WO2019193639A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2019193639A1
WO2019193639A1 PCT/JP2018/014153 JP2018014153W WO2019193639A1 WO 2019193639 A1 WO2019193639 A1 WO 2019193639A1 JP 2018014153 W JP2018014153 W JP 2018014153W WO 2019193639 A1 WO2019193639 A1 WO 2019193639A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation temperature
heat exchanger
indoor
temperature
air
Prior art date
Application number
PCT/JP2018/014153
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 橋川
守 濱田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020512126A priority Critical patent/JP7142682B2/en
Priority to PCT/JP2018/014153 priority patent/WO2019193639A1/en
Publication of WO2019193639A1 publication Critical patent/WO2019193639A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to an air conditioning system, and more particularly, to an air conditioning system including an external air conditioner.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioning system that can reduce an indoor air conditioning load without increasing power consumption.
  • An air conditioning system includes a first refrigerant circuit including a first compressor, a first outdoor heat exchanger, and a first indoor heat exchanger; a second compressor; a second outdoor heat exchanger; A second refrigerant circuit comprising an indoor heat exchanger and a third indoor heat exchanger, an indoor unit comprising a second indoor heat exchanger and adjusting the temperature of the indoor air, a first indoor heat exchanger and a third indoor heat
  • An outdoor air supply unit that includes an exchanger and adjusts the humidity of the taken-in outdoor air.
  • the outdoor air supply unit includes the first indoor heat exchanger and the third indoor heat exchanger, so that the outdoor air is dehumidified in two stages by the two heat exchangers constituting different refrigerant circuits. Can be cooled.
  • the evaporation temperature of a 1st indoor heat exchanger can be made high, and while suppressing the increase in the power consumption of an air conditioning system, air-conditioning load is reduced. Can be reduced.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system according to Embodiment 1.
  • FIG. 2 is a schematic configuration diagram of a first refrigerant circuit in Embodiment 1.
  • FIG. 3 is a schematic configuration diagram of a second refrigerant circuit in the first embodiment.
  • 2 is a schematic configuration diagram of an outside air supply unit according to Embodiment 1.
  • FIG. It is an air line figure which shows the change of the air temperature humidity of the external air supply unit at the time of air_conditioning
  • 3 is a functional block diagram of a control device in Embodiment 1.
  • FIG. 6 is a diagram for explaining a method for determining a first evaporation temperature in Embodiment 1.
  • FIG. 6 is a diagram for explaining a method for determining a first evaporation temperature in Embodiment 1.
  • FIG. 6 is a diagram illustrating a method for determining a second evaporation temperature in Embodiment 1.
  • FIG. 3 is a flowchart showing an evaporation temperature determination process in the first embodiment.
  • 3 is a flowchart showing an operation control process in the first embodiment.
  • 6 is a schematic configuration diagram of an air-conditioning system according to Embodiment 2.
  • FIG. 6 is a functional block diagram of a control device according to Embodiment 2.
  • FIG. 6 is a flowchart showing evaporation temperature determination processing in the second embodiment. 6 is a flowchart showing an operation control process in the second embodiment.
  • FIG. 1 is a schematic configuration diagram of an air-conditioning system 50 according to the first embodiment.
  • the air conditioning system 50 includes an external air conditioner 1 that takes in outdoor air, adjusts temperature and humidity, and blows out the air into the room R, and an internal air conditioner 2 that takes in indoor air, adjusts at least the temperature, and blows out the air into the room R.
  • the external air conditioner 1 includes an external air conditioner outdoor unit 10 that is disposed on the rooftop or underground, and an outside air supply unit 30 that is disposed on the ceiling behind the room R or under the floor.
  • the internal air conditioner 2 includes an internal air conditioning outdoor unit 20 arranged on the rooftop or underground, and an indoor unit 21 arranged on the ceiling or floor of the room R. In the present embodiment, the internal conditioner 2 includes two indoor units 21, but the number of the indoor units 21 may be one or three or more.
  • the air conditioning system 50 includes the control device 5, the indoor temperature sensor 201 that detects the indoor temperature Ta in the room R, the indoor humidity sensor 301 that detects the indoor humidity Xa in the room R, and the outside air that detects the outdoor air temperature Toa. And a temperature sensor 303.
  • the room temperature Ta, the room humidity Xa, and the outside temperature Toa detected by the room temperature sensor 201, the room humidity sensor 301, and the outside temperature sensor 303 are transmitted to the control device 5.
  • the control device 5 is a centralized controller, for example, and controls the operation of the external air conditioner 1 and the internal air conditioner 2 based on the indoor temperature Ta, the indoor humidity Xa, the outdoor air temperature Toa, and the like. The control by the control device 5 will be described in detail later.
  • the air-conditioning system 50 includes a first refrigerant circuit 100 having an external air conditioning outdoor unit 10 on the heat source side, and a second refrigerant circuit 200 having an internal air conditioning outdoor unit 20 on the heat source side.
  • FIG. 2 is a schematic configuration diagram of the first refrigerant circuit 100 in the first embodiment. As shown in FIG. 2, the first refrigerant circuit 100 is configured by the external air conditioning outdoor unit 10 and the external air conditioning unit 30 a of the external air supply unit 30.
  • the outdoor conditioning outdoor unit 10 includes a first compressor 13, a first four-way valve 14, a first outdoor heat exchanger 15, and a first outdoor fan 16.
  • the outside adjustment unit 30 a of the outside air supply unit 30 includes a first expansion device 17, a first indoor heat exchanger 12, and a first evaporation temperature sensor 102.
  • the external adjustment outdoor unit 10 and the external adjustment unit 30a are connected by a refrigerant pipe 40a.
  • the first compressor 13 is composed of, for example, an inverter compressor whose capacity can be controlled.
  • the first compressor 13 sucks a gas refrigerant, compresses it, and discharges it in a high-temperature and high-pressure state.
  • the first four-way valve 14 switches the refrigerant flow in the first refrigerant circuit 100.
  • the first outdoor heat exchanger 15 and the first indoor heat exchanger 12 are, for example, cross-fin type fin-and-tube heat exchangers configured by heat transfer tubes and a large number of fins.
  • the first expansion device 17 is an electronic expansion valve whose opening degree can be controlled, for example.
  • the first outdoor fan 16 is a blower that supplies air to the first outdoor heat exchanger 15, and is, for example, a propeller fan that is driven by a fan motor (not shown).
  • the control device 5 controls the operating frequency of the first compressor 13, the switching of the flow path of the first four-way valve 14, the opening degree of the first expansion device 17, and the air volume of the first outdoor fan 16.
  • the first four-way valve 14 When the air conditioning system 50 performs the cooling and dehumidifying operation, the first four-way valve 14 is switched to a flow path indicated by a solid line in FIG.
  • the low-temperature and low-pressure gas refrigerant is compressed by the first compressor 13 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the first compressor 13 flows into the first outdoor heat exchanger 15 through the first four-way valve 14.
  • the first outdoor heat exchanger 15 functions as a condenser, and the high-temperature and high-pressure refrigerant flowing into the first outdoor heat exchanger 15 dissipates heat to the outdoor air or the like, and is condensed to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the first outdoor heat exchanger 15 flows into the first expansion device 17 and is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed out of the first expansion device 17 flows into the first indoor heat exchanger 12.
  • the first indoor heat exchanger 12 functions as an evaporator, and the gas-liquid two-phase refrigerant flowing into the first indoor heat exchanger 12 evaporates by exchanging heat with the air flowing in the outside air supply unit 30, It becomes a gas refrigerant.
  • the gas refrigerant flowing out from the first indoor heat exchanger 12 is sucked into the first compressor 13 and compressed again. Thereby, the air flowing through the outside air supply unit 30 is dehumidified by the first indoor heat exchanger 12.
  • FIG. 3 is a schematic configuration diagram of the second refrigerant circuit 200 in the first embodiment.
  • the second refrigerant circuit 200 includes an internal adjustment outdoor unit 20, a plurality of indoor units 21, and an internal adjustment unit 30 b of the external air supply unit 30.
  • the internal conditioning outdoor unit 20 includes a second compressor 23, a second four-way valve 24, a second outdoor heat exchanger 25, and a second outdoor fan 26.
  • Each of the plurality of indoor units 21 includes a second indoor heat exchanger 22, a second expansion device 27, a second indoor fan 28, and a second evaporation temperature sensor 202.
  • an indoor temperature sensor 201 is provided in a suction portion of at least one of the plurality of indoor units 21.
  • the internal adjustment unit 30 b of the outside air supply unit 30 is connected in parallel to the plurality of indoor units 21, and includes a third indoor heat exchanger 32, a third expansion device 37, and a third evaporation temperature sensor 302.
  • the internal adjustment outdoor unit 20, the indoor unit 21, and the internal adjustment unit 30b are connected by a refrigerant pipe 40b.
  • the second compressor 23 is composed of, for example, a capacity-controllable inverter compressor or the like, and sucks a gas refrigerant, compresses it, and discharges it in a high-temperature and high-pressure state.
  • the second four-way valve 24 switches the refrigerant flow in the second refrigerant circuit 200.
  • the second outdoor heat exchanger 25, the second indoor heat exchanger 22, and the third indoor heat exchanger 32 are, for example, a cross-fin type fin-and-tube type constituted by a heat transfer tube and a large number of fins. It is a heat exchanger.
  • the second expansion device 27 and the third expansion device 37 are electronic expansion valves whose opening degree can be controlled, for example.
  • the 2nd outdoor fan 26 and the 2nd indoor fan 28 are air blowers which supply air to the 2nd outdoor heat exchanger 25 and the 2nd indoor heat exchanger 22, for example, a propeller driven by a fan motor (not shown). I am a fan.
  • the operating frequency of the second compressor 23, the switching of the flow path of the second four-way valve 24, the opening degree of the second expansion device 27 and the third expansion device 37, and the air volume of the second outdoor fan 26 and the second indoor fan 28 are as follows. Controlled by the control device 5.
  • the second four-way valve 24 is switched to a flow path indicated by a solid line in FIG.
  • the low-temperature and low-pressure gas refrigerant is compressed by the second compressor 23 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the second compressor 23 flows into the second outdoor heat exchanger 25 through the second four-way valve 24.
  • the second outdoor heat exchanger 25 functions as a condenser, and the high-temperature and high-pressure refrigerant flowing into the second outdoor heat exchanger condenser 25 dissipates heat to the outdoor air or the like, and is condensed to become a high-pressure liquid refrigerant. .
  • the high-pressure liquid refrigerant that has flowed out of the second outdoor heat exchanger 25 flows into the second expansion device 27 and the third expansion device 37, and is expanded and depressurized to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed out of the second expansion device 27 and the third expansion device 37 flows into the second indoor heat exchanger 22 and the third indoor heat exchanger 32.
  • the second indoor heat exchanger 22 and the third indoor heat exchanger 32 function as an evaporator, and the gas-liquid two-phase refrigerant flowing into the second indoor heat exchanger 22 and the third indoor heat exchanger 32 is the indoor air and It evaporates by heat exchange and becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant flowing out from the second indoor heat exchanger 22 and the third indoor heat exchanger 32 is sucked into the second compressor 23 and compressed again. Thereby, the air in the room R is cooled.
  • FIG. 4 is a schematic configuration diagram of the outside air supply unit 30 according to the first embodiment.
  • the outside air supply unit 30 includes a housing 31, an air supply fan 33, an exhaust fan 34, a total heat exchanger 35, a third indoor heat exchanger 32, and a first indoor heat exchanger 12. .
  • an air supply path 310 and an exhaust air path 320 are formed independently of each other.
  • the supply air passage 310 is indicated by a solid line
  • the exhaust air passage 320 is indicated by a broken line.
  • the supply air passage 310 takes in the outdoor air OA by the supply fan 33, passes through the total heat exchanger 35, the third indoor heat exchanger 32, and the first indoor heat exchanger 12, and supplies the adjusted air SA to the room R. It is a wind path.
  • the first indoor heat exchanger 12 and the third indoor heat exchanger 32 are disposed on the downstream side of the total heat exchanger 35. Further, the third indoor heat exchanger 32 is disposed on the upstream side of the first indoor heat exchanger 12.
  • the exhaust air path 320 is an air path that takes in the room air RA through the exhaust fan 34, passes through the total heat exchanger 35, and exhausts the air as the exhaust air EA.
  • the total heat exchanger 35 has, for example, a structure in which air paths orthogonal to each other are alternately stacked, and the indoor air RA and the outdoor air OA pass through the air paths so that the total heat is generated between the two air streams.
  • the 3rd indoor heat exchanger 32 comprises a part of 2nd refrigerant circuit 200, as shown in FIG. 3, and functions as an evaporator at the time of air_conditioning
  • the 1st indoor heat exchanger 12 comprises a part of 1st refrigerant circuit 100, as shown in FIG. 2, and functions as an evaporator at the time of air_conditioning
  • an indoor humidity sensor 301 for detecting the humidity Xa of the indoor air RA is disposed in the intake portion of the indoor air RA in the exhaust air passage 320.
  • an outside air temperature sensor 303 is disposed in a suction portion of the outdoor air OA in the supply air passage 310.
  • FIG. 5 is an air diagram showing changes in the air temperature and humidity of the outside air supply unit 30 during the cooling and dehumidifying operation.
  • the vertical axis in FIG. 5 indicates absolute humidity, and the horizontal axis indicates dry bulb temperature.
  • (T0) outdoor air OA introduced into the supply air passage 310 from the air supply port exchanges heat with the indoor air RA flowing through the exhaust air passage 320 in the total heat exchanger 35, and the temperature and humidity are reduced (T1). ). And it cools and dehumidifies further by the 3rd indoor heat exchanger 32 arrange
  • the outdoor air OA is divided into two stages, that is, the third indoor heat exchanger 32 using the internal adjustment outdoor unit 20 as a heat source and the first indoor heat exchanger 12 using the external adjustment outdoor unit 10 as a heat source. Cool and dehumidify.
  • the latent heat load of the external air conditioner 1 is reduced, so that the evaporation temperature of the external air conditioner 1 can be increased.
  • the air conditioning load in the room R can be reduced while suppressing an increase in power consumption of the external air conditioner 1.
  • FIG. 6 is a functional block diagram of the control device 5 according to the first embodiment.
  • the control device 5 includes a first evaporation temperature determination unit 51, a second evaporation temperature determination unit 52, a first control unit 53, and a second control unit 54.
  • the control device 5 is a dedicated hardware or a CPU (also referred to as a central processing unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, or a processor) that executes a program stored in a memory (not shown). Consists of.
  • control device 5 When the control device 5 is dedicated hardware, the control device 5 is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable ⁇ ⁇ ⁇ Gate Array), or a combination thereof. Applicable. Each functional unit realized by the control device 5 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable ⁇ ⁇ ⁇ Gate Array
  • each function executed by the control device 5 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in a memory.
  • the CPU implements each function of the control device 5 by reading and executing a program stored in the memory.
  • the memory is a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM. Note that part of the functions of the control device 5 may be realized by dedicated hardware, and part of it may be realized by software or firmware.
  • the first evaporating temperature determining unit 51 determines the first evaporating temperature Teo as a control target value for the evaporating temperature of the first indoor heat exchanger 12 in the first refrigerant circuit 100. Specifically, the first evaporation temperature determination unit 51 determines the first evaporation temperature Teo according to ⁇ X, which is the difference between the indoor humidity Xa detected by the indoor humidity sensor 301 and the indoor target humidity Xm. The indoor target humidity Xm is preset by the user and stored in the memory of the control device 5. The first evaporation temperature determination unit 51 decreases the first evaporation temperature Teo because the latent heat load is large when ⁇ X is large, and increases the first evaporation temperature Teo because the latent heat load is small when ⁇ X is small.
  • FIG. 7 is a diagram illustrating a method for determining the first evaporation temperature Teo in the first embodiment.
  • First evaporating temperature determination unit 51 first presets upper limit Teo_max and lower limit Teo_min of first evaporating temperature Teo. Then, the first evaporation temperature Teo is determined within the range of the upper limit Teo_max and the lower limit Teo_min according to ⁇ X.
  • [Delta] X 1 is a threshold indicating the acceptable difference between the indoor target humidity Xm, may be stored and set in advance in the memory, it may be changed arbitrarily by the user.
  • the second evaporation temperature determination unit 52 determines a second evaporation temperature Tei that is a control target value for the evaporation temperature of the second indoor heat exchanger 22 and the third indoor heat exchanger 32 in the second refrigerant circuit 200. Specifically, the second evaporation temperature determination unit 52 determines the second evaporation temperature Tei according to ⁇ T, which is the difference between the indoor temperature Ta detected by the indoor temperature sensor 201 and the indoor target temperature Tm.
  • the indoor target temperature Tm is preset by the user and stored in the memory of the control device 5.
  • the second evaporation temperature determining unit 52 decreases the second evaporation temperature Tei when ⁇ T is large, so the second evaporation temperature Tei is lowered, and when ⁇ T is small, the sensible heat load is low, and therefore increases the second evaporation temperature Tei.
  • the second evaporation temperature determination unit 52 determines the maximum of the differences ⁇ T between the room temperature Ta detected by the room temperature sensors 201 and the room target temperature Tm.
  • the second evaporation temperature Tei is determined according to the value of ⁇ T. Further, even when the indoor target temperature Tm is set for each indoor temperature sensor 201, the second evaporation temperature determining unit 52 determines the second evaporation temperature Tei according to the maximum ⁇ T value. Thereby, it can suppress that sensible heat capability becomes insufficient.
  • FIG. 8 is a diagram for explaining a method for determining the second evaporation temperature Tei in the first embodiment.
  • the second evaporation temperature determination unit 52 presets an upper limit Tei_max and a lower limit Tei_min of the second evaporation temperature Tei. Then, the second evaporation temperature Tei is determined within the range of the upper limit Tei_max and the lower limit Tei_min according to ⁇ T.
  • the proportionality constant ⁇ is (Tei_max ⁇ Tei_min) / ⁇ T 1 .
  • ⁇ T 1 is a threshold value indicating an allowable difference from the indoor target temperature Tm, and may be set in advance and stored in a memory, or may be arbitrarily changed by a user.
  • the first evaporation temperature determination unit 51 and the second evaporation temperature determination unit 52 may change the first evaporation temperature Teo and the second evaporation temperature Tei, respectively, according to the state of the room R.
  • the first evaporation temperature determination unit 51 is a case where the difference ⁇ T is equal to or greater than the threshold ⁇ T 1 even if the second evaporation temperature Tei determined by the second evaporation temperature determination unit 52 is the lower limit Tei_min.
  • the first evaporation temperature Teo may be changed to the lower limit Teo_min.
  • the first evaporation temperature The determination unit 51 may lower the first evaporation temperature Teo to the lower limit Teo_min. Thereby, the sensible heat processing capability in the 1st indoor heat exchanger 12 improves, and it becomes suppressed that sensible heat capability becomes insufficient.
  • the second evaporating temperature determining section 52 also the first evaporation temperature Teo is a lower limit Teo_min determined by first evaporating temperature determining section 51, even if the difference [Delta] X is the threshold value [Delta] X 1 or more, and the When the 2 evaporation temperature Tei is larger than the lower limit Tei_min, the second evaporation temperature Tei may be changed to the lower limit Tei_min. That is, when the latent heat load cannot be processed only by the first indoor heat exchanger 12 and the evaporation temperatures of the second indoor heat exchanger 22 and the third indoor heat exchanger 32 can be lowered, the second evaporation temperature is determined.
  • the part 52 may reduce the second evaporation temperature Tei to the lower limit Tei_min. Thereby, the latent heat processing capability in the 2nd indoor heat exchanger 22 and the 3rd indoor heat exchanger 32 improves, and it is suppressed that a latent heat capability becomes insufficient.
  • the first control unit 53 controls the first refrigerant circuit 100 based on the first evaporation temperature Teo determined by the first evaporation temperature determining unit 51. Specifically, the first control unit 53 controls the operating frequency of the first compressor 13 so that the evaporation temperature detected by the first evaporation temperature sensor 102 becomes the first evaporation temperature Teo.
  • the first control unit 53 may stop the outdoor adjustment outdoor unit 10 when ⁇ X is smaller than the lower limit value ⁇ X_min even if the first evaporation temperature Teo is the upper limit Teo_max. In this case, the first compressor 13 and the first outdoor fan 16 of the outdoor adjustment outdoor unit 10 are stopped.
  • the lower limit value ⁇ Xmin is, for example, 0, and may be set in advance and stored in the memory, or may be arbitrarily changed by the user. Thereby, when the dehumidification of the outdoor air OA is unnecessary, the outdoor adjustment outdoor unit 10 can be stopped to reduce power consumption.
  • the first control unit 53 activates the outdoor adjustment outdoor unit 10 again when ⁇ X becomes equal to or greater than the lower limit value ⁇ X_min.
  • the second control unit 54 controls the second refrigerant circuit 200 based on the second evaporation temperature Tei of the evaporation temperature determined by the second evaporation temperature determining unit 52. Specifically, the second control unit 54 operates the second compressor 23 so that the evaporation temperatures detected by the second evaporation temperature sensor 202 and the third evaporation temperature sensor 302 become the second evaporation temperature Tei. Control the frequency.
  • the second control unit 54 fully closes the second expansion device 27 of the indoor unit 21 when ⁇ T is smaller than the lower limit value ⁇ T_min, and the second indoor heat
  • the inflow of the refrigerant to the exchanger 22 may be stopped.
  • the refrigerant flows only through the third indoor heat exchanger 32.
  • the second indoor fan 28 may also be stopped.
  • the lower limit value ⁇ Tmin is 0, for example, and may be set in advance and stored in the memory, or may be arbitrarily changed by the user.
  • the 2nd control part 54 opens the 2nd expansion apparatus 27, and restarts the inflow of the refrigerant
  • the second controller 54 is configured such that, even when the first evaporation temperature Teo is the upper limit Teo_max, ⁇ X is smaller than the lower limit value ⁇ X_min, and the outside air temperature Toa detected by the outside air temperature sensor 303 is less than the lower limit Toa_min. If it is lower, the third expansion device 37 may be fully closed to stop the flow of the refrigerant into the third indoor heat exchanger 32.
  • the lower limit Toa_min may be set in advance and stored in a memory, or may be arbitrarily changed by a user. That is, when there is no latent heat load and the outside air temperature is low, heat exchange between the first indoor heat exchanger 12 and the third indoor heat exchanger 32 mounted on the outside air supply unit 30 is not performed. Good.
  • the 2nd control part 54 opens the 3rd expansion apparatus 37, and restarts the inflow of the refrigerant
  • the first control unit 53 and the second control unit 54 are configured such that even when the first evaporation temperature Teo is the upper limit Teo_max, ⁇ X is smaller than the lower limit value ⁇ X_min, and the second evaporation temperature Tei is the upper limit Tei_max. Even when ⁇ T is smaller than the lower limit value ⁇ T_min, the outdoor-controlled outdoor unit 10 and the internal-controlled outdoor unit 20 may be stopped. Specifically, the first compressor 13 and the first outdoor fan 16 of the outdoor conditioning outdoor unit 10 and the second compressor 23 and the second outdoor fan 26 of the internal conditioning outdoor unit 20 are stopped. When neither the latent heat load nor the sensible heat load is present, the power consumption can be reduced by stopping the external adjustment outdoor unit 10 and the internal adjustment outdoor unit 20.
  • FIG. 9 is a flowchart showing the evaporation temperature determination process in the first embodiment.
  • the evaporation temperature determination process is a process for determining the first evaporation temperature Teo and the second evaporation temperature Tei.
  • the evaporation temperature determination process in FIG. 9 is performed by the control device 5 during the cooling and dehumidifying operation of the air conditioning system 50.
  • the difference ⁇ T and the difference ⁇ X are calculated (S11).
  • the difference ⁇ T is calculated by subtracting the indoor target temperature Tm from the indoor temperature Ta
  • the difference ⁇ X is calculated by subtracting the indoor target humidity Xm from the indoor humidity Xa.
  • the first evaporation temperature Teo and the second evaporation temperature Tei are determined by the method described with reference to FIGS. 7 and 8 (S12).
  • the first evaporation temperature Teo is not the lower limit Teo_min (S13: NO)
  • step S20 it is determined whether or not to end the operation. If the operation is not ended (S20: NO), the process returns to step S11 and the subsequent processing is repeated. When the operation is finished (S20: YES), the cooling and dehumidifying operation by the air conditioning system 50 is stopped.
  • FIG. 10 is a flowchart showing the operation control process in the first embodiment.
  • the operation control process is a process for controlling the operation of the first refrigerant circuit 100 and the second refrigerant circuit 200.
  • the operation control process of FIG. 10 is performed by the control device 5 after the evaporation temperature determination process or in parallel with the evaporation temperature determination process during the cooling and dehumidifying operation of the air conditioning system 50.
  • it is determined whether or not the second evaporation temperature Tei is the upper limit Tei_max and the difference ⁇ T is smaller than the lower limit value ⁇ T_min (S21).
  • the first evaporation temperature Teo is the upper limit Teo_max and the difference ⁇ X is less than the lower limit value ⁇ X_min. It is determined whether or not it is small (S22).
  • the first evaporation temperature Teo is the upper limit Teo_max and the difference ⁇ X is less than the lower limit value ⁇ X_min. It is determined whether or not it is small (S25).
  • the first evaporation temperature Teo is the upper limit Teo_max and ⁇ X is smaller than the lower limit value ⁇ X_min (S25: YES)
  • it is determined whether or not the outside air temperature Toa is lower than the lower limit Toa_min (S26).
  • step S25 when the first evaporation temperature Teo is not the upper limit Teo_max, or when ⁇ X is equal to or higher than the lower limit value ⁇ X_min (S25: NO), normal control is performed (S29), and the process proceeds to step S20.
  • the first refrigerant circuit 100 and the second refrigerant circuit 200 are controlled based on the first evaporation temperature Teo and the second evaporation temperature Tei.
  • step S20 it is determined whether or not to end the operation. If not (S20: NO), the process returns to step S21, and the subsequent processing is repeated. When the operation is finished (S20: YES), the cooling and dehumidifying operation by the air conditioning system 50 is stopped.
  • the air flowing into the first indoor heat exchanger 12 can be obtained. Temperature and humidity can be reduced. That is, in Embodiment 1, outdoor air is dehumidified and cooled in two stages by two heat exchangers that are configured with different refrigerant circuits and controlled at different evaporation temperatures. For this reason, the evaporation temperature of the first indoor heat exchanger 12 can be increased as compared with the case where the temperature and humidity of the outdoor air OA are reduced only by the first indoor heat exchanger 12.
  • the evaporation temperature of the first indoor heat exchanger 12 can be increased, so that the COP of the external air conditioner 1 is improved and the air conditioning system 50 COP is also improved.
  • the third indoor heat exchanger 32 upstream of the first indoor heat exchanger 12 the amount of heat processed by the internal adjustment outdoor unit 20 increases, and the power consumption of the internal adjustment outdoor unit 20 increases.
  • the power consumption of the outdoor conditioning outdoor unit 10 can be reduced and the operation efficiency can be improved more than the increase in the power consumption of the internal conditioning outdoor unit 20, the power consumption of the entire air conditioning system 50 can be reduced. Can do.
  • the control target value of the evaporation temperature is set and the operation control is performed, so that the external air conditioner 1 and the internal air conditioner 2 are efficiently operated. Can do. Thereby, the power consumption in the air conditioning system 50 whole can further be reduced.
  • FIG. 11 is a schematic configuration diagram of an air conditioning system 50A according to the second embodiment.
  • the air conditioning system 50A according to the second embodiment is different from the first embodiment in that the human detection unit 401 and the outside air temperature / humidity sensor 304 are provided, and the control in the control device 5A.
  • Other configurations of the air conditioning system 50A are the same as those in the first embodiment.
  • the person detecting means 401 is an entrance / exit management system that manages the entrance / exit of a person into the room R, a camera arranged in the room R, or an infrared sensor or a CO 2 concentration sensor arranged in the room R.
  • the person detecting means 401 detects the number of people in the room R by a known method and transmits it to the control device 5A.
  • the outside air temperature / humidity sensor 304 is disposed in a suction portion of the outdoor air OA in the supply air passage 310, detects the temperature (outside air temperature Toa) and the humidity (outside air humidity Xoa) of the outdoor air OA, and transmits the detected temperature to the control device 5A.
  • FIG. 12 is a functional block diagram of the control device 5A in the second embodiment.
  • the first evaporating temperature determining unit 51 and the second evaporating temperature determining unit 52 of the second embodiment determine the first evaporating temperature Teo and the second evaporating temperature Tei based on the latent heat load Lo and the sensible heat load Si.
  • the latent heat load Lo is a latent heat load to be processed by the first indoor heat exchanger 12
  • the sensible heat load Si is a sensible heat load to be processed by the second indoor heat exchanger 22 and the third indoor heat exchanger 32. .
  • the first evaporation temperature determination unit 51 obtains the latent heat load Lt in the room R using a known method from the outside air humidity Xoa and the number of people in the room. The number of people in the room is detected by the person detecting means 401, and the outside air humidity Xoa is detected by the outside air temperature / humidity sensor 304. In addition, the first evaporation temperature determination unit 51 calculates the latent heat treatment capability by the second indoor heat exchanger 22 and the third indoor heat exchanger 32 from the second evaporation temperature Tei_temp.
  • the second evaporation temperature Tei_temp used here is a provisional value for obtaining the latent heat load Lo, and as described in the first embodiment, ⁇ T, which is the difference between the room temperature Ta and the room target temperature Tm. Depending on the requirements.
  • the 1st evaporation temperature determination part 51 estimates the latent heat load Lo based on the latent heat load Lt and the latent heat processing capability of the 2nd indoor heat exchanger 22 and the 3rd indoor heat exchanger 32.
  • FIG. The latent heat treatment capacity of the second indoor heat exchanger 22 and the third indoor heat exchanger 32 is a sensible heat load processed by the second indoor heat exchanger 22 and the third indoor heat exchanger 32. Therefore, by subtracting the latent heat load processed by the second indoor heat exchanger 22 and the third indoor heat exchanger 32 from the latent heat load Lt, the latent heat load Lo that the first indoor heat exchanger 12 needs to process is reduced. Presumed.
  • the first evaporation temperature determination unit 51 calculates an evaporation temperature that can satisfy the latent heat load Lo from the indoor humidity Xa and the air volume of the outside air supply unit 30, and sets it as the first evaporation temperature Teo.
  • the air volume of the outside air supply unit 30 is obtained from the rotation speed of the air supply fan 33.
  • the first evaporation temperature determination unit 51 sets an upper limit Teo_max and a lower limit Teo_min of the first evaporation temperature Teo in advance.
  • the first evaporation temperature Teo is set as the upper limit Teo_max.
  • the necessary evaporation temperature is lower than the lower limit Teo_min.
  • Teo be the lower limit Teo_min.
  • the first evaporation temperature determination unit 51 sets the first evaporation temperature Teo as the upper limit Teo_max.
  • the second evaporating temperature determination unit 52 obtains the sensible heat load St using a known method from the outside air temperature Toa, the indoor target temperature Tm, the building specifications, the number of people in the room, and the like.
  • the building specification includes information on the outer wall, the window, the lighting fixture, and the like, and is stored in advance in the memory of the control device 5A.
  • the number of people in the room is detected by the person detecting means 401.
  • the 2nd evaporation temperature determination part 52 calculates the sensible heat processing capability by the 1st indoor heat exchanger 12 from 1st evaporation temperature Teo_temp.
  • the first evaporation temperature Teo_temp used here is a provisional value for obtaining the sensible heat load Si and is the difference between the indoor humidity Xa and the indoor target humidity Xm as described in the first embodiment. It is determined according to ⁇ X.
  • the second evaporation temperature determination unit 52 estimates the sensible heat load Si based on the sensible heat load St and the sensible heat treatment capability of the first indoor heat exchanger 12.
  • the sensible heat treatment capacity of the first indoor heat exchanger 12 is a sensible heat load processed by the first indoor heat exchanger 12. Therefore, the sensible heat that the second indoor heat exchanger 22 and the third indoor heat exchanger 32 need to process by subtracting the sensible heat load processed by the first indoor heat exchanger 12 from the sensible heat load St.
  • the load Si is estimated.
  • the second evaporation temperature determining unit 52 calculates an evaporation temperature that can satisfy the sensible heat load Si according to the sensible heat load Si from the indoor temperature Ta and the air volume of the indoor unit 21, and the second evaporation temperature. Let it be Tei.
  • the air volume of the indoor unit 21 is obtained from the rotational speed of the second indoor fan 28.
  • the second evaporation temperature determining unit 52 sets an upper limit Tei_max and a lower limit Tei_min of the second evaporation temperature Tei in advance.
  • the second evaporation temperature Tei is set as the upper limit Tei_max.
  • the necessary evaporation temperature is lower than the lower limit Tei_min, the second evaporation is performed.
  • the temperature Tei is set as the lower limit Tei_min. For example, when the sensible heat load Si is 0, the second evaporation temperature determination unit 52 sets the second evaporation temperature Tei as the upper limit Tei_max.
  • the first evaporation temperature determining unit 51 and the second evaporation temperature determining unit 52 may change the first evaporation temperature Teo and the second evaporation temperature Tei, respectively, according to the state of the room R.
  • the first evaporation temperature determination unit 51 may change the first evaporation temperature Teo when the estimated sensible heat load Si cannot be processed even if the second evaporation temperature Tei is the lower limit Tei_min.
  • the first evaporation temperature determination unit 51 obtains a sensible heat load Si_min that can be processed when the second evaporation temperature Tei is the lower limit Tei_min.
  • the remaining sensible heat load Si_rem is obtained by subtracting the sensible heat load Si_min that can be processed from the estimated sensible heat load Si.
  • the 1st evaporation temperature Teo_rev which can process the remaining sensible heat load Si_rem is calculated
  • the first evaporation temperature determination unit 51 compares the first evaporation temperature Teo determined based on the latent heat load Lo with the first evaporation temperature Teo_rev obtained from the remaining sensible heat load Si_rem, and sets the lower one as the new first The evaporation temperature is Teo. Note that the first evaporation temperature Teo is higher than the lower limit Teo_min. Thereby, the sensible heat processing capability in the 1st indoor heat exchanger 12 improves, and it becomes suppressed that sensible heat capability becomes insufficient.
  • the second evaporation temperature determination unit 52 may change the second evaporation temperature Tei when the estimated latent heat load Lo cannot be satisfied even if the first evaporation temperature Teo is the lower limit Teo_min. Specifically, the second evaporation temperature determination unit 52 obtains a latent heat load Lo_min that can be processed when the first evaporation temperature Teo is the lower limit Teo_min. Then, the remaining latent heat load Lo_rem is obtained by subtracting the latent heat load Lo_min that can be processed from the estimated latent heat load Lo. And the 2nd evaporation temperature Tei_rev which can process the remaining latent heat load Lo_rem is calculated
  • the second evaporation temperature determination unit 52 compares the second evaporation temperature Tei determined based on the sensible heat load Si and the second evaporation temperature Tei_rev obtained from the remaining latent heat load Lo_rem, and sets the lower one as the new second temperature. Evaporation temperature Tei.
  • the second evaporation temperature Tei is higher than the lower limit Tei_min.
  • the first control unit 53 controls the first refrigerant circuit 100 based on the first evaporation temperature Teo determined by the first evaporation temperature determining unit 51 as in the first embodiment. Moreover, the 1st control part 53 may stop the external adjustment outdoor unit 10, when the estimated latent heat load Lo is 0. Thereby, when the dehumidification by the 1st indoor heat exchanger 12 is unnecessary, the external adjustment outdoor unit 10 can be stopped and power consumption can be reduced. When the latent heat load Lo exceeds 0, the first control unit 53 activates the outdoor adjustment outdoor unit 10 again.
  • the second control unit 54 controls the second refrigerant circuit 200 based on the second evaporation temperature Tei determined by the second evaporation temperature determining unit 52 as in the first embodiment. Further, when the estimated sensible heat load Si is 0, the second control unit 54 fully closes the second expansion device 27 arranged in the indoor unit 21 and the second indoor heat exchanger of the indoor unit 21. The inflow of the refrigerant to 22 may be stopped. Accordingly, the refrigerant flows only in the third indoor heat exchanger 32 disposed in the outside air supply unit 30. At this time, the second indoor fan 28 may also be stopped.
  • the second control unit 54 fully closes the third expansion device 37, and the third indoor heat exchanger The inflow of the refrigerant to 32 may be stopped. That is, when there is no latent heat load and the outside air temperature is low, heat exchange between the first indoor heat exchanger 12 and the third indoor heat exchanger 32 mounted on the outside air supply unit 30 is not performed. Good.
  • the second control unit 54 opens the third expansion device 37 and restarts the flow of the refrigerant into the third indoor heat exchanger 32.
  • the first control unit 53 and the second control unit 54 respectively stop the outdoor adjustment outdoor unit 10 and the internal adjustment outdoor unit 20. Specifically, the first compressor 13 and the first outdoor fan 16 of the outdoor conditioning outdoor unit 10 and the second compressor 23 and the second outdoor fan 26 of the internal conditioning outdoor unit 20 are stopped. When neither the latent heat load nor the sensible heat load is present, the power consumption can be reduced by stopping the external adjustment outdoor unit 10 and the internal adjustment outdoor unit 20.
  • FIG. 13 is a flowchart showing the evaporation temperature determination process in the second embodiment.
  • the evaporation temperature determination process is a process for determining the first evaporation temperature Teo and the second evaporation temperature Tei.
  • the evaporation temperature determination process of FIG. 13 is performed by the control device 5A during the cooling and dehumidifying operation of the air conditioning system 50A.
  • the latent heat load Lo and the sensible heat load Si are calculated (S101).
  • the first evaporation temperature Teo and the second evaporation temperature Tei are respectively determined (S102).
  • the first evaporation temperature Teo is the lower limit Teo_min (S103).
  • the first evaporation temperature Teo is the lower limit Teo_min (S103: YES)
  • the second evaporation temperature Tei_rev that can process the remaining latent heat load Lo_rem is calculated (S105).
  • the remaining latent heat load Lo_rem is obtained by subtracting the latent heat load Lo_min that can be processed when the evaporation temperature of the first indoor heat exchanger 12 is the lower limit Teo_min from the latent heat load Lo.
  • the second evaporation temperature Tei_rev is lower than the second evaporation temperature Tei determined in step S102 (S106).
  • the second evaporation temperature Tei_rev is set as a new second evaporation temperature Tei (S107).
  • 2nd evaporation temperature Tei_rev is more than 2nd evaporation temperature Tei (S106: NO)
  • the first evaporation temperature Teo is not the lower limit Teo_min (S103: NO)
  • the second evaporation temperature Tei is the lower limit Tei_min (S108: YES)
  • the first evaporation temperature Teo_rev that can process the remaining sensible heat load Si_rem is calculated (S110).
  • the remaining sensible heat load Si_rem is obtained by subtracting the sensible heat load Si_min that can be processed when the evaporation temperature of the second indoor heat exchanger 22 and the third indoor heat exchanger 32 is Tei_min from the sensible heat load Si.
  • the first evaporation temperature Teo_rev is lower than the first evaporation temperature Teo calculated in step S102 (S111).
  • the first evaporation temperature Teo_rev is set as a new first evaporation temperature Teo (S112).
  • 1st evaporation temperature Teo_rev is more than 1st evaporation temperature Teo (S111: NO)
  • step S113 it is determined whether or not to end the operation. If the operation is not ended (S113: NO), the process returns to step S101, and the subsequent processing is repeated. When the operation is ended (S113: YES), the cooling and dehumidifying operation by the air conditioning system 50A is stopped.
  • FIG. 14 is a flowchart showing the operation control process in the second embodiment.
  • the operation control process is a process for controlling the operation of the first refrigerant circuit 100 and the second refrigerant circuit 200.
  • the operation control process of FIG. 14 is performed by the control device 5A in parallel with the evaporation temperature determination process during the cooling and dehumidifying operation of the air conditioning system 50A.
  • S201: YES it is determined whether the latent heat load Lo is 0 (S202).
  • the latent heat load Lo is 0 (S202: YES)
  • the internal adjustment outdoor unit 20 and the external adjustment outdoor unit 10 are stopped (S203).
  • the latent heat load Lo is not 0 (S202: NO)
  • the second expansion device 27 is fully closed, and the inflow of the refrigerant to the second indoor heat exchanger 22 is stopped (S204).
  • the sensible heat load Si is not 0 (S201: NO)
  • it is determined whether or not the outside air temperature Toa is lower than the lower limit Toa_min (S206).
  • the external adjustment outdoor unit 10 is stopped, the third expansion device 37 is fully closed, and the refrigerant is supplied to the third indoor heat exchanger 32. The inflow is stopped (S207).
  • the outdoor conditioning outdoor unit 10 is stopped (S208).
  • step S205 when the latent heat load Lo is not 0 (S205: NO), normal control is performed (S209), and the process proceeds to step S113.
  • the normal control the first refrigerant circuit 100 and the second refrigerant circuit 200 are controlled based on the first evaporation temperature Teo and the second evaporation temperature Tei.
  • step S113 it is determined whether or not to end the operation. If the operation is not ended (S113: NO), the process returns to step S201, and the subsequent processing is repeated. When the operation is terminated (S113: YES), the cooling and dehumidifying operation by the air conditioning system 50 is stopped.
  • the same effect as in the first embodiment can be obtained.
  • the control target value of the evaporation temperature of the 1st indoor heat exchanger 12, the 2nd indoor heat exchanger 22, and the 3rd indoor heat exchanger 32 can be determined according to the estimated air-conditioning load. Therefore, while maintaining the comfort of the room R, the power consumption of the air conditioning system 50A can be further suppressed, and the efficiency can be improved.
  • the outside air supply unit 30 may include a plurality of third indoor heat exchangers 32.
  • the said embodiment although it was set as the structure provided with the 2nd expansion device 27 and the 3rd expansion device 37 corresponding to the 2nd indoor heat exchanger 22 and the 3rd indoor heat exchanger 32, respectively, 2nd indoor heat exchange is carried out. It is good also as a structure provided with one expansion apparatus corresponding to both the machine 22 and the 3rd indoor heat exchanger 32.
  • FIG. although it was set as the structure which controls both the external air handler 1 and the internal air handler 2 with the control apparatus 5, the external air machine 1 and the internal air handler 2 are each provided with a control apparatus separately. It is good.
  • the control of the first embodiment and the control of the second embodiment can be appropriately combined.
  • either the first evaporation temperature Teo or the second evaporation temperature Tei may be determined by the method of the first embodiment, and the other may be determined by the method of the second embodiment.
  • Information such as the number of people in the room for estimating the latent heat load Lo and the sensible heat load Si is not limited to information detected by each sensor, and may be input by the user.
  • the upper limit Teo_max of the first evaporation temperature Teo of the evaporation temperature of the first indoor heat exchanger 12 may be set as the second evaporation temperature Tei.
  • the evaporation temperature of the first indoor heat exchanger 12 is higher than the evaporation temperatures of the second indoor heat exchanger 22 and the third indoor heat exchanger 32, the air passing through the first indoor heat exchanger 12 is not dehumidified. Therefore, by setting the upper limit Teo_max as described above, the evaporation temperature of the first indoor heat exchanger 12 is prevented from exceeding the evaporation temperature of the second indoor heat exchanger 22 and the third indoor heat exchanger 32. Can do. Thereby, when the indoor target humidity Xm is reached by dehumidification by the second indoor heat exchanger 22 and the third indoor heat exchanger 32, the outdoor adjustment outdoor unit 10 can be stopped and power consumption can be reduced.
  • the upper limit Teo_max of the first evaporation temperature Teo may be the evaporation temperature of the third indoor heat exchanger 32 detected by the third evaporation temperature sensor 302.
  • the upper limit Teo_max in this way, the first evaporation temperature Teo is prevented from exceeding the evaporation temperature of the third indoor heat exchanger 32 based on the actual evaporation temperature of the third indoor heat exchanger 32. Can do.
  • the outdoor adjustment outdoor unit 10 can be stopped and power consumption can be reduced.

Abstract

This air conditioning system is provided with: a first refrigerant circuit including a first compressor, a first outdoor heat exchanger, and a first indoor heat exchanger; a second refrigerant circuit including a second compressor, a second outdoor heat exchanger, a second indoor heat exchanger, and a third indoor heat exchanger; an indoor machine which is provided with the second indoor heat exchanger and which regulates the temperature of indoor air; and an outside air supplying unit which is provided with the first indoor heat exchanger and the third indoor heat exchanger and which regulates the humidity of outside air that has been taken in.

Description

空気調和システムAir conditioning system
 本発明は、空気調和システムに関するものであり、詳しくは、外調機を備える空気調和システムに関するものである。 The present invention relates to an air conditioning system, and more particularly, to an air conditioning system including an external air conditioner.
 従来、ビル等に設置される空気調和システムにおいて、室内空気と室外空気とを入れ換えることで室内の換気が行われている。この際、室外空気をそのまま室内に導入すると、室内の空調負荷が増大する。例えば、夏季において湿度の高い外気をそのまま導入すると、室内の湿度が上昇し、室内の潜熱負荷が増大する。このような潜熱負荷の増大を防ぐため、取り入れる室外空気の温湿度を外調機によって調整することが知られている。例えば、特許文献1に記載される空気調和システムでは、外調機の蒸発器を備える外気供給ユニットによって、導入される空気の湿度を低下させることが提案されている。 Conventionally, in an air conditioning system installed in a building or the like, indoor ventilation is performed by exchanging indoor air and outdoor air. At this time, if the outdoor air is introduced into the room as it is, the indoor air conditioning load increases. For example, if outdoor air with high humidity is introduced as it is in the summer, the indoor humidity increases and the latent heat load in the room increases. In order to prevent such an increase in latent heat load, it is known to adjust the temperature and humidity of outdoor air taken in by an external air conditioner. For example, in the air conditioning system described in Patent Document 1, it has been proposed to reduce the humidity of air introduced by an outside air supply unit including an evaporator of an external air conditioner.
特開2005-049059号公報JP 2005-049059 A
 特許文献1の空気調和システムのように、外調機の蒸発器によって室外空気の除湿を行う場合、空調負荷を低減するためには外調機を流れる冷媒の蒸発温度を低くして運転する必要がある。この場合、蒸発温度を低くするほど除湿量は増加するものの、外調機における圧縮機の圧縮比は高くなり、消費電力が増大してしまうという課題がある。 When the outdoor air is dehumidified by the evaporator of the external air conditioner as in the air conditioning system of Patent Document 1, it is necessary to operate with a low evaporation temperature of the refrigerant flowing through the external air conditioner in order to reduce the air conditioning load. There is. In this case, although the dehumidification amount increases as the evaporation temperature is lowered, there is a problem that the compression ratio of the compressor in the external air compressor increases and the power consumption increases.
 本発明は、上記のような課題を解決するためになされたもので、消費電力を増大させることなく、室内の空調負荷を低減することができる空気調和システムを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioning system that can reduce an indoor air conditioning load without increasing power consumption.
 本発明に係る空気調和システムは、第1圧縮機、第1室外熱交換器、および第1室内熱交換器を備える第1冷媒回路と、第2圧縮機、第2室外熱交換器、第2室内熱交換器および第3室内熱交換器を備える第2冷媒回路と、第2室内熱交換器を備え、室内空気の温度を調節する室内機と、第1室内熱交換器および第3室内熱交換器を備え、取り入れた室外空気の湿度を調節する外気供給ユニットと、を備える。 An air conditioning system according to the present invention includes a first refrigerant circuit including a first compressor, a first outdoor heat exchanger, and a first indoor heat exchanger; a second compressor; a second outdoor heat exchanger; A second refrigerant circuit comprising an indoor heat exchanger and a third indoor heat exchanger, an indoor unit comprising a second indoor heat exchanger and adjusting the temperature of the indoor air, a first indoor heat exchanger and a third indoor heat An outdoor air supply unit that includes an exchanger and adjusts the humidity of the taken-in outdoor air.
 本発明によれば、外気供給ユニットに、第1室内熱交換器および第3室内熱交換器を備えることで、異なる冷媒回路を構成する2つの熱交換器にて、室外空気を二段階で除湿冷却することができる。これにより、第1室内熱交換器単独で除湿冷却する場合に比べ、第1室内熱交換器の蒸発温度を高くすることができ、空気調和システムの消費電力の増大を抑制しつつ、空調負荷を低減することができる。 According to the present invention, the outdoor air supply unit includes the first indoor heat exchanger and the third indoor heat exchanger, so that the outdoor air is dehumidified in two stages by the two heat exchangers constituting different refrigerant circuits. Can be cooled. Thereby, compared with the case where it dehumidifies and cools only by the 1st indoor heat exchanger, the evaporation temperature of a 1st indoor heat exchanger can be made high, and while suppressing the increase in the power consumption of an air conditioning system, air-conditioning load is reduced. Can be reduced.
実施の形態1における空気調和システムの概略構成図である。1 is a schematic configuration diagram of an air conditioning system according to Embodiment 1. FIG. 実施の形態1における第1冷媒回路の概略構成図である。2 is a schematic configuration diagram of a first refrigerant circuit in Embodiment 1. FIG. 実施の形態1における第2冷媒回路の概略構成図である。FIG. 3 is a schematic configuration diagram of a second refrigerant circuit in the first embodiment. 実施の形態1における外気供給ユニットの概略構成図である。2 is a schematic configuration diagram of an outside air supply unit according to Embodiment 1. FIG. 冷房除湿運転時における外気供給ユニットの空気温湿度の変化を示す空気線図である。It is an air line figure which shows the change of the air temperature humidity of the external air supply unit at the time of air_conditioning | cooling dehumidification driving | operation. 実施の形態1における制御装置の機能ブロック図である。3 is a functional block diagram of a control device in Embodiment 1. FIG. 実施の形態1における第1蒸発温度の決定方法を説明する図である。6 is a diagram for explaining a method for determining a first evaporation temperature in Embodiment 1. FIG. 実施の形態1における第2蒸発温度の決定方法を説明する図である。6 is a diagram illustrating a method for determining a second evaporation temperature in Embodiment 1. FIG. 実施の形態1における蒸発温度決定処理を示すフローチャートである。3 is a flowchart showing an evaporation temperature determination process in the first embodiment. 実施の形態1における運転制御処理を示すフローチャートである。3 is a flowchart showing an operation control process in the first embodiment. 実施の形態2における空気調和システムの概略構成図である。6 is a schematic configuration diagram of an air-conditioning system according to Embodiment 2. FIG. 実施の形態2における制御装置の機能ブロック図である。6 is a functional block diagram of a control device according to Embodiment 2. FIG. 実施の形態2における蒸発温度決定処理を示すフローチャートである。6 is a flowchart showing evaporation temperature determination processing in the second embodiment. 実施の形態2における運転制御処理を示すフローチャートである。6 is a flowchart showing an operation control process in the second embodiment.
 実施の形態1.
 図1は、実施の形態1における空気調和システム50の概略構成図である。空気調和システム50は、室外空気を取り入れ、温度および湿度を調節して室内Rへ吹き出す外調機1と、室内空気を取り入れ、少なくとも温度を調節して室内Rへ吹き出す内調機2とからなる。外調機1は、屋上または地下などに配置される外調室外機10と、室内Rの天井裏Cまたは床下などに配置される外気供給ユニット30とを備える。内調機2は、屋上または地下などに配置される内調室外機20と、室内Rの天井または床などに配置される室内機21とを備える。本実施の形態では、内調機2が2つの室内機21を備えるが、室内機21の数は、1つであっても3つ以上であってもよい。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram of an air-conditioning system 50 according to the first embodiment. The air conditioning system 50 includes an external air conditioner 1 that takes in outdoor air, adjusts temperature and humidity, and blows out the air into the room R, and an internal air conditioner 2 that takes in indoor air, adjusts at least the temperature, and blows out the air into the room R. . The external air conditioner 1 includes an external air conditioner outdoor unit 10 that is disposed on the rooftop or underground, and an outside air supply unit 30 that is disposed on the ceiling behind the room R or under the floor. The internal air conditioner 2 includes an internal air conditioning outdoor unit 20 arranged on the rooftop or underground, and an indoor unit 21 arranged on the ceiling or floor of the room R. In the present embodiment, the internal conditioner 2 includes two indoor units 21, but the number of the indoor units 21 may be one or three or more.
 また、空気調和システム50は、制御装置5と、室内Rの室内温度Taを検出する室内温度センサ201と、室内Rの室内湿度Xaを検出する室内湿度センサ301と、外気温度Toaを検出する外気温度センサ303とを備える。室内温度センサ201、室内湿度センサ301および外気温度センサ303によって検出された室内温度Ta、室内湿度Xaおよび外気温度Toaは、制御装置5に送信される。制御装置5は、例えば集中コントローラであり、室内温度Ta、室内湿度Xaおよび外気温度Toaなどに基づいて、外調機1および内調機2の運転を制御する。制御装置5による制御については、後ほど詳述する。 In addition, the air conditioning system 50 includes the control device 5, the indoor temperature sensor 201 that detects the indoor temperature Ta in the room R, the indoor humidity sensor 301 that detects the indoor humidity Xa in the room R, and the outside air that detects the outdoor air temperature Toa. And a temperature sensor 303. The room temperature Ta, the room humidity Xa, and the outside temperature Toa detected by the room temperature sensor 201, the room humidity sensor 301, and the outside temperature sensor 303 are transmitted to the control device 5. The control device 5 is a centralized controller, for example, and controls the operation of the external air conditioner 1 and the internal air conditioner 2 based on the indoor temperature Ta, the indoor humidity Xa, the outdoor air temperature Toa, and the like. The control by the control device 5 will be described in detail later.
 空気調和システム50は、熱源側に外調室外機10を有する第1冷媒回路100と、熱源側に内調室外機20を有する第2冷媒回路200とを備える。図2は、実施の形態1における第1冷媒回路100の概略構成図である。図2に示すように、第1冷媒回路100は、外調室外機10と、外気供給ユニット30の外調部30aとで構成される。外調室外機10は、第1圧縮機13と、第1四方弁14と、第1室外熱交換器15と、第1室外ファン16とを備える。外気供給ユニット30の外調部30aは、第1膨張装置17と、第1室内熱交換器12と、第1蒸発温度センサ102とを備える。外調室外機10および外調部30aは、冷媒配管40aにより接続される。 The air-conditioning system 50 includes a first refrigerant circuit 100 having an external air conditioning outdoor unit 10 on the heat source side, and a second refrigerant circuit 200 having an internal air conditioning outdoor unit 20 on the heat source side. FIG. 2 is a schematic configuration diagram of the first refrigerant circuit 100 in the first embodiment. As shown in FIG. 2, the first refrigerant circuit 100 is configured by the external air conditioning outdoor unit 10 and the external air conditioning unit 30 a of the external air supply unit 30. The outdoor conditioning outdoor unit 10 includes a first compressor 13, a first four-way valve 14, a first outdoor heat exchanger 15, and a first outdoor fan 16. The outside adjustment unit 30 a of the outside air supply unit 30 includes a first expansion device 17, a first indoor heat exchanger 12, and a first evaporation temperature sensor 102. The external adjustment outdoor unit 10 and the external adjustment unit 30a are connected by a refrigerant pipe 40a.
 第1圧縮機13は、例えば、容量制御可能なインバータ圧縮機等で構成され、ガス冷媒を吸入し、圧縮して高温高圧の状態にして吐出する。第1四方弁14は、第1冷媒回路100における冷媒の流れを切り替える。第1室外熱交換器15および第1室内熱交換器12は、例えば、伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型の熱交換器である。第1膨張装置17は、例えば開度を制御可能な電子膨張弁である。第1室外ファン16は、第1室外熱交換器15に空気を供給する送風機であり、例えばファンモータ(図示せず)によって駆動されるプロペラファンである。第1圧縮機13の運転周波数、第1四方弁14の流路の切替え、第1膨張装置17の開度、および第1室外ファン16の風量は、制御装置5によって制御される。 The first compressor 13 is composed of, for example, an inverter compressor whose capacity can be controlled. The first compressor 13 sucks a gas refrigerant, compresses it, and discharges it in a high-temperature and high-pressure state. The first four-way valve 14 switches the refrigerant flow in the first refrigerant circuit 100. The first outdoor heat exchanger 15 and the first indoor heat exchanger 12 are, for example, cross-fin type fin-and-tube heat exchangers configured by heat transfer tubes and a large number of fins. The first expansion device 17 is an electronic expansion valve whose opening degree can be controlled, for example. The first outdoor fan 16 is a blower that supplies air to the first outdoor heat exchanger 15, and is, for example, a propeller fan that is driven by a fan motor (not shown). The control device 5 controls the operating frequency of the first compressor 13, the switching of the flow path of the first four-way valve 14, the opening degree of the first expansion device 17, and the air volume of the first outdoor fan 16.
 空気調和システム50が冷房除湿運転を行う場合、第1四方弁14は、図2の実線で示す流路に切替えられる。そして、低温低圧のガス状態の冷媒が第1圧縮機13によって圧縮され、高温高圧のガス冷媒となって吐出される。第1圧縮機13から吐出された高温高圧のガス冷媒は、第1四方弁14を介して第1室外熱交換器15へ流入する。第1室外熱交換器15は凝縮器として機能し、第1室外熱交換器15へ流入した高温高圧の冷媒は、室外空気等に対して放熱し、凝縮されて高圧の液冷媒となる。第1室外熱交換器15を流出した高圧の液冷媒は、第1膨張装置17へ流入し、膨張および減圧されて、低温低圧の気液二相冷媒となる。第1膨張装置17から流出した気液二相冷媒は、第1室内熱交換器12へ流入する。第1室内熱交換器12は蒸発器として機能し、第1室内熱交換器12へ流入した気液二相冷媒は、外気供給ユニット30内を流れる空気と熱交換して蒸発し、低温低圧のガス冷媒となる。第1室内熱交換器12から流出したガス冷媒は、第1圧縮機13へ吸入され、再び圧縮される。これにより、外気供給ユニット30内を流れる空気が第1室内熱交換器12によって除湿される。 When the air conditioning system 50 performs the cooling and dehumidifying operation, the first four-way valve 14 is switched to a flow path indicated by a solid line in FIG. The low-temperature and low-pressure gas refrigerant is compressed by the first compressor 13 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the first compressor 13 flows into the first outdoor heat exchanger 15 through the first four-way valve 14. The first outdoor heat exchanger 15 functions as a condenser, and the high-temperature and high-pressure refrigerant flowing into the first outdoor heat exchanger 15 dissipates heat to the outdoor air or the like, and is condensed to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the first outdoor heat exchanger 15 flows into the first expansion device 17 and is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out of the first expansion device 17 flows into the first indoor heat exchanger 12. The first indoor heat exchanger 12 functions as an evaporator, and the gas-liquid two-phase refrigerant flowing into the first indoor heat exchanger 12 evaporates by exchanging heat with the air flowing in the outside air supply unit 30, It becomes a gas refrigerant. The gas refrigerant flowing out from the first indoor heat exchanger 12 is sucked into the first compressor 13 and compressed again. Thereby, the air flowing through the outside air supply unit 30 is dehumidified by the first indoor heat exchanger 12.
 図3は、実施の形態1における第2冷媒回路200の概略構成図である。図3に示すように、第2冷媒回路200は、内調室外機20と、複数の室内機21と、外気供給ユニット30の内調部30bとで構成される。内調室外機20は、第2圧縮機23と、第2四方弁24と、第2室外熱交換器25と、第2室外ファン26とを備える。また、複数の室内機21は、それぞれ、第2室内熱交換器22と、第2膨張装置27と、第2室内ファン28と、第2蒸発温度センサ202とを備える。また、複数の室内機21のうち、少なくとも一つの室内機21の吸込部には、室内温度センサ201が設けられる。外気供給ユニット30の内調部30bは、複数の室内機21と並列に接続され、第3室内熱交換器32と、第3膨張装置37と、第3蒸発温度センサ302とを備える。内調室外機20、室内機21および内調部30bは、冷媒配管40bにより接続される。 FIG. 3 is a schematic configuration diagram of the second refrigerant circuit 200 in the first embodiment. As shown in FIG. 3, the second refrigerant circuit 200 includes an internal adjustment outdoor unit 20, a plurality of indoor units 21, and an internal adjustment unit 30 b of the external air supply unit 30. The internal conditioning outdoor unit 20 includes a second compressor 23, a second four-way valve 24, a second outdoor heat exchanger 25, and a second outdoor fan 26. Each of the plurality of indoor units 21 includes a second indoor heat exchanger 22, a second expansion device 27, a second indoor fan 28, and a second evaporation temperature sensor 202. In addition, an indoor temperature sensor 201 is provided in a suction portion of at least one of the plurality of indoor units 21. The internal adjustment unit 30 b of the outside air supply unit 30 is connected in parallel to the plurality of indoor units 21, and includes a third indoor heat exchanger 32, a third expansion device 37, and a third evaporation temperature sensor 302. The internal adjustment outdoor unit 20, the indoor unit 21, and the internal adjustment unit 30b are connected by a refrigerant pipe 40b.
 第2圧縮機23は、例えば、容量制御可能なインバータ圧縮機等で構成され、ガス冷媒を吸入し、圧縮して高温高圧の状態にして吐出する。第2四方弁24は、第2冷媒回路200における冷媒の流れを切り替える。第2室外熱交換器25、第2室内熱交換器22、および第3室内熱交換器32は、例えば、伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型の熱交換器である。第2膨張装置27および第3膨張装置37は、例えば開度を制御可能な電子膨張弁である。第2室外ファン26および第2室内ファン28は、第2室外熱交換器25および第2室内熱交換器22に空気を供給する送風機であり、例えばファンモータ(図示せず)によって駆動されるプロペラファンである。第2圧縮機23の運転周波数、第2四方弁24の流路の切替え、第2膨張装置27および第3膨張装置37の開度、ならびに第2室外ファン26および第2室内ファン28の風量は、制御装置5によって制御される。 The second compressor 23 is composed of, for example, a capacity-controllable inverter compressor or the like, and sucks a gas refrigerant, compresses it, and discharges it in a high-temperature and high-pressure state. The second four-way valve 24 switches the refrigerant flow in the second refrigerant circuit 200. The second outdoor heat exchanger 25, the second indoor heat exchanger 22, and the third indoor heat exchanger 32 are, for example, a cross-fin type fin-and-tube type constituted by a heat transfer tube and a large number of fins. It is a heat exchanger. The second expansion device 27 and the third expansion device 37 are electronic expansion valves whose opening degree can be controlled, for example. The 2nd outdoor fan 26 and the 2nd indoor fan 28 are air blowers which supply air to the 2nd outdoor heat exchanger 25 and the 2nd indoor heat exchanger 22, for example, a propeller driven by a fan motor (not shown). I am a fan. The operating frequency of the second compressor 23, the switching of the flow path of the second four-way valve 24, the opening degree of the second expansion device 27 and the third expansion device 37, and the air volume of the second outdoor fan 26 and the second indoor fan 28 are as follows. Controlled by the control device 5.
 空気調和システム50が冷房除湿運転を行う場合、第2四方弁24は、図3の実線で示す流路に切替えられる。そして、低温低圧のガス状態の冷媒が第2圧縮機23によって圧縮され、高温高圧のガス冷媒となって吐出される。第2圧縮機23から吐出された高温高圧のガス冷媒は、第2四方弁24を介して第2室外熱交換器25へ流入する。第2室外熱交換器25は凝縮器として機能し、第2室外熱交換器凝縮器25へ流入した高温高圧の冷媒は、室外空気等に対して放熱し、凝縮されて高圧の液冷媒となる。第2室外熱交換器25を流出した高圧の液冷媒は、第2膨張装置27および第3膨張装置37へ流入し、膨張および減圧されて、低温低圧の気液二相冷媒となる。第2膨張装置27および第3膨張装置37から流出した気液二相冷媒は、第2室内熱交換器22および第3室内熱交換器32へ流入する。第2室内熱交換器22および第3室内熱交換器32は蒸発器として機能し、第2室内熱交換器22および第3室内熱交換器32へ流入した気液二相冷媒は、室内空気と熱交換して蒸発し、低温低圧のガス冷媒となる。第2室内熱交換器22および第3室内熱交換器32から流出したガス冷媒は、第2圧縮機23へ吸入され、再び圧縮される。これにより、室内Rの空気が冷却される。 When the air conditioning system 50 performs the cooling and dehumidifying operation, the second four-way valve 24 is switched to a flow path indicated by a solid line in FIG. The low-temperature and low-pressure gas refrigerant is compressed by the second compressor 23 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the second compressor 23 flows into the second outdoor heat exchanger 25 through the second four-way valve 24. The second outdoor heat exchanger 25 functions as a condenser, and the high-temperature and high-pressure refrigerant flowing into the second outdoor heat exchanger condenser 25 dissipates heat to the outdoor air or the like, and is condensed to become a high-pressure liquid refrigerant. . The high-pressure liquid refrigerant that has flowed out of the second outdoor heat exchanger 25 flows into the second expansion device 27 and the third expansion device 37, and is expanded and depressurized to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out of the second expansion device 27 and the third expansion device 37 flows into the second indoor heat exchanger 22 and the third indoor heat exchanger 32. The second indoor heat exchanger 22 and the third indoor heat exchanger 32 function as an evaporator, and the gas-liquid two-phase refrigerant flowing into the second indoor heat exchanger 22 and the third indoor heat exchanger 32 is the indoor air and It evaporates by heat exchange and becomes a low-temperature and low-pressure gas refrigerant. The gas refrigerant flowing out from the second indoor heat exchanger 22 and the third indoor heat exchanger 32 is sucked into the second compressor 23 and compressed again. Thereby, the air in the room R is cooled.
 図4は、実施の形態1における外気供給ユニット30の概略構成図である。外気供給ユニット30は、筐体31と、給気ファン33と、排気ファン34と、全熱交換器35と、第3室内熱交換器32と、第1室内熱交換器12とを備えている。そして、筐体31内には、給気風路310と排気風路320とが互いに独立して形成されている。図4において、給気風路310は実線、排気風路320は破線で示される。 FIG. 4 is a schematic configuration diagram of the outside air supply unit 30 according to the first embodiment. The outside air supply unit 30 includes a housing 31, an air supply fan 33, an exhaust fan 34, a total heat exchanger 35, a third indoor heat exchanger 32, and a first indoor heat exchanger 12. . In the housing 31, an air supply path 310 and an exhaust air path 320 are formed independently of each other. In FIG. 4, the supply air passage 310 is indicated by a solid line, and the exhaust air passage 320 is indicated by a broken line.
 給気風路310は、給気ファン33により室外空気OAを取り入れ、全熱交換器35、第3室内熱交換器32および第1室内熱交換器12を通過させ、調整空気SAとして室内Rに供給する風路である。給気風路310において、第1室内熱交換器12および第3室内熱交換器32は、全熱交換器35の下流側に配置される。また、第3室内熱交換器32は、第1室内熱交換器12の上流側に配置される。排気風路320は、排気ファン34により室内空気RAを取り入れ、全熱交換器35を通過させ、排気EAとして室外に排出する風路である。 The supply air passage 310 takes in the outdoor air OA by the supply fan 33, passes through the total heat exchanger 35, the third indoor heat exchanger 32, and the first indoor heat exchanger 12, and supplies the adjusted air SA to the room R. It is a wind path. In the supply air passage 310, the first indoor heat exchanger 12 and the third indoor heat exchanger 32 are disposed on the downstream side of the total heat exchanger 35. Further, the third indoor heat exchanger 32 is disposed on the upstream side of the first indoor heat exchanger 12. The exhaust air path 320 is an air path that takes in the room air RA through the exhaust fan 34, passes through the total heat exchanger 35, and exhausts the air as the exhaust air EA.
 全熱交換器35は、例えば互いに直交する風路が交互に積層された構造を成すものであり、その風路に室内空気RAと室外空気OAとが通過することで両気流の間で全熱交換を行う。第3室内熱交換器32は、図3に示すように第2冷媒回路200の一部を構成し、冷房除湿運転時には、蒸発器として機能する。また、第1室内熱交換器12は、図2に示すように、第1冷媒回路100の一部を構成し、冷房除湿運転時には蒸発器として機能する。 The total heat exchanger 35 has, for example, a structure in which air paths orthogonal to each other are alternately stacked, and the indoor air RA and the outdoor air OA pass through the air paths so that the total heat is generated between the two air streams. Exchange. The 3rd indoor heat exchanger 32 comprises a part of 2nd refrigerant circuit 200, as shown in FIG. 3, and functions as an evaporator at the time of air_conditioning | cooling dehumidification operation. Moreover, the 1st indoor heat exchanger 12 comprises a part of 1st refrigerant circuit 100, as shown in FIG. 2, and functions as an evaporator at the time of air_conditioning | cooling dehumidification operation.
 また、排気風路320の室内空気RAの吸込部には、室内空気RAの湿度Xaを検出する室内湿度センサ301が配置される。また、給気風路310の室外空気OAの吸込部には、外気温度センサ303が配置される。 Further, an indoor humidity sensor 301 for detecting the humidity Xa of the indoor air RA is disposed in the intake portion of the indoor air RA in the exhaust air passage 320. In addition, an outside air temperature sensor 303 is disposed in a suction portion of the outdoor air OA in the supply air passage 310.
 図5は、冷房除湿運転時における外気供給ユニット30の空気温湿度の変化を示す空気線図である。図5の縦軸は絶対湿度を示し、横軸は乾球温度を示す。まず、給気口から給気風路310に導入された(T0)室外空気OAは、全熱交換器35において排気風路320を流れる室内空気RAと熱交換し、温湿度が低下される(T1)。そして、全熱交換器35の下流側に配置された第3室内熱交換器32により、さらに冷却除湿される(T2)。その後、第1室内熱交換器12により、さらに冷却除湿され(T3)、調整空気SAとして室内Rへ供給される。 FIG. 5 is an air diagram showing changes in the air temperature and humidity of the outside air supply unit 30 during the cooling and dehumidifying operation. The vertical axis in FIG. 5 indicates absolute humidity, and the horizontal axis indicates dry bulb temperature. First, (T0) outdoor air OA introduced into the supply air passage 310 from the air supply port exchanges heat with the indoor air RA flowing through the exhaust air passage 320 in the total heat exchanger 35, and the temperature and humidity are reduced (T1). ). And it cools and dehumidifies further by the 3rd indoor heat exchanger 32 arrange | positioned in the downstream of the total heat exchanger 35 (T2). Thereafter, the air is further dehumidified by the first indoor heat exchanger 12 (T3) and supplied to the room R as the regulated air SA.
 すなわち、本実施の形態においては、内調室外機20を熱源とする第3室内熱交換器32と外調室外機10を熱源とする第1室内熱交換器12との2段階で室外空気OAを冷却除湿する。これにより、第1室内熱交換器12のみで室外空気OAを冷却除湿する場合に比べて、外調機1の潜熱負荷が軽減するため、外調機1の蒸発温度を高くすることができる。その結果、外調機1の消費電力の増加を抑制しつつ、室内Rにおける空調負荷を低減することができる。 In other words, in the present embodiment, the outdoor air OA is divided into two stages, that is, the third indoor heat exchanger 32 using the internal adjustment outdoor unit 20 as a heat source and the first indoor heat exchanger 12 using the external adjustment outdoor unit 10 as a heat source. Cool and dehumidify. Thereby, compared with the case where the outdoor air OA is cooled and dehumidified only by the first indoor heat exchanger 12, the latent heat load of the external air conditioner 1 is reduced, so that the evaporation temperature of the external air conditioner 1 can be increased. As a result, the air conditioning load in the room R can be reduced while suppressing an increase in power consumption of the external air conditioner 1.
 続いて、空気調和システム50が冷房除湿運転を行う場合の制御装置5による制御について説明する。図6は、実施の形態1の制御装置5の機能ブロック図である。図6に示すように、制御装置5は、第1蒸発温度決定部51と、第2蒸発温度決定部52と、第1制御部53と、第2制御部54とを有する。制御装置5は、専用のハードウェア、またはメモリ(図示しない)に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。制御装置5が専用のハードウェアである場合、制御装置5は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御装置5が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 Subsequently, the control by the control device 5 when the air conditioning system 50 performs the cooling and dehumidifying operation will be described. FIG. 6 is a functional block diagram of the control device 5 according to the first embodiment. As shown in FIG. 6, the control device 5 includes a first evaporation temperature determination unit 51, a second evaporation temperature determination unit 52, a first control unit 53, and a second control unit 54. The control device 5 is a dedicated hardware or a CPU (also referred to as a central processing unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, or a processor) that executes a program stored in a memory (not shown). Consists of. When the control device 5 is dedicated hardware, the control device 5 is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable こ れ ら Gate Array), or a combination thereof. Applicable. Each functional unit realized by the control device 5 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
 制御装置5がCPUの場合、制御装置5が実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置5の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。なお、制御装置5の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 When the control device 5 is a CPU, each function executed by the control device 5 is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in a memory. The CPU implements each function of the control device 5 by reading and executing a program stored in the memory. Here, the memory is a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM. Note that part of the functions of the control device 5 may be realized by dedicated hardware, and part of it may be realized by software or firmware.
 第1蒸発温度決定部51は、第1冷媒回路100における第1室内熱交換器12の蒸発温度の制御目標値となる第1蒸発温度Teoを決定する。詳しくは、第1蒸発温度決定部51は、室内湿度センサ301により検出された室内湿度Xaと、室内目標湿度Xmとの差であるΔXに応じて、第1蒸発温度Teoを決定する。室内目標湿度Xmは、利用者によって予め設定され、制御装置5のメモリに記憶される。第1蒸発温度決定部51は、ΔXが大きいときは潜熱負荷が大きいため、第1蒸発温度Teoを下げ、ΔXが小さいときは潜熱負荷が小さいため、第1蒸発温度Teoを上げる。 The first evaporating temperature determining unit 51 determines the first evaporating temperature Teo as a control target value for the evaporating temperature of the first indoor heat exchanger 12 in the first refrigerant circuit 100. Specifically, the first evaporation temperature determination unit 51 determines the first evaporation temperature Teo according to ΔX, which is the difference between the indoor humidity Xa detected by the indoor humidity sensor 301 and the indoor target humidity Xm. The indoor target humidity Xm is preset by the user and stored in the memory of the control device 5. The first evaporation temperature determination unit 51 decreases the first evaporation temperature Teo because the latent heat load is large when ΔX is large, and increases the first evaporation temperature Teo because the latent heat load is small when ΔX is small.
 図7は、実施の形態1における第1蒸発温度Teoの決定方法を説明する図である。第1蒸発温度決定部51は、まず、第1蒸発温度Teoの上限Teo_maxおよび下限Teo_minを予め設定する。そして、ΔXに応じて上限Teo_maxおよび下限Teo_minの範囲内で第1蒸発温度Teoを決定する。 FIG. 7 is a diagram illustrating a method for determining the first evaporation temperature Teo in the first embodiment. First evaporating temperature determination unit 51 first presets upper limit Teo_max and lower limit Teo_min of first evaporating temperature Teo. Then, the first evaporation temperature Teo is determined within the range of the upper limit Teo_max and the lower limit Teo_min according to ΔX.
 詳しくは、第1蒸発温度決定部51は、ΔX<0のとき、第1蒸発温度Teo=Teo_maxとし、ΔX>ΔXのとき、第1蒸発温度Teo=Teo_minとする。また、第1蒸発温度決定部51は、0≦ΔX≦ΔXのとき、第1蒸発温度TeoとΔXとが比例関係にあるとして、第1蒸発温度Teo=α×ΔXとする。この場合の比例定数αは、(Teo_max-Teo_min)/ΔXである。また、ΔXは室内目標湿度Xmとの許容される差を示す閾値であり、予め設定しメモリに記憶しておいてもよいし、利用者により任意に変更できるようにしてもよい。 Specifically, the first evaporating temperature determining section 51, [Delta] X <0, the first evaporation temperature Teo = Teo_max, ΔX> when the [Delta] X 1, and the first evaporation temperature Teo = Teo_min. The first evaporating temperature determining section 51, when 0 ≦ ΔX ≦ ΔX 1, the first evaporation temperature Teo and [Delta] X is a is proportional to a first evaporation temperature Teo = α × ΔX. This is a proportional constant α when a (Teo_max-Teo_min) / ΔX 1 . Further, [Delta] X 1 is a threshold indicating the acceptable difference between the indoor target humidity Xm, may be stored and set in advance in the memory, it may be changed arbitrarily by the user.
 第2蒸発温度決定部52は、第2冷媒回路200における第2室内熱交換器22および第3室内熱交換器32の蒸発温度の制御目標値となる第2蒸発温度Teiを決定する。詳しくは、第2蒸発温度決定部52は、室内温度センサ201により検出された室内温度Taと室内目標温度Tmとの差であるΔTに応じて、第2蒸発温度Teiを決定する。室内目標温度Tmは、利用者によって予め設定され、制御装置5のメモリに記憶される。第2蒸発温度決定部52は、ΔTが大きい場合は顕熱負荷が高いため、第2蒸発温度Teiを下げ、ΔTが小さい場合は顕熱負荷が低いため、第2蒸発温度Teiを上げる。 The second evaporation temperature determination unit 52 determines a second evaporation temperature Tei that is a control target value for the evaporation temperature of the second indoor heat exchanger 22 and the third indoor heat exchanger 32 in the second refrigerant circuit 200. Specifically, the second evaporation temperature determination unit 52 determines the second evaporation temperature Tei according to ΔT, which is the difference between the indoor temperature Ta detected by the indoor temperature sensor 201 and the indoor target temperature Tm. The indoor target temperature Tm is preset by the user and stored in the memory of the control device 5. The second evaporation temperature determining unit 52 decreases the second evaporation temperature Tei when ΔT is large, so the second evaporation temperature Tei is lowered, and when ΔT is small, the sensible heat load is low, and therefore increases the second evaporation temperature Tei.
 また、室内温度センサ201が室内Rに複数配置されている場合、第2蒸発温度決定部52は、各室内温度センサ201により検出した室内温度Taと室内目標温度Tmとの差ΔTのうち、最大のΔTの値に応じて、第2蒸発温度Teiを決定する。また、第2蒸発温度決定部52は、室内温度センサ201毎に室内目標温度Tmが設定される場合も、最大のΔTの値に応じて第2蒸発温度Teiを決定する。これにより、顕熱能力不足になることを抑制できる。 Further, when a plurality of room temperature sensors 201 are arranged in the room R, the second evaporation temperature determination unit 52 determines the maximum of the differences ΔT between the room temperature Ta detected by the room temperature sensors 201 and the room target temperature Tm. The second evaporation temperature Tei is determined according to the value of ΔT. Further, even when the indoor target temperature Tm is set for each indoor temperature sensor 201, the second evaporation temperature determining unit 52 determines the second evaporation temperature Tei according to the maximum ΔT value. Thereby, it can suppress that sensible heat capability becomes insufficient.
 図8は、実施の形態1における第2蒸発温度Teiの決定方法を説明する図である。第2蒸発温度決定部52は、まず、第2蒸発温度Teiの上限Tei_maxおよび下限Tei_minを予め設定する。そして、ΔTに応じて上限Tei_maxおよび下限Tei_minの範囲内で第2蒸発温度Teiを決定する。 FIG. 8 is a diagram for explaining a method for determining the second evaporation temperature Tei in the first embodiment. First, the second evaporation temperature determination unit 52 presets an upper limit Tei_max and a lower limit Tei_min of the second evaporation temperature Tei. Then, the second evaporation temperature Tei is determined within the range of the upper limit Tei_max and the lower limit Tei_min according to ΔT.
 詳しくは、第2蒸発温度決定部52は、ΔT<0のとき、第2蒸発温度Tei=Tei_maxとし、ΔT>ΔTのとき、第2蒸発温度Tei=Tei_minとする。また、第2蒸発温度決定部52は、0≦ΔT≦ΔTのとき、第2蒸発温度TeiとΔTとが比例関係にあるとして、第2蒸発温度Tei=β×ΔTとする。この場合の比例定数βは、(Tei_max-Tei_min)/ΔTである。また、ΔTは室内目標温度Tmとの許容される差を示す閾値であり、予め設定しメモリに記憶しておいてもよいし、利用者により任意に変更できるようにしてもよい。 Specifically, the second evaporating temperature determining section 52, [Delta] T <0, the second evaporation temperature Tei = Tei_max, ΔT> when the [Delta] T 1, the second evaporation temperature Tei = Tei_min. The second evaporation temperature determination unit 52 sets the second evaporation temperature Tei = β × ΔT, assuming that the second evaporation temperature Tei and ΔT are in a proportional relationship when 0 ≦ ΔT ≦ ΔT 1 . In this case, the proportionality constant β is (Tei_max−Tei_min) / ΔT 1 . ΔT 1 is a threshold value indicating an allowable difference from the indoor target temperature Tm, and may be set in advance and stored in a memory, or may be arbitrarily changed by a user.
 また、第1蒸発温度決定部51および第2蒸発温度決定部52は、室内Rの状態に応じて、第1蒸発温度Teoおよび第2蒸発温度Teiをそれぞれ変更してもよい。例えば、第1蒸発温度決定部51は、第2蒸発温度決定部52で決定される第2蒸発温度Teiが下限Tei_minであっても、差ΔTが閾値ΔT以上の場合であって、且つ第1蒸発温度Teoが下限Teo_minよりも大きい場合に、第1蒸発温度Teoを下限Teo_minへ変更してもよい。すなわち、第2室内熱交換器22および第3室内熱交換器32のみで顕熱負荷を処理できず、第1室内熱交換器12の蒸発温度を下げることができる場合には、第1蒸発温度決定部51は、第1蒸発温度Teoを下限Teo_minまで下げてもよい。これにより、第1室内熱交換器12における顕熱処理能力が向上し、顕熱能力不足となることが抑制される。 Further, the first evaporation temperature determination unit 51 and the second evaporation temperature determination unit 52 may change the first evaporation temperature Teo and the second evaporation temperature Tei, respectively, according to the state of the room R. For example, the first evaporation temperature determination unit 51 is a case where the difference ΔT is equal to or greater than the threshold ΔT 1 even if the second evaporation temperature Tei determined by the second evaporation temperature determination unit 52 is the lower limit Tei_min. When the 1 evaporation temperature Teo is larger than the lower limit Teo_min, the first evaporation temperature Teo may be changed to the lower limit Teo_min. That is, when the sensible heat load cannot be processed only by the second indoor heat exchanger 22 and the third indoor heat exchanger 32 and the evaporation temperature of the first indoor heat exchanger 12 can be lowered, the first evaporation temperature The determination unit 51 may lower the first evaporation temperature Teo to the lower limit Teo_min. Thereby, the sensible heat processing capability in the 1st indoor heat exchanger 12 improves, and it becomes suppressed that sensible heat capability becomes insufficient.
 また、第2蒸発温度決定部52は、第1蒸発温度決定部51で決定される第1蒸発温度Teoが下限Teo_minであっても、差ΔXが閾値ΔX以上の場合であって、且つ第2蒸発温度Teiが下限Tei_minよりも大きい場合は、第2蒸発温度Teiを下限Tei_minへ変更してもよい。すなわち、第1室内熱交換器12のみで潜熱負荷を処理できず、第2室内熱交換器22および第3室内熱交換器32の蒸発温度を下げることができる場合には、第2蒸発温度決定部52は、第2蒸発温度Teiを下限Tei_minまで低下させてもよい。これにより、第2室内熱交換器22および第3室内熱交換器32における潜熱処理能力が向上し、潜熱能力不足となることが抑制される。 The second evaporating temperature determining section 52, also the first evaporation temperature Teo is a lower limit Teo_min determined by first evaporating temperature determining section 51, even if the difference [Delta] X is the threshold value [Delta] X 1 or more, and the When the 2 evaporation temperature Tei is larger than the lower limit Tei_min, the second evaporation temperature Tei may be changed to the lower limit Tei_min. That is, when the latent heat load cannot be processed only by the first indoor heat exchanger 12 and the evaporation temperatures of the second indoor heat exchanger 22 and the third indoor heat exchanger 32 can be lowered, the second evaporation temperature is determined. The part 52 may reduce the second evaporation temperature Tei to the lower limit Tei_min. Thereby, the latent heat processing capability in the 2nd indoor heat exchanger 22 and the 3rd indoor heat exchanger 32 improves, and it is suppressed that a latent heat capability becomes insufficient.
 図6に戻って、第1制御部53は、第1蒸発温度決定部51により決定される第1蒸発温度Teoに基づいて、第1冷媒回路100を制御する。具体的には、第1制御部53は、第1蒸発温度センサ102で検出される蒸発温度が、第1蒸発温度Teoとなるように、第1圧縮機13の運転周波数を制御する。 6, the first control unit 53 controls the first refrigerant circuit 100 based on the first evaporation temperature Teo determined by the first evaporation temperature determining unit 51. Specifically, the first control unit 53 controls the operating frequency of the first compressor 13 so that the evaporation temperature detected by the first evaporation temperature sensor 102 becomes the first evaporation temperature Teo.
 また、第1制御部53は、第1蒸発温度Teoが上限Teo_maxであっても、ΔXが下限値ΔX_minより小さい場合は、外調室外機10を停止してもよい。この場合、外調室外機10の第1圧縮機13および第1室外ファン16が停止される。下限値ΔXminは、例えば0であり、予め設定されメモリに記憶されてもよいし、利用者により任意に変更できるようにしてもよい。これにより、室外空気OAの除湿が不要な場合には、外調室外機10を停止して消費電力を削減することができる。第1制御部53は、ΔXが下限値ΔX_min以上となった場合には、外調室外機10を再度起動する。 Further, the first control unit 53 may stop the outdoor adjustment outdoor unit 10 when ΔX is smaller than the lower limit value ΔX_min even if the first evaporation temperature Teo is the upper limit Teo_max. In this case, the first compressor 13 and the first outdoor fan 16 of the outdoor adjustment outdoor unit 10 are stopped. The lower limit value ΔXmin is, for example, 0, and may be set in advance and stored in the memory, or may be arbitrarily changed by the user. Thereby, when the dehumidification of the outdoor air OA is unnecessary, the outdoor adjustment outdoor unit 10 can be stopped to reduce power consumption. The first control unit 53 activates the outdoor adjustment outdoor unit 10 again when ΔX becomes equal to or greater than the lower limit value ΔX_min.
 第2制御部54は、第2蒸発温度決定部52により決定される蒸発温度の第2蒸発温度Teiに基づき、第2冷媒回路200を制御する。具体的には、第2制御部54は、第2蒸発温度センサ202および第3蒸発温度センサ302で検出される蒸発温度が、第2蒸発温度Teiとなるように、第2圧縮機23の運転周波数を制御する。 The second control unit 54 controls the second refrigerant circuit 200 based on the second evaporation temperature Tei of the evaporation temperature determined by the second evaporation temperature determining unit 52. Specifically, the second control unit 54 operates the second compressor 23 so that the evaporation temperatures detected by the second evaporation temperature sensor 202 and the third evaporation temperature sensor 302 become the second evaporation temperature Tei. Control the frequency.
 また、第2制御部54は、第2蒸発温度Teiが上限Tei_maxであっても、ΔTが下限値ΔT_minより小さい場合は、室内機21の第2膨張装置27を全閉とし、第2室内熱交換器22への冷媒の流入を止めてもよい。この場合は、第3室内熱交換器32のみに冷媒が流される。なお、このとき、第2室内ファン28も停止させてもよい。下限値ΔTminは、例えば0であり、予め設定されメモリに記憶されてもよいし、利用者により任意に変更できるようにしてもよい。また、第2制御部54は、ΔTが下限値ΔT_min以上となった場合には、第2膨張装置27を開き、第2室内熱交換器22への冷媒の流入を再開する。 Further, even if the second evaporation temperature Tei is the upper limit Tei_max, the second control unit 54 fully closes the second expansion device 27 of the indoor unit 21 when ΔT is smaller than the lower limit value ΔT_min, and the second indoor heat The inflow of the refrigerant to the exchanger 22 may be stopped. In this case, the refrigerant flows only through the third indoor heat exchanger 32. At this time, the second indoor fan 28 may also be stopped. The lower limit value ΔTmin is 0, for example, and may be set in advance and stored in the memory, or may be arbitrarily changed by the user. Moreover, the 2nd control part 54 opens the 2nd expansion apparatus 27, and restarts the inflow of the refrigerant | coolant to the 2nd indoor heat exchanger 22, when (DELTA) T becomes more than lower limit (DELTA) T_min.
 さらに、第2制御部54は、第1蒸発温度Teoが上限Teo_maxであっても、ΔXが下限値ΔX_minより小さい場合であって、且つ外気温度センサ303で検出される外気温度Toaが下限Toa_minよりも低い場合は、第3膨張装置37を全閉とし、第3室内熱交換器32への冷媒の流入を止めてもよい。下限Toa_minは、予め設定されメモリに記憶されてもよいし、利用者により任意に変更できるようにしてもよい。すなわち、潜熱負荷がなく、外気温度も低い場合には、外気供給ユニット30に搭載されている第1室内熱交換器12および第3室内熱交換器32での熱交換を行わないようにしてもよい。また、第2制御部54は、外気温度Toaが下限Toa_min以上となった場合には、第3膨張装置37を開き、第3室内熱交換器32への冷媒の流入を再開する。 Further, the second controller 54 is configured such that, even when the first evaporation temperature Teo is the upper limit Teo_max, ΔX is smaller than the lower limit value ΔX_min, and the outside air temperature Toa detected by the outside air temperature sensor 303 is less than the lower limit Toa_min. If it is lower, the third expansion device 37 may be fully closed to stop the flow of the refrigerant into the third indoor heat exchanger 32. The lower limit Toa_min may be set in advance and stored in a memory, or may be arbitrarily changed by a user. That is, when there is no latent heat load and the outside air temperature is low, heat exchange between the first indoor heat exchanger 12 and the third indoor heat exchanger 32 mounted on the outside air supply unit 30 is not performed. Good. Moreover, the 2nd control part 54 opens the 3rd expansion apparatus 37, and restarts the inflow of the refrigerant | coolant to the 3rd indoor heat exchanger 32, when the outside temperature Toa becomes more than the minimum Toa_min.
 また、第1制御部53および第2制御部54は、第1蒸発温度Teoが上限Teo_maxであっても、ΔXが下限値ΔX_minより小さい場合であって、且つ第2蒸発温度Teiが上限Tei_maxであっても、ΔTが下限値ΔT_minより小さい場合には、外調室外機10および内調室外機20をそれぞれ停止してもよい。具体的には、外調室外機10の第1圧縮機13および第1室外ファン16、ならびに内調室外機20の第2圧縮機23および第2室外ファン26が停止される。潜熱負荷も顕熱負荷もない場合には、外調室外機10および内調室外機20を停止することで、消費電力を削減することができる。 Further, the first control unit 53 and the second control unit 54 are configured such that even when the first evaporation temperature Teo is the upper limit Teo_max, ΔX is smaller than the lower limit value ΔX_min, and the second evaporation temperature Tei is the upper limit Tei_max. Even when ΔT is smaller than the lower limit value ΔT_min, the outdoor-controlled outdoor unit 10 and the internal-controlled outdoor unit 20 may be stopped. Specifically, the first compressor 13 and the first outdoor fan 16 of the outdoor conditioning outdoor unit 10 and the second compressor 23 and the second outdoor fan 26 of the internal conditioning outdoor unit 20 are stopped. When neither the latent heat load nor the sensible heat load is present, the power consumption can be reduced by stopping the external adjustment outdoor unit 10 and the internal adjustment outdoor unit 20.
 図9は、実施の形態1における蒸発温度決定処理を示すフローチャートである。蒸発温度決定処理は、第1蒸発温度Teoと、第2蒸発温度Teiとを決定する処理である。図9の蒸発温度決定処理は、空気調和システム50の冷房除湿運転時に、制御装置5で実施される。本処理では、まず差ΔTおよび差ΔXが算出される(S11)。差ΔTは、室内温度Taから室内目標温度Tmを減算して算出され、差ΔXは、室内湿度Xaから室内目標湿度Xmを減算して算出される。そして、図7および図8を参照して説明した方法で、第1蒸発温度Teoと、第2蒸発温度Teiとが決定される(S12)。 FIG. 9 is a flowchart showing the evaporation temperature determination process in the first embodiment. The evaporation temperature determination process is a process for determining the first evaporation temperature Teo and the second evaporation temperature Tei. The evaporation temperature determination process in FIG. 9 is performed by the control device 5 during the cooling and dehumidifying operation of the air conditioning system 50. In this process, first, the difference ΔT and the difference ΔX are calculated (S11). The difference ΔT is calculated by subtracting the indoor target temperature Tm from the indoor temperature Ta, and the difference ΔX is calculated by subtracting the indoor target humidity Xm from the indoor humidity Xa. Then, the first evaporation temperature Teo and the second evaporation temperature Tei are determined by the method described with reference to FIGS. 7 and 8 (S12).
 続いて、第1蒸発温度Teoが下限Teo_minであるか否かが判断される(S13)。そして、第1蒸発温度Teoが下限Teo_minである場合(S13:YES)、差ΔXが閾値ΔX以上であるか否かが判断される(S14)。 Subsequently, it is determined whether or not the first evaporation temperature Teo is the lower limit Teo_min (S13). Then, when the first evaporation temperature Teo is lower Teo_min (S13: YES), whether the difference [Delta] X is the threshold value [Delta] X 1 or is determined (S14).
 差ΔXがΔX以上である場合(S14:YES)、第2蒸発温度Teiが下限Tei_minより大きいか否かが判断される(S15)。そして、第2蒸発温度Teiが下限Tei_minより大きい場合(S15:YES)、第2蒸発温度Teiが下限Tei_minへ変更される(S16)。これにより、第2室内熱交換器22および第3室内熱交換器32における潜熱処理能力が向上し、潜熱能力不足になることを抑制する。なお、差ΔXが閾値ΔXを下回る場合(S14:NO)、または第2蒸発温度Teiが既に下限Tei_minである場合(S15:NO)は、ステップS20へ移行する。 When the difference ΔX is greater than or equal to ΔX 1 (S14: YES), it is determined whether or not the second evaporation temperature Tei is higher than the lower limit Tei_min (S15). When the second evaporation temperature Tei is higher than the lower limit Tei_min (S15: YES), the second evaporation temperature Tei is changed to the lower limit Tei_min (S16). Thereby, the latent heat processing capability in the 2nd indoor heat exchanger 22 and the 3rd indoor heat exchanger 32 improves, and it suppresses that latent heat capability becomes insufficient. In the case where the difference [Delta] X is below the threshold value ΔX 1 (S14: NO), or if the second evaporation temperature Tei is already lower Tei_min (S15: NO), the process proceeds to step S20.
 また、第1蒸発温度Teoが下限Teo_minでない場合(S13:NO)、第2蒸発温度Teiが下限Tei_minであるか否かが判断される(S17)。そして、第2蒸発温度Teiが下限Tei_minである場合(S17:YES)、差ΔTが閾値ΔT以上であるか否かが判断される(S18)。差ΔTが閾値ΔT以上である場合(S18:YES)、第1蒸発温度Teoが下限Teo_minへ変更される(S19)。これにより、第1室内熱交換器12における顕熱処理能力が向上し、顕熱能力不足になることを抑制する。なお、第2蒸発温度Teiが下限Tei_minでない場合(S17:NO)、または差ΔTが閾値ΔTを下回る場合(S18:NO)は、ステップS20へ移行する。 If the first evaporation temperature Teo is not the lower limit Teo_min (S13: NO), it is determined whether the second evaporation temperature Tei is the lower limit Tei_min (S17). Then, when the second evaporation temperature Tei is lower Tei_min (S17: YES), whether the difference [Delta] T is the threshold value [Delta] T 1 or more is determined (S18). If the difference [Delta] T is the threshold value [Delta] T 1 or more (S18: YES), the first evaporation temperature Teo is changed to the lower limit Teo_min (S19). Thereby, the sensible heat processing capability in the 1st indoor heat exchanger 12 improves, and it suppresses that sensible heat capability becomes insufficient. Incidentally, when the second evaporation temperature Tei is not lower Tei_min: If (S17 NO), or the difference [Delta] T is below the threshold value ΔT 1 (S18: NO), the process proceeds to step S20.
 ステップS20では、運転を終了するか否かが判断され、終了しない場合は(S20:NO)、ステップS11へ戻り、以降の処理が繰り返される。運転を終了する場合は(S20:YES)、空気調和システム50による冷房除湿運転が停止される。 In step S20, it is determined whether or not to end the operation. If the operation is not ended (S20: NO), the process returns to step S11 and the subsequent processing is repeated. When the operation is finished (S20: YES), the cooling and dehumidifying operation by the air conditioning system 50 is stopped.
 図10は、実施の形態1における運転制御処理を示すフローチャートである。運転制御処理は、第1冷媒回路100と第2冷媒回路200との運転を制御する処理である。図10の運転制御処理は、空気調和システム50の冷房除湿運転時に、蒸発温度決定処理の後、または蒸発温度決定処理と並行して制御装置5により実施される。本処理では、まず、第2蒸発温度Teiが上限Tei_maxであって、且つ差ΔTが下限値ΔT_minより小さいか否かが判断される(S21)。そして、第2蒸発温度Teiが上限Tei_maxであって、且つ差ΔTが下限値ΔT_minより小さい場合(S21:YES)、第1蒸発温度Teoが上限Teo_maxであって、且つ差ΔXが下限値ΔX_minより小さいか否かが判断される(S22)。 FIG. 10 is a flowchart showing the operation control process in the first embodiment. The operation control process is a process for controlling the operation of the first refrigerant circuit 100 and the second refrigerant circuit 200. The operation control process of FIG. 10 is performed by the control device 5 after the evaporation temperature determination process or in parallel with the evaporation temperature determination process during the cooling and dehumidifying operation of the air conditioning system 50. In this process, first, it is determined whether or not the second evaporation temperature Tei is the upper limit Tei_max and the difference ΔT is smaller than the lower limit value ΔT_min (S21). When the second evaporation temperature Tei is the upper limit Tei_max and the difference ΔT is smaller than the lower limit value ΔT_min (S21: YES), the first evaporation temperature Teo is the upper limit Teo_max and the difference ΔX is less than the lower limit value ΔX_min. It is determined whether or not it is small (S22).
 第1蒸発温度Teoが上限Teo_maxであって、且つ差ΔXが下限値ΔX_minより小さい場合(S22:YES)、外調室外機10および内調室外機20が停止される(S23)。一方、第1蒸発温度Teoが上限Teo_maxでない場合、または差ΔXが下限値ΔX_min以上である場合(S22:NO)、第2膨張装置27が全閉とされ、第2室内熱交換器22への冷媒の流入が停止される(S24)。 When the first evaporating temperature Teo is the upper limit Teo_max and the difference ΔX is smaller than the lower limit ΔX_min (S22: YES), the outdoor adjustment outdoor unit 10 and the internal adjustment outdoor unit 20 are stopped (S23). On the other hand, when the first evaporation temperature Teo is not the upper limit Teo_max, or when the difference ΔX is equal to or greater than the lower limit value ΔX_min (S22: NO), the second expansion device 27 is fully closed, and the second indoor heat exchanger 22 The refrigerant inflow is stopped (S24).
 また、第2蒸発温度Teiが上限Tei_maxでない場合、または差ΔTが下限値ΔT_min以上である場合(S21:NO)、第1蒸発温度Teoが上限Teo_maxであって、且つ差ΔXが下限値ΔX_minより小さいか否かが判断される(S25)。そして、第1蒸発温度Teoが上限Teo_maxであって、且つΔXが下限値ΔX_minより小さい場合(S25:YES)、外気温度Toaが下限Toa_minより低いか否かが判断される(S26)。 Further, when the second evaporation temperature Tei is not the upper limit Tei_max or when the difference ΔT is equal to or higher than the lower limit value ΔT_min (S21: NO), the first evaporation temperature Teo is the upper limit Teo_max and the difference ΔX is less than the lower limit value ΔX_min. It is determined whether or not it is small (S25). When the first evaporation temperature Teo is the upper limit Teo_max and ΔX is smaller than the lower limit value ΔX_min (S25: YES), it is determined whether or not the outside air temperature Toa is lower than the lower limit Toa_min (S26).
 そして、外気温度Toaが下限Toa_minより低い場合(S26:YES)、外調室外機10が停止されるとともに、第3膨張装置37が全閉とされ、第3室内熱交換器32への冷媒の流入が止められる(S27)。一方、外気温度Toaが下限Toa_min以上である場合(S26:NO)、外調室外機10が停止される(S28)。また、ステップS25において、第1蒸発温度Teoが上限Teo_maxでない場合、またはΔXが下限値ΔX_min以上である場合(S25:NO)は、通常制御が行われ(S29)、ステップS20へ移行する。通常制御では、第1蒸発温度Teoおよび第2蒸発温度Teiに基づいて、第1冷媒回路100および第2冷媒回路200が制御される。 When the outside air temperature Toa is lower than the lower limit Toa_min (S26: YES), the external adjustment outdoor unit 10 is stopped, the third expansion device 37 is fully closed, and the refrigerant is supplied to the third indoor heat exchanger 32. Inflow is stopped (S27). On the other hand, when the outside air temperature Toa is equal to or higher than the lower limit Toa_min (S26: NO), the outdoor conditioning outdoor unit 10 is stopped (S28). In step S25, when the first evaporation temperature Teo is not the upper limit Teo_max, or when ΔX is equal to or higher than the lower limit value ΔX_min (S25: NO), normal control is performed (S29), and the process proceeds to step S20. In the normal control, the first refrigerant circuit 100 and the second refrigerant circuit 200 are controlled based on the first evaporation temperature Teo and the second evaporation temperature Tei.
 ステップS20では、運転を終了するか否かが判断され、終了しない場合は(S20:NO)、ステップS21へ戻り、以降の処理が繰り返される。運転を終了する場合は(S20:YES)、空気調和システム50による冷房除湿運転が停止される。 In step S20, it is determined whether or not to end the operation. If not (S20: NO), the process returns to step S21, and the subsequent processing is repeated. When the operation is finished (S20: YES), the cooling and dehumidifying operation by the air conditioning system 50 is stopped.
 以上のように、実施の形態1では、第1室内熱交換器12の給気方向の上流側に第3室内熱交換器32を設けることで、第1室内熱交換器12に流入する空気の温湿度を低下させることができる。すなわち、実施の形態1では、異なる冷媒回路を構成し、異なる蒸発温度で制御される2つの熱交換器にて、室外空気が二段階で除湿冷却される。そのため、第1室内熱交換器12のみで室外空気OAの温湿度を下げる場合に比べて、第1室内熱交換器12の蒸発温度を高くすることができる。外調機1および内調機2における処理熱量が一定であるのに対し、第1室内熱交換器12の蒸発温度を高くできることで、外調機1のCOPが向上し、空気調和システム50のCOPも向上する。また、第1室内熱交換器12の上流に第3室内熱交換器32を設けることで、内調室外機20が処理する熱量は増え、内調室外機20の消費電力は増加する。しかしながら、内調室外機20の消費電力の増加以上に、外調室外機10の消費電力が削減され、運転効率を向上させることができるため、空気調和システム50全体での消費電力を低減することができる。 As described above, in the first embodiment, by providing the third indoor heat exchanger 32 on the upstream side of the first indoor heat exchanger 12 in the air supply direction, the air flowing into the first indoor heat exchanger 12 can be obtained. Temperature and humidity can be reduced. That is, in Embodiment 1, outdoor air is dehumidified and cooled in two stages by two heat exchangers that are configured with different refrigerant circuits and controlled at different evaporation temperatures. For this reason, the evaporation temperature of the first indoor heat exchanger 12 can be increased as compared with the case where the temperature and humidity of the outdoor air OA are reduced only by the first indoor heat exchanger 12. While the amount of heat treated in the external air conditioner 1 and the internal air conditioner 2 is constant, the evaporation temperature of the first indoor heat exchanger 12 can be increased, so that the COP of the external air conditioner 1 is improved and the air conditioning system 50 COP is also improved. In addition, by providing the third indoor heat exchanger 32 upstream of the first indoor heat exchanger 12, the amount of heat processed by the internal adjustment outdoor unit 20 increases, and the power consumption of the internal adjustment outdoor unit 20 increases. However, since the power consumption of the outdoor conditioning outdoor unit 10 can be reduced and the operation efficiency can be improved more than the increase in the power consumption of the internal conditioning outdoor unit 20, the power consumption of the entire air conditioning system 50 can be reduced. Can do.
 また、上記のように室内Rおよび外気温湿度の状態に応じて、蒸発温度の制御目標値を設定し、運転制御を行うことで、外調機1および内調機2を効率よく運転することができる。これにより、空気調和システム50全体での消費電力をさらに低減することができる。 Moreover, according to the state of the room R and the outside air temperature humidity as described above, the control target value of the evaporation temperature is set and the operation control is performed, so that the external air conditioner 1 and the internal air conditioner 2 are efficiently operated. Can do. Thereby, the power consumption in the air conditioning system 50 whole can further be reduced.
 実施の形態2.
 続いて、実施の形態2について説明する。図11は、実施の形態2における空気調和システム50Aの概略構成図である。実施の形態2の空気調和システム50Aは、人検出手段401および外気温湿度センサ304を備える点と、制御装置5Aにおける制御とにおいて実施の形態1と相違する。空気調和システム50Aのその他の構成については、実施の形態1と同様である。
Embodiment 2. FIG.
Next, the second embodiment will be described. FIG. 11 is a schematic configuration diagram of an air conditioning system 50A according to the second embodiment. The air conditioning system 50A according to the second embodiment is different from the first embodiment in that the human detection unit 401 and the outside air temperature / humidity sensor 304 are provided, and the control in the control device 5A. Other configurations of the air conditioning system 50A are the same as those in the first embodiment.
 人検出手段401は、室内Rへの人の入退室を管理する入退室管理システム、室内Rに配置したカメラ、もしくは室内Rに配置した赤外線センサまたはCO濃度センサなどのセンサである。人検出手段401は、既知の方法で室内Rの在室人数を検出し、制御装置5Aへ送信する。外気温湿度センサ304は、給気風路310の室外空気OAの吸込部に配置され、室外空気OAの温度(外気温度Toa)および湿度(外気湿度Xoa)を検出し、制御装置5Aへ送信する。 The person detecting means 401 is an entrance / exit management system that manages the entrance / exit of a person into the room R, a camera arranged in the room R, or an infrared sensor or a CO 2 concentration sensor arranged in the room R. The person detecting means 401 detects the number of people in the room R by a known method and transmits it to the control device 5A. The outside air temperature / humidity sensor 304 is disposed in a suction portion of the outdoor air OA in the supply air passage 310, detects the temperature (outside air temperature Toa) and the humidity (outside air humidity Xoa) of the outdoor air OA, and transmits the detected temperature to the control device 5A.
 図12は、実施の形態2における制御装置5Aの機能ブロック図である。実施の形態2の第1蒸発温度決定部51および第2蒸発温度決定部52は、潜熱負荷Loおよび顕熱負荷Siに基づいて、第1蒸発温度Teoおよび第2蒸発温度Teiを決定する。潜熱負荷Loは第1室内熱交換器12で処理すべき潜熱負荷であり、顕熱負荷Siは、第2室内熱交換器22および第3室内熱交換器32で処理すべき顕熱負荷である。 FIG. 12 is a functional block diagram of the control device 5A in the second embodiment. The first evaporating temperature determining unit 51 and the second evaporating temperature determining unit 52 of the second embodiment determine the first evaporating temperature Teo and the second evaporating temperature Tei based on the latent heat load Lo and the sensible heat load Si. The latent heat load Lo is a latent heat load to be processed by the first indoor heat exchanger 12, and the sensible heat load Si is a sensible heat load to be processed by the second indoor heat exchanger 22 and the third indoor heat exchanger 32. .
 詳しくは、第1蒸発温度決定部51は、外気湿度Xoaおよび在室人数などから既知の方法を用いて室内Rにおける潜熱負荷Ltを求める。在室人数は、人検出手段401によって検出され、外気湿度Xoaは、外気温湿度センサ304によって検出される。また、第1蒸発温度決定部51は、第2蒸発温度Tei_tempから、第2室内熱交換器22および第3室内熱交換器32による潜熱処理能力を算出する。ここで用いられる第2蒸発温度Tei_tempは、潜熱負荷Loを求めるための暫定的なものであり、実施の形態1で説明したように、室内温度Taと、室内目標温度Tmとの差であるΔTに応じて求められる。 Specifically, the first evaporation temperature determination unit 51 obtains the latent heat load Lt in the room R using a known method from the outside air humidity Xoa and the number of people in the room. The number of people in the room is detected by the person detecting means 401, and the outside air humidity Xoa is detected by the outside air temperature / humidity sensor 304. In addition, the first evaporation temperature determination unit 51 calculates the latent heat treatment capability by the second indoor heat exchanger 22 and the third indoor heat exchanger 32 from the second evaporation temperature Tei_temp. The second evaporation temperature Tei_temp used here is a provisional value for obtaining the latent heat load Lo, and as described in the first embodiment, ΔT, which is the difference between the room temperature Ta and the room target temperature Tm. Depending on the requirements.
 そして、第1蒸発温度決定部51は、潜熱負荷Ltと、第2室内熱交換器22および第3室内熱交換器32の潜熱処理能力とに基づき、潜熱負荷Loを推定する。第2室内熱交換器22および第3室内熱交換器32の潜熱処理能力は、第2室内熱交換器22および第3室内熱交換器32によって処理される顕熱負荷である。そのため、潜熱負荷Ltから第2室内熱交換器22および第3室内熱交換器32によって処理される潜熱負荷を減算することで、第1室内熱交換器12が処理する必要のある潜熱負荷Loが推定される。そして、第1蒸発温度決定部51は、室内湿度Xaと外気供給ユニット30の風量とから、潜熱負荷Loを満たすことができる蒸発温度を算出し、第1蒸発温度Teoとする。外気供給ユニット30の風量は、給気ファン33の回転数によって求められる。 And the 1st evaporation temperature determination part 51 estimates the latent heat load Lo based on the latent heat load Lt and the latent heat processing capability of the 2nd indoor heat exchanger 22 and the 3rd indoor heat exchanger 32. FIG. The latent heat treatment capacity of the second indoor heat exchanger 22 and the third indoor heat exchanger 32 is a sensible heat load processed by the second indoor heat exchanger 22 and the third indoor heat exchanger 32. Therefore, by subtracting the latent heat load processed by the second indoor heat exchanger 22 and the third indoor heat exchanger 32 from the latent heat load Lt, the latent heat load Lo that the first indoor heat exchanger 12 needs to process is reduced. Presumed. Then, the first evaporation temperature determination unit 51 calculates an evaporation temperature that can satisfy the latent heat load Lo from the indoor humidity Xa and the air volume of the outside air supply unit 30, and sets it as the first evaporation temperature Teo. The air volume of the outside air supply unit 30 is obtained from the rotation speed of the air supply fan 33.
 このとき、第1蒸発温度決定部51は、第1蒸発温度Teoの上限Teo_maxおよび下限Teo_minを予め設定する。そして、潜熱負荷Loを処理するために必要な蒸発温度が上限Teo_maxを上回る場合には、第1蒸発温度Teoを上限Teo_maxとし、必要な蒸発温度が下限Teo_minを下回る場合には、第1蒸発温度Teoを下限Teo_minとする。例えば、第1蒸発温度決定部51は、潜熱負荷Loが0の場合は、第1蒸発温度Teoを上限Teo_maxとする。 At this time, the first evaporation temperature determination unit 51 sets an upper limit Teo_max and a lower limit Teo_min of the first evaporation temperature Teo in advance. When the evaporation temperature necessary for processing the latent heat load Lo exceeds the upper limit Teo_max, the first evaporation temperature Teo is set as the upper limit Teo_max. When the necessary evaporation temperature is lower than the lower limit Teo_min, the first evaporation temperature Let Teo be the lower limit Teo_min. For example, when the latent heat load Lo is 0, the first evaporation temperature determination unit 51 sets the first evaporation temperature Teo as the upper limit Teo_max.
 第2蒸発温度決定部52は、外気温度Toa、室内目標温度Tm、建物仕様、および在室人数などから、既知の方法を用いて顕熱負荷Stを求める。ここで、建物仕様は、外壁、窓および照明器具などに関する情報を含み、制御装置5Aのメモリに予め記憶される。また、在室人数は、人検出手段401によって検出される。そして、第2蒸発温度決定部52は、第1蒸発温度Teo_tempから第1室内熱交換器12による顕熱処理能力を算出する。ここで用いられる第1蒸発温度Teo_tempは、顕熱負荷Siを求めるための暫定的なものであり、実施の形態1で説明したように、室内湿度Xaと、室内目標湿度Xmとの差であるΔXに応じて求められる。 The second evaporating temperature determination unit 52 obtains the sensible heat load St using a known method from the outside air temperature Toa, the indoor target temperature Tm, the building specifications, the number of people in the room, and the like. Here, the building specification includes information on the outer wall, the window, the lighting fixture, and the like, and is stored in advance in the memory of the control device 5A. The number of people in the room is detected by the person detecting means 401. And the 2nd evaporation temperature determination part 52 calculates the sensible heat processing capability by the 1st indoor heat exchanger 12 from 1st evaporation temperature Teo_temp. The first evaporation temperature Teo_temp used here is a provisional value for obtaining the sensible heat load Si and is the difference between the indoor humidity Xa and the indoor target humidity Xm as described in the first embodiment. It is determined according to ΔX.
 そして、第2蒸発温度決定部52は、顕熱負荷Stと、第1室内熱交換器12の顕熱処理能力とに基づき、顕熱負荷Siを推定する。第1室内熱交換器12による顕熱処理能力は、第1室内熱交換器12によって処理される顕熱負荷である。そのため、顕熱負荷Stから第1室内熱交換器12によって処理される顕熱負荷を減算することで、第2室内熱交換器22および第3室内熱交換器32が処理する必要のある顕熱負荷Siが推定される。そして、第2蒸発温度決定部52は、室内温度Taと室内機21の風量とから、顕熱負荷Siに応じて、顕熱負荷Siを満たすことができる蒸発温度を算出し、第2蒸発温度Teiとする。室内機21の風量は、第2室内ファン28の回転数によって求められる。 Then, the second evaporation temperature determination unit 52 estimates the sensible heat load Si based on the sensible heat load St and the sensible heat treatment capability of the first indoor heat exchanger 12. The sensible heat treatment capacity of the first indoor heat exchanger 12 is a sensible heat load processed by the first indoor heat exchanger 12. Therefore, the sensible heat that the second indoor heat exchanger 22 and the third indoor heat exchanger 32 need to process by subtracting the sensible heat load processed by the first indoor heat exchanger 12 from the sensible heat load St. The load Si is estimated. Then, the second evaporation temperature determining unit 52 calculates an evaporation temperature that can satisfy the sensible heat load Si according to the sensible heat load Si from the indoor temperature Ta and the air volume of the indoor unit 21, and the second evaporation temperature. Let it be Tei. The air volume of the indoor unit 21 is obtained from the rotational speed of the second indoor fan 28.
 また、第2蒸発温度決定部52は、第2蒸発温度Teiの上限Tei_maxおよび下限Tei_minを予め設定する。そして、顕熱負荷Siを処理するために必要な蒸発温度が上限Tei_maxを上回る場合には、第2蒸発温度Teiを上限Tei_maxとし、必要な蒸発温度が下限Tei_minを下回る場合には、第2蒸発温度Teiを下限Tei_minとする。例えば、第2蒸発温度決定部52は、顕熱負荷Siが0の場合は、第2蒸発温度Teiを上限Tei_maxとする。 Also, the second evaporation temperature determining unit 52 sets an upper limit Tei_max and a lower limit Tei_min of the second evaporation temperature Tei in advance. When the evaporation temperature necessary for processing the sensible heat load Si exceeds the upper limit Tei_max, the second evaporation temperature Tei is set as the upper limit Tei_max. When the necessary evaporation temperature is lower than the lower limit Tei_min, the second evaporation is performed. The temperature Tei is set as the lower limit Tei_min. For example, when the sensible heat load Si is 0, the second evaporation temperature determination unit 52 sets the second evaporation temperature Tei as the upper limit Tei_max.
 また、第1蒸発温度決定部51および第2蒸発温度決定部52は、室内Rの状態に応じて、第1蒸発温度Teoおよび第2蒸発温度Teiをそれぞれ変更してもよい。例えば、第1蒸発温度決定部51は、第2蒸発温度Teiが下限Tei_minであっても、推定した顕熱負荷Siを処理できない場合には、第1蒸発温度Teoを変更してもよい。具体的には、第1蒸発温度決定部51は、第2蒸発温度Teiが下限Tei_minの場合に処理できる顕熱負荷Si_minを求める。そして、推定した顕熱負荷Siから処理可能な顕熱負荷Si_minを減算した残りの顕熱負荷Si_remを求める。そして、残りの顕熱負荷Si_remを処理することができる第1蒸発温度Teo_revを求める。第1蒸発温度決定部51は、潜熱負荷Loに基づいて決定した第1蒸発温度Teoと、残りの顕熱負荷Si_remから求めた第1蒸発温度Teo_revとを比較し、低い方を新たな第1蒸発温度Teoとする。なお、第1蒸発温度Teoは下限Teo_minより大きいものとする。これにより、第1室内熱交換器12における顕熱処理能力が向上し、顕熱能力不足となることが抑制される。 Further, the first evaporation temperature determining unit 51 and the second evaporation temperature determining unit 52 may change the first evaporation temperature Teo and the second evaporation temperature Tei, respectively, according to the state of the room R. For example, the first evaporation temperature determination unit 51 may change the first evaporation temperature Teo when the estimated sensible heat load Si cannot be processed even if the second evaporation temperature Tei is the lower limit Tei_min. Specifically, the first evaporation temperature determination unit 51 obtains a sensible heat load Si_min that can be processed when the second evaporation temperature Tei is the lower limit Tei_min. Then, the remaining sensible heat load Si_rem is obtained by subtracting the sensible heat load Si_min that can be processed from the estimated sensible heat load Si. And the 1st evaporation temperature Teo_rev which can process the remaining sensible heat load Si_rem is calculated | required. The first evaporation temperature determination unit 51 compares the first evaporation temperature Teo determined based on the latent heat load Lo with the first evaporation temperature Teo_rev obtained from the remaining sensible heat load Si_rem, and sets the lower one as the new first The evaporation temperature is Teo. Note that the first evaporation temperature Teo is higher than the lower limit Teo_min. Thereby, the sensible heat processing capability in the 1st indoor heat exchanger 12 improves, and it becomes suppressed that sensible heat capability becomes insufficient.
 第2蒸発温度決定部52は、第1蒸発温度Teoが下限Teo_minであっても、推定した潜熱負荷Loを満たせない場合には、第2蒸発温度Teiを変更してもよい。具体的には、第2蒸発温度決定部52は、第1蒸発温度Teoが下限Teo_minの場合に処理できる潜熱負荷Lo_minを求める。そして、推定した潜熱負荷Loから処理できる潜熱負荷Lo_minを減算した残りの潜熱負荷Lo_remを求める。そして、残りの潜熱負荷Lo_remを処理することができる第2蒸発温度Tei_revを求める。第2蒸発温度決定部52は、顕熱負荷Siに基づいて決定した第2蒸発温度Teiと、残りの潜熱負荷Lo_remから求めた第2蒸発温度Tei_revとを比較し、低い方を新たな第2蒸発温度Teiとする。なお、第2蒸発温度Teiは下限Tei_minより大きいものとする。これにより、第2室内熱交換器22および第3室内熱交換器32における潜熱処理能力が向上し、潜熱能力不足となることが抑制される。 The second evaporation temperature determination unit 52 may change the second evaporation temperature Tei when the estimated latent heat load Lo cannot be satisfied even if the first evaporation temperature Teo is the lower limit Teo_min. Specifically, the second evaporation temperature determination unit 52 obtains a latent heat load Lo_min that can be processed when the first evaporation temperature Teo is the lower limit Teo_min. Then, the remaining latent heat load Lo_rem is obtained by subtracting the latent heat load Lo_min that can be processed from the estimated latent heat load Lo. And the 2nd evaporation temperature Tei_rev which can process the remaining latent heat load Lo_rem is calculated | required. The second evaporation temperature determination unit 52 compares the second evaporation temperature Tei determined based on the sensible heat load Si and the second evaporation temperature Tei_rev obtained from the remaining latent heat load Lo_rem, and sets the lower one as the new second temperature. Evaporation temperature Tei. The second evaporation temperature Tei is higher than the lower limit Tei_min. Thereby, the latent heat processing capability in the 2nd indoor heat exchanger 22 and the 3rd indoor heat exchanger 32 improves, and it is suppressed that a latent heat capability becomes insufficient.
 第1制御部53は、実施の形態1と同様に、第1蒸発温度決定部51により決定される第1蒸発温度Teoに基づき、第1冷媒回路100を制御する。また、第1制御部53は、推定される潜熱負荷Loが0の場合には、外調室外機10を停止してもよい。これにより、第1室内熱交換器12による除湿が不要な場合には、外調室外機10を停止して消費電力を削減することができる。第1制御部53は、潜熱負荷Loが0を上回った場合には、外調室外機10を再度起動する。 The first control unit 53 controls the first refrigerant circuit 100 based on the first evaporation temperature Teo determined by the first evaporation temperature determining unit 51 as in the first embodiment. Moreover, the 1st control part 53 may stop the external adjustment outdoor unit 10, when the estimated latent heat load Lo is 0. Thereby, when the dehumidification by the 1st indoor heat exchanger 12 is unnecessary, the external adjustment outdoor unit 10 can be stopped and power consumption can be reduced. When the latent heat load Lo exceeds 0, the first control unit 53 activates the outdoor adjustment outdoor unit 10 again.
 第2制御部54は、実施の形態1と同様に、第2蒸発温度決定部52により決定される第2蒸発温度Teiに基づき、第2冷媒回路200を制御する。また、第2制御部54は、推定される顕熱負荷Siが0の場合には、室内機21に配置された第2膨張装置27を全閉として、室内機21の第2室内熱交換器22への冷媒の流入を止めてもよい。これにより、外気供給ユニット30に配置された第3室内熱交換器32のみに冷媒が流れる。なお、このとき、第2室内ファン28も停止させてもよい。 The second control unit 54 controls the second refrigerant circuit 200 based on the second evaporation temperature Tei determined by the second evaporation temperature determining unit 52 as in the first embodiment. Further, when the estimated sensible heat load Si is 0, the second control unit 54 fully closes the second expansion device 27 arranged in the indoor unit 21 and the second indoor heat exchanger of the indoor unit 21. The inflow of the refrigerant to 22 may be stopped. Accordingly, the refrigerant flows only in the third indoor heat exchanger 32 disposed in the outside air supply unit 30. At this time, the second indoor fan 28 may also be stopped.
 また、第2制御部54は、推定される潜熱負荷Loが0であって、且つ外気温度Toaが下限Toa_minより低い場合には、第3膨張装置37を全閉とし、第3室内熱交換器32への冷媒の流入を止めてもよい。すなわち、潜熱負荷がなく、外気温度が低い場合には、外気供給ユニット30に搭載されている第1室内熱交換器12および第3室内熱交換器32での熱交換を行わないようにしてもよい。また、第2制御部54は、外気温度Toaが下限Toa_minを上回る場合には、第3膨張装置37を開き、第3室内熱交換器32への冷媒の流入を再開する。 Further, when the estimated latent heat load Lo is 0 and the outside air temperature Toa is lower than the lower limit Toa_min, the second control unit 54 fully closes the third expansion device 37, and the third indoor heat exchanger The inflow of the refrigerant to 32 may be stopped. That is, when there is no latent heat load and the outside air temperature is low, heat exchange between the first indoor heat exchanger 12 and the third indoor heat exchanger 32 mounted on the outside air supply unit 30 is not performed. Good. In addition, when the outside air temperature Toa exceeds the lower limit Toa_min, the second control unit 54 opens the third expansion device 37 and restarts the flow of the refrigerant into the third indoor heat exchanger 32.
 また、第1制御部53および第2制御部54は、推定される顕熱負荷Siおよび潜熱負荷Loが両方とも0である場合、外調室外機10および内調室外機20をそれぞれ停止する。具体的には、外調室外機10の第1圧縮機13および第1室外ファン16、ならびに内調室外機20の第2圧縮機23および第2室外ファン26が停止される。潜熱負荷も顕熱負荷もない場合には、外調室外機10および内調室外機20を停止することで、消費電力を削減することができる。 In addition, when both the estimated sensible heat load Si and the latent heat load Lo are 0, the first control unit 53 and the second control unit 54 respectively stop the outdoor adjustment outdoor unit 10 and the internal adjustment outdoor unit 20. Specifically, the first compressor 13 and the first outdoor fan 16 of the outdoor conditioning outdoor unit 10 and the second compressor 23 and the second outdoor fan 26 of the internal conditioning outdoor unit 20 are stopped. When neither the latent heat load nor the sensible heat load is present, the power consumption can be reduced by stopping the external adjustment outdoor unit 10 and the internal adjustment outdoor unit 20.
 図13は、実施の形態2における蒸発温度決定処理を示すフローチャートである。蒸発温度決定処理は、第1蒸発温度Teoと、第2蒸発温度Teiとを決定する処理である。図13の蒸発温度決定処理は、空気調和システム50Aの冷房除湿運転時に、制御装置5Aで実施される。本処理では、まず潜熱負荷Loおよび顕熱負荷Siが算出される(S101)。そして、算出された潜熱負荷Loおよび顕熱負荷Siに基づいて、第1蒸発温度Teoと第2蒸発温度Teiとがそれぞれ決定される(S102)。 FIG. 13 is a flowchart showing the evaporation temperature determination process in the second embodiment. The evaporation temperature determination process is a process for determining the first evaporation temperature Teo and the second evaporation temperature Tei. The evaporation temperature determination process of FIG. 13 is performed by the control device 5A during the cooling and dehumidifying operation of the air conditioning system 50A. In this process, first, the latent heat load Lo and the sensible heat load Si are calculated (S101). Then, based on the calculated latent heat load Lo and sensible heat load Si, the first evaporation temperature Teo and the second evaporation temperature Tei are respectively determined (S102).
 続いて、第1蒸発温度Teoが下限Teo_minであるか否かが判断される(S103)。そして、第1蒸発温度Teoが下限Teo_minである場合(S103:YES)、第1蒸発温度Teoにて潜熱負荷Loを処理できるか否かが判断される(S104)。そして、潜熱負荷Loを処理できない場合(S104:NO)、残りの潜熱負荷Lo_remを処理することができる第2蒸発温度Tei_revが算出される(S105)。残りの潜熱負荷Lo_remは、潜熱負荷Loから第1室内熱交換器12の蒸発温度が下限Teo_minの場合に処理できる潜熱負荷Lo_minを減算したものである。 Subsequently, it is determined whether or not the first evaporation temperature Teo is the lower limit Teo_min (S103). When the first evaporation temperature Teo is the lower limit Teo_min (S103: YES), it is determined whether or not the latent heat load Lo can be processed at the first evaporation temperature Teo (S104). When the latent heat load Lo cannot be processed (S104: NO), the second evaporation temperature Tei_rev that can process the remaining latent heat load Lo_rem is calculated (S105). The remaining latent heat load Lo_rem is obtained by subtracting the latent heat load Lo_min that can be processed when the evaporation temperature of the first indoor heat exchanger 12 is the lower limit Teo_min from the latent heat load Lo.
 そして、第2蒸発温度Tei_revが、ステップS102で決定された第2蒸発温度Teiよりも低いか否かが判断される(S106)。第2蒸発温度Tei_revが第2蒸発温度Teiよりも低い場合(S106:YES)、第2蒸発温度Tei_revを新たな第2蒸発温度Teiとする(S107)。一方、第2蒸発温度Tei_revが第2蒸発温度Tei以上である場合(S106:NO)、第2蒸発温度Teiを変更することなく、ステップS113へ移行する。 Then, it is determined whether or not the second evaporation temperature Tei_rev is lower than the second evaporation temperature Tei determined in step S102 (S106). When the second evaporation temperature Tei_rev is lower than the second evaporation temperature Tei (S106: YES), the second evaporation temperature Tei_rev is set as a new second evaporation temperature Tei (S107). On the other hand, when 2nd evaporation temperature Tei_rev is more than 2nd evaporation temperature Tei (S106: NO), it transfers to step S113, without changing 2nd evaporation temperature Tei.
 また、第1蒸発温度Teoが下限Teo_minでない場合(S103:NO)、第2蒸発温度Teiが下限のTei_minであるか否かが判断される(S108)。そして、第2蒸発温度Teiが下限のTei_minである場合(S108:YES)、第2蒸発温度Teiにて顕熱負荷Siを処理できるか否かが判断される(S109)。そして、顕熱負荷Siを処理できない場合(S109:NO)、残りの顕熱負荷Si_remを処理することができる第1蒸発温度Teo_revが算出される(S110)。残りの顕熱負荷Si_remは、顕熱負荷Siから第2室内熱交換器22および第3室内熱交換器32の蒸発温度がTei_minの場合に処理できる顕熱負荷Si_minを減算したものである。 If the first evaporation temperature Teo is not the lower limit Teo_min (S103: NO), it is determined whether the second evaporation temperature Tei is the lower limit Tei_min (S108). When the second evaporation temperature Tei is the lower limit Tei_min (S108: YES), it is determined whether or not the sensible heat load Si can be processed at the second evaporation temperature Tei (S109). When the sensible heat load Si cannot be processed (S109: NO), the first evaporation temperature Teo_rev that can process the remaining sensible heat load Si_rem is calculated (S110). The remaining sensible heat load Si_rem is obtained by subtracting the sensible heat load Si_min that can be processed when the evaporation temperature of the second indoor heat exchanger 22 and the third indoor heat exchanger 32 is Tei_min from the sensible heat load Si.
 そして、第1蒸発温度Teo_revが、ステップS102で算出された第1蒸発温度Teoよりも低いか否かが判断される(S111)。ここで、第1蒸発温度Teo_revが第1蒸発温度Teoよりも低い場合(S111:YES)、第1蒸発温度Teo_revを新たな第1蒸発温度Teoとする(S112)。一方、第1蒸発温度Teo_revが第1蒸発温度Teo以上である場合(S111:NO)、第1蒸発温度Teoを変更することなく、ステップS113へ移行する。 Then, it is determined whether or not the first evaporation temperature Teo_rev is lower than the first evaporation temperature Teo calculated in step S102 (S111). Here, when the first evaporation temperature Teo_rev is lower than the first evaporation temperature Teo (S111: YES), the first evaporation temperature Teo_rev is set as a new first evaporation temperature Teo (S112). On the other hand, when 1st evaporation temperature Teo_rev is more than 1st evaporation temperature Teo (S111: NO), it transfers to step S113, without changing 1st evaporation temperature Teo.
 ステップS113では、運転を終了するか否かが判断され、終了しない場合は(S113:NO)、ステップS101へ戻り、以降の処理が繰り返される。運転を終了する場合は(S113:YES)、空気調和システム50Aによる冷房除湿運転が停止される。 In step S113, it is determined whether or not to end the operation. If the operation is not ended (S113: NO), the process returns to step S101, and the subsequent processing is repeated. When the operation is ended (S113: YES), the cooling and dehumidifying operation by the air conditioning system 50A is stopped.
 図14は、実施の形態2における運転制御処理を示すフローチャートである。運転制御処理は、第1冷媒回路100と第2冷媒回路200との運転を制御する処理である。図14の運転制御処理は、空気調和システム50Aの冷房除湿運転時に、蒸発温度決定処理と並行して制御装置5Aにより実施される。本処理では、まず、顕熱負荷Siが0であるか否かが判断される(S201)。そして、顕熱負荷Siが0の場合(S201:YES)、潜熱負荷Loが0であるか否かが判断される(S202)。潜熱負荷Loが0の場合(S202:YES)、内調室外機20および外調室外機10が停止される(S203)。一方潜熱負荷Loが0でない場合(S202:NO)、第2膨張装置27が全閉とされ、第2室内熱交換器22への冷媒の流入が停止される(S204)。 FIG. 14 is a flowchart showing the operation control process in the second embodiment. The operation control process is a process for controlling the operation of the first refrigerant circuit 100 and the second refrigerant circuit 200. The operation control process of FIG. 14 is performed by the control device 5A in parallel with the evaporation temperature determination process during the cooling and dehumidifying operation of the air conditioning system 50A. In this process, first, it is determined whether or not the sensible heat load Si is 0 (S201). When the sensible heat load Si is 0 (S201: YES), it is determined whether the latent heat load Lo is 0 (S202). When the latent heat load Lo is 0 (S202: YES), the internal adjustment outdoor unit 20 and the external adjustment outdoor unit 10 are stopped (S203). On the other hand, when the latent heat load Lo is not 0 (S202: NO), the second expansion device 27 is fully closed, and the inflow of the refrigerant to the second indoor heat exchanger 22 is stopped (S204).
 また、顕熱負荷Siが0でない場合(S201:NO)、潜熱負荷Loが0であるか否かが判断される(S205)。そして、潜熱負荷Loが0の場合(S205:YES)、外気温度Toaが下限Toa_minより低いか否かが判断される(S206)。そして、外気温度Toaが下限Toa_minより低い場合(S206:YES)、外調室外機10が停止されるとともに、第3膨張装置37が全閉とされ、第3室内熱交換器32への冷媒の流入が止められる(S207)。一方、外気温度Toaが下限Toa_min以上である場合(S206:NO)、外調室外機10が停止される(S208)。 If the sensible heat load Si is not 0 (S201: NO), it is determined whether or not the latent heat load Lo is 0 (S205). When the latent heat load Lo is 0 (S205: YES), it is determined whether or not the outside air temperature Toa is lower than the lower limit Toa_min (S206). When the outside air temperature Toa is lower than the lower limit Toa_min (S206: YES), the external adjustment outdoor unit 10 is stopped, the third expansion device 37 is fully closed, and the refrigerant is supplied to the third indoor heat exchanger 32. The inflow is stopped (S207). On the other hand, when the outside air temperature Toa is equal to or higher than the lower limit Toa_min (S206: NO), the outdoor conditioning outdoor unit 10 is stopped (S208).
 また、S205において、潜熱負荷Loが0でない場合(S205:NO)は、通常制御が行われ(S209)、ステップS113へ移行する。通常制御では、第1蒸発温度Teoおよび第2蒸発温度Teiに基づいて、第1冷媒回路100および第2冷媒回路200が制御される。 In S205, when the latent heat load Lo is not 0 (S205: NO), normal control is performed (S209), and the process proceeds to step S113. In the normal control, the first refrigerant circuit 100 and the second refrigerant circuit 200 are controlled based on the first evaporation temperature Teo and the second evaporation temperature Tei.
 ステップS113では、運転を終了するか否かが判断され、終了しない場合は(S113:NO)、ステップS201へ戻り、以降の処理が繰り返される。運転を終了する場合は(S113:YES)、空気調和システム50による冷房除湿運転が停止される。 In step S113, it is determined whether or not to end the operation. If the operation is not ended (S113: NO), the process returns to step S201, and the subsequent processing is repeated. When the operation is terminated (S113: YES), the cooling and dehumidifying operation by the air conditioning system 50 is stopped.
 以上、実施の形態2においても、実施の形態1と同様の効果が得られる。また、実施の形態2では、推定される空調負荷に応じて第1室内熱交換器12、第2室内熱交換器22および第3室内熱交換器32の蒸発温度の制御目標値を決定できる。そのため、室内Rの快適性を維持しつつ、空気調和システム50Aの消費電力をさらに抑えることができ、効率を向上させることができる。 As described above, also in the second embodiment, the same effect as in the first embodiment can be obtained. Moreover, in Embodiment 2, the control target value of the evaporation temperature of the 1st indoor heat exchanger 12, the 2nd indoor heat exchanger 22, and the 3rd indoor heat exchanger 32 can be determined according to the estimated air-conditioning load. Therefore, while maintaining the comfort of the room R, the power consumption of the air conditioning system 50A can be further suppressed, and the efficiency can be improved.
 以上、本発明の実施の形態について図面を参照して説明したが、本発明の具体的な構成はこれに限られるものでなく、発明の要旨を逸脱しない範囲で変更可能である。例えば、外気供給ユニット30に複数の第3室内熱交換器32を備えてもよい。また、上記実施の形態では、第2室内熱交換器22および第3室内熱交換器32にそれぞれ対応する第2膨張装置27および第3膨張装置37を備える構成としたが、第2室内熱交換器22および第3室内熱交換器32の両方に対応する1つの膨張装置を備える構成としてもよい。さらに、上記実施の形態では、外調機1および内調機2の両方を制御装置5にて制御する構成としたが、外調機1および内調機2が各々個別に制御装置を備える構成としてもよい。 The embodiment of the present invention has been described above with reference to the drawings. However, the specific configuration of the present invention is not limited to this, and can be changed without departing from the scope of the invention. For example, the outside air supply unit 30 may include a plurality of third indoor heat exchangers 32. Moreover, in the said embodiment, although it was set as the structure provided with the 2nd expansion device 27 and the 3rd expansion device 37 corresponding to the 2nd indoor heat exchanger 22 and the 3rd indoor heat exchanger 32, respectively, 2nd indoor heat exchange is carried out. It is good also as a structure provided with one expansion apparatus corresponding to both the machine 22 and the 3rd indoor heat exchanger 32. FIG. Furthermore, in the said embodiment, although it was set as the structure which controls both the external air handler 1 and the internal air handler 2 with the control apparatus 5, the external air machine 1 and the internal air handler 2 are each provided with a control apparatus separately. It is good.
 また、実施の形態1の制御および実施の形態2の制御は適宜組み合わせることが可能である。例えば、第1蒸発温度Teoまたは第2蒸発温度Teiの何れか一方を実施の形態1の方法で決定し、他方を実施の形態2の方法で決定してもよい。また、潜熱負荷Loおよび顕熱負荷Siを推定するための在室人数などの情報は、各センサによって検出されるものに限定されず、利用者によって入力されてもよい。 Further, the control of the first embodiment and the control of the second embodiment can be appropriately combined. For example, either the first evaporation temperature Teo or the second evaporation temperature Tei may be determined by the method of the first embodiment, and the other may be determined by the method of the second embodiment. Information such as the number of people in the room for estimating the latent heat load Lo and the sensible heat load Si is not limited to information detected by each sensor, and may be input by the user.
 また、第1室内熱交換器12の蒸発温度の第1蒸発温度Teoの上限Teo_maxを、第2蒸発温度Teiとしてもよい。第1室内熱交換器12の蒸発温度が第2室内熱交換器22および第3室内熱交換器32の蒸発温度よりも高い場合、第1室内熱交換器12を通過する空気は除湿されない。そこで、上記のように上限Teo_maxを設定することにより、第1室内熱交換器12の蒸発温度が第2室内熱交換器22および第3室内熱交換器32の蒸発温度を上回らないようにすることができる。これにより、第2室内熱交換器22および第3室内熱交換器32による除湿にて室内目標湿度Xmに達する場合には、外調室外機10を停止し、消費電力を削減することができる。 Further, the upper limit Teo_max of the first evaporation temperature Teo of the evaporation temperature of the first indoor heat exchanger 12 may be set as the second evaporation temperature Tei. When the evaporation temperature of the first indoor heat exchanger 12 is higher than the evaporation temperatures of the second indoor heat exchanger 22 and the third indoor heat exchanger 32, the air passing through the first indoor heat exchanger 12 is not dehumidified. Therefore, by setting the upper limit Teo_max as described above, the evaporation temperature of the first indoor heat exchanger 12 is prevented from exceeding the evaporation temperature of the second indoor heat exchanger 22 and the third indoor heat exchanger 32. Can do. Thereby, when the indoor target humidity Xm is reached by dehumidification by the second indoor heat exchanger 22 and the third indoor heat exchanger 32, the outdoor adjustment outdoor unit 10 can be stopped and power consumption can be reduced.
 また、別の変形例として、第1蒸発温度Teoの上限Teo_maxを、第3蒸発温度センサ302で検出した、第3室内熱交換器32の蒸発温度としてもよい。このように上限Teo_maxを設定することにより、第3室内熱交換器32の実際の蒸発温度に基づいて、第1蒸発温度Teoが第3室内熱交換器32の蒸発温度を上回らないようにすることができる。これにより、第3室内熱交換器32による除湿によって目標湿度に達する場合には、外調室外機10を停止し、消費電力を削減することができる。 As another modification, the upper limit Teo_max of the first evaporation temperature Teo may be the evaporation temperature of the third indoor heat exchanger 32 detected by the third evaporation temperature sensor 302. By setting the upper limit Teo_max in this way, the first evaporation temperature Teo is prevented from exceeding the evaporation temperature of the third indoor heat exchanger 32 based on the actual evaporation temperature of the third indoor heat exchanger 32. Can do. Thereby, when the target humidity is reached by dehumidification by the third indoor heat exchanger 32, the outdoor adjustment outdoor unit 10 can be stopped and power consumption can be reduced.
 1 外調機、2 内調機、5、5A 制御装置、10 外調室外機、12 第1室内熱交換器、13 第1圧縮機、14 第1四方弁、15 第1室外熱交換器、16 第1室外ファン、17 第1膨張装置、20 内調室外機、21 室内機、22 第2室内熱交換器、23 第2圧縮機、24 第2四方弁、25 第2室外熱交換器、26 第2室外ファン、27 第2膨張装置、28 第2室内ファン、30 外気供給ユニット、30a 外調部、30b 内調部、31 筐体、32 第3室内熱交換器、33 給気ファン、34 排気ファン、35 全熱交換器、37 第3膨張装置、40a、40b 冷媒配管、50、50A 空気調和システム、51 第1蒸発温度決定部、52 第2蒸発温度決定部、53 第1制御部、54 第2制御部、100 第1冷媒回路、102 第1蒸発温度センサ、200 第2冷媒回路、201 室内温度センサ、202 第2蒸発温度センサ、301 室内湿度センサ、302 第3蒸発温度センサ、303 外気温度センサ、304 外気温湿度センサ、310 給気風路、320 排気風路、401 人検出手段、C 天井裏、EA 排気、OA 室外空気、R 室内、RA 室内空気、SA 調整空気。 1 external air conditioner, 2 internal air conditioner, 5, 5A control device, 10 external air conditioner outdoor unit, 12 first indoor heat exchanger, 13 first compressor, 14 first four-way valve, 15 first outdoor heat exchanger, 16 1st outdoor fan, 17 1st expansion device, 20 indoor conditioning outdoor unit, 21 indoor unit, 22 2nd indoor heat exchanger, 23 2nd compressor, 24 2nd four-way valve, 25 2nd outdoor heat exchanger, 26 second outdoor fan, 27 second expansion device, 28 second indoor fan, 30 outdoor air supply unit, 30a external adjustment unit, 30b internal adjustment unit, 31 housing, 32 third indoor heat exchanger, 33 air supply fan, 34 exhaust fan, 35 total heat exchanger, 37 third expansion device, 40a, 40b refrigerant piping, 50, 50A air conditioning system, 51 first evaporating temperature determining unit, 52 second evaporating temperature determining unit, 53 first control unit 5 2nd control part, 100 1st refrigerant circuit, 102 1st evaporation temperature sensor, 200 2nd refrigerant circuit, 201 indoor temperature sensor, 202 2nd evaporation temperature sensor, 301 indoor humidity sensor, 302 3rd evaporation temperature sensor, 303 outside air Temperature sensor, 304 outdoor temperature / humidity sensor, 310 supply air path, 320 exhaust air path, 401 person detection means, C ceiling, EA exhaust, OA outdoor air, R indoor, RA indoor air, SA adjusted air.

Claims (21)

  1.  第1圧縮機、第1室外熱交換器および第1室内熱交換器を備える第1冷媒回路と、
     第2圧縮機、第2室外熱交換器、第2室内熱交換器および第3室内熱交換器を備える第2冷媒回路と、
     前記第2室内熱交換器を備え、室内空気の温度を調節する室内機と、
     前記第1室内熱交換器および前記第3室内熱交換器を備え、取り入れた室外空気の湿度を調節する外気供給ユニットと、
    を備える空気調和システム。
    A first refrigerant circuit comprising a first compressor, a first outdoor heat exchanger and a first indoor heat exchanger;
    A second refrigerant circuit comprising a second compressor, a second outdoor heat exchanger, a second indoor heat exchanger, and a third indoor heat exchanger;
    An indoor unit comprising the second indoor heat exchanger and adjusting the temperature of indoor air;
    An outdoor air supply unit that includes the first indoor heat exchanger and the third indoor heat exchanger, and adjusts the humidity of the outdoor air taken in;
    Air conditioning system with
  2.  前記外気供給ユニットは、
     前記室外空気を取り入れ、室内に供給する給気風路と、
     前記室内空気を取り入れ、室外に排出する排気風路と、を有し、
     前記第3室内熱交換器は、前記給気風路において、前記第1室内熱交換器の上流側に配置される請求項1に記載の空気調和システム。
    The outside air supply unit includes:
    An air supply passage that takes in the outdoor air and supplies it to the room;
    An exhaust air passage that takes in the room air and discharges it outside the room,
    The air conditioning system according to claim 1, wherein the third indoor heat exchanger is disposed upstream of the first indoor heat exchanger in the supply air path.
  3.  前記第1室内熱交換器が蒸発器である場合の蒸発温度の制御目標値である第1蒸発温度と、前記第2室内熱交換器および前記第3室内熱交換器が蒸発器である場合の蒸発温度の制御目標値である第2蒸発温度と、を決定する制御装置をさらに備える請求項1または2に記載の空気調和システム。 When the first indoor heat exchanger is an evaporator, a first evaporation temperature that is a control target value of the evaporation temperature, and when the second indoor heat exchanger and the third indoor heat exchanger are evaporators The air conditioning system according to claim 1 or 2, further comprising a control device that determines a second evaporation temperature that is a control target value of the evaporation temperature.
  4.  前記制御装置は、予め設定された上限と下限との間で、室内湿度と室内目標湿度との差に応じて前記第1蒸発温度を決定するものである請求項3に記載の空気調和システム。 The air conditioning system according to claim 3, wherein the control device determines the first evaporation temperature in accordance with a difference between indoor humidity and indoor target humidity between a preset upper limit and lower limit.
  5.  前記制御装置は、予め設定された上限と下限との間で、室内温度と室内目標温度との差に応じて前記第2蒸発温度を決定する請求項4に記載の空気調和システム。 The air conditioning system according to claim 4, wherein the control device determines the second evaporation temperature according to a difference between a room temperature and a room target temperature between a preset upper limit and a lower limit.
  6.  前記制御装置は、冷房除湿運転時に、前記第2蒸発温度が前記下限であり、且つ前記室内温度と前記室内目標温度との差が閾値以上の場合、前記第1蒸発温度を前記下限に変更する請求項5に記載の空気調和システム。 In the cooling and dehumidifying operation, the control device changes the first evaporation temperature to the lower limit when the second evaporation temperature is the lower limit and the difference between the room temperature and the indoor target temperature is equal to or greater than a threshold value. The air conditioning system according to claim 5.
  7.  前記制御装置は、冷房除湿運転時に、前記第1蒸発温度が前記下限であり、且つ前記室内湿度と前記室内目標湿度との差が閾値以上の場合、前記第2蒸発温度を前記下限に変更する請求項5または6に記載の空気調和システム。 In the cooling and dehumidifying operation, the control device changes the second evaporation temperature to the lower limit when the first evaporation temperature is the lower limit and the difference between the indoor humidity and the indoor target humidity is greater than or equal to a threshold value. The air conditioning system according to claim 5 or 6.
  8.  前記制御装置は、冷房除湿運転時に、前記第1蒸発温度が前記上限であり、且つ前記室内湿度と前記室内目標湿度との差が下限値よりも小さい場合、前記第1圧縮機を停止する請求項5~7の何れか一項に記載の空気調和システム。 The control device stops the first compressor when the first evaporating temperature is the upper limit and a difference between the indoor humidity and the indoor target humidity is smaller than a lower limit value during the cooling and dehumidifying operation. Item 8. The air conditioning system according to any one of Items 5 to 7.
  9.  前記制御装置は、冷房除湿運転時に、前記第2蒸発温度が前記上限であり、且つ前記室内温度と前記室内目標温度との差が下限値よりも小さい場合、前記第2室内熱交換器への冷媒の流入を停止する請求項5~8の何れか一項に記載の空気調和システム。 In the cooling and dehumidifying operation, the control device supplies the second indoor heat exchanger to the second indoor heat exchanger when the second evaporation temperature is the upper limit and the difference between the indoor temperature and the indoor target temperature is smaller than a lower limit value. The air conditioning system according to any one of claims 5 to 8, wherein the inflow of the refrigerant is stopped.
  10.  前記制御装置は、冷房除湿運転時に、前記第1蒸発温度が前記上限であり、前記室内湿度と前記室内目標湿度との差が下限値よりも小さい場合であって、且つ外気温度が下限より低い場合、前記第3室内熱交換器への冷媒の流入を停止する請求項5~9の何れか一項に記載の空気調和システム。 In the cooling and dehumidifying operation, the control device is configured such that the first evaporation temperature is the upper limit, the difference between the indoor humidity and the indoor target humidity is smaller than a lower limit value, and the outside air temperature is lower than the lower limit. In this case, the air conditioning system according to any one of claims 5 to 9, wherein the flow of the refrigerant into the third indoor heat exchanger is stopped.
  11.  前記制御装置は、冷房除湿運転時に、前記第1蒸発温度が前記上限であり、前記室内湿度と前記室内目標湿度との差が下限値より小さい場合であって、且つ前記第2蒸発温度が前記上限であり、前記室内温度と前記室内目標温度との差が下限値より小さい場合、前記第1圧縮機および前記第2圧縮機を停止する請求項5~10の何れか一項に記載の空気調和システム。 In the cooling and dehumidifying operation, the control device is configured such that the first evaporation temperature is the upper limit, a difference between the indoor humidity and the indoor target humidity is smaller than a lower limit, and the second evaporation temperature is the The air according to any one of claims 5 to 10, wherein when the difference between the indoor temperature and the indoor target temperature is less than a lower limit, the first compressor and the second compressor are stopped. Harmony system.
  12.  前記制御装置は、前記第2蒸発温度を前記第1蒸発温度の前記上限とする請求項5~11の何れか一項に記載の空気調和システム。 The air conditioning system according to any one of claims 5 to 11, wherein the control device sets the second evaporation temperature as the upper limit of the first evaporation temperature.
  13.  前記第3室内熱交換器の蒸発温度を検出する蒸発温度センサをさらに備え、
     前記制御装置は、前記蒸発温度センサによって検出された蒸発温度を前記第1蒸発温度の前記上限とする請求項5~11の何れか一項に記載の空気調和システム。
    An evaporation temperature sensor for detecting an evaporation temperature of the third indoor heat exchanger,
    The air conditioning system according to any one of claims 5 to 11, wherein the control device uses the evaporation temperature detected by the evaporation temperature sensor as the upper limit of the first evaporation temperature.
  14.  前記制御装置は、予め設定された上限と下限との間で、潜熱負荷に応じて前記第1蒸発温度を決定する請求項3に記載の空気調和システム。 The air conditioning system according to claim 3, wherein the control device determines the first evaporation temperature according to a latent heat load between a preset upper limit and lower limit.
  15.  前記制御装置は、予め設定された上限と下限との間で、顕熱負荷に応じて前記第2蒸発温度を決定する請求項14に記載の空気調和システム。 The air conditioning system according to claim 14, wherein the control device determines the second evaporation temperature according to a sensible heat load between a preset upper limit and lower limit.
  16.  前記制御装置は、冷房除湿運転時に、前記第2蒸発温度が前記下限であっても、前記顕熱負荷を処理できない場合、前記第1蒸発温度を変更する請求項15に記載の空気調和システム。 The air conditioning system according to claim 15, wherein the control device changes the first evaporation temperature when the sensible heat load cannot be processed even if the second evaporation temperature is the lower limit during the cooling and dehumidifying operation.
  17.  前記制御装置は、冷房除湿運転時に、前記第1蒸発温度が前記下限であっても、前記潜熱負荷を処理できない場合、前記第2蒸発温度を変更する請求項15または16に記載の空気調和システム。 The air conditioning system according to claim 15 or 16, wherein the control device changes the second evaporation temperature when the latent heat load cannot be processed even when the first evaporation temperature is the lower limit during the cooling and dehumidifying operation. .
  18.  前記制御装置は、冷房除湿運転時に、前記潜熱負荷が0の場合、前記第1圧縮機を停止する請求項15~17の何れか一項に記載の空気調和システム。 The air conditioning system according to any one of claims 15 to 17, wherein the control device stops the first compressor when the latent heat load is 0 during a cooling and dehumidifying operation.
  19.  前記制御装置は、冷房除湿運転時に、前記顕熱負荷が0の場合、前記第2室内熱交換器への冷媒の流入を停止する請求項15~18の何れか一項に記載の空気調和システム。 The air conditioning system according to any one of claims 15 to 18, wherein the control device stops the flow of the refrigerant into the second indoor heat exchanger when the sensible heat load is 0 during the cooling and dehumidifying operation. .
  20.  前記制御装置は、冷房除湿運転時に、前記潜熱負荷が0の場合であって、且つ外気温度が下限より低い場合、前記第3室内熱交換器への冷媒の流入を停止する請求項15~19の何れか一項に記載の空気調和システム。 The control device stops the flow of the refrigerant into the third indoor heat exchanger when the latent heat load is zero and the outside air temperature is lower than the lower limit during the cooling and dehumidifying operation. The air conditioning system according to any one of the above.
  21.  前記制御装置は、冷房除湿運転時に、前記顕熱負荷が0であって、且つ前記潜熱負荷が0の場合、前記第1圧縮機および前記第2圧縮機を停止する請求項15~20の何れか一項に記載の空気調和システム。 The controller according to any one of claims 15 to 20, wherein the controller stops the first compressor and the second compressor when the sensible heat load is zero and the latent heat load is zero during the cooling and dehumidifying operation. The air conditioning system according to claim 1.
PCT/JP2018/014153 2018-04-02 2018-04-02 Air conditioning system WO2019193639A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020512126A JP7142682B2 (en) 2018-04-02 2018-04-02 air conditioning system
PCT/JP2018/014153 WO2019193639A1 (en) 2018-04-02 2018-04-02 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014153 WO2019193639A1 (en) 2018-04-02 2018-04-02 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2019193639A1 true WO2019193639A1 (en) 2019-10-10

Family

ID=68100583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014153 WO2019193639A1 (en) 2018-04-02 2018-04-02 Air conditioning system

Country Status (2)

Country Link
JP (1) JP7142682B2 (en)
WO (1) WO2019193639A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084568A1 (en) * 2019-10-28 2021-05-06 三菱電機株式会社 Control device, air conditioning system, and control method for air conditioning system
WO2022124684A1 (en) * 2020-12-08 2022-06-16 삼성전자주식회사 Ventilation device and integrated air conditioning system comprising same
WO2023113040A1 (en) * 2021-12-17 2023-06-22 ダイキン工業株式会社 Air-conditioning system and air-conditioning control device
EP4184070A4 (en) * 2020-12-08 2024-01-24 Samsung Electronics Co Ltd Ventilation system, integrated air-conditioning system, and control method therefor
EP4191149A4 (en) * 2020-12-08 2024-03-06 Samsung Electronics Co Ltd Ventilation device and integrated air conditioning system comprising same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204899A (en) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp Air conditioning system
WO2017081820A1 (en) * 2015-11-13 2017-05-18 三菱電機株式会社 Air conditioning system and method for controlling air conditioning system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049059A (en) 2003-07-31 2005-02-24 Daikin Ind Ltd Air-conditioning system
JP4096890B2 (en) 2004-02-13 2008-06-04 木村工機株式会社 Heat pump air conditioner
JP2010249420A (en) 2009-04-16 2010-11-04 Nihon Setsubi Kogyo Co Ltd Desiccant air conditioning system
JP6134511B2 (en) 2012-12-28 2017-05-24 鹿島建設株式会社 Air conditioner using direct expansion coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204899A (en) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp Air conditioning system
WO2017081820A1 (en) * 2015-11-13 2017-05-18 三菱電機株式会社 Air conditioning system and method for controlling air conditioning system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084568A1 (en) * 2019-10-28 2021-05-06 三菱電機株式会社 Control device, air conditioning system, and control method for air conditioning system
JPWO2021084568A1 (en) * 2019-10-28 2021-05-06
JP7329613B2 (en) 2019-10-28 2023-08-18 三菱電機株式会社 CONTROL DEVICE, AIR CONDITIONING SYSTEM AND CONTROL METHOD OF AIR CONDITIONING SYSTEM
WO2022124684A1 (en) * 2020-12-08 2022-06-16 삼성전자주식회사 Ventilation device and integrated air conditioning system comprising same
EP4184070A4 (en) * 2020-12-08 2024-01-24 Samsung Electronics Co Ltd Ventilation system, integrated air-conditioning system, and control method therefor
EP4191149A4 (en) * 2020-12-08 2024-03-06 Samsung Electronics Co Ltd Ventilation device and integrated air conditioning system comprising same
WO2023113040A1 (en) * 2021-12-17 2023-06-22 ダイキン工業株式会社 Air-conditioning system and air-conditioning control device
JP2023090692A (en) * 2021-12-17 2023-06-29 ダイキン工業株式会社 air conditioning system

Also Published As

Publication number Publication date
JPWO2019193639A1 (en) 2020-12-17
JP7142682B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2019193639A1 (en) Air conditioning system
US10088211B2 (en) Air-conditioning apparatus
JP5328951B2 (en) Air conditioning system
JP6479210B2 (en) Air conditioning system and control method of air conditioning system
US10151505B2 (en) Air-conditioning apparatus
KR101702884B1 (en) Heat Pump-Type Heating and Cooling System
WO2015173909A1 (en) Outside air processor and air conditioner
JP5984964B2 (en) Air conditioning system
JP2011075179A (en) Air conditioning system
JP6250148B2 (en) Air conditioning system
KR101596671B1 (en) Method for controlling air conditioner
US11609033B2 (en) Condenser fan control system
KR200474579Y1 (en) Air handling unit
JP6546870B2 (en) Air conditioning system and control method thereof
JP7316759B2 (en) Air conditioner and air conditioning system
JP4074422B2 (en) Air conditioner and its control method
WO2015173908A1 (en) Air conditioner and air conditioning system
JP6661775B2 (en) Air conditioner
WO2018073904A1 (en) Indoor unit of air conditioner and air conditioner
WO2021224962A1 (en) Air conditioning device
JP7374633B2 (en) Air conditioners and air conditioning systems
JP6938950B2 (en) Air conditioning system
KR20170138703A (en) Air conditioner system and its control method
JP6745895B2 (en) Air conditioning system
JP7209485B2 (en) air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512126

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913898

Country of ref document: EP

Kind code of ref document: A1