WO2019192104A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2019192104A1
WO2019192104A1 PCT/CN2018/096589 CN2018096589W WO2019192104A1 WO 2019192104 A1 WO2019192104 A1 WO 2019192104A1 CN 2018096589 W CN2018096589 W CN 2018096589W WO 2019192104 A1 WO2019192104 A1 WO 2019192104A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
information
qos flow
drb
transceiver
Prior art date
Application number
PCT/CN2018/096589
Other languages
English (en)
French (fr)
Inventor
韩锋
晋英豪
谭巍
孙文琦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3094110A priority Critical patent/CA3094110C/en
Priority to RU2020135998A priority patent/RU2771065C1/ru
Priority to ES18913408T priority patent/ES2937935T3/es
Priority to JP2020554201A priority patent/JP7150045B2/ja
Priority to BR112020019478-6A priority patent/BR112020019478B1/pt
Priority to EP18913408.3A priority patent/EP3764578B1/en
Publication of WO2019192104A1 publication Critical patent/WO2019192104A1/zh
Priority to US17/039,489 priority patent/US11665577B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]

Definitions

  • This application relates to the field of communications. More specifically, it relates to a communication method and apparatus.
  • 5G fifth-generation mobile communication technology
  • QoS flow Quality of Service Flow
  • DRB Data Radio Bearer
  • a Packet Data Unit (PDU) session a QoS flow data packet is carried on a DRB, and one or more QoS flow data packets carried on one DRB have the same transmission characteristics, for example The same scheduling policy, queuing management policy, rate matching policy, etc., that is, there is a mapping relationship between QoS flows to DRBs.
  • the mapping relationship may be: one DRB corresponds to one or more QoS flows.
  • the uplink data packet and the downlink data packet of one QoS flow may be carried on the same DRB, or may be respectively carried on different DRBs. According to the mapping relationship, different QoS flows are mapped to corresponding DRBs for transmission.
  • L2 Layer 2
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • an access network device for example, a base station
  • a base station may be configured by a centralized unit (CU) and a distributed unit (DU), that is, in an access network.
  • the functions of the base station are split, some functions of the base station are deployed in one CU, and the remaining functions are deployed in one or more DUs, and the one CU controls the one or more DUs, which can save cost and facilitate network expansion.
  • the CU is divided into a Central Unit-Control Plane (CU-CP) node and a Central Unit-user Plane (CU-UP) node, where CU- The UP and CU-CP can be on different physical devices, and there is an open interface between the CU-CP and the CU-UP.
  • CU-CP Central Unit-Control Plane
  • CU-UP Central Unit-user Plane
  • the present application provides a communication method and apparatus, which can implement mapping of QoS flow to DRB and support measurement of L2 parameters in a base station architecture in which CU-DU is separated. Therefore, the data of the user can be smoothly and normally transmitted, the stability of the network is improved, the quality of the network operation is improved, and the user experience is improved.
  • a communication method including: a centralized unit user plane node CU-UP acquiring first information, where the first information is used to indicate that the CU-UP maps the first data packet to the first data radio bearer And setting a reflection mapping indication field of the first data packet on the DRB, the quality of service flow QoS flow to which the first data packet belongs is a first QoS flow; the CU-UP receiving the first data packet sent by the core network device; The CU-UP sets a reflection mapping indication field of the first data packet; the CU-UP sends the first data packet after setting the mapping field to the terminal device on the first DRB.
  • the communication method provided by the first aspect is that, in the CU-DU separated base station structure, the CU-UP determines that the reflection mapping of the first QoS flow to the first DRB needs to be performed.
  • the CU-UP obtains the first information, where the first information is used to instruct the CU-UP to map the first data packet to the first DRB and set the reflection mapping indication field of the first data packet.
  • the CU-UP sets the reflection mapping indication field of the first data packet, and sends the set reflection mapping indication field to the terminal device on the first DRB.
  • the first packet The mapping of the first QoS flow to the first DRB in the scenario where the CU-DU is separated is implemented.
  • Both the CU-UP and the terminal device enable mapping of the first QoS flow to the first DRB. It ensures that the terminal device and CU-UP can correctly transmit data. Improve communication efficiency and stability. Improve the user experience.
  • the CU-UP acquires the first information, where the CU-UP receives the first information sent by the centralized unit control plane node CU-CP.
  • the CU-UP sets a reflection mapping indication field of the first data packet, where the CU-UP sets the bit position of the reflection mapping indication field of the first data packet. Is 1.
  • the CU-UP sets a reflection mapping indication field of the first data packet, where the CU-UP sets the bit position of the reflection mapping indication field of the first data packet. Is 0.
  • the first information is the reflection mapping indication information of the first QoS flow to the first DRB.
  • the method further includes: receiving, by the CU-UP, a second data packet sent by the terminal device on the first DRB, where the QoS flow to which the second data packet belongs is a first QoS flow; the CU-UP sets the bit of the reflection mapping indication field of the first data packet to 0 according to the second data packet.
  • the CU-UP receives the first information sent by the CU-CP, where the CU-UP receives a bearer context setup request sent by the CU-CP, and the bearer context setup request This first information is included.
  • the CU-UP receives the first information sent by the CU-CP, and the CU-UP receives the bearer modification request sent by the CU-CP, where the bearer modification request includes the First information.
  • the method further includes: sending, by the CU-UP, the second information to the CU-CP, where the second information is used to indicate that the first QoS flow is to the first DRB The reflection mapping is successful.
  • a communication method comprising: a centralized unit control plane node CU-CP generating first information, the first information being used to indicate that the centralized unit user plane node CU-UP maps the first data packet to a first data radio bearer DRB and a reflection mapping indication field of the first data packet, where the quality of service flow QoS flow to which the first data packet belongs is a first QoS flow; the CU-CP sends the first QoS flow to the CU-UP a message.
  • the communication method provided by the second aspect in the CU-DU separated base station architecture, when the CU-CP needs to perform mapping of the first QoS flow to the first DRB, the first information is sent to the CU-UP by using the first information.
  • the CU-UP is instructed to map the data of the first data packet to the first DRB and set the reflection mapping indication field of the first data packet.
  • the CU-UP sets the reflection mapping indication field of the first data packet received from the core network according to the first information, and then sends the first data packet after the setting of the reflection mapping indication field to the terminal device on the first DRB.
  • the mapping of the first QoS flow to the first DRB in the scenario where the CU-DU is separated is implemented. Both the CU-UP and the terminal device enable mapping of QoS flow to DRB. It ensures that the terminal device and CU-UP can correctly transmit data. Improve communication efficiency and stability. Improve the user experience.
  • the first information is the reflection mapping indication information of the first QoS flow to the first DRB.
  • the CU-CP sends the first information to the CU-UP, including: the CU-CP sends a bearer context setup request to the CU-UP, the bearer context setup request This first information is included.
  • the CU-CP sends the first information to the CU-UP, where the CU-CP sends a bearer modification request to the CU-UP, where the bearer modification request includes the First information.
  • the method further includes: receiving, by the CU-CP, second information sent by the CU-UP, where the second information is used to indicate the first QoS flow to the first DRB The reflection map is successful.
  • a communication method including: a centralized unit user plane node CU-UP receives a third information sent by a centralized unit control plane node CU-CP, and the third information is used to indicate the CU-UP pair
  • the transmission performance of a data packet is detected by the first quality of service flow identifier QFI or the first 5G quality of service identifier 5QI; the CU-UP transmits the first data packet according to the third information Performance is tested.
  • the communication method provided by the third aspect in the CU-DU separated base station architecture, when the CU-CP needs to detect the performance of the first QoS flow in a PDU session of the terminal device, it sends a third to the CU-UP.
  • the third information is used to instruct the CU-UP to detect the transmission performance of the first data packet, where the first data packet is indicated by the first quality of service flow identifier QFI or the first 5G quality of service identifier 5QI;
  • the third information detects the transmission performance of the first data packet.
  • the measurement of the transmission parameter with the granularity of 5QI or QFI under the base station architecture separated by CU-DU is realized, thereby ensuring the normal operation of the network system and improving the user experience.
  • the method further includes: sending, by the CU-UP, the fourth information to the CU-CP, where the fourth information is used to indicate whether the transmission performance of the first data packet satisfies the transmission The performance indicator, the first data packet is configured with the transmission performance indicator, and the third information includes the transmission performance indicator.
  • the CU-UP sends the fourth information to the CU-CP, where the CU-UP sends the notification information to the CU-CP, where the notification information includes the fourth information.
  • the CU-UP sends the fourth information to the CU-CP, where the CU-UP sends a bearer modification request to the CU-CP, where the bearer modification request includes the Four information.
  • the transmission performance indicator of the first data packet includes: a delay budget of the first data packet, a packet loss rate of the first data packet, an uplink guarantee rate bit GBR, and a downlink At least one of GBR, uplink maximum GBR, and downlink maximum GBR.
  • the third information includes measurement configuration information, where the measurement configuration information includes a transmission performance parameter and/or a measurement time length of the first data packet, where the method further includes: the CU -UP sends a fifth message to the CU-CP, the fifth information including the result of the transmission performance detection of the first data packet.
  • the transmission performance parameter includes: a packet loss rate of the first data packet, a downlink transmission delay of the first data packet, and a scheduling network protocol throughput of the first data packet. And at least one of the amount of data of the first data packet.
  • a fourth aspect provides a communication method, including: a centralized unit control plane node CU-CP generates third information, where the third information is used to indicate that the centralized unit user plane node CU-UP transmits the first data packet The performance is detected, and the first data packet is indicated by the first quality of service flow identifier QFI or the first 5G quality of service identifier 5QI; the CU-CP sends the third information to the CU-UP.
  • the communication method provided by the fourth aspect in the CU-DU separated base station architecture, when the CU-CP needs to detect the performance of the first QoS flow in a PDU session of the terminal device, the third channel is sent to the CU-UP.
  • the third information is used to instruct the CU-UP to detect the transmission performance of the first data packet, where the first data packet is indicated by the first quality of service flow identifier QFI or the first 5G quality of service identifier 5QI.
  • the measurement of the transmission parameter with the granularity of 5QI or QFI under the base station architecture separated by CU-DU is realized, thereby ensuring the normal operation of the network system and improving the user experience.
  • the method further includes: receiving, by the CU-CP, fourth information that is sent by the CU-UP, where the fourth information is used to indicate whether the transmission performance of the first data packet is met.
  • the transmission performance indicator, the first data packet is configured with the transmission performance indicator, and the third information includes the transmission performance indicator.
  • the CU-CP receives the fourth information sent by the CU-UP, and the CU-CP receives the notification information sent by the CU-UP, where the notification information includes the Four information.
  • the CU-CP receives the fourth information that is sent by the CU-UP, and the CU-CP receives the bearer modification request sent by the CU-UP, where the bearer modification request includes The fourth information.
  • the transmission performance indicator of the first data packet includes: a delay budget of the first data packet, a packet loss rate of the first data packet, an uplink guarantee rate bit GBR, and a downlink At least one of GBR, uplink maximum GBR, and downlink maximum GBR.
  • the third information includes measurement configuration information, where the measurement configuration information includes a transmission performance parameter and/or a measurement time length of the first data packet, where the method further includes: the CU The CP receives the fifth information sent by the CU-UP, and the fifth information includes a result of the transmission performance detection of the first data packet.
  • the transmission performance parameter includes: a packet loss ratio of the first data packet, a downlink transmission delay of the first data packet, and a scheduling network protocol throughput of the first data packet. And at least one of the amount of data of the first data packet.
  • a communication device comprising a processor, a memory and a transceiver for supporting the communication device to perform a corresponding function in the above method.
  • the processor, the memory and the transceiver are connected by communication, the memory stores instructions, and the transceiver is configured to perform specific signal transceiving under the driving of the processor, the processor is configured to invoke the instruction to implement the first aspect and the third aspect, or the first Aspects and communication methods in various implementations in the third aspect.
  • a communication device including a processing module, a storage module, and a transceiver module, configured to support the terminal device to perform the foregoing first and third aspects, or any possible implementation of the first and third aspects
  • the function of the terminal device in the function can be implemented by hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a communication device comprising a processor, a memory and a transceiver for supporting the communication device to perform a corresponding function in the above method.
  • the processor, the memory and the transceiver are connected by communication, the memory stores instructions, and the transceiver is configured to perform specific signal transceiving under the driving of the processor, the processor is configured to invoke the instruction to implement the second aspect and the fourth aspect, or the second Aspects and communication methods in various implementations of the fourth aspect.
  • a communication device including a processing module, a storage module, and a transceiver module, configured to support the terminal device to perform the foregoing second and fourth aspects, or any possible implementation of the second and fourth aspects
  • the function of the terminal device in the function can be implemented by hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a communication system comprising the communication device provided in the fifth aspect or the sixth aspect, and the communication device provided in the seventh aspect or the eighth aspect.
  • the communication system may perform the communication methods provided in the above first to fourth aspects, or any of the first to fourth aspects.
  • a tenth aspect a computer readable storage medium for storing a computer program, the computer program comprising any one of the first to fourth aspects, or the first to fourth aspects described above The instructions of the method of implementation.
  • a system chip comprising: a processing unit and a communication unit, the processing unit, the processing unit executable to execute computer instructions to cause the chip in the terminal to perform the first to fourth aspects, or A method of any of the possible implementations of the first aspect to the fourth aspect.
  • a computer program product comprising instructions for performing the methods of any of the first to fourth aspects, or any one of the first to fourth aspects.
  • FIG. 1 is a schematic diagram of an existing QoS flow based network architecture.
  • FIG. 2 is a schematic diagram of a base station architecture in which CU-CP and CU-UP are separated.
  • FIG. 3 is a schematic diagram of a typical communication system architecture suitable for the communication method provided by the present application.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • Figure 5 is a schematic illustration of the format of a first data packet.
  • FIG. 6 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a communication method according to still another embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a communication method according to still another embodiment of the present application.
  • Figure 13 is a schematic block diagram of a communication device of one embodiment of the present application.
  • Figure 14 is a schematic block diagram of a communication device of another embodiment of the present application.
  • Figure 15 is a schematic block diagram of a communication device of one embodiment of the present application.
  • Figure 16 is a schematic block diagram of a communication device of another embodiment of the present application.
  • Figure 17 is a schematic block diagram of a communication device of one embodiment of the present application.
  • Figure 18 is a schematic block diagram of a communication device of another embodiment of the present application.
  • Figure 19 is a schematic block diagram of a communication device of one embodiment of the present application.
  • 20 is a schematic block diagram of a communication device of another embodiment of the present application.
  • 5G defines a QoS flow-based network architecture, which is the minimum granularity of QoS differentiation for data packets in a PDU session.
  • the QoS flow may include a QoS flow that guarantees a bit rate (Guaranteed Flow Bit Rate, GBR) and a QoS flow that does not guarantee a flow bit rate (Non-GBR).
  • GBR Guard Flow Bit Rate
  • Non-GBR Non-GBR
  • the QoS flow of the guaranteed bit rate can be understood as the transmission of the data packet of the QoS flow needs to meet a certain bit rate.
  • the network provides an unsecured flow for the QoS flow according to the usage of the network resource. Bit rate transmission.
  • one PDU session includes one or more QoS flows.
  • a QoS flow identity (QFI) is used to uniquely indicate a QoS flow within a PDU session. All packets mapped to a QoS flow will have the same QoS processing characteristics, such as the same scheduling policy, queuing management policy, rate matching strategy, and so on.
  • the 5G QoS Identifier (5QI) is used as a scalar value to characterize the specific QoS performance characteristics (ie, QoS flow parameters) of a QoS flow packet, such as packet loss rate, packet delay, and the like.
  • QFI can be equivalent to 5QI when using standard 5QI. In other cases, including guaranteed bit rate and non-guaranteed bit rate QoS flows, the 5QI and QFI values may be different.
  • N3 next generation interface 3 (referred to as N3) (the interface between the core network device and the access network device).
  • 5G defines a packet processing mechanism on the air interface based on DRB.
  • a packet served by one DRB has the same packet processing mechanism on the air interface.
  • the access network device establishes one or more DRB bearers for each PDU session of the terminal device to transmit data packets of QoS flows with different processing requirements in one PDU session, and maps the data packets belonging to different QoS flows in the PDU. Transmission to different DRBs, that is, there is a mapping relationship between QoS flows to DRBs.
  • the mapping relationship is: for a PDU session of the terminal device, the PDU session corresponds to one or more DRB bearers, and each DRB can correspond to one or more QoS flows in the PDU session.
  • an access network device establishes three DRBs for the PDU session, and the data packets of the QoS flows carried on each DRB have the same QoS processing characteristics, the same scheduling policy, and the queuing management policy. Rate matching strategy, etc.
  • the three DRBs are the first DRB, the second DRB, and the second DRB, and the QoS session includes four QoS flows, and the four QoS flows are the first QoS flow, the second QoS flow, and the third QoS flow, respectively.
  • Fourth QoS flow is assumed that, for a PDU session, an access network device establishes three DRBs for the PDU session, and the data packets of the QoS flows carried on each DRB have the same QoS processing characteristics, the same scheduling policy, and the queuing management policy. Rate matching strategy, etc.
  • the three DRBs are the first DRB, the second DRB, and the second DRB, and the QoS session includes four QoS flows, and the four QoS flows are
  • the first QoS flow and the second QoS flow have the same (or similar) QoS performance characteristics, for example, the delay requirement and the packet loss rate requirement are the same or similar.
  • the data packets of the first QoS flow and the second QoS flow may be carried on the first DRB, that is, the first QoS flow and the second QoS flow may be mapped onto the first DRB.
  • the data packet of the third QoS flow may be carried on the second DRB, that is, the third QoS flow may be mapped to the second DRB.
  • the data packet of the fourth QoS flow may be carried on the third DRB, that is, the data packet of the fourth QoS flow may be mapped to the third DRB.
  • FIG. 1 is a schematic diagram of an existing QoS flow-based network architecture.
  • a PDU session is established between a user equipment (UE), an access network device, and a core network device (eg, a user plane function gateway).
  • the access network device may be a base station (nodeB, NB), an evolved base station (Evolutional NodeB, eNB or eNodeB), or a next-generation wireless access base station (NR NodeB, gNB), or the like, or It is another access network (AN)/radio access network (RAN) device.
  • the core network device is a user plane function gateway.
  • the data packet between the UE and the access network device is a radio bearer.
  • the interface between the UE and the access network device is an air interface (for example, a Uu interface), and data or signaling may pass through the air interface.
  • the transmission is between the UE and the access network device.
  • the bearer of the data packet between the access network device and the core network is carried by the NG-U tunnel, and the interface is an NG (for example, N3) interface.
  • NG for example, N3 interface.
  • Data or signaling between the access network device and the core network can be transmitted through the NG interface.
  • the data packet in the PDU session includes data packets of three different QoS flows, which are a first QoS flow, a second QoS flow, and a third QoS flow, respectively.
  • the first QoS flow and the second QoS flow data packet are carried on the first DRB, and the data packet of the third QoS flow is carried on the second DRB. It should be understood that, if the downlink data packet of the first QoS flow is mapped to the first DRB, the uplink data packet of the first QoS flow may be mapped to the second DRB, or the uplink data packet of the first QoS flow may also be mapped to the first data packet. On a DRB. That is, the uplink data packet and the downlink data packet of one QoS flow can be mapped to the same DRB, or can be mapped to different DRBs respectively.
  • the base station maps the downlink data packets of different QoS flows to the QFI and the corresponding QoS flow parameters on the NG-U (eg, N3) interface. Different DRBs.
  • the QFI and corresponding QoS flow parameters are notified to the base station by the core network device.
  • the QoS flow information sent by the core network device to the base station includes the QFI of the QoS flow and the parameters of the corresponding QoS flow.
  • the QoS flow parameters may include a delay requirement, a packet loss rate requirement, an average window size, a maximum data burst amount, and the like.
  • the UE maps the uplink data packet belonging to one or more QoS flows to one or more according to the mapping of the QoS flow to the DRB configured by the base station or the reflection mapping. On the DRB.
  • the base station will control the mapping of QoS flows to DRB in the following two ways:
  • the first type explicitly informs the UE of the mapping of the QoS flow to the DRB through radio resource control (RRC) signaling, and the UE maps the uplink data packet according to the mapping relationship according to the mapping relationship of the QoS flow to the DRB.
  • RRC radio resource control
  • the DRB performs uplink transmission, which is a non-reflective mapping method.
  • the uplink data packet and the downlink data packet of a certain QoS flow can be mapped to different DRBs respectively, or mapped to the same DRB.
  • the method of the reflection mapping is: when the UE monitors which DRB the downlink data packet carrying the QFI is on, then in the UL, the UE maps the uplink data packet of the same QFI to the DRB for transmission. For example, if the UE monitors the downlink data packet carrying the first QFI (the QoS flow is the data packet of the first QoS flow), the UE transmits the uplink data packet of the first QoS flow in the first DRB. Transfer on. For the reflection mapping mode, the uplink data packet and the downlink data packet of a certain QoS flow are mapped to the same DRB.
  • the mapping of the QoS flow to the DRB needs to be established.
  • the base station may notify the UE to perform the QoS flow in the above two manners. New DRB mapping.
  • the access network device (illustrated by taking the base station as an example) may be composed of a CU and a DU, that is, splitting the functions of the base station, deploying part of the functions of the base station in one CU, and deploying the remaining functions in multiple DUs. Multiple DUs share one CU, which saves costs and is easy for network expansion.
  • the CU has RRC or partial RRC control functions, and includes all protocol layer functions or partial protocol layer functions of the existing base station; for example, only includes an RRC function or a partial RRC function, or includes an RRC/SDAP layer function, or includes RRC/SDAP/PDCP.
  • the function either including RRC/SDAP/PDCP and partial RLC functions, or including RRC/SDAP/PDCP/RLC/MAC functions, or even partial PHY functions, does not exclude any other possibilities.
  • the DU has all or part of the protocol layer functions of the existing base station, that is, part of the protocol layer functional units of the RRC/SDAP/PDCP/RLC/MAC/PHY, such as including part of the RRC function and the SDAP/PDCP/RLC/MAC/PHY function, or Contains some or all of the SDAP/PDCP/RLC/MAC/PHY functions, or includes some or all of the PDCP/RLC/MAC/PHY functions, or contains some or all of the RLC/MAC/PHY functions, or contains some or all of the MAC/PHY functions Or only some or all of the PHY functions are included; it should be noted that the functions of the various protocol layers mentioned herein may vary, and are within the scope of this application.
  • the CU is divided into a CU-CP and a CU-UP.
  • CU-UP and CU-CP can be on different physical devices, and there is an open interface between CU-CP and CU-UP.
  • FIG. 2 is a base station architecture in which CU-CP and CU-UP are separated.
  • the CU-CP portion includes an RRC function and a control plane portion of the PDCP (eg, data for processing signaling radio bearers).
  • the CU-UP part includes a data plane part of the CU, and mainly includes a SDAP protocol stack and a data plane part of the PDCP protocol stack (for example, data of a radio bearer of the user equipment, etc.).
  • the CU-CP and the CU-UP and the DU each have their own interfaces.
  • the interface between the CU-CP and the DU is an F1-C interface
  • the interface between the CU-UP and the DU is an F1-U interface.
  • it also has the following characteristics:
  • a base station will include one CU-CP, multiple CU-UPs, and multiple DUs;
  • a DU can only be connected to one CU-CP
  • a CU-UP can only be connected to one CU-CP;
  • a DU can be connected to multiple CU-UPs under the control of the same CU-CP;
  • a CU-UP can be connected to multiple DUs under the control of the same CU-CP.
  • FIG. 2 is merely exemplary and should not impose any limitation on the architecture of the base station.
  • a base station may include only one CU-UP, one CU-CP, one DU, or may include more CU-UPs and DUs. This application is not limited herein.
  • the embodiment of the present application provides a communication method, which can implement mapping of QoS flow to DRB and support measurement of L2 parameters in a base station architecture in which CU-DU is separated. Therefore, the data of the user can be smoothly and normally transmitted, the stability of the network is improved, the quality of the network operation is improved, and the user experience is improved.
  • FIG. 3 is a schematic diagram of a typical communication system architecture applicable to the communication method provided by the present application.
  • the system includes: a terminal device 110, an access network device 120, a core network device 130, and a data network 140 ( Data network, DN).
  • the terminal device 110 can be used to connect to the access network device 120 through a wireless air interface, and then to the data network 140 through the core network device 130.
  • the access network device 120 is mainly used to implement functions such as wireless physical layer function, resource scheduling, radio resource management, and radio access control.
  • the access network device 120 is a separate CU-DU architecture, that is, the access network devices are divided into CU-CP, CU-UP, and DU. The specific structure and function can be as shown in FIG. 2, and the description of FIG.
  • the core network device 130 may include a management device and a gateway device.
  • the management device is mainly used for device registration, security authentication, mobility management, and location management of the terminal device.
  • the gateway device is mainly used to establish a channel with the terminal device, and the channel is established on the channel. Forwarding packets between the terminal device and the external data network.
  • the data network 140 may correspond to a plurality of different service domains, and is mainly used to provide a plurality of data service services for the terminal devices, and may include network devices such as servers (including servers providing multicast services), routers, gateways, and the like.
  • FIG. 3 is only an exemplary architecture diagram.
  • the network architecture may also include other functional units or functional entities, which are not limited by the embodiment of the present application.
  • the foregoing terminal device may be a user equipment (UE), such as a mobile phone, a computer, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, and a wireless local device.
  • UE user equipment
  • WLL Wireless local loop
  • PDA personal digital assistant
  • PDA personal digital assistant
  • STB set top box
  • CPE customer premise equipment
  • the access network device may be a base station (nodeB, NB), an evolved base station (eNB), an access network (AN), or a radio access network (RAN) device.
  • a network consisting of multiple 5G-AN/5G-RAN nodes, which may be: an access point (AP), a next generation base station (NR nodeB, gNB), a receiving and receiving point (transmission receive point, TRP), transmission point (TP) or some other access node.
  • AP access point
  • NR nodeB, gNB next generation base station
  • TRP transmission receive point
  • TP transmission point
  • the above core network device may include: access and mobility function (AMF), session management function (SMF), policy control function (PCF), user Functional units such as user plane funtion (UPF), which can work independently or together to implement certain control functions.
  • the core network device may be a management device such as a mobility management entity (MME), a policy and charging rules function (PCRF), and a serving gateway (SGW).
  • MME mobility management entity
  • PCRF policy and charging rules function
  • SGW serving gateway
  • a gateway device such as a packet data network gateway (PGW) or a local gateway (LGW).
  • PGW packet data network gateway
  • LGW local gateway
  • FIG. 4 is a schematic flowchart of a communication method 200 according to an embodiment of the present application.
  • the method 200 can be applied to the scenario shown in FIG. In the communication scenario, the embodiment of the present application is not limited herein.
  • the method 200 includes:
  • the centralized unit user plane node CU-UP obtains first information, where the first information is used to indicate that the CU-UP maps the first data packet to the first data radio bearer DRB and sets the reflection of the first data packet.
  • the mapping indication field is that the quality of service flow QoS flow to which the first data packet belongs is the first QoS flow.
  • the CU-CP receives the first data packet sent by the core network device.
  • the CU-UP sets a reflection mapping indication field of the first data packet.
  • the CU-UP sends the first data packet after setting a reflection mapping indication field to the terminal device on the first DRB. Specifically, the CU-UP sends the first data packet to the terminal device by using one or more DUs connected to the CU-UP.
  • the communication method provided by the present application needs to establish a mapping relationship between the first QoS flow to the first DRB during the initial establishment of the PDU session, or when the parameters of the first QoS flow change. If the first data packet of the first QoS flow needs to be mapped to the new DRB (first DRB) for transmission, the CU-UP obtains the first information and determines whether it needs to be executed. The first QoS flows to the reflection map of the first DRB. The quality of service flow QoS flow to which the first data packet belongs is the first QoS flow.
  • the first information may be pre-stored by the CU-UP.
  • the first information is used to indicate that the CU-UP maps the first data packet to the first DRB and sets a reflection mapping indication field of the first data packet.
  • the CU-UP determines, according to the first information, whether a reflection mapping of the first QoS flow to the first DRB needs to be performed.
  • the CU-UP sets the reflection mapping indication field of the first data packet, and sends the set reflection mapping indication field to the terminal device on the first DRB.
  • the first data packet is a downlink data packet that is sent by the CU-UP to the terminal device.
  • the purpose of setting the reflection mapping indication field of the first data packet is to indicate to the terminal device whether it is necessary to perform the reflection mapping of the uplink data packet of the first QoS flow to the first DRB, that is, whether the terminal device is instructed to pass the DU in the first DRB.
  • the uplink packet of the first QoS flow is sent to the CU-UP.
  • the mapping of the first QoS flow to the first DRB in the scenario where the CU-DU is separated is implemented in the embodiment of the present application, so that both the CU-UP and the terminal device implement mapping of the first QoS flow to the corresponding DRB. It ensures that the terminal device and CU-UP can correctly transmit data. Improve communication efficiency and stability. Improve the user experience.
  • the mapping relationship between the first QoS flow and the first DRB needs to be established.
  • the original DRB carrying the first QoS flow also needs to be changed to the first DRB.
  • the original DRB of the first QoS flow is the second DRB, that is, the uplink and downlink data packets of the first QoS flow are transmitted on the second DRB.
  • the second DRB may not meet the requirement of the first QoS flow, and the DRB corresponding to the first QoS flow needs to be changed, that is, the first QoS flow needs to be mapped to the first DRB.
  • New DRB can perform a reflection mapping of the first QoS flow to the first DRB. Therefore, the CU-CP obtains the first information, which is used to instruct the CU-UP to map the first data packet to the first DRB and set the reflection mapping indication field of the first data packet.
  • the first data packet is a downlink data packet that is sent by the CU-UP to the terminal device.
  • the purpose of setting the reflection mapping indication field of the first data packet is to indicate to the terminal device whether it is necessary to perform the reflection mapping of the uplink data packet of the first QoS flow to the first DRB, that is, whether the terminal device is indicated to be in the first DRB to the CU.
  • -UP sends the upstream packet of the first QoS flow.
  • the first information may further include related information of the first QoS flow and the first DRB. For example, QoS flow parameters of the first QoS flow, and the like.
  • the quality of service flow QoS flow to which the first data packet belongs is the first QoS flow.
  • the first data packet may be all data packets of the first QoS flow in the PDU session of the terminal device, and the identifier of the first QoS flow is the first QFI or the first 5QI.
  • the first information may include information of the first QoS flow and information of the first DRB, for example, including an identifier of the first QoS flow and an identifier of the first DRB, or may further include information of a PDU session of the terminal device, and the like.
  • the first information may include a downlink SDAP header format indication of the first DRB and an uplink SDAP header format indication.
  • the downlink SDAP header format indication is used to indicate whether the QoS flow mapping the first DRB has a downlink SDAP header.
  • the uplink SDAP header format indication is used to indicate whether the QoS flow mapping the first DRB has an uplink SDAP header.
  • the first information may include whether the first DRB is a default DRB indication. The embodiments of the present application are not limited herein.
  • the CU-UP determines whether it is necessary to perform the reflection mapping of the first QoS flow to the first DRB on the first QoS flow, and the downlink first received from the core network device.
  • the data packet is configured, that is, the reflection mapping indication field of the first data packet is set, and the purpose of setting the reflection mapping indication field of the first data packet is to notify the terminal device whether to perform the uplink data packet of the first QoS flow to the first Reflection mapping of DRB. That is, whether the terminal device is instructed to send the uplink data packet of the first QoS flow to the CU-UP in the first DRB by means of the reflection mapping.
  • the CU-UP sends the first data packet after the setting mapping field to the terminal device on the first DRB.
  • the CU-UP may first send the first data packet after the setting of the mapping field to the DU, and the DU sends the first data packet to the terminal device on the first DRB.
  • the reflection mapping indication field of the first data packet is used to indicate to the terminal device whether it is necessary to perform a reflection mapping of the uplink data packet of the first QoS flow to the first DRB.
  • the terminal device After receiving the first data packet, the terminal device first detects the reflection mapping indication field of the first data packet.
  • the terminal device and the access network device may pre-negotiate.
  • the terminal device detects that the bit of the reflection mapping indication field of the first data packet is 1, the terminal device indicates that the terminal device needs to perform the reflection of the uplink data packet to the first DRB.
  • the mapping that is, after the terminal device receives the first data packet carried on the first DRB, sends the uplink data packet of the first QoS flow to the CU-UP through the DU on the first DRB, thereby completing the reflection mapping.
  • the terminal device detects that the bit of the reflection mapping indication field of the first data packet is 0, the terminal device is instructed not to perform mapping of the first QoS flow to the first DRB. In this case, the terminal device continues to transmit the uplink data packet of the first QoS flow on the original DRB carrying the first QoS flow.
  • the original DRB carrying the uplink data packet of the first QoS flow may be the first DRB or another DRB.
  • the information of the first QoS flow and the information of the first DRB may be directly notified to the terminal device by using the indication manner of the foregoing reflection mapping, that is, The way to map directly (non-reflective mapping).
  • the CU-CP sends the mapping relationship of the first QoS flow to the first DRB to the DU, and then is notified to the terminal device by the DU through RRC signaling.
  • the terminal device performs mapping of the first QoS flow to the first DRB according to the RRC signaling. That is, the uplink data packet of the first QoS flow is sent to the CU-UP through the DU on the first DRB.
  • the embodiments of the present application are not limited herein.
  • the reflection mapping indication field of the first data packet may be a Reflective QoS flow to DRB mapping Indication (RDI) field of the first data packet, as shown in FIG. 5,
  • Figure 5 is a schematic illustration of the format of a first data packet.
  • the first data packet may be a protocol data unit of a downlink SDAP layer.
  • the structure of the first data packet mainly includes an RDI field, a Reflective QoS Indication (RQI) indication field, a QFI field, and a data field.
  • RQI Reflective QoS Indication
  • the QFI field is used to identify the QoS flow of the first data packet, that is, the QFI field of the first QoS flow is the first QFI, and can be used to instruct the terminal device to perform mapping of the QoS flow to the DRB for the data packet of the first QoS flow.
  • the RDI field is used to indicate whether the mapping of the first QoS flow to the DRB needs to be updated or modified. For example, the following correspondence can be predefined:
  • the indication is no action, that is, the mapping relationship between the first QoS flow and the original DRB is unchanged, and the reflection mapping of the uplink data packet of the first QoS flow to the first DRB is not indicated. .
  • the bit of the RDI field when the bit of the RDI field is 1, it indicates that the reflection mapping relationship of the first QoS flow to the DRB needs to be stored.
  • the bit of the RDI field When the bit of the RDI field is 0, indicating no action is merely exemplary. The information indicated by 0 and 1 can also be mutually converted. For example, when the bit of the RDI field is 0, the reflection mapping relationship of the first QoS flow to the DRB needs to be stored. When the bit of the RDI field is 1, the The indication is no action.
  • the embodiments of the present application are not limited herein.
  • the RDI field of the first data packet is set according to the bit information of the predefined RDI field. And sending the first data packet after setting the RDI field to the terminal device.
  • the terminal device can determine whether to perform reflection mapping and perform reflection mapping for which QoS flow according to the received RDI and QFI fields of the first data packet.
  • the reflection mapping indication field of the first data packet may also be other fields of the first data packet, and the CU-UP may also indicate whether it is needed by setting other fields of the first data packet. Performing a reflection mapping of the uplink data packet of the first QoS flow to the first DRB.
  • the embodiments of the present application are not limited herein.
  • the CU-UP obtains the first information, including:
  • the centralized unit control plane node CU-CP generates the first information.
  • the centralized unit control plane node CU-CP sends the first information to the CU-UP.
  • the CU-UP receives the first information sent by the CU-CP.
  • the CU-CP decides to perform the mapping of the first QoS flow to the first DRB, for example, in the initial establishment of the PDU session, the mapping relationship between the first QoS flow to the first DRB needs to be established, or When the parameter or the load of the first QoS flow changes, the CU-CP generates the first information, and the first information is used when the original DRB that carries the first QoS flow also needs to be changed to the first DRB. Indicates whether a reflection map indicating the first QoS flow to the first DRB needs to be performed. That is, the first information is used to notify the CU-UP to map the first data packet to the first DRB and set the reflection mapping indication field setting of the first data packet.
  • the CU-UP maps the downlink first data packet to the first DRB and sets the reflection mapping indication field setting of the first data packet according to the first information.
  • the CU-CP may send or carry the first information in any possible signaling form through the E1 interface between the CU-UP and the CU-CP.
  • the first information may be carried on an Application Protocol (AP) information (ie, an E1AP message) on the E1 interface.
  • AP Application Protocol
  • the information that needs to perform the mapping of the first QoS flow to the first DRB may also be notified by the core network device to the CU-CP, and the CU-CP generates the first information according to the information. And sending the first information to the CU-UP.
  • the first information may include information of the QoS flow and information of the DRB, for example, including an identifier of the first QoS flow and an identifier of the first DRB, and may also include information of the PDU session of the terminal device, and the like.
  • the embodiments of the present application are not limited herein.
  • the communication method provided by the present application when the CU-CP needs to perform mapping of the first QoS flow to the first DRB, for example, the parameter of the first QoS flow changes or the load condition changes.
  • the CU-CP determines whether the reflection mapping needs to be performed according to the foregoing conditions.
  • the first information is sent to the CU-UP, where the first information is used to indicate that the CU-UP sets the reflection mapping indication field of the first data packet and maps the data of the first data packet to the first DRB.
  • the CU-UP determines, according to the first information, whether a reflection mapping indicating the first QoS flow to the first DRB needs to be performed.
  • the first data packet after the setting of the reflection mapping indication field is sent to the terminal device on the first DRB.
  • the first data packet is a downlink data packet that is sent by the CU-UP to the terminal device.
  • the reflection mapping indication field of the first data packet is used to indicate to the terminal device whether the reflection mapping of the first DRB of the uplink data packet of the first QoS flow needs to be performed, that is, whether the uplink of the first QoS flow is sent to the CU-UP by the first DRB. data pack.
  • the mapping of the first QoS flow to the first DRB in the scenario where the CU-DU is separated is implemented. Both the CU-UP and the terminal device enable mapping of QoS flow to DRB. It ensures that the terminal device and CU-UP can correctly transmit data. Improve communication efficiency and stability. Improve the user experience.
  • the CU-UP sets a reflection mapping indication field of the first data packet, including:
  • the CU-UP sets the bit of the reflection mapping indication field of the first data packet to 1.
  • the reflection mapping indication field is an RDI field as an example. It is assumed that the RDI field bit is pre-defined as follows: the bit of the RDI field is 1 indicating that the mapping relationship of the first QoS flow to the first DRB needs to be modified, and the bit of the RDI field is 0 indicating that the first QoS flow is to the first DRB. The mapping relationship is unchanged. In this case, the CU-UP sets the bit of the RDI field of the first data packet to 1, for notifying the terminal device that the uplink data packet of the first QoS flow needs to be mapped to the new DRB (the first DRB). )on. That is, the mapping relationship between the first QoS flow to the first DRB changes.
  • the CU-UP sets the bit of the RDI field to 1, and the QFI field indicates the first QFI, indicating that the QoS flow is the first QoS flow.
  • the terminal device After receiving the first data packet carried by the first DRB, the terminal device. According to the information of the RDI field and the QFI field, it is determined that the uplink data packet of the first QoS flow needs to be transmitted on the first DRB. That is, the mapping of the first QoS flow to the first DRB is performed.
  • the QoS flow is sent to the CU-UP on the first DRB as a data packet of the first QoS flow.
  • the communication method provided by the embodiment of the present application can notify the terminal device that the mapping of the first QoS flow to the first DRB needs to be performed by setting the bit of the reflection mapping indication field of the first data packet to 1. The accuracy and efficiency of the mapping of the first QoS flow to the first DRB are required to be implemented, and the signaling overhead and resource consumption are saved.
  • the bit in the RDI field is 0, indicating that the mapping relationship of the first QoS flow to the first DRB needs to be modified, and the bit of the RDI field is 1 indicating that the mapping relationship between the first QoS flow and the first DRB is unchanged.
  • the CU-UP may set the bit of the RDI field of the first data packet to 0 to indicate that the terminal device needs to map the uplink data packet of the first QoS flow to the new first DRB.
  • the reflection mapping indication field takes the reflection mapping indication field as 1 bit as an example, and the reflection mapping indication field may also be a plurality of bits.
  • the bit of the reflection mapping indication field is 11 to indicate that the mapping relationship of the first QoS flow to the first DRB needs to be modified, and the bit of the reflection mapping indication field is 00.
  • the mapping relationship indicating the first QoS flow to the first DRB is unchanged.
  • the CU-UP may set the bit of the reflection mapping indication field of the first data packet to 11.
  • the CU-UP sets a reflection mapping indication field of the first data packet, including:
  • the CU-UP sets the bit of the reflection mapping indication field of the first data packet to zero.
  • the reflection mapping indication field is an RDI field as an example. It is assumed that the RDI field bit has a pre-defined: the bit in the RDI field is 1 indicating that the mapping relationship of the first QoS flow to the first DRB needs to be modified, and the bit of the RDI field is 0 to indicate the first QoS flow to the first DRB. The mapping relationship is unchanged. In this case, the CU-UP sets the bit of the reflection mapping indication field of the first data packet to 0, and is used to notify the terminal device that the mapping relationship between the first QoS flow and the first DRB does not change.
  • setting the bit of the reflection mapping indication field to 0 merely informs the terminal device that the mapping relationship of the first QoS flow to the first DRB does not change, and does not need to perform mapping of the first QoS flow to the first DRB. It does not mean that the terminal device is not capable of performing mapping of the first QoS flow to the first DRB, ie the terminal device itself is capable of performing mapping of the first QoS flow to the first DRB. The terminal device may also decide to perform mapping of the first QoS flow to the first DRB according to conditions such as load and network. After receiving the first data packet carried by the first DRB, the terminal device.
  • the bit of the RDI field is 0, indicating that mapping of the first QoS flow to the first DRB is not required, and the terminal device may not need to read the information of the QFI field.
  • the terminal device continues to transmit the data packet of the first QoS flow to the CU-UP on the DRB of the original data packet carrying the first QoS flow.
  • the communication method provided by the embodiment of the present application can notify the terminal device that the mapping of the first QoS flow to the first DRB is not required, and the terminal device can be improved by setting the bit of the reflection mapping indication field of the first data packet to 0. It is determined that the accuracy and efficiency of the mapping of the first QoS flow to the first DRB are not required, which is convenient to implement, and saves signaling overhead and resource consumption.
  • the bit in the RDI field is 0, indicating that the mapping relationship of the first QoS flow to the first DRB needs to be modified, and the bit of the RDI field is 1 indicating that the mapping relationship between the first QoS flow and the first DRB is unchanged.
  • the CU-UP may set the bit of the RDI field of the first data packet to 1 to indicate that the terminal device does not need to perform mapping of the first QoS flow to the first DRB.
  • the first information is the reflection mapping indication information of the first QoS flow to the first DRB.
  • the terminal device is notified of the mapping of the first QoS flow to the first DRB.
  • the first is to directly notify the terminal device of the mapping relationship information of the first QoS flow to the first DRB, that is, the direct mapping mode.
  • the direct mapping manner may be: the CU-CP sends the mapping relationship between the first QoS flow and the first DRB to the DU, and then the DU is notified to the terminal device by using the RRC signaling.
  • the terminal device performs mapping of the first QoS flow to the first DRB according to the RRC signaling.
  • the other is the way of mapping by reflection.
  • the CU-UP determines, according to the first information, that the terminal device is used to perform the first QoS flow to the first DRB by using a reflection mapping manner. Mapping.
  • the method of the reflection mapping is: the CU-UP sends the downlink data packet of the first QoS flow to the terminal device in the first DRB, and the terminal device monitors the downlink data packet of the first QoS flow on the first DRB, then in the UL, the terminal device will The uplink packet of the first QoS flow is also transmitted on the first DRB.
  • the first information may further include related information of the first QoS flow and the first DRB, for example, information including an identifier of the first QoS flow and an identifier of the first DRB.
  • the first information may also include other relevant information.
  • information of a PDU session related to the first QoS flow for example, information such as a PDU session ID, may also be included.
  • the first information may include a downlink SDAP header format indication of the first DRB and an uplink SDAP header format indication.
  • the downlink SDAP header format indication is used to indicate whether the QoS flow mapping the first DRB has a downlink SDAP header.
  • the uplink SDAP header format indication is used to indicate whether the QoS flow mapping the first DRB has an uplink SDAP header.
  • the first information may include whether the first DRB is a default DRB indication. The embodiments of the present application are not limited herein.
  • the first information is not the reflection mapping indication information of the first QoS flow to the first DRB. That is, if the first information does not include the reflection mapping indication, the terminal device may be notified to perform mapping of the first QoS flow to the first DRB by means of direct mapping or reflection mapping.
  • the embodiments of the present application are not limited herein.
  • the method 200 further includes:
  • the CU-UP receives the second data packet sent by the terminal device on the first DRB, and the QoS flow to which the second data packet belongs is the first QoS flow.
  • the CU-UP sets the bit of the reflection mapping indication field of the first data packet to 0 according to the second data packet.
  • the reflection mapping indication field is an RDI field as an example. It is assumed that the RDI field bit has a pre-defined: the bit in the RDI field is 1 indicating that the mapping relationship of the first QoS flow to the first DRB needs to be modified, and the bit of the RDI field is 0 to indicate the first QoS flow to the first DRB. The mapping relationship is unchanged.
  • the terminal device After receiving the first data packet set by the reflection mapping indication field carried on the first DRB, the terminal device detects the DRB carrying the first data packet and the RDI field and the QFI field of the first data packet.
  • the terminal device After receiving the first data packet, the terminal device detects that the DRB of the first data packet is the first DRB, and the bit of the RDI field is 1, indicating that the mapping relationship between the first QoS flow and the DRB needs to be modified, and the QFI field. Indicated when the first QoS flow is.
  • the mapping of the first QoS flow to the first DRB needs to be performed on the data packet of the first QoS flow, that is, it is determined that the data packet of the first QoS flow is carried on the first DRB and sent to the CU-UP.
  • the terminal device is based on the information about the first data packet. Sending the second data packet to the DU on the first DRB, and after receiving the second data packet, the DU forwards the second data packet to the CU-UP.
  • the QoS flow to which the second data packet belongs is the first QoS flow, that is, the terminal device correctly performs mapping of the first QoS flow to the first DRB.
  • the CU-UP After receiving the second data packet, the CU-UP determines that the terminal device correctly performs the mapping of the first QoS flow to the first DRB, and sets the bit of the reflection mapping indication field of the first data packet to 0. That is, after instructing the terminal device to receive the first data packet, the terminal device does not need to map the uplink data packet of the first QoS flow to the first DRB.
  • the terminal device Since the terminal device continuously monitors the RDI field and the QFI field of the first data packet. After the CU-UP determines that the terminal device correctly performs the mapping of the first QoS flow to the first DRB, since the bit of the RDI field of the first data packet is 1 before, the bit of the RDI field is 1 indicating that the modification needs to be performed. The mapping relationship of the first QoS flow to the first DRB. If the CU-UP does not set the bit of the reflection mapping indication field of the first packet to 0.
  • the terminal device When detecting that the bit of the RDI field of the first data packet is 1, the terminal device needs to continuously detect the QFI field of each first data packet and the DRB that carries the first data packet, and determine that the first QoS flow is corresponding to the first QoS flow. DRB.
  • the mapping relationship between the first QoS flow to the first DRB may not change. That is, the first QoS flow corresponds to the first DRB, which causes waste of resources and increased power consumption of the terminal device. Therefore, after the CU-UP determines that the terminal device correctly performs the mapping of the first QoS flow to the first DRB, the bit of the RDI field of the first data packet is set to 0, and the subsequent terminal device receives the first data.
  • the RDI bit of the first data packet is detected to be 0, and the mapping relationship between the first QoS flow and the first DRB is determined to be unchanged, and the first QoS flow to the first DRB is not required to be performed. Detecting a QFI field of the first data packet and a first DRB of the first data packet. It can save resources, save power consumption of terminal devices, and improve user experience.
  • the bit of the RDI field of the first data packet is 0, indicating that the mapping relationship between the first QoS flow and the DRB needs to be modified, and the bit of the RDI field is 1 indicating that the mapping relationship between the first QoS flow and the first DRB is unchanged.
  • the bit of the reflection mapping indication field of the first data packet may be set to 1.
  • the second data packet when the terminal device sends the second data packet to the CU-UP on the first DRB, the second data packet may be first sent to the DU on the first DRB, and then the DU The second data packet is sent to the CU-UP.
  • the embodiments of the present application are not limited herein.
  • the CU-CP sends the first information to the CU-UP, including:
  • the CU-CP sends a bearer context setup request to the CU-UP, the bearer context setup request including the first information.
  • the CU-CP when the CU-CP needs to perform mapping to the first DRB for the first QoS flow, the CU-CP generates first information, where the first information is used to instruct the CU-UP to map the data of the first data packet. Go to the first DRB and set the reflection mapping indication field of the first data packet.
  • the CU-CP may send the first information to the CU-UP through an E1 interface with the CU-UP.
  • the bearer context setup request may be sent to the CU-UP through the E1 interface, where the bearer context setup request includes the first information.
  • the bearer context setup request may be used to request the CU-UP to establish a bearer related to the PDU session between the terminal devices, for example, a DRB bearer and a signaling radio bearer (SRB) for transmitting the CU-UP and the terminal.
  • a bearer context setup request may further include related information of the first QoS flow and the first DRB, and may further include information related to a PDU session of the terminal device.
  • the embodiments of the present application are not limited herein.
  • the CU-CP sends the first information to the CU-UP, including:
  • the CU-CP sends a bearer modification request to the CU-UP, where the bearer modification request includes the first information.
  • the CU-CP when the CU-CP needs to perform mapping to the first DRB for the first QoS flow, the CU-CP generates the first information.
  • a bearer modification request may be sent to the CU-UP through the E1, where the bearer modification request includes the first information.
  • the bearer modification request may be used to request the CU-UP to modify related bearers with the terminal device, for example, DRB and SRB bearers, etc., and the DRB and SRB may be used to transmit related signaling and data between the CU-UP and the terminal device. . That is, the first information is sent to the CU-UP by the bearer modification request.
  • the bearer modification request may further include the first QoS flow and related information of the first DRB, and may further include information related to the PDU session of the terminal device.
  • the first information may include a downlink SDAP header format indication of the first DRB and an uplink SDAP header format indication.
  • the downlink SDAP header format indication is used to indicate whether the QoS flow mapping the first DRB has a downlink SDAP header.
  • the uplink SDAP header format indication is used to indicate whether the QoS flow mapping the first DRB has an uplink SDAP header.
  • the first information may include whether the first DRB is a default DRB indication. The embodiments of the present application are not limited herein.
  • the first information may also be carried on other signaling sent by the CU-CP to the CU-UP, for example, may be carried on the notification information sent by the CU-CP to the CU-UP.
  • the embodiments of the present application are not limited herein.
  • the method 200 further includes:
  • the CU-UP sends the second information to the CU-CP, where the second information is used to indicate that the reflection mapping of the first QoS flow to the first DRB is successful.
  • the CU-CP receives the second information.
  • the CU-UP After the CU-UP receives the second data packet sent by the terminal device on the first DRB, it is determined that the terminal device correctly performs the mapping of the first QoS flow to the first DRB, and then goes to the CU.
  • the -CP notifies that the reflection mapping of the first QoS flow to the first DRB is successful, that is, the second information is sent to the CU-CP, and the second information is used to indicate that the reflection mapping of the first QoS flow to the first DRB is successful.
  • the CU-CP After receiving the second information, the CU-CP knows that the reflection mapping of the first QoS flow to the first DRB is correctly performed, and the data processing of the radio bearer of the PDU session of the terminal device can be correctly performed, and the like.
  • the stability of the data transmitted by the terminal device improves the user experience and ensures the normal operation of the system.
  • the CU-UP may also notify the CU-CP of the information that the reflection mapping fails, so that the CU-CP subsequently decides whether it is necessary to continue to perform the reflection mapping or release the operation of the first QoS flow. Thereby ensuring the stability of the network and improving the quality of network operation.
  • the present application also provides a communication method that enables measurement of data transmission performance and L2 parameters in a base station architecture in which CU-DU is separated. Therefore, the data of the user can be smoothly transmitted, the stability of the network is improved, the quality of the network operation is improved, and the user experience is improved.
  • FIG. 9 is a schematic flowchart of a communication method 300 according to an embodiment of the present application.
  • the method 300 can be applied to the scenario shown in FIG. In the communication scenario, the embodiment of the present application is not limited herein.
  • the method 300 includes:
  • the CU-CP generates third information, where the third information is used to instruct the CU-UP to detect the transmission performance of the first data packet, where the first data packet is identified by the first quality of service flow (QFI) or the first 5G quality of service. Identifies the 5QI indication.
  • QFI quality of service flow
  • 5G quality of service Identifies the 5QI indication.
  • the CU-CP sends the third information to the CU-UP.
  • the CU-UP receives the third information.
  • the CU-UP detects the transmission performance of the first data packet according to the third information.
  • the communication method provided by the present application sends a third information to the CU-UP when the CU-CP needs to detect the performance of the first QoS flow in a PDU session of the terminal device.
  • the third information is used to instruct the CU-UP to detect the transmission performance of the first data packet (the data packet of the first QoS flow), the first data packet being indicated by the first QFI.
  • the third information is used to instruct the CU-UP to detect the transmission performance of the first data packet, where the first data packet is The first 5QI indication.
  • the CU-UP detects the transmission performance of the first data packet according to the third information.
  • the measurement of the transmission parameter with the granularity of 5QI or QFI under the base station architecture separated by CU-DU is realized, thereby ensuring the normal operation of the network system and improving the user experience.
  • the base station architecture separated by the CU-DU in order to support the normal operation of the network system, it is required to perform related transmission performance measurement, and support or timely adjust data transmission by measuring transmission performance.
  • Related configuration or control For example, in order to support air interface resource operations, radio resource management, network operation and maintenance, MDT and SON requirements, etc., L2 parameters need to be measured. For example, it is necessary to detect the relevant transmission parameters of the first data packet at the PDCP layer, the RLC layer, the MAC or the SDAP layer. Therefore, the CU-CP generates third information, which is used to instruct the CU-UP to detect the transmission performance of the first data packet. Also, since 5G defines a QoS flow-based network architecture, QoS flows are the minimum granularity for QoS differentiation in PDU sessions.
  • the identifier of the first data packet quality of service flow QoS flow is A QFI is a measurement of the transmission parameters of the QFI granularity.
  • the first data packet is indicated by the first 5QI. That is, the measurement of the transmission parameters is performed at a 5QI granularity. It should be understood that when the 5QI and QFI values are equal, either of the two can be used to indicate the QoS flow. When the 5QI and QFI values are not equal, 5QI is needed to indicate the QoS flow.
  • the third information may further include related information of the first QoS flow, for example, a parameter of the first QoS flow, an identifier of the first QoS flow (a first QFI or a first 5QI), and the first QoS flow.
  • the embodiments of the present application are not limited herein.
  • the CU-CP sends the third information to the CU-UP.
  • the CU-UP receives the third information.
  • the CU-CP may send or carry the third information in any possible signaling manner through an E1 interface between the CU-UP and the CU-CP.
  • the third information can be carried on the E1AP message on the E1 interface.
  • the embodiments of the present application are not limited herein.
  • the CU-UP performs measurement of the transmission parameter with a granularity of QFI or 5QI according to the third information.
  • the first data packet is indicated by the first QFI or the first 5QI.
  • the communication method provided by the present application realizes the measurement of the transmission parameter of the CU-UP with the granularity of 5QI or QFI under the base station architecture of the CU-DU, thereby ensuring the normal operation of the network system and ensuring the accurate transmission of data by the user. Sex and success rate, providing the efficiency of user communication. Improve the user experience.
  • the method 300 further includes:
  • the CU-UP sends a fourth information to the CU-CP, where the fourth information is used to indicate whether the transmission performance of the first data packet meets a transmission performance indicator, where the first data packet is configured with the transmission performance indicator, and the third The information includes the transmission performance indicator.
  • the CU-CP receives the fourth information.
  • the CU-CP receives the fourth information.
  • the transmission performance indicators that each QoS flow needs to satisfy are different.
  • the QoS flows corresponding to the service need to meet higher transmission metrics.
  • These QoS flows need to meet GBR guarantee or transmission delay guarantee. Therefore, the third information includes the transmission performance indicator.
  • the transmission performance indicator may be a packet loss rate requirement that the first QoS flow (the QoS flow of the first data packet) needs to meet, that is, the packet loss rate cannot exceed a certain value. Threshold.
  • the transmission performance indicator may be whether the first QoS flow meets the GBR requirement.
  • the first data packet of the first QoS flow is configured with the transmission performance indicator, that is, the first data packet needs to meet the transmission performance indicators when transmitting.
  • the CU-UP detects, according to the transmission performance indicator and the first QFI in the third information, that the QoS flow identifier of the data packet in the uplink and downlink transmission is the first of the first QFI. Packet transmission performance.
  • the CU-UP detects the transmission performance of the first data packet according to the transmission performance indicator, and determines whether the first data packet satisfies the transmission requirement according to the detected transmission performance of the first data packet and the configured transmission performance indicator. .
  • the transmission performance of the first data packet satisfies the transmission performance indicator is notified to the CU-CP through the fourth information. For example, when it is detected that all data packets (first data packets) of the first QoS flow do not satisfy the GBR requirement, the message that the first QoS flow does not satisfy the GBR requirement is notified to the CU-CP through the fourth information. When it is detected that all the first data packets of the first QoS flow meet the GBR requirement, the message that the first QoS flow meets the GBR requirement is notified to the CU-CP by using the fourth information.
  • the CU-CP thus transmits the information to the core network, and the core network determines, based on the information, whether the parameters of the QoS flow need to be changed or released. It ensures that the network system can run normally and improves the guarantee rate of normal communication of users. Improve the stability and work efficiency of the network system and improve the user experience.
  • the CU-UP can report the number or proportion of the first data packet that satisfies the transmission performance indicator for a period of time. Or, for a period of time, if a first data packet does not satisfy the transmission performance indicator, it is considered that the first QoS flow (all first data packets) does not satisfy the transmission performance indicator during this time, or may be other
  • the embodiment of the present application is not limited herein.
  • the fourth information may further include the detected value of the transmission indicator of the first QoS flow, the information of the PDU session related to the first QoS flow, for example, the PDU session ID, the identifier of the first QoS flow, and the like. .
  • the embodiments of the present application are not limited herein.
  • the CU-UP may notify the CU-CP through the fourth information that the PDU session is not satisfied or meets the QoS flow.
  • the message of the transmission performance indicator instead of using the QoS flow unit, notifies the CU-CP of a message that each QoS flow does not satisfy or satisfies the transmission performance indicator of the QoS flow.
  • the CU-CP may also inform the CU-UP of the information of all QoS flows of the PDU session of the terminal device before the CU-UP detects the transmission performance of the first data packet.
  • it may be information such as parameters and identifiers of all QoS flows of the PDU session.
  • the CU-UP may perform an admission control process, that is, determine the QoS flow that can be accepted in all QoS flows according to the information of all QoS flows and in combination with its own load and the like.
  • the transmission performance of the accepted QoS flow is detected.
  • the first QoS flow may be any of the QoS flows accepted by the CU-UP.
  • the admitted QoS flow can be understood as a QoS flow that can be used to transmit data.
  • the core network device When the core network device creates a new PDU session for the terminal device, or creates a new QoS flow for the PDU session or a QoS flow characteristic of the PDU session changes, the core network device notifies the CU-CP of the QoS flow information. .
  • the GRB information of the QoS flow or the like can be used.
  • the CU-CP may notify the CU-UP of the QoS flow information in a setup request or a modification request through an E1 interface between the CU-CP and the CU-UP.
  • the information of the QoS flow may include the content shown in Table 1.
  • the content of the dynamic 5QI Descriptor (Dynamic 5QI Descriptor) can be as shown in Table 2:
  • the CU-UP accepts the QoS flow according to the QoS flow information, for example, the QoS flow parameters in Table 1 and Table 2, and combines its own load conditions, and will accept the QoS flow in the establishment request response or the modification request response.
  • the result is fed back to the CU-CP.
  • the result of the admission may include: the admitted QoS flow ID, the PDU session ID to which the QoS flow belongs, the QoS flow ID that is not admitted, the PDU session ID to which the QoS flow is not admitted, and the reason why the QoS flow is not accepted, for example
  • the reason why the QoS flow is not accepted may be a resource limited (Radio resources not available), an unrecognized 5QI, an illegal 5QI, and the like.
  • the PDU session ID is also included if all QoS flows within a PDU session are rejected.
  • the transmission of the accepted QoS flow may be detected according to the third information sent by the CU-CP to determine whether the transmission performance indicator is met. It should be understood that when multiple QoS flows of a PDU session are admitted, the result of the admission may include a list of admitted QoS flow IDs; when multiple QoS flows of a PDU session are rejected, the result of the admission may include rejected QoS flow ID list.
  • the CU-UP may perform the QoS flow admission control according to the information in Table 1 and Table 2 and the load condition thereof, and may also be based on other information, for example, the QoS flow.
  • the service information and the like carried by the data packet are not limited herein.
  • the CU-UP sends the fourth information to the CU-CP, including:
  • the CU-UP sends notification information to the CU-CP, and the notification information includes the fourth information.
  • the CU-CP receives the notification information.
  • the CU-UP may send the fourth information to the CU-CP through the E1 interface between the CU-CP and the CU-UP.
  • the notify information may be sent to the CU-CP through the E1 interface, where the notification information includes the fourth information.
  • the notification information may be used to notify the CU-CP of the bearer and QoS flow information associated with establishing a PDU session with the terminal device. That is, the fourth information is carried by the notification information. It should be understood that the notification information may also include the first QoS flow and information related to the PDU session of the terminal device.
  • the embodiments of the present application are not limited herein.
  • the CU-UP may also send a notification information response for notifying the CU-UP that the fourth information has been received.
  • the embodiments of the present application are not limited herein.
  • the CU-UP sends the fourth information to the CU-CP, including:
  • the CU-UP sends a bearer modification request to the CU-CP, where the bearer modification request includes the fourth information.
  • the CU-CP receives the bearer modification request.
  • the CU-UP may send the fourth information to the E1 interface between the CU-CP and the CU-UP.
  • the CU-UP may send the fourth information to the E1 interface between the CU-CP and the CU-UP.
  • the CU-UP may send the fourth information to the E1 interface between the CU-CP and the CU-UP.
  • the CU-UP may send the fourth information to the E1 interface between the CU-CP and the CU-UP.
  • the CU-UP may send the fourth information to the E1 interface between the CU-CP and the CU-UP.
  • the bearer modification request may be sent to the CU-UP through the E1 interface, where the bearer modification request includes the fourth information.
  • the bearer modification request may be used to request the CU-CP to modify the related bearer with the terminal device, for example, a DRB or an SRB bearer, etc., and the DRB or SRB may be used to transmit related signaling and data between the CU-UP and the terminal device.
  • the fourth information may also be carried on other signaling sent by the CU-UP to the CU-CP, which is not limited herein.
  • the CU-CP may also send bearer modification request response information to the CU-UP, to notify the CU-UP that the fourth information has been received.
  • bearer modification request response information to the CU-UP, to notify the CU-UP that the fourth information has been received.
  • the transmission performance indicator of the first data packet includes:
  • the transmission performance indicator of the first QoS flow may include: a delay budget of the first data packet, a packet loss rate of the first data packet, and an uplink At least one of a guaranteed rate bit GBR, a downlink GBR, an uplink maximum GBR, a downlink maximum GBR, a downlink maximum packet loss rate, an uplink maximum packet loss rate, and a maximum data burst amount.
  • the CU-UP detects whether the downlink first data packet satisfies the downlink GBR requirement according to the downlink GBR transmission indicator of the first data packet, and whether the first data packet satisfies the downlink GBR.
  • the transmission indicator is sent to the CU-CP.
  • the transmission performance indicator of the first data packet may further include other transmission performance indicators, for example, maximum data throughput and the like.
  • the embodiments of the present application are not limited herein.
  • the method 300 further includes:
  • the CU-UP sends a fifth information to the CU-CP, where the fifth information includes a result of detecting a transmission performance of the first data packet.
  • the third information includes measurement configuration information, where the measurement configuration information includes a transmission performance parameter and/or a measurement time length of the first data packet.
  • the CU-CP receives the fifth information.
  • the third information sent by the CU-CP to the CU-UP includes measurement configuration information including a transmission performance parameter and/or a measurement time length of the first data packet. Based on the measurement configuration information, the CU-UP measures the transmission parameters of the granularity of QFI or 5QI, that is, detects the transmission performance of the first data packet.
  • the CU-UP may determine the measurement time length according to the predefined time length or according to the service condition of the first data packet, and transmit the first data packet. Performance is tested. In the case that the measurement configuration information includes the measurement time length of the first data packet, the CU-UP may determine, according to the service type and the like, the QoS flow load condition of the first data packet, and determine the transmission performance, for the first data packet. Transmission performance is detected. The first data packet is indicated by the first 5QI, and it is determined that the transmission performance needs to be detected, and the transmission performance of the first data packet is detected. The first data packet is indicated by the first 5QI.
  • the data packet can be indicated by any two of them.
  • the data needs to be indicated by 5QI. package. That is, when detecting the first data packet of all the terminal devices, the first data packet is indicated by the first 5QI to detect the transmission performance of all the data packets of all the terminal devices with the QoS feature being the first 5QI.
  • the CU-UP detects the transmission performance of the first data packet transmission at the L2 layer, and notifies the CU-CP of the result of the transmission performance detection of the first data packet. Thereby, the measurement of the L2 parameter supported by the CU-CP is realized.
  • the transmission performance parameter includes: a packet loss rate of the first data packet, a downlink transmission delay of the first data packet, a scheduling network protocol throughput of the first data packet, and the At least one of the data amounts of a packet.
  • the detection granularity is the first QFI and/or the first 5QI, that is, all the data packets indicating the QoS flow in the statistical time T as the first QFI and/or the first 5QI (the first packet)
  • the average downlink transmission delay of a packet When the identifier of the QoS feature of the first data packet is the first 5QI, the QoS feature identifier of the data packet of all the terminal devices is used to perform performance detection on all data packets of the first 5QI; when the identifier of the first data packet QoS flow is the first At the time of QFI, performance testing is performed on the data packet of the terminal device having the first QFI.
  • the average downlink transmission delay of the first data packet in the time T can be calculated by using the formula (1).
  • the average downlink transmission delay of the first packet having the same 5QI (first 5QI) in the time T is indicated, and may be the case when the 5QI and the QFI of a certain QoS flow are the same.
  • the reference point of the arrival time of the first data packet is a service access point (SAP) on the PDCP layer or a service access point of the SDAP layer, and the reference point of the first data packet successfully received is the PDCP layer.
  • SAP service access point
  • Service access point for SAP or SDAP layer the point that SAP provides services for the upper layer in the protocol stack to access the lower layer is the logical interface for the mutual communication between the layer entities ("entities", that is, the logical functions of the corresponding layers), which are located at the boundary of the two layers.
  • the access point is located at the upper part of the protocol layer (Upper) or the lower part of the protocol layer (Lower).
  • the reference point for the successful reception of the first data packet is the upper SAP of the PDCP layer or the upper service access point of the SDAP layer.
  • the reference point of the first data packet successfully received is the lower SAP of the PDCP layer or the lower service access point of the SDAP layer.
  • each layer provides service access points to the upper layer, each layer has SAP, but the SAP content and representation of different layers are different.
  • the reference point of the first data packet arrival time may also be the SAP of the PDCP layer or the SAP of the SADP layer, and the reference point of the first data packet successfully receiving time is the SAP of the media access control MAC layer.
  • the access point is located at the upper part of the protocol layer (Upper) or the lower part of the protocol layer (Lower).
  • the reference point of the arrival time of the first data packet may also be the lower SAP of the PDCP layer, and the reference point of the successful reception time of the first data packet is the lower service access point of the MAC layer.
  • the DU counts the number of first data packets correctly received at the MAC layer, the arrival time, and the like, and notifies the CU-CP of the information.
  • the CU-CP may send measurement configuration information to the DU, where the measurement configuration information includes related information of the first QoS flow, for example, a parameter of the first QoS flow, and a first QoS flow.
  • the measurement configuration information includes related information of the first QoS flow, for example, a parameter of the first QoS flow, and a first QoS flow.
  • the embodiments of the present application are not limited herein.
  • the CU-CP may notify the CU-UP of the absolute time, for example, the absolute time at which the detection starts and the absolute time at which the detection ends.
  • the embodiment of the present application is not limited herein.
  • the CU-UP may detect the downlink transmission delay of the first data packet with the QFI and/or 5QI granularity according to the above formula (1), and notify the CU-CP of the detection result.
  • the CU-UP may detect the downlink transmission delay of the first data packet by using the QFI and/or 5QI granularity according to the above formula (1), and may also be modified according to other formulas or formula (1).
  • the formula for detecting the downlink transmission delay of the first data packet is not limited herein.
  • the average packet loss rate of the first packet having the same 5QI (first 5QI) in the time T is indicated, and may be the case when the 5QI and the QFI of a certain QoS stream are the same. In the case where the values of the first QFI and the first 5QI are not the same, the first 5QI is taken as the standard. Indicates the number of first data packets that are discarded within time T, representing the number of first data packets arriving at the SAP or SADP layer on the PDCP layer within time T.
  • the CU-UP may detect the packet loss rate of the first data packet with the QFI and/or 5QI granularity according to the above formula (2), and notify the CU-CP of the detection result.
  • the CU-UP may also be modified according to other formulas or formula (2).
  • the formula detects the packet loss rate of the first data packet, which is not limited herein.
  • the CU-UP can detect the loss rate of the first data packet when the uplink and downlink transmissions are performed on the Uu interface with the terminal device, that is, the QFI and/or 5QI granularity, and the first data on the Uu interface in the detection time T.
  • the packet loss rate of the uplink and downlink of the packet and notifies the CU-CP of the detection result.
  • CU-UP can detect the scheduled network protocol (Scheduled IP) throughput of the first data packet in time T. Includes the throughput of the first and downstream packets. It is also possible to detect the throughput of the data burst of the first data packet within the time T, the transmission covering a plurality of transmission time intervals, and notifying the CU-CP of the detection result.
  • Scheduled IP scheduled network protocol
  • the CU-UP can detect the uplink and downlink Scheduled IP throughput of the first data packet related to the MDT in the time T, that is, the QFI and/or the 5QI granularity, and the Uu interface between the detection and the terminal device is performed.
  • the Scheduled IP throughput of the first packet during upstream and downstream transmissions.
  • the QFI and/or 5QI granularity is used to detect the Scheduled IP throughput of the first data packet when performing uplink and downlink transmission on the F1-U interface with the DU.
  • the test result is notified to the CU-CP.
  • CU-UP can detect the amount of data of the first data packet in time T. That is, with the QFI and/or 5QI as the granularity, the data amount of the first data packet of the uplink and downlink in the time T is detected, and the detection result is notified to the CU-CP with the granularity of QFI and/or 5QI.
  • CU-UP can detect the delay of the first data packet in time T. Specifically, the time T can be counted in the time T, with the QFI and/or 5QI as the granularity, starting from the moment when the first data packet arrives at the SAP on the PDCP layer, until the average delay transmitted to the RLC layer. Or, within the statistical time T, with QFI and/or 5QI as the granularity, starting from the moment when the first data packet reaches the SAP on the SDAP layer, until the average delay transmitted to the RLC layer. The CU-CP is notified of the statistical result.
  • the access point is located at the upper part of the protocol layer (Upper) or the lower part of the protocol layer (Lower).
  • the reference point for the successful reception of the first data packet is the upper SAP of the SDAP layer or the lower service access point of the SDAP layer.
  • the reference point of the first data packet successfully received is the upper SAP of the PDCP layer or the lower service access point of the PDCP layer.
  • the CU-UP collects the above-mentioned transmission performance parameters in addition to the QFI and/or 5QI granularity, and may also calculate the other transmission of the first data packet by using QFI and/or 5QI as the granularity.
  • the performance parameters are not limited herein.
  • the manner in which the CU-UP reports the measurement result to the CU-CP is not limited, for example, periodic reporting, or may be based on event triggering reporting, or may be configured according to CU-CP. Report configuration, etc.
  • the embodiments of the present application are not limited herein.
  • the report configuration of the CU-CP configuration includes: measuring time T; measuring events, metrics, or some QFI/5QI/PDU session/slice (S-NSSAI), periodicity Reporting, or event-triggered reporting (period value, under what circumstances, such as a measurement metric exceeds the threshold).
  • S-NSSAI QFI/5QI/PDU session/slice
  • periodicity Reporting or event-triggered reporting (period value, under what circumstances, such as a measurement metric exceeds the threshold).
  • the CU-UP can measure and report the transmission performance of the PDU session in addition to the measurement performance and reporting of the QFI and/or 5QI granularity.
  • the transmission performance measurement and reporting may be performed at the granularity of the 5QI and the terminal device, or the transmission performance of the PDU session and the network slice may be measured and reported.
  • Network slicing is based on different service needs and application scenarios. For example, delay, reliability, etc., the network is divided into different network slices, and each network slice corresponds to different application scenarios and service requirements.
  • a network slice can include multiple PDU sessions.
  • the DU may also perform measurement of the L2 related parameter according to the measurement configuration information sent by the CU-CP, and send the measurement result to the CU-CP.
  • the DU may count the utilization of the uplink and downlink physical resource blocks (PRBs) of the single cell in the time T or the number of random access preambles.
  • PRBs physical resource blocks
  • the PRB utilization rate and the number of random access preambles in the DU may be counted, and the detection result may be sent to the CU-CP.
  • the DU may notify the CU-CP of the detection result by using related signaling through the FI-C interface between the DU and the CU-CP.
  • first, second, third, etc. are merely meant to indicate that the plurality of objects are different.
  • first information and the second information are merely information indicating different contents. Rather than having any effect on the information itself, the first, second, etc. described above should not impose any limitation on the embodiments of the present application.
  • the first information may be carried over any possible signaling for transmission.
  • the second information, the third information, and the like may also be carried on any possible signaling, that is, in the embodiment of the present application, the specific forms of the first information, the first information, and the first information are not limited.
  • Figure 13 is a schematic block diagram of a communication device of one embodiment of the present application. It should be understood that the communication device may refer to the centralized unit user plane node CU-UP described above. The communication device embodiment and the method embodiment correspond to each other, and a similar description can refer to the method embodiment.
  • the communication device 400 shown in FIG. 13 can be used to execute the CU corresponding to each embodiment of FIG. 4, FIG. 6 to FIG. 8 and method 200. -UP steps performed.
  • the communication device 400 includes a processor 410, a memory 420 and a transceiver 430, the memory 420 and the transceiver 430 are connected by communication, the memory 420 stores instructions, and the processor 410 is used to execute instructions stored in the memory 420, the transceiver The 430 is configured to perform specific signal transceiving under the driving of the processor 410.
  • the processor 410 is configured to obtain first information, where the first information is used to indicate that the CU-UP maps the first data packet to the first data radio bearer DRB and sets a reflection mapping indication field of the first data packet, where The quality of service flow QoS flow to which the first data packet belongs is the first QoS flow;
  • the transceiver 430 is configured to receive the first data packet sent by the core network device.
  • the processor 410 is further configured to set a reflection mapping indication field of the first data packet
  • the transceiver 430 is further configured to send, to the terminal device, the first data packet after setting the mapping field on the first DRB.
  • the communication device needs to establish a mapping relationship between the first QoS flow to the first DRB during the initial establishment of the PDU session, or when the parameters of the first QoS flow change or the load condition changes.
  • the CU-UP obtains the first information, and determines whether it is necessary to perform a reflection indicating that the first QoS flow to the first DRB Mapping.
  • the first information may be pre-stored by the CU-UP. The first information is used to indicate that the CU-UP maps the first data packet to the first DRB and sets a reflection mapping indication field of the first data packet.
  • the CU-UP determines, according to the first information, whether a reflection mapping of the first QoS flow to the first DRB needs to be performed. After receiving the first data packet sent from the core network, the CU-UP sets the reflection mapping indication field of the first data packet, and sends the set reflection mapping indication field to the terminal device on the first DRB.
  • the first data packet is a downlink data packet that is sent by the CU-UP to the terminal device.
  • the purpose of setting the reflection mapping indication field of the first data packet is to indicate to the terminal device whether it is necessary to perform the reflection mapping of the uplink data packet of the first QoS flow to the first DRB, that is, whether the terminal device is instructed to pass the DU in the first DRB.
  • the uplink packet of the first QoS flow is sent to the CU-UP.
  • the mapping of the first QoS flow to the first DRB in the scenario where the CU-DU is separated is implemented in the embodiment of the present application, so that both the CU-UP and the terminal device implement mapping of the first QoS flow to the corresponding DRB. It ensures that the terminal device and CU-UP can correctly transmit data. Improve communication efficiency and stability. Improve the user experience.
  • the various components in communication device 400 communicate with one another via a communication connection, i.e., processor 410, memory 420, and transceiver 430, through internal connection paths, to communicate control and/or data signals.
  • a communication connection i.e., processor 410, memory 420, and transceiver 430
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP, a digital signal processor (DSP), an application specific integrated circuit (application).
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processor
  • application application specific integrated circuit
  • ASIC Specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the transceiver 430 is further configured to: receive the first information sent by the centralized unit control plane node CU-CP.
  • the processor 410 is specifically configured to: set a bit of the reflection mapping indication field of the first data packet to 1.
  • the processor 410 is specifically configured to: set a bit of the reflection mapping indication field of the first data packet to 0.
  • the first information is the reflection mapping indication information of the first QoS flow to the first DRB.
  • the transceiver 430 is further configured to: receive a second data packet sent by the terminal device on the first DRB, where the second data packet belongs to the QoS flow. a QoS flow; the processor 410 is further configured to: according to the second data packet, set a bit of the reflection mapping indication field of the first data packet to 0.
  • the transceiver 430 is specifically configured to: receive a bearer context setup request sent by the CU-CP, where the bearer context setup request includes the first information.
  • the transceiver 430 is specifically configured to: receive a bearer modification request sent by the CU-CP, where the bearer modification request includes the first information.
  • the transceiver 430 is further configured to: send, to the CU-CP, second information, where the second information is used to indicate a reflection of the first QoS flow to the first DRB The mapping was successful.
  • the processor 410 may be implemented by a processing module
  • the memory 420 may be implemented by a storage module
  • the transceiver 430 may be implemented by a transceiver module.
  • the communication device 500 may include a processing module 510.
  • the communication device 400 shown in FIG. 13 or the communication device 500 shown in FIG. 14 can implement the steps performed by the CU-UP in the foregoing embodiments of FIG. 4, FIG. 6 to FIG. 8 and the method 200, and a similar description can refer to the method. Description, to avoid repetition, we will not repeat them here.
  • FIG. 15 shows a schematic block diagram of a communication device 600 of one embodiment of the present application. It should be understood that the communication device embodiments correspond to the method embodiments, and similar descriptions may refer to method embodiments.
  • the communication device 600 shown in FIG. 14 can be used to perform the steps corresponding to the execution of the CU-CP in the various embodiments of the aforementioned FIG. 4, FIG. 6 to FIG. 8, and the method 200.
  • the communication device 600 includes a processor 610, a memory 620 and a transceiver 630.
  • the processor 610, the memory 620 and the transceiver 630 are connected by communication, the memory 620 stores instructions, and the processor 610 is used to execute the memory 620.
  • the stored instructions are used by the transceiver 630 to perform specific signal transceiving under the driving of the processor 610.
  • the processor 610 is configured to generate first information, where the first information is used to indicate that the centralized unit user plane node CU-UP maps the first data packet to the first data radio bearer DRB and sets the reflection of the first data packet. Mapping the indication field, the quality of service flow QoS flow to which the first data packet belongs is the first QoS flow;
  • the transceiver 630 is configured to send the first information to the CU-UP.
  • the communication device when the CU-CP needs to perform mapping of the first QoS flow to the first DRB, in the CU-DU separated base station architecture, the first information is used by sending the first information to the CU-UP.
  • the CU-UP is instructed to map the data of the first data packet onto the first DRB and set the reflection mapping indication field of the first data packet.
  • the CU-UP sets the reflection mapping indication field of the first data packet received from the core network according to the first information, and then sends the first data packet after the setting of the reflection mapping indication field to the terminal device on the first DRB.
  • the mapping of the first QoS flow to the first DRB in the scenario where the CU-DU is separated is implemented.
  • Both the CU-UP and the terminal device enable mapping of QoS flow to DRB. It ensures that the terminal device and CU-UP can correctly transmit data. Improve communication efficiency and stability. Improve the user experience.
  • the various components in communication device 600 communicate with one another via a communication connection, i.e., processor 610, memory 620, and transceiver 630, communicating control and/or data signals through internal connection paths.
  • a communication connection i.e., processor 610, memory 620, and transceiver 630, communicating control and/or data signals through internal connection paths.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a CPU, a network processor NP or a combination of a CPU and an NP, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the first information is the reflection mapping indication information of the first QoS flow to the first DRB.
  • the transceiver 630 is specifically configured to: send a bearer context setup request to the CU-UP, where the bearer context setup request includes the first information.
  • the transceiver 630 is specifically configured to: send a bearer modification request to the CU-UP, where the bearer modification request includes the first information.
  • the transceiver 630 is further configured to: receive second information sent by the CU-UP, where the second information is used to indicate that the first QoS flow is to the first DRB.
  • the reflection mapping is successful.
  • the processor 610 may be implemented by a processing module
  • the memory 620 may be implemented by a storage module
  • the transceiver 630 may be implemented by a transceiver module.
  • the communication device 700 may include a processing module 710.
  • the communication device 600 shown in FIG. 15 or the communication device 700 shown in FIG. 16 can implement the steps performed by the CU-CP in the foregoing embodiments of FIG. 4, FIG. 6 to FIG. 8 and the method 200, and a similar description can refer to the method. Description, to avoid repetition, we will not repeat them here.
  • FIG. 17 shows a schematic block diagram of a communication device 800 of one embodiment of the present application. It should be understood that the communication device embodiments correspond to the method embodiments, and similar descriptions may refer to method embodiments.
  • the communication device 800 shown in FIG. 17 can be used to perform the steps corresponding to the CU-UP execution in the various embodiments of FIGS. 9-12 and the method 300. For a similar description, reference may be made to the description of the method. To avoid repetition, details are not described herein again.
  • the communication device 800 includes a processor 810, a memory 820, and a transceiver 830.
  • the processor 810, the memory 820, and the transceiver 830 are connected by communication, the memory 820 stores instructions, and the processor 810 is used to execute the memory 820.
  • the stored instructions are used by the transceiver 830 to perform specific signal transceiving under the driving of the processor 810.
  • the transceiver 830 is configured to receive the third information sent by the centralized unit control plane node CU-CP, where the third information is used to instruct the CU-UP to detect the transmission performance of the first data packet, where the first data packet is a first quality of service flow identifier QFI or a first 5G quality of service identifier 5QI indication;
  • the processor 810 is configured to detect, according to the third information, the transmission performance of the first data packet.
  • the communication device provided by the present application sends a third information to the CU-UP when the CU-CP needs to detect the performance of the first QoS flow in a PDU session of the terminal device under the CU-DU separated base station architecture.
  • the third information is used to indicate that the CU-UP detects the transmission performance of the first data packet (the data packet with the first QoS flow), the first data packet is identified by the first quality of service flow (QFI) or the first 5G quality of service. Identifies the 5QI indication.
  • the CU-UP detects the transmission performance of the first data packet according to the third information.
  • the measurement of the transmission parameter with the granularity of 5QI or QFI under the base station architecture separated by CU-DU is realized, thereby ensuring the normal operation of the network system and improving the user experience.
  • the various components in communication device 800 communicate with one another via a communication connection, i.e., processor 810, memory 820, and transceiver 830, through internal connection paths, to communicate control and/or data signals.
  • a communication connection i.e., processor 810, memory 820, and transceiver 830
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a CPU, a network processor NP or a combination of a CPU and an NP, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the transceiver 830 is further configured to: send, to the CU-CP, fourth information, where the fourth information is used to indicate whether the transmission performance of the first data packet meets the transmission performance.
  • the indicator, the first data packet is configured with the transmission performance indicator, and the third information includes the transmission performance indicator.
  • the transceiver 830 is specifically configured to: send notification information to the CU-CP, where the notification information includes the fourth information.
  • the transceiver 830 is specifically configured to: send a bearer modification request to the CU-CP, where the bearer modification request includes the fourth information.
  • the transmission performance indicator of the first data packet includes: a delay budget of the first data packet, a packet loss rate of the first data packet, an uplink guarantee rate bit GBR, At least one of a downlink GBR, an uplink maximum GBR, and a downlink maximum GBR.
  • the third information includes measurement configuration information, where the measurement configuration information includes a transmission performance parameter and/or a measurement time length of the first data packet, and the transceiver 830 is further configured to: And transmitting, to the CU-CP, fifth information, where the fifth information includes a result of detecting a transmission performance of the first data packet.
  • the transmission performance parameter includes: a packet loss rate of the first data packet, a downlink transmission delay of the first data packet, and a scheduling network protocol of the first data packet. At least one of throughput, data amount of the first data packet.
  • the processor 810 may be implemented by a processing module
  • the memory 820 may be implemented by a storage module
  • the transceiver 830 may be implemented by a transceiver module.
  • the communication device 900 may include a processing module 910. The storage module 920 and the transceiver module 930.
  • the communication device 800 shown in FIG. 17 or the communication device 900 shown in FIG. 18 can implement the steps performed by the CU-UP in the foregoing embodiments of FIG. 9 to FIG. 12 and the method 300.
  • the communication device 800 shown in FIG. 17 or the communication device 900 shown in FIG. 18 can implement the steps performed by the CU-UP in the foregoing embodiments of FIG. 9 to FIG. 12 and the method 300.
  • FIG. 19 shows a schematic block diagram of a communication device 1000 of one embodiment of the present application.
  • the communication device 1000 shown in FIG. 19 can be used to perform the steps corresponding to the execution of the CU-CP in the various embodiments of FIGS. 9-12 and the method 300. For a similar description, reference may be made to the description of the method. To avoid repetition, details are not described herein again.
  • the communication device 1000 includes a processor 1010, a memory 1020, and a transceiver 1030.
  • the processor 1010, the memory 1020, and the transceiver 1030 are connected by communication.
  • the memory 1020 stores instructions, and the processor 1010 is configured to execute the memory 1020.
  • the stored instructions, the transceiver 1030 is configured to perform specific signal transceiving under the driving of the processor 1010.
  • the processor 1010 is configured to generate third information, where the third information is used to indicate that the centralized unit user plane node CU-UP detects the transmission performance of the first data packet, where the first data packet is identified by the first quality of service flow.
  • the transceiver 1030 is configured to send the third information to the CU-UP.
  • the communication device provided by the present application sends a third information to the CU-UP when the CU-CP needs to detect the performance of the first QoS flow in a PDU session of the terminal device under the CU-DU separated base station architecture.
  • the third information is used to indicate that the CU-UP detects the transmission performance of the first data packet (the data packet with the first QoS flow), the first data packet is identified by the first quality of service flow (QFI) or the first 5G quality of service. Identifies the 5QI indication.
  • the CU-UP detects the transmission performance of the first data packet according to the third information.
  • the measurement of the transmission parameter with the granularity of 5QI or QFI under the base station architecture separated by CU-DU is realized, thereby ensuring the normal operation of the network system and improving the user experience.
  • the various components in communication device 1000 communicate with each other via a communication connection, i.e., processor 1010, memory 1020, and transceiver 1030, communicating control and/or data signals through internal connection paths.
  • a communication connection i.e., processor 1010, memory 1020, and transceiver 1030, communicating control and/or data signals through internal connection paths.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a CPU, a network processor NP or a combination of a CPU and an NP, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the transceiver 1030 is further configured to: receive fourth information sent by the CU-UP, where the fourth information is used to indicate whether the transmission performance of the first data packet satisfies the transmission.
  • the performance indicator, the first data packet is configured with the transmission performance indicator, and the third information includes the transmission performance indicator.
  • the transceiver 1030 is specifically configured to: receive the notification information sent by the CU-UP, where the notification information includes the fourth information.
  • the transceiver 1030 is specifically configured to: receive a bearer modification request sent by the CU-UP, where the bearer modification request includes the fourth information.
  • the transmission performance indicator of the first data packet includes: a delay budget of the first data packet, a packet loss rate of the first data packet, an uplink guarantee rate bit GBR, At least one of a downlink GBR, an uplink maximum GBR, and a downlink maximum GBR.
  • the third information includes measurement configuration information, where the measurement configuration information includes a transmission performance parameter and/or a measurement time length of the first data packet, and the transceiver 1030 is further configured to: And receiving the fifth information sent by the CU-UP, where the fifth information includes a result of the transmission performance detection of the first data packet.
  • the transmission performance parameter includes: a packet loss rate of the first data packet, a downlink transmission delay of the first data packet, and a scheduling network protocol of the first data packet. At least one of throughput, data amount of the first data packet.
  • the processor 1010 may be implemented by a processing module
  • the memory 1020 may be implemented by a storage module
  • the transceiver 1030 may be implemented by a transceiver module.
  • the communication device 1100 may include a processing module 1110.
  • the communication device 1000 shown in FIG. 19 or the communication device 1100 shown in FIG. 20 can implement the steps performed by the CU-CP in the foregoing embodiments of FIG. 9 to FIG. 12 and the method 300.
  • the description of the method Avoid repetition, no more details here.
  • the embodiment of the present application further provides a computer readable medium for storing computer program code, the computer program comprising instructions for executing the communication method of various embodiments of the present application.
  • the readable medium may be a read-only memory (ROM) or a random access memory (RAM), which is not limited in this embodiment of the present application.
  • the embodiment of the present application further provides a communication system, which includes the communication device provided by the embodiment of the present application, and the communication system can complete any communication method provided by the embodiment of the present application.
  • the mapping of the first QoS flow to the first DRB and the measurement of the L2 parameters can be implemented in a base station architecture in which the CU-DU is separated. Therefore, the data of the user can be smoothly and normally transmitted, the stability of the network is improved, the quality of the network operation is improved, and the user experience is improved.
  • the communication system may also include other communication devices, such as terminal devices, access network devices, and DUs. This embodiment of the present application does not limit this.
  • the embodiment of the present application further provides a system chip, which includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin or a circuit.
  • the processing unit can execute computer instructions to cause a chip within the terminal to perform the communication method of any of the embodiments of the present application.
  • the computer instructions are stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the terminal, such as a ROM or other device that can store static information and instructions.
  • ROM read-only memory
  • the processor mentioned in any of the above may be a CPU, a microprocessor, an ASIC, or an integrated circuit executed by one or more programs for controlling the above power control method.
  • the present application also provides a computer program product comprising instructions, when the instructions are executed, such that CU-CP, CU-UP and DU perform CU-CP, CU corresponding to the above method -UP and DU operations.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

本申请提供了一种通信方法和装置,该方法包括:集中式单元用户面节点CU-UP获取第一信息,该第一信息用于指示CU-UP将第一数据包映射到第一数据无线承载DRB上以及设置该第一数据包的反射映射指示字段,该第一数据包所属的服务质量流QoS流为第一QoS流;该CU-UP接收核心网设备发送的该第一数据包;CU-UP设置该第一数据包的反射映射指示字段;CU-UP在第一DRB上向终端设备发送设置该映射字段后的该第一数据包,本申请提供的通信方法,可以使得在CU-DU分离的基站架构中,实现第一QoS流到第一DRB的映射。从而保障用户的数据可以顺利正常的传输,提升网络的稳定性,提高网络运行的质量,提高用户体验。

Description

通信方法和装置
本申请要求于2018年4月4日提交中国专利局、申请号为201810299596.8、申请名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域。更为具体的,涉及一种通信方法和装置。
背景技术
随着下一代通信系统研究的全面展开并逐渐深入,业界对第五代移动通信技术(5-Generation,5G)研究的具体内容达成了基本共识。5G将支持各种类型的网络部署和应用类型,其中包括更高速率体验和更大带宽的接入能力,更低时延和高可靠的信息交互,更大规模,低成本的机器型通信设备的接入和管理等。为满足上述需求,5G定义了基于服务质量流(Quality of Service flow,QoS流)的网络架构,并基于数据无线承载(Data Radio Bearer,DRB)定义了空口上的数据包传输机制,对于终端设备的一个分组数据单元(Packet Data Unit,PDU)会话,一个QoS流的数据包会承载在一个DRB上传输,在一个DRB上承载的一个或者多个QoS流的数据包有相同的传输特征,例如,相同的调度策略,排队管理策略,速率匹配策略等,即QoS流到DRB之间存在映射关系。该映射关系可以为:一个DRB对应一个或者多个QoS流。并且,一个QoS流的上行数据包和下行数据包可以承载在同一个DRB上,也可以分别承载在不同的DRB上。根据该映射关系,将不同的QoS流映射到对应的DRB上进行传输。并且,为了支持空口资源操作,无线资源管理,网络操作、维护和最小化路测(minimization of drive tests,MDT)和自组织网络(Self-Organized Networks,SON)需求等,接入网设备往往进行层2(Layer 2,L2)参数的测量。例如,进行分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路控制层(Radio Link Control,RLC)、媒体接入控制层(Medium Access Control,MAC)等相关参数测量。
新无线(New Radio,NR)技术中,接入网设备(例如,基站)可以由集中式单元(Centralized Unit,CU)和分布式单元(Distributed Unit,DU)构成,即对接入网中的基站的功能进行拆分,将基站的部分功能部署在一个CU,将剩余功能部署在一个或多个DU,该一个CU控制该一个或多个DU,可以节省成本,以及易于网络扩展。进一步的,在CU部分,将CU分为集中式单元控制面(Central Unit-Control Plane,CU-CP)节点和集中式单元用户面(Central Unit–user Plane,CU-UP)节点,其中CU-UP和CU-CP可以是在不同的物理设备上,CU-CP和CU-UP之间会存在一个开放的接口。新的接入网设备架构下,如何有效实现QoS流的管理,即如何实现QoS流到DRB的映射以及如何支持进行L2参数的测量,成为目前急需解决的问题。
发明内容
本申请提供了一种通信方法和装置,可以使得在CU-DU分离的基站架构中,实现QoS流到DRB的映射以及支持进行L2参数的测量。从而保障用户的数据可以顺利正常的传输,提升网络的稳定性,提高网络运行的质量,提高用户体验。
第一方面,提供了一种通信方法,包括:集中式单元用户面节点CU-UP获取第一信息,该第一信息用于指示该CU-UP将第一数据包映射到第一数据无线承载DRB上以及设置该第一数据包的反射映射指示字段,该第一数据包所属的服务质量流QoS流为第一QoS流;该CU-UP接收核心网设备发送的该第一数据包;该CU-UP设置该第一数据包的反射映射指示字段;该CU-UP在第一DRB上向终端设备发送设置该映射字段后的该第一数据包。
第一方面提供的通信方法,在CU-DU分离的基站结构下,CU-UP确定需要执行第一QoS流到第一DRB的反射映射时。CU-UP会获取第一信息,该第一信息用于指示CU-UP将第一数据包映射到第一DRB上以及设置该第一数据包的反射映射指示字段。在CU-UP接收从核心网发送的该第一数据包后,会将第一数据包的反射映射指示字段进行设置,并在该第一DRB上向终端设备发送经设置反射映射指示字段后的第一数据包。实现了在CU-DU分离的场景下的第一QoS流到第一DRB的映射。使得CU-UP和终端设备都实现了第一QoS流到第一DRB的映射。保证了终端设备和CU-UP可以正确的进行数据的传输。提高通信的效率和稳定性。提高用户体验。
在第一方面的一种可能的实现方式中,该CU-UP获取第一信息,包括:该CU-UP接收集中式单元控制面节点CU-CP发送的该第一信息。
在第一方面的一种可能的实现方式中,该CU-UP设置该第一数据包的反射映射指示字段,包括:该CU-UP将该第一数据包的反射映射指示字段的比特位设置为1。
在第一方面的一种可能的实现方式中,该CU-UP设置该第一数据包的反射映射指示字段,包括:该CU-UP将该第一数据包的反射映射指示字段的比特位设置为0。
在第一方面的一种可能的实现方式中,该第一信息为该第一QoS流到该第一DRB的反射映射指示信息。
在第一方面的一种可能的实现方式中,该方法还包括:该CU-UP接收该终端设备在该第一DRB上发送的第二数据包,该第二数据包所属的QoS流为该第一QoS流;该CU-UP根据该第二数据包,将该第一数据包的反射映射指示字段的比特位设置为0。
在第一方面的一种可能的实现方式中,该CU-UP接收CU-CP发送的第一信息,包括:该CU-UP接收该CU-CP发送的承载上下文建立请求,该承载上下文建立请求包括该第一信息。
在第一方面的一种可能的实现方式中,该CU-UP接收CU-CP发送的第一信息,包括:该CU-UP接收该CU-CP发送的承载修改请求,该承载修改请求包括该第一信息。
在第一方面的一种可能的实现方式中,该方法还包括:该CU-UP向该CU-CP发送第二信息,该第二信息用于指示该第一QoS流到该第一DRB的反射映射成功。
第二方面,提供了一种通信方法,包括:集中式单元控制面节点CU-CP生成第一信息,该第一信息用于指示集中式单元用户面节点CU-UP将第一数据包映射到第一数据无线承载DRB上以及设置该第一数据包的反射映射指示字段,该第一数据包所属的服务质量流QoS流为第一QoS流;该CU-CP向该CU-UP发送该第一信息。
第二方面提供的通信方法,在CU-DU分离的基站架构下,CU-CP需要执行第一QoS流到第一DRB的映射时,通过向CU-UP发送第一信息,该第一信息用于指示CU-UP将第一数据包的数据映 射到第一DRB上以及设置该第一数据包的反射映射指示字段。CU-UP根据该第一信息,将从核心网接收的第一数据包的反射映射指示字段设置后,在该第一DRB上向终端设备发送经设置反射映射指示字段后的第一数据包。实现了在CU-DU分离的场景下的第一QoS流到第一DRB的映射。使得CU-UP和终端设备都实现了QoS流到DRB的映射。保证了终端设备和CU-UP可以正确的进行数据的传输。提高通信的效率和稳定性。提高用户体验。
在第二方面的一种可能的实现方式中,该第一信息为该第一QoS流到该第一DRB的反射映射指示信息。
在第二方面的一种可能的实现方式中,该CU-CP向该CU-UP发送该第一信息,包括:该CU-CP向该CU-UP发送承载上下文建立请求,该承载上下文建立请求包括该第一信息。
在第二方面的一种可能的实现方式中,该CU-CP向该CU-UP发送该第一信息,包括:该CU-CP向该CU-UP发送承载修改请求,该承载修改请求包括该第一信息。
在第二方面的一种可能的实现方式中,该方法还包括:该CU-CP接收该CU-UP发送的第二信息,该第二信息用于指示该第一QoS流到该第一DRB的反射映射成功。
第三方面,提供了一种通信方法,包括:集中式单元用户面节点CU-UP接收集中式单元控制面节点CU-CP发送的第三信息该第三信息用于指示该CU-UP对第一数据包的传输性能进行检测,该第一数据包由第一服务质量流标识QFI或第一5G服务质量标识5QI指示;该CU-UP根据该第三信息,对该第一数据包的传输性能进行检测。
第三方面提供的通信方法,在CU-DU分离的基站架构下,当CU-CP需要对终端设备的一个PDU会话中的第一QoS流的性能进行检测时,会向CU-UP发送第三信息,第三信息用于指示CU-UP对第一数据包的传输性能进行检测,该第一数据包由第一服务质量流标识QFI或第一5G服务质量标识5QI指示;CU-UP根据该第三信息,对该第一数据包的传输性能进行检测。实现了在CU-DU分离的基站架构下以5QI或者QFI为粒度的传输参数的测量,从而可以保证网络系统的正常运行,提高用户体验。
在第三方面的一种可能的实现方式中,该方法还包括:该CU-UP向该CU-CP发送第四信息,该第四信息用于指示该第一数据包的传输性能是否满足传输性能指标,该第一数据包配置有该传输性能指标,该第三信息包括该传输性能指标。
在第三方面的一种可能的实现方式中,该CU-UP向该CU-CP发送第四信息,包括:该CU-UP向该CU-CP发送通知信息,该通知信息包括该第四信息。
在第三方面的一种可能的实现方式中,该CU-UP向该CU-CP发送第四信息,包括:该CU-UP向该CU-CP发送承载修改请求,该承载修改请求包括该第四信息。
在第三方面的一种可能的实现方式中,该第一数据包的传输性能指标包括:该第一数据包的延迟预算、该第一数据包的丢包率、上行保障速率比特GBR、下行GBR、上行最大GBR、下行最大GBR中的至少一个。
在第三方面的一种可能的实现方式中,该第三信息包括测量配置信息,该测量配置信息包括该第一数据包的传输性能参数和/或测量时间长度,该方法还包括:该CU-UP向该CU-CP发送第五信息,该第五信息包括对该第一数据包的传输性能检测的结果。
在第三方面的一种可能的实现方式中,该传输性能参数包括:该第一数据包的丢包率、该第一数据包的下行传输时延、该第一数据包的调度网络协议吞吐量、该第一数据包的数据量中的至少一个。
第四方面,提供了一种通信方法,包括:集中式单元控制面节点CU-CP生成第三信息,该第三信息用于指示集中式单元用户面节点CU-UP对第一数据包的传输性能进行检测,该第一数据包由第一服务质量流标识QFI或第一5G服务质量标识5QI指示;该CU-CP向该CU-UP发送该第三信息。
第四方面提供的通信方法,在CU-DU分离的基站架构下,当CU-CP需要对终端设备的一个PDU会话中的第一QoS流的性能进行检测时,会向CU-UP发送第三信息,第三信息用于指示CU-UP对第一数据包的传输性能进行检测,该第一数据包由第一服务质量流标识QFI或第一5G服务质量标识5QI指示。实现了在CU-DU分离的基站架构下以5QI或者QFI为粒度的传输参数的测量,从而可以保证网络系统的正常运行,提高用户体验。
在第四方面的一种可能的实现方式中,该方法还包括:该CU-CP接收该CU-UP发送的第四信息,该第四信息用于指示该第一数据包的传输性能是否满足传输性能指标,该第一数据包配置有该传输性能指标,该第三信息包括该传输性能指标。
在第四方面的一种可能的实现方式中,该CU-CP接收该CU-UP发送的第四信息,包括:该CU-CP接收该CU-UP发送的通知信息,该通知信息包括该第四信息。
在第四方面的一种可能的实现方式中,该CU-CP接收该CU-UP发送的第四信息,包括:该CU-CP接收该CU-UP发送的承载修改请求,该承载修改请求包括该第四信息。
在第四方面的一种可能的实现方式中,该第一数据包的传输性能指标包括:该第一数据包的延迟预算、该第一数据包的丢包率、上行保障速率比特GBR、下行GBR、上行最大GBR、下行最大GBR中的至少一个。
在第四方面的一种可能的实现方式中,该第三信息包括测量配置信息,该测量配置信息包括该第一数据包的传输性能参数和/或测量时间长度,该方法还包括:该CU-CP接收该CU-UP发送的第五信息,该第五信息包括该第一数据包的传输性能检测的结果。
在第四方面的一种可能的实现方式中,该传输性能参数包括:该第一数据包的丢包率、该第一数据包的下行传输时延、该第一数据包的调度网络协议吞吐量、该第一数据包的数据量中的至少一个。
第五方面,提供了一种通信装置,包括处理器、存储器和收发器,用于支持该通信装置执行上述方法中相应的功能。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的信号收发,该处理器用于调用该指令实现上述第一方面和第三方面、或第一方面和第三方面中各种实现方式中的通信方法。
第六方面,提供了一种通信装置,包括处理模块、存储模块和收发模块,用于支持终端设备执行上述第一方面和第三方面、或第一方面和第三方面的任意可能的实现方式中的终端设备的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第七方面,提供了一种通信装置,包括处理器、存储器和收发器,用于支持该通信装置执行上述方法中相应的功能。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的信号收发,该处理器用于调用该指令实现上述第二方面和第四方面、或第二方面和第四方面中各种实现方式中的通信方法。
第八方面,提供了一种通信装置,包括处理模块、存储模块和收发模块,用于支持终端设备执行上述第二方面和第四方面、或第二方面和第四方面的任意可能的实现方式中的终端设备的功 能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第九方面,提供了一种通信系统,该通信系统包括上述第五方面或第六方面提供的通信装置及上述第七方面或第八方面提供的通信装置。该通信系统可以完成上述第一方面至第四方面、或第一方面至第四方面中的任意可能的实现方式中提供的通信方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第一方面至第四方面、或第一方面至第四方面的任一种可能的实现方式的方法的指令。
第十一方面,提供了一种系统芯片,包括:处理单元和通信单元,该处理单元,该处理单元可执行计算机指令,以使该终端内的芯片执行上述第一方面至第四方面,或第一方面至第四方面中的任一种可能的实现方式的方法。
第十二方面,提供一种计算机程序产品,该产品包括用于执行上述第一方面至第四方面、或第一方面至第四方面的任一种可能的实现方式的方法的指令。
附图说明
图1是现有的基于QoS流的网络架构的示意图。
图2是CU-CP和CU-UP分离的基站架构的示意图。
图3是适用于本申请提供的通信方法的一个典型的通信系统架构的示意图。
图4是本申请一个实施例的通信方法的示意性流程图。
图5是第一数据包的格式的示意图。
图6是本申请另一个实施例的通信方法的示意性流程图。
图7是本申请另一个实施例的通信方法的示意性流程图。
图8是本申请另一个实施例的通信方法的示意性流程图。
图9是本申请一个实施例的通信方法的示意性流程图。
图10是本申请另一个实施例的通信方法的示意性流程图。
图11是本申请又一个实施例的通信方法的示意性流程图。
图12是本申请又一个实施例的通信方法的示意性流程图。
图13是本申请一个实施例的通信装置的示意性框图。
图14是本申请另一个实施例的通信装置的示意性框图。
图15是本申请一个实施例的通信装置的示意性框图。
图16是本申请另一个实施例的通信装置的示意性框图。
图17是本申请一个实施例的通信装置的示意性框图。
图18是本申请另一个实施例的通信装置的示意性框图。
图19是本申请一个实施例的通信装置的示意性框图。
图20是本申请另一个实施例的通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
随着下一代通信系统研究的全面展开并逐渐深入,业界对5G研究的具体内容达成了基本共识。5G将支持各种类型的网络部署和应用类型,其中包括更高速率体验和更大带宽的接入能力, 更低时延和高可靠的信息交互,更大规模,低成本的机器型通信设备的接入和管理。为满足上述需求,5G定义了基于QoS流的网络架构,QoS流是在一个PDU会话中对数据包实现QoS区分的最小粒度。QoS流可以包括保障流比特速率(Guaranteed流Bit Rate,GBR)的QoS流和不保障流比特速率(Non-GBR)的QoS流。保障流比特速率的QoS流可以理解为该QoS流的数据包的传输需要满足一定的比特速率,对于不保障流比特速率的QoS流,网络根据网络资源的使用情况为该QoS流提供不保障流比特速率的传输。
对于一个终端设备的PDU会话而言,一个PDU会话包括一个或多个QoS流。一个QoS流标识(QoS flow identity,QFI)用于在一个PDU会话内唯一指示一个QoS流。映射到一个QoS流的所有数据包,将具有相同的QoS处理特征,例如相同的调度策略,排队管理策略,速率匹配策略等。5G QoS标识(5G QoS Identifer,5QI)作为一个标量值,用于表征一个QoS流的数据包的具体的QoS性能特征(即QoS流参数),如丢包率,包延迟等。对于非保障比特速率的QoS流,当使用标准5QI时,QFI可等同于5QI。在其他情况下,包括保障比特速率和非保障比特速率QoS流,5QI和QFI值可不同。
在一个PDU会话内相同QFI或者5QI的业务(数据包)将会受到相同的调度测量配置、接纳控制等。在下一代网络(next generation,NG)接口3(简称为N3)上(核心网设备与接入网设备之间的接口),QFI将在数据包的封装头上携带。
5G基于DRB定义了空口上的分组处理机制。由一个DRB服务的数据包在空口上具有相同的分组处理机制。接入网设备为终端设备的每个PDU会话建立一个或者多个DRB承载以传输一个PDU会话中具有不同处理需求的QoS流的数据包,并将该PDU中属于不同的QoS流的数据包映射到不同的DRB进行传输,即对于QoS流到DRB之间存在一个映射关系。该映射关系为:对于终端设备的一个PDU会话,该PDU会话对应一个或者多个DRB承载,每一个DRB可以对应该PDU会话中一个或者多个QoS流。举例来说明:假设对于一个PDU会话,接入网设备为该PDU会话建立3个DRB,每个DRB上承载的QoS流的数据包具有相同的QoS处理特征,相同的调度策略,排队管理策略,速率匹配策略等。3个DRB分别为第一DRB、第二DRB、第二DRB,对于该PDU会话,包括4个QoS流,4个QoS流的分别为第一QoS流、第二QoS流、第三QoS流、第四QoS流。其中,第一QoS流和第二QoS流具有相同(或者相近)的QoS性能特征,例如,延时要求和丢包率要求相同或者相近。第一QoS流和第二QoS流的数据包可以在第一DRB上承载,即第一QoS流和第二QoS流可以映射到第一DRB上。第三QoS流的数据包可以在第二DRB上承载,即第三QoS流可以映射到第二DRB上。第四QoS流的数据包可以在第三DRB上承载,即第四QoS流的数据包可以映射到第三DRB上。
图1是现有的基于QoS流的网络架构的示意图,在图1中,用户设备(user equipment,UE)、接入网设备以及核心网设备(例如,用户面功能网关)之间建立PDU会话。如图1所示,接入网设备可以是基站(nodeB,NB),演进型基站(Evolutional NodeB,eNB或eNodeB),或者还是下一代无线接入基站(NR NodeB,gNB)等,或者还可以是其他的接入网(access network,AN)/无线接入网(radio access network,RAN)设备。核心网设备为用户面功能网关。UE和接入网设备之间的数据包承载为无线承载,例如,可以是DRB承载,UE和接入网设备之间的接口为空口(例如,Uu)接口,数据或者信令可以通过空口接口在UE和接入网设备之间进行传输。接入网设备和核心网之间的数据包的承载为NG–U隧道承载,接口为NG(例如,N3)接口。接入网设备和核心网之间数据或者信令可以通过NG接口进行传输。该PDU会话中的数据包包括3种不同的QoS 流的数据包,分别为第一QoS流、第二QoS流和第三QoS流。其中,第一QoS流和第二QoS流数据包在第一DRB上承载,第三QoS流的数据包在第二DRB上承载。应理解,假设第一QoS流的下行数据包映射到第一DRB上,第一QoS流的上行数据包可以映射到第二DRB上,或者,第一QoS流的上行数据包也可以映射到第一DRB上。即一个QoS流的上行数据包和下行数据包可以映射到同一个DRB上,也可以分别映射到不同的DRB上。对于下行(downlink,DL)数据包,即基站向UE发送的数据包,基站基于NG-U(例如,N3)接口上QFI和对应的QoS流参数,将不同的QoS流的下行数据包映射到不同的DRB上。QFI和对应的QoS流参数是由核心网设备通知给基站的。核心网设备向基站发送的QoS流信息包括该QoS流的QFI和对应的QoS流的参数等。例如,QoS流参数可以包括延时要求、丢包率要求、平均窗口大小、最大数据突发量等。对于上行(uplink,UL),即UE向基站发送的数据包,UE根据基站配置的QoS流到DRB的映射或者反射映射,将属于一个或多个QoS流的上行数据包映射到一个或多个DRB上。
对于UL,基站将通过如下两种方式控制QoS流到DRB的映射:
第一种:通过无线资源控制(Radio Resource Control,RRC)信令,明确告知UE QoS流到DRB的映射,UE根据该QoS流到DRB的映射关系,将上行数据包根据该映射关系映射到对应的DRB进行上行传输,即为非反射映射的方式。对于非反射映射的方式,某一个QoS流的上行数据包和下行数据包可以分别映射到不同的DRB上,也可以映射到同一个DRB上。
第二种,通过反射映射的方式。反射映射的方式为:UE监视携带QFI的下行数据包在哪个DRB上,则在UL,UE将相同QFI的上行数据包,也映射到该DRB上传输。例如,UE监视携带第一QFI的下行数据包(QoS流为第一QoS流的数据包)在第一DRB上传输,则在UL,UE将第一QoS流的上行数据包也在第一DRB上传输。对于反射映射的方式,某一个QoS流的上行数据包和下行数据包映射到相同的DRB上。
在PDU会话初始建立过程中,需要建立QoS流到DRB的映射,或者,在QoS流参数发生变化需要更改QoS流到DRB的映射关系时,基站可以通过上述的两种方式通知UE执行QoS流到新的DRB的映射。
除了上述的QoS流到DRB的映射之外。为了支持空口资源操作,无线资源管理,网络操作和维护、MDT和SON需求,接入网设备往往进行L2参数的测量。例如,进行业务数据适配协议(Service Data Adaptation Protocol,SDAP)层、PDCP、RLC层、MAC层、物理层(Physical Layer,PHY)层等相关参数测量。根据测量得到的相关参数和数据,去配置或者控制空口资源操作,无线资源管理等,从而保证网络系统的正常运行。
NR中,接入网设备(以基站为例进行说明)可以由CU和DU构成,即对基站的功能进行拆分,将基站的部分功能部署在一个CU,将剩余功能部署在多个DU,多个DU共用一个CU,可以节省成本,以及易于网络扩展。
CU具有RRC或者部分RRC控制功能,包含现有基站的所有的协议层功能或者部分协议层功能;比如只包含RRC功能或者部分RRC功能,或者包含RRC/SDAP层功能,或者包含RRC/SDAP/PDCP功能,或者包含RRC/SDAP/PDCP以及部分RLC功能,或者包含RRC/SDAP/PDCP/RLC/MAC功能,甚至部分PHY功能,也不排除其它任何可能性。
DU具有现有基站的全部或者部分协议层功能,即RRC/SDAP/PDCP/RLC/MAC/PHY的部分协议层功能单元,比如包含部分RRC功能和SDAP/PDCP/RLC/MAC/PHY功能,或者包含部分或全部SDAP/PDCP/RLC/MAC/PHY功能,或者包含部分或全部PDCP/RLC/MAC/PHY功能,或者包含部分或全 部RLC/MAC/PHY功能,或者包含部分或全部MAC/PHY功能,或者只包含部分或全部PHY功能;需要注意的是这里提及的各个协议层的功能可能发生变化,均在本申请保护的范围内。
进一步的,在CU部分,将CU分为CU-CP和CU-UP。CU-UP和CU-CP可以是在不同的物理设备上,CU-CP和CU-UP之间会存在一个开放的接口。如图2所示,图2是CU-CP和CU-UP分离的基站架构。CU-CP部分包括RRC功能以及PDCP的控制面部分(例如,用于处理信令无线承载的数据)。CU-UP部分包括CU的数据面部分,主要包括SDAP协议栈以及PDCP协议栈的数据面部分(例如,用户设备的无线承载的数据等)。
如图2所示,CU-CP和CU-UP之间会存在一个开放的E1接口,用于CU-CP和CU-UP之间信令的传输等。CU-CP和CU-UP与DU都会有各自的接口,例如CU-CP与DU之间的接口为F1-C接口,CU-UP与DU之间的接口为F1-U接口。针对如图2所示的架构,还具有如下的特性:
一个基站会包含一个CU-CP、多个CU-UP、多个DU;
一个DU只可以连接一个CU-CP;
一个CU-UP只可以连接一个CU-CP;
一个DU在同一个CU-CP的控制下可以连接到多个CU-UP;
一个CU-UP在同一个CU-CP的控制下可以连接到多个DU。
应理解,图2只是示例性的,不应该对基站的架构产生任何限定。例如,在CU-DU分离的基站架构下,基站可以只包括一个CU-UP、一个CU-CP、一个DU,或者,还可以包括更多的CU-UP和DU。本申请在此不作限制。
在CU-DU分离的基站架构中,如何有效实现QoS流的管理,即如何实现QoS流到DRB的映射以及如何支持进行L2参数的测量,成为目前急需解决的问题。
基于上述问题,本申请实施例提供了一种通信方法,可以使得在CU-DU分离的基站架构中,实现QoS流到DRB的映射以及支持进行L2参数的测量。从而保障用户的数据可以顺利正常的传输,提升网络的稳定性,提高网络运行的质量,提高用户体验。
图3是适用于本申请提供的通信方法的一个典型的通信系统架构的示意图,如图3所示,该系统包括:终端设备110、接入网设备120、核心网设备130以及数据网络140(data network,DN)。终端设备110可以用于通过无线空口连接到接入网设备120,继而通过核心网设备130连接到数据网络140。接入网设备120主要用于实现无线物理层功能、资源调度和无线资源管理、无线接入控制等功能。接入网设备120为CU-DU分离的架构,即接入网设备分为CU-CP、CU-UP、以及DU。其具体的结构以及功能可以如图2所示,并可以参照对图2的描述,这里不在赘述。核心网设备130可以包含管理设备和网关设备,管理设备主要用于终端设备的设备注册、安全认证、移动性管理和位置管理等,网关设备主要用于与终端设备间建立通道,在该通道上转发终端设备和外部数据网络之间的数据包。数据网络140可对应于多种不同的业务域,主要用于为终端设备提供多种数据业务服务,其中可以包含例如服务器(包括提供组播业务的服务器)、路由器、网关等网络设备。通过上述的网络架构,用户可以实现数据的传输和业务的应用等。
应理解,图3所示的仅为示例性架构图,除图3中所示功能单元之外,该网络架构还可以包括其他功能单元或功能实体,本申请施例对此不进行限定。
还应理解,上述终端设备可以为用户设备(user equipment,UE),如:手机、电脑,还可以为蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、智能电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、 电脑、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡、电视机顶盒(set top box,STB)、用户驻地设备(customer premise equipment,CPE)和/或用于在无线系统上进行通信的其它设备。本申请实施例在此不作限制。
还应理解,上述接入网设备可以为基站(nodeB,NB)、演进型基站(evolution nodeB,eNB)、接入网(access network,AN)/无线接入网(radio access network,RAN)设备,由多个5G-AN/5G-RAN节点组成的网络,该5G-AN/5G-RAN节点可以为:接入节点(access point,AP)、下一代基站(NR nodeB,gNB)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)或某种其它接入节点。本申请实施例在此不作限制。
还应理解,上述核心网设备可以包括:接入和移动性管理功能(access & mobility function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)、用户面功能(user plane funtion,UPF)等功能单元,这些功能单元可以独立工作,也可以组合在一起实现某些控制功能。或者,上述的核心网设备还可以是移动管理实体(mobility management entity,MME)、策略与计费规则功能(policy and charging rules function,PCRF)等管理设备,以及服务网关(serving gateway,SGW)、分组数据网络网关(packet data network gateway,PGW)、本地网关(local gateway,LGW)等网关设备。本申请实施例在此不作限制。
下面结合图4详细说明本申请提供通信方法,图4是本申请一个实施例的通信方法200的示意性流程图,该方法200可以应用在图3所示的场景中,当然也可以应用在其他通信场景中,本申请实施例在此不作限制。
如图4所示,该方法200包括:
S210,集中式单元用户面节点CU-UP获取第一信息,该第一信息用于指示该CU-UP将第一数据包映射到第一数据无线承载DRB上以及设置该第一数据包的反射映射指示字段,该第一数据包所属的服务质量流QoS流为第一QoS流。
S220,该CU-CP接收核心网设备发送的该第一数据包。
S230,该CU-UP设置该第一数据包的反射映射指示字段。
S240,该CU-UP在该第一DRB上向终端设备发送设置反射映射指示字段后的该第一数据包。具体地,该CU-UP通过与该CU-UP所连接的一个或多个DU将该第一数据包发送给终端设备。
本申请提供的通信方法,在CU-DU分离的基站架构下,在PDU会话初始建立过程中,需要建立第一QoS流到第一DRB的映射关系,或者,当第一QoS流的参数发生变化或者负载情况发生变化的情况下,需要将第一QoS流的第一数据包映射到新的DRB(第一DRB)上进行传输时,CU-UP会获取该第一信息,并确定是否需要执行第一QoS流到第一DRB的反射映射。该第一数据包所属的服务质量流QoS流为第一QoS流。可选的,该第一信息可以是CU-UP预先存储的。该第一信息用于指示CU-UP将第一数据包映射到第一DRB上以及设置该第一数据包的反射映射指示字段。CU-UP根据该第一信息,确定是否需要执行第一QoS流到第一DRB的反射映射。在CU-UP接收从核心网发送的该第一数据包后,会将第一数据包的反射映射指示字段进行设置,并在该第一DRB上向终端设备发送经设置反射映射指示字段后的第一数据包。该第一数据包为CU-UP发送给终端设备的下行数据包。设置第一数据包的反射映射指示字段的目的是用于向终端设备指示是否需要执行第一QoS流的上行数据包到第一DRB的反射映射,即终端设备是否被指示在第一DRB通过DU向CU-UP发送第一QoS流的上行数据包。本申请实施例实现了在CU-DU分离的场景下的第一QoS 流到第一DRB的映射,使得CU-UP和终端设备都实现了第一QoS流到相应的DRB的映射。保证了终端设备和CU-UP可以正确的进行数据的传输。提高通信的效率和稳定性。提高用户体验。
具体而言,在S210中,当CU-UP需要执行第一QoS流到第一DRB的映射时,例如,在PDU会话初始建立过程中,需要建立第一QoS流到第一DRB的映射关系,或者,在该第一QoS流的参数或者负载发生变化的情况下,承载该第一QoS流的原有DRB也需要改变到第一DRB。举例来说明,在该第一QoS流的参数或者负载发生变化前,第一QoS流的原有DRB为第二DRB,即第一QoS流的上行和下行数据包都在第二DRB上传输。在该第一QoS流的参数或者负载发生变化后,第二DRB可能不能满足第一QoS流的需求,需要改变该第一QoS流对应的DRB,即需要将第一QoS流映射到第一DRB(新的DRB)上,并可执行第一QoS流到第一DRB的反射映射。因此,CU-CP会获取第一信息,该第一信息用于指示CU-UP将第一数据包映射到第一DRB以及设置该第一数据包的反射映射指示字段。该第一数据包为CU-UP发送给终端设备的下行数据包。设置第一数据包的反射映射指示字段的目的是用于向终端设备指示是否需要执行第一QoS流的上行数据包到第一DRB的反射映射,即终端设备是否被指示在第一DRB向CU-UP发送第一QoS流的上行数据包。该第一信息还可以包括第一QoS流和第一DRB的相关信息。例如,第一QoS流的QoS流参数等。该第一数据包所属的服务质量流QoS流为第一QoS流。该第一数据包可以是该终端设备的PDU会话中第一QoS流的所有数据包,第一QoS流的标识为第一QFI或者第一5QI。该第一信息可以包括该第一QoS流的信息以及该第一DRB的信息,例如,包括第一QoS流的标识以及第一DRB的标识,或者还可以包括该终端设备的PDU会话的信息等。该第一信息可以包括该第一DRB的下行SDAP头格式指示、上行SDAP头格式指示。该下行SDAP头格式指示用于指示映射该第一DRB的QoS流是否具有下行SDAP头。该上行SDAP头格式指示用于指示映射该第一DRB的QoS流是否具有上行SDAP头。该第一信息可以包括该第一DRB是否为默认DRB指示。本申请实施例在此不作限制。
在S220和S230中,CU-UP获取该第一信息后,确定是否需要对该第一QoS流执行第一QoS流到第一DRB的反射映射时,会将从核心网设备接收的下行第一数据包进行配置,即设置该第一数据包的反射映射指示字段,设置该第一数据包的反射映射指示字段的目的是为了通知终端设备是否需要执行第一QoS流的上行数据包到第一DRB的反射映射。即利用反射映射的方式通知终端设备是否被指示在第一DRB向CU-UP发送第一QoS流的上行数据包。
在S240中,该CU-UP在该第一DRB上向终端设备发送经设置映射字段后的该第一数据包。具体的,该CU-UP可以先将经设置映射字段后的该第一数据包发送给DU,由DU在第一DRB上发送给终端设备。第一数据包的反射映射指示字段用于向终端设备指示是否需要执行第一QoS流的上行数据包到第一DRB的反射映射。终端设备在接收到该第一数据包后,先对第一数据包的反射映射指示字段进行检测。根据第一数据包的反射映射指示字段不同情况,确定是否需要执行第一QoS流的上行数据包到第一DRB的反射映射。例如,终端设备和接入网设备可以预先协商,当终端设备检测到第一数据包的反射映射指示字段的比特位为1的时候,指示终端设备需要执行上行的数据包到第一DRB的反射映射,即在终端设备接收到在第一DRB上承载的该第一数据包后,便会在第一DRB上通过DU向CU-UP发送第一QoS流的上行数据包,从而完成反射映射。或者,当终端设备检测到第一数据包的反射映射指示字段的比特位为0的时候,指示终端设备不执行第一QoS流到第一DRB的映射。在这种情况下,终端设备在原有的承载第一QoS流的DRB上继续发送第一QoS流的上行数据包。原有的承载第一QoS流的上行数据包的DRB可以是第一DRB,也可以是另外一个DRB。
应理解,当需要执行第一QoS流到第一DRB的反射映射时,除了利用上述的反射映射的指示方式,还可以直接将第一QoS流和第一DRB的信息通知给终端设备,即为直接映射(非反射映射)的方式。例如,CU-CP将第一QoS流到第一DRB的映射关系发送给DU,然后由DU通过RRC信令通知给终端设备。终端设备根据该RRC信令,去执行第一QoS流到第一DRB的映射。即在第一DRB上通过DU向CU-UP发送第一QoS流的上行数据包。本申请实施例在此不作限制。
还应理解,该第一数据包的反射映射指示字段可以是该第一数据包的反射QoS流到DRB反射映射指示字段(Reflective QoS flow to DRB mapping Indication,RDI)字段,如图5所示,图5是第一数据包的格式的示意图。该第一数据包可以是下行SDAP层的协议数据单元。第一数据包的结构主要包括RDI字段、反射QoS指示(Reflective QoS Indication,RQI)指示字段、QFI字段以及数据(data)字段。QFI字段用于标识该第一数据包的QoS流,即第一QoS流的QFI字段为第一QFI,可以用于指示终端设备对第一QoS流的数据包执行QoS流到DRB的映射。RDI字段用于指示第一QoS流到DRB的映射是否需要被更新或者修改。例如,可以预定义如下对应关系:
当RDI字段的比特位为1时,指示需要存储该第一QoS流的上行数据包到第一DRB的反射映射规则,第一QoS流的上行数据包需要映射到第一DRB;
当RDI字段的比特位为0时,指示无动作,即该第一QoS流到原有的DRB的映射关系不变,不被指示执行第一QoS流的上行数据包到第一DRB的反射映射。
应理解,上述的RDI字段的比特位为1时,指示需要存储该第一QoS流到DRB的反射映射关系,当RDI字段的比特位为0时,指示无动作只是示例性的。0和1所指示的信息也可以相互转变,例如,RDI字段的比特位为0时,可以指示需要存储该第一QoS流到DRB的反射映射关系,当RDI字段的比特位为1时,可以指示无动作。本申请实施例在此不作限制。
在CU-UP获取该第一信息后,根据预定义的RDI字段的比特位信息,将该第一数据包的RDI字段进行设置。并将经设置RDI字段后的该第一数据包发给终端设备。终端设备根据接收到的第一数据包的RDI和QFI字段,便可以确定是否执行反射映射以及针对哪个QoS流执行反射映射。
应理解,在本申请实施例中,该第一数据包的反射映射指示字段还可以是该第一数据包的其他字段,CU-UP还可以通过设置第一数据包的其他字段来指示是否需要执行对第一QoS流的上行数据包到第一DRB的反射映射。本申请实施例在此不作限制。
可选的,作为一个实施例,如图6所示,在S210中,CU-UP获取该第一信息,包括:
S208,集中式单元控制面节点CU-CP生成该第一信息。
S209,集中式单元控制面节点CU-CP向CU-UP发送该第一信息。相应的,CU-UP接收CU-CP发送的该第一信息。
具体而言,当CU-CP决定对执行第一QoS流到第一DRB的映射时,例如,在PDU会话初始建立过程中,需要建立第一QoS流到第一DRB的映射关系,或者,在该第一QoS流的参数或者负载发生变化的情况下,承载该第一QoS流的原有DRB也需要改变成第一DRB时,CU-CP会生成该第一信息,该第一信息用于指示是否需要执行指示第一QoS流到第一DRB的反射映射。即该第一信息用于通知CU-UP将第一数据包映射到第一DRB上以及设置该第一数据包的反射映射指示字段设置。CU-UP根据该第一信息,将下行的第一数据包映射到第一DRB上以及设置该第一数据包的反射映射指示字段设置。CU-CP可以通过CU-UP与CU-CP之间的E1接口,以任何可能的信令形式发送或者承载该第一信息。例如,第一信息可以承载在E1接口上的应用协议(Application protocol,AP)信息上(即E1AP消息)。本申请实施例在此不作限制。
应理解,需要执行第一QoS流到第一DRB的映射的信息也可以是核心网设备通知给CU-CP,CU-CP根据该信息生成第一信息。并将该第一信息发送给CU-UP。该第一信息可以包括该QoS流的信息以及该DRB的信息,例如,包括第一QoS流的标识以及第一DRB的标识,还可以包括该终端设备的PDU会话的信息等。本申请实施例在此不作限制。
本申请提供的通信方法,在CU-DU分离的基站架构下,CU-CP需要执行第一QoS流到第一DRB的映射时,例如,第一QoS流的参数发生变化或者负载情况发生变化的情况下,需要将第一QoS流的第一数据包映射到第一DRB上进行传输时,即CU-CP根据上述的条件,确定是否需要执行反射映射。通过向CU-UP发送第一信息,该第一信息用于指示CU-UP设置该第一数据包的反射映射指示字段以及将第一数据包的数据映射到第一DRB上。CU-UP根据该第一信息,并确定是否需要执行指示第一QoS流到第一DRB的反射映射。将从核心网接收的第一数据包的反射映射指示字段设置后,在该第一DRB上向终端设备发送经设置反射映射指示字段后的第一数据包。该第一数据包为CU-UP发送给终端设备的下行数据包。第一数据包的反射映射指示字段用于向终端设备指示是否需要执行第一QoS流的上行数据包第一DRB的反射映射,即是否在第一DRB向CU-UP发送第一QoS流的上行数据包。实现了在CU-DU分离的场景下的第一QoS流到第一DRB的映射。使得CU-UP和终端设备都实现了QoS流到DRB的映射。保证了终端设备和CU-UP可以正确的进行数据的传输。提高通信的效率和稳定性。提高用户体验。
可选的,作为一个实施例。在S230中,CU-UP设置该第一数据包的反射映射指示字段,包括:
该CU-UP将该第一数据包的反射映射指示字段的比特位设置为1。
具体而言,以反射映射指示字段为RDI字段为为例进行说明。假设RDI字段比特位有如下预先定义:RDI字段的比特位为1指示需要修改该第一QoS流到第一DRB的映射关系,RDI字段的比特位为0指示第一QoS流到第一DRB的映射关系不变。在这种情况下,CU-UP会将该第一数据包的RDI字段的比特位设置为1,用于通知终端设备需要将第一QoS流的上行数据包映射到新的DRB(第一DRB)上。即第一QoS流到第一DRB的映射关系发生了变化。CU-UP将RDI字段的比特位设置为1,而QFI字段指示的为第一QFI,即指示QoS流为第一QoS流。终端设备在接收到在第一DRB承载的第一数据包后。根据RDI字段和QFI字段的信息,确定需要将第一QoS流的上行数据包在第一DRB上进行传输。即执行第一QoS流到第一DRB的映射。在第一DRB上向CU-UP发送QoS流为第一QoS流的数据包。
本申请实施例提供的通信方法,通过将该第一数据包的反射映射指示字段的比特位设置为1来通知终端设备需要进行该第一QoS流到第一DRB的映射,可以提高终端设备确定需要进行第一QoS流到第一DRB的映射的准确率和效率,便于实现,节省信令的开销和资源的消耗。
应理解。在RDI字段的比特位为0指示需要修改该第一QoS流到第一DRB的映射关系,RDI字段的比特位为1指示第一QoS流到第一DRB的映射关系不变的情况下。该CU-UP可以将该第一数据包的RDI字段的比特位设置为0,用于指示终端设备需要将第一QoS流的上行数据包映射到新的第一DRB上。本申请实施例在此不作限制。
还应理解,上述以反射映射指示字段为1个比特位为例进行说明,该反射映射指示字段还可以是多个比特位。例如,在反射映射指示字段为2个比特位时,反射映射指示字段的比特位为11可以指示需要修改该第一QoS流到第一DRB的映射关系,反射映射指示字段的比特位为00可以指示第一QoS流到第一DRB的映射关系不变。该CU-UP可以将该第一数据包的反射映射指示字段的比特位设置为11。本申请实施例在此不作限制。
可选的,作为一个实施例。在S230中,CU-UP设置该第一数据包的反射映射指示字段,包括:
该CU-UP将该第一数据包的反射映射指示字段的比特位设置为0。
具体而言,以反射映射指示字段为RDI字段为为例进行说明。假设RDI字段比特位有如下预先定义:在RDI字段的比特位为1指示需要修改该第一QoS流到第一DRB的映射关系,RDI字段的比特位为0指示第一QoS流到第一DRB的映射关系不变。在这种情况下,CU-UP将该第一数据包的反射映射指示字段的比特位设置为0,用于通知终端设备第一QoS流到第一DRB的映射关系没有发生变化。应理解,将反射映射指示字段的比特位设置为0只是通知终端设备第一QoS流到第一DRB的映射关系没有发生变化,不需要执行第一QoS流到第一DRB的映射。并不代表终端设备没有能力执行第一QoS流到第一DRB的映射,即终端设备本身是有能力执行第一QoS流到第一DRB的映射。终端设备可以根据负载和网络等情况,也可以决定执行第一QoS流到第一DRB的映射。终端设备在接收到在第一DRB承载的第一数据包后。根据RDI字段的信息,RDI字段的比特位为0,指示不需要进行第一QoS流到第一DRB的映射,终端设备可以不用再去读取QFI字段的信息。终端设备在原来承载第一QoS流的数据包的DRB上向CU-UP继续发送第一QoS流的数据包。
本申请实施例提供的通信方法,通过将该第一数据包的反射映射指示字段的比特位设置为0来通知终端设备不需要进行该第一QoS流到第一DRB的映射,可以提高终端设备确定不需要进行第一QoS流到第一DRB的映射的准确率和效率,便于实现,节省信令的开销和资源的消耗。
应理解。在RDI字段的比特位为0指示需要修改该第一QoS流到第一DRB的映射关系,RDI字段的比特位为1指示第一QoS流到第一DRB的映射关系不变的情况下。该CU-UP可以将该第一数据包的RDI字段的比特位设置为1,用于指示终端设备不需要进行第一QoS流到第一DRB的映射。本申请实施例在此不作限制。
可选的,作为一个实施例,该第一信息为该第一QoS流到该第一DRB的反射映射指示信息。
具体而言,向终端设备通知第一QoS流到第一DRB的映射两种方式。第一种是直接将第一QoS流到第一DRB的映射关系信息通知给终端设备,即为直接映射的方式。具体的,直接映射的方式可以为:CU-CP将第一QoS流到第一DRB的映射关系发送给DU,然后由DU通过RRC信令通知给终端设备。终端设备根据该RRC信令,去执行第一QoS流到第一DRB的映射。另一种为通过反射映射的方式。当该第一信息为该第一QoS流到该第一DRB的反射映射指示信息,CU-UP根据该第一信息,决定利用反射映射的方式通知终端设备执行第一QoS流到第一DRB的映射。反射映射的方式为:CU-UP在第一DRB向终端设备发送第一QoS流的下行数据包,终端设备监视第一QoS流的下行数据包在第一DRB上,则在UL,终端设备将第一QoS流的上行数据包,也在第一DRB上传输。
应理解,该第一信息还可以包括第一QoS流和第一DRB的相关信息,例如,包括第一QoS流的标识和第一DRB的标识等信息。第一信息还可以包括其他相关信息。例如,还可以包括与第一QoS流相关的PDU会话(session)的信息、例如,可以是PDU session ID等信息。该第一信息可以包括该第一DRB的下行SDAP头格式指示、上行SDAP头格式指示。该下行SDAP头格式指示用于指示映射该第一DRB的QoS流是否具有下行SDAP头。该上行SDAP头格式指示用于指示映射该第一DRB的QoS流是否具有上行SDAP头。该第一信息可以包括该第一DRB是否为默认DRB指示。本申请实施例在此不作限制。
还应理解,当该第一信息不是该第一QoS流到该第一DRB的反射映射指示信息。即该第一信息不包括反射映射指示的情况下,可以通过直接映射或者反射映射的方式通知终端设备执行第一QoS流到第一DRB的映射。本申请实施例在此不作限制。
可选的,作为一个实施例,如图7所示,该方法200还包括:
S250,该CU-UP接收该终端设备在该第一DRB上发送的第二数据包,该第二数据包所属的QoS流为该第一QoS流。
S260,该CU-UP根据该第二数据包,将该第一数据包的反射映射指示字段的比特位设置为0。
具体而言,以反射映射指示字段为RDI字段为为例进行说明。假设RDI字段比特位有如下预先定义:在RDI字段的比特位为1指示需要修改该第一QoS流到第一DRB的映射关系,RDI字段的比特位为0指示第一QoS流到第一DRB的映射关系不变。终端设备接收到在第一DRB上承载的经反射映射指示字段设置后的第一数据包后,会检测承载该第一数据包的DRB以及该第一数据包的RDI字段和QFI字段。根据第一数据包的反射映射指示字段的比特位,即第一数据包的RDI字段的比特位为1,第一数据包的QFI字段指示的为第一QoS流。终端设备接收到该第一数据包后,在检测到该第一数据包的DRB为第一DRB,RDI字段的比特位为1,指示需要修改该第一QoS流到DRB的映射关系,QFI字段指示的为第一QoS流时。确定了需要对第一QoS流的数据包执行第一QoS流到第一DRB的映射,即确定将第一QoS流的数据包承载在第一DRB上发送给CU-UP。终端设备根据第一数据包的相关信息。在该第一DRB上向DU发送该第二数据包,DU收到该第二数据包后,将该第二数据包转发给CU-UP。该第二数据包所属的QoS流为该第一QoS流,即终端设备正确执行了第一QoS流到第一DRB的映射。CU-UP接收到该第二数据包后,确定了终端设备正确执行了第一QoS流到第一DRB的映射后,将该第一数据包的反射映射指示字段的比特位设置为0。即指示终端设备在接收到第一数据包后,不需要再将第一QoS流的上行数据包映射到第一DRB。
由于终端设备会持续监测第一数据包的RDI字段和QFI字段。在CU-UP确定了终端设备正确执行了第一QoS流到第一DRB的映射后,由于之前将第一数据包的RDI字段的比特位为1,RDI字段的比特位为1指示需要修改该第一QoS流到第一DRB的映射关系。如果CU-UP不将第一数据包的反射映射指示字段的比特位设置为0。终端设备在检测到第一数据包的RDI字段的比特位为1时,还需要持续检测每一个第一数据包的QFI字段和承载该第一数据包的DRB,确定与该第一QoS流对应的DRB。而实际上第一QoS流到第一DRB的映射关系可能没有发生变化。即第一QoS流对应的还是第一DRB,这样会造成资源的浪费以及终端设备耗电量增大。因此,在CU-UP确定了终端设备正确执行了第一QoS流到第一DRB的映射后,将第一数据包的RDI字段的比特位设置为0,后续的终端设备接收到该第一数据包后,检测到第一数据包的RDI比特位为0,确定该第一QoS流到第一DRB的映射关系不变,不需要执行第一QoS流到第一DRB的反射映射时,不用继续检测该第一数据包的QFI字段和该第一数据包的第一DRB。可以节省资源,节省终端设备的电量消耗,提高用户体验。
应理解。在该第一数据包的RDI字段的比特位为0指示需要修改该第一QoS流到DRB的映射关系,RDI字段的比特位为1指示第一QoS流到第一DRB的映射关系不变的情况下。在CU-UP接收该终端设备在该第一DRB上发送的第二数据包后,可以将该第一数据包的反射映射指示字段的比特位设置为1。本申请实施例在此不作限制。
还应理解,在S250中,终端设备在该第一DRB上向该CU-UP发送第二数据包时,可以在该第一DRB上先将该第二数据包发送给DU,由DU再将该第二数据包发送给该CU-UP。本申请实施例在此不作限制。
可选的,作为一个实施例,在S209中,CU-CP向CU-UP发送第一信息,包括:
该CU-CP向该CU-UP发送承载上下文建立请求,该承载上下文建立请求包括该第一信息。
具体而言,在CU-CP需要对第一QoS流执行到第一DRB的映射时,CU-CP会生成第一信息,该第一信息用于指示CU-UP将第一数据包的数据映射到第一DRB上以及设置该第一数据包的反射映射指示字段。CU-CP可以通过与CU-UP之间的E1接口将该第一信息发送给该CU-UP。具体的,可以通过E1接口向该CU-UP发送承载上下文建立请求(bearer context setup request),该承载上下文建立请求包括该第一信息。承载上下文建立请求可以用于向CU-UP请求建立与终端设备之间的PDU会话相关的承载,例如,DRB承载和信令无线承载(signaling radio bearers,SRB),用于传输CU-UP与终端设备之间的相关信令和数据等。即通过承载上下文建立请求向该CU-UP发送该第一信息。应理解,该承载上下文建立请求还可以包括该第一QoS流和该第一DRB的相关信息,还可以包括与该终端设备的PDU会话相关的信息。本申请实施例在此不作限制。
可选的,作为一个实施例,在S209中,CU-CP向CU-UP发送该第一信息,包括:
该CU-CP向该CU-UP发送承载修改请求,该承载修改请求包括该第一信息。
具体而言,在CU-CP需要对第一QoS流执行到第一DRB的映射时,CU-CP会生成第一信息。具体的,可以通过E1向该CU-UP发送承载修改请求(bearer modification request),该承载修改请求包括该第一信息。承载修改请求可以用于向CU-UP请求修改与终端设备之间的相关承载,例如,DRB和SRB承载等,DRB和SRB可用于传输CU-UP与终端设备之间的相关信令和数据等。即通过承载修改请求向该CU-UP发送该第一信息。应理解,该承载修改请求可以还可以包括该第一QoS流和该第一DRB的相关信息,还可以包括与该终端设备的PDU会话相关的信息。该第一信息可以包括该第一DRB的下行SDAP头格式指示、上行SDAP头格式指示。该下行SDAP头格式指示用于指示映射该第一DRB的QoS流是否具有下行SDAP头。该上行SDAP头格式指示用于指示映射该第一DRB的QoS流是否具有上行SDAP头。该第一信息可以包括该第一DRB是否为默认DRB指示。本申请实施例在此不作限制。
应理解,在本申请实施例中,该第一信息还可以承载在CU-CP向CU-UP发送的其他信令上,例如,可以承载在CU-CP向CU-UP发送的通知信息上,本申请实施例在此不作限制。
可选的,作为一个实施例,如图8所示,该方法200还包括:
S270,该CU-UP向CU-CP发送第二信息,该第二信息用于指示该第一QoS流到该第一DRB的反射映射成功。相应的,该CU-CP接收该第二信息。
具体而言,在CU-UP接收到该终端设备在该第一DRB上发送的第二数据包后,即确定了终端设备正确执行了第一QoS流到第一DRB的映射后,会向CU-CP通知该第一QoS流到第一DRB的反射映射执行成功,即向CU-CP发送第二信息,该第二信息用于指示该第一QoS流到该第一DRB的反射映射成功。CU-CP接收到该第二信息后,获知了第一QoS流到第一DRB的反射映射正确执行后,便可以正确的进行对该终端设备的PDU会话的无线承载的数据处理等,提高了终端设备传输数据的稳定性,提高用户体验,保证了系统的正常运行。
应理解,在CU-UP没有接收到终端设备在第一DRB上发送的第二数据包的情况下,即CU-UP接收到的第一QoS流的数据包不是在第一DRB上传输的情况下,证明反射映射失败。CU-UP也可以将反射映射失败的信息通知给CU-CP,以便于CU-CP后续决定是否需要继续执行反射映射或者释放该第一QoS流的操作。从而保障网络的稳定性,提高网络运行的质量。
本申请还提供一种通信方法,可以使得在CU-DU分离的基站架构中,支持数据传输性能以及L2参数的测量。从而保障用户的数据可以顺利的传输,提升网络的稳定性,提高网络运行的质量,提高用户体验。
下面结合图9详细说明本申请提供通信方法,图9是本申请一个实施例的通信方法300的示意性流程图,该方法300可以应用在图3所示的场景中,当然也可以应用在其他通信场景中,本申请实施例在此不作限制。
如图9所示,该方法300包括:
S310,CU-CP生成第三信息,该第三信息用于指示CU-UP对第一数据包的传输性能进行检测,该第一数据包由第一服务质量流标识QFI或第一5G服务质量标识5QI指示。
S320,CU-CP向CU-UP发送该第三信息。相应的,CU-UP接收该第三信息。
S330,该CU-UP根据该第三信息,对该第一数据包的传输性能进行检测。
本申请提供的通信方法,在CU-DU分离的基站架构下,当CU-CP需要对终端设备的一个PDU会话中的第一QoS流的性能进行检测时,会向CU-UP发送第三信息,第三信息用于指示CU-UP对第一数据包(第一QoS流的数据包)的传输性能进行检测,该第一数据包由第一QFI指示。当CU-CP需要对所有终端设备具有相同QoS特征的第一数据包进行检测时,该第三信息用于指示CU-UP对第一数据包的传输性能进行检测,该第一数据包的由第一5QI指示。CU-UP根据该第三信息,对该第一数据包的传输性能进行检测。实现了在CU-DU分离的基站架构下以5QI或者QFI为粒度的传输参数的测量,从而可以保证网络系统的正常运行,提高用户体验。
具体而言,在S310中,在CU-DU分离的基站架构下,为了支持网络系统的正常运行,需要进行相关传输性能进行测量,通过对传输性能的测量,来支持或者及时的调整数据传输的相关配置或者控制。例如,为了支持空口资源操作,无线资源管理,网络操作和维护、MDT和SON需求等,需要进行L2参数的测量。例如,需要检测第一数据包在PDCP层、RLC层、MAC或者SDAP层的相关传输参数。因此,CU-CP会生成第三信息,该第三信息用于指示CU-UP对第一数据包的传输性能进行检测。并且,由于5G定义了基于QoS流的网络架构,而QoS流是在PDU会话实现QoS区分的最小粒度。
当CU-CP需要对终端设备的一个PDU会话中的第一QoS流的性能进行检测时,即检测第一数据包的性能进行检测时,该第一数据包服务质量流QoS流的标识为第一QFI,即是以QFI粒度的传输参数的测量。当CU-CP需要对所有的终端设备相同QoS特征的第一数据包进行检测时,该第一数据包由第一5QI指示。即以5QI粒度的进行传输参数的测量。应理解,当5QI和QFI值相等时,可以用两个中的任何一个来指示该QoS流。当5QI和QFI值不相等时,需要用5QI来指示该QoS流。
应理解,该第三信息还可以包括该第一QoS流的相关信息,例如,该第一QoS流的参数,第一QoS流的标识(第一QFI或者第一5QI)、该第一QoS流相关的PDU会话信息,该第一QoS流通知控制、CU-UP需要测量相关的传输性能等,第一QoS流通知控制用于指示对第一QoS流进行传输性能检测。例如,数据包延时预算、包错误率、下行保障流比特速率、下行最大流比特速率、上行保障流比特速率、上行最大流比特速率、下行最大包丢包率、上行最大丢包率、最大数据突发量等。。本申请实施例在此不作限制。
在S320中,CU-CP向该CU-UP发送该第三信息。相应的,CU-UP接收该第三信息。具体的,CU-CP可以通过CU-UP与CU-CP之间的E1接口,以任何可能的信令形式发送或者承载该第三信息。例如,第三信息可以承载在E1接口上的E1AP消息上。本申请实施例在此不作限制。
在S330中,CU-UP根据该第三信息,进行以QFI或者5QI为粒度的传输参数的测量。
即对该第一数据包的传输性能进行检测。该第一数据包由第一QFI或第一5QI指示。
本申请提供的通信方法,实现了在CU-DU分离的基站架构下,CU-UP以5QI或者QFI为粒度的传输参数的测量,从而可以保证网络系统的正常运行,保障了用户传输数据的准确性和成功率,提供了用户的通信的效率。提高用户体验。
可选的,作为一个实施例,如图10所示,该方法300还包括:
S340,CU-UP向CU-CP发送第四信息,该第四信息用于指示该第一数据包的传输性能是否满足传输性能指标,该第一数据包配置有该传输性能指标,该第三信息包括该传输性能指标。相应的,该CU-CP接收该第四信息。相应的,该CU-CP接收该第四信息。
具体而言,在以QoS流为粒度的PDU会话中,每一个QoS流所需要满足的传输性能指标是不同。例如,对于一些高优先级的业务,该业务所对应的QoS流就需要满足较高的传输指标。这些QoS流需要满足GBR保障或者传输延时保障等。因此,该第三信息包括还该传输性能指标,例如,该传输性能指标可以是第一QoS流(第一数据包的QoS流)需要满足的丢包率要求,即丢包率不能超过某个阈值。或者该传输性能指标还可以是该第一QoS流是否满足GBR要求。第一QoS流的第一数据包配置有该传输性能指标,即第一数据包在传输时需要满足这些传输性能指标。在CU-UP接收该第三信息后,根据该第三信息中的传输性能指标以及第一QFI,检测上行和下行传输中的数据包中,数据包的QoS流标识为第一QFI的第一数据包传输性能。CU-UP根据该传输性能指标,去检测第一数据包的传输性能,根据检测到的第一数据包的传输性能和配置的传输性能指标,确定该第一数据包是否满足(fulfilled)传输要求。然后将该第一数据包的传输性能是否满足传输性能指标通过第四信息告知给CU-CP。例如,检测到第一QoS流的所有数据包(第一数据包)不满足该GBR要求时,将第一QoS流不满足该GBR要求的消息通过第四信息通知给CU-CP。检测到第一QoS流的所有的第一数据包又满足该GBR要求时,将第一QoS流满足该GBR要求的消息通过第四信息通知给CU-CP。从而CU-CP向核心网发送该信息,核心网根据该信息确定是否需要更改该QoS流的参数或者释放该QoS流。保证了网络系统可以正常的运行,提高了用户正常通信的保障率。提高网络系统的稳定性和工作效率,提高用户体验。
应理解,CU-UP可以上报一段时间内满足传输性能指标的第一数据包的个数或者比比例。或者,在一段时间内,如果有一个第一数据包不满足传输性能指标,则认为这段时间内第一QoS流(所有的第一数据包)不满足该传输性能指标,或者还可以是其他的上报方式,本申请实施例在此不作限制。
还应理解,该第四信息还可以包括检测的该第一QoS流的传输指标的值、该第一QoS流相关的PDU会话的信息,例如,PDU session ID,第一QoS流的标识等信息。本申请实施例在此不作限制。
还应理解,当终端设备某一个PDU会话的所有QoS流都不满足或者满足QoS流的传输性能指标时,CU-UP可以通过第四信息向CU-CP通知该PDU会话不满足或者满足QoS流的传输性能指标的消息,而不用以QoS流为单位,将每个QoS流不满足或者满足QoS流的传输性能指标的消息通知给CU-CP。本申请实施例在此不作限制。
还应理解,在CU-UP检测该第一数据包的传输性能之前,CU-CP还可以将该终端设备的PDU会话的所有QoS流的信息通知给CU-UP。例如,可以是该PDU会话所有QoS流的参数以及标识等信息。CU-UP在接收到该PDU会话所有QoS流的信息后,可以执行接纳控制过程,即根据所有QoS流的信息,并结合自身的负载等情况,在所有QoS流中确定可以接纳的QoS流,并对接纳的QoS流进行传输性能检测。该第一QoS流可以为CU-UP接纳的QoS流中的任意一个。接纳的QoS流可 以理解为可以用于传输数据的QoS流。其具体的步骤如下:
1、当核心网设备为终端设备新建一个PDU会话,或者为PDU会话新建一个QoS流或者该PDU会话的某个QoS流特性发生变化时,核心网设备会将该QoS流的信息通知CU-CP。例如,可以该QoS流的GRB信息等。CU-CP可以通过CU-CP与CU-UP之间的E1接口,在建立请求(setup request)或者修改请求(modification request)中,将该QoS流的信息通知给CU-UP。例如,QoS流的信息的可以包括表1所示的内容。
表1
5QI(QoS flow的标识)
选择QoS flow特性(CHOICE QoS Characteristics)
非动态的5QI(Non-dynamic 5QI)
非动态的5QI描述符(Non Dynamic 5QI Descriptor)
动态的5QI(dynamic 5QI)
动态的5QI描述符(Dynamic 5QI Descriptor)
分配和保留优先权(Allocation and Retention Priority)
保障比特速率QoS flow信息(GBR QoS Flow Information)
反射QoS属性(Reflective QoS Attribute)
其中,动态的5QI描述符(Dynamic 5QI Descriptor)包括的内容可以如表2所示:
表2
优先级水平(Priority Level)
延时预算(Packet Delay Budget)
数据包错误率(Packet Error Rate)
延时阈值(Delay Critical)
平均窗口(Averaging Window)
最大突发数据量(Maximum Data Burst Volume)
应理解,表1和表2所示的内容只是示例性的,该QoS流的信息和动态的5QI描述符还可以包括其他更多内容,本申请实施例在此不作限制。
2、CU-UP根据QoS流的信息,例如,表1和表2中的QoS流参数,并结合自身的负载情况,进行QoS流的接纳,并在建立请求响应或者修改请求响应中将接纳的结果反馈给CU-CP。接纳的结果可以包括:接纳的QoS流ID,QoS流所属的PDU会话ID、没有被接纳的QoS流ID,没有被接纳的QoS流的所属的PDU会话ID、QoS流没有被接纳的原因,例如,QoS流没有被接纳的原因可以是资源受限(Radio resources not available)、不认识的5QI、非法的5QI等。如果一个PDU会话内所有QoS流都被拒绝时,还包括该PDU会话ID。在CU-UP确定了接纳的QoS流,便可以根据CU-CP发送的第三信息,对接纳的QoS流的传输进行检测,确定是否满足传输性能指标。应理解,当一个PDU会话的多个QoS流被接纳时,接纳的结果可以包括被接纳的QoS流ID列表;当一个PDU会话的多个QoS流被拒绝时,接纳的结果可以包括被拒绝的QoS流ID列表。
应理解,在本申请实施例中,CU-UP除了根据上述的表1和表2中的信息以及自身的负载情况执行QoS流的接纳控制外,还可以根据其他的信息,例如,该QoS流的数据包承载的业务信息 等,本申请实施例在此不作限制。
可选的,作为一个实施例,在S340中,该CU-UP向该CU-CP发送第四信息,包括:
该CU-UP向该CU-CP发送通知信息,该通知信息包括该第四信息。相应的,该CU-CP接收该通知信息。
具体而言,在CU-UP需要将第一数据包是否满足传输性能指标通知给CU-CP时,CU-UP可以通过CU-CP与CU-UP之间的E1接口将第四信息发送给该CU-UP。具体的,可以通过E1接口向该CU-CP发送通知(notify)信息,该通知信息包括该第四信息。通知信息可以用于向CU-CP通知建立与终端设备之间的PDU会话相关的承载以及QoS流信息。即通过通知信息承载该第四信息。应理解,该通知信息还可以包括该第一QoS流和与该终端设备的PDU会话相关的信息。本申请实施例在此不作限制。
应理解,在CU-CP接收到该通知信息后,还可以向CU-UP发送通知信息响应,用于通知CU-UP已经收到该第四信息。本申请实施例在此不作限制。
可选的,作为一个实施例,在S340中,该CU-UP向该CU-CP发送第四信息,包括:
该CU-UP向该CU-CP发送承载修改请求,该承载修改请求包括该第四信息。相应的,该CU-CP接收该承载修改请求。
具体而言,在CU-UP需要将第一数据包是否满足传输性能指标通知给CU-CP时,CU-UP可以通过CU-CP与CU-UP之间的E1接口将该第四信息发送给该CU-UP。具体的,可以通过E1接口向该CU-UP发送承载修改请求,该承载修改请求包括该第四信息。承载修改请求可以用于向CU-CP请求修改与终端设备之间的相关承载,例如,DRB或者SRB承载等,DRB或者SRB可用于传输CU-UP与终端设备之间的相关信令和数据等。即通过承载修改请求向该CU-CP发送该第四信息。应理解,该承载修改请求可以还可以包括该第一QoS流和与该终端设备的PDU会话相关的信息。本申请实施例在此不作限制。
应理解,在本申请实施例中,该第四信息还可以承载在CU-UP向CU-CP发送的其他信令上,本申请实施例在此不作限制。
还应理解,在CU-CP接收到该承载修改请求后,还可以向CU-UP发送承载修改请求响应信息,用于通知CU-UP已经收到该第四信息。本申请实施例在此不作限制。
可选的,作为一个实施例,该第一数据包的传输性能指标包括:
该第一数据包的延迟预算、该第一数据包的丢包率、上行保障速率比特GBR、下行GBR、上行最大GBR、下行最大GBR中的至少一个。
具体而言,在终端设备的PDU会话中,不用的业务会有不同传输性能要求,即不用业务的数据包会有不同的QoS流要求,不同的QoS流所需要满足的传输性能指标是不同。因此,对于第一数据包(QoS流为第一QoS流)而言,第一QoS流的传输性能指标可以包括:该第一数据包的延迟预算、该第一数据包的丢包率、上行保障速率比特GBR、下行GBR、上行最大GBR、下行最大GBR、下行最大包丢包率、上行最大丢包率、最大数据突发量中的至少一个。例如,当该传输性能指标为下行GBR时,CU-UP根据第一数据包的下行GBR传输指标,检测下行的第一数据包是否满足该下行GBR要求,并将第一数据包是否满足下行GBR传输指标发送给CU-CP。
应理解,除了上述的传输性能指标外,该第一数据包的传输性能指标还可以包括其他传输性能指标,例如,最大数据吞吐量等。本申请实施例在此不作限制。
可选的,作为一个实施例,如图11所示,该方法300还包括:
S350,该CU-UP向该CU-CP发送第五信息,该第五信息包括对该第一数据包的传输性能检测的结果。其中,该第三信息包括测量配置信息,该测量配置信息包括该第一数据包的传输性能参数和/或测量时间长度。相应的,该CU-CP接收该第五信息。
具体而言,为了支持空口资源操作,无线资源管理,网络操作和维护、MDT和SON需求等,CU-UP需要进行L2参数的测量。例如,进行PDCP、RLC、MAC层等相关参数测量。因此,CU-CP向CU-UP发送的第三信息包括测量配置信息,该测量配置信息包括该第一数据包的传输性能参数和/或测量时间长度。CU-UP根据该测量配置信息,以QFI或者5QI为粒度的传输参数的测量,即对第一数据包的传输性能进行检测。在该测量配置信息包括第一数据包的传输性能参数的情况下,CU-UP可以根据预定义的时间长度,或者根据第一数据包的业务情况确定测量时间长度,对第一数据包的传输性能进行检测。在该测量配置信息包括第一数据包的测量时间长度的情况下,CU-UP可以根据第一数据包的QoS流负载情况以业务类型等信息,确定需要检测传输性能,对第一数据包的传输性能进行检测。第一数据包由第一5QI指示,确定需要检测传输性能,对第一数据包的传输性能进行检测。第一数据包由第一5QI指示。对于一个数据包,在QFI和5QI的值相同的情况下,可以用两个中的任意一个来指示该数据包,在QFI和5QI的值不同的情况下,需要以5QI为准来指示该数据包。即对所有的终端设备的第一数据包进行检测时,该第一数据包由第一5QI指示,来检测所有终端设备的QoS特征为第一5QI的所有数据包的传输性能。CU-UP检测第一数据包在L2层传输的传输性能,并将第一数据包的传输性能检测的结果通知给CU-CP。从而实现了CU-CP支持L2参数的测量。实现了支持空口资源操作,无线资源管理,网络操作和维护、MDT和SON需求的功能,有利于提升网络的稳定性,提高网络运行的质量,提高用户体验。应理解,图11中虚线所示的步骤为可选的步骤。
可选的,作为一个实施例,该传输性能参数包括:该第一数据包的丢包率、该第一数据包的下行传输时延、该第一数据包的调度网络协议吞吐量、该第一数据包的数据量中的至少一个。
下面将具体说明CU-UP对上述的几个传输性能参数测量的过程。
1、对于第一数据包的下行传输时延,检测粒度为第一QFI和/或第一5QI,即统计时间T内QoS流指示为第一QFI和/或第一5QI的所有数据包(第一数据包)的平均下行传输时延。第一数据包的QoS特征的标识为第一5QI时,对所有终端设备的数据包的QoS特征标识为第一5QI的所有数据包进行性能检测;当第一数据包QoS流的标识为第一QFI时,对该终端设备的具有第一QFI的数据包进行性能检测。
具体的,可以利用公式(1)来计算时间T内第一数据包的平均下行传输时延。
Figure PCTCN2018096589-appb-000001
公式(1)中,表示时间T内具有相同的5QI(第一5QI)的第一数据包的平均下行传输时延,在某一个QoS流的5QI和QFI相同的情况下,也可以为。表示第i个第一数据包的到达的时间点(时刻),第i个第一数据包成功被接收的时间点(时刻),i表示时间T内到达和成功被 接收的数据包序号,表示时间T第一数据包的总的个数。
其中,第一数据包到达时刻的参考点为PDCP层上的业务接入点(Service Access Point,SAP)或者SDAP层的业务接入点,第一数据包成功接收时刻的参考点为PDCP层的SAP或者SDAP层的业务接入点。其中,SAP为协议栈中上层访问下层所提供服务的点,是临层实体(“实体”也就是对应层的逻辑功能)间实现相互通讯的逻辑接口,位于两层边界处。这里对于接入点位于协议层上部(Upper),还是协议层下部(Lower)不做限定。例如,第一数据包成功接收时刻的参考点为PDCP层的上部SAP或者SDAP层的上部业务接入点。或者第一数据包成功接收时刻的参考点为PDCP层的下部SAP或者SDAP层的下部业务接入点。从物理层开始,每一层都向上层提供服务访问点,每一层都有SAP,但不同层的SAP内容和表示形式是不一样的。
可选的,第一数据包到达时刻的参考点还可以为PDCP层的SAP或者SADP层的SAP,第一数据包成功接收时刻的参考点为媒体接入控制MAC层的SAP。这里对于接入点位于协议层上部(Upper),还是协议层下部(Lower)不做限定。例如,第一数据包到达时刻的参考点还可以为PDCP层的下部SAP,第一数据包成功接收时刻的参考点为MAC层的下部业务接入点。应理解,在这种情况下,需要DU统计在MAC层被正确接收的第一数据包的数量以及到达时间等,并将该信息通知给CU-CP。如图12所示,在S360中,CU-CP可以向DU发送测量配置信息,该测量配置信息包括该第一QoS流的相关信息,例如,该第一QoS流的参数,第一QoS流的标识(第一QFI或者第一5QI)、该第一QoS流相关的PDU会话信息等,在S370中,DU根据该测量配置信息,DU统计在MAC层被正确接收的第一数据包的数量以及到达时间,在S380中,DU将该检测结果通知给CU-CP。本申请实施例在此不作限制。
可选的,为了统计更加精确,CU-CP可以通知CU-UP统计的绝对时间,例如,开始检测的绝对时刻和检测结束的绝对时刻,本申请实施例在此不作限制。
CU-UP可以根据上述公式(1),以QFI和/或5QI为粒度来检测第一数据包的下行传输时延,并将检测结果通知该CU-CP。
应理解,CU-UP除了根据上述的公式(1),以QFI和/或5QI为粒度来检测第一数据包的下行传输时延外,还可以根据其他公式,或者,公式(1)变形后的公式检测第一数据包的下行传输时延,本申请实施例在此不作限制。
2、对于第一数据包的在下行传输过程中由于网络拥塞、流量管理等而被丢掉第一数据包的丢包率(Packet discard rate)的检测,可以利用如下公式(2),统计时间T内第一数据包的平均丢包率:
Figure PCTCN2018096589-appb-000002
公式(2)中,表示时间T内具有相同的5QI(第一5QI)的第一数据包的平均丢包率,在某一个QoS流的5QI和QFI相同的情况下,也可以为。在第一QFI和第一5QI的值不相同的情况下,以第一5QI为准。表示时间T内被丢弃的第一数据包的数量,表示时间T内到达PDCP层上的SAP或者SADP层的第一数据包的数量。
CU-UP可以根据上述公式(2),以QFI和/或5QI为粒度来检测第一数据包的丢包率,并将 检测结果通知该CU-CP。
应理解,CU-UP除了根据上述的公式(2),以QFI和/或5QI为粒度来检测第一数据包的丢包率外,还可以根据其他公式,或者,公式(2)变形后的公式检测第一数据包的丢包率,本申请实施例在此不作限制。
3、CU-UP可以检测与终端设备之间在Uu接口上进行上行和下行传输时第一数据包的丢失率,即以QFI和/或5QI为粒度,检测时间T内在Uu接口上第一数据包的上行和下行的丢包率,并将检测结果通知该CU-CP。
4、CU-UP可以检测时间T内第一数据包的调度网络协议(Scheduled IP)吞吐量。包括上行和下行第一数据包的吞吐量。还可以检测时间T内第一数据包的突发数据(data burst)的吞吐量,其传输覆盖多个传输时间间隔,并将检测结果通知给CU-CP。
可选的,CU-UP可以检测时间T内与MDT相关的第一数据包上行和下行的Scheduled IP吞吐量,即以QFI和/或5QI为粒度,检测与终端设备之间的Uu接口上进行上行和下行传输时第一数据包的Scheduled IP吞吐量。或者,以QFI和/或5QI为粒度,检测与DU之间的F1-U接口上进行上行和下行传输时第一数据包的Scheduled IP吞吐量。并将检测结果通知给CU-CP。
5、CU-UP可以检测时间T内第一数据包的数据量。即以QFI和/或5QI为粒度,检测时间T内上行和下行的第一数据包的数据量,并以QFI和/或5QI为粒度向CU-CP通知检测结果。
6、CU-UP可以检测时间T内第一数据包的时延。具体的,可以统计时间T内,以QFI和/或5QI为粒度,从第一数据包到达PDCP层上的SAP的时刻开始,直到传输到RLC层的平均时延。或者,统计时间T内,以QFI和/或5QI为粒度,从第一数据包到达SDAP层上的SAP的时刻开始,直到传输到RLC层的平均时延。并将该统计结果通知给CU-CP。这里对于接入点位于协议层上部(Upper),还是协议层下部(Lower)不做限定。例如,第一数据包成功接收时刻的参考点为SDAP层的上部SAP或者SDAP层的下部业务接入点。或者第一数据包成功接收时刻的参考点为PDCP层的上部SAP或者PDCP层的下部业务接入点。
应理解,在本申请实施例中,CU-UP除了以QFI和/或5QI为粒度,统计上述的传输性能参数之,还可以QFI和/或5QI为粒度,统计该第一数据包的其他传输性能参数,本申请实施例在此不作限制。
还应理解,在本申请实施例中,对CU-UP向CU-CP上报测量结果的方式不作限制,例如,周期性上报,或者可以是基于事件触发性上报,或者可以是根据CU-CP配置的报告配置等。本申请实施例在此不作限制。
可选的,作为一个实施例,CU-CP配置的报告配置包括:测量时间T;测量事件、度量(Metrics)某个或者某些QFI/5QI/PDU会话/切片(S-NSSAI)、周期性上报,还是事件性触发上报(周期值,何种情况下触发,例如某个测量metric超过门限)等。本申请实施例在此不作限制。
还应理解,在本申请实施例中,CU-UP除了可以以QFI和/或5QI为粒度进行传输性能的测量和上报之外,还可以以PDU会话为粒度进行数据包传输性能的测量和上报,或者,还可以以5QI和终端设备为粒度进行传输性能的测量和上报,或者还可以PDU会话和网络切片为粒度进行传输性能的测量和上报。网络切片是将网络根据不同的服务需求和应用场景。例如,时延、可靠性等,将网络分为不同网络切片,每一个网络切片对应不同的应用场景和服务需求。一个网络切片可以包括多个PDU会话。
还应理解,在本申请实施例中,DU也可以根据CU-CP发送的测量配置信息,进行L2相关参 数的测量,并将测量结果发送给CU-CP。如图12所示,例如,DU可以统计单个小区在在时间T内的上行和下行物理资源块(physical resource block,PRB)的利用率或者随机接入前导码的数量。或者,也可以不以小区为粒度,只统计DU下的PRB的利用率和随机接入前导码的数量,并将检测结果发送给CU-CP。具体的,DU可以通过DU与CU-CP之间的FI-C接口,通过相关信令将该检测结果通知给CU-CP。
还应理解,在本申请的各个实施例中,第一、第二、第三等只是为了表示多个对象是不同的。例如,第一信息和第二信息只是为了表示不同内容的信息。而不应该对信息的本身产生任何影响,上述的第一、第二等不应该对本申请的实施例造成任何限制。
还应理解,在本申请的各个实施例中,第一信息可以承载在任何可能的信令上进行传输。同样,第二信息和第三信息等也可以承载在任何可能的信令上,即在本申请的实施例中,对第一信息、第一信息和第一信息的具体形式不作限制。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
上文结合图1至图12,详细描述了本申请实施例的通信方法,下面将结合图13至图20,详细描述本申请实施例的通信装置。
图13是本申请一个实施例的通信装置的示意性框图。应理解,该通信装置可以指上述集中式单元用户面节点CU-UP。通信装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例,图13所示的通信装置400可以用于执行对应于图4、图6至图8以及方法200各个实施例中CU-UP执行的步骤。该通信装置400包括:处理器410、存储器420和收发器430,处理器410、存储器420和收发器430通过通信连接,存储器420存储指令,处理器410用于执行存储器420存储的指令,收发器430用于在处理器410的驱动下执行具体的信号收发。
处理器410,用于获取第一信息,该第一信息用于指示该CU-UP将第一数据包映射到第一数据无线承载DRB上以及设置该第一数据包的反射映射指示字段,该第一数据包所属的服务质量流QoS流为第一QoS流;
收发器430,用于接收核心网设备发送的该第一数据包;
处理器410还用于设置该第一数据包的反射映射指示字段;
收发器430还用于在第一DRB上向终端设备发送设置该映射字段后的该第一数据包。
本申请提供的通信装置,在PDU会话初始建立过程中,需要建立第一QoS流到第一DRB的映射关系,或者,当第一QoS流的参数发生变化或者负载情况发生变化的情况下,需要将第一QoS流的第一数据包映射到新的DRB(第一DRB)上进行传输时,CU-UP会获取第一信息,并确定是否需要执行指示第一QoS流到第一DRB的反射映射。可选的,该第一信息可以是CU-UP预先存储的。该第一信息用于指示CU-UP将第一数据包映射到第一DRB上以及设置该第一数据包的反射映射指示字段。CU-UP根据该第一信息,确定是否需要执行第一QoS流到第一DRB的反射映射。在CU-UP 接收从核心网发送的该第一数据包后,会将第一数据包的反射映射指示字段进行设置,并在该第一DRB上向终端设备发送经设置反射映射指示字段后的第一数据包。该第一数据包为CU-UP发送给终端设备的下行数据包。设置第一数据包的反射映射指示字段的目的是用于向终端设备指示是否需要执行第一QoS流的上行数据包到第一DRB的反射映射,即终端设备是否被指示在第一DRB通过DU向CU-UP发送第一QoS流的上行数据包。本申请实施例实现了在CU-DU分离的场景下的第一QoS流到第一DRB的映射,使得CU-UP和终端设备都实现了第一QoS流到相应的DRB的映射。保证了终端设备和CU-UP可以正确的进行数据的传输。提高通信的效率和稳定性。提高用户体验。
通信装置400中的各个组件通过通信连接,即处理器410、存储器420和收发器430之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本申请的另一个实施例中,收发器430还用于:接收集中式单元控制面节点CU-CP发送的该第一信息。
可选的,在本申请的另一个实施例中,处理器410具体用于:将该第一数据包的反射映射指示字段的比特位设置为1。
可选的,在本申请的另一个实施例中,处理器410具体用于:将该第一数据包的反射映射指示字段的比特位设置为0。
可选的,在本申请的另一个实施例中,该第一信息为该第一QoS流到该第一DRB的反射映射指示信息。
可选的,在本申请的另一个实施例中,收发器430还用于:接收该终端设备在该第一DRB上发送的第二数据包,该第二数据包所属的QoS流为该第一QoS流;处理器410还用于:根据该第二数据包,将该第一数据包的反射映射指示字段的比特位设置为0。
可选的,在本申请的另一个实施例中,收发器430具体用于:接收该CU-CP发送的承载上下文建立请求,该承载上下文建立请求包括该第一信息。
可选的,在本申请的另一个实施例中,收发器430具体用于:接收该CU-CP发送的承载修改请求,该承载修改请求包括该第一信息。
可选的,在本申请的另一个实施例中,收发器430还用于:向该CU-CP发送第二信息,该第二信息用于指示该第一QoS流到该第一DRB的反射映射成功。
应注意,本申请实施例中,处理器410可以由处理模块实现,存储器420可以由存储模块实 现,收发器430可以由收发模块实现,如图14所示,通信装置500可以包括处理模块510、存储模块520和收发模块530。
图13所示的通信装置400或图14所示的通信装置500能够实现前述图4、图6至图8以及方法200各个实施例中CU-UP执行的步骤,类似的描述可以参考对方法的描述,为避免重复,这里不再赘述。
图15示出了本申请一个实施例的通信装置600的示意性框图。应理解,通信装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。图14所示的通信装置600可以用于执行对应于前述图4、图6至图8以及方法200各个实施例中CU-CP执行的步骤。如图15所示,该通信装置600包括:处理器610、存储器620和收发器630,处理器610、存储器620和收发器630通过通信连接,存储器620存储指令,处理器610用于执行存储器620存储的指令,收发器630用于在处理器610的驱动下执行具体的信号收发。
处理器610,用于生成第一信息,该第一信息用于指示集中式单元用户面节点CU-UP将第一数据包映射到第一数据无线承载DRB上以及设置该第一数据包的反射映射指示字段,该第一数据包所属的服务质量流QoS流为第一QoS流;
收发器630,用于向该CU-UP发送该第一信息。
本申请提供的通信装置,在CU-DU分离的基站架构下,CU-CP需要执行第一QoS流到第一DRB的映射时,通过向CU-UP发送第一信息,该第一信息用于指示CU-UP将第一数据包的数据映射到第一DRB上以及设置该第一数据包的反射映射指示字段。CU-UP根据该第一信息,将从核心网接收的第一数据包的反射映射指示字段设置后,在该第一DRB上向终端设备发送经设置反射映射指示字段后的第一数据包。实现了在CU-DU分离的场景下的第一QoS流到第一DRB的映射。使得CU-UP和终端设备都实现了QoS流到DRB的映射。保证了终端设备和CU-UP可以正确的进行数据的传输。提高通信的效率和稳定性。提高用户体验。
通信装置600中的各个组件通过通信连接,即处理器610、存储器620和收发器630之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是CPU,网络处理器NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本申请的另一个实施例中,该第一信息为该第一QoS流到该第一DRB的反射映射指示信息。
可选的,在本申请的另一个实施例中,收发器630具体用于:向该CU-UP发送承载上下文建立请求,该承载上下文建立请求包括该第一信息。
可选的,在本申请的另一个实施例中,收发器630具体用于:向该CU-UP发送承载修改请求,该承载修改请求包括该第一信息。
可选的,在本申请的另一个实施例中,收发器630还用于:接收该CU-UP发送的第二信息,该第二信息用于指示该第一QoS流到该第一DRB的反射映射成功。
应注意,在发明实施例中,处理器610可以由处理模块实现,存储器620可以由存储模块实现,收发器630可以由收发模块实现,如图16所示,通信装置700可以包括处理模块710、存储模块720和收发模块730。
图15所示的通信装置600或图16所示的通信装置700能够实现前述图4、图6至图8以及方法200各个实施例中CU-CP执行的步骤,类似的描述可以参考对方法的描述,为避免重复,这里不再赘述。
图17示出了本申请一个实施例的通信装置800的示意性框图。应理解,通信装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。图17所示的通信装置800可以用于执行对应于图9至图12以及方法300各个实施例中CU-UP执行的步骤。类似的描述可以参考对方法的描述,为避免重复,这里不再赘述。如图16所示,该通信装置800包括:处理器810、存储器820和收发器830,处理器810、存储器820和收发器830通过通信连接,存储器820存储指令,处理器810用于执行存储器820存储的指令,收发器830用于在处理器810的驱动下执行具体的信号收发。
收发器830,用于接收集中式单元控制面节点CU-CP发送的第三信息,该第三信息用于指示该CU-UP对第一数据包的传输性能进行检测,该第一数据包由第一服务质量流标识QFI或第一5G服务质量标识5QI指示;
处理器810,用于根据该第三信息,对该第一数据包的传输性能进行检测。
本申请提供的通信装置,在CU-DU分离的基站架构下,当CU-CP需要对终端设备的一个PDU会话中的第一QoS流的性能进行检测时,会向CU-UP发送第三信息,第三信息用于指示CU-UP对第一数据包(具有第一QoS流的数据包)的传输性能进行检测,该第一数据包由第一服务质量流标识QFI或第一5G服务质量标识5QI指示。CU-UP根据该第三信息,对该第一数据包的传输性能进行检测。实现了在CU-DU分离的基站架构下以5QI或者QFI为粒度的传输参数的测量,从而可以保证网络系统的正常运行,提高用户体验。
通信装置800中的各个组件通过通信连接,即处理器810、存储器820和收发器830之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是CPU,网络处理器NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本申请的另一个实施例中,收发器830还用于:向该CU-CP发送第四信息,该第四信息用于指示该第一数据包的传输性能是否满足传输性能指标,该第一数据包配置有该传输性能指标,该第三信息包括该传输性能指标。
可选的,在本申请的另一个实施例中,收发器830具体用于:向该CU-CP发送通知信息,该通知信息包括该第四信息。
可选的,在本申请的另一个实施例中,收发器830具体用于:向该CU-CP发送承载修改请求,该承载修改请求包括该第四信息。
可选的,在本申请的另一个实施例中,该第一数据包的传输性能指标包括:该第一数据包的延迟预算、该第一数据包的丢包率、上行保障速率比特GBR、下行GBR、上行最大GBR、下行最大GBR中的至少一个。
可选的,在本申请的另一个实施例中,该第三信息包括测量配置信息,该测量配置信息包括该第一数据包的传输性能参数和/或测量时间长度,收发器830还用于向该CU-CP发送第五信息,该第五信息包括对该第一数据包的传输性能检测的结果。
可选的,在本申请的另一个实施例中,该传输性能参数包括:该第一数据包的丢包率、该第一数据包的下行传输时延、该第一数据包的调度网络协议吞吐量、该第一数据包的数据量中的至少一个。
应注意,在发明实施例中,处理器810可以由处理模块实现,存储器820可以由存储模块实现,收发器830可以由收发模块实现,如图18所示,通信装置900可以包括处理模块910、存储模块920和收发模块930。
图17所示的通信装置800或图18所示的通信装置900能够实现前述图9至图12以及方法300各个实施例中CU-UP执行的步骤,类似的描述可以参考对方法的描述,为避免重复,这里不再赘述。
图19示出了本申请一个实施例的通信装置1000的示意性框图。应理解,通信装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。图19所示的通信装置1000可以用于执行对应于图9至图12以及方法300各个实施例中CU-CP执行的步骤。类似的描述可以参考对方法的描述,为避免重复,这里不再赘述。如图18所示,该通信装置1000包括:处理器1010、存储器1020和收发器1030,处理器1010、存储器1020和收发器1030通过通信连接,存储器1020存储指令,处理器1010用于执行存储器1020存储的指令,收发器1030用于在处理器1010的驱动下执行具体的信号收发。
处理器1010,用于生成第三信息,该第三信息用于指示集中式单元用户面节点CU-UP对第一数据包的传输性能进行检测,该第一数据包由第一服务质量流标识QFI或第一5G服务质量标识5QI指示;
收发器1030,用于向该CU-UP发送该第三信息。
本申请提供的通信装置,在CU-DU分离的基站架构下,当CU-CP需要对终端设备的一个PDU会话中的第一QoS流的性能进行检测时,会向CU-UP发送第三信息,第三信息用于指示CU-UP对第一数据包(具有第一QoS流的数据包)的传输性能进行检测,该第一数据包由第一服务质量流标识QFI或第一5G服务质量标识5QI指示。CU-UP根据该第三信息,对该第一数据包的传输性能进行检测。实现了在CU-DU分离的基站架构下以5QI或者QFI为粒度的传输参数的测量,从而可以保证网络系统的正常运行,提高用户体验。
通信装置1000中的各个组件通过通信连接,即处理器1010、存储器1020和收发器1030之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的 处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是CPU,网络处理器NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本申请的另一个实施例中,收发器1030还用于:接收该CU-UP发送的第四信息,该第四信息用于指示该第一数据包的传输性能是否满足传输性能指标,该第一数据包配置有该传输性能指标,该第三信息包括该传输性能指标。
可选的,在本申请的另一个实施例中,收发器1030具体用于:接收该CU-UP发送的通知信息,该通知信息包括该第四信息。
可选的,在本申请的另一个实施例中,收发器1030具体用于:接收该CU-UP发送的承载修改请求,该承载修改请求包括该第四信息。
可选的,在本申请的另一个实施例中,该第一数据包的传输性能指标包括:该第一数据包的延迟预算、该第一数据包的丢包率、上行保障速率比特GBR、下行GBR、上行最大GBR、下行最大GBR中的至少一个。
可选的,在本申请的另一个实施例中,该第三信息包括测量配置信息,该测量配置信息包括该第一数据包的传输性能参数和/或测量时间长度,收发器1030还用于:接收该CU-UP发送的第五信息,该第五信息包括该第一数据包的传输性能检测的结果。
可选的,在本申请的另一个实施例中,该传输性能参数包括:该第一数据包的丢包率、该第一数据包的下行传输时延、该第一数据包的调度网络协议吞吐量、该第一数据包的数据量中的至少一个。
应注意,在发明实施例中,处理器1010可以由处理模块实现,存储器1020可以由存储模块实现,收发器1030可以由收发模块实现,如图20所示,通信装置1100可以包括处理模块1110、存储模块1120和收发模块1130。
图19所示的通信装置1000或图20所示的通信装置1100能够实现前述图9至图12以及方法300各个实施例中CU-CP执行的步骤,类似的描述可以参考对方法的描述,为避免重复,这里不再赘述。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行本申请各个实施例的通信方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请实施例还提供了一种通信系统,该通信系统包括上述本申请实施例提供的通信装置,该通信系统可以完成本申请实施例提供的任一种通信方法。可以使得在CU-DU分离的基站架构中,实现第一QoS流到第一DRB的映射以及支持进行L2参数的测量。从而保障用户的数据可以顺利正常的传输,提升网络的稳定性,提高网络运行的质量,提高用户体验。应理解,该通信系统还可以包括其他通信设备,例如,终端设备、接入网设备以及DU等。本申请实施例对此不做限制。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元, 例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该终端内的芯片执行本申请任意一个实施例的通信方法。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端内的位于该芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述功率控制的方法的程序执行的集成电路。
本申请还提供了一种计算机程序产品,所述计算机程序产品包括指令,当所述指令被执行时,以使得CU-CP、CU-UP和DU执行对应于上述方法中的CU-CP、CU-UP和DU的操作。
应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
应理解,本文中术语“和/或”以及“A或B中的至少一种”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技 术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    集中式单元用户面节点CU-UP获取第一信息,所述第一信息用于指示所述CU-UP将第一数据包映射到第一数据无线承载DRB上以及设置所述第一数据包的反射映射指示字段,所述第一数据包所属的服务质量流QoS流为第一QoS流;
    所述CU-UP接收核心网设备发送的所述第一数据包;
    所述CU-UP设置所述第一数据包的反射映射指示字段;
    所述CU-UP在所述第一DRB上向终端设备发送设置所述映射字段后的所述第一数据包。
  2. 根据权利要求1所述的方法,其特征在于,所述CU-UP获取第一信息,包括:
    所述CU-UP接收集中式单元控制面节点CU-CP发送的所述第一信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述CU-UP设置所述第一数据包的反射映射指示字段,包括:
    所述CU-UP将所述第一数据包的反射映射指示字段的比特位设置为1。
  4. 根据权利要求1或2所述的方法,其特征在于,所述CU-UP设置所述第一数据包的反射映射指示字段,包括:
    所述CU-UP将所述第一数据包的反射映射指示字段的比特位设置为0。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一信息为所述第一QoS流到所述第一DRB的反射映射指示信息。
  6. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述CU-UP接收所述终端设备在所述第一DRB上发送的第二数据包,所述第二数据包所属的QoS流为所述第一QoS流;
    所述CU-UP根据所述第二数据包,将所述第一数据包的反射映射指示字段的比特位设置为0。
  7. 根据权利要求2所述的方法,其特征在于,所述CU-UP接收CU-CP发送的第一信息,包括:
    所述CU-UP接收所述CU-CP发送的承载上下文建立请求,所述承载上下文建立请求包括所述第一信息。
  8. 根据权利要求2所述的方法,其特征在于,所述CU-UP接收CU-CP发送的第一信息,包括:
    所述CU-UP接收所述CU-CP发送的承载修改请求,所述承载修改请求包括所述第一信息。
  9. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述CU-UP向所述CU-CP发送第二信息,所述第二信息用于指示所述第一QoS流到所述第一DRB的反射映射成功。
  10. 一种通信方法,其特征在于,包括:
    集中式单元控制面节点CU-CP生成第一信息,所述第一信息用于指示集中式单元用户面节点CU-UP将第一数据包映射到第一数据无线承载DRB上以及设置所述第一数据包的反射映射指示字段,所述第一数据包所属的服务质量流QoS流为第一QoS流;
    所述CU-CP向所述CU-UP发送所述第一信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信息为所述第一QoS流到所述第一DRB的反射映射指示信息。
  12. 根据权利要求10或11所述的方法,其特征在于,所述CU-CP向所述CU-UP发送所述第一信息,包括:
    所述CU-CP向所述CU-UP发送承载上下文建立请求,所述承载上下文建立请求包括所述第一 信息。
  13. 根据权利要求10或11所述的方法,其特征在于,所述CU-CP向所述CU-UP发送所述第一信息,包括:
    所述CU-CP向所述CU-UP发送承载修改请求,所述承载修改请求包括所述第一信息。
  14. 根据权利要求10至13中任一项所述的方法,且特征在于,所述方法还包括:
    所述CU-CP接收所述CU-UP发送的第二信息,所述第二信息用于指示所述第一QoS流到所述第一DRB的反射映射成功。
  15. 一种通信装置,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述处理器,用于获取第一信息,所述第一信息用于指示所述CU-UP将第一数据包映射到第一数据无线承载DRB上以及设置所述第一数据包的反射映射指示字段,所述第一数据包所属的服务质量流QoS流为第一QoS流;
    所述收发器,用于接收核心网设备发送的所述第一数据包;
    所述处理器还用于:设置所述第一数据包的反射映射指示字段;
    所述收发器还用于:在所述第一DRB上向终端设备发送设置所述映射字段后的所述第一数据包。
  16. 根据权利要求15所述的通信装置,其特征在于,所述收发器还用于:
    接收集中式单元控制面节点CU-CP发送的所述第一信息。
  17. 根据权利要求15或16所述的通信装置,其特征在于,所述处理器具体用于:
    所述CU-UP将所述第一数据包的反射映射指示字段的比特位设置为1。
  18. 根据权利要求15或16所述的通信装置,其特征在于,所述处理器具体用于:
    将所述第一数据包的反射映射指示字段的比特位设置为0。
  19. 根据权利要求15至18中任一项所述的通信装置,其特征在于,
    所述第一信息为所述第一QoS流到所述第一DRB的反射映射指示信息。
  20. 根据权利要求17所述的通信装置,其特征在于,所述收发器还用于:
    接收所述终端设备在所述第一DRB上发送的第二数据包,所述第二数据包所属的QoS流为所述第一QoS流;
    所述处理器还用于:根据所述第二数据包,将所述第一数据包的反射映射指示字段的比特位设置为0。
  21. 根据权利要求16所述的通信装置,其特征在于,所述收发器具体用于:
    接收所述CU-CP发送的承载上下文建立请求,所述承载上下文建立请求包括所述第一信息。
  22. 根据权利要求16所述的通信装置,其特征在于,所述收发器具体用于:
    接收所述CU-CP发送的承载修改请求,所述承载修改请求包括所述第一信息。
  23. 根据权利要求20所述的通信装置,其特征在于,所述收发器还用于:
    向所述CU-CP发送第二信息,所述第二信息用于指示所述第一QoS流到所述第一DRB的反射映射成功。
  24. 一种通信装置,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述处理器,用于生成第一信息,所述第一信息用于指示集中式单元用户面节点CU-UP将第一数据包映射到第一数据无线承载DRB上以及设置所述第一数据包所属的反射映射指示字段,所述第一数据包所属的服务质量流QoS流为第一QoS流;
    所述收发器,用于向所述CU-UP发送所述第一信息。
  25. 根据权利要求24所述的通信装置,其特征在于,所述第一信息为所述第一QoS流到所述第一DRB的反射映射指示信息。
  26. 根据权利要求24或25所述的通信装置,其特征在于,所述收发器具体用于:
    向所述CU-UP发送承载上下文建立请求,所述承载上下文建立请求包括所述第一信息。
  27. 根据权利要求24或25所述的通信装置,其特征在于,所述收发器具体用于:
    向所述CU-UP发送承载修改请求,所述承载修改请求包括所述第一信息。
  28. 根据权利要求24至27中任一项所述的通信装置,其特征在于,所述收发器还用于:
    接收所述CU-UP发送的第二信息,所述第二信息用于指示所述第一QoS流到所述第一DRB的反射映射成功。
  29. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序用于执行根据权利要求1至14中任一项所述的通信方法的指令。
  30. 一种系统芯片,包括处理单元和通信单元,该处理单元可执行计算机指令,以使该系统芯片执行根据权利要求1至14中任一项所述的通信方法。
PCT/CN2018/096589 2018-04-04 2018-07-23 通信方法和装置 WO2019192104A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3094110A CA3094110C (en) 2018-04-04 2018-07-23 Communication method and apparatus
RU2020135998A RU2771065C1 (ru) 2018-04-04 2018-07-23 Способ связи и устройство
ES18913408T ES2937935T3 (es) 2018-04-04 2018-07-23 Método y aparato de comunicación
JP2020554201A JP7150045B2 (ja) 2018-04-04 2018-07-23 通信方法及び装置
BR112020019478-6A BR112020019478B1 (pt) 2018-04-04 2018-07-23 Método de comunicação, aparelho de comunicação e meio de armazenamento legível por computador
EP18913408.3A EP3764578B1 (en) 2018-04-04 2018-07-23 Communication method and device
US17/039,489 US11665577B2 (en) 2018-04-04 2020-09-30 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810299596.8 2018-04-04
CN201810299596.8A CN110351043A (zh) 2018-04-04 2018-04-04 通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/039,489 Continuation US11665577B2 (en) 2018-04-04 2020-09-30 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2019192104A1 true WO2019192104A1 (zh) 2019-10-10

Family

ID=65474821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096589 WO2019192104A1 (zh) 2018-04-04 2018-07-23 通信方法和装置

Country Status (9)

Country Link
US (1) US11665577B2 (zh)
EP (1) EP3764578B1 (zh)
JP (1) JP7150045B2 (zh)
CN (2) CN110351043A (zh)
BR (1) BR112020019478B1 (zh)
CA (1) CA3094110C (zh)
ES (1) ES2937935T3 (zh)
RU (1) RU2771065C1 (zh)
WO (1) WO2019192104A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022134697A1 (zh) * 2020-12-25 2022-06-30 浪潮软件科技有限公司 一种接口数据的交互方法、分布式单元以及中心单元
EP4176596A4 (en) * 2020-08-06 2024-03-13 ZTE Corporation SIGNAGE FOR MULTICAST SERVICES

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574667B (zh) * 2017-03-09 2021-01-15 华为技术有限公司 一种业务流的控制方法及装置
KR102385420B1 (ko) * 2017-06-15 2022-04-12 삼성전자 주식회사 차세대 이동 통신 시스템에서 네트워크 요청 기반 버퍼 상태 보고를 처리하는 방법 및 장치
JP7263361B2 (ja) * 2018-01-11 2023-04-24 サムスン エレクトロニクス カンパニー リミテッド サービス性能の監視および報告
WO2019193553A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Qos flow management over e1
CN110381535B (zh) * 2018-04-12 2022-04-29 中兴通讯股份有限公司 传输控制方法及装置
CN110972191B (zh) * 2018-09-28 2023-07-14 中兴通讯股份有限公司 数据的传输、发送方法,装置以及数据的传输系统
WO2020164051A1 (en) * 2019-02-14 2020-08-20 Zte Corporation Method and apparatus for minimization of drive tests
CN111726302A (zh) * 2019-03-19 2020-09-29 中国移动通信有限公司研究院 流映射方法、RB的QoS参数的设置方法及传输节点
CN113632534A (zh) * 2019-03-26 2021-11-09 中兴通讯股份有限公司 用于监控性能的方法及装置
CN111954269B (zh) * 2019-05-15 2022-11-01 华为技术有限公司 一种承载修改方法及接入网设备
CN117544919A (zh) * 2019-08-07 2024-02-09 华为技术有限公司 通信方法、建立slrb的方法和通信装置
EP4012958A4 (en) * 2019-08-14 2022-08-31 Huawei Technologies Co., Ltd. COMMUNICATION PROCESS AND ASSOCIATED MECHANISM
CN112752297B (zh) * 2019-10-31 2022-11-22 华为技术有限公司 一种通信方法及设备
CN110798410B (zh) * 2019-11-06 2023-01-31 中国联合网络通信集团有限公司 一种流量分配方法和装置
CN112996043A (zh) * 2019-12-16 2021-06-18 中国移动通信有限公司研究院 一种通信设备的层间映射方法及设备
US20230053835A1 (en) * 2020-02-03 2023-02-23 Lg Electronics Inc. Method and apparatus for multicast transmission with separation of cp and up in a wireless communication system
CN113271551B (zh) * 2020-02-17 2022-07-05 大唐移动通信设备有限公司 一种数据流传输方法、终端和网络侧设备
CN113676947A (zh) * 2020-05-13 2021-11-19 华为技术有限公司 通信方法和装置
CN114071566B (zh) * 2020-08-06 2024-06-04 中国电信股份有限公司 下行QoS流向DRB映射的方法、映射装置和存储介质
WO2022052129A1 (zh) * 2020-09-14 2022-03-17 华为技术有限公司 一种可靠性测量方法、装置及系统
CN112235833B (zh) * 2020-10-14 2023-06-02 中国联合网络通信集团有限公司 数据流参数动态配置方法、会话管理功能实体
CN112533243B (zh) * 2020-12-25 2023-05-26 中国联合网络通信集团有限公司 一种时延上报方法及装置
WO2022213836A1 (zh) * 2021-04-09 2022-10-13 华为技术有限公司 一种通信方法及设备
US20230016194A1 (en) * 2021-07-15 2023-01-19 Qualcomm Incorporated Modifying a configuration of a radio bearer based on a request for quality of service (qos) for a communication flow
WO2024014857A1 (en) * 2022-07-12 2024-01-18 Samsung Electronics Co., Ltd. Methods and systems for handling slice aware cell reselection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571901A (zh) * 2015-10-13 2017-04-19 华为技术有限公司 媒体接入控制实体创建的方法、设备及系统
CN107426776A (zh) * 2016-05-24 2017-12-01 华为技术有限公司 QoS控制方法及设备

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433314B2 (en) * 2004-06-01 2008-10-07 Samsung Electronics Co., Ltd. Method and system for acknowledging the receipt of a transmitted data stream in a wireless personal area network
CN102036316A (zh) * 2009-09-24 2011-04-27 中兴通讯股份有限公司 一种通知终端承载建立失败的方法及系统
US8711699B2 (en) * 2011-10-31 2014-04-29 Amazon Technologies, Inc. Prioritizing application data for transmission in a wireless user device
CN104041098A (zh) 2012-01-11 2014-09-10 交互数字专利控股公司 用于ieee 802.11网络的sta和接入点之间的加速的链路设置的方法和装置
CN104137605A (zh) * 2012-11-15 2014-11-05 华为技术有限公司 数据传输的方法、用户设备和基站
CN104796948B (zh) * 2014-01-21 2018-06-19 普天信息技术有限公司 双连接网络中的无线承载修改方法及系统
CN104363598B (zh) 2014-11-25 2018-03-23 电信科学技术研究院 一种drb映射方法及装置
US10070461B2 (en) * 2015-05-15 2018-09-04 Mediatek Inc. QoS provisioning for LTE-WLAN aggregation
KR102106134B1 (ko) 2015-05-15 2020-05-04 주식회사 케이티 단말의 무선연결 구성방법 및 그 장치
WO2017030420A1 (en) * 2015-08-19 2017-02-23 Samsung Electronics Co., Ltd. Method and wireless communication system for handling offloading of drbs to wlan carrier
CN107295575B (zh) * 2016-04-01 2020-02-28 中兴通讯股份有限公司 一种服务质量的控制方法和装置
CN107580371A (zh) * 2016-07-04 2018-01-12 中兴通讯股份有限公司 信息、数据发送方法及装置、接入网和系统
KR102499481B1 (ko) * 2016-08-01 2023-02-14 삼성전자 주식회사 무선 통신 네트워크에서 데이터 통신을 관리하는 방법 및 장치
US10524181B2 (en) * 2016-08-03 2019-12-31 Samsung Electronics Co., Ltd. Method for cell reselection in idle mode for next generation mobile communication systems
CN107734546B (zh) * 2016-08-12 2022-10-28 中兴通讯股份有限公司 用户面数据的映射方法、装置及系统
US10439682B2 (en) 2016-08-19 2019-10-08 FG Innovation Company Limited Access mechanism for proximity-based service UE-to-network relay service
WO2018038664A1 (en) * 2016-08-24 2018-03-01 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device and methods therein for mapping data packets to radio bearers in a wireless communications network
WO2018084795A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Reflective mapping of flows to radio bearers
US10993136B2 (en) * 2017-02-01 2021-04-27 Lg Electronics Inc. Method for performing reflective quality of service (QoS) in wireless communication system and a device therefor
WO2018144855A1 (en) * 2017-02-03 2018-08-09 Intel IP Corporation Quality of service flow to data radio bearer mapping override bit
US20180324631A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Using sdap headers for handling of as/nas reflective qos and to ensure in-sequence packet delivery during remapping in 5g communication systems
CN108811153A (zh) 2017-05-05 2018-11-13 华为技术有限公司 通信方法、集中式单元、分布式单元、基站及终端设备
CN108810977B (zh) * 2017-05-05 2022-03-25 捷开通讯(深圳)有限公司 一种通信方法、通信设备及具有存储功能的设备
KR102355678B1 (ko) * 2017-05-08 2022-01-26 삼성전자 주식회사 이동 통신 시스템에서의 QoS(Quality Of Service) Flow의 설정 방법 및 장치
US10798754B2 (en) * 2017-07-24 2020-10-06 Asustek Computer Inc. Method and apparatus for serving quality of service (QOS) flow in a wireless communication system
RU2744016C1 (ru) * 2017-08-09 2021-03-02 ЗедТиИ КОРПОРЕЙШН Реализации качества обслуживания для отделения плоскости пользователя
CN107302777A (zh) * 2017-08-28 2017-10-27 北京北方烽火科技有限公司 一种通信切换方法及装置
SG11201911547PA (en) * 2017-09-22 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Information indication method, terminal, and computer storage medium
CN109587738B (zh) * 2017-09-28 2022-04-22 捷开通讯(深圳)有限公司 一种通信方法、通信设备及具有存储功能的设备
EP3738393B1 (en) * 2018-01-09 2021-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Pdcp duplication configuration over e1
CN110892749A (zh) * 2018-02-14 2020-03-17 Lg电子株式会社 用于修改映射规则的方法和设备
CN111937432A (zh) * 2018-02-15 2020-11-13 瑞典爱立信有限公司 在ran和5gc之间提供qfi协调的方法以及相关无线终端、基站和核心网络节点
US11153271B2 (en) * 2018-02-16 2021-10-19 Apple Inc. Managing bearers in a radio access network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571901A (zh) * 2015-10-13 2017-04-19 华为技术有限公司 媒体接入控制实体创建的方法、设备及系统
CN107426776A (zh) * 2016-05-24 2017-12-01 华为技术有限公司 QoS控制方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC: "Discussion on DRB modification procedure", 3GPP TSG-RAN WG3 #99 R3-181071, 2 March 2018 (2018-03-02), XP051401579 *
See also references of EP3764578A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4176596A4 (en) * 2020-08-06 2024-03-13 ZTE Corporation SIGNAGE FOR MULTICAST SERVICES
WO2022134697A1 (zh) * 2020-12-25 2022-06-30 浪潮软件科技有限公司 一种接口数据的交互方法、分布式单元以及中心单元

Also Published As

Publication number Publication date
JP7150045B2 (ja) 2022-10-07
BR112020019478B1 (pt) 2022-08-16
ES2937935T3 (es) 2023-04-03
BR112020019478A2 (pt) 2020-12-29
EP3764578A1 (en) 2021-01-13
JP2021521671A (ja) 2021-08-26
CA3094110C (en) 2023-03-21
CA3094110A1 (en) 2019-10-10
CN109412771A (zh) 2019-03-01
RU2771065C1 (ru) 2022-04-26
US20210014722A1 (en) 2021-01-14
US11665577B2 (en) 2023-05-30
CN110351043A (zh) 2019-10-18
EP3764578A4 (en) 2021-05-12
EP3764578B1 (en) 2022-11-23
CN109412771B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2019192104A1 (zh) 通信方法和装置
US11696202B2 (en) Communication method, base station, terminal device, and system
US11778493B2 (en) Data collection method, device, and system
JP6635044B2 (ja) 無線リソース制御システム、無線基地局、中継装置、無線リソース制御方法およびプログラム
EP2999261B1 (en) Policy and charging rules entity, wireless communications method and wireless communications system
US11522803B2 (en) Method and apparatus for handling packet delay budget division and quality of service monitoring in a communication system
CN106162728B (zh) 一种接入网间数据传输时延的测量和上报方法及终端
US11432205B2 (en) Data transmission method, communications apparatus, and user plane function entity
US9531606B2 (en) Packet measurements and reporting in wireless network
WO2016155292A1 (zh) 一种获取接入技术网络间传输时延的方法及装置
KR20210010629A (ko) 서비스 품질 모니터링 방법 및 시스템, 및 디바이스
US11824783B2 (en) Maximum data burst volume (MDBV) determining method, apparatus, and system
WO2021056589A1 (zh) 一种数据传输方法及装置
KR20200119309A (ko) Pdcp 복제의 트리거링이 제어되는 nr 사용자 평면 시그널링
US20240015580A1 (en) Communication control method
WO2018058372A1 (zh) 无线通信的方法、终端设备和接入网设备
WO2022151107A1 (zh) 信号的发送和接收方法、装置和通信系统
WO2022153989A1 (ja) 通信制御方法
US20230379233A1 (en) Packet Loss Rate Detection Method, Communication Apparatus, and Communication System
WO2022204988A1 (zh) 无线通信方法、终端设备和网络设备
WO2024032211A1 (zh) 一种拥塞控制方法以及装置
CN114616912A (zh) 数据传输方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3094110

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020554201

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018913408

Country of ref document: EP

Effective date: 20201008

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019478

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020019478

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200925