WO2019193730A1 - ユーザ端末及び無線基地局 - Google Patents

ユーザ端末及び無線基地局 Download PDF

Info

Publication number
WO2019193730A1
WO2019193730A1 PCT/JP2018/014641 JP2018014641W WO2019193730A1 WO 2019193730 A1 WO2019193730 A1 WO 2019193730A1 JP 2018014641 W JP2018014641 W JP 2018014641W WO 2019193730 A1 WO2019193730 A1 WO 2019193730A1
Authority
WO
WIPO (PCT)
Prior art keywords
tbs
user terminal
dci
shared channel
specific packet
Prior art date
Application number
PCT/JP2018/014641
Other languages
English (en)
French (fr)
Inventor
翔平 吉岡
一樹 武田
聡 永田
リフェ ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/014641 priority Critical patent/WO2019193730A1/ja
Priority to CN201880094293.0A priority patent/CN112219421A/zh
Priority to EP18913348.1A priority patent/EP3780720A4/en
Publication of WO2019193730A1 publication Critical patent/WO2019193730A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • H04L1/0008Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length by supplementing frame payload, e.g. with padding bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention relates to a user terminal and a radio base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE successor systems (for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( New RAT), 3GPP Rel.
  • the user terminal In the existing LTE system (for example, 3GPP Rel. 8-14), the user terminal (UE: User Equipment) is based on downlink control information (DCI: Downlink Control Information, also called DL assignment) from the radio base station. Then, reception of a downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel) is controlled. Further, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
  • DCI Downlink Control Information
  • DL assignment Downlink Control Information
  • reception of a downlink shared channel for example, PDSCH: Physical Downlink Shared Channel
  • the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
  • the size of the transport block (transport block size (TBS)) for each number of resource blocks (PRB: Physical Resource Block) (PRB number) and the TBS index
  • TBS transport block size
  • PRB number Physical Resource Block
  • the associated TBS table is predetermined.
  • the user terminal determines the TBS using the TBS table.
  • the same TBS is used between the first transmission of TB and the retransmission.
  • the receiving side (user terminal in the downlink, radio base station in the uplink) receives the TB for the first transmission and the TB for the retransmission in the HARQ (Hybrid Automatic Repeat reQuest) operation Can be properly combined.
  • an index for example, an MCS index associated with a modulation order and a target coding rate included in DCI and a downlink shared channel (for example, It is considered to determine the TBS based on the number of PRBs allocated to the PDSCH) or the uplink shared channel (for example, PUSCH).
  • the TBS of a specific packet (at least one of VoIP, configured grant, message 3 and URLLC) cannot be appropriately determined.
  • a downlink shared channel for example, PDSCH
  • an uplink shared channel for example, there is a possibility that reception or transmission of the specific packet using PUSCH
  • the present invention has been made in view of such a point, and an object thereof is to provide a user terminal and a radio base station capable of appropriately controlling reception or transmission of a specific packet.
  • One aspect of the user terminal includes a receiving unit that receives downlink control information (DCI), an index included in the DCI, and the number of resource blocks of a downlink shared channel or an uplink shared channel scheduled by the DCI. And a control unit that determines a transport block size (TBS) for a specific packet that is received using the downlink shared channel or transmitted using the uplink shared channel.
  • DCI downlink control information
  • TBS transport block size
  • reception or transmission of a specific packet can be appropriately controlled.
  • FIG. 1A is a diagram illustrating an example of an MCS table in an existing LTE system
  • FIG. 1B is a diagram illustrating an example of a TBS table in an existing LTE system
  • FIG. 2 is a diagram illustrating an example of an MCS table in a future wireless communication system
  • FIG. 3 is a diagram illustrating an example of a quantization table in a future wireless communication system
  • FIG. 4A is a diagram illustrating an example of coverage reduction
  • FIG. 4B is a diagram illustrating an example of a TBS corresponding to an MCS index and a PRB.
  • 5A and 5B are diagrams illustrating an example of repeated transmission of URLLC packets.
  • FIG. 6 is a diagram illustrating a first table example for a specific packet according to the first aspect.
  • FIG. 7 is a diagram illustrating a second table example for a specific packet according to the first aspect.
  • 8A and 8B are diagrams illustrating a third table example for a specific packet according to the first aspect.
  • 9A and 9B are diagrams illustrating an example of control of the size of a specific packet according to the second aspect.
  • 10A and 10B are diagrams illustrating an example of control of the size of a specific packet according to the third aspect.
  • FIG. 11 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment.
  • FIG. 14 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • FIG. 15 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 16 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the present embodiment.
  • FIG. 1 is a diagram showing an example of an MCS table (FIG. 1A) and a TBS table (FIG. 1B) in an existing LTE system (for example, LTE Rel. 8-14).
  • the existing LTE system defines an MCS table that associates a modulation and coding scheme (MCS) index, a modulation order, and a TBS index. (Stored in the user terminal).
  • MCS modulation and coding scheme
  • a TBS table that associates a TBS index (II TBS ) with a TBS for each PRB number (N PRB ) is defined (stored in a user terminal). )
  • the user terminal receives DCI (DL assignment or UL grant) for scheduling PDSCH or PUSCH, and corresponds to the MCS index included in the DCI with reference to the MCS table (FIG. 1A). Determine the TBS index. Also, the user terminal refers to the TBS table (FIG. 1B) and determines the TBS associated with the TBS index and the number of PRBs assigned to the PDSCH or PUSCH for the PDSCH or PUSCH.
  • DCI DL assignment or UL grant
  • FIG. 2 is a diagram showing an example of the MCS table in the future wireless communication system. Note that FIG. 2 is merely an example, and is not limited to the illustrated values, and some items (fields) may be deleted, or items not illustrated may be added.
  • a table (MCS table) for associating an index indicating a rate may be defined (may be stored in the user terminal).
  • MCS table spectral efficiency may be associated in addition to the above three items.
  • the user terminal receives the DCSCH for scheduling of PDSCH (at least one of DL assignment, DCI formats 1_0 and 1_1), and based on the MCS table (FIG. 2) and the MCS index included in the DCI,
  • the modulation order (Qm) and coding rate (R) may be determined.
  • the user terminal receives DCI for scheduling of PUSCH (at least one of UL grant, DCI formats 0_0 and 0_1), and uses the PUCS based on the MCS table (FIG. 2) and the MCS index included in the DCI.
  • the modulation order (Qm) and the coding rate (R) may be determined.
  • the user terminal may determine the TBS using at least one of the following steps 1) to 4).
  • the PDSCH TBS determination will be described as an example.
  • the “PDSCH” in the following steps 1) to 4) is changed to “PUSCH”. It can be applied as appropriate by replacing.
  • Step 1) The user terminal determines the number of REs in the slot (N RE ).
  • the user terminal may determine the number of REs (N ′ RE ) allocated to the PDSCH within 1 PRB. For example, the user terminal may determine the number of REs (N ′ RE ) allocated to the PDSCH within 1 PRB based on at least one parameter represented by the following formula (1).
  • N sh symb is the number of symbols (eg, OFDM symbols) scheduled in the slot.
  • N PRB DMRS is the number of REs for DMRS per PRB within a scheduled period.
  • the number of REs for the DMRS may include the overhead of a group related to code division multiplexing (CDM) of DMRS indicated by DCI (for example, at least one of DCI formats 1_0, 1_1, 0_0, and 0_1). .
  • CDM code division multiplexing
  • N PRB oh may be a value configured by an upper layer parameter.
  • N PRB oh is the overhead indicated by the higher layer parameter (Xoh-PDSCH), and may be any value of 0, 6, 12, or 18. If the Xoh-PDSCH is not set (notified) in the user terminal, the Xoh-PDSCH may be set to 0.
  • the user terminal may determine the total number (N RE ) of REs allocated to the PDSCH.
  • the user terminal determines the total number (N RE ) of REs allocated to the PDSCH based on the number of REs allocated to the PDSCH (N ′ RE ) and the total number of PRBs allocated to the user terminal (n PRB ) within one PRB. (For example, following formula (2)).
  • the user terminal quantizes the number of REs (N ′ RE ) allocated to the PDSCH in one PRB according to a predetermined rule, and the number of quantized REs and the total number of PRBs allocated to the user terminal (n PRB ) The total number of REs (N RE ) allocated to the PDSCH may be determined based on
  • Step 2) The user terminal determines an intermediate number (N info ) of information bits. Specifically, the user terminal may determine the intermediate number (N info ) based on at least one parameter represented by the following formula (3).
  • the intermediate number (N info ) may be referred to as a temporary TBS (TBS temp ) or the like.
  • N RE is the total number of REs assigned to the PDSCH.
  • R is a coding rate associated with the MCS index included in the DCI in the MCS table (for example, FIG. 2).
  • Q m is a modulation order associated with the MCS index included in the DCI in the MCS table.
  • v is the number of PDSCH layers.
  • Step 3 If the intermediate number (N info ) of the information bits determined in step 2) is less than or equal to (or less than) a predetermined threshold (eg 3824), the user terminal quantizes the intermediate number and A number (N'info) may be determined. The user terminal may calculate the quantized intermediate number (N′info) using, for example, Equation (4).
  • the user terminal is quantized using a predetermined table (for example, as shown in FIG. 3, a table that associates a TBS with an index (also referred to as a quantization table or a TBS table)). You may find the closest TBS that is not less than the intermediate number (N'info).
  • a predetermined table for example, as shown in FIG. 3, a table that associates a TBS with an index (also referred to as a quantization table or a TBS table)). You may find the closest TBS that is not less than the intermediate number (N'info).
  • Step 4 On the other hand, when the intermediate number (N info ) of information bits determined in step 2) is greater than (or more than) a predetermined threshold (eg, 3824), the user terminal quantizes the intermediate number (N info ). And the quantized intermediate number (N′info) may be determined. The user terminal may calculate the quantized intermediate number (N′info) using, for example, Equation (5). Note that the round function may be rounded up.
  • the user terminal may be determined based on at least one parameter shown in the following equation (6) (for example, using equation (6)).
  • N′info is a quantized intermediate number, and may be calculated using, for example, the above equation (5).
  • C may be the number of code blocks (CB: code bock) into which TB is divided.
  • the coding rate (R) is greater than (or greater than) a predetermined threshold (for example, 1 ⁇ 4)
  • the quantized intermediate number (N′info) of information bits is equal to the predetermined threshold (
  • the user terminal may determine the TBS based on at least one parameter shown in equation (7) below (eg, using equation (7)). Also good.
  • the coding rate (R) is equal to or less than (or less than) a predetermined threshold (for example, 1 ⁇ 4)
  • the quantized intermediate number (N′info) is a predetermined threshold (for example, 8424). If (or less), the user terminal may determine the TBS based on at least one parameter shown in equation (8) below (eg, using equation (8)).
  • the user terminal can use at least the number of REs (N RE ), coding rate (R), modulation order (Qm), and number of layers that can be used for PDSCH or PUSCH in the slot.
  • the intermediate number (N info ) of information bits is determined based on one, and the PDBS or PUSCH TBS is determined based on the intermediate number (N ′ info ) obtained by quantizing the intermediate number (N info ). It is being considered.
  • the TBS when the TBS is determined as described above, the TBS of a specific packet (at least one of VoIP, configured grant, message 3, URLLC) cannot be appropriately determined.
  • the downlink shared channel for example, PDSCH
  • the uplink shared There is a possibility that reception or transmission of the specific packet using the channel (for example, PUSCH) cannot be appropriately controlled.
  • the specific packet may include at least one of user data and higher layer control information transmitted on the PDSCH or PUSCH.
  • the specific packet may include at least one of the following.
  • -Voice data also called VoIP: Voice over Internet Protocol or voice packet
  • -Scheduling information set by higher layers configured grant or configured UL grant
  • -Control message (message 3) of upper layer (L2 / L3) transmitted by the user terminal in response to random access response (RAR: Random Access Response or message 2) from the radio base station in the random access procedure
  • RAR Random Access Response or message 2
  • the user terminal uses a quantization table (eg, FIG. 3) to quantize Find the nearest TBS greater than or equal to the generalized intermediate number (N'info).
  • a quantization table eg, FIG. 3
  • TBS 328
  • the MCS index (see FIG. 2) and the number of PRBs allocated to the user terminal are the same, it can be said that the coding rate increases as the TBS increases. Further, when the coding rate increases, the coverage may be reduced.
  • the user terminal UE: User terminal
  • gNB gNodeB or eNB: eNodeB
  • An example of TBS for each combination of PRB ) is shown.
  • the predetermined parameter value is not limited to the N sh symb , the N PRB DMRS , the N PRB oh , and the v, but may be a value of at least one parameter shown in the equations (1) to (8). That's fine.
  • TBS Transmission-Specific Service 3
  • 56 is defined in the quantization table shown in FIG. 3, 56 is defined. However, depending on a predetermined parameter value (the value of at least one parameter shown in the above equations (1) to (8)), It is also assumed that it cannot be used.
  • the coding rate increases. Further, when the coding rate increases, the coverage may be reduced.
  • a predetermined parameter value (a value of at least one parameter shown in the above formulas (1) to (8)) from which a specific TBS (for example, 56) can be derived is limited. For this reason, in a future wireless communication system, there is a possibility that the specific TBS (for example, 56) must be taken into consideration as a TBS usable for the message 3, and future extensibility (forward compatibility (forward compatibility) )) May be reduced.
  • 5A and 5B are diagrams illustrating an example of repeated transmission of data for URLLC.
  • the radio base station gNB
  • the radio base station does not know whether the user terminal (UE) has correctly detected the PDCCH for initial transmission. For this reason, the radio base station can select a retransmission MCS index (I MCS ) and the number of PRBs from among candidates of combinations of the MCS index (I MCS ) and the number of PRBs (N PRB ) that can derive the same TBS as the initial transmission. Select (N PRB ).
  • the user terminal When the user terminal succeeds in detecting the PDCCH (DCI) at the first transmission, the user terminal can determine the TBS based on the DCI transmitted by the PDCCH.
  • the radio base station can freely set the MCS index (I MCS ) and the number of PRBs (N PRB ) for retransmission data regardless of the TBS.
  • the user terminal when the user terminal fails to detect the PDCCH (DCI) at the first transmission, the TBS cannot be determined. Therefore, as shown in FIG. 5B, it is assumed that the user terminal includes information that allows the user terminal to derive the TBS in the DCI transmitted by the PDCCH at the time of retransmission as well as at the first transmission.
  • DCI PDCCH
  • the radio base station needs to select the MCS index (I MCS ) and the number of PRBs (N PRB ) that can derive the same TBS as the initial transmission data for the retransmission data. For this reason, a selectable MCS index (I MCS ) is restricted depending on a predetermined parameter value (a value of at least one parameter shown in the above formulas (1) to (8)), for example, a low-order MCS. If the index cannot be selected, coverage may be reduced.
  • a predetermined parameter value a value of at least one parameter shown in the above formulas (1) to (8)
  • the TBS when the TBS is determined by using the procedure of steps 1) to 4), at least one of the desired TBS, the desired MCS, and the desired PRB may not be used for a specific packet. As a result, coverage may be reduced. In addition, forward compatibility may be reduced.
  • the present inventors have studied a method for appropriately determining the TBS of a specific packet, and have arrived at the present invention.
  • the user terminal performs the downlink based on the index included in the DCI and the PRB number of the downlink shared channel (for example, PDSCH) or uplink shared channel (for example, PUSCH) scheduled by the DCI.
  • TBS transport block size
  • an MCS index (FIG. 2) associated with a modulation order and a target coding rate is exemplified, but the present invention is not limited thereto.
  • the TBS determination procedure for a specific packet described below can be applied not only to a user terminal but also to a radio base station.
  • the specific packet is at least one of, for example, VoIP, configured grant, message 3, and URLLC, but is not limited thereto.
  • the specific packet may be a packet of a predetermined type (type).
  • the TBS of a packet other than a specific packet is determined using the above steps 1 to 4), but at least a part of the above steps 1 to 4) may be changed.
  • the user terminal may determine the TBS for the specific packet without using steps 1) to 4).
  • the user terminal may determine the TBS for the specific packet using a table that defines the TBS corresponding to the MCS index and the number of PRBs. .
  • the TBS may be determined using the above steps 1) to 4).
  • FIG. 6 is a diagram illustrating a first table example for a specific packet according to the first aspect.
  • the TBS table defined in the existing LTE system for example, 3GPP Rel. 8-14
  • the existing LTE system for example, 3GPP Rel. 8-14
  • a TBS corresponding to the TBS index and the number of PRBs is defined in the TBS table of the existing LTE system.
  • the TBS index may be replaced with the MCS index associated with the modulation order and the target coding rate.
  • the user terminal When a specific packet is received or transmitted, the user terminal obtains an MCS index included in DCI and a TBS corresponding to the number of PRSCHs of PDSCH or PUSCH scheduled by the DCI from the table shown in FIG. Also good.
  • FIG. 7 is a diagram illustrating a second table example for a specific packet according to the first aspect.
  • a table for determining a TBS corresponding to an MCS index and the number of PRBs may be newly defined for determining a TBS for a specific packet.
  • a TBS suitable for a more specific packet can be determined.
  • the table may be a single table that defines one or more TBSs corresponding to the MCS index and the number of PRBs.
  • the TBS may be controlled by a predetermined parameter (for example, at least one of the maximum PRB numbers X and ⁇ ).
  • the user terminal when a specific packet is received or transmitted, the user terminal has an MCS index (for example, 1) included in DCI and the number of PDSCH or PUSCH PRBs scheduled by the DCI (for example, 2).
  • MCS index for example, 1
  • the number of PDSCH or PUSCH PRBs scheduled by the DCI for example, 2.
  • One of a plurality of TBSs corresponding to may be selected based on a predetermined parameter ⁇ .
  • the predetermined parameter ⁇ may be determined based on at least one of DCI and higher layer signaling.
  • Upper layer signaling is, for example, RRC (Radio Resource Control) signaling, broadcast information (for example, MIB: Master Information Block), system information (for example, SIB: System Information Block, RMSI: Remaining Minimum System Information, OSI: Other System Information). Etc.).
  • RRC Radio Resource Control
  • Example of third table> 8A and 8B are diagrams illustrating a third table example for a specific packet according to the first aspect.
  • a TBS table that defines a TBS corresponding to an MCS index and the number of PRBs may be newly defined for determining a TBS for a specific packet.
  • a TBS suitable for a more specific packet can be determined.
  • FIGS. 8A and 8B it may be a plurality of tables that define the same or different TBS corresponding to the MCS index and the number of PRBs.
  • the user terminal may determine the TBS for the specific packet using a table selected based on a predetermined parameter from the plurality of tables.
  • the predetermined parameter may be determined based on at least one of DCI and higher layer signaling.
  • the user terminal uses the table according to the first aspect without using steps 1) to 4) above.
  • a TBS for a particular packet may be determined.
  • the table according to the first aspect may be used to control whether to determine a TBS for a specific packet.
  • the user terminal determines whether or not to determine a TBS for a specific packet using the table according to the first aspect without using steps 1) to 4) above. It may be controlled.
  • the user terminal uses the table according to the first aspect based on the traffic profile (traffic type or traffic type) and does not use the above steps 1) to 4), and uses the TBS for a specific packet. It may be controlled whether or not is determined.
  • the traffic profile may be instructed from the upper layer to the physical layer.
  • the traffic profile may be instructed from the upper layer to the physical layer.
  • DCI format ⁇ Search space ⁇ Aggregation level ⁇ PDDCH monitoring occasion ⁇ Transmission duration ⁇ RNTI (Radio Network Temporary Identifier) for scramble -MCS index-Resource allocation (RA) type-Waveform ⁇ Subcarrier Spacing (SCS) Configured grant type
  • the user terminal when the specific packet (transport block) is at least one packet of VoIP, configured grant, message 3, and URLLC, the user terminal does not use the above steps 1) to 4) and uses the first mode. Whether or not to determine a TBS for a specific packet may be controlled using the table according to.
  • the TBS for the specific packet is determined using a table that defines the TBS corresponding to the MCS index and the number of PRBs. Therefore, at least one of a desired TBS, a desired MCS, and a desired PRB can be used for a specific packet.
  • the user terminal determines the size of the specific packet (for example, zero padding based on the TBS determined using the above steps 1) to 4). ) May be controlled.
  • FIGS. 9A and 9B are diagrams illustrating an example of control of the size of a specific packet according to the second mode.
  • 9A and 9B show an example in which the specific packet is VoIP, but the specific packet is not limited to this as described above.
  • FIG. 9A shows a case where the TBS determined using the above steps 1 to 4) is larger than the size of the VoIP packet.
  • the user terminal may add a padding bit (for example, 0) to the VoIP packet based on the determined TBS.
  • the padding bits may be inserted locally in a specific packet (for example, VoIP) (transport block) or may be inserted distributedly. Local insertion facilitates implementation. On the other hand, distributed insertion can improve performance from the viewpoint of channel coding.
  • the padding bit When inserted locally, the padding bit may be inserted in the header of the specific packet or may be inserted in the tail.
  • the padding bits may be inserted until the size of a specific packet matches a predetermined TBS.
  • the predetermined TBS may be any of the following. By selecting one of the following, an optimum TBS can be selected according to the required conditions.
  • the nearest TBS determined using steps 1 to 4) above A TBS selected from among a plurality of TBSs using the above steps 1 to 4) (for example, the nearest TBS)
  • a TBS selected from a plurality of TBSs capable of deriving a combination of a predetermined number or more of MCS indexes and PRB numbers for example, the nearest TBS
  • the TBS for the specific packet can be determined using the above steps 1 to 4).
  • the user terminal when a specific packet is received or transmitted, the user terminal adjusts the TBS determined using the above steps 1) to 4) based on the size of the specific packet. Good.
  • 10A and 10B are diagrams illustrating an example of TBS adjustment according to the third aspect. 10A and 10B will be described focusing on the differences from FIGS. 9A and 9B.
  • FIG. 10A shows a case where the TBS determined using the above steps 1 to 4) is larger than the size of the VoIP packet.
  • the determined TBS may be adjusted (for example, may be reduced) based on the size of the VoIP packet.
  • TBS adjustment may be performed explicitly or implicitly.
  • the explicit adjustment may be performed based on at least one of higher layer signaling and DCI.
  • the user terminal determines the TBS determined using the above steps 1) to 4) based on the size of a specific packet. May be adjusted.
  • a predetermined upper layer parameter for example, TBSadjustment
  • a predetermined upper layer parameter for example, TBSadjustment
  • TBSadjustment is turned on or off (enabled or disabled, 0 or 1)
  • the user terminal may adjust the TBS determined using steps 1) to 4) based on the size of a specific packet. Good.
  • the user terminal may adjust the TBS determined using steps 1) to 4) based on the size of a specific packet.
  • the user terminal may adjust the TBS determined using the above steps 1) to 4) based on the size of a particular packet based on at least one of the following parameters: ⁇ DCI format ⁇ Search space ⁇ Aggregation level ⁇ PDDCH monitoring occasion ⁇ Transmission duration ⁇ RNTI (Radio Network Temporary Identifier) for scramble -MCS index-Resource allocation (RA) type-Waveform ⁇ Subcarrier Spacing (SCS) Configured grant type
  • the user terminal may adjust the TBS determined using the above steps 1) to 4) based on the number of combinations of available MCS indexes and PRBs based on the size of a specific packet. Good.
  • the TBS for the specific packet can be determined using the above steps 1 to 4).
  • whether or not to adjust the size of the TBS can be flexibly controlled.
  • the size of the TBS can be adjusted without additional overhead.
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied individually, respectively, and may be applied combining at least two.
  • FIG. 11 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • the wireless communication system 1 is called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New Radio Access Technology), etc. Also good.
  • a radio communication system 1 shown in FIG. 11 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the neurology is communication parameters in the frequency direction and / or the time direction (for example, subcarrier interval (subcarrier interval), bandwidth, symbol length, CP time length (CP length), subframe length. , TTI time length (TTI length), number of symbols per TTI, radio frame configuration, filtering process, windowing process, etc.).
  • subcarrier intervals such as 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz may be supported.
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, two or more CCs). Further, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells.
  • CC cells
  • the user terminal 20 can perform communication using time division duplex (TDD) or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • the TDD cell and the FDD cell may be referred to as a TDD carrier (frame configuration type 2), an FDD carrier (frame configuration type 1), and the like, respectively.
  • each cell (carrier) a single neurology may be applied, or a plurality of different neurology may be applied.
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that between the base station 11 and the base station 11 may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a gNB (gNodeB), a transmission / reception point (TRP), or the like. Good.
  • the radio base station 12 is a radio base station having local coverage, and is a small base station, micro base station, pico base station, femto base station, HeNB (Home eNodeB), RRH (Remote Radio Head), eNB. , GNB, and transmission / reception point.
  • a radio base station 10 when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 has LTE, LTE-A, 5G, 5G +, NR, Rel.
  • the terminal is compatible with various communication systems such as 15 to, and may include not only a mobile communication terminal but also a fixed communication terminal. Further, the user terminal 20 can perform inter-terminal communication (D2D) with other user terminals 20.
  • D2D inter-terminal communication
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the UL.
  • a multicarrier waveform for example, OFDM waveform
  • a single carrier waveform for example, DFT-s-OFDM waveform
  • a downlink (DL) channel a DL shared channel (PDSCH: Physical Downlink Shared Channel, also referred to as downlink data channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), An L1 / L2 control channel or the like is used.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • L1 / L2 control channels include downlink control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. .
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the EPDCCH is frequency-division multiplexed with the PDSCH, and is used for transmission of DCI and the like as with the PDCCH.
  • HARQ delivery confirmation information (ACK / NACK) for PUSCH can be transmitted by at least one of PHICH, PDCCH, and EPDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel, also called an uplink data channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel). ), Random access channel (PRACH: Physical Random Access Channel), etc. are used.
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of downlink (DL) signal delivery confirmation information (A / N) and channel state information (CSI) is transmitted by PUSCH or PUCCH.
  • the PRACH can transmit a random access preamble for establishing a connection with a cell.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that each of the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 on the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmitter / receiver, the transmission / reception circuit, or the transmission / reception device can be configured based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, error correction on UL data included in the input UL signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • the transmission / reception unit 103 transmits a downlink (DL) signal (including at least one of a DL data signal, a DL control signal, and a DL reference signal) to the user terminal 20, and the uplink (UL) from the user terminal 20 ) Signal (including at least one of a UL data signal, a UL control signal, and a UL reference signal).
  • DL downlink
  • UL uplink
  • Signal including at least one of a UL data signal, a UL control signal, and a UL reference signal.
  • the transmission / reception part 103 transmits DCI with respect to the user terminal 20 using a downlink control channel. Further, the transmission / reception unit 103 may transmit control information (upper layer control information) by higher layer signaling. Also, the transmission / reception unit 103 transmits data (transport block (TB)) to the user terminal 20 using the downlink shared channel, and receives data (TB) from the user terminal 20 using the uplink shared channel. Good.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment.
  • FIG. 13 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire radio base station 10.
  • the control unit 301 includes, for example, DL signal generation by the transmission signal generation unit 302, DL signal mapping by the mapping unit 303, UL signal reception processing (for example, demodulation) by the reception signal processing unit 304, and measurement unit 305. Control the measurement.
  • control unit 301 schedules the user terminal 20. Specifically, the control unit 301 may perform scheduling and / or retransmission control of the downlink shared channel and / or uplink shared channel.
  • control unit 301 may control the generation of DCI.
  • DCI (DL assignment) used for scheduling of the downlink shared channel may include information indicating the MCS index and the number of PRBs allocated to the downlink shared channel.
  • the DCI (UL grant) used for scheduling of the uplink shared channel may include information indicating the MCS index and the number of PRBs allocated to the downlink shared channel.
  • control unit 301 may control at least one of transmission of a transport block (TB) using the downlink shared channel and reception of TB using the uplink shared channel.
  • TB transport block
  • control unit 301 determines the TBS. Specifically, the control unit 301 refers to the MCS table (FIG. 2A), determines the coding rate and modulation order corresponding to the MCS index included in the DCI, and uses, for example, the above steps 1) to 4) TBS may be determined.
  • MCS table FIG. 2A
  • control unit 301 receives using the downlink shared channel based on an index (for example, MCS index) included in the DCI and the number of resource blocks of the downlink shared channel or the uplink shared channel scheduled by the DCI. Or a transport block size (TBS) for a specific packet transmitted using the uplink shared channel may be determined.
  • an index for example, MCS index
  • MCS index for example, MCS index
  • TBS transport block size
  • control unit 301 may determine the TBS for the specific packet using a table that defines a TBS corresponding to the index and the number of resource blocks (first mode).
  • control unit 301 may control the size of the specific packet based on the determined TBS (second mode).
  • control unit 301 may adjust the determined TBS based on the number of bits of a specific packet (third mode).
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL signal (including a DL data signal, a DL control signal, and a DL reference signal) based on an instruction from the control unit 301, and outputs the DL signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on UL signals (for example, including UL data signals, UL control signals, and UL reference signals) transmitted from the user terminal 20. I do. Specifically, the reception signal processing unit 304 may output a reception signal or a signal after reception processing to the measurement unit 305. Also, the received signal processing unit 304 performs UCI reception processing based on the uplink control channel configuration instructed from the control unit 301.
  • reception processing for example, demapping, demodulation, decoding, etc.
  • UL signals for example, including UL data signals, UL control signals, and UL reference signals
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 measures the UL channel quality based on, for example, the reception power (for example, RSRP (Reference Signal Received Power)) and / or the reception quality (for example, RSRQ (Reference Signal Received Quality)) of the UL reference signal. May be.
  • the measurement result may be output to the control unit 301.
  • FIG. 14 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the DL data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Broadcast information is also transferred to the application unit 205.
  • uplink (UL) data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Are transferred to each transmitting / receiving unit 203. Also for UCI, at least one of channel coding, rate matching, puncturing, DFT processing, and IFFT processing is performed and transferred to each transmission / reception section 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 receives a downlink (DL) signal of a neurology set in the user terminal 20 (including a DL data signal, a DL control signal, and a DL reference signal), and receives the uplink (UL) of the neurology.
  • DL downlink
  • UL uplink
  • Signal including UL data signal, UL control signal, UL reference signal
  • the transmission / reception unit 203 receives DCI for the user terminal 20 using the downlink control channel. Further, the transmission / reception unit 203 may receive control information (upper layer control information) by higher layer signaling. Also, the transmission / reception unit 203 receives data (transport block (TB)) for the user terminal 20 using the downlink shared channel, and transmits data (TB) from the user terminal 20 using the uplink shared channel. Good.
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. Further, the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • FIG. 15 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 15 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 15, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. I have.
  • the control unit 401 controls the entire user terminal 20. For example, the control unit 401 controls generation of the UL signal by the transmission signal generation unit 402, mapping of the UL signal by the mapping unit 403, reception processing of the DL signal by the reception signal processing unit 404, and measurement by the measurement unit 405.
  • control unit 401 may control at least one of transmission of a transport block (TB) using a downlink shared channel and reception of a TB using an uplink shared channel based on DCI.
  • TB transport block
  • control unit 401 determines the TBS. Specifically, the control unit 401 refers to the MCS table (FIG. 2A), determines the coding rate and modulation order corresponding to the MCS index included in the DCI, and uses, for example, the above steps 1) to 4) TBS may be determined.
  • MCS table FIG. 2A
  • control unit 401 receives using the downlink shared channel based on an index (for example, MCS index) included in the DCI and the number of resource blocks of the downlink shared channel or uplink shared channel scheduled by the DCI. Or a transport block size (TBS) for a specific packet transmitted using the uplink shared channel may be determined.
  • an index for example, MCS index
  • MCS index for example, MCS index
  • TBS transport block size
  • control unit 401 may determine the TBS for the specific packet using a table that defines a TBS corresponding to the index and the number of resource blocks (first mode).
  • control unit 401 may control the size of the specific packet based on the determined TBS (second mode).
  • control unit 401 may adjust the determined TBS based on the number of bits of a specific packet (third mode).
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a UL signal (including UL data signal, UL control signal, UL reference signal, UCI) based on an instruction from the control unit 401 (for example, encoding, rate matching, puncturing, modulation) And the like are output to the mapping unit 403.
  • the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the UL signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs it to the transmission / reception unit 203.
  • the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal (DL data signal, scheduling information, DL control signal, DL reference signal).
  • the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, higher layer control information by higher layer signaling such as RRC signaling, physical layer control information (L1 / L2 control information), and the like to the control unit 401.
  • the received signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the measurement unit 405 measures the channel state based on a reference signal (for example, CSI-RS) from the radio base station 10 and outputs the measurement result to the control unit 401. Note that the channel state measurement may be performed for each CC.
  • a reference signal for example, CSI-RS
  • the measuring unit 405 can be composed of a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device which are explained based on common recognition in the technical field according to the present invention.
  • each functional block is realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated. Alternatively, it may be realized indirectly by connecting (for example, using wired and / or wireless) and using these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 16 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the present embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Also, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource block (PRB), sub-carrier group (SCG), resource element group (REG), PRB pair, RB pair, etc. May be called.
  • the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • the information, parameters, and the like described in this specification may be expressed using absolute values, may be expressed using relative values from a predetermined value, or other corresponding information may be used. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • names used for parameters and the like are not limited names in any way.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limited in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (master information block (MIB), system information block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” may be used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell ector
  • cell group e.g., cell group
  • carrier carrier
  • carrier may be used interchangeably.
  • the base station may be referred to by terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, transmission / reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services.
  • a base station subsystem eg, an indoor small base station (RRH: Remote Radio Head)
  • RRH Remote Radio Head
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • Mobile station subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
  • the base station and / or mobile station may be referred to as a transmission device, a reception device, or the like.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the operation performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, may be used in combination, or may be switched according to execution. Further, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark) ), A system using another appropriate wireless communication method, and / or a next generation system extended based on these methods.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection is any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain can be considered “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本発明のユーザ端末の一態様は、下り制御情報(DCI)を受信する受信部と、前記DCIに含まれるインデックスと、前記DCIによりスケジューリングされる下り共有チャネル又は上り共有チャネルのリソースブロック数とに基づいて、前記下り共有チャネルを用いて受信される又は前記上り共有チャネルを用いて送信される特定のパケット用のトランスポートブロックサイズ(TBS)を決定する制御部と、を具備することを特徴とする。

Description

ユーザ端末及び無線基地局
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線基地局に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、3GPP Rel.15以降、などともいう)も検討されている。
 既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(UE:User Equipment)は、無線基地局からの下り制御情報(DCI:Downlink Control Information、DLアサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(ULグラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。
 また、当該既存のLTEシステムでは、リソースブロック(PRB:Physical Resource Block)の数(PRB数)毎のトランスポートブロックのサイズ(トランスポートブロックイズ(TBS:Transport Block Size))と、TBSインデックスとを関連付けるTBSテーブルが予め定められている。ユーザ端末は、当該TBSテーブルを用いて、TBSを決定する。
 また、当該既存のLTEシステムでは、TBの初回送信時と再送時との間で同じTBSが用いられる。初回送信時と同じTBSでTBを再送することにより、HARQ(Hybrid Automatic Repeat reQuest)動作において、初回送信用のTBと再送用のTBを受信側(下りではユーザ端末、上りでは無線基地局)で適切に合成(combine)できる。
 将来の無線通信システム(例えば、LTE Rel.15~、5G、NRなど)では、DCIに含まれるインデックス(例えば、変調次数及びターゲット符号化率に関連付けられるMCSインデックス)と、下り共有チャネル(例えば、PDSCH)又は上り共有チャネル(例えば、PUSCH)に割り当てられるPRB数に基づいて、TBSを決定することが検討されている。
 しかしながら、当該将来の無線通信システムでは、特定のパケット(VoIP、configured grant、メッセージ3、URLLCの少なくとも一つ)のTBSを適切に決定できない結果、下り共有チャネル(例えば、PDSCH)又は上り共有チャネル(例えば、PUSCH)を用いた当該特定のパケットの受信又は送信を適切に制御できない恐れがある。
 本発明はかかる点に鑑みてなされたものであり、特定のパケットの受信又は送信を適切に制御可能なユーザ端末及び無線基地局を提供することを目的の一つとする。
 本発明のユーザ端末の一態様は、下り制御情報(DCI)を受信する受信部と、前記DCIに含まれるインデックスと、前記DCIによりスケジューリングされる下り共有チャネル又は上り共有チャネルのリソースブロック数とに基づいて、前記下り共有チャネルを用いて受信される又は前記上り共有チャネルを用いて送信される特定のパケット用のトランスポートブロックサイズ(TBS)を決定する制御部と、を具備することを特徴とする。
 本発明によれば、特定のパケットの受信又は送信を適切に制御できる。
図1Aは、既存のLTEシステムにおけるMCSテーブルの一例を示す図であり、図1Bは、既存のLTEシステムにおけるTBSテーブルの一例を示す図である。 図2は、将来の無線通信システムにおけるMCSテーブルの一例を示す図である。 図3は、将来の無線通信システムにおける量子化テーブルの一例を示す図である。 図4Aは、カバレッジの減少の一例を示す図であり、図4Bは、MCSインデックス及びPRBに対応するTBSの一例を示す図である。 図5A及び5Bは、URLLCパケットの繰り返し送信の一例を示す図である。 図6は、第1の態様に係る特定のパケット用の第1のテーブル例を示す図である。 図7は、第1の態様に係る特定のパケット用の第2のテーブル例を示す図である。 図8A及び8Bは、第1の態様に係る特定のパケット用の第3のテーブル例を示す図である。 図9A及び9Bは、第2の態様に係る特定のパケットのサイズの制御の一例を示す図である。 図10A及び10Bは、第3の態様に係る特定のパケットのサイズの制御の一例を示す図である。 図11は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 図12は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。 図13は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。 図14は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 図15は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 図16は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 図1は、既存のLTEシステム(例えば、LTE Rel.8-14)におけるMCSテーブル(図1A)及びTBSテーブル(図1B)の一例を示す図である。図1Aに示すように、当該既存のLTEシステムでは、変調及び符号化方式(MCS:Modulation and Coding Scheme)インデックスと、変調次数(Modulation order)と、TBSインデックスとを関連付けるMCSテーブルが規定されている(ユーザ端末に記憶されている)。
 また、図1Bに示すように、当該既存のLTEシステムでは、TBSインデックス(IITBS)と、PRB数(NPRB)毎のTBSとを関連付けるTBSテーブルが規定されている(ユーザ端末に記憶されている)。
 当該既存のLTEシステムでは、ユーザ端末は、PDSCH又はPUSCHをスケジューリングするDCI(DLアサインメント又はULグラント)を受信し、MCSテーブル(図1A)を参照して当該DCIに含まれるMCSインデックスに対応するTBSインデックスを決定する。また、ユーザ端末は、TBSテーブル(図1B)を参照して当該TBSインデックスと当該PDSCH又はPUSCHに割り当てられるPRB数に関連付けられるTBSをPDSCH又はPUSCH用に決定する。
 図2は、上記将来の無線通信システムにおけるMCSテーブルの一例を示す図である。なお、図2は、例示にすぎず、図示される値に限られないし、一部の項目(フィールド)が削除されてもよいし、図示されない項目が追加されてもよい。
 図2に示すように、当該将来の無線通信システムでは、変調次数(Modulation order)と、符号化率(想定される符号化率、ターゲット符号化率等ともいう)と、当該変調次数及び符号化率を示すインデックス(例えば、MCSインデックス)と、を関連付けるテーブル(MCSテーブル)が規定されてもよい(ユーザ端末に記憶されてもよい)。なお、当該MCSテーブルでは、上記3項目に加えて、スペクトル効率(Spectral efficiency)が関連付けられてもよい。
 ユーザ端末は、PDSCHのスケジューリング用のDCI(DLアサインメント、DCIフォーマット1_0及び1_1の少なくとも一つ)を受信し、MCSテーブル(図2)及び当該DCIに含まれるMCSインデックスに基づいて、PDSCH用の変調次数(Qm)及び符号化率(R)を決定してもよい。
 また、ユーザ端末は、PUSCHのスケジューリング用のDCI(ULグラント、DCIフォーマット0_0及び0_1の少なくとも一つ)を受信し、MCSテーブル(図2)及び当該DCIに含まれるMCSインデックスに基づいて、PUSCH用の変調次数(Qm)及び符号化率(R)を決定してもよい。
 当該将来の無線通信システムでは、ユーザ端末は、下記のステップ1)~4)の少なくとも一つを用いてTBSを決定してもよい。なお、下記のステップ1)~4)は、PDSCH用のTBSの決定を一例として説明するが、PUSCH用のTBSの決定にも、下記ステップ1)~4)における“PDSCH”を“PUSCH”に置き換えて適宜適用可能である。
 ステップ1)
 ユーザ端末は、スロット内のREの数(NRE)を決定する。
 具体的には、ユーザ端末は、1PRB内でPDSCHに割り当てられるREの数(N’RE)を決定してもよい。例えば、ユーザ端末は、下記式(1)に示される少なくとも一つのパラメータに基づいて、1PRB内でPDSCHに割り当てられるREの数(N’RE)を決定してもよい。
Figure JPOXMLDOC01-appb-M000001
 ここで、NRB SCは、1RBあたりのサブキャリアの数であり、例えば、NRB SC=12であってもよい。Nsh symbは、スロット内でスケジューリングされたシンボル(例えば、OFDMシンボル)の数である。
 NPRB DMRSは、スケジューリングされた期間内における1PRBあたりのDMRS用のREの数である。当該DMRS用のREの数は、DCI(例えば、DCIフォーマット1_0、1_1、0_0及び0_1の少なくとも一つ)によって示されるDMRSの符号分割多重(CDM:Code Division Multiplexing)に関するグループのオーバーヘッドを含んでもよい。
 NPRB ohは、上位レイヤパラメータによって設定(configure)される値であってもよい。例えば、NPRB ohは、上位レイヤパラメータ(Xoh-PDSCH)が示すオーバーヘッドであり、0、6、12又は18のいずれかの値であってもよい。Xoh-PDSCHがユーザ端末に設定(通知)されない場合、Xoh-PDSCHは0に設定されてもよい。
 また、ユーザ端末は、PDSCHに割り当てられるREの総数(NRE)を決定してもよい。ユーザ端末は、1PRB内でPDSCHに割り当てられるREの数(N’RE)及びユーザ端末に割り当てられるPRBの総数(nPRB)に基づいて、当該PDSCHに割り当てられるREの総数(NRE)を決定してもよい(例えば、下記式(2))。
Figure JPOXMLDOC01-appb-M000002
 なお、ユーザ端末は、1PRB内でPDSCHに割り当てられるREの数(N’RE)を所定のルールに従って量子化し、当該量子化されたRE数とユーザ端末に割り当てられるPRBの総数(nPRB)とに基づいて、PDSCHに割り当てられるREの総数(NRE)を決定してもよい。
 ステップ2)
 ユーザ端末は、情報ビットの中間数(intermediate number)(Ninfo)を決定する。具体的には、ユーザ端末は、下記式(3)に示される少なくとも一つのパラメータに基づいて、当該中間数(Ninfo)を決定してもよい。なお、当該中間数(Ninfo)は、一時的なTBS(TBStemp)等と呼ばれてもよい。
Figure JPOXMLDOC01-appb-M000003
 ここで、NREは、PDSCHに割り当てられるREの総数である。Rは、MCSテーブル(例えば、図2)においてDCIに含まれるMCSインデックスに関連付けられる符号化率である。Qは、当該MCSテーブルにおいて当該DCIに含まれるMCSインデックスに関連付けられる変調次数である。vは、PDSCHのレイヤの数である。
 ステップ3)
 ステップ2)で決定される情報ビットの中間数(Ninfo)が所定の閾値(例えば、3824)以下(又は未満)である場合、ユーザ端末は、当該中間数を量子化し、量子化された中間数(N’info)を決定してもよい。ユーザ端末は、例えば、式(4)を用いて、量子化された中間数(N’info)を算出してもよい。
Figure JPOXMLDOC01-appb-M000004
 また、ユーザ端末は、所定のテーブル(例えば、図3に示されるように、TBSとインデックスとを関連づけるテーブル(量子化(quantization)テーブル又はTBSテーブル等ともいう))を用いて、量子化された中間数(N’info)以上の(not less than)最も近いTBSを見つけ(find)てもよい。
 ステップ4)
 一方、ステップ2)で決定される情報ビットの中間数(Ninfo)が所定の閾値(例えば、3824)より大きい(又は以上)である場合、ユーザ端末は、当該中間数(Ninfo)を量子化し、量子化された中間数(N’info)を決定してもよい。ユーザ端末は、例えば、式(5)を用いて、量子化された中間数(N’info)を算出してもよい。なお、ラウンド関数は、端数を切り上げてもよい。
Figure JPOXMLDOC01-appb-M000005
 ここで、上記MCSテーブル(例えば、図2)でDCI内のMCSインデックスに関連付けられる符号化率(R)が所定の閾値(例えば、1/4)以下(又は未満)である場合、ユーザ端末は、下記式(6)に示される少なくとも一つのパラメータに基づいて(例えば、式(6)を用いて)、TBSを決定してもよい。
Figure JPOXMLDOC01-appb-M000006
 N’infoは、量子化された中間数であり、例えば、上記式(5)を用いて算出されてもよい。また、Cは、TBが分割されるコードブロック(CB:code bock)の数であってもよい。
 一方、上記符号化率(R)が所定の閾値(例えば、1/4)より大きい(又は以上)であり、かつ、情報ビットの量子化された中間数(N’info)が所定の閾値(例えば、8424)より大きい(又は以上)である場合、ユーザ端末は、下記式(7)に示される少なくとも一つのパラメータに基づいて(例えば、式(7)を用いて)、TBSを決定してもよい。
Figure JPOXMLDOC01-appb-M000007
 また、上記符号化率(R)が所定の閾値(例えば、1/4)以下(又は未満)であり、かつ、量子化された中間数(N’info)が所定の閾値(例えば、8424)以下(又は未満)である場合、ユーザ端末は、下記式(8)に示される少なくとも一つのパラメータに基づいて(例えば、式(8)を用いて)、TBSを決定してもよい。
Figure JPOXMLDOC01-appb-M000008
 このように、当該将来の無線通信システムでは、ユーザ端末は、スロット内でPDSCH又はPUSCHに利用可能なRE数(NRE)、符号化率(R)、変調次数(Qm)、レイヤ数の少なくとも一つに基づいて情報ビットの中間数(Ninfo)を決定し、当該中間数(Ninfo)が量子化された中間数(N’info)に基づいてPDSCH用又はPUSCH用のTBSを決定することが検討されている。
 しかしながら、以上のようにTBSを決定する場合、特定のパケット(VoIP、configured grant、メッセージ3、URLLCの少なくとも一つ)のTBSを適切に決定できない結果、下り共有チャネル(例えば、PDSCH)又は上り共有チャネル(例えば、PUSCH)を用いた当該特定のパケットの受信又は送信を適切に制御できない恐れがある。
 ここで、特定のパケット(情報、データ又はメッセージ等ともいう)は、PDSCH又はPUSCHで送信されるユーザデータ及び上位レイヤ制御情報の少なくとも一つを含んでもよい。例えば、特定のパケットは、以下の少なくとも一つを含んでもよい。
‐音声データ(VoIP:Voice over Internet Protocol又は音声パケット等ともいう)
‐上位レイヤによって設定されるスケジューリング情報(configured grant又はconfigured UL grant)
‐ランダムアクセス手順において無線基地局からのランダムアクセスレスポンス(RAR:Random Access Response又はメッセージ2)応じてユーザ端末が送信する上位レイヤ(L2/L3)の制御メッセージ(メッセージ3)
‐超高信頼及び低遅延(例えば、URLLC:Ultra Reliable and Low Latency Communications)のデータ
 上述のように、情報ビットの中間数(Ninfo)が所定の閾値(例えば、3824)以下(又は未満)である場合、ユーザ端末は、量子化テーブル(例えば、図3)を用いて、量子化された中間数(N’info)以上の最も近いTBSを見つける。しかしながら、所望のTBSよりも大きいTBSを用いる結果、符号化率が高くなり、カバレッジが減少する恐れがある。
‐VoIP
 例えば、VoIPでは、特定のTBS(例えば、TBS=328)が望まれるが、図3に示される量子化テーブルでは、328は規定されていない。このため、図3に示される量子化テーブルにおいて、328以上の最も近いTBS(=336)を見つける。
 MCSインデックス(図2参照)及びユーザ端末に割り当てられるPRB数が同一であれば、TBSが大きくなるほど、符号化率が高くなるといえる。また、符号化率が高くなると、カバレッジが減少する恐れがある。
 このため、図4Aに示すように、所望のTBSが328である場合にTBS=336を用いると、TBS=336のカバレッジがTBS=328のカバレッジよりも減少する。この結果、ユーザ端末(UE:User terminal)は、無線基地局(gNB:gNodeB又はeNB:eNodeB)と適切にVoIP通信を行うことができない恐れがある。
 図4Bでは、所定のパラメータ値(例えば、Nsh symb=14、NPRB DMRS=24、NPRB oh=0、v=1)に基づいて決定されるMCSインデックス(IMCS)及びPRB数(NPRB)の組み合わせ毎のTBSの一例が示される。なお、当該所定のパラメータ値は、上記Nsh symb、上記NPRB DMRS、上記NPRB oh、上記vに限られず、上記式(1)-(8)に示される少なくとも一つのパラメータの値であればよい。
 上記将来の無線通信システムでは、特定のTBSを導出するMCSインデックス(IMCS)及びPRB数(NPRB)の組み合わせは、所定のパラメータ値によって変化する。このため、当該特定のTBS(例えば、336)の導出のために、低次の変調次数(例えば、2(=QPSK:Quadrature Phase Shift Keying))及びより低い符号化率の少なくとも一つに対応するMCSインデックス(IMCS)しか選択できない場合、カバレッジが減少する恐れがある。
‐メッセージ3
 メッセージ3では、特定のTBS(例えば、56)が望まれる。ここで、図3に示される量子化テーブルでは、56は規定されるが、所定のパラメータ値(上記式(1)-(8)に示される少なくとも一つのパラメータの値)によっては、当該56を利用できない場合も想定される。
 この場合、より大きいTBS(例えば、64)が利用されると、符号化率が高くなる。また、符号化率が高くなると、カバレッジが減少する恐れがある。
 また、特定のTBS(例えば、56)を導出可能な所定のパラメータ値(上記式(1)-(8)に示される少なくとも一つのパラメータの値)は制限される。このため、将来の無線通信システムにおいて、メッセージ3に利用可能なTBSとして、当該特定のTBS(例えば、56)を考慮しなければならない恐れがあり、将来的な拡張性(フォワードコンパチビリティ(forward compatibility))が低下する恐れもある。
‐URLLC
 URLLCでは、送達確認情報(HARQ-ACK::Hybrid Automatic Repeat reQuest-Acknowledge)がフィードバックされる前に、当該URLLC用のデータ(パケット)の繰り返し送信がサポートされる。
 図5A及び5Bは、URLLC用のデータの繰り返し送信の一例を示す図である。図5A及び5Bにおいて、無線基地局(gNB)は、ユーザ端末(UE)が初回送信用のPDCCHを正しく検出できたか否かを知らない。このため、無線基地局は、初回送信と同じTBSを導出可能なMCSインデックス(IMCS)及びPRB数(NPRB)の組み合わせの候補の中から、再送用のMCSインデックス(IMCS)及びPRB数(NPRB)を選択する。
 ユーザ端末は、初回送信時のPDCCH(DCI)の検出に成功する場合、当該PDCCHにより伝送されるDCIに基づいてTBSを決定できる。この場合、無線基地局は、再送データについては、TBSに関係なく、MCSインデックス(IMCS)及びPRB数(NPRB)を自由に設定できる。
 一方、図5Aに示すように、ユーザ端末が、初回送信時のPDCCH(DCI)の検出に失敗する場合、TBSを決定できない。そこで、図5Bに示すように、初回送信時だけでなく、再送時のPDCCHにより伝送されるDCI内にユーザ端末がTBSを導出可能な情報を含めることが想定される。
 しかしながら、図5Bの場合、無線基地局は、再送データについては、初回送信データと同一のTBSを導出可能なMCSインデックス(IMCS)及びPRB数(NPRB)を選択する必要がある。このため、所定のパラメータ値(上記式(1)-(8)に示される少なくとも一つのパラメータの値)によっては選択可能なMCSインデックス(IMCS)に制約が生じる結果、例えば、低次のMCSインデックスを選択できない場合、カバレッジが減少する恐れがある。
 このように、上記ステップ1)~4)の手順を用いてTBSを決定する場合、特定のパケットについて、所望のTBS、所望のMCS、所望のPRBの少なくとも一つを利用できない恐れがある。この結果、カバレッジが減少する恐れがある。また、フォワードコンパチビリティが低下する恐れもある。
 そこで、本発明者らは、特定のパケットのTBSを適切に決定する方法を検討し、本発明に至った。
 以下、本実施の形態について詳細に説明する。本実施の形態において、ユーザ端末は、DCIに含まれるインデックスと、前記DCIによりスケジューリングされる下り共有チャネル(例えば、PDSCH)又は上り共有チャネル(例えば、PUSCH)のPRB数とに基づいて、前記下り共有チャネルを用いて受信される又は前記上り共有チャネルを用いて送信される特定のパケット用のトランスポートブロックサイズ(TBS)を決定する。
 以下では、DCIに含まれるインデックスとして、変調次数及びターゲット符号化率に関連付けられるMCSインデックス(図2)を例示するが、これに限られない。なお、以下で説明する特定のパケット用のTBSの決定手順は、ユーザ端末だけでなく、無線基地局にも適用可能である。
 また、以下では、特定のパケットが、例えば、VoIP、configured grant、メッセージ3、URLLCの少なくとも一つであるものとするが、これらに限られない。当該特定のパケットは、予め定められた種別(タイプ)のパケットであればよい。
 また、以下では、特定のパケット以外のパケットのTBSは、上記ステップ1~4)を用いて決定されるものとするが、上記ステップ1~4)の少なくとも一部は変更されてもよい。
(第1の態様)
 第1の態様では、特定のパケットが受信又は送信される場合、ユーザ端末は、上記ステップ1)~4)を用いずに、当該特定のパケット用のTBSを決定してもよい。
 具体的には、当該特定のパケットが受信又は送信される場合、ユーザ端末は、MCSインデックスとPRB数とに対応するTBSを定めるテーブルを用いて、特定のパケット用のTBSを決定してもよい。
 一方、当該特定のパケットが受信又は送信されない(当該特定のパケット以外のパケットが受信又は送信される)場合、上記ステップ1)~4)を用いて、TBSを決定してもよい。
<第1のテーブル例>
 図6は、第1の態様に係る特定のパケット用の第1のテーブル例を示す図である。図6に示すように、第1のテーブル例では、特定のパケット用のTBSの決定に、既存のLTEシステム(例えば、3GPP Rel.8-14)で規定されるTBSテーブルが再利用されてもよい。既存のTBSの再利用により実装を容易にできる。
 図1Bに示されるように、既存のLTEシステムのTBSテーブルでは、TBSインデックスとPRB数とに対応するTBSが定められる。一方、第1のテーブル例では、図6に示すように、当該TBSインデックスが、変調次数及びターゲット符号化率に関連付けられるMCSインデックスに置き換えられてもよい。
 ユーザ端末は、特定のパケットが受信又は送信される場合、DCIに含まれるMCSインデックスと当該DCIによりスケジューリングされるPDSCH又はPUSCHのPRB数に対応するTBSを、図6に示されるテーブルから取得してもよい。
<第2のテーブル例>
 図7は、第1の態様に係る特定のパケット用の第2のテーブル例を示す図である。図7に示すように、第2のテーブル例では、特定のパケット用のTBSの決定に、MCSインデックスとPRB数に対応するTBSを定めるテーブルが新たに規定されてもよい。新たなテーブルを規定することにより、より特定のパケットに適するTBSを定めることができる。
 図7に示すように、当該テーブルは、MCSインデックスとPRB数とに対応する一以上のTBSを定める単一のテーブルであってもよい。また、当該TBSは、所定のパラメータ(例えば、最大PRB数X及びαの少なくとも一つなど)によって制御されてもよい。
 例えば、図7では、MCSインデックス=1の場合、PRB数=1に対応するTBSは、32+8Xに定められる。また、MCSインデックス=1の場合、PRB数=2に対応するTBSは、所定のパラメータαの値に応じて、64又は88のいずれかに制御される。
 図7に示す場合、ユーザ端末は、特定のパケットが受信又は送信される場合、DCIに含まれるMCSインデックス(例えば、1)と当該DCIによりスケジューリングされるPDSCH又はPUSCHのPRB数(例えば、2)に対応する複数のTBSの一つを、所定のパラメータαに基づいて選択してもよい。
 当該所定のパラメータαは、DCI及び上位レイヤシグナリングの少なくとも一つに基づいて決定されてもよい。上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(例えば、MIB:Master Information Block)、システム情報(例えば、SIB:System Information Block、RMSI:Remaining Minimum System Information、OSI:Other System Informationなど)の少なくとも一つであってもよい。
<第3のテーブル例>
 図8A及び8Bは、第1の態様に係る特定のパケット用の第3のテーブル例を示す図である。図8A及び8Bに示すように、第3のテーブル例では、特定のパケット用のTBSの決定に、MCSインデックスとPRB数に対応するTBSを定めるTBSテーブルが新たに規定されてもよい。新たなテーブルを規定することにより、より特定のパケットに適するTBSを定めることができる。
 図8A及び8Bに示すように、MCSインデックスとPRB数とに対応する同一又は異なるTBSを定める複数のテーブルであってもよい。例えば、図8A及び8Bでは、MCSインデックス=1、PRB数=2に対応するTBSが異なる2つのテーブルが示される。
 ユーザ端末は、当該複数のテーブルの中から所定のパラメータに基づいて選択されるテーブルを用いて、前記特定のパケット用の前記TBSを決定してもよい。当該所定のパラメータは、DCI及び上位レイヤシグナリングの少なくとも一つに基づいて決定されてもよい。
<TBS決定手順の判定>
 ユーザ端末は、上記ステップ1)~4)を用いてTBSを決定するか否か(すなわち、特定のパケットが受信又は送信される場合であるか否か)は、上位レイヤシグナリング及びDCIの少なくとも一つを用いて、明示的に指示されてもよいし、又は、黙示的に指示されてもよい。明示的指示では、上記ステップ1)~4)を用いてTBSを決定するか否かを柔軟に制御できる。また、上記黙示的調整では、追加のオーバーヘッドなしに、上記ステップ1)~4)を用いてTBSを決定するか否かを柔軟に制御できる。
‐明示的指示
 所定の上位レイヤパラメータ(例えば、TBSdeterminationfromtable)が設定(configure)される場合、ユーザ端末は、上記ステップ1)~4)を用いずに、第1の態様に係るテーブルを用いて、特定のパケット用のTBSを決定してもよい。
 或いは、所定の上位レイヤパラメータ(例えば、TBSdeterminationfromtable)のオン又はオフ(有効化(enabled)又は無効化(disabled)、0又は1)及びDCI内の所定フィールド値に基づいて、ユーザ端末は、上記ステップ1)~4)を用いずに、第1の態様に係るテーブルを用いて、特定のパケット用のTBSを決定するか否かを制御してもよい。
 或いは、DCI内の所定フィールド値に基づいて、ユーザ端末は、上記ステップ1)~4)を用いずに、第1の態様に係るテーブルを用いて、特定のパケット用のTBSを決定するか否かを制御してもよい。
‐黙示的指示
 ユーザ端末は、トラフィックプロファイル(トラフィック種別又はトラフィックタイプ)に基づいて、上記ステップ1)~4)を用いずに、第1の態様に係るテーブルを用いて、特定のパケット用のTBSを決定するか否かを制御してもよい。当該トラフィックプロファイルは、上位レイヤから物理レイヤに指示されてもよい。
 或いは、ユーザ端末は、以下の少なくとも一つのパラメータに基づいて、上記ステップ1)~4)を用いずに、第1の態様に係るテーブルを用いて、特定のパケット用のTBSを決定するか否かを制御してもよい。当該トラフィックプロファイルは、上位レイヤから物理レイヤに指示されてもよい。
・DCIフォーマット
・サーチスペース
・アグリゲーションレベル
・PDDCHのモニタリング機会(monitoring occasion)
・送信期間(transmission duration)
・スクランブル用のRNTI(Radio Network Temporary Identifier)
・MCSインデックス
・リソース割り当て(RA:Resource Allocation)タイプ
・波形(waveform)
・サブキャリア間隔(SCS:Subcarrier Spacing)
・configured grantのタイプ
 或いは、ユーザ端末は、特定のパケット(トランスポートブロック)が、VoIP、configured grant、メッセージ3、URLLCの少なくとも一つのパケットである場合、上記ステップ1)~4)を用いずに、第1の態様に係るテーブルを用いて、特定のパケット用のTBSを決定するか否かを制御してもよい。
 第1の態様では、当該特定のパケットが受信又は送信される場合、MCSインデックスとPRB数とに対応するTBSを定めるテーブルを用いて、特定のパケット用のTBSが決定される。このため、特定のパケットについても、所望のTBS、所望のMCS、所望のPRBの少なくとも一つを利用可能できる。
(第2の態様)
 第2の態様では、特定のパケットが受信又は送信される場合、ユーザ端末は、上記ステップ1)~4)を用いて決定されるTBSに基づいて、当該特定のパケットのサイズ(例えば、ゼロパディング)を制御してもよい。
 図9A及び9Bは、第2の態様に係る特定のパケットのサイズの制御の一例を示す図である。なお、図9A及び9Bでは、特定のパケットがVoIPである一例を示すが、上述のように、特定のパケットはこれに限られない。
 図9Aでは、上記ステップ1~4)を用いて決定されるTBSが、VoIPパケットのサイズよりも大きい場合が示される。この場合、図9Bに示すように、ユーザ端末は、決定されたTBSに基づいて、VoIPパケットにパディングビット(例えば、0)を追加してもよい。
 当該パディングビットは、特定のパケット(例えば、VoIP)(トランスポートブロック)内に局所的(localized)に挿入されてもよいし、分散して(distributed)挿入されてもよい。局所的な挿入では、実装が容易になる。一方、分散的な挿入では、チャネル符号化の観点で性能を改善できる。
 局所的に挿入される場合、パディングビットは、当該特定のパケットのヘッダー(header)に挿入されてもよいし、後ろ(tail)に挿入されてもよい。
 当該パディングビットは、特定のパケットのサイズが所定のTBSと一致するまで挿入されてもよい。当該所定のTBSは、以下のいずれかであればよい。以下のいずれかとすることにより、要求条件に応じた最適なTBSを選択できる。
・上記ステップ1~4)を用いて決定される最も近いTBS
・上記ステップ1~4)を用いて複数のTBSの中から選択されるTBS(例えば、最も近いTBS)
・所定数以上のMCSインデックス及びPRB数の組み合わせを導出可能な複数のTBSの中から選択されるTBS(例えば、最も近いTBS)
 第2の態様では、当該特定のパケットが受信又は送信される場合であっても、上記ステップ1~4)を用いて特定のパケット用のTBSを決定できる。
(第3の態様)
 第3の態様では、特定のパケットが受信又は送信される場合、ユーザ端末は、当該特定のパケットのサイズに基づいて、上記ステップ1)~4)を用いて決定されるTBSを調整してもよい。
 図10A及び10Bは、第3の態様に係るTBSの調整の一例を示す図である。なお、図10A及び10Bでは、図9A及び9Bとの相違点を中心に説明する。
 図10Aでは、上記ステップ1~4)を用いて決定されるTBSが、VoIPパケットのサイズよりも大きい場合が示される。この場合、図10Bに示すように、VoIPパケットのサイズに基づいて、決定されたTBSを調整してもよい(例えば、小さくしてもよい)。
 TBSの調整は、明示的に行われてもよいし、黙示的に行われてもよい。明示的な調整は、上位レイヤシグナリング及びDCIの少なくとも一つに基づいて行われてもよい。
‐明示的調整
 所定の上位レイヤパラメータ(例えば、TBSadjustment)が設定(configure)される場合、ユーザ端末は、上記ステップ1)~4)を用いて決定されるTBSを、特定のパケットのサイズに基づいて調整してもよい。
 或いは、所定の上位レイヤパラメータ(例えば、TBSadjustment)のオン又はオフ(有効化(enabled)又は無効化(disabled)、0又は1)、当該上位レイヤパラメータの値(例えば、TBSadjustment={0,8,16})及びDCI内の所定フィールド値の少なくとも一つに基づいて、ユーザ端末は、上記ステップ1)~4)を用いて決定されるTBSを、特定のパケットのサイズに基づいて調整してもよい。
 或いは、DCI内の所定フィールド値に基づいて、ユーザ端末は、上記ステップ1)~4)を用いて決定されるTBSを、特定のパケットのサイズに基づいて調整してもよい。
‐黙示的調整
 ユーザ端末は、以下の少なくとも一つのパラメータに基づいて、上記ステップ1)~4)を用いて決定されるTBSを、特定のパケットのサイズに基づいて調整してもよい。
・DCIフォーマット
・サーチスペース
・アグリゲーションレベル
・PDDCHのモニタリング機会(monitoring occasion)
・送信期間(transmission duration)
・スクランブル用のRNTI(Radio Network Temporary Identifier)
・MCSインデックス
・リソース割り当て(RA:Resource Allocation)タイプ
・波形(waveform)
・サブキャリア間隔(SCS:Subcarrier Spacing)
・configured grantのタイプ
 或いは、ユーザ端末は、利用可能なMCSインデックス及びPRB数の組み合わせの数に基づいて、上記ステップ1)~4)を用いて決定されるTBSを、特定のパケットのサイズに基づいて調整してもよい。
 第3の態様では、当該特定のパケットが受信又は送信される場合であっても、上記ステップ1~4)を用いて特定のパケット用のTBSを決定できる。なお、上記明示的調整では、当該TBSのサイズを調整するか否かを柔軟に制御できる。また、上記黙示的調整では、追加のオーバーヘッドなしに、当該TBSのサイズを調整できる。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、少なくとも2つを組み合わせて適用されてもよい。
 図11は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New RAT:New Radio Access Technology)などと呼ばれても良い。
 図11に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間及び/又はセル内で異なるニューメロロジーが適用される構成としてもよい。
 ここで、ニューメロロジーとは、周波数方向及び/又は時間方向における通信パラメータ(例えば、サブキャリアの間隔(サブキャリア間隔)、帯域幅、シンボル長、CPの時間長(CP長)、サブフレーム長、TTIの時間長(TTI長)、TTIあたりのシンボル数、無線フレーム構成、フィルタリング処理、ウィンドウイング処理などの少なくとも一つ)である。無線通信システム1では、例えば、15kHz、30kHz、60kHz、120kHz、240kHzなどのサブキャリア間隔がサポートされてもよい。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。TDDのセル、FDDのセルは、それぞれ、TDDキャリア(フレーム構成タイプ2)、FDDキャリア(フレーム構成タイプ1)等と呼ばれてもよい。
 また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、gNB(gNodeB)、送受信ポイント(TRP)、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、eNB、gNB、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-A、5G、5G+、NR、Rel.15~などの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。また、ユーザ端末20は、他のユーザ端末20との間で端末間通信(D2D)を行うことができる。
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。
 また、無線通信システム1では、マルチキャリア波形(例えば、OFDM波形)が用いられてもよいし、シングルキャリア波形(例えば、DFT-s-OFDM波形)が用いられてもよい。
 無線通信システム1では、下り(DL)チャネルとして、各ユーザ端末20で共有されるDL共有チャネル(PDSCH:Physical Downlink Shared Channel、下りデータチャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 L1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。PHICH、PDCCH、EPDCCHの少なくとも一つにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)を伝送できる。
 無線通信システム1では、上り(UL)チャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel、上りデータチャネル等ともいう)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。下り(DL)信号の送達確認情報(A/N)やチャネル状態情報(CSI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルを伝送できる。
<無線基地局>
 図12は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されてもよい。
 下りリンクで無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り(UL)信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力されたUL信号に含まれるULデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 また、送受信部103は、ユーザ端末20に対して下り(DL)信号(DLデータ信号、DL制御信号、DL参照信号の少なくとも一つを含む)を送信し、当該ユーザ端末20からの上り(UL)信号(ULデータ信号、UL制御信号、UL参照信号の少なくとも一つを含む)を受信する。
 また、送受信部103は、下り制御チャネルを用いて、ユーザ端末20に対するDCIを送信する。また、送受信部103は、上位レイヤシグナリングによる制御情報(上位レイヤ制御情報)を送信してもよい。また、送受信部103は、下り共有チャネルを用いてユーザ端末20に対するデータ(トランスポートブロック(TB))を送信し、上り共有チャネルを用いてユーザ端末20からのデータ(TB)を受信してもよい。
 図13は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図13は、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図13に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305とを備えている。
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、例えば、送信信号生成部302によるDL信号の生成や、マッピング部303によるDL信号のマッピング、受信信号処理部304によるUL信号の受信処理(例えば、復調など)、測定部305による測定を制御する。
 具体的には、制御部301は、ユーザ端末20のスケジューリングを行う。具体的には、制御部301は、下り共有チャネル及び/又は上り共有チャネルのスケジューリング及び/又は再送制御を行ってもよい。
 また、制御部301は、DCIの生成を制御してもよい。下り共有チャネルのスケジューリングに用いられるDCI(DLアサインメント)は、MCSインデックス、当該下り共有チャネルに割り当てられるPRB数を示す情報を含んでもよい。上り共有チャネルのスケジューリングに用いられるDCI(ULグラント)は、MCSインデックス、当該下り共有チャネルに割り当てられるPRB数を示す情報を含んでもよい。
 また、制御部301は、下り共有チャネルを用いたトランスポートブロック(TB)の送信及び上り共有チャネルを用いたTBの受信の少なくとも一つを制御してもよい。
 また、制御部301は、TBSを決定する。具体的には、制御部301は、MCSテーブル(図2A)を参照し、DCIに含まれるMCSインデックスに対応する符号化率及び変調次数を決定し、例えば、上記ステップ1)~4)を用いてTBSを決定してもよい。
 また、制御部301は、DCIに含まれるインデックス(例えば、MCSインデックス)と、前記DCIによりスケジューリングされる下り共有チャネル又は上り共有チャネルのリソースブロック数とに基づいて、前記下り共有チャネルを用いて受信される又は前記上り共有チャネルを用いて送信される特定のパケット用のトランスポートブロックサイズ(TBS)を決定してもよい。
 また、制御部301は、前記インデックスと前記リソースブロック数とに対応するTBSを定めるテーブルを用いて、前記特定のパケット用の前記TBSを決定してもよい(第1の態様)。
 また、制御部301は、前記決定されたTBSに基づいて前記特定のパケットのサイズを制御してもよい(第2の態様)。
 また、制御部301は、特定のパケットのビット数に基づいて前記決定されたTBSを調整してもよい(第3の態様)。
 制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DLデータ信号、DL制御信号、DL参照信号を含む)を生成して、マッピング部303に出力する。
 送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部304は、ユーザ端末20から送信されるUL信号(例えば、ULデータ信号、UL制御信号、UL参照信号を含む)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。具体的には、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力してもよい。また、受信信号処理部304は、制御部301から指示される上り制御チャネル構成に基づいて、UCIの受信処理を行う。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、UL参照信号の受信電力(例えば、RSRP(Reference Signal Received Power))及び/又は受信品質(例えば、RSRQ(Reference Signal Received Quality))に基づいて、ULのチャネル品質を測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図14は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、ブロードキャスト情報もアプリケーション部205に転送される。
 一方、上り(UL)データについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、レートマッチング、パンクチャ、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。UCIについても、チャネル符号化、レートマッチング、パンクチャ、DFT処理、IFFT処理の少なくとも一つが行われて各送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 また、送受信部203は、ユーザ端末20に設定されたニューメロロジーの下り(DL)信号(DLデータ信号、DL制御信号、DL参照信号を含む)を受信し、当該ニューメロロジーの上り(UL)信号(ULデータ信号、UL制御信号、UL参照信号を含む)を送信する。
 また、送受信部203は、下り制御チャネルを用いて、ユーザ端末20に対するDCIを受信する。また、送受信部203は、上位レイヤシグナリングによる制御情報(上位レイヤ制御情報)を受信してもよい。また、送受信部203は、下り共有チャネルを用いてユーザ端末20に対するデータ(トランスポートブロック(TB))を受信し、上り共有チャネルを用いてユーザ端末20からのデータ(TB)を送信してもよい。
 送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。また、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 図15は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図15においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図15に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、例えば、送信信号生成部402によるUL信号の生成や、マッピング部403によるUL信号のマッピング、受信信号処理部404によるDL信号の受信処理、測定部405による測定を制御する。
 また、制御部401は、DCIに基づいて、下り共有チャネルを用いたトランスポートブロック(TB)の送信及び上り共有チャネルを用いたTBの受信の少なくとも一つを制御してもよい。
 また、制御部401は、TBSを決定する。具体的には、制御部401は、MCSテーブル(図2A)を参照し、DCIに含まれるMCSインデックスに対応する符号化率及び変調次数を決定し、例えば、上記ステップ1)~4)を用いてTBSを決定してもよい。
 また、制御部401は、DCIに含まれるインデックス(例えば、MCSインデックス)と、前記DCIによりスケジューリングされる下り共有チャネル又は上り共有チャネルのリソースブロック数とに基づいて、前記下り共有チャネルを用いて受信される又は前記上り共有チャネルを用いて送信される特定のパケット用のトランスポートブロックサイズ(TBS)を決定してもよい。
 また、制御部401は、前記インデックスと前記リソースブロック数とに対応するTBSを定めるテーブルを用いて、前記特定のパケット用の前記TBSを決定してもよい(第1の態様)。
 また、制御部401は、前記決定されたTBSに基づいて前記特定のパケットのサイズを制御してもよい(第2の態様)。
 また、制御部401は、特定のパケットのビット数に基づいて前記決定されたTBSを調整してもよい(第3の態様)。
 制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号(ULデータ信号、UL制御信号、UL参照信号、UCIを含む)を生成(例えば、符号化、レートマッチング、パンクチャ、変調など)して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部404は、DL信号(DLデータ信号、スケジューリング情報、DL制御信号、DL参照信号)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリングなどの上位レイヤシグナリングによる上位レイヤ制御情報、物理レイヤ制御情報(L1/L2制御情報)などを、制御部401に出力する。
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 測定部405は、無線基地局10からの参照信号(例えば、CSI-RS)に基づいて、チャネル状態を測定し、測定結果を制御部401に出力する。なお、チャネル状態の測定は、CC毎に行われてもよい。
 測定部405は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、送受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び/又は移動局は、送信装置、受信装置などと呼ばれてもよい。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  下り制御情報(DCI)を受信する受信部と、
     前記DCIに含まれるインデックスと、前記DCIによりスケジューリングされる下り共有チャネル又は上り共有チャネルのリソースブロック数とに基づいて、前記下り共有チャネルを用いて受信される又は前記上り共有チャネルを用いて送信される特定のパケット用のトランスポートブロックサイズ(TBS)を決定する制御部と、を具備することを特徴とするユーザ端末。
  2.  前記制御部は、前記インデックスと前記リソースブロック数とに対応するTBSを定めるテーブルを用いて、前記特定のパケット用の前記TBSを決定することを特徴とする請求項1に記載のユーザ端末。
  3.  前記テーブルは、前記インデックスと前記リソースブロック数とに対応する一以上のTBSを定める単一のテーブルであり、
     前記制御部は、前記一以上のTBSの中から、所定のパラメータに基づいて前記特定のパケット用の前記TBSを決定することを特徴とする請求項2に記載のユーザ端末。
  4.  前記テーブルは、前記インデックスと前記リソースブロック数とに対応する同一又は異なるTBSを定める複数のテーブルであり、
     前記制御部は、前記複数のテーブルの中から所定のパラメータに基づいて選択されるテーブルを用いて、前記特定のパケット用の前記TBSを決定することを特徴とする請求項2に記載のユーザ端末。
  5.  前記制御部は、前記決定されたTBSに基づいて前記特定のパケットのサイズを制御する、又は、前記特定のパケットのビット数に基づいて前記決定されたTBSを調整することを特徴とする請求項1に記載のユーザ端末。
  6.  下り制御情報(DCI)を送信する送信部と、
     前記DCIに含まれるインデックスと、前記DCIによりスケジューリングされる下り共有チャネル又は上り共有チャネルのリソースブロック数とに基づいて、前記下り共有チャネルを用いて送信される又は前記上り共有チャネルを用いて受信される特定のパケット用のトランスポートブロックサイズ(TBS)を決定する制御部と、を具備することを特徴とする無線基地局。
PCT/JP2018/014641 2018-04-05 2018-04-05 ユーザ端末及び無線基地局 WO2019193730A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/014641 WO2019193730A1 (ja) 2018-04-05 2018-04-05 ユーザ端末及び無線基地局
CN201880094293.0A CN112219421A (zh) 2018-04-05 2018-04-05 用户终端以及无线基站
EP18913348.1A EP3780720A4 (en) 2018-04-05 2018-04-05 USER TERMINAL AND WIRELESS BASE STATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014641 WO2019193730A1 (ja) 2018-04-05 2018-04-05 ユーザ端末及び無線基地局

Publications (1)

Publication Number Publication Date
WO2019193730A1 true WO2019193730A1 (ja) 2019-10-10

Family

ID=68100414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014641 WO2019193730A1 (ja) 2018-04-05 2018-04-05 ユーザ端末及び無線基地局

Country Status (3)

Country Link
EP (1) EP3780720A4 (ja)
CN (1) CN112219421A (ja)
WO (1) WO2019193730A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112655264A (zh) * 2020-12-14 2021-04-13 北京小米移动软件有限公司 传输块大小的确定方法、装置及通信设备
WO2022047753A1 (zh) * 2020-09-04 2022-03-10 北京小米移动软件有限公司 传输块大小配置方法、装置及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11432279B2 (en) * 2018-04-13 2022-08-30 Lg Electronics Inc. Method for transmitting transport block by using downlink control information in wireless communication system and apparatus therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067030A (ja) * 2013-01-29 2016-04-28 株式会社Nttドコモ ユーザ端末、無線基地局及び適応変調符号化方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180822B (zh) * 2005-05-25 2012-01-11 艾利森电话股份有限公司 通过适应基于所选择调制编码方案(mcs)的语音编码的增强型voip媒体流质量
CN104144029B (zh) * 2013-05-09 2019-04-19 中兴通讯股份有限公司 一种确定传输块大小的方法、基站和终端
US10285167B2 (en) * 2013-09-20 2019-05-07 Qualcomm Incorporated Uplink resource allocation and transport block size determination over unlicensed spectrum
WO2016018079A1 (ko) * 2014-08-01 2016-02-04 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
US10575205B2 (en) * 2014-10-20 2020-02-25 Qualcomm Incorporated Transport block size determination
US10587383B2 (en) * 2015-03-30 2020-03-10 Lg Electronics Inc. Method and apparatus for designing downlink control information in wireless communication system
WO2016163645A1 (ko) * 2015-04-10 2016-10-13 엘지전자 주식회사 Pdsch 수신 방법 및 무선 기기
JP6042505B1 (ja) * 2015-08-11 2016-12-14 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
KR101868220B1 (ko) * 2015-11-06 2018-06-18 주식회사 케이티 하향링크 데이터 채널에서의 변조 오더 및 전송 블록 크기 결정 방법 및 그 장치
US10425938B2 (en) * 2015-11-06 2019-09-24 Kt Corporation Method of determining modulation order and transport block size in downlink data channel, and apparatus thereof
CN107046453B (zh) * 2016-02-05 2021-02-12 中兴通讯股份有限公司 数据共享信道的传输参数的确定方法、装置及系统
WO2017166294A1 (en) * 2016-04-01 2017-10-05 Nokia Technologies Oy Method and apparatus for determining tbs for stti

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067030A (ja) * 2013-01-29 2016-04-28 株式会社Nttドコモ ユーザ端末、無線基地局及び適応変調符号化方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
HUAWEI ET AL.: "Draft CR on TBS in TS38. 214", 3GPP TSG RAN WG MEETING #92 R1-1802707, 17 February 2018 (2018-02-17), pages 1 - 5, XP051398140 *
NTT DOCOMO: "TBS determination", 3GPP TSG RAN WG1 MEETING AH 180] R1-1802491, 17 February 2018 (2018-02-17), pages 1 - 4, XP051397997 *
See also references of EP3780720A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022047753A1 (zh) * 2020-09-04 2022-03-10 北京小米移动软件有限公司 传输块大小配置方法、装置及存储介质
CN112655264A (zh) * 2020-12-14 2021-04-13 北京小米移动软件有限公司 传输块大小的确定方法、装置及通信设备

Also Published As

Publication number Publication date
EP3780720A4 (en) 2021-12-01
EP3780720A1 (en) 2021-02-17
CN112219421A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
KR102456057B1 (ko) 유저단말 및 무선 통신 방법
WO2019097646A1 (ja) ユーザ端末及び無線通信方法
WO2018198295A1 (ja) ユーザ端末及び無線通信方法
KR20200030554A (ko) 유저단말 및 무선 통신 방법
CN111869175B (zh) 用户终端以及无线通信方法
WO2019198136A1 (ja) ユーザ端末及び無線基地局
CN111903171B (zh) 终端、基站、系统以及无线通信方法
JP7383481B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2019176032A1 (ja) ユーザ端末及び無線通信方法
CN111788806B (zh) 用户终端以及无线通信方法
JP7121031B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7305551B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019021473A1 (ja) 送信装置、受信装置及び無線通信方法
JP7108025B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019187149A1 (ja) ユーザ端末及び無線基地局
WO2019211915A1 (ja) ユーザ端末
WO2019168051A1 (ja) ユーザ端末及び無線通信方法
JP7168667B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019193730A1 (ja) ユーザ端末及び無線基地局
JP6990698B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019225655A1 (ja) ユーザ端末
WO2019203152A1 (ja) ユーザ端末及び無線基地局
CN112385163B (zh) 用户终端以及无线通信方法
WO2019215898A1 (ja) ユーザ端末及び無線通信方法
WO2019215933A1 (ja) ユーザ端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018913348

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018913348

Country of ref document: EP

Effective date: 20201105

NENP Non-entry into the national phase

Ref country code: JP