WO2019192457A1 - 查找pdcch监听机会的通信方法和装置 - Google Patents

查找pdcch监听机会的通信方法和装置 Download PDF

Info

Publication number
WO2019192457A1
WO2019192457A1 PCT/CN2019/080954 CN2019080954W WO2019192457A1 WO 2019192457 A1 WO2019192457 A1 WO 2019192457A1 CN 2019080954 W CN2019080954 W CN 2019080954W WO 2019192457 A1 WO2019192457 A1 WO 2019192457A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
domain resource
time
pdsch
terminal
Prior art date
Application number
PCT/CN2019/080954
Other languages
English (en)
French (fr)
Inventor
薛祎凡
彭金磷
王键
刘海涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019192457A1 publication Critical patent/WO2019192457A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a communication method and apparatus.
  • the receiving end After receiving the data sent by the transmitting end, the receiving end sends data acknowledgement information to the transmitting end. If the data received by the receiving end is error-free, the data acknowledgement information sent by the receiving end to the transmitting end is a positive acknowledgement information (ACK). If the data received by the receiving end is in error, the data acknowledgement message sent by the receiving end to the transmitting end is a negative acknowledgement message (NACK).
  • ACK positive acknowledgement information
  • NACK negative acknowledgement message
  • the terminal may use multiple physical downlink shared channels (PDSCH) (for carrying downlink data) data confirmation information. Feedback is simultaneously made to the base station.
  • PDSCH physical downlink shared channels
  • the data acknowledgement information of the PDSCH can be simultaneously reported to the base station in a semi-static manner, and the specific process is: according to the time interval between the configured PDSCH and the corresponding data acknowledgement information, and the time interval between the PDSCH and the PDCCH, and a symbol of a PDSCH candidate position in each slot, determining a slot of a PDCCH candidate location, and then searching for a PDCCH monitoring occasion in a slot of the physical downlink control channel (PDCCH) candidate location, Then, it is determined that the data determination information for finding the PDSCH corresponding to the PDCCH listening opportunity can be fed back to the base station at the same time.
  • the specific process is: according to the time interval between the configured PDSCH and the corresponding data acknowledgement information, and the time interval between the PDSCH and the PDCCH, and a symbol of a PDSCH candidate position in each slot, determining a slot of a PDCCH candidate location, and then searching for a PDCCH monitoring occasion in a slot of
  • the system bandwidth can be very large, for example, 200MHz or 400MHz. Some terminals cannot support such a large bandwidth. Therefore, the base station can configure a bandwidth part (BWP) for the terminal, that is, the system bandwidth is occupied between the base station and the terminal. A portion of the bandwidth (eg, 20 MHz) is communicated.
  • BWP bandwidth part
  • the BWP can be divided into a downlink BWP (Downlink BWP, DL BWP) and an uplink BWP (Uplink BWP, UL BWP), and the network device can configure multiple DL BWPs and multiple UL BWPs for the terminal, and activate at least one DL BWP and at least A UL BWP, the terminal receives the downlink signal sent by the base station on the activated DL BWP (ie, the active DL BWP); the terminal sends the uplink signal on the activated UL BWP.
  • the network device can configure multiple DL BWPs and multiple UL BWPs for the terminal, and activate at least one DL BWP and at least A UL BWP
  • the terminal receives the downlink signal sent by the base station on the activated DL BWP (ie, the active DL BWP); the terminal sends the uplink signal on the activated UL BWP.
  • the base station and the terminal communicate on the activated DL BWP and UL BWP, the base station can activate another BWP (DL or UL), thereby causing the terminal to switch to the new activated BWP to receive or transmit data.
  • the DCI scheduling DCI
  • the terminal receives a PDCCH (bearing DCI) on the downlink BWP 0, and the DCI scheduling terminal receives data from the downlink BWP 1.
  • the terminal switches from the downlink BWP 0 to the downlink BWP 1, that is, the activated BWP is The BWP 0 is switched to BWP 1, and then the terminal receives data on the downlink BWP 1, and transmits data acknowledgement information of the plurality of PDSCHs to the network device on the downlink BWP 1. Since the downlink BWP activated at this time has only the downlink BWP 1, the terminal searches for the PDCCH listening opportunity on the downlink BWP 1, but if the PDCCH is transmitted on the downlink BWP0 and the scheduled PDSCH is transmitted on the downlink BWP1, The problem that the PDCCH listening opportunity corresponding to the PDSCH is not found on the downlink BWP1.
  • the present application provides a communication method and apparatus for avoiding the phenomenon of missing a PDCCH listening opportunity.
  • the embodiment of the present application provides a communication method, including: determining, by a terminal, a second time domain resource according to the first time domain resource and the first information; wherein the first time domain resource is a time domain of a PDSCH candidate location a second time domain resource is a time domain resource of a PDCCH candidate location, where the first information includes or indicates a time interval between the PDSCH candidate location and the PDCCH candidate location; and then the terminal corresponds to the second time domain resource Within the time range, the PDCCH listening opportunity is looked up on at least one downlink BWP.
  • the at least one downlink BWP includes: all downlink BWPs configured by the network device to the terminal, or the at least one downlink BWP includes: the network device is configured to the terminal, and the second time domain resource is configured. All downstream BWPs that have been activated within the corresponding time range.
  • the terminal searches for the PDCCH monitoring opportunity on the at least one downlink BWP in the time range corresponding to the second time domain resource, including: the terminal is in the second time
  • the PDCCH listening opportunity is searched for on each of the downlink BWPs in the time domain resources on each downlink BWP in the at least one downlink BWP corresponding to the domain resource.
  • the terminal receives the second time domain resource before determining the second time domain resource according to the first time domain resource and the first information And determining, by the PDSCH, the first time domain resource, where M is greater than the time domain resource used for transmitting the data acknowledgement information corresponding to the PDSCH, and the M time interval between the PDSCH and the data acknowledgement information. Or an integer equal to 1.
  • the determined first time domain resource includes: a time domain resource corresponding to the first activated downlink BWP.
  • the terminal is configured according to a time domain resource for transmitting data acknowledgement information corresponding to the PDSCH, and the PDSCH is confirmed with the data
  • the M time intervals between the information, determining the first time domain resource including:
  • the time domain resource for transmitting the data acknowledgement information corresponding to the PDSCH is the nth time domain resource unit, and the Qth of the M time intervals
  • the time interval is K 1, Q time domain resource units, and the terminal determines that the first time domain resource includes the (nK 1, Q ) time domain resource unit.
  • the first time domain resource includes M time domain resource units, and the Q is a positive integer less than or equal to M.
  • the terminal determines, according to the first time domain resource and the first information Before the second time domain resource, according to the type I PDSCH candidate position configured in each time domain resource unit on the first activated downlink BWP, and the uplink and downlink formats in each time domain resource unit,
  • the J valid PDSCH candidate locations are determined in the PDSCH candidate locations, and then the first information is determined according to the J valid PDSCH candidate locations.
  • the I is an integer greater than or equal to 1
  • the J is an integer less than or equal to 1.
  • the first time domain resource includes R sub-time domain resources, the The time interval indicated by an information is T, and the R and the T are positive integers. Determining, by the terminal, the second time domain resource according to the first time domain resource and the first information, including: for each of the R sub-time domain resources, and each of the T time intervals time interval, if the sub-time domain resource R H th first time domain resource located on the m v-domain resource units in time, and the first three time T S species interval is the time interval K 0, S, then the The terminal determines that the second time domain resource includes a (m v -K 0,S ) time domain resource unit.
  • the H is a positive integer less than or equal to R
  • the S is a positive integer less than or equal to T
  • the v is a positive integer.
  • the terminal after the terminal searches for the PDCCH monitoring opportunity on the at least one downlink BWP in the time range corresponding to the second time domain resource, If the PDCCH listening opportunity is not found on the at least one downlink BWP in the time range corresponding to the (m v -K 0, S ) time domain resource unit in the second time domain resource, the terminal determines The H th sub-time domain resource of the R sub-time domain resources is not a valid PDSCH candidate location.
  • the terminal searches for at least one downlink BWP in a time range corresponding to the second time domain resource after the opportunity to monitor PDCCH, if the second time domain resource (the m v -K 0, S) within the time corresponding to the time domain resource units, the at least one downlink PDCCH monitoring to find opportunities BWP, the The terminal determines that the H th sub-time domain resource in the R sub-time domain resources is a valid PDSCH candidate location.
  • the sub-time domain resource is at least two consecutive symbols in the time domain resource unit.
  • the time domain resource unit is a time slot.
  • the embodiment of the present application provides a communication method, including: determining, by a network device, a second time domain resource according to the first time domain resource and the first information; and when the first time domain resource is a PDSCH candidate location a domain resource, where the second time domain resource is a time domain resource of a PDCCH candidate location, where the first information includes or indicates a time interval between the PDSCH candidate location and the PDCCH candidate location; and then the network device is in the second time domain
  • the PDCCH listening opportunity is searched for on the at least one downlink BWP in the time range corresponding to the resource.
  • the at least one downlink BWP includes: all downlink BWPs configured by the network device to the terminal, or the at least one downlink BWP includes: the network device is configured to the terminal, and the second time domain resource is configured. All downstream BWPs that have been activated within the corresponding time range.
  • the network device searches for the PDCCH monitoring opportunity on the at least one downlink BWP in the time range corresponding to the second time domain resource, including: the network device is in the The PDCCH listening opportunity is searched for on each of the downlink BWPs in the time domain resources on each downlink BWP in the at least one downlink BWP corresponding to the second time domain resource.
  • the network device before determining the second time domain resource according to the first time domain resource and the first information, Transmitting the PDSCH, and then determining, according to the time domain resource used for transmitting the data acknowledgement information corresponding to the PDSCH, and the M time interval between the PDSCH and the data acknowledgement information, the first time domain resource, where M is An integer greater than or equal to 1.
  • the determined first time domain resource includes: a time domain resource corresponding to the first activated downlink BWP.
  • the network device is configured according to a time domain resource for transmitting data acknowledgement information corresponding to the PDSCH, and the PDSCH and the data Confirming the M time interval between the information, and determining the first time domain resource, including:
  • the time domain resource for transmitting the data acknowledgement information corresponding to the PDSCH is the nth time domain resource unit, and the Qth of the M time intervals
  • the time interval is K 1, Q time domain resource units
  • the network device determines that the first time domain resource includes a (nK 1, Q ) time domain resource unit.
  • the first time domain resource includes M time domain resource units, and the Q is a positive integer less than or equal to M.
  • the network device determines, according to the first time domain resource and the first information Before the second time domain resource, first according to the I type of PDSCH candidate positions configured in each time domain resource unit on the first activated downlink BWP, and the uplink and downlink formats in each time domain resource unit, from the I
  • the J valid PDSCH candidate locations are determined among the PDSCH candidate locations, and then the first information is determined according to the J valid PDSCH candidate locations.
  • the I is an integer greater than or equal to 1
  • the J is an integer less than or equal to 1.
  • the time interval indicated by an information is T, and the R and the T are positive integers.
  • Determining, by the network device, the second time domain resource according to the first time domain resource and the first information including: for each of the R sub-time domain resources, and each of the T time intervals species interval, if the R sub-resources in time domains of H th time domain resource located on the m v resource units in a time domain, and the first three time T S species interval is the time interval K 0, S, then The network device determines that the second time domain resource comprises a (m v -K 0,S ) time domain resource unit.
  • the H is a positive integer less than or equal to R
  • the S is a positive integer less than or equal to T
  • the v is a positive integer.
  • the network device after searching for the PDCCH monitoring opportunity on the at least one downlink BWP, in the time range corresponding to the second time domain resource If the PDCCH listening opportunity is not found on the at least one downlink BWP in the time range corresponding to the (m v -K 0, S ) time domain resource unit in the second time domain resource, the network The device determines that the Hth sub-time domain resource of the R sub-time domain resources is not a valid PDSCH candidate location.
  • the network device is on the at least one downlink BWP in a time range corresponding to the second time domain resource after listening to find opportunities PDCCH, if the second time domain resource (the m v -K 0, S) within the time corresponding to the time domain resource units, the at least one downlink PDCCH monitoring to find opportunities BWP, And then the network device determines that the H th sub-time domain resource of the R sub-time domain resources is a valid PDSCH candidate location.
  • the sub-time domain resource is at least two consecutive symbols in the time domain resource unit.
  • the time domain resource unit is a time slot.
  • an embodiment of the present application provides a communications apparatus, including: a determining module and a searching module.
  • a determining module configured to determine, according to the first time domain resource and the first information, the second time domain resource; the first time domain resource is a time domain resource of a PDSCH candidate location, and the second time domain resource is a PDCCH candidate location
  • the domain resource, the first information includes or indicates a time interval between the PDSCH candidate location and the PDCCH candidate location.
  • a searching module configured to search for a PDCCH monitoring opportunity on the at least one downlink BWP in a time range corresponding to the second time domain resource.
  • the at least one downlink BWP includes: all downlink BWPs configured by the network device to the terminal, or the at least one downlink BWP includes: a time range corresponding to the second time domain resource configured by the network device to the terminal All downstream BWPs that have been activated.
  • the searching module is configured to: in a time domain resource on each downlink BWP in the at least one downlink BWP corresponding to the second time domain resource, in the Find PDCCH listening opportunities on each downlink BWP.
  • the communication device further comprises: a receiving module.
  • the receiving module is configured to receive the PDSCH before the determining module determines the second time domain resource according to the first time domain resource and the first information.
  • the determining module is further configured to determine the first time domain according to a time domain resource used for transmitting data acknowledgement information corresponding to the PDSCH, and M time intervals between the PDSCH and the data acknowledgement information.
  • Resource, M is an integer greater than or equal to 1.
  • the determined first time domain resource includes: a time domain resource corresponding to the first activated downlink BWP.
  • the determining module is specifically configured to: for each time interval of the M kinds of time intervals, if the The time domain resource of the data acknowledgement information corresponding to the PDSCH is the nth time domain resource unit, and the Qth time interval of the M time intervals is K1 , Q time domain resource units, and the first The time domain resource includes the (nK 1, Q ) time domain resource unit.
  • the first time domain resource includes M time domain resource units, and the Q is a positive integer less than or equal to M.
  • the determining module is further configured to: according to the first time domain resource and the first a message, before determining the second time domain resource, according to the type I PDSCH candidate location configured in each time domain resource unit on the first activated downlink BWP, and the uplink and downlink formats in each time domain resource unit, Determining J valid PDSCH candidate positions among the one type of PDSCH candidate positions, the I being an integer greater than or equal to 1, the J being an integer less than or equal to 1, and the valid PDSCH candidate positions according to the J types Determining the first information.
  • the first time domain resource includes R sub-time domain resources, the The time interval indicated by an information is T, and the R and the T are positive integers.
  • the determining module is specifically configured to: for each of the R sub-time domain resources, and each time interval in the T time interval, if the R sub-time domain resources are the Hth when the sub-domain resources located in the m-th time domain resource unit v, and the types of time intervals T S kind of interval K 0, S, determining that the second resource comprises a first time domain (v m -K 0, S ) time domain resource unit;
  • the H is a positive integer less than or equal to R
  • the S is a positive integer less than or equal to T
  • the v is a positive integer.
  • the determining module is further configured to: at least in a time range corresponding to the second time domain resource, in the searching module After the PDCCH listening opportunity is searched on a downlink BWP, if the (m v -K 0,S ) time domain resource unit corresponds to the time range in the second time domain resource, the at least one downlink BWP is not found. To the PDCCH listening opportunity, it is determined that the Hth sub-time domain resource in the R sub-time domain resources is not a valid PDSCH candidate location.
  • the determining module is further configured to: when the searching module is in the time corresponding to the second time domain resource In the range, after searching for the PDCCH listening opportunity on the at least one downlink BWP, if in the second time domain resource (m v - K 0, S ), the time range corresponding to the domain resource unit, in the at least one A PDCCH snooping opportunity is found on the downlink BWP, and then the H th sub-time domain resource in the R sub-time domain resources is determined to be a valid PDSCH candidate location.
  • the sub-time domain resource is a continuous at least two symbols in the time domain resource unit.
  • the time domain resource unit is a time slot.
  • the communication device of the third aspect may be a terminal or a chip that can be used for the terminal.
  • an embodiment of the present application provides a communications apparatus, including: a determining module and a searching module.
  • a determining module configured to determine, according to the first time domain resource and the first information, the second time domain resource; the first time domain resource is a time domain resource of a PDSCH candidate location, and the second time domain resource is a PDCCH candidate location
  • the domain resource, the first information includes or indicates a time interval between the PDSCH candidate location and the PDCCH candidate location.
  • a searching module configured to search for a PDCCH monitoring opportunity on the at least one downlink BWP in a time range corresponding to the second time domain resource.
  • the at least one downlink BWP includes: all downlink BWPs configured by the network device to the terminal, or the at least one downlink BWP includes: a time range corresponding to the second time domain resource configured by the network device to the terminal All downstream BWPs that have been activated.
  • the searching module is configured to: in a time domain resource on each downlink BWP in the at least one downlink BWP corresponding to the second time domain resource, in the Find PDCCH listening opportunities on each downlink BWP.
  • the communication device further comprises: a receiving module.
  • the receiving module is configured to receive the PDSCH before the determining module determines the second time domain resource according to the first time domain resource and the first information.
  • the determining module is further configured to determine the first time domain according to a time domain resource used for transmitting data acknowledgement information corresponding to the PDSCH, and M time intervals between the PDSCH and the data acknowledgement information.
  • Resource, M is an integer greater than or equal to 1.
  • the determined first time domain resource includes: a time domain resource corresponding to the first activated downlink BWP.
  • the determining module is specifically configured to: for each time interval of the M time intervals, if the The time domain resource of the data acknowledgement information corresponding to the PDSCH is the nth time domain resource unit, and the Qth time interval of the M time intervals is K1 , Q time domain resource units, and the first The time domain resource includes the (nK 1, Q ) time domain resource unit.
  • the first time domain resource includes M time domain resource units, and the Q is a positive integer less than or equal to M.
  • the determining module is further configured to: according to the first time domain resource and the a message, before determining the second time domain resource, according to the type I PDSCH candidate location configured in each time domain resource unit on the first activated downlink BWP, and the uplink and downlink formats in each time domain resource unit, Determining J valid PDSCH candidate positions among the one type of PDSCH candidate positions, the I being an integer greater than or equal to 1, the J being an integer less than or equal to 1, and the valid PDSCH candidate positions according to the J types Determining the first information.
  • the first time domain resource includes R sub-time domain resources, the The time interval indicated by an information is T, and the R and the T are positive integers.
  • the determining module is specifically configured to: for each of the R sub-time domain resources, and each time interval in the T time interval, if the R sub-time domain resources are the Hth when the sub-domain resources located in the m-th time domain resource unit v, and the types of time intervals T S kind of interval K 0, S, determining that the second resource comprises a first time domain (v m -K 0, S ) time domain resource unit;
  • the H is a positive integer less than or equal to R
  • the S is a positive integer less than or equal to T
  • the v is a positive integer.
  • the determining module is further configured to: at least in a time range corresponding to the second time domain resource, in the searching module After the PDCCH listening opportunity is searched on a downlink BWP, if the (m v -K 0,S ) time domain resource unit corresponds to the time range in the second time domain resource, the at least one downlink BWP is not found. To the PDCCH listening opportunity, it is determined that the Hth sub-time domain resource in the R sub-time domain resources is not a valid PDSCH candidate location.
  • the determining module is further configured to: when the searching module is in the time corresponding to the second time domain resource In the range, after searching for the PDCCH listening opportunity on the at least one downlink BWP, if in the second time domain resource (m v - K 0, S ), the time range corresponding to the domain resource unit, in the at least one A PDCCH snooping opportunity is found on the downlink BWP, and then the H th sub-time domain resource in the R sub-time domain resources is determined to be a valid PDSCH candidate location.
  • the sub-time domain resource is a continuous at least two symbols in the time domain resource unit.
  • the time domain resource unit is a time slot.
  • the communication device of the fourth aspect may be a network device or a chip that can be used for a network device.
  • an embodiment of the present application provides a communications apparatus, including: a memory and a processor.
  • the memory is for storing program code.
  • the processor the program code is invoked, when the program code is executed, for performing the communication method according to any one of the embodiments of the present application or the second aspect of the present application.
  • the embodiment of the present application provides a readable storage medium, where the readable storage medium stores a computer program; when the computer program is executed, implementing the first aspect or any second embodiment of the present application.
  • an embodiment of the present application provides a program product, where the program product includes a computer program, where the computer program is stored in a readable storage medium, and at least one processor of the communication device can read from the readable storage medium. Taking the computer program, the at least one processor executing the computer program causes the communication device to implement the communication method of any one of the embodiments of the present application or the second aspect of the present application.
  • the communication method and apparatus determine a second time domain resource according to the first time domain resource and the first information; the first time domain resource is a time domain resource of a PDSCH candidate location, and second The time domain resource is a time domain resource of the PDCCH candidate location, and the first information includes or indicates a time interval between the PDSCH candidate location and the PDCCH candidate location; and then, in the time range corresponding to the second time domain resource, the network device configures the terminal Searching for the PDCCH listening opportunity on all the downlink BWPs, or searching for the PDCCH listening opportunity on all downlink BWPs that are configured by the network device and activated in the time range corresponding to the second time domain resource, so that the PDSCH can be found. Corresponding all PDCCH monitoring opportunities avoid the phenomenon of missing PDCCH monitoring opportunities and avoid the leakage of data confirmation information of downlink data, thereby improving communication quality.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a downlink data transmission process between a network device and a terminal according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a terminal for feeding back data acknowledgement information corresponding to multiple PDSCHs to a network device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of relationship between time domain resources between a PDCCH and a PDSCH under a downlink BWP jump according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of time slots corresponding to different time domain resource units according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of determining a first time domain resource according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a time domain resource of a PDSCH candidate location and a relative uplink and downlink format according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of relationship between time domain resources between a PDCCH and a PDSCH under a downlink BWP jump according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of relationship between time domain resources between a PDCCH and a PDSCH in a downlink BWP jump according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of relationship between time domain resources between a PDCCH and a PDSCH in a downlink BWP jump according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of relationship between time domain resources between a PDCCH and a PDSCH under a downlink BWP jump according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a communication apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present disclosure. As shown in FIG. 1, the communication system includes a network device and a terminal.
  • a network device also known as a radio access network (RAN) device, is a device that accesses a terminal to a wireless network, and may be an evolved base station in Long Term Evolution (LTE) (Evolutional Node B, eNB or eNodeB), or a relay station or an access point, or a base station in a 5G network, such as a Transmission and Reception Point (TRP), a controller, is not limited herein.
  • the radio access network device may be a base station (such as a gNB) of a CU and a DU separation architecture.
  • a wireless terminal can refer to a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or on-board. It can also be deployed on the water (such as a ship). Etc); can also be deployed in the air (such as airplanes, balloons, satellites, etc.).
  • the terminal may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, and an industrial control.
  • the wireless terminal in the smart city, the wireless terminal in the smart home, and the like are not limited herein. It can be understood that, in the embodiment of the present application, the terminal may also be referred to as a user equipment (UE).
  • UE user equipment
  • the process for the network device to send downlink data to the terminal may be, for example:
  • the network device sends Downlink Control Information (DCI) to the terminal.
  • DCI Downlink Control Information
  • the DCI contains downlink data scheduling information, which is used to inform the terminal of the location of the time-frequency resource, and what configuration parameters (such as modulation and coding strategy ( Modulation and Coding Scheme (MCS), Redundancy Version (RV), etc. to receive and demodulate data.
  • MCS Modulation and Coding Scheme
  • RV Redundancy Version
  • the network device sends the corresponding data to the terminal according to the configuration parameter indicated in the DCI in the time-frequency resource location indicated by the DCI; the terminal receives the data sent by the network device with the corresponding parameter at the corresponding location.
  • HARQ Hybrid Automatic Repeat reQuest
  • HARQ-ACK information Hybrid Automatic Repeat reQuest
  • FEC Forward Error Correction
  • ARQ Automatic Repeat ReQuest
  • FEC enables the terminal to correct a portion of the error, thereby reducing the number of retransmissions.
  • FEC Forward Error Correction
  • ARQ Automatic Repeat ReQuest
  • the terminal uses an error detection code, usually a Cyclic Redundancy Check (CRC) check, to detect whether the received data packet is in error.
  • CRC Cyclic Redundancy Check
  • the terminal will send a positive data acknowledgement (ACK) to the sender. After the network device receives the ACK, it will send the next packet. If an error occurs, the terminal discards the data packet and sends a negative data acknowledgement message (NACK) to the network device. After receiving the NACK, the network device resends the same data.
  • ACK positive data acknowledgement
  • NACK negative data acknowledgement message
  • FIG. 2 is a schematic diagram of a downlink data transmission process between a network device and a terminal according to an embodiment of the present disclosure, where the PDCCH carries DCI, and the PDSCH carries downlink data.
  • the terminal may feed back the data acknowledgement information corresponding to the multiple PDSCHs on the same time domain resource.
  • FIG. 3 is a schematic diagram of a terminal for feeding back data acknowledgement information corresponding to multiple PDSCHs to a network device according to an embodiment of the present disclosure.
  • FIG. 3 takes three PDSCHs as an example, and three PDSCHs need to be in the same time domain resource.
  • the size of the codebook corresponding to the data confirmation information is 3 bits, 3
  • the order of the bits may be determined according to the order in which the PDSCH is received.
  • the specific process of determining which PDSCH corresponding data acknowledgement information is fed back to the network device in the same time domain resource is: a time interval between the PDSCH and the corresponding data acknowledgement information, and a time interval between the PDSCH and the PDCCH and each time slot.
  • a symbol occupied by the PDSCH candidate location, determining a slot of the PDCCH candidate location, and then searching for a PDCCH listening opportunity in the slots of the PDCCH candidate locations, and then determining that the data determining information of the PDSCH corresponding to the PDCCH listening opportunity is found may be At the same time, feedback to the network device.
  • FIG. 4 takes the time interval of the PDSCH and the PDCCH as 0 time slot as an example.
  • the activated downlink BWP hops from the downlink BWP0. Going to the downlink BWP1, in the time slot 1, the network device sends a PDCCH to the terminal on the downlink BWP0, and the PDCCH schedules the PDSCH in the same time slot. Therefore, in the time slot 1, the network device sends the terminal to the terminal on the downlink BWP1. PDSCH.
  • the prior art solution is to look up the PDCCH listening opportunity in the time slot (for example, time slot 0, 1, 2) of the PDCCH candidate position on the activated downlink BWP (ie, downlink BWP1) when transmitting the data acknowledgement information. If there is no PDCCH listening opportunity on the downlink BWP1 in the slot 1, it is considered that there is no valid PDSCH transmission in the slot 1, and the data acknowledgement information corresponding to the PDSCH in the slot 1 is not fed back to the network device. However, it can be seen that there is a PDCCH listening opportunity in slot 1 on the downlink BWP0 (the PDSCH of slot 1 is scheduled by the PDCCH in slot 1 on BWP0).
  • the problem that the PDCCH listening opportunity is searched for by the downlink BWP (only on one downlink BWP) that is activated only when the data acknowledgement information is sent causes a missed PDCCH listening opportunity, thereby causing some downlink data acknowledgement information. No feedback to the network device.
  • the following embodiments of the present application can solve this technical problem.
  • FIG. 5 is a flowchart of a communication method according to an embodiment of the present disclosure. As shown in FIG. 5, the method in this embodiment may be applied to a terminal, and may also be applied to a network device. The method in this embodiment may include:
  • the first time domain resource is a time domain resource of a PDSCH candidate location
  • the second time domain resource is a time domain resource of a PDCCH candidate location (PDCCH candidate).
  • the first information includes: a time interval between a candidate location of the PDSCH and a candidate location of the PDCCH, or the first information indicates a time interval between the candidate location of the PDSCH and the candidate location of the PDCCH.
  • the terminal and/or the network device determines the second time domain resource according to the first time domain resource and the first information.
  • the time domain resource of the PDSCH candidate location is slot 2
  • the time interval of the PDSCH candidate location and the PDCCH candidate location is 1 slot.
  • the time domain resource of the PDCCH candidate location is determined to be a time slot (2-1), that is, a time slot. 1.
  • the terminal and/or the network device searches for the PDCCH monitoring opportunity on the at least one downlink BWP in the time range corresponding to the second time domain resource.
  • the terminal and/or the network device instead of searching for a PDCCH listening opportunity on the downlink BWP (ie, only one downlink BWP) that is activated when the data acknowledgement information is transmitted, the PDCCH listening opportunity is searched on the at least one downlink BWP, and the PDCCH listening opportunity is reduced. The phenomenon.
  • the at least one downlink BWP described above includes all downlink BWPs that the network device configures to the terminal. That is, after determining the second time domain resource, the terminal and/or the network device searches for the PDCCH monitoring opportunity on all downlink BWPs configured by the network device in the time range corresponding to the second time domain resource. If all the lower BWPs configured by the network device to the terminal include: downlink BWP0, downlink BWP1, and downlink BWP2, the terminal and/or the network device in this embodiment may be on the downlink BWP0, the downlink BWP1, and the downlink BWP2 for the scenario shown in FIG. Both look for the PDCCH listening opportunity, so that the PDCCH listening opportunity on the downlink BWP1 missed in the current technology can be found. Therefore, this embodiment can avoid the situation of missing the PDCCH listening opportunity.
  • the at least one downlink BWP is: all downlink BWPs that are configured by the network device to the terminal and that are activated within a time range corresponding to the second time domain resource. That is, after determining the second time domain resource, the terminal and/or the network device configures the network device in the time range corresponding to the second time domain resource, and is within the time range corresponding to the second domain resource.
  • the activated downlink BWP searches for a PDCCH listening opportunity. If all the lower BWPs configured by the network device to the terminal include: downlink BWP0, downlink BWP1, and downlink BWP2, for the case shown in FIG. 4, if the second time domain resource is time slot 1 shown in FIG.
  • the downlink BWP that is activated is the downlink BWP0 and the downlink BWP1.
  • the activated downlink BWP is the downlink BWP0 and the downlink BWP1, and the terminal and/or the network device in this embodiment may be in the downlink.
  • Both the BWP0 and the downlink BWP1 find the PDCCH listening opportunity, so that the PDCCH listening opportunity on the downlink BWP1 missed in the current technology can be found. Therefore, this embodiment can avoid the situation of missing the PDCCH listening opportunity.
  • the second time domain resource is determined according to the first time domain resource and the first information, where the first time domain resource is a time domain resource of a PDSCH candidate location, and the second time domain resource is a PDCCH candidate.
  • a time domain resource of the location where the first information includes or indicates a time interval between the PDSCH candidate location and the PDCCH candidate location; and then all downlink BWPs configured by the network device to the terminal in a time range corresponding to the second time domain resource Searching for a PDCCH listening opportunity, or searching for a PDCCH listening opportunity on all downlink BWPs that are configured by the network device and are activated in the time range corresponding to the second time domain resource, so that the PDSCH corresponding to the PDSCH can be found. All PDCCH monitoring opportunities avoid the phenomenon of missing PDCCH listening opportunities and avoid the leakage of data confirmation information of downlink data, thereby improving communication quality.
  • a possible implementation manner of the foregoing S502 may include: in the time domain resources on each downlink BWP in the at least one downlink BWP corresponding to the second time domain resource, in each downlink Find the PDCCH listening opportunity on the BWP.
  • the subcarrier spacing is different, and accordingly, the time length of the time domain resource unit is also different. Therefore, the subcarrier spacings of the at least one downlink BWP may not be completely the same, which makes the time lengths of the time domain resource units corresponding to the at least one downlink BWP different. For example, if the subcarrier spacing of the downlink BWP0 is 15 kHz and the subcarrier spacing of the downlink BWP1 is 30 kHz, the time length of the time domain resource unit corresponding to the downlink BWP0 is twice the length of the time domain resource unit of the downlink BWP1.
  • the time length of the time domain resource unit corresponding to the downlink BWP0 is 0.5 times of the time length of the time domain resource unit of the downlink BWP1. Therefore, at the same time, the time domain resources on the downlink BWP0 are different from the time domain resources on the downlink BWP1.
  • the second time domain resource needs to be converted into the time domain resource on each downlink BWP in the at least one downlink BWP, and then on the downlink BWP.
  • a PDCCH listening opportunity is searched for on each of the downlink BWPs.
  • the determining, by the terminal and/or the network device, the time domain resource on each downlink BWP in the at least one downlink BWP may include: determining, by the terminal and/or the network device, a length of the time domain resource unit of each downlink BWP in the at least one downlink BWP.
  • the time domain resource unit in this embodiment may be a time slot, but the embodiment is not limited thereto, and the time domain resource may be divided in other manners.
  • the time domain resource unit as a time slot as an example, if the length of the time domain resource unit corresponding to the second time domain resource is twice the length of the time domain resource unit on one of the downlink BWPs, if the second time domain resource is time For slot 1, the time domain resources on the downlink BWP corresponding to the second time domain resource are time slot 2 and time slot 3, for example, as shown in FIG. 6.
  • the terminal and/or the network device may determine the length of the time domain resource unit of each downlink BWP according to the subcarrier spacing of each downlink BWP.
  • the second time domain resource includes a time domain resource corresponding to the first activated downlink BWP, and the first activated downlink BWP may be a downlink BWP that is activated when the terminal feeds back the data acknowledgement information.
  • the terminal before the terminal performs the foregoing S501, the terminal further receives the PDSCH, for example, receives the PDSCH sent by the network device, and then confirms the information according to the data used to transmit the PDSCH.
  • the PDSCH is further sent, for example, the PDSCH is sent to the terminal, and then the time domain of the information is confirmed according to the data used to transmit the PDSCH. And determining, by the resource, and the M time interval between the PDSCH and the data acknowledgement information, the first time domain resource.
  • the M is an integer greater than or equal to 1; wherein the determined first time domain resource includes: a time domain resource corresponding to the first activated downlink BWP.
  • the first activated downlink BWP may be a downlink BWP that is activated when the terminal feeds back the data acknowledgement information.
  • the data acknowledgement information corresponding to the PDSCH is transmitted through the uplink BWP in the active state, and the time domain resource used for transmitting the data acknowledgement information corresponding to the PDSCH may be considered to include the time domain resource corresponding to the first activated uplink BWP, the first activation.
  • the uplink BWP may be an uplink BWP that is activated when the terminal feeds back the data acknowledgement information.
  • the first time domain resource obtained according to the time domain resource used for transmitting the data confirmation information corresponding to the PDSCH and the M time interval includes: a time domain resource corresponding to the first activated downlink BWP.
  • the terminal and/or the network device determines, according to the time domain resource used to transmit the data acknowledgement information corresponding to the PDSCH, and the M time interval between the PDSCH and the data acknowledgement information.
  • One implementation of the first time domain resource is:
  • the time domain resource used for transmitting the data acknowledgement information corresponding to the PDSCH is the nth time domain resource unit, and the M time interval is The Qth time interval is K 1, Q time domain resource units, and then determining that the first time domain resource includes the (nK 1, Q ) time domain resource unit.
  • the first time domain resource includes M time domain resource units, and the Q is a positive integer less than or equal to M.
  • the nth time domain resource unit is subtracted from the M time intervals, and M different time domain resource units can be obtained. If n is equal to 3, and M is equal to 3, that is, the nth time domain resource unit is the third time slot, that is, time slot 3, and the M time intervals may include: 1 time slot, 2 time slots, and 3 time slots, then obtain The first time domain resource is slot 0, slot 1, slot 2, as shown in FIG.
  • the M time intervals may be predefined or configured by the network device to the terminal.
  • the terminal and/or network device also performs the following operations before executing S501:
  • the terminal and/or the network device according to the type I PDSCH candidate location configured in each time domain resource unit on the first activated downlink BWP, and the uplink and downlink formats in each time domain resource unit, from the type I PDSCH J valid PDSCH candidate positions are determined among the candidate positions, the I being an integer greater than or equal to 1, and the J being an integer less than or equal to 1.
  • the first activated downlink BWP may be a downlink BWP that is activated when the terminal feeds back the data acknowledgement information. That is, the terminal and/or the network device in this embodiment determines PDSCH candidate locations that do not conflict with the uplink and downlink formats in each time domain resource unit from the one type of PDSCH candidate locations, and the determined PDSCH candidate locations are called valid.
  • the uplink and downlink formats in each time domain resource unit indicate a time domain resource used for uplink transmission in each time domain resource unit and a time domain resource used for downlink transmission, if the PDSCH candidate location is used for uplink transmission. If the domain resources overlap, it indicates that the PDSCH candidate location is not a valid PDSCH candidate location; otherwise, the PDSCH candidate location is a valid PDSCH candidate location.
  • the terminal and/or the network device determine the first information according to the J valid PDSCH candidate locations.
  • each PDSCH candidate location has a corresponding relationship with the time interval. Therefore, after determining the J valid PDSCH candidate locations, the terminal and/or the network device determine, respectively, the J valid PDSCH candidate locations.
  • the time interval is then determined as a time interval corresponding to each of the J valid PDSCH candidate positions as a time interval between the PDSCH candidate position and the PDCCH candidate position.
  • the first type of PDSCH candidate positions and the corresponding time interval K 0 configured in each time domain resource unit on the first activated downlink BWP are as shown in Table 1.
  • the time domain resource unit is taken as an example, and the PDSCH candidate position is represented by a start symbol and a symbol length.
  • the table 1 has, for example, 4 columns x I rows. The contents of each column are sequence number, time interval K 0 value, start symbol and symbol length in each time slot, and mapping type.
  • the table 1 may be predefined or configured by the network device to the terminal.
  • Table 1 is an example in which I is equal to 4, wherein the K 0 value, the start symbol and the symbol length of each row, and the mapping type are examples, and the embodiment is not limited thereto.
  • the K 0 of each row is 0 (that is, the time interval is 0 time slots), and the mapping type can refer to the description in the prior art.
  • the PDSCH candidate positions (ie, the start symbol and the symbol length) in each slot corresponding to each sequence number in Table 1 and the uplink and downlink formats in each slot are as shown in FIG. 8, and the uplink and downlink formats indicate each slot.
  • the first 10 symbols (symbols 0-9) are used for downlink transmission, and the last 4 symbols (symbols 10-13) are used for uplink transmission.
  • the PDSCH candidate positions corresponding to the sequence number 0 and the sequence number 1 are in the uplink and downlink format, and the PDSCH candidate positions corresponding to the sequence number 2 and the sequence number 3 do not conform to the uplink and downlink formats.
  • the K 0 values in sequence number 0 and sequence number 1 are then determined as the time interval of the time domain resource of the PDSCH candidate location and the time domain resource of the PDCCH candidate location.
  • the first time domain resource includes R sub-time domain resources, and the time interval indicated by the first information is T, and an implementation manner of the foregoing S501 may include:
  • the terminal determines that the second time domain resource includes the (m v -K 0,S ) time domain a resource unit; wherein, H is a positive integer less than or equal to R, the S is a positive integer less than or equal to T, and the v is a positive integer.
  • the sub-time domain resource is at least two consecutive symbols in the time domain resource unit.
  • the time domain resource unit is taken as an example.
  • the first time domain resource includes time slot 0, time slot 1, and time slot 2.
  • the effective PDSCH candidate position in each time slot for example, in combination with Table 1 and FIG. It can be seen that the symbol 3-symbol 7 in slot 0 is a sub-time domain resource, the symbol 5-symbol 9 in slot 0 is a sub-time domain resource, and the symbol 3-symbol 7 in slot 1 is a sub-time domain resource.
  • the symbol 5-symbol 9 in slot 1 is a sub-time domain resource
  • the symbol 3-symbol 7 in slot 2 is a sub-time domain resource
  • the symbol 5-symbol 9 in slot 2 is a sub-time domain resource
  • the first time domain resource includes six sub-time domain resources.
  • the first sub-time domain resource is the symbol 3-symbol 7 in slot 0 is located in slot 0, since the time interval is 0 slots, so that the slot (0-0), that is, slot 0 can be determined;
  • the second sub-time domain resource is the symbol 5-symbol 9 in slot 0 is located in slot 0, since the time interval is 0 slots, so that the slot (0-0), that is, slot 0;
  • the sub-time domain resource is the symbol 3-symbol 7 in slot 1 is located in slot 1, since the time interval is 0 slots, so that the slot (1-0), that is, slot 1 can be determined;
  • the fourth sub-time The domain resource is the symbol 5-symbol 9 in slot 1 is located in slot 1, since the time interval is 0 slots, so that the slot (1-0), that is, slot 1 can be determined;
  • the fifth sub-time domain resource The symbol 3-symbol 7 in slot 2 is located in slot 2, since the time interval is 0 slots, so that the slot (2-0), that is, slot 2 can be determined;
  • the second time domain resource can be obtained including time slot 0 - time slot 2.
  • the terminal and/or the network device searches for the PDCCH monitoring opportunity on the at least one downlink BWP in a time range corresponding to slot 0 to slot 2.
  • the terminal and/or the network device performs the foregoing S502 if the (m v -K 0,S ) time domain resource unit corresponds to the time range in the second time domain resource, the at least one The PDCCH listening opportunity is found on the downlink BWP, and the terminal and/or the network device determines that the H th sub-time domain resource in the R sub-time domain resources is a valid PDSCH candidate location.
  • the corresponding to the time slot 0 in the second time domain resource are valid PDSCH candidate locations, and the fifth sub-time domain resource and the sixth sub-time domain resource corresponding to slot 2 in the second time domain resource are valid PDSCHs. Candidate location.
  • the terminal and/or the network device performs the foregoing S502 if the (m v -K 0,S ) time domain resource unit corresponds to the time range in the second time domain resource, the at least one If the PDCCH listening opportunity is not found on the downlink BWP, the terminal and/or the network device determines that the H th sub-time domain resource in the R sub-time domain resources is not a valid PDSCH candidate location. If the PDCCH listening opportunity is not found on the at least one downlink BWP in the time range of the time slot 1 in the second time domain resource, the third sub-time corresponding to the time slot 1 in the second time domain resource The domain resource and the 4th sub-time domain resource are not valid PDSCH candidate locations.
  • the valid PDSCH candidate location refers to the need to take this PDSCH candidate location into consideration in a subsequent possible procedure when determining a semi-static data acknowledgement information (HARQ-ACK) codebook.
  • HARQ-ACK semi-static data acknowledgement information
  • the terminal needs to feed back the data acknowledgement information corresponding to the A PDSCHs to the network device, and the network device needs to receive A PDSCH corresponding from the terminal.
  • Data confirmation information In determining the semi-static HARQ-ACK codebook, after using the embodiments described herein, there may be other methods, and further B (B is less than or equal to A) may be selected from A valid PDSCH candidate locations.
  • B is less than or equal to A
  • the PDSCH candidate location the final terminal needs to feed back the data acknowledgement information corresponding to the B PDSCHs to the network device, and the network device needs to receive the data acknowledgement information corresponding to the B PDSCHs from the terminal.
  • the time interval between the time domain resource for transmitting the data acknowledgement information corresponding to the PDSCH and the time interval of the PDSCH is K1, where the terminal is the UE, the time-frequency resource unit is the time slot, and the time interval between the PDSCH candidate location and the PDCCH candidate location is K0.
  • the data confirmation information is HARQ-ACK information and is described.
  • a valid PDSCH candidate location may be referred to as a valid location of the PDSCH, and a valid PDSCH candidate location may be referred to as a valid PDSCH transmission location.
  • the UE switches from BWP2 to BWP2 in slot 1, as shown in FIG.
  • the UE is configured with the value set of K1 as ⁇ 1, 2, 3 ⁇ .
  • the HARQ-ACK information is fed back on slot 3.
  • the table of time domain resource allocation configured by the UE on BWP2 is as shown in Table 1 above, and it can be seen that four PDSCH candidate locations are configured in each slot.
  • the K0 value corresponding to each PDSCH candidate position (that is, K 0 in Table 1) is 0.
  • the slot structure in each slot is as shown in FIG.
  • any time slot of slot 0, slot 1 and slot 2 the UE obtains a valid PDSCH transmission position according to the prior art, that is, a position corresponding to sequence number 0 and sequence number 1. Then, in any time slot of slot 0, slot 1 and slot 2, according to the K0 value corresponding to sequence number 0 and sequence number 1, it is checked whether there is a PDCCH listening opportunity.
  • the UE will check whether there is a PDCCH listening opportunity on all the configured downlink BWPs/any configured downlink BWPs, and there are PDCCH monitoring opportunities on the BWP2 in the slots 0 and 2, Within slot 1, there is a PDCCH listening opportunity on BWP1. Therefore, after screening, there are a total of six PDSCH effective positions in three slots of time slot 0 to slot 2. These locations need to be taken into account in the subsequent process of determining the semi-static codebook.
  • the present embodiment can solve the problem that the semi-static codebook may be in error when BWP switching.
  • the present embodiment is identical to the scenario in the first embodiment, except that in the embodiment, the UE is viewed on the downlink BWP in all active states/on the downlink BWP in any active state.
  • BWP2 is in an active state
  • there is a PDCCH listening opportunity in time slot 1
  • both BWP1 and BWP2 are in an active state for a period of time
  • the present embodiment can solve the problem that the semi-static codebook may be in error when BWP switching.
  • the difference between this embodiment and the first embodiment is that when the BWP is switched, the PDCCH and the PDSCH are not in the same time slot, and the table of time domain resource allocation is shown in Table 2, in Table 2.
  • the value of K0 is different from that in Table 1.
  • the rest of the configuration (such as the starting position and length of the symbol, the actual slot structure, etc.) is the same as in Table 1.
  • K0 and SLIV in Table 2 are merely examples, and are not limited thereto.
  • the UE excludes the PDSCH candidate position corresponding to the sequence number 2 and the sequence number 3 according to the prior art method (due to the actual slot structure (ie, the above)
  • the uplink and downlink formats have uplink and downlink conflicts).
  • slot 1 slot 2 and slot 3 according to the K0 value corresponding to sequence number 0 and sequence number 1, it is checked whether there is a PDCCH listening opportunity.
  • the UE will check whether there is a PDCCH monitoring opportunity on all the configured downlink BWPs/any configured downlink BWPs.
  • the present embodiment can solve the problem that the semi-static codebook may be in error when BWP switching.
  • the present embodiment is identical to the scenario of the third embodiment, except that in the embodiment, the UE is viewed on the downlink BWP of all active states/on the downlink BWP of any active state.
  • BWP2 is in an active state, there is a PDCCH listening opportunity; in time slot 0 to time slot 2, both BWP1 and BWP2 are activated for a period of time, respectively, on BWP1 or BWP2
  • There is a corresponding PDCCH listening opportunity Therefore, after screening, there are a total of six PDSCH effective positions in three slots of slots 1 to 3. These locations need to be taken into account in the subsequent process of determining the semi-static codebook.
  • the present embodiment can solve the problem that the semi-static codebook may be in error when BWP switching.
  • the difference between the present embodiment and the first embodiment is that the subcarrier spacings of BWP1 and BWP2 are different.
  • the subcarrier spacing of BWP1 is 30 kHz
  • the subcarrier spacing of BWP2 is 15 kHz.
  • the UE searches for a PDCCH listening opportunity on all configured downlink BWPs/any configured downlink BWPs, or all active downlink BWPs/any active downlink BWPs. .
  • the present embodiment can solve the problem that the semi-static codebook may be in error when BWP switching.
  • the difference between the present embodiment and the fifth embodiment is that in the present embodiment, the subcarrier spacing of BWP1 is 15 kHz, and the subcarrier spacing of BWP2 is 30 kHz.
  • the rest of the configuration is the same.
  • the UE searches for a PDCCH listening opportunity on all the configured downlink BWPs/any configured downlink BWPs, or all active downlink BWPs/any active downlink BWPs. .
  • the present embodiment can solve the problem that the semi-static codebook may be in error when BWP switching.
  • the method or the step implemented by the terminal may also be implemented by components (such as chips or circuits) that can be used for the terminal, and the method or the step implemented by the network device may also be used.
  • the components of the network device (such as chips or circuits, etc.) are implemented.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • the communication device may be a terminal or a chip that can be used for a terminal.
  • the communication device in this embodiment may include: determining a module. 1301 and lookup module 1302.
  • the communication device of this embodiment may further include a receiving module 1303.
  • a determining module 1301, configured to determine, according to the first time domain resource and the first information, the second time domain resource; the first time domain resource is a time domain resource of a PDSCH candidate location, and the second time domain resource is a PDCCH candidate location
  • the time domain resource, the first information includes or indicates a time interval between the PDSCH candidate location and the PDCCH candidate location.
  • the searching module 1302 is configured to search for a PDCCH monitoring opportunity on the at least one downlink BWP in a time range corresponding to the second time domain resource.
  • the at least one downlink BWP includes: all downlink BWPs configured by the network device to the terminal, or the at least one downlink BWP includes: a time range corresponding to the second time domain resource configured by the network device to the terminal All downstream BWPs that have been activated.
  • the searching module 1302 is specifically configured to: in the time domain resources on each downlink BWP in the at least one downlink BWP corresponding to the second time domain resource, on each downlink BWP Find the PDCCH listening opportunity.
  • the receiving module 1303 is configured to receive the PDSCH before the determining module 1301 determines the second time domain resource according to the first time domain resource and the first information.
  • the determining module 1301 is further configured to determine the first time according to a time domain resource used for transmitting data acknowledgement information corresponding to the PDSCH, and M time intervals between the PDSCH and the data acknowledgement information.
  • Domain resource, M is an integer greater than or equal to 1;
  • the determined first time domain resource includes: a time domain resource corresponding to the first activated downlink BWP.
  • the determining module 1301 is specifically configured to: for each time interval of the M time intervals, if the time domain resource used for transmitting the data acknowledgement information corresponding to the PDSCH is The n time domain resource unit, and the Q time interval of the M time intervals is K 1, Q time domain resource units, determining that the first time domain resource includes the (nK 1, Q ) time domain resource unit.
  • the first time domain resource includes M time domain resource units, and the Q is a positive integer less than or equal to M.
  • the determining module 1301 is further configured to: according to the first time domain resource and the first information, before determining the second time domain resource, according to each time domain resource unit on the first activated downlink BWP Determining the J types of PDSCH candidate locations, and the uplink and downlink formats in each time domain resource unit, determining J valid PDSCH candidate locations from the one of the PD types of PDSCH candidate locations, where the I is greater than or equal to An integer, the J being an integer less than or equal to 1; and determining the first information according to the J valid PDSCH candidate locations.
  • the first time domain resource includes R sub-time domain resources, and the first information indicates a time interval of T, and the R and the T are positive integers.
  • the determining module 1301 is specifically configured to: for each of the R sub-time domain resources, and each time interval of the T time intervals, if the R sub-time domain resources are the first
  • the H time domain resources are located in the mv time domain resource unit, and the S time interval in the T time interval is K 0, S , determining that the second time domain resource includes the (m v - K 0,S ) Time domain resource unit.
  • the H is a positive integer less than or equal to R
  • the S is a positive integer less than or equal to T
  • the v is a positive integer.
  • the determining module 1301 is further configured to: after the searching module 1302 searches for the PDCCH monitoring opportunity on the at least one downlink BWP in the time range corresponding to the second time domain resource, if Determining the R sub-time domains in the time range corresponding to the (m v -K 0, S ) time domain resource unit in the second time domain resource, if no PDCCH monitoring opportunity is found on the at least one downlink BWP
  • the H th sub-time domain resource in the resource is not a valid PDSCH candidate location.
  • the determining module 1301 is further configured to: after the searching module 1302 searches for the PDCCH monitoring opportunity on the at least one downlink BWP in the time range corresponding to the second time domain resource, if Determining the R sub-timetime resources in the time range corresponding to the time domain resource unit in the second time domain resource (the (m v -K 0, S )), when the PDCCH listening opportunity is found on the at least one downlink BWP
  • the H th sub-time domain resource is a valid PDSCH candidate location.
  • the sub-time domain resource is at least two consecutive symbols in the time domain resource unit.
  • the time domain resource unit is a time slot.
  • the communication device described in this embodiment may be used to perform the technical solution executed by the terminal in the foregoing corresponding method embodiments.
  • the implementation principle and the technical effect are similar.
  • the function of each module may refer to the corresponding description in the method embodiment. I will not repeat them here.
  • FIG. 14 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • the communication device may be a network device or a chip that can be used for a network device.
  • the communication device in this embodiment may include : A determination module 1401 and a lookup module 1402.
  • the communication device of this embodiment may further include a sending module 1403.
  • the determining module 1401 is configured to determine, according to the first time domain resource and the first information, the second time domain resource; the first time domain resource is a time domain resource of a PDSCH candidate location, and the second time domain resource is a PDCCH candidate location.
  • the time domain resource, the first information includes or indicates a time interval between the PDSCH candidate location and the PDCCH candidate location.
  • the searching module 1402 is configured to search for a PDCCH monitoring opportunity on the at least one downlink BWP in a time range corresponding to the second time domain resource.
  • the at least one downlink BWP includes: all downlink BWPs configured by the network device to the terminal, or the at least one downlink BWP includes: a time range corresponding to the second time domain resource configured by the network device to the terminal All downstream BWPs that have been activated.
  • the searching module 1402 is configured to: in the time domain resources on each downlink BWP in the at least one downlink BWP corresponding to the second time domain resource, on each downlink BWP Find the PDCCH listening opportunity.
  • the sending module 1403 is configured to send the PDSCH before the determining module 1401 determines the second time domain resource according to the first time domain resource and the first information.
  • the determining module 1401 is further configured to determine the first time according to a time domain resource used for transmitting data acknowledgement information corresponding to the PDSCH, and M time intervals between the PDSCH and the data acknowledgement information.
  • Domain resource, M is an integer greater than or equal to 1;
  • the determined first time domain resource includes: a time domain resource corresponding to the first activated downlink BWP.
  • the determining module 1401 is configured to: for each time interval of the M time intervals, if the time domain resource used for transmitting the data acknowledgement information corresponding to the PDSCH is The n time domain resource unit, and the Q time interval of the M time intervals is K 1, Q time domain resource units, determining that the first time domain resource includes the (nK 1, Q ) time domain resource unit.
  • the first time domain resource includes M time domain resource units, and the Q is a positive integer less than or equal to M.
  • the determining module 1401 is further configured to: before determining the second time domain resource according to the first time domain resource and the first information, according to each time domain resource unit on the first activated downlink BWP. Determining the J types of PDSCH candidate locations, and the uplink and downlink formats in each time domain resource unit, determining J valid PDSCH candidate locations from the one of the PD types of PDSCH candidate locations, where the I is greater than or equal to An integer, the J being an integer less than or equal to 1; and determining the first information according to the J valid PDSCH candidate locations.
  • the first time domain resource includes R sub-time domain resources, and the first information indicates a time interval of T, and the R and the T are positive integers.
  • the determining module 1401 is specifically configured to: for each of the R sub-time domain resources, and each time interval of the T time intervals, if the R sub-time domain resources are the first
  • the H time domain resources are located in the mv time domain resource unit, and the S time interval in the T time interval is K 0, S , determining that the second time domain resource includes the (m v - K 0,S ) Time domain resource unit.
  • the H is a positive integer less than or equal to R
  • the S is a positive integer less than or equal to T
  • the v is a positive integer.
  • the determining module 1401 is further configured to: after the searching module 1402 searches for the PDCCH monitoring opportunity on the at least one downlink BWP in the time range corresponding to the second time domain resource, if Determining the R sub-time domains in the time range corresponding to the (m v -K 0, S ) time domain resource unit in the second time domain resource, if no PDCCH monitoring opportunity is found on the at least one downlink BWP
  • the H th sub-time domain resource in the resource is not a valid PDSCH candidate location.
  • the determining module 1401 is further configured to: after the searching module 1402 searches for the PDCCH monitoring opportunity on the at least one downlink BWP in the time range corresponding to the second time domain resource, if Determining the R sub-timetime resources in the time range corresponding to the time domain resource unit in the second time domain resource (the (m v -K 0, S )), when the PDCCH listening opportunity is found on the at least one downlink BWP
  • the H th sub-time domain resource is a valid PDSCH candidate location.
  • the sub-time domain resource is at least two consecutive symbols in the time domain resource unit.
  • the time domain resource unit is a time slot.
  • the communication device described above in this embodiment may be used to perform the technical solution executed by the network device in the foregoing corresponding method embodiments, and the implementation principle and the technical effect are similar.
  • the function of each module may refer to the corresponding description in the method embodiment. , will not repeat them here.
  • FIG. 15 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • the communication apparatus of this embodiment may include: a memory 1501 and a processor 1502.
  • the communication device of this embodiment may further include a transceiver 1503.
  • the communication device may be a terminal or a chip that can be used for the terminal.
  • the determination module 1301 and the lookup module 1302 described above may be embedded in the processor 1502 in hardware.
  • the receiving module 1303 described above may also be embedded in the processor 1502 in hardware.
  • the receiving module 1303 described above may also be embedded in the transceiver 1503 in hardware.
  • the memory 1501 is used to store program instructions.
  • the program instructions are used by the processor 1502 to execute the scheme executed by the terminal described above.
  • the communication device may be a network device or a chip that can be used for the network device.
  • the determination module 1401 and the lookup module 1402 described above may be embedded in the processor 1502 in hardware.
  • the sending module 1403 described above may also be embedded in the processor 1502 in hardware.
  • the sending module 1403 described above may also be embedded in the transceiver 1503 in hardware.
  • the memory 1501 is used to store program instructions.
  • the program instructions are used by the processor 1502 to execute the scheme executed by the network device described above.
  • the program instructions may be implemented in the form of a software functional unit and can be sold or used as a standalone product, which may be any form of computer readable storage medium. Based on such understanding, all or part of the technical solution of the present application may be embodied in the form of a software product, including a plurality of instructions for causing a computer device, specifically a processor 1502, to perform the embodiments in the present application. All or part of the steps.
  • the foregoing computer readable storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. The medium of the code.
  • the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules if implemented in the form of software functional modules and sold or used as separate products, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种查找PDCCH监听机会的通信方法和装置,此方法包括:终端根据第一时域资源和第一信息,确定第二时域资源;第一时域资源为PDSCH候选位置的时域资源,第二时域资源为PDCCH候选位置的时域资源,第一信息包括或指示PDSCH候选位置与PDCCH候选位置的时间间隔;在第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会;至少一个下行BWP包括:网络设备向终端配置的所有下行BWP,或者,网络设备向所述终端配置的并且在第二时域资源对应的时间范围内激活过的所有下行BWP。因此可查找到PDSCH对应的所有PDCCH监听机会,以避免漏查PDCCH监听机会和漏掉下行数据的数据确认信息,从而提高通信质量。

Description

查找PDCCH监听机会的通信方法和装置 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法和装置。
背景技术
一般接收端接收到发送端发送的数据后,向发送端发送数据确认信息,若接收端接收的数据无错,则接收端向发送端发送的数据确认信息为肯定的确认信息(ACK),若接收端接收的数据出错,则接收端向发送端发送的数据确认信息为否定的确认信息(NACK)。以基站与终端之间的下行传输为例,终端在向基站反馈数据确认信息的时候,可能将多个物理下行共享信道(physical downlink shared channel,PDSCH)(用于携带下行数据)的数据确认信息同时向基站进行反馈。现有技术中可以通过半静态的方式确定哪些PDSCH的数据确认信息同时向基站反馈,具体过程为:根据配置的PDSCH和对应的数据确认信息之间的时间间隔,以及PDSCH与PDCCH的时间间隔以及每个时隙中PDSCH候选位置的符号,确定PDCCH候选位置的时隙,然后在这些物理下行控制信道(Physical Downlink Control Channel,PDCCH)候选位置的时隙内查找PDCCH监听机会(PDCCH monitoring occasion),然后确定查找到PDCCH监听机会所对应的PDSCH的数据确定信息可同时向基站反馈。
在5G系统中,系统带宽可以很大,例如200MHz或者400MHz,有些终端支持不了这么大的带宽,因此,基站可以给终端配置带宽部分(bandwidth part,BWP),即基站与终端之间占用系统带宽中的一部分带宽(例如20MHz)进行通信。其中,BWP可以分为下行BWP(Downlink BWP,DL BWP)和上行BWP(Uplink BWP,UL BWP),网络设备可以为终端配置多个DL BWP以及多个UL BWP,并且激活至少一个DL BWP和至少一个UL BWP,终端在激活的DL BWP(即active DL BWP)上接收基站发送的下行信号;终端在激活的UL BWP上发送上行信号。当基站与终端在激活的DL BWP和UL BWP上通信时,基站可以激活另一个BWP(DL或者UL),从而使得终端转换(switch)到新的激活的BWP上接收或者发送数据。目前是使用调度数据的DCI(scheduling DCI)来进行BWP的跳转(switching),其中,DCI承载在PDCCH上。比如终端在下行BWP 0上,收到一个PDCCH(承载DCI),该DCI调度终端到下行BWP 1上接收数据,此时终端就会从下行BWP 0转换到下行BWP 1上,即激活的BWP由BWP 0转换到BWP 1,然后终端在下行BWP 1上接收数据,并在下行BWP 1上向网络设备发送多个PDSCH的数据确认信息。由于此时激活的下行BWP只有下行BWP 1,因此终端会在下行BWP 1上查找是否存在PDCCH监听机会,但是如果PDCCH在下行BWP0上传输,而其调度的PDSCH在下行BWP1上传输,会导致在下行BWP1上查找不到PDSCH对应的PDCCH监听机会的问题。
发明内容
本申请提供一种通信方法和装置,用于避免漏查PDCCH监听机会的现象。
第一方面,本申请实施例提供一种通信方法,包括:终端先根据第一时域资源和第一信息,确定第二时域资源;所述第一时域资源为PDSCH候选位置的时域资源,第二时域资源为PDCCH候选位置的时域资源,第一信息包括或指示所述PDSCH候选位置与所述PDCCH候选位置的时间间隔;然后所述终端在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会。
其中,所述至少一个下行BWP包括:网络设备向所述终端配置的所有下行BWP,或者,所述至 少一个下行BWP包括:网络设备向所述终端配置的,并且在所述第二时域资源对应的时间范围内激活过的所有下行BWP。
在第一方面的第一实施例中,所述终端在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会,包括:所述终端在所述第二时域资源对应的所述至少一个下行BWP中各个下行BWP上的时域资源内,在所述各个下行BWP上查找PDCCH监听机会。
根据第一方面或第一方面的第一实施例,在第一方面的第二实施例中,所述终端在根据第一时域资源和第一信息,确定第二时域资源之前,先接收PDSCH,然后根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,M为大于或等于1的整数。
其中,确定的所述第一时域资源包括:在第一激活的下行BWP上所对应的时域资源。
根据第一方面的第二实施例,在第一方面的第三实施例中,所述终端根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,包括:
针对所述M种时间间隔中的每种时间间隔,若所述用于传输所述PDSCH对应的数据确认信息的时域资源为第n时域资源单元,以及所述M种时间间隔中第Q种时间间隔为K 1,Q个时域资源单元,则所述终端确定所述第一时域资源包括第(n-K 1,Q)时域资源单元。其中,所述第一时域资源包括M个时域资源单元,所述Q为小于等于M的正整数。
根据第一方面或第一方面的第一至第三实施例中任一实施例,在第一方面的第四实施例中,所述终端在根据第一时域资源和第一信息,确定第二时域资源之前,先根据第一激活的下行BWP上的每个时域资源单元中所配置的I种PDSCH候选位置,以及每个时域资源单元中的上下行格式,从所述I种PDSCH候选位置中确定J种有效的PDSCH候选位置,然后根据所述J种有效的PDSCH候选位置,确定所述第一信息。所述I为大于或等于1的整数,所述J为小于或等于I的整数。
根据第一方面或第一方面的第一至第四实施例中任一实施例,在第一方面的第五实施例中,所述第一时域资源包括R个子时域资源,所述第一信息指示的时间间隔为T种,所述R与所述T为正整数。所述终端根据第一时域资源和第一信息,确定第二时域资源,包括:针对所述R个子时域资源中的每个子时域资源,以及所述T种时间间隔中的每种时间间隔,若所述R个子时域资源中第H个子时域资源位于第m v时域资源单元内,以及所述T种时间间隔中的第S种时间间隔为K 0,S,则所述终端确定所述第二时域资源包括第(m v-K 0,S)时域资源单元。其中,所述H为小于等于R的正整数,所述S为小于等于T的正整数,所述v为正整数。
根据第一方面的第五实施例,在第一方面的第六实施例中,所述终端在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中第(m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上未查找到PDCCH监听机会,则所述终端确定所述R个子时域资源中第H个子时域资源不是有效的PDSCH候选位置。
根据第一方面的第五实施例或第六实施例,在第一方面的第七实施例中,所述终端在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中(第m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上查找到PDCCH监听机会,则所述终端确定所述R个子时域资源中第H个子时域资源是有效的PDSCH候选位置。
根据第一方面的第五至第七实施例中任一实施例,在第一方面的第八实施例中,所述子时域资源为所述时域资源单元中连续的至少两个符号。
根据第一方面的第三至第八实施例中任一实施例,在第一方面的第九实施例中,所述时域资源单元为时隙。
第二方面,本申请实施例提供一种通信方法,包括:网络设备先根据第一时域资源和第一信息,确定第二时域资源;所述第一时域资源为PDSCH候选位置的时域资源,第二时域资源为PDCCH候选位置的时域资源,第一信息包括或指示所述PDSCH候选位置与所述PDCCH候选位置的时间间隔;然后所述网络设备在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会。
其中,所述至少一个下行BWP包括:所述网络设备向终端配置的所有下行BWP,或者,所述至少一个下行BWP包括:所述网络设备向终端配置的,并且在所述第二时域资源对应的时间范围内激活过的所有下行BWP。
在第二方面的第一实施例中,所述网络设备在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会,包括:所述网络设备在所述第二时域资源对应的所述至少一个下行BWP中各个下行BWP上的时域资源内,在所述各个下行BWP上查找PDCCH监听机会。
根据第二方面或第二方面的第一实施例,在第二方面的第二实施例中,所述网络设备在根据第一时域资源和第一信息,确定第二时域资源之前,先发送PDSCH,然后根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,M为大于或等于1的整数。其中,确定的所述第一时域资源包括:在第一激活的下行BWP上所对应的时域资源。
根据第二方面的第二实施例,在第二方面的第三实施例中,所述网络设备根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,包括:
针对所述M种时间间隔中的每种时间间隔,若所述用于传输所述PDSCH对应的数据确认信息的时域资源为第n时域资源单元,以及所述M种时间间隔中第Q种时间间隔为K 1,Q个时域资源单元,则所述网络设备确定所述第一时域资源包括第(n-K 1,Q)时域资源单元。其中,所述第一时域资源包括M个时域资源单元,所述Q为小于等于M的正整数。
根据第二方面或第二方面的第一至第三实施例中任一实施例,在第二方面的第四实施例中,所述网络设备在根据第一时域资源和第一信息,确定第二时域资源之前,先根据第一激活的下行BWP上的每个时域资源单元中所配置的I种PDSCH候选位置,以及每个时域资源单元中的上下行格式,从所述I种PDSCH候选位置中确定J种有效的PDSCH候选位置,然后根据所述J种有效的PDSCH候选位置,确定所述第一信息。所述I为大于或等于1的整数,所述J为小于或等于I的整数。
根据第二方面或第二方面的第一至第四实施例中任一实施例,在第二方面的第五实施例中,所述第一时域资源包括R个子时域资源,所述第一信息指示的时间间隔为T种,所述R与所述T为正整数。所述网络设备根据第一时域资源和第一信息,确定第二时域资源,包括:针对所述R个子时域资源中的每个子时域资源,以及所述T种时间间隔中的每种时间间隔,若所述R个子时域资源中第H个子时域资源位于第m v时域资源单元内,以及所述T种时间间隔中的第S种时间间隔为K 0,S,则所 述网络设备确定所述第二时域资源包括第(m v-K 0,S)时域资源单元。其中,所述H为小于等于R的正整数,所述S为小于等于T的正整数,所述v为正整数。
根据第二方面的第五实施例,在第二方面的第六实施例中,所述网络设备在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中第(m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上未查找到PDCCH监听机会,则所述网络设备确定所述R个子时域资源中第H个子时域资源不是有效的PDSCH候选位置。
根据第二方面的第五实施例或第六实施例,在第二方面的第七实施例中,所述网络设备在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中(第m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上查找到PDCCH监听机会,则所述网络设备确定所述R个子时域资源中第H个子时域资源是有效的PDSCH候选位置。
根据第二方面的第五至第七实施例中任一实施例,在第二方面的第八实施例中所述子时域资源为所述时域资源单元中连续的至少两个符号。
根据第二方面的第三至第八实施例中任一实施例,在第二方面的第九实施例中,所述时域资源单元为时隙。
第三方面,本申请实施例提供一种通信装置,包括:确定模块和查找模块。
确定模块,用于根据第一时域资源和第一信息,确定第二时域资源;所述第一时域资源为PDSCH候选位置的时域资源,第二时域资源为PDCCH候选位置的时域资源,第一信息包括或指示所述PDSCH候选位置与所述PDCCH候选位置的时间间隔。
查找模块,用于在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会。
其中,所述至少一个下行BWP包括:网络设备向终端配置的所有下行BWP,或者,所述至少一个下行BWP包括:网络设备向终端配置的,并且在所述第二时域资源对应的时间范围内激活过的所有下行BWP。
在第三方面的第一实施例中,所述查找模块,具体用于:在所述第二时域资源对应的所述至少一个下行BWP中各个下行BWP上的时域资源内,在所述各个下行BWP上查找PDCCH监听机会。
根据第三方面或第三方面的第一实施例,在第三方面的第二实施例中,所述通信装置还包括:接收模块。接收模块,用于在所述确定模块根据第一时域资源和第一信息,确定第二时域资源之前,接收PDSCH。所述确定模块,还用于根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,M为大于或等于1的整数。其中,确定的所述第一时域资源包括:在第一激活的下行BWP上所对应的时域资源。
根据第三方面的第二实施例,在第三方面的第三实施例中,所述确定模块,具体用于:针对所述M种时间间隔中的每种时间间隔,若所述用于传输所述PDSCH对应的数据确认信息的时域资源为第n时域资源单元,以及所述M种时间间隔中第Q种时间间隔为K 1,Q个时域资源单元,则确定所述第一时域资源包括第(n-K 1,Q)时域资源单元。其中,所述第一时域资源包括M个时域资源单元,所述Q为小于等于M的正整数。
根据第三方面或第三方面的第一至第三实施例中任一实施例,在第三方面的第四实施例中,所述确定模块,还用于在根据第一时域资源和第一信息,确定第二时域资源之前,根据第一激活的下行BWP上的每个时域资源单元中所配置的I种PDSCH候选位置,以及每个时域资源单元中的上下行格式,从所述I种PDSCH候选位置中确定J种有效的PDSCH候选位置,所述I为大于或等于1的整数,所述J为小于或等于I的整数;以及根据所述J种有效的PDSCH候选位置,确定所述第一信息。
根据第三方面或第三方面的第一至第四实施例中任一实施例,在第三方面的第五实施例中,所述第一时域资源包括R个子时域资源,所述第一信息指示的时间间隔为T种,所述R与所述T为正整数。所述确定模块,具体用于:针对所述R个子时域资源中的每个子时域资源,以及所述T种时间间隔中的每种时间间隔,若所述R个子时域资源中第H个子时域资源位于第m v时域资源单元内,以及所述T种时间间隔中的第S种时间间隔为K 0,S,则确定所述第二时域资源包括第(m v-K 0,S)时域资源单元;
其中,所述H为小于等于R的正整数,所述S为小于等于T的正整数,所述v为正整数。
根据第三方面的第五实施例,在第三方面的第六实施例中,所述确定模块,还用于在所述查找模块在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中第(m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上未查找到PDCCH监听机会,则确定所述R个子时域资源中第H个子时域资源不是有效的PDSCH候选位置。
根据第三方面的第五实施例或第六实施例,在第三方面的第七实施例中,所述确定模块,还用于在所述查找模块在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中(第m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上查找到PDCCH监听机会,则确定所述R个子时域资源中第H个子时域资源是有效的PDSCH候选位置。
根据第三方面的第五至第七实施例中任一实施例,在第三方面的第八实施例中,所述子时域资源为所述时域资源单元中连续的至少两个符号。
根据第三方面的第三至第八实施例中任一实施例,在第三方面的第九实施例中所述时域资源单元为时隙。
需要说明的是,上述第三方面的通信装置,可以是终端,也可以是可用于终端的芯片。
第四方面,本申请实施例提供一种通信装置,包括:确定模块和查找模块。
确定模块,用于根据第一时域资源和第一信息,确定第二时域资源;所述第一时域资源为PDSCH候选位置的时域资源,第二时域资源为PDCCH候选位置的时域资源,第一信息包括或指示所述PDSCH候选位置与所述PDCCH候选位置的时间间隔。
查找模块,用于在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会。
其中,所述至少一个下行BWP包括:网络设备向终端配置的所有下行BWP,或者,所述至少一个下行BWP包括:网络设备向终端配置的,并且在所述第二时域资源对应的时间范围内激活过的所有下行BWP。
在第四方面的第一实施例中,所述查找模块,具体用于:在所述第二时域资源对应的所述至少一 个下行BWP中各个下行BWP上的时域资源内,在所述各个下行BWP上查找PDCCH监听机会。
根据第四方面或第四方面的第一实施例,在第四方面的第二实施例中,所述通信装置还包括:接收模块。接收模块,用于在所述确定模块根据第一时域资源和第一信息,确定第二时域资源之前,接收PDSCH。所述确定模块,还用于根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,M为大于或等于1的整数。其中,确定的所述第一时域资源包括:在第一激活的下行BWP上所对应的时域资源。
根据第四方面的第二实施例,在第四方面的第三实施例中,所述确定模块,具体用于:针对所述M种时间间隔中的每种时间间隔,若所述用于传输所述PDSCH对应的数据确认信息的时域资源为第n时域资源单元,以及所述M种时间间隔中第Q种时间间隔为K 1,Q个时域资源单元,则确定所述第一时域资源包括第(n-K 1,Q)时域资源单元。其中,所述第一时域资源包括M个时域资源单元,所述Q为小于等于M的正整数。
根据第四方面或第四方面的第一至第三实施例中任一实施例,在第四方面的第四实施例中,所述确定模块,还用于在根据第一时域资源和第一信息,确定第二时域资源之前,根据第一激活的下行BWP上的每个时域资源单元中所配置的I种PDSCH候选位置,以及每个时域资源单元中的上下行格式,从所述I种PDSCH候选位置中确定J种有效的PDSCH候选位置,所述I为大于或等于1的整数,所述J为小于或等于I的整数;以及根据所述J种有效的PDSCH候选位置,确定所述第一信息。
根据第四方面或第四方面的第一至第四实施例中任一实施例,在第四方面的第五实施例中,所述第一时域资源包括R个子时域资源,所述第一信息指示的时间间隔为T种,所述R与所述T为正整数。所述确定模块,具体用于:针对所述R个子时域资源中的每个子时域资源,以及所述T种时间间隔中的每种时间间隔,若所述R个子时域资源中第H个子时域资源位于第m v时域资源单元内,以及所述T种时间间隔中的第S种时间间隔为K 0,S,则确定所述第二时域资源包括第(m v-K 0,S)时域资源单元;
其中,所述H为小于等于R的正整数,所述S为小于等于T的正整数,所述v为正整数。
根据第四方面的第五实施例,在第四方面的第六实施例中,所述确定模块,还用于在所述查找模块在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中第(m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上未查找到PDCCH监听机会,则确定所述R个子时域资源中第H个子时域资源不是有效的PDSCH候选位置。
根据第四方面的第五实施例或第六实施例,在第四方面的第七实施例中,所述确定模块,还用于在所述查找模块在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中(第m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上查找到PDCCH监听机会,则确定所述R个子时域资源中第H个子时域资源是有效的PDSCH候选位置。
根据第四方面的第五至第七实施例中任一实施例,在第四方面的第八实施例中,所述子时域资源为所述时域资源单元中连续的至少两个符号。
根据第四方面的第三至第八实施例中任一实施例,在第四方面的第九实施例中所述时域资源单元为时隙。
需要说明的是,上述第四方面的通信装置,可以是网络设备,也可以是可用于网络设备的芯片。
第五方面,本申请实施例提供一种通信装置,包括:存储器和处理器。所述存储器,用于存储程序代码。所述处理器,调用所述程序代码,当程序代码被执行时,用于执行如第一方面本申请任一实施例或者第二方面本申请任一实施例所述的通信方法。
第六方面,本申请实施例提供一种可读存储介质,所述可读存储介质上存储有计算机程序;所述计算机程序在被执行时,实现第一方面本申请任一实施例或第二方面本申请任一实施例所述的通信方法。
第七方面,本申请实施例提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,通信装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得通信装置实施第一方面本申请任一实施例或第二方面本申请任一实施例所述的通信方法。
综上所述,所述的通信方法和装置,通过根据第一时域资源和第一信息,确定第二时域资源;所述第一时域资源为PDSCH候选位置的时域资源,第二时域资源为PDCCH候选位置的时域资源,第一信息包括或指示PDSCH候选位置与PDCCH候选位置的时间间隔;然后在所述第二时域资源对应的时间范围内,在网络设备向终端配置的所有下行BWP上查找PDCCH监听机会,或者,在网络设备向终端配置的并且在所述第二时域资源对应的时间范围内激活过的所有下行BWP上查找PDCCH监听机会,这样可以查找到PDSCH对应的所有PDCCH监听机会,避免漏查PDCCH监听机会的现象,避免下行数据的数据确认信息漏掉的情况,从而提高通信质量。
附图说明
图1为本申请一实施例提供的通信系统的示意图;
图2为本申请一实施例提供的网络设备与终端之间的下行数据传输过程的示意图;
图3为本申请一实施例提供的终端向网络设备反馈多个PDSCH对应的数据确认信息的示意图;
图4为本申请一实施例提供的在下行BWP跳转下PDCCH与PDSCH之间的时域资源的关系示意图;
图5为本申请一实施例提供的通信方法的流程图;
图6为本申请一实施例提供的不同时域资源单元对应的时隙的示意图;
图7为本申请一实施例提供的确定第一时域资源的示意图;
图8为本申请一实施例提供的PDSCH候选位置的时域资源与上下行格式相对比的示意图;
图9为本申请一实施例提供的在下行BWP跳转下PDCCH与PDSCH之间的时域资源的关系示意图;
图10为本申请一实施例提供的在下行BWP跳转下PDCCH与PDSCH之间的时域资源的关系示意图;
图11为本申请一实施例提供的在下行BWP跳转下PDCCH与PDSCH之间的时域资源的关系示意图;
图12为本申请一实施例提供的在下行BWP跳转下PDCCH与PDSCH之间的时域资源的关系示意图;
图13为本申请一实施例提供的通信装置的结构示意图;
图14为本申请另一实施例提供的通信装置的结构示意图;
图15为本申请另一实施例提供的通信装置的结构示意图。
具体实施方式
图1为本申请一实施例提供的通信系统的示意图,如图1所示,通信系统包括网络设备和终端。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解:
网络设备:又称为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络中的基站,如发送和接收点(Transmission and Reception Point,TRP)、控制器,在此并不限定。一种可能的方式中,无线接入网设备可以是CU和DU分离架构的基站(如gNB)。
终端:可以是无线终端也可以是有线终端,无线终端可以是指一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等,在此不作限定。可以理解的是,本申请实施例中,终端也可以称为用户设备(user equipment,UE)。
其中,网络设备向终端发送下行数据的过程例如可以为:
1、网络设备向终端发送下行控制信息(Downlink Control Information,DCI),DCI中含有下行数据调度信息,用于通知终端在什么时频资源位置,以什么样的配置参数(比如调制与编码策略(Modulation and Coding Scheme,MCS),冗余版本(Redundancy Version,RV)等等)去接收并解调数据。
2、网络设备在上述DCI中指示的时频资源位置,以DCI中指示的配置参数向终端发送对应的数据;终端在对应位置以相应参数接收网络设备发送的数据。
3、终端在接收到数据之后,还需要向网络设备反馈混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)-数据确认信息,也可以称HARQ-ACK信息。其中,HARQ是将前向纠错码(Forward Error Correction,FEC)和自动重传请求(Automatic Repeat reQuest,ARQ)相结合而形成的技术。FEC通过添加冗余信息,使得终端能够纠正一部分错误,从而减少重传的次数。对于FEC无法纠正的错误,终端会通过ARQ机制请求网络设备重发数据。终端使用检错码,通常为循环冗余校验(Cyclic Redundancy Check,CRC)校验,来检测接收到的数据包是否出错。如果无错,则终端会发送一个肯定的数据确认信息(ACK)给发送端,网络设备收到ACK后,会接着发送下一个数据包。如果出错,则终端会丢弃该数据包,并发送一个否定的数据确认信息(NACK)给网络设备,网络设备收到NACK后,会重发相同的数据。
上述流程可以参见图2所示,图2为本申请一实施例提供的网络设备与终端之间的下行数据传输过程的示意图,其中,PDCCH携带DCI,PDSCH携带下行数据。在一些实施方式中,终端在向网络设备反馈数据确认信息的时候,可能将多个PDSCH对应的数据确认信息在同一时域资源上进行反馈。如图3所示,图3为本申请一实施例提供的终端向网络设备反馈多个PDSCH对应的数据确认信息的示意图,图3以3个PDSCH为例,3个PDSCH需要在同一时域资源反馈数据确认信息,在不采用空分复用以及基于码块组(code block group,CBG)的传输等技术的情况下,此时对应的数据确认信息的码本的大小就是3比特,3个比特的顺序可以是根据PDSCH接收的顺序来决定。其中,确定哪些PDSCH对应的数据确认信息在同一时域资源向网络设备反馈的具体过程为:根据PDSCH和对应的数据确认信息之间的 时间间隔,以及PDSCH与PDCCH的时间间隔以及每个时隙中PDSCH候选位置所占用的符号,确定PDCCH候选位置的时隙,然后在这些PDCCH候选位置的时隙内查找是否存在PDCCH监听机会,然后确定查找到PDCCH监听机会所对应的PDSCH的数据确定信息可同时向网络设备反馈。
在5G系统中,网络设备与终端采用BWP进行通信,如图4所示,图4以PDSCH与PDCCH的时间间隔为0时隙为例,在时隙1内,激活的下行BWP从下行BWP0跳转到下行BWP1上,其中,在时隙1内,在下行BWP0上网络设备向终端发送PDCCH,该PDCCH调度同一时隙的PDSCH,所以在时隙1内,在下行BWP1上网络设备向终端发送PDSCH。但是,现有技术的方案是在发送数据确认信息时,在激活的下行BWP(即下行BWP1)上的PDCCH候选位置的时隙(例如时隙0、1、2)内查找PDCCH监听机会。如果在时隙1内,在下行BWP1上的没有PDCCH监听机会,所以认为在时隙1内没有有效的PDSCH传输,则不向网络设备反馈时隙1内的PDSCH对应的数据确认信息。但是可以看到,下行BWP0上的时隙1内是有PDCCH监听机会的(时隙1的PDSCH是由在BWP0上的时隙1内的PDCCH调度的)。因此,现有技术中的这种只在发送数据确认信息时激活的下行BWP(只在一个下行BWP)上查找PDCCH监听机会造成漏查PDCCH监听机会的问题,从而造成有些下行数据的数据确认信息未向网络设备反馈的问题。本申请下述各实施例可以解决这一技术问题。
图5为本申请一实施例提供的通信方法的流程图,如图5所示,本实施例的方法可以应用于终端,也可以应用于网络设备,本实施例的方法可以包括:
S501、根据第一时域资源和第一信息,确定第二时域资源。
其中,第一时域资源为PDSCH候选位置(PDSCH candidate)的时域资源,第二时域资源为PDCCH候选位置(PDCCH candidate)的时域资源。而且第一信息包括:PDSCH的候选位置与PDCCH的候选位置的时间间隔,或者,第一信息指示PDSCH的候选位置与PDCCH的候选位置的时间间隔。
本实施例,终端和/或网络设备根据第一时域资源和第一信息,确定第二时域资源。例如:PDSCH候选位置的时域资源为时隙2,PDSCH候选位置与PDCCH候选位置的时间间隔为1个时隙,则确定PDCCH候选位置的时域资源为时隙(2-1),即时隙1。
S502、在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会。
本实施例中,在确定第二时域资源后,终端和/或网络设备在第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会。由于本实施例不只是在传输数据确认信息时激活的下行BWP(即只在一个下行BWP)上查找PDCCH监听机会,而是在至少一个下行BWP上查找PDCCH监听机会,减少了漏查PDCCH监听机会的现象。
在一些实施例中,上述的至少一个下行BWP包括:网络设备向所述终端配置的所有下行BWP。也就是,终端和/或网络设备在确定第二时域资源后,在第二时域资源对应的时间范围内,在该网络设备向该终端配置的所有下行BWP上查找PDCCH监听机会。若网络设备向终端配置的所有下BWP包括:下行BWP0、下行BWP1、下行BWP2,针对图4所示的情况,本实施例的终端和/或网络设备可以在下行BWP0、下行BWP1和下行BWP2上均查找PDCCH监听机会,这样就可以查找到现在技术中漏掉的下行BWP1上的PDCCH监听机会。因此,本实施例可避免漏查PDCCH监听机会的情况。
在一些实施例中,所述至少一个下行BWP为:网络设备向所述终端配置的,并且在所述第二时域资源对应的时间范围内激活过的所有下行BWP。也就是,终端和/或网络设备在确定第二时域资源后,在第二时域资源对应的时间范围内,在该网络设备向该终端配置,并且在第二域资源对应的时间范围内激活过的下行BWP查找PDCCH监听机会。若网络设备向终端配置的所有下BWP包括:下行BWP0、下行BWP1、下行BWP2,针对图4所示的情况,若第二时域资源为图4所示的时隙1,由 于在时隙1时激活的下行BWP由下行BWP0跳转到下行BWP1,在时隙1对应的时间范围内,激活过的下行BWP为下行BWP0和下行BWP1,则本实施例的终端和/或网络设备可以在下行BWP0和下行BWP1上均查找PDCCH监听机会,这样就可以查找到现在技术中漏掉的下行BWP1上的PDCCH监听机会。因此,本实施例可避免漏查PDCCH监听机会的情况。
由此可知,本实施例通过根据第一时域资源和第一信息,确定第二时域资源;所述第一时域资源为PDSCH候选位置的时域资源,第二时域资源为PDCCH候选位置的时域资源,第一信息包括或指示PDSCH候选位置与PDCCH候选位置的时间间隔;然后在所述第二时域资源对应的时间范围内,在网络设备向所述终端配置的所有下行BWP上查找PDCCH监听机会,或者,在网络设备向所述终端配置的并且在所述第二时域资源对应的时间范围内激活过的所有下行BWP上查找PDCCH监听机会,这样可以查找到PDSCH对应的所有PDCCH监听机会,避免漏查PDCCH监听机会的现象,避免下行数据的数据确认信息漏掉的情况,从而提高通信质量。
在一些实施例中,上述S502的一种可能的实现方式可以包括:在所述第二时域资源对应的所述至少一个下行BWP中各个下行BWP上的时域资源内,在所述各个下行BWP上查找PDCCH监听机会。
其中,子载波间隔不同,相应地,时域资源单元的时间长度也不相同。因此,上述至少一个下行BWP的子载波间隔可能不完全相同,这使得该至少一个下行BWP对应的时域资源单元的时间长度不同。例如:若下行BWP0的子载波间隔为15KHz,下行BWP1的子载波间隔为30KHz,则下行BWP0对应的时域资源单元的时间长度是下行BWP1的时域资源单元的时间长度的2倍。若下行BWP0的子载波间隔为30KHz,下行BWP1的子载波间隔为15KHz,则下行BWP0对应的时域资源单元的时间长度是下行BWP1的时域资源单元的时间长度的0.5倍。因此,在相同时间,在下行BWP0上的时域资源与在下行BWP1上的时域资源不相同。
所以终端和/或网络设备在至少一个下行BWP查找PDCCH监听机会时,需要将第二时域资源转换为至少一个下行BWP中各个下行BWP上的时域资源,然后在该各个下行BWP上的时域资源内,在所述各个下行BWP上查找PDCCH监听机会。其中,终端和/或网络设备确定至少一个下行BWP中各个下行BWP上的时域资源例如可以包括:终端和/或网络设备确定所述至少一个下行BWP中各个下行BWP的时域资源单元的长度,然后根据第二时域资源对应的时域资源单元的长度,以及所述各个下行BWP的时域资源单元的长度,确定该第二时域资源对应的所述各个下行BWP上的时域资源。其中,本实施例中的时域资源单元可以为时隙,但本实施例并不限于此,也可以以其它方式来划分时域资源。以时域资源单元为时隙为例,若第二时域资源对应的时域资源单元的长度为其中一个下行BWP上的时域资源单元的长度的2倍,若第二时域资源为时隙1,则该第二时域资源对应的在该下行BWP上的时域资源为时隙2和时隙3,例如如图6所示。
可选地,终端和/或网络设备可以根据所述各个下行BWP的子载波间隔,确定各个下行BWP的时域资源单元的长度。
其中,该第二时域资源包括在第一激活的下行BWP上所对应的时域资源,该第一激活的下行BWP可以是指终端反馈数据确认信息的时候处于激活状态的下行BWP。
在一些实施例中,若上述各实施例由终端执行,在终端在执行上述S501之前,还接收PDSCH,例如接收网络设备发送的PDSCH,然后根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源。
在一些实施例中,若上述各实施例由网络设备执行,在网络设备执行上述S501之前,还发送PDSCH,例如向终端发送PDSCH,然后根据用于传输所述PDSCH对应的数据确认信息的时域资源, 以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源。
其中,上述M为大于或等于1的整数;其中,确定的所述第一时域资源包括:在第一激活的下行BWP上所对应的时域资源。该第一激活的下行BWP可以是指终端反馈数据确认信息的时候处于激活状态的下行BWP。PDSCH对应的数据确认信息通过处于激活状态的上行BWP传输,用于传输PDSCH对应的数据确认信息的时域资源可以认为包括在第一激活的上行BWP上所对应的时域资源,该第一激活的上行BWP可以是指终端反馈数据确认信息的时候处于激活状态的上行BWP。而且根据用于传输PDSCH对应的数据确认信息的时域资源以及上述M种时间间隔,获得的第一时域资源包括:在第一激活的下行BWP上所对应的时域资源。
在一些实施例中,终端和/或网络设备,根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,的一种实现方式为:
针对所述M种时间间隔中的每种时间间隔,若所述用于传输所述PDSCH对应的数据确认信息的时域资源为第n时域资源单元,以及所述M种时间间隔中所述第Q种时间间隔为K 1,Q个时域资源单元,则确定所述第一时域资源包括第(n-K 1,Q)时域资源单元。
其中,所述第一时域资源包括M个时域资源单元,所述Q为小于等于M的正整数。
由于时间间隔有M种,所以第n时域资源单元与M种时间间隔相减,可以获得M个不同的时域资源单元。如果n等于3,M等于3,即第n时域资源单元为第3时隙,即时隙3,M种时间间隔可以包括:1个时隙、2个时隙、3个时隙,则获得的第一时域资源为时隙0、时隙1、时隙2,如图7所示。
可选地,该M种时间间隔可以是预先定义的,也可以是由网络设备向该终端配置的。
在一些实施例中,终端和/或网络设备在执行S501之前,还执下如下所示:
终端和/或网络设备根据第一激活的下行BWP上的每个时域资源单元中所配置的I种PDSCH候选位置,以及每个时域资源单元中的上下行格式,从所述I种PDSCH候选位置中确定J种有效的PDSCH候选位置,所述I为大于或等于1的整数,所述J为小于或等于I的整数。该第一激活的下行BWP可以是指终端反馈数据确认信息的时候处于激活状态的下行BWP。即本实施例的终端和/或网络设备从I种PDSCH候选位置中,确定与每个时域资源单元中的上下行格式不冲突的PDSCH候选位置,这些确定出的PDSCH候选位置称为有效的PDSCH候选位置。其中,每个时域资源单元中的上下行格式指示每个时域资源单元中用于上行传输的时域资源以及用于下行传输的时域资源,如果PDSCH候选位置与用于上行传输的时域资源存在重叠,则说明该PDSCH候选位置不是有效的PDSCH候选位置;否则,该PDSCH候选位置是有效的PDSCH候选位置。
然后终端和/或网络设备根据所述J种有效的PDSCH候选位置,确定所述第一信息。本实施例中,每种PDSCH候选位置,与,时间间隔存在对应关系,因此,终端和/或网络设备在确定J种有效的PDSCH候选位置之后,确定J种有效的PDSCH候选位置所分别对应的时间间隔,然后将J种有效的PDSCH候选位置所分别对应的时间间隔确定为PDSCH候选位置与PDCCH候选位置的时间间隔。
其中,第一激活的下行BWP上的每个时域资源单元中所配置的I种PDSCH候选位置以及所对应的时间间隔K 0如表一所示。其中,表一中以时域资源单元为时隙为例,PDSCH候选位置由起始符号和符号长度来表示。该表一例如有4列×I行。其中各列的内容分别是序号,时间间隔K 0值,每个时 隙内的起始符号和符号长度,映射类型。该表一可以是预先定义的,也可以网络设备向终端配置的。
表一
Figure PCTCN2019080954-appb-000001
其中,表一以I等于4为例,其中,每行的K 0值、起始符号和符号长度以及映射类型都是例子,本实施例并不限于此。每行的K 0都是0(即时间间隔均为0个时隙),映射类型可以参照现有技术中的描述。表一中各序号所对应的每个时隙中PDSCH候选位置(即起始符号和符号长度)与每个时隙中的上下行格式如图8所示,若上下行格式表示每个时隙中的前10个符号(符号0-9)用于下行传输,后4个符号(符号10-13)用于上行传输。则可知,序号0和序号1对应的PDSCH候选位置符合上下行格式,序号2和序号3对应的PDSCH候选位置不符合上下行格式。然后将序号0和序号1中的K 0值均确定为PDSCH候选位置的时域资源与PDCCH候选位置的时域资源的时间间隔。
在一些实施例中,第一时域资源包括R个子时域资源,所述第一信息指示的时间间隔为T种,上述S501的一种实现方式可以包括:
针对所述R个子时域资源中的每个子时域资源,以及所述T种时间间隔中的每种时间间隔,若所述R个子时域资源中第H个子时域资源位于第m v时域资源单元内,以及所述T种时间间隔中的第S种时间间隔为K 0,S,则所述终端确定所述第二时域资源包括第(m v-K 0,S)时域资源单元;其中,所述H为小于等于R的正整数,所述S为小于等于T的正整数,所述v为正整数。
可选地,该子时域资源为所述时域资源单元中连续的至少两个符号。
下面以时域资源单元为时隙为例,第一时域资源包括时隙0、时隙1、时隙2,根据每个时隙中有效的PDSCH候选位置,例如结合表一和图8所示,可知时隙0中的符号3-符号7为子时域资源,时隙0中的符号5-符号9为子时域资源,时隙1中的符号3-符号7为子时域资源,时隙1中的符号5-符号9为子时域资源,时隙2中的符号3-符号7为子时域资源,时隙2中的符号5-符号9为子时域资源,因此,第一时域资源包括6个子时域资源。其中,第1个子时域资源为时隙0中的符号3-符号7位于时隙0中,由于时间间隔均为0个时隙,从而可以确定时隙(0-0),即时隙0;第2个子时域资源为时隙0中的符号5-符号9位于时隙0中,由于时间间隔均为0个时隙,从而可以确定时隙(0-0),即时隙0;第3个子时域资源为时隙1中的符号3-符号7位于时隙1中,由于时间间隔均为0个时隙,从而可以确定时隙(1-0),即时隙1;第4个子时域资源为时隙1中的符号5-符号9位于时隙1中,由于时间间隔均为0个时隙,从而可以确定时隙(1-0),即时隙1;第5个子时域资源为时隙2中的符号3-符号7位于时隙2中,由于时间间隔均为0个时隙,从而可以确定时隙(2-0),即时隙2;第6个子时域资源为时隙2中的符号5-符号9位于时隙2中,由于时间间隔均为0个时隙,从而可以确定时隙(2-0),即时隙2。因此,可以获得第二时域资源包括时隙0-时隙2。在确定第二时域资源后,终端和/或网络设备在时隙0-时隙2对应的时间范围内,在所述至少一个下行BWP上查找PDCCH监听机会。
可选地,终端和/或网络设备执行上述S502之后,若在所述第二时域资源中第(m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上查找到PDCCH监听机会,则终端和/或网络设备确定所述R个子时域资源中第H个子时域资源是有效的PDSCH候选位置。若在第二时域资源中的时隙0和时隙2的时间范围内,在所述至少一个下行BWP上查找到PDCCH监听机会,则与第二时域资源中的时隙0对应的第1个子时域资源和第2个子时域资源为有效的PDSCH候选位置,以及与第二时域资源中的时隙2对应的第5个子时域资源和第6子时域资源为有效的PDSCH候选位置。
可选地,终端和/或网络设备执行上述S502之后,若在所述第二时域资源中第(m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上未查找到PDCCH监听机会,则终端和/或网络设备确定所述R个子时域资源中第H个子时域资源不是有效的PDSCH候选位置。若在第二时域资源中的时隙1的时间范围内,在所述至少一个下行BWP上未查找到PDCCH监听机会,则与第二时域资源中的时隙1对应的第3个子时域资源和第4个子时域资源不是有效的PDSCH候选位置。
其中,有效的PDSCH候选位置是指在确定半静态的数据确认信息(HARQ-ACK)码本时,在后续的可能流程中需要将这个PDSCH候选位置考虑在内。比如,通过本申请所述的实施例,最终确定了有A个有效的PDSCH候选位置,则终端最多需要向网络设备反馈A个PDSCH对应的数据确认信息,网络设备需要从终端接收A个PDSCH对应的数据确认信息。在确定半静态HARQ-ACK码本时,在使用本申请所述的实施例之后,可能还存在其他方法,可以进一步从A个有效的PDSCH候选位置中筛选出B个(B小于或等于A)PDSCH候选位置,最终终端向网络设备需要反馈B个PDSCH对应的数据确认信息,网络设备需要从终端接收B个PDSCH对应的数据确认信息。
下面以几个具体的实施方式对本申请的方案进行说明。下面以终端为UE、时频资源单元为时隙、PDSCH候选位置与PDCCH候选位置的时间间隔为K0,用于传输PDSCH对应的数据确认信息的时域资源与该PDSCH之间的时间间隔为K1,数据确认信息为HARQ-ACK信息,进行描述。有效的PDSCH候选位置可称为PDSCH的有效位置,有效的PDSCH候选位置可以称为有效的PDSCH传输位置。
在第一种实施方式中,UE在时隙1内从BWP2上切换到BWP2上工作,如图9所示。UE被配置了K1的取值集合为{1,2,3}。在时隙3上反馈HARQ-ACK信息。UE在BWP2上配置的时域资源分配的表格如上述表一所示,可以看到每个时隙内配置了4个PDSCH候选位置。各个PDSCH候选位置对应的K0值(即为表一中的K 0)均为0。各个时隙内的时隙结构如图8所示。
UE在时隙0,时隙1和时隙2的任意一个时隙内,会根据现有技术,得到有效的PDSCH传输位置,即序号0和序号1对应的位置。之后会在时隙0,时隙1和时隙2的任意一个时隙内,根据序号0和序号1对应的K0值,查看是否有PDCCH监听机会。
在本实施例中,UE会在所有被配置的所有下行BWP上/任意一个被配置的下行BWP上查看是否有PDCCH监听机会,时隙0和时隙2内,在BWP2上有PDCCH监听机会,在时隙1内,在BWP1上有PDCCH监听机会。因此经过筛选,在时隙0~时隙2的三个时隙内,共有6个PDSCH的有效位置。这些位置需要在后续确定半静态码本的过程中考虑在内。
因此,本实施方式可以解决BWP switching时,半静态码本会出错的问题。
在第二种实施方式中,本实施方式与第一种实施方式的场景完全相同,区别在于在本实施方式中,UE会在所有激活状态的下行BWP上/任意一个激活状态的下行BWP上查看是否有PDCCH监听机会,时隙0和时隙2内,在BWP2处于激活状态,有PDCCH监听机会;在时隙1内,BWP1和BWP2都分别有一段时间处于激活状态,在BWP1上有PDCCH监听机会。因此经过筛选,在时隙 0~2的三个时隙内,共有6个PDSCH的有效位置。这些位置需要在后续确定半静态码本的过程中考虑在内。
因此,本实施方式可以解决BWP switching时,半静态码本会出错的问题。
在第三种实施方式中,本实施方式和第一种实施方式的区别在于BWP切换的时候,PDCCH和PDSCH不在同一个时隙内,时域资源分配的表格如表二所示,表二中K0的取值与表一中有所不同,其余配置(如符号的起始位置和长度,实际的时隙结构等)与表一中相同。其中,表2中的K0和SLIV仅为举例,不限于此。
表二
Figure PCTCN2019080954-appb-000002
与第一种实施方式相同,在时隙1~时隙3中,UE会根据现有技术的方法,排除掉序号2和序号3对应的PDSCH候选位置(由于与实际的时隙结构(即上述的上下行格式)有上下行冲突)。之后会在时隙1,时隙2和时隙3的任意一个时隙内,根据序号0和序号1对应的K0值,查看是否有PDCCH监听机会。
在本实施例中,UE会在所有被配置的所有下行BWP上/任意一个被配置的下行BWP上查看是否有PDCCH监听机会,在时隙1和时隙3内,K0=0的时候在BWP2上有PDCCH监听机会。在时隙2内,K0=2时在BWP1上有PDCCH监听机会,如图10所示。因此经过筛选,在时隙1~时隙3的三个时隙内,共有6个PDSCH的有效位置。这些位置需要在后续确定半静态码本的过程中考虑在内。
因此,本实施方式可以解决BWP switching时,半静态码本会出错的问题。
在第四种实施方式中,本实施方式与第三种实施方式的场景完全相同,区别在于在本实施方式中,UE会在所有激活状态的下行BWP上/任意一个激活状态的下行BWP上查看是否有PDCCH监听机会,时隙3内,在BWP2处于激活状态,有PDCCH监听机会;在时隙0~时隙2内,BWP1和BWP2都分别有一段时间处于激活状态,在BWP1或BWP2上都有对应的PDCCH监听机会。因此经过筛选,在时隙1~3的三个时隙内,共有6个PDSCH的有效位置。这些位置需要在后续确定半静态码本的过程中考虑在内。
因此,本实施方式可以解决BWP switching时,半静态码本会出错的问题。
在第五种实施方式中,本实施方式与第一种实施方式的区别在于,BWP1和BWP2的子载波间隔不同,本例中BWP1的子载波间隔为30kHz,BWP2的子载波间隔为15kHz。
在本实施方式中,UE会在所有被配置的所有下行BWP上/任意一个被配置的下行BWP上,或者所有激活状态的下行BWP上/任意一个激活状态的下行BWP上查找是否有PDCCH监听机会。在时隙1中,在计算K0=0的位置时,BWP2上的时隙1,以及该时隙对应的BWP1上的两个时隙(时隙c和时隙d)都应该考虑在内。即需要在总共3个时隙-BWP对(slot-BWP-pair)上查找是否有PDCCH监听机会。如图11所示,BWP1的时隙c上有PDCCH监听机会,因此时隙1中有PDSCH 的有效位置,需要在后续确定半静态码本的过程中考虑在内。
因此,本实施方式可以解决BWP switching时,半静态码本会出错的问题。
在第六种实施方式中,本实施方式与第五种实施方式的区别在于,本实施方式中BWP1的子载波间隔为15kHz,BWP2的子载波间隔为30kHz。其余配置相同。
在本实施例中,UE会在所有被配置的所有下行BWP上/任意一个被配置的下行BWP上,或者所有激活状态的下行BWP上/任意一个激活状态的下行BWP上查找是否有PDCCH监听机会。在时隙2中,在计算K0=0的位置时,BWP2上的时隙1,以及该时隙对应的BWP1上的时隙b都应该考虑在内。即需要在总共2个时隙-BWP对(slot-BWP-pair)上查找是否有PDCCH监听机会。如图12所示,BWP1的时隙b上有PDCCH监听机会,因此时隙1中有PDSCH的有效位置,需要在后续确定半静态码本的过程中考虑在内。
因此,本实施方式可以解决BWP switching时,半静态码本会出错的问题。
需要说明的是,上述第一至六种实施例方式也可以由网络设备来执行。
可以理解的是,上述各个实施例中,由终端实现的方法或者步骤,也可以由可用于终端的部件(例如芯片或者电路等)实现,由网络设备实现的方法或者步骤,也可以由可用于网络设备的部件(例如芯片或者电路等)实现。
图13为本申请一实施例提供的通信装置的结构示意图,该通信装置可以为终端,也可以为可用于终端的芯片,如图13所示,本实施例的通信装置,可以包括:确定模块1301和查找模块1302。可选地,本实施例的通信装置还可以包括接收模块1303。
确定模块1301,用于根据第一时域资源和第一信息,确定第二时域资源;所述第一时域资源为PDSCH候选位置的时域资源,第二时域资源为PDCCH候选位置的时域资源,第一信息包括或指示所述PDSCH候选位置与所述PDCCH候选位置的时间间隔。
查找模块1302,用于在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会。
其中,所述至少一个下行BWP包括:网络设备向终端配置的所有下行BWP,或者,所述至少一个下行BWP包括:网络设备向终端配置的,并且在所述第二时域资源对应的时间范围内激活过的所有下行BWP。
在一些实施例中,所述查找模块1302,具体用于:在所述第二时域资源对应的所述至少一个下行BWP中各个下行BWP上的时域资源内,在所述各个下行BWP上查找PDCCH监听机会。
在一些实施例中,所述接收模块1303,用于在所述确定模块1301根据第一时域资源和第一信息,确定第二时域资源之前,接收PDSCH。
所述确定模块1301,还用于根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,M为大于或等于1的整数;
其中,确定的所述第一时域资源包括:在第一激活的下行BWP上所对应的时域资源。
在一些实施例中,所述确定模块1301,具体用于:针对所述M种时间间隔中的每种时间间隔,若所述用于传输所述PDSCH对应的数据确认信息的时域资源为第n时域资源单元,以及所述M种时间间隔中第Q种时间间隔为K 1,Q个时域资源单元,则确定所述第一时域资源包括第(n-K 1,Q)时域资源 单元。其中,所述第一时域资源包括M个时域资源单元,所述Q为小于等于M的正整数。
在一些实施例中,所述确定模块1301,还用于在根据第一时域资源和第一信息,确定第二时域资源之前,根据第一激活的下行BWP上的每个时域资源单元中所配置的I种PDSCH候选位置,以及每个时域资源单元中的上下行格式,从所述I种PDSCH候选位置中确定J种有效的PDSCH候选位置,所述I为大于或等于1的整数,所述J为小于或等于I的整数;以及根据所述J种有效的PDSCH候选位置,确定所述第一信息。
在一些实施例中,所述第一时域资源包括R个子时域资源,所述第一信息指示的时间间隔为T种,所述R与所述T为正整数。所述确定模块1301,具体用于:针对所述R个子时域资源中的每个子时域资源,以及所述T种时间间隔中的每种时间间隔,若所述R个子时域资源中第H个子时域资源位于第m v时域资源单元内,以及所述T种时间间隔中的第S种时间间隔为K 0,S,则确定所述第二时域资源包括第(m v-K 0,S)时域资源单元。其中,所述H为小于等于R的正整数,所述S为小于等于T的正整数,所述v为正整数。
在一些实施例中,所述确定模块1301,还用于在所述查找模块1302在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中第(m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上未查找到PDCCH监听机会,则确定所述R个子时域资源中第H个子时域资源不是有效的PDSCH候选位置。
在一些实施例中,所述确定模块1301,还用于在所述查找模块1302在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中(第m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上查找到PDCCH监听机会,则确定所述R个子时域资源中第H个子时域资源是有效的PDSCH候选位置。
在一些实施例中,所述子时域资源为所述时域资源单元中连续的至少两个符号。
在一些实施例中,所述时域资源单元为时隙。
本实施例以上所述的通信装置,可以用于执行上述各对应方法实施例中终端执行的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图14为本申请另一实施例提供的通信装置的结构示意图,该通信装置可以为网络设备,也可以为可用于网络设备的芯片,如图14所示,本实施例的通信装置,可以包括:确定模块1401和查找模块1402。可选地,本实施例的通信装置还可以包括发送模块1403。
确定模块1401,用于根据第一时域资源和第一信息,确定第二时域资源;所述第一时域资源为PDSCH候选位置的时域资源,第二时域资源为PDCCH候选位置的时域资源,第一信息包括或指示所述PDSCH候选位置与所述PDCCH候选位置的时间间隔。
查找模块1402,用于在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会。
其中,所述至少一个下行BWP包括:网络设备向终端配置的所有下行BWP,或者,所述至少一个下行BWP包括:网络设备向终端配置的,并且在所述第二时域资源对应的时间范围内激活过的所有下行BWP。
在一些实施例中,所述查找模块1402,具体用于:在所述第二时域资源对应的所述至少一个下 行BWP中各个下行BWP上的时域资源内,在所述各个下行BWP上查找PDCCH监听机会。
在一些实施例中,所述发送模块1403,用于在所述确定模块1401根据第一时域资源和第一信息,确定第二时域资源之前,发送PDSCH。
所述确定模块1401,还用于根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,M为大于或等于1的整数;
其中,确定的所述第一时域资源包括:在第一激活的下行BWP上所对应的时域资源。
在一些实施例中,所述确定模块1401,具体用于:针对所述M种时间间隔中的每种时间间隔,若所述用于传输所述PDSCH对应的数据确认信息的时域资源为第n时域资源单元,以及所述M种时间间隔中第Q种时间间隔为K 1,Q个时域资源单元,则确定所述第一时域资源包括第(n-K 1,Q)时域资源单元。其中,所述第一时域资源包括M个时域资源单元,所述Q为小于等于M的正整数。
在一些实施例中,所述确定模块1401,还用于在根据第一时域资源和第一信息,确定第二时域资源之前,根据第一激活的下行BWP上的每个时域资源单元中所配置的I种PDSCH候选位置,以及每个时域资源单元中的上下行格式,从所述I种PDSCH候选位置中确定J种有效的PDSCH候选位置,所述I为大于或等于1的整数,所述J为小于或等于I的整数;以及根据所述J种有效的PDSCH候选位置,确定所述第一信息。
在一些实施例中,所述第一时域资源包括R个子时域资源,所述第一信息指示的时间间隔为T种,所述R与所述T为正整数。所述确定模块1401,具体用于:针对所述R个子时域资源中的每个子时域资源,以及所述T种时间间隔中的每种时间间隔,若所述R个子时域资源中第H个子时域资源位于第m v时域资源单元内,以及所述T种时间间隔中的第S种时间间隔为K 0,S,则确定所述第二时域资源包括第(m v-K 0,S)时域资源单元。其中,所述H为小于等于R的正整数,所述S为小于等于T的正整数,所述v为正整数。
在一些实施例中,所述确定模块1401,还用于在所述查找模块1402在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中第(m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上未查找到PDCCH监听机会,则确定所述R个子时域资源中第H个子时域资源不是有效的PDSCH候选位置。
在一些实施例中,所述确定模块1401,还用于在所述查找模块1402在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,若在所述第二时域资源中(第m v-K 0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上查找到PDCCH监听机会,则确定所述R个子时域资源中第H个子时域资源是有效的PDSCH候选位置。
在一些实施例中,所述子时域资源为所述时域资源单元中连续的至少两个符号。
在一些实施例中,所述时域资源单元为时隙。
本实施例以上所述的通信装置,可以用于执行上述各对应方法实施例中网络设备执行的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图15为本申请另一实施例提供的通信装置的结构示意图,如图15所示,本实施例的通信装置可以包括:存储器1501和处理器1502。可选地,本实施例的通信装置还可以包括收发器1503。
在一种实现方式中,该通信装置可以为终端,也可以为可用于终端的芯片。上述的确定模块1301和查找模块1302可以以硬件形式内嵌于处理器1502中。可选地,上述的接收模块1303也可以以硬件形式内嵌于处理器1502中。
可选地,上述的接收模块1303也可以以硬件形式内嵌于收发器1503中。
其中,存储器1501用于存储程序指令。该程序指令在调用时处理器1502用于执行上述终端所执行的方案。
在另一种实现方式中,该通信装置可以为网络设备,也可以为可用于网络设备的芯片。上述的确定模块1401和查找模块1402可以以硬件形式内嵌于处理器1502中。可选地,上述的发送模块1403也可以以硬件形式内嵌于处理器1502中。
可选地,上述的发送模块1403也可以以硬件形式内嵌于收发器1503中。
其中,存储器1501用于存储程序指令。该程序指令在调用时处理器1502用于执行上述网络设备所执行的方案。
所述程序指令可以以软件功能单元的形式实现并能够作为独立的产品销售或使用,所述存储器1501可以是任意形式的计算机可读取存储介质。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,包括若干指令用以使得一台计算机设备,具体可以是处理器1502,来执行本申请各个实施例中的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (18)

  1. 一种通信方法,其特征在于,包括:
    终端根据第一时域资源和第一信息,确定第二时域资源;所述第一时域资源为物理下行共享信道PDSCH候选位置的时域资源,第二时域资源为物理下行控制信道PDCCH候选位置的时域资源,第一信息包括或指示所述PDSCH候选位置与所述PDCCH候选位置的时间间隔;
    所述终端在所述第二时域资源对应的时间范围内,在至少一个下行带宽部分BWP上查找PDCCH监听机会;
    其中,所述至少一个下行BWP包括:网络设备向所述终端配置的所有下行BWP,或者,所述至少一个下行BWP包括:网络设备向所述终端配置的,并且在所述第二时域资源对应的时间范围内激活过的所有下行BWP。
  2. 根据权利要求1所述的方法,其特征在于,所述终端在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会,包括:
    所述终端在所述第二时域资源对应的所述至少一个下行BWP中各个下行BWP上的时域资源内,在所述各个下行BWP上查找PDCCH监听机会。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端根据第一时域资源和第一信息,确定第二时域资源之前,还包括:
    所述终端接收PDSCH;
    所述终端根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,M为大于或等于1的整数;
    其中,确定的所述第一时域资源包括:在第一激活的下行BWP上所对应的时域资源。
  4. 根据权利要求3所述的方法,其特征在于,所述终端根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,包括:
    针对所述M种时间间隔中的每种时间间隔,若所述用于传输所述PDSCH对应的数据确认信息的时域资源为第n时域资源单元,以及所述M种时间间隔中第Q种时间间隔为K1,Q个时域资源单元,则所述终端确定所述第一时域资源包括第(n-K1,Q)时域资源单元;
    其中,所述第一时域资源包括M个时域资源单元,所述Q为小于等于M的正整数。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述终端根据第一时域资源和第一信息,确定第二时域资源之前,还包括:
    所述终端根据第一激活的下行BWP上的每个时域资源单元中所配置的I种PDSCH候选位置,以及每个时域资源单元中的上下行格式,从所述I种PDSCH候选位置中确定J种有效的PDSCH候选位置,所述I为大于或等于1的整数,所述J为小于或等于I的整数;
    所述终端根据所述J种有效的PDSCH候选位置,确定所述第一信息。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一时域资源包括R个子时域资源,所述第一信息指示的时间间隔为T种,所述R与所述T为正整数;
    所述终端根据第一时域资源和第一信息,确定第二时域资源,包括:
    针对所述R个子时域资源中的每个子时域资源,以及所述T种时间间隔中的每种时间间隔,若所述R个子时域资源中第H个子时域资源位于第mv时域资源单元内,以及所述T种时间间隔中的第S种时间间隔为K0,S,则所述终端确定所述第二时域资源包括第(mv-K0,S)时域资源单元;
    其中,所述H为小于等于R的正整数,所述S为小于等于T的正整数,所述v为正整数。
  7. 根据权利要求6所述的方法,其特征在于,所述终端在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,还包括:
    若在所述第二时域资源中第(mv-K0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上未查找到PDCCH监听机会,则所述终端确定所述R个子时域资源中第H个子时域资源不是有效的PDSCH候选位置。
  8. 根据权利要求6或7所述的方法,其特征在于,所述终端在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,还包括:
    若在所述第二时域资源中(第mv-K0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上查找到PDCCH监听机会,则所述终端确定所述R个子时域资源中第H个子时域资源是有效的PDSCH候选位置。
  9. 一种通信方法,其特征在于,包括:
    网络设备根据第一时域资源和第一信息,确定第二时域资源;所述第一时域资源为物理下行共享信道PDSCH候选位置的时域资源,第二时域资源为物理下行控制信道PDCCH候选位置的时域资源,第一信息包括或指示所述PDSCH候选位置与所述PDCCH候选位置的时间间隔;
    所述网络设备在所述第二时域资源对应的时间范围内,在至少一个下行带宽部分BWP上查找PDCCH监听机会;
    其中,所述至少一个下行BWP包括:所述网络设备向终端配置的所有下行BWP,或者,所述至少一个下行BWP包括:所述网络设备向终端配置的,并且在所述第二时域资源对应的时间范围内激活过的所有下行BWP。
  10. 根据权利要求9所述的方法,其特征在于,所述网络设备在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会,包括:
    所述网络设备在所述第二时域资源对应的所述至少一个下行BWP中各个下行BWP上的时域资源内,在所述各个下行BWP上查找PDCCH监听机会。
  11. 根据权利要求9或10所述的方法,其特征在于,所述网络设备根据第一时域资源和第一信息,确定第二时域资源之前,还包括:
    所述网络设备发送PDSCH;
    所述网络设备根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,M为大于或等于1的整数;
    其中,确定的所述第一时域资源包括:在第一激活的下行BWP上所对应的时域资源。
  12. 根据权利要求11所述的方法,其特征在于,所述网络设备根据用于传输所述PDSCH对应的数据确认信息的时域资源,以及所述PDSCH与所述数据确认信息之间的M种时间间隔,确定所述第一时域资源,包括:
    针对所述M种时间间隔中的每种时间间隔,若所述用于传输所述PDSCH对应的数据确认信息的时域资源为第n时域资源单元,以及所述M种时间间隔中第Q种时间间隔为K1,Q个时域资源单元,则所述网络设备确定所述第一时域资源包括第(n-K1,Q)时域资源单元;
    其中,所述第一时域资源包括M个时域资源单元,所述Q为小于等于M的正整数。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述网络设备根据第一时域资源和第一信息,确定第二时域资源之前,还包括:
    所述网络设备根据第一激活的下行BWP上的每个时域资源单元中所配置的I种PDSCH候选位置,以及每个时域资源单元中的上下行格式,从所述I种PDSCH候选位置中确定J种有效的PDSCH候选 位置,所述I为大于或等于1的整数,所述J为小于或等于I的整数;
    所述网络设备根据所述J种有效的PDSCH候选位置,确定所述第一信息。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述第一时域资源包括R个子时域资源,所述第一信息指示的时间间隔为T种,所述R与所述T为正整数;
    所述网络设备根据第一时域资源和第一信息,确定第二时域资源,包括:
    针对所述R个子时域资源中的每个子时域资源,以及所述T种时间间隔中的每种时间间隔,若所述R个子时域资源中第H个子时域资源位于第mv时域资源单元内,以及所述T种时间间隔中的第S种时间间隔为K0,S,则所述网络设备确定所述第二时域资源包括第(mv-K0,S)时域资源单元;
    其中,所述H为小于等于R的正整数,所述S为小于等于T的正整数,所述v为正整数。
  15. 根据权利要求14所述的方法,其特征在于,所述网络设备在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,还包括:
    若在所述第二时域资源中第(mv-K0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上未查找到PDCCH监听机会,则所述网络设备确定所述R个子时域资源中第H个子时域资源不是有效的PDSCH候选位置。
  16. 根据权利要求14或15所述的方法,其特征在于,所述网络设备在所述第二时域资源对应的时间范围内,在至少一个下行BWP上查找PDCCH监听机会之后,还包括:
    若在所述第二时域资源中(第mv-K0,S)时域资源单元对应的时间范围内,在所述至少一个下行BWP上查找到PDCCH监听机会,则所述网络设备确定所述R个子时域资源中第H个子时域资源是有效的PDSCH候选位置。
  17. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行如权利要求1-8任一项或者9-16任一项所述的通信方法。
  18. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在通信装置上运行时,使得所述通信装置执行如权利要求1-8任一项或者9-16任一项所述的通信方法。
PCT/CN2019/080954 2018-04-04 2019-04-02 查找pdcch监听机会的通信方法和装置 WO2019192457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810302188.3A CN110351019B (zh) 2018-04-04 2018-04-04 通信方法和装置
CN201810302188.3 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019192457A1 true WO2019192457A1 (zh) 2019-10-10

Family

ID=68100002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080954 WO2019192457A1 (zh) 2018-04-04 2019-04-02 查找pdcch监听机会的通信方法和装置

Country Status (2)

Country Link
CN (1) CN110351019B (zh)
WO (1) WO2019192457A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113439469B (zh) * 2020-01-23 2023-04-28 华为技术有限公司 一种通信方法、装置及系统
CN115225216A (zh) * 2021-04-14 2022-10-21 维沃移动通信有限公司 候选pdcch的分配方法、终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767595A (zh) * 2014-01-07 2015-07-08 中兴通讯股份有限公司 Harq-ack反馈信息的传输方法、系统及终端和基站
WO2018031623A1 (en) * 2016-08-11 2018-02-15 Intel Corporation Flexible transmission time interval and on slot aggregation for data transmission for new radio
CN108633070A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 半静态资源调度方法、功率控制方法及相应用户设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673945B2 (en) * 2011-02-18 2017-06-06 Qualcomm Incorporated Implicitly linking aperiodic channel state information (A-CSI) reports to CSI-reference signal (CSI-RS) resources
KR20140085378A (ko) * 2011-10-24 2014-07-07 엘지전자 주식회사 무선 통신 시스템에서 자원을 할당하는 방법 및 이를 위한 장치
JP5702867B2 (ja) * 2012-01-17 2015-04-15 日本電信電話株式会社 波長帯域割当方法
US11245507B2 (en) * 2012-11-02 2022-02-08 Texas Instruments Incorporated Efficient allocation of uplink HARQ-ACK resources for LTE enhanced control channel
JP6321068B2 (ja) * 2016-03-31 2018-05-09 株式会社Nttドコモ ユーザ端末及び無線通信方法
US11252717B2 (en) * 2016-09-02 2022-02-15 Huawei Technologies Co., Ltd. Co-existence of latency tolerant and low latency communications
CN107872891B (zh) * 2017-11-14 2021-12-21 宇龙计算机通信科技(深圳)有限公司 资源调度方法、装置、网络设备及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767595A (zh) * 2014-01-07 2015-07-08 中兴通讯股份有限公司 Harq-ack反馈信息的传输方法、系统及终端和基站
WO2018031623A1 (en) * 2016-08-11 2018-02-15 Intel Corporation Flexible transmission time interval and on slot aggregation for data transmission for new radio
CN108633070A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 半静态资源调度方法、功率控制方法及相应用户设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
0PP0: "Remaining details on HARQ-ACK transmission", 3GPP TSG RAN WG1 MEETING R1-1802108, 2 March 2018 (2018-03-02), XP051396840 *
HUAWEI ET AL: "Summary of remaining issues on bandwidth part and wideband operation", 3GPP TSG RAN WG1 MEETING RL-1801347, 2 March 2018 (2018-03-02), XP051397511 *
HUAWEI: "Remaining issues on HARQ management", 3GPP TSG RAN WG1 MEETING R1-1802697, 2 March 2018 (2018-03-02), XP051398130 *

Also Published As

Publication number Publication date
CN110351019A (zh) 2019-10-18
CN110351019B (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
US11838130B2 (en) Method for partial retransmission
US11758571B2 (en) Method and device for providing different services in mobile communication system
JP5823025B2 (ja) Ack/nackフィードバック情報を送信するための方法および装置
US11923987B2 (en) Method and device for transmitting control information in wireless cellular communication system
WO2019072074A1 (zh) Harq-ack反馈码本的发送方法、装置及设备
JP6526231B2 (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局
KR20190095326A (ko) 데이터 전송을 위한 방법 및 장치
US8477666B2 (en) Method and arrangement in a telecommunication system with signalling of assigned data packets in a bundling window
WO2019214684A1 (zh) 通信方法、通信装置和系统
US20210007126A1 (en) Communication method and apparatus
US20200136766A1 (en) Method for repeated transmission, and terminal device
CN110635870B (zh) 生成混合自动重传请求harq信息的方法和装置
KR102523840B1 (ko) 지시 방법, 네트워크 디바이스 및 사용자 장비
WO2019192457A1 (zh) 查找pdcch监听机会的通信方法和装置
JP2020530952A (ja) フィードバック応答情報の伝送方法、装置及びシステム
US10986619B2 (en) Method and apparatus for determining uplink transmission timing in wireless communication system
EP3440792B1 (en) Method and device for providing different services in mobile communication system
JP6789348B2 (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局
CN117955607A (zh) 一种通信方法及装置
CN118018155A (zh) 激活或去激活harq反馈信息的方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781632

Country of ref document: EP

Kind code of ref document: A1