを防止できる。すなわち、車両側のメインコントローラから駆動指令が入力されるとしても、電動モータ22に通電されることがないため、車両衝突後の安全性が向上する。
<Action>
Next, main effects of the embodiment will be described.
When a vehicle collides, if the measures for safety protection are not taken for the subsequent compressor 11, the drive command from the main controller on the vehicle side is received and the drive of the compressor 11 is continued or the stoppage is delayed. Can be considered.
Therefore, in the present embodiment, when a vehicle collision is detected according to the detection value of the acceleration sensor 58 (“Yes” in S105), the driving of the compressor 11 is stopped (S107), and the driving is stopped thereafter. Is maintained (“No” in S101). Thereby, it can prevent that the drive of the compressor 11 is continued or a stop is delayed. That is, even if a drive command is input from the main controller on the vehicle side, the electric motor 22 is not energized, so that safety after a vehicle collision is improved.
 加速度センサ58は、制御回路55が実装された基板54に設けられているため、フロントハウジング12、センタハウジング13、リアハウジング14等に設ける場合と比較して、省スペース化を実現できる。また、フロントハウジング12、センタハウジング13、リアハウジング14等を設計し直す必要がなく、既存の圧縮機11に容易に追加することができる。また、衝突発生時の衝撃を受け、基板54に異常が生じたことを加速度センサ58で直ちに検知することができるため、異常検知精度が向上する。 Since the acceleration sensor 58 is provided on the substrate 54 on which the control circuit 55 is mounted, space saving can be realized as compared with the case where the acceleration sensor 58 is provided on the front housing 12, the center housing 13, the rear housing 14, and the like. Further, it is not necessary to redesign the front housing 12, the center housing 13, the rear housing 14, and the like, and can be easily added to the existing compressor 11. In addition, since the acceleration sensor 58 can immediately detect that an abnormality has occurred in the substrate 54 due to an impact when a collision occurs, the abnormality detection accuracy is improved.
 また、フロントハウジング12、センタハウジング13、リアハウジング14等、剛性の高い筐体に加速度センサ58を取り付けると、衝突発生時の衝撃が直接的に作用するため、加速度が大きくなりやすい。一方、インバータ53のように、筐体内に収容される基板54に加速度センサ58を取り付けると、衝突発生時の衝撃が間接的に作用するため、加速度も大きくなりにくい。したがって、加速度センサ58を基板54に取り付けると、筐体に取り付けるよりも、計測可能な最大加速度を小さくすることができ、より安価なセンサで実現することができる。 In addition, if the acceleration sensor 58 is attached to a highly rigid housing such as the front housing 12, the center housing 13, and the rear housing 14, an impact at the time of occurrence of a collision acts directly, so that the acceleration tends to increase. On the other hand, when the acceleration sensor 58 is attached to the substrate 54 accommodated in the housing like the inverter 53, the impact is indirectly acting, so that the acceleration is hardly increased. Therefore, when the acceleration sensor 58 is attached to the substrate 54, the maximum measurable acceleration can be reduced as compared with the case where the acceleration sensor 58 is attached to the housing, and the sensor can be realized with a cheaper sensor.
 基板54は、インバータ収容室51内で、フロントハウジング12に対して例えばねじ止めによって支持されている。したがって、基板54の支持点近傍に加速度センサ58を設ければ、衝突発生時の衝撃がそれだけ速く加速度センサ58に作用するため、応答性が向上する。一方、基板54の支持点から離れた位置に加速度センサ58を設ければ、面直角方向の衝撃に対して基板54に撓みが生じることで、衝撃エネルギーが吸収される。したがって、計測可能な最大加速度を小さくすることができ、より安価なセンサで実現することができる。 The substrate 54 is supported in the inverter housing chamber 51 by, for example, screwing with respect to the front housing 12. Therefore, if the acceleration sensor 58 is provided in the vicinity of the support point of the substrate 54, the impact at the time of occurrence of the collision acts on the acceleration sensor 58 so quickly, and the responsiveness is improved. On the other hand, if the acceleration sensor 58 is provided at a position away from the support point of the substrate 54, the substrate 54 bends with respect to the impact in the direction perpendicular to the plane, so that the impact energy is absorbed. Therefore, the maximum acceleration that can be measured can be reduced, and can be realized with a cheaper sensor.
 《変形例》
 一実施形態では、車両の衝突を検知した場合、以降の圧縮機11の駆動を停止しているが、これに限定されるものではない。圧縮機11の駆動を完全に停止しなくとも、駆動を制限するだけでもよい。
 図3は、変形例を示すフローチャートである。
 ここでは、ステップS201の処理を新たに追加したことを除いては、前述した図2の処理と同様であるため、共通部分については説明を省略する。
<Modification>
In one embodiment, when the collision of the vehicle is detected, the subsequent driving of the compressor 11 is stopped. However, the present invention is not limited to this. Even if the driving of the compressor 11 is not completely stopped, the driving may be limited.
FIG. 3 is a flowchart showing a modification.
Here, except that the process of step S201 is newly added, the process is the same as the process of FIG. 2 described above, and thus the description of the common parts is omitted.
 ステップS102で、衝突フラグがFc=1にセットされているときには、車両の衝突が検知されていると判断してステップS201に移行する。
 ステップS201では、メインコントローラからの駆動指令に応じて電動モータ22を駆動制御してから所定のメインプログラムに復帰する。但し、インバータ53は、駆動指令を減少補正することにより、圧縮機11の回転速度を減速させる。
 このように、圧縮機11の駆動を制限するだけでも、電動モータ22への通電電流が低減されるため、空調機能を残しつつも安全性が向上する。
If the collision flag is set to Fc = 1 in step S102, it is determined that a vehicle collision has been detected, and the process proceeds to step S201.
In step S201, the electric motor 22 is driven and controlled in accordance with a drive command from the main controller, and then the process returns to a predetermined main program. However, the inverter 53 decelerates the rotational speed of the compressor 11 by reducing and correcting the drive command.
In this way, even if only the drive of the compressor 11 is limited, the energization current to the electric motor 22 is reduced, so that the safety is improved while leaving the air conditioning function.
 一実施形態では、車両の衝突を検知した場合、以降の圧縮機11の駆動を制限しているが、復帰条件を追加してもよい。例えば、外部装置により異常診断を実施し、外部装置から異常がない旨の信号が制御回路55に入力された場合に、衝突フラグがFc=0にリセットされる処理を追加することで、圧縮機11を駆動可能な状態に復旧させてもよい。これにより、空調システムの信頼性が向上する。
 一実施形態では、スクロール型の圧縮機11を採用しているが、これに限定されるものではない。車両に搭載されるものであり、且つ内蔵された電動モータ22によって駆動される圧縮機11であれば、他の如何なる形態の圧縮機にも適用することができる。
In one embodiment, when a vehicle collision is detected, the subsequent drive of the compressor 11 is restricted, but a return condition may be added. For example, when the abnormality diagnosis is performed by the external device and a signal indicating that there is no abnormality is input to the control circuit 55 from the external device, a process for resetting the collision flag to Fc = 0 is added. 11 may be restored to a drivable state. This improves the reliability of the air conditioning system.
In one embodiment, the scroll type compressor 11 is employed, but the present invention is not limited to this. As long as the compressor 11 is mounted on the vehicle and driven by the built-in electric motor 22, it can be applied to any other form of compressor.
 以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。 The above description has been made with reference to a limited number of embodiments. However, the scope of rights is not limited thereto, and modifications of the embodiments based on the above disclosure are obvious to those skilled in the art.
 11…圧縮機、12…フロントハウジング、13…センタハウジング、14…リアハウジング、16…排出口、21…吸入室、22…電動モータ、23…回転軸、24…固定スクロール、25…可動スクロール、26…固定側ラップ、27…可動側ラップ、28…圧力室、29…背圧室、31…ボス、32…クランク端部、33…吐出孔、34…吐出弁、35…ボルト、36…バッフル、41…分離室、42…貯留室、43…遮蔽部、44…隙間、45…オイル戻し流路、46…オイル戻し流路、47…オイル戻し流路、51…インバータ収容室、52…フロントカバー、53…インバータ、54…基板、55…制御回路、56…スイッチング素子、57…電子部品、58…加速度センサ DESCRIPTION OF SYMBOLS 11 ... Compressor, 12 ... Front housing, 13 ... Center housing, 14 ... Rear housing, 16 ... Discharge port, 21 ... Suction chamber, 22 ... Electric motor, 23 ... Rotating shaft, 24 ... Fixed scroll, 25 ... Moveable scroll, 26 ... Fixed side wrap, 27 ... Movable side wrap, 28 ... Pressure chamber, 29 ... Back pressure chamber, 31 ... Boss, 32 ... Crank end, 33 ... Discharge hole, 34 ... Discharge valve, 35 ... Bolt, 36 ... Baffle , 41 ... separation chamber, 42 ... storage chamber, 43 ... shielding part, 44 ... gap, 45 ... oil return channel, 46 ... oil return channel, 47 ... oil return channel, 51 ... inverter accommodation chamber, 52 ... front Cover, 53 ... Inverter, 54 ... Board, 55 ... Control circuit, 56 ... Switching element, 57 ... Electronic component, 58 ... Acceleration sensor

Claims (5)

  1.  車両に搭載されており、内蔵された電動モータによって駆動される圧縮機と、
     前記圧縮機に設けられ、前記圧縮機を駆動制御する制御部と、
     前記圧縮機に設けられ、車両の衝突を検知する検知部と、を備え、
     前記制御部は、
     前記検知部で車両の衝突を検知した場合、以降は前記圧縮機の駆動を制限することを特徴とする車両用電動圧縮機。
    A compressor mounted on a vehicle and driven by a built-in electric motor;
    A controller provided in the compressor, for driving and controlling the compressor;
    A detection unit that is provided in the compressor and detects a collision of a vehicle;
    The controller is
    When the vehicle collision is detected by the detection unit, the drive of the compressor is limited thereafter.
  2.  前記制御部は、
     前記検知部で車両の衝突を検知した場合、以降は前記圧縮機を停止させることを特徴とする請求項1に記載の車両用電動圧縮機。
    The controller is
    The vehicular electric compressor according to claim 1, wherein when the detection unit detects a vehicle collision, the compressor is stopped thereafter.
  3.  前記制御部は、
     前記検知部で車両の衝突を検知した場合、以降は前記圧縮機を減速させることを特徴とする請求項1に記載の車両用電動圧縮機。
    The controller is
    The vehicular electric compressor according to claim 1, wherein when the vehicle collision is detected by the detection unit, the compressor is decelerated thereafter.
  4.  前記検知部は、
     前記圧縮機に所定値以上の加速度が作用したときに、車両の衝突として検知することを特徴とする請求項1~3の何れか一項に記載の車両用電動圧縮機。
    The detector is
    The electric compressor for a vehicle according to any one of claims 1 to 3, wherein when an acceleration of a predetermined value or more acts on the compressor, it is detected as a vehicle collision.
  5.  前記制御部は、
     ハウジングに収容された制御回路であり、
     前記検知部は、
     前記制御回路が実装された基板に設けられていることを特徴とする請求項1~4の何れか一項に記載の車両用電動圧縮機。
    The controller is
    A control circuit housed in a housing;
    The detector is
    The vehicle electric compressor according to any one of claims 1 to 4, wherein the electric compressor is provided on a board on which the control circuit is mounted.
PCT/JP2019/009260 2018-04-02 2019-03-08 Electric compressor for vehicle WO2019193920A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018071090A JP2019183661A (en) 2018-04-02 2018-04-02 Vehicular electric compressor
JP2018-071090 2018-04-02

Publications (1)

Publication Number Publication Date
WO2019193920A1 true WO2019193920A1 (en) 2019-10-10

Family

ID=68100637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009260 WO2019193920A1 (en) 2018-04-02 2019-03-08 Electric compressor for vehicle

Country Status (2)

Country Link
JP (1) JP2019183661A (en)
WO (1) WO2019193920A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163054U (en) * 1978-05-04 1979-11-15
JPH09207706A (en) * 1996-02-01 1997-08-12 Hitachi Ltd Collision detection device
JP2009243347A (en) * 2008-03-31 2009-10-22 Denso Corp Vehicular motor-driven compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163054U (en) * 1978-05-04 1979-11-15
JPH09207706A (en) * 1996-02-01 1997-08-12 Hitachi Ltd Collision detection device
JP2009243347A (en) * 2008-03-31 2009-10-22 Denso Corp Vehicular motor-driven compressor

Also Published As

Publication number Publication date
JP2019183661A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP6311744B2 (en) Air-cooled fuel cell vehicle
EP2289720B1 (en) Electric vehicle
WO2010052923A1 (en) Inverter-integrated electric compressor
JP5120240B2 (en) Electric compressor
EP2196674B1 (en) Compressor for vehicle-mounted air conditioner
CN109252777B (en) Drive assembly
CN102195455A (en) Power supply apparatus
JP5109761B2 (en) Electric compressor for vehicles
CN105570125A (en) Compressor and method of autonomously inspecting oil
WO2019193920A1 (en) Electric compressor for vehicle
KR101855833B1 (en) Safety device for vehicle
JPH08113108A (en) Sensor for occupant protecting device
US20100028184A1 (en) Temperature protection switch biased against scroll compressor shell
CN104828009A (en) Airbag assembly and automobile
JP5429571B2 (en) Vehicle collision detection device
CN109849672B (en) Battery pack anti-collision system, control method thereof and electric automobile
KR100456568B1 (en) Automobile collision sensor united with sensor for sensing the amount of collision
US6717078B2 (en) Collision detection apparatus designed to minimize contact chatter
JP4244959B2 (en) Scroll compressor
KR0180178B1 (en) Multi-direction sensing impact sensor for airbag
CN212637465U (en) Vacuum boosting system and automobile
CN220328886U (en) Maintenance door structure and breaker
JPH08332915A (en) Sensor for occupant crash protection
US10724509B2 (en) Electric control valve for a coolant compressor
KR20100138061A (en) Vehicle scroll compressor and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780989

Country of ref document: EP

Kind code of ref document: A1