WO2019192034A1 - 一种信息传输方法和设备 - Google Patents

一种信息传输方法和设备 Download PDF

Info

Publication number
WO2019192034A1
WO2019192034A1 PCT/CN2018/083623 CN2018083623W WO2019192034A1 WO 2019192034 A1 WO2019192034 A1 WO 2019192034A1 CN 2018083623 W CN2018083623 W CN 2018083623W WO 2019192034 A1 WO2019192034 A1 WO 2019192034A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
field
subcarriers
resource allocation
allocated
Prior art date
Application number
PCT/CN2018/083623
Other languages
English (en)
French (fr)
Inventor
赵越
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18913708.6A priority Critical patent/EP3761543B1/en
Priority to KR1020207029921A priority patent/KR102430394B1/ko
Priority to JP2020554138A priority patent/JP7062080B2/ja
Priority to BR112020019930-3A priority patent/BR112020019930A2/pt
Priority to CN201880091790.5A priority patent/CN112292824B/zh
Publication of WO2019192034A1 publication Critical patent/WO2019192034A1/zh
Priority to US17/063,247 priority patent/US11477777B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2035Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using a single or unspecified number of carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to an information transmission method and device.
  • Machine type communication refers to the acquisition of information about the physical world by deploying various devices with certain sensing, computing, execution, and communication capabilities, and realizes information transmission, coordination, and processing through the network.
  • MTC Machine type communication
  • LTE long term evolution
  • the minimum unit for resource allocation for a physical uplink shared channel is one resource block.
  • PUSCH physical uplink shared channel
  • the embodiment of the present application provides an information transmission method and device, which can implement the situation on the network side as much as possible, and avoid waste of transmission resources.
  • an embodiment of the present application provides a method for information transmission, including:
  • the terminal device receives the downlink control information sent by the network device, where the downlink control information includes a resource allocation field, where the resource allocation field is used to indicate the allocated resource block or subcarrier resource;
  • the resource allocation field When the resource allocation field is used to indicate the allocated resource block, the resource allocation field includes a high Bits and low M+X bits, the high The bits indicate a narrowband index, the high M bits of the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, and M is a positive integer, X Is an integer greater than or equal to 0, Indicates the number of resource blocks included in the upstream bandwidth; or,
  • the resource allocation field When the resource allocation field is used to indicate the allocated subcarrier resource, the resource allocation field includes a high Bits and low L bits, the high The bits indicate a narrowband index, the low L bits indicate allocation of subcarrier resources within the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, L is a positive integer, and K is a positive integer;
  • the terminal device determines the allocated resource according to the downlink control information, and sends the information on the allocated resource.
  • the network device indicates that the resource block or the subcarrier resource is allocated to the terminal device by using different values of the bit state included in the resource allocation field, and the resource allocation field is used to indicate the allocated resource block, and the resource allocation is performed.
  • Fields include high Bits and low M+X bits, high The bits indicate a narrowband index, the high M bits of the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, and the resource allocation field is used to indicate the allocated sub- When the carrier resource is used, the resource allocation field contains high Bits and low L bits, high The bits indicate the narrowband index, and the low L bits indicate the allocation of the subcarrier resources in the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, so that resources capable of supporting allocation of less than 12 subcarriers can be effectively implemented. The resources are allocated to more UEs, which improves the efficiency of spectrum utilization.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the downlink control information further includes a first field, where the size of the first field is 2 bits;
  • the three types of bit states in the first field respectively indicate three different resource unit numbers, and/or one bit status in the first field indicates that the resource allocation field is used to indicate the allocated resource block. ;
  • the resource allocation field indicates allocation of the subcarrier resources.
  • the resource allocation field indicates the allocation of the subcarrier resources, that is, the terminal device can determine that the network device allocates to the terminal according to the bit state of the resource allocation field. Subcarrier resource of the device.
  • the 00 bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block; or,
  • the 11-bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block.
  • the downlink control information further includes a second field, where the second field indicates The terminal device uses the three subcarriers for information transmission, or uses two consecutive subcarriers of the three subcarriers for information transmission; or
  • the downlink control information further includes a third field, where the third field indicates a modulation method for information transmission of a terminal device, where the modulation method is Pi/2BPSK modulation, and information is transmitted by using two consecutive subcarriers of the three subcarriers, the modulation mode is quadrature phase shift keying QPSK In modulation, the three subcarriers are used for information transmission, wherein Pi represents a rotation angle of 90 degrees; or
  • the subcarrier index of the 2 subcarriers in the associated resource block is ⁇ 0, 1 ⁇ +H, ⁇ 3,4 ⁇ +H, ⁇ 6,7 ⁇ +H, or ⁇ 9,10 ⁇ +H, where H is a value determined according to the cell identity, and the value of H is equal to 0 or 1; or,
  • the subcarrier index of the 2 subcarriers in the belonging resource block is ⁇ 0, 1 ⁇ +H, ⁇ 3,4 ⁇ +H, ⁇ 6,7 ⁇ +H, or ⁇ 9,10 ⁇ +H, where H is a value determined according to the cell identity, and the value of H is equal to 0 or 1.
  • the downlink control information may further carry the second field or the third field, and the terminal device may further indicate, by using the second field, that the terminal device uses three subcarriers for information transmission, or uses two consecutive ones of the three subcarriers.
  • the subcarrier performs information transmission, or the terminal device may determine the modulation mode of the information transmission by using the third field.
  • the modulation mode may include: Pi/2BPSK modulation or QPSK modulation, so that the terminal device may transmit the information according to the modulation mode indicated by the network device. .
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the downlink control information further includes a fourth field, where the size of the fourth field is 1 bit;
  • the resource allocation field is used to indicate the allocated resource block
  • the resource allocation field is used to indicate the allocated subcarrier resource.
  • the terminal device may determine, by using a value of a bit state of the fourth field, that the resource allocation field is used to indicate whether the allocated resource block resource is used to allocate a subcarrier resource.
  • the downlink control information further includes a fifth field, where the fifth field size is 1 bit, and the fifth field indicates the number of resource units.
  • the embodiment of the present application further provides a method for information transmission, including:
  • the network device determines to allocate a resource block or a subcarrier resource to the terminal device
  • the resource allocation field When the resource allocation field is used to indicate the allocated resource block, the resource allocation field includes a high Bits and low M+X bits, the high The bits indicate a narrowband index, the high M bits of the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, and M is a positive integer, X Is an integer greater than or equal to 0, Indicates the number of resource blocks included in the upstream bandwidth; or,
  • the resource allocation field When the resource allocation field is used to indicate the allocated subcarrier resource, the resource allocation field includes a high Bits and low L bits, the high The bits indicate a narrowband index, the low L bits indicate allocation of subcarrier resources within the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, L is a positive integer, and K is a positive integer;
  • the network device receives information sent by the terminal device on a resource determined by the downlink control information.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the downlink control information further includes a first field, where the size of the first field is 2 bits;
  • the three types of bit states in the first field respectively indicate three different resource unit numbers, and/or one bit status in the first field indicates that the resource allocation field is used to indicate the allocated resource block. ;
  • the resource allocation field indicates allocation of the subcarrier resources.
  • the 00 bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block; or,
  • the 11-bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block.
  • the downlink control information further includes a second field, where the second field indicates The terminal device uses the three subcarriers for information transmission, or uses two consecutive subcarriers of the three subcarriers for information transmission; or
  • the downlink control information further includes a third field, where the third field indicates a modulation method for information transmission of a terminal device, where the modulation method is Pi/2BPSK modulation, and information is transmitted by using two consecutive subcarriers of the three subcarriers, the modulation mode is quadrature phase shift keying QPSK In modulation, the three subcarriers are used for information transmission, wherein Pi/2 represents a rotation angle of 90 degrees; or
  • the subcarrier index of the 2 subcarriers in the associated resource block is ⁇ 0, 1 ⁇ +H, ⁇ 3,4 ⁇ +H, ⁇ 6,7 ⁇ +H, or ⁇ 9,10 ⁇ +H, where H is a value determined according to the cell identity, and the value of H is equal to 0 or 1; or,
  • the subcarrier index of the 2 subcarriers in the belonging resource block is ⁇ 0, 1 ⁇ +H, ⁇ 3,4 ⁇ +H, ⁇ 6,7 ⁇ +H, or ⁇ 9,10 ⁇ +H, where H is a value determined according to the cell identity, and the value of H is equal to 0 or 1.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the downlink control information further includes a fourth field, where the size of the fourth field is 1 bit;
  • the resource allocation field is used to indicate the allocated resource block
  • the resource allocation field is used to indicate the allocated subcarrier resource.
  • the downlink control information further includes a fifth field, where the fifth field size is 1 bit, and the fifth field indicates the number of resource units.
  • the embodiment of the present application further provides a terminal device, including:
  • a receiving module configured to receive downlink control information that is sent by the network device, where the downlink control information includes a resource allocation field, where the resource allocation field is used to indicate the allocated resource block or subcarrier resource;
  • the resource allocation field When the resource allocation field is used to indicate the allocated resource block, the resource allocation field includes a high Bits and low M+X bits, the high The bits indicate a narrowband index, the high M bits of the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, and M is a positive integer, X Is an integer greater than or equal to 0, Indicates the number of resource blocks included in the upstream bandwidth; or,
  • the resource allocation field When the resource allocation field is used to indicate the allocated subcarrier resource, the resource allocation field includes a high Bits and low L bits, the high The bits indicate a narrowband index, the low L bits indicate allocation of subcarrier resources within the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, L is a positive integer, and K is a positive integer;
  • a processing module configured to determine, according to the downlink control information, an allocated resource
  • a sending module configured to send information on the allocated resource.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the downlink control information further includes a first field, where the size of the first field is 2 bits;
  • the three types of bit states in the first field respectively indicate three different resource unit numbers, and/or one bit status in the first field indicates that the resource allocation field is used to indicate the allocated resource block. ;
  • the resource allocation field indicates allocation of the subcarrier resources.
  • the 00 bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block; or,
  • the 11-bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block.
  • the downlink control information further includes a second field, where the second field indicates The terminal device uses the three subcarriers for information transmission, or uses two consecutive subcarriers of the three subcarriers for information transmission; or
  • the downlink control information further includes a third field, where the third field indicates a modulation method for information transmission of a terminal device, where the modulation method is Pi/2BPSK modulation, and information is transmitted by using two consecutive subcarriers of the three subcarriers, the modulation mode is quadrature phase shift keying QPSK In modulation, the three subcarriers are used for information transmission, wherein Pi/2 represents a rotation angle of 90 degrees; or
  • the subcarrier index of the 2 subcarriers in the associated resource block is ⁇ 0, 1 ⁇ +H, ⁇ 3,4 ⁇ +H, ⁇ 6,7 ⁇ +H, or ⁇ 9,10 ⁇ +H, where H is a value determined according to the cell identity, and the value of H is equal to 0 or 1; or,
  • the subcarrier index of the 2 subcarriers in the belonging resource block is ⁇ 0, 1 ⁇ +H, ⁇ 3,4 ⁇ +H, ⁇ 6,7 ⁇ +H, or ⁇ 9,10 ⁇ +H, where H is a value determined according to the cell identity, and the value of H is equal to 0 or 1.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the downlink control information further includes a fourth field, where the size of the fourth field is 1 bit;
  • the resource allocation field is used to indicate the allocated resource block
  • the resource allocation field is used to indicate the allocated subcarrier resource.
  • the downlink control information further includes a fifth field, where the fifth field size is 1 bit, and the fifth field indicates the number of resource units.
  • the constituent modules of the terminal device may also perform the steps described in the foregoing first aspect and various possible implementations, as described in the foregoing for the first aspect and various possible implementations. Description.
  • the embodiment of the present application further provides a network device, including:
  • a processing module configured to determine, to allocate a resource block or a subcarrier resource to the terminal device
  • a processing module configured to determine downlink control information, where the downlink control information includes a resource allocation field, where the resource allocation field is used to indicate the allocated resource block or subcarrier resource;
  • the resource allocation field When the resource allocation field is used to indicate the allocated resource block, the resource allocation field includes a high Bits and low M+X bits, the high The bits indicate a narrowband index, the high M bits of the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, and M is a positive integer, X Is an integer greater than or equal to 0, Indicates the number of resource blocks included in the upstream bandwidth; or,
  • the resource allocation field When the resource allocation field is used to indicate the allocated subcarrier resource, the resource allocation field includes a high Bits and low L bits, the high The bits indicate a narrowband index, the low L bits indicate allocation of subcarrier resources within the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, L is a positive integer, and K is a positive integer;
  • a sending module configured to send downlink control information to the terminal device
  • a receiving module configured to receive information sent by the terminal device on the resource determined by the downlink control information.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the downlink control information further includes a first field, where the size of the first field is 2 bits;
  • the three types of bit states in the first field respectively indicate three different resource unit numbers, and/or one bit status in the first field indicates that the resource allocation field is used to indicate the allocated resource block. ;
  • the resource allocation field indicates allocation of the subcarrier resources.
  • the 00 bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block; or,
  • the 11-bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block.
  • the downlink control information further includes a second field, where the second field indicates The terminal device uses the three subcarriers for information transmission, or uses two consecutive subcarriers of the three subcarriers for information transmission; or
  • the downlink control information further includes a third field, where the third field indicates a modulation method for information transmission of a terminal device, where the modulation method is Pi/2BPSK modulation, and information is transmitted by using two consecutive subcarriers of the three subcarriers, the modulation mode is quadrature phase shift keying QPSK In modulation, the three subcarriers are used for information transmission, wherein Pi/2 represents a rotation angle of 90 degrees; or
  • the subcarrier index of the 2 subcarriers in the associated resource block is ⁇ 0, 1 ⁇ +H, ⁇ 3,4 ⁇ +H, ⁇ 6,7 ⁇ +H, or ⁇ 9,10 ⁇ +H, where H is a value determined according to the cell identity, and the value of H is equal to 0 or 1; or,
  • the subcarrier index of the 2 subcarriers in the belonging resource block is ⁇ 0, 1 ⁇ +H, ⁇ 3,4 ⁇ +H, ⁇ 6,7 ⁇ +H, or ⁇ 9,10 ⁇ +H, where H is a value determined according to the cell identity, and the value of H is equal to 0 or 1.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the downlink control information further includes a fourth field, where the size of the fourth field is 1 bit;
  • the resource allocation field is used to indicate the allocated resource block
  • the resource allocation field is used to indicate the allocated subcarrier resource.
  • the downlink control information further includes a fifth field, where the fifth field size is 1 bit, and the fifth field indicates the number of resource units.
  • the component modules of the network device may also perform the steps described in the foregoing second aspect and various possible implementations, as described above in the second aspect and various possible implementations. Description.
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • an embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • the embodiment of the present application provides a communication device, where the communication device may include a terminal device or an entity such as a network device or a chip, the communication device includes: a processor and a memory; the memory is configured to store an instruction; The processor is operative to execute the instructions in the memory, such that the communication device performs the method of any of the preceding or second aspects.
  • the present application provides a chip system including a processor for supporting a network device or a terminal device to implement the functions involved in the foregoing aspects, such as, for example, transmitting or processing data involved in the above method. And / or information.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of a system for transmitting an information according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of interaction between a terminal device and a network device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic block diagram of a method for transmitting information according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of another information transmission method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • the embodiment of the present application provides an information transmission method and device, which can implement the situation on the network side as much as possible, and avoid waste of transmission resources.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • FDMA single carrier frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • FDMA single carrier frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA can be replaced with "network”.
  • a CDMA system can implement wireless technologies such as universal terrestrial radio access (UTRA), CDMA2000, and the like.
  • UTRA may include wideband CDMA (WCDMA) technology and other CDMA variant technologies.
  • CDMA2000 can cover the interim standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement a wireless technology such as a global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • An OFDMA system can implement such as evolved universal radio land access (evolved UTRA, E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • the various versions of 3GPP in long term evolution (LTE) and LTE-based evolution are new versions of UMTS that use E-UTRA.
  • LTE long term evolution
  • LTE-based evolution are new versions of UMTS that use E-UTRA.
  • the fifth generation (5G) communication system and New Radio (NR) are the next generation communication systems under study.
  • the communication system can also be applied to future-oriented communication.
  • the technical solutions provided by the embodiments of the present invention are applicable to the technical solutions.
  • the system architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems, as the network architecture evolves and new service scenarios arise.
  • FIG. 1 is a schematic structural diagram of a possible radio access network (RAN) according to an embodiment of the present application.
  • the RAN may be a base station access system of a 2G network (ie, the RAN includes a base station and a base station controller), or may be a base station access system of a 3G network (ie, the RAN includes a base station and an RNC), or may be 4G.
  • the base station access system of the network ie, the RAN includes an eNB and an RNC
  • the RAN includes one or more network devices.
  • the network device may be any device having a wireless transceiver function, or a chip disposed in a device of a specific wireless transceiver function.
  • the network device includes but is not limited to: a base station (for example, a base station BS, a base station NodeB, an evolved base station eNodeB or eNB, a base station gNodeB or gNB in a fifth generation 5G communication system, a base station in a future communication system, and a connection in a WiFi system) Ingress node, wireless relay node, wireless backhaul node, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, and the like.
  • a plurality of base stations may support a network of one or more of the techniques mentioned above, or a future evolved network.
  • the core network may support the above mentioned network of one or more technologies, or a future evolved network.
  • the base station may include one or more co-site or non-co-located transmission receiving points (TRPs).
  • the network device may also be a wireless controller, a centralized unit (CU), or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the network device can also be a server, a wearable device, or an in-vehicle device.
  • the following uses a network device as a base station as an example for description.
  • the multiple network devices may be the same type of base station or different types of base stations.
  • the base station can communicate with the terminal device 1-6 or with the terminal device 1-6 via the relay station.
  • the terminal device 1-6 can support communication with multiple base stations of different technologies.
  • the terminal device can support communication with a base station supporting the LTE network, can also support communication with a base station supporting the 5G network, and can also support a base station with the LTE network.
  • dual connectivity of base stations of a 5G network For example, the terminal is connected to a radio access network (RAN) node of the wireless network.
  • RAN radio access network
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and Node B (Node).
  • B, NB base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit , BBU), or wireless fidelity (Wifi) access point (AP).
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the terminal device 1-6 which is also called a user equipment (UE), a mobile station (MS), a mobile terminal (MT), a terminal, etc., is a voice and/or A data connectivity device, or a chip disposed in the device, for example, a handheld device having an wireless connection capability, an in-vehicle device, or the like.
  • terminal devices are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, enhancements.
  • Augmented reality (AR) equipment wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid A wireless terminal in a wireless terminal, a wireless terminal in a transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, or the like.
  • AR Augmented reality
  • the base station and the UE1 to the UE6 form a communication system, in which the base station sends one or more of the system information, the RAR message, and the paging message to one or more of the UE1 to the UE6.
  • UEs, in addition, UE4 to UE6 also form a communication system, in which UE5 can be implemented as a function of a base station, and UE5 can send one or more of system information, control information, and paging messages to UE4 and One or more UEs in UE6.
  • FIG. 2 is a schematic diagram of an interaction process between a network device and a terminal device according to an embodiment of the present application.
  • the method for transmitting information provided by the embodiment of the present application mainly includes the following steps.
  • the network device determines to allocate a resource block or a subcarrier resource to the terminal device.
  • the network device may allocate a resource block when the terminal device performs resource allocation, that is, allocate resources in a minimum unit of one resource block, and the network device may also allocate subcarrier resources to the terminal device, that is, in a minimum unit. Resource allocation for 1 subcarrier. For example, the network device may determine to allocate resources in units of resource blocks or subcarrier resources according to the current network load. For example, in the embodiment of the present invention, when the network device uses the Downlink Control Information (DCI) format 6-0A to allocate resources to the Physical Uplink Shared Channel (PUSCH), the minimum unit may be 1.
  • DCI Downlink Control Information
  • PUSCH Physical Uplink Shared Channel
  • the resource blocks are also capable of supporting allocation of resources of less than 12 subcarriers, thus improving the spectral efficiency of the PUSCH.
  • the network device determines downlink control information, where the downlink control information includes a resource allocation field, where the resource allocation field is used to indicate the allocated resource block or subcarrier resource.
  • the network device may use the resource block as a unit for the resource allocation of the terminal device, or may use the sub-carrier as a unit, and the network device may indicate the specific resource allocation by using the resource allocation field included in the downlink control information. .
  • the resource allocation field when used to indicate the allocated resource block, the resource allocation field includes high Bits and low M+X bits, high The bits indicate a narrowband index, and the high M bits in the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, M is a positive integer, and X is greater than or equal to 0. Integer, Indicates the number of resource blocks included in the upstream bandwidth; or,
  • the resource allocation field When the resource allocation field is used to indicate the allocated subcarrier resource, the resource allocation field includes a high Bits and low L bits, high The bits indicate a narrowband index, and the low L bits indicate the allocation of subcarrier resources within the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, L is a positive integer, and K is a positive integer.
  • the resource allocation field When the resource allocation field is used to indicate the allocated resource block, the high bit that the resource allocation field can also include is That is, the position of X is at the forefront, then the high bit Medium low
  • the bit indicates a narrowband index
  • the resource allocation field includes a low bit which is a low M bit for indicating resource allocation within a narrow band, wherein the narrow band refers to six non-overlapping consecutive physical resource blocks in the frequency domain.
  • the value of M may be 5 or 3
  • X may be an integer of 0 or more, and the values of M and X are determined in combination with an application scenario.
  • the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, that is, the resource allocation is a resource block in units of resource blocks.
  • the resource allocation field When the resource allocation field is used to indicate the allocated subcarrier resource, the resource allocation field includes a high Bits and low L bits, high The bits indicate a narrowband index, and the low L bits indicate the allocation of subcarrier resources within the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12. Generally, one resource block includes 12 sub-carriers. In the embodiment of the present application, the number of sub-carriers indicated by the resource allocation field is less than 12, that is, the resource allocation is a sub-carrier unit resource block resource block, so that fewer resources can be allocated. . This L can be equal to M+X.
  • the low L bit indicates allocation of subcarrier resources in the K resource blocks, and the K resource blocks at this time are resource blocks configured by the network device or preset resource blocks, so that the network device can go to the terminal device by using L bits. Indicates the allocated subcarrier resources.
  • the network device sends downlink control information to the terminal device.
  • the network device may send downlink control information to the terminal device, where the downlink control information includes a resource allocation field, where the resource allocation field indicates a resource block or a subcarrier resource allocated to the terminal device.
  • the terminal device receives downlink control information sent by the network device, where the downlink control information includes a resource allocation field.
  • the terminal device first receives downlink control information sent by the network device, and determines a resource allocation field from the downlink control information.
  • the terminal device determines the allocated resource according to the downlink control information.
  • the terminal device may determine, by using the resource allocation field, that the network device performs resource allocation in units of resource blocks, or performs resource allocation in units of subcarrier resources, and adopts a state and a low bit of the high bit included in the resource allocation field.
  • the state of the bit determines the allocated resource, and the terminal device can complete the transmission of the uplink information in the resource allocated by the network device.
  • the network device receives the information sent by the terminal device on the resource determined by the downlink control information.
  • the network device detects the information sent by the terminal device on the resource allocated to the terminal device, and the information sent by the terminal device may use the resource block or the subcarrier resource allocated by the network device, depending on the network device to the resource. Configuration situation.
  • the network device indicates that the resource device allocates a resource block or a subcarrier resource to the terminal device by using a different value of the bit state included in the resource allocation field, and the resource allocation field is used to indicate the allocated resource block.
  • the resource allocation field is high Bits and low M+X bits, high The bits indicate a narrowband index, the high M bits of the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, and the resource allocation field is used to indicate the allocated sub-
  • the resource allocation field contains high Bits and low L bits, high The bits indicate the narrowband index, and the low L bits indicate the allocation of the subcarrier resources in the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, so that resources capable of supporting allocation of less than 12 subcarriers can be effectively implemented.
  • the resources are allocated to more UEs, which improves the efficiency of spectrum utilization.
  • the embodiment of the present application provides a method for information transmission, including:
  • the terminal device receives downlink control information sent by the network device, where the downlink control information includes a resource allocation field, where the resource allocation field is used to indicate the allocated resource block or subcarrier resource.
  • the resource allocation field when used to indicate the allocated resource block, the resource allocation field includes high Bits and low M+X bits, high The bits indicate a narrowband index, and the high M bits in the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, M is a positive integer, and X is greater than or equal to 0.
  • NRUBL indicates the number of resource blocks included in the upstream bandwidth; or
  • the resource allocation field When the resource allocation field is used to indicate the allocated subcarrier resource, the resource allocation field includes a high Bits and low L bits, high The bits indicate a narrowband index, and the low L bits indicate the allocation of subcarrier resources within the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, L is a positive integer, and K is a positive integer.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode (Mode) A;
  • the downlink control information further includes a first field, where the size of the first field is 2 bits;
  • bit states in the first field respectively indicating three different resource unit numbers, and/or one bit status in the first field indicates that the resource allocation field is used to indicate the allocated resource block;
  • the resource allocation field indicates the allocation of the subcarrier resources.
  • the terminal device is in the coverage enhancement (CE) level of the connected mode, and the CE level0/1/2/3 is the coverage enhancement level of the idle state.
  • the ModeA corresponds to the CE level 0/1.
  • ModeB corresponds to CE level 2/3.
  • the downlink control information further includes a first field, the size of the first field is 2 bits, and the first field may have 4 bits. Status, three bit states in the first field respectively indicate three different resource unit numbers, and/or one bit status in the first field indicates that the resource allocation field is used to indicate the allocated resource block.
  • the resource unit (RU) occupies less than 12 subcarriers in the frequency domain, and the resources occupied by the time domain are larger than one subframe.
  • the resource unit is used to describe the mapping of the physical uplink shared channel to the resource element.
  • the resource unit is defined as contiguous X Orthogonal Frequency Division Multiplexing (OFDM) symbols or Single-carrier (Frequency-Division Multiple Access, SC-FDMA) in the time domain. Y consecutive subcarriers in the frequency domain, where X and Y are positive integers.
  • the resource allocation field indicates the allocation of the subcarrier resources, that is, the terminal device can determine that the network device allocates to the terminal according to the bit state of the resource allocation field. Subcarrier resource of the device.
  • the resource block is allocated by using the uplink resource allocation mode 0.
  • the 00 bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block; or the 11 bit status of the first field indicates that the resource allocation field is used to indicate The allocated resource block.
  • the first field uses 2 bits to indicate the number of RUs, and the meaning of the first field as described in Table 1 below:
  • 2-bit state meaning 00 Represents resource allocation at the RB level 01
  • the number of RU is 1 10
  • the number of RU is 2 11
  • the number of RU is 4
  • the bit status is “00” for indicating resource allocation at the resource block level, and the bit status is “01/11/10” for indicating resource allocation at the subcarrier level, and the three different bit status indications by the first field are indicated.
  • the value of the number of RUs, the number of three different resource units is 1, 2 and 4.
  • the first field is the first field of the downlink control information.
  • the terminal device may determine, according to the status indicated by the first field, the presence or absence of other fields in the downlink control information, or the size of other fields.
  • the resource is 2 subcarriers, 3 subcarriers or 6 subcarriers.
  • the K resource blocks are K resource blocks in a narrow band or a predetermined K resource blocks, and the predetermined K resource blocks may be in a narrow band. Is any K resource blocks on the system bandwidth.
  • the downlink control information when the subcarrier resource is 3 subcarriers, the downlink control information further includes a third field, and the third field indicates a modulation mode of the information transmission of the terminal device. When the modulation mode is Pi/2BPSK modulation, two consecutive subcarriers of the three subcarriers are used.
  • the carrier transmits information.
  • the modulation method is Quadrature Phase Shift Keying (QPSK) modulation
  • QPSK Quadrature Phase Shift Keying
  • the downlink control information may further carry the second field or the third field
  • the terminal device may further indicate, by using the second field, the terminal device uses three subcarriers for information transmission, or uses three subcarriers. 2 consecutive subcarriers for information transmission, or the terminal device may determine the modulation mode of the information transmission by using the third field, for example, the modulation mode may include: Pi/2BPSK modulation or QPSK modulation, so that the terminal device can perform the modulation mode indicated by the network device.
  • the modulation mode may include: Pi/2BPSK modulation or QPSK modulation, so that the terminal device can perform the modulation mode indicated by the network device.
  • the second field or the third field may occupy bits that are not occupied in the HARQ process ID field.
  • the subcarrier index of the 2 subcarriers in the belonging resource block is ⁇ 0, 1 ⁇ +H, ⁇ 3,4 ⁇ +H, ⁇ 6,7 ⁇ +H, or ⁇ 9,10 ⁇ +H, where H is a value determined according to the cell identity, and the value of H is equal to 0 or 1.
  • the resource allocation field contains Bits
  • the 5 bits are used to indicate resource allocation in a resource block of a resource block in a narrowband corresponding to the narrowband index or to indicate resource allocation in a resource block of a subcarrier.
  • the subcarrier resources allocated by the network device are within five resource blocks, and the five resource blocks are configured by a high layer or preset for subcarriers.
  • the resource allocation of the unit may be within a narrow band indicated by the narrowband index, or may be any five resource blocks on the system bandwidth.
  • the subcarrier resources allocated by the network device do not distinguish between 2 subcarriers and 3 subcarriers.
  • the mapping between the specific low 5-bit state and the allocated sub-carrier resources is as described in Table 2 below, where the resource block n to the resource block n+4 are configured by the upper layer or preset resources for the sub-carrier. The allocated resource block.
  • the resource allocation field contains Bits, then For indicating a narrowband index within a system bandwidth, the 5 bits are used to indicate resource allocation in a resource block of a resource block in a narrowband corresponding to the narrowband index or to indicate resource allocation in a resource block of a subcarrier.
  • the subcarrier resources allocated by the network device are in three resource blocks, and the three resource blocks are configured at a high level or preset for subcarriers.
  • the resource allocation of the unit may be within a narrow band indicated by the narrowband index, or may be any three resource blocks on the system bandwidth.
  • the subcarrier resources allocated by the network device are divided into two subcarriers and three subcarriers, and the mapping relationship between the specific 5-bit state and the allocated subcarrier resources can satisfy the following Table 3, Table 4, Table 5, or Table 6.
  • the resource block n to the resource block n+2 are high-level configuration or preset resource blocks for resource allocation in units of subcarriers, where n, n+1 and n+2 are indexes of resource blocks. And is an integer.
  • the resource allocation field includes Bits, then high For indicating a narrowband index in the system bandwidth, the lower 5 bits are used to indicate resource allocation in resource block units in the narrowband corresponding to the narrowband index; and the resource allocation field is used to indicate resource allocation in subcarriers.
  • Resource allocation field contains Bits, then high The bit is used to indicate a narrowband index within the system bandwidth, and the lower 6 bits are used to indicate resource allocation of 2 subcarriers, 3 subcarriers, or 6 subcarriers within 6 resource blocks, where the 6 resource blocks are configured or pre-configured for the network device.
  • the resource allocation for subcarriers may be within a narrow band indicated by a narrowband index, or may be any six resource blocks on a system bandwidth.
  • the resource allocation field is used to indicate resource allocation in units of subcarriers
  • 60 of the 64 bit states indicated by the lower 6 bits are used to indicate 2 subcarriers in any one of the narrowbands indicated by the narrowband index, Resource allocation of 3 subcarriers or 6 subcarriers.
  • the mapping relationship between the specific bit state of the lower 6 bits and the allocated subcarrier resources may be as described in Table 7 below, where the resource block n to the resource block n+5 are configured by the network or preset for using subcarriers. Resource blocks for resource allocation.
  • the downlink control information in the embodiment of the present application can be increased by 2 bits, and can simultaneously support resource allocation in units of resource blocks, sub-carriers, and an indication of the number of supported resource units.
  • a size of a sixth field in the downlink control information is N bits, where the downlink control information is used for a subcarrier.
  • the size of the sixth field in the downlink control information is N-1 bits.
  • N is a positive integer greater than or equal to 1.
  • the size of the sixth field in the downlink control information is 0 bits, indicating that the sixth field is not included in the downlink control information.
  • the sixth field may be a Flag format 6-0A/format 6-1A differentiation field, a Modulation and coding scheme field, a HARQ process number field, or a Repetition number field.
  • the Flag format 6-0A/format 6-1A differentiation field is 1 bit; when the downlink control information is used for subcarrier resource allocation, the downlink control information does not include Flag format 6- 0A/format 6-1A differentiation field.
  • the Modulation and coding scheme field size is 4 bits; when the downlink control information is used for subcarrier resource allocation, the Modulation and coding scheme field size is 3 bits.
  • the HARQ process number field size is 3 bits; when the downlink control information is used for subcarrier resource allocation, the HARQ process number field size is 2 bits.
  • the Repetition number field size is 2 bits; when the downlink control information is used for subcarrier resource allocation, the Repetition number field size is 1 bit.
  • the size of the seventh field in the downlink control information is P bits
  • the downlink is The size of the seventh field in the control information is P-1 bits.
  • P is a positive integer greater than or equal to 1.
  • the seventh field is a field different from the aforementioned sixth field.
  • the seventh field is a Flag format 6-0A/format 6-1A differentiation field, a Modulation and coding scheme field, a HARQ process number field, or a Repetition number field.
  • the sixth field is a Flag format 6-0A/format 6-1A differentiation field
  • the seventh field is a Modulation and coding scheme field.
  • the sixth field is a Flag format 6-0A/format 6-1A differentiation field
  • the seventh field is a HARQ process number field.
  • the sixth field is a Flag format 6-0A/format 6-1A differentiation field
  • the seventh field is a Repetition number field.
  • the sixth field is a Modulation and coding scheme field
  • the seventh field is a HARQ process number field.
  • the sixth field is a Modulation and coding scheme field
  • the seventh field is a Repetition number field.
  • the sixth field is a Repetition number field
  • the seventh field is a HARQ process number field.
  • the sixth field size is 1 bit, and the seventh field size is 4 bits.
  • the sixth field is not included in the downlink control information.
  • the seventh field size is 3 bits.
  • the downlink control information when the downlink control information is used for resource block allocation, the downlink control information includes a narrowband resource adjustment field, and when the downlink control information is used for subcarrier resource allocation, the downlink is The narrowband resource adjustment field is not included in the control information. Alternatively, when the downlink control information is used for resource block allocation, the downlink control information does not include a narrowband resource adjustment field. When the downlink control information is used for subcarrier resource allocation, the downlink control information includes a narrowband resource adjustment field. The narrowband resource adjustment field is used to indicate whether the narrowband is offset, the narrowband offset direction, or the narrowband offset size field.
  • the downlink control information when the downlink control information is used for resource block allocation, the downlink control information includes a field indicating a narrowband index, and when the downlink control information is used for subcarrier resource allocation, the downlink control information is used. Fields indicating narrowband indexes are not included.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the downlink control information further includes a fourth field, and the size of the fourth field is 1 bit;
  • the resource allocation field is used to indicate the allocated resource block
  • the resource allocation field is used to indicate the allocated subcarrier resource.
  • the terminal device may determine, by using a value of a bit state of the fourth field, that the resource allocation field is used to indicate whether the allocated resource block resource is used to allocate a subcarrier resource.
  • the terminal device may determine that the resource block allocated by the resource allocation field is high. If the resource allocation field is used to indicate the allocated subcarrier resource, the terminal device may determine that the subcarrier resource allocated by the resource allocation field is two. 3 subcarriers or 6 subcarriers within a resource block.
  • the uplink resource allocation mode 2 is adopted.
  • the two resource blocks are resource blocks configured by the network or preset resource blocks;
  • the two resource blocks can be high Within the narrow band corresponding to the narrowband index indicated by the bit, it may also be any resource block on the system bandwidth.
  • the downlink control information further includes a fifth field
  • the terminal The device may determine the number of resource units indicated by the network device according to the bit status of the first field.
  • the fifth field size is 1 bit
  • the fifth field indicates the number of resource units
  • the two states corresponding to the 1 bit indicate the number of two resource units.
  • the number of the two resource units may be 1 and 2.
  • the number of the two resource units may be 2 and 4.
  • the fourth field is the first field of the downlink control information
  • the terminal device may determine, according to the status indicated by the fourth field, the presence or absence of other fields in the downlink control information, or the size of other fields.
  • the size of the eighth field in the downlink control information is S bits, and the downlink control information is used for the subcarrier.
  • the size of the eighth field in the downlink control information is S-1 bits. S is a positive integer greater than or equal to 1. In this application, if S is equal to 1, when the downlink control information is used for subcarrier resource allocation, the size of the eighth field in the downlink control information is 0 bits, indicating that the eighth field is not included in the downlink control information.
  • the eighth field may be a Flag format 6-0B/format 6-1B differentiation field, a Modulation and coding scheme field, a HARQ process number field, or a Repetition number field.
  • the Flag format 6-0B/format 6-1B differentiation field is 1 bit; when the bit status of the fourth field indicates that the downlink control information is used for When the subcarrier resource is allocated, the Flag format 6-0B/format 6-1B differentiation field is not included in the downlink control information.
  • the Modulation and coding scheme field size is 4 bits; when the bit status of the fourth field indicates that the downlink control information is used for subcarrier resource allocation, The Modulation and coding scheme field size is 3 bits.
  • the HARQ process number field size is 1 bit; when the bit status of the fourth field indicates that the downlink control information is used for subcarrier resource allocation, the downlink The control information does not contain the HARQ process number field.
  • the Repetition number field size is 3 bits; when the bit status of the fourth field indicates that the downlink control information is used for subcarrier resource allocation, Repetition number The field size is 2 bits.
  • the size of the ninth field in the downlink control information is P bits, and when the downlink control information is used for subcarrier resource allocation, the downlink is performed.
  • the size of the ninth field in the control information is P-1 bits.
  • P is a positive integer greater than or equal to 1.
  • the ninth field is a field different from the aforementioned eighth field.
  • the ninth field is a Flag format 6-0B/format 6-1B differentiation field, a Modulation and coding scheme field, a HARQ process number field, or a Repetition number field.
  • the eighth field is a Flag format 6-0B/format 6-1B differentiation field
  • the ninth field is a Modulation and coding scheme field.
  • the eighth field is a Flag format 6-0B/format 6-1B differentiation field
  • the ninth field is a HARQ process number field.
  • the eighth field is a Flag format 6-0B/format 6-1B differentiation field
  • the ninth field is a Repetition number field.
  • the eighth field is a Modulation and coding scheme field
  • the ninth field is a HARQ process number field.
  • the eighth field is a Modulation and coding scheme field
  • the ninth field is a Repetition number field.
  • the eighth field is a Repetition number field
  • the ninth field is a HARQ process number field.
  • the downlink control information when the downlink control information is used for resource block allocation, the downlink control information includes a field indicating a narrowband index, and when the downlink control information is used for subcarrier resource allocation, the downlink control information is used. Fields indicating narrowband indexes are not included.
  • the downlink control information when the downlink control information is used for resource block allocation, the downlink control information includes a narrowband resource adjustment field, and when the downlink control information is used for subcarrier resource allocation, the downlink control information is used. Does not include a narrowband resource adjustment field. Alternatively, when the downlink control information is used for resource block allocation, the downlink control information does not include a narrowband resource adjustment field. When the downlink control information is used for subcarrier resource allocation, the downlink control information includes a narrowband resource adjustment field. The narrowband resource adjustment field is used to indicate whether the narrowband is offset, the narrowband offset direction, or the narrowband offset size field.
  • the terminal device determines the allocated resource according to the downlink control information, and sends the information on the allocated resource.
  • the network device through the resource allocation field can be used to indicate resource allocation in units of resource blocks, or the resource allocation field can be used to indicate resource allocation in units of subcarrier resources, and through the resource allocation field.
  • the included high bit state and low bit state determine the allocated resource, and the terminal device can use the resource allocated by the network device to complete the sending of the uplink information.
  • the network device indicates that the resource device allocates a resource block or a subcarrier resource to the terminal device by using a different value of the bit state included in the resource allocation field, and the resource allocation field is used to indicate the allocated resource block.
  • the resource allocation field is high Bits and low M+X bits, high The bits indicate a narrowband index, the high M bits of the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, and the resource allocation field is used to indicate the allocated sub-
  • the resource allocation field contains high Bits and low L bits, high The bits indicate the narrowband index, and the low L bits indicate the allocation of the subcarrier resources in the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, so that resources capable of supporting allocation of less than 12 subcarriers can be effectively implemented.
  • the resources are allocated to more UEs, which improves the efficiency of spectrum utilization.
  • the embodiment of the present application provides a method for information transmission, including:
  • the terminal device receives downlink control information sent by the network device, where the downlink control information includes a resource allocation field, where the resource allocation field is used to indicate the allocated resource block or subcarrier resource.
  • the resource allocation field when used to indicate the allocated resource block, the resource allocation field includes high Bits and low M+X bits, high The bits indicate a narrowband index, and the high M bits in the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, M is a positive integer, and X is greater than or equal to 0. Integer, Indicates the number of resource blocks included in the upstream bandwidth; or,
  • the resource allocation field When the resource allocation field is used to indicate the allocated subcarrier resource, the resource allocation field includes L bits, and the L bit is used to indicate allocation of subcarrier resources in the K resource blocks; or, the resource allocation field includes high Bits and low L bits, high The bits indicate a narrowband index, and the low L bits indicate the allocation of subcarrier resources within the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, L is a positive integer, and K is a positive integer.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode (Mode) A;
  • the downlink control information further includes a first field, where the size of the first field is 2 bits;
  • bit states in the first field respectively indicating three different resource unit numbers, and/or one bit status in the first field indicates that the resource allocation field is used to indicate the allocated resource block;
  • the resource allocation field indicates the allocation of the subcarrier resources.
  • the terminal device is in the coverage enhancement (CE) level of the connected mode, and the CE level0/1/2/3 is the coverage enhancement level of the idle state.
  • the ModeA corresponds to the CE level 0/1.
  • ModeB corresponds to CE level 2/3.
  • the downlink control information further includes a first field, the size of the first field is 2 bits, and the first field may have 4 bits. Status, three bit states in the first field respectively indicate three different resource unit numbers, and/or one bit status in the first field indicates that the resource allocation field is used to indicate the allocated resource block.
  • the resource unit (RU) occupies less than 12 subcarriers in the frequency domain, and the resources occupied by the time domain are larger than one subframe.
  • the resource unit is used to describe the mapping of the physical uplink shared channel to the resource element.
  • the resource unit is defined as contiguous X Orthogonal Frequency Division Multiplexing (OFDM) symbols or Single-carrier (Frequency-Division Multiple Access, SC-FDMA) in the time domain. Y consecutive subcarriers in the frequency domain, where X and Y are positive integers.
  • the resource allocation field indicates the allocation of the subcarrier resources, that is, the terminal device can determine that the network device allocates to the terminal according to the bit state of the resource allocation field. Subcarrier resource of the device.
  • the resource block is allocated by using the uplink resource allocation mode 0.
  • the 00 bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block; or the 11 bit status of the first field indicates that the resource allocation field is used to indicate The allocated resource block.
  • the first field uses 2 bits to indicate the number of RUs, and the meaning of the first field as described in Table 1 below:
  • 2-bit state meaning 00 Represents resource allocation at the RB level 01
  • the number of RU is 1 10
  • the number of RU is 2 11
  • the number of RU is 4
  • the bit status is “00” for indicating resource allocation at the resource block level, and the bit status is “01/11/10” for indicating resource allocation at the subcarrier level, and the three different bit status indications by the first field are indicated.
  • the value of the number of RUs, the number of three different resource units is 1, 2 and 4.
  • the first field is the first field of the downlink control information.
  • the terminal device may determine, according to the status indicated by the first field, the presence or absence of other fields in the downlink control information, or the size of other fields.
  • a size of a sixth field in the downlink control information is N bits, where the downlink control information is used for a subcarrier.
  • the size of the sixth field in the downlink control information is N-1 bits.
  • N is a positive integer greater than or equal to 1.
  • the size of the sixth field in the downlink control information is 0 bits, indicating that the sixth field is not included in the downlink control information.
  • the sixth field may be a Flag format 6-0A/format 6-1A differentiation field, a Modulation and coding scheme field, a HARQ process number field, or a Repetition number field.
  • the Flag format 6-0A/format 6-1A differentiation field is 1 bit; when the bit status of the first field indicates that the downlink control information is used for When the subcarrier resource is allocated, the Flag format 6-0A/format 6-1A differentiation field is not included in the downlink control information.
  • the Modulation and coding scheme field size is 4 bits; when the bit status of the first field indicates that the downlink control information is used for subcarrier resource allocation, The Modulation and coding scheme field size is 3 bits.
  • the HARQ process number field size is 3 bits; when the bit status of the first field indicates that the downlink control information is used for subcarrier resource allocation, HARQ The process number field size is 2 bits.
  • the Repetition number field size is 2 bits; when the bit status of the first field indicates that the downlink control information is used for subcarrier resource allocation, Repetition number The field size is 1 bit.
  • the size of the seventh field in the downlink control information is P bits
  • the downlink is The size of the seventh field in the control information is P-1 bits.
  • P is a positive integer greater than or equal to 1.
  • the seventh field is a field different from the aforementioned sixth field.
  • the seventh field is a Flag format 6-0A/format 6-1A differentiation field, a Modulation and coding scheme field, a HARQ process number field, or a Repetition number field.
  • the sixth field is a Flag format 6-0A/format 6-1A differentiation field
  • the seventh field is a Modulation and coding scheme field.
  • the sixth field is a Flag format 6-0A/format 6-1A differentiation field
  • the seventh field is a HARQ process number field.
  • the sixth field is a Flag format 6-0A/format 6-1A differentiation field
  • the seventh field is a Repetition number field.
  • the sixth field is a Modulation and coding scheme field
  • the seventh field is a HARQ process number field.
  • the sixth field is a Modulation and coding scheme field
  • the seventh field is a Repetition number field.
  • the sixth field is a Repetition number field
  • the seventh field is a HARQ process number field.
  • the downlink control information when the downlink control information is used for resource block allocation, the downlink control information includes a field indicating a narrowband index, and when the downlink control information is used for subcarrier resource allocation, the downlink control information is used. Fields indicating narrowband indexes are not included.
  • the downlink control information when the downlink control information is used for resource block allocation, the downlink control information includes a narrowband resource adjustment field, and when the downlink control information is used for subcarrier resource allocation, the downlink control information is used. Does not include a narrowband resource adjustment field. Alternatively, when the downlink control information is used for resource block allocation, the downlink control information does not include a narrowband resource adjustment field. When the downlink control information is used for subcarrier resource allocation, the downlink control information includes a narrowband resource adjustment field. The narrowband resource adjustment field is used to indicate whether the narrowband is offset, the narrowband offset direction, or the narrowband offset size field.
  • the K resource blocks are K resource blocks in a narrow band or a predetermined K resource blocks, and the predetermined K resource blocks may be in a narrow band. It can also be any K resource blocks on the system bandwidth.
  • the 2 subcarriers are in the associated resource block.
  • the subcarrier index within is ⁇ 0, 1 ⁇ + H, ⁇ 3, 4 ⁇ + H, ⁇ 6, 7 ⁇ + H, or ⁇ 9, 10 ⁇ + H, where H is a value determined according to the cell identity, and The value of H is equal to 0 or 1.
  • the resource allocation field is used to indicate the resource allocation in units of subcarriers, and the resource allocation field contains Bits, then high The bit is used to indicate a narrowband index in the system bandwidth, and the lower 6 bits are used to indicate resource allocation of 2 subcarriers, 3 subcarriers, or 6 subcarriers in 6 resource blocks in the narrowband corresponding to the narrowband index; or, resource allocation
  • the resource allocation field includes 6 bits, and is used to indicate resources of 2 subcarriers, 3 subcarriers, or 6 subcarriers in the network configured or pre-defined 6 resource blocks. distribution.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the downlink control information further includes a fourth field, and the size of the fourth field is 1 bit;
  • the resource allocation field is used to indicate the allocated resource block
  • the resource allocation field is used to indicate the allocated subcarrier resource.
  • the terminal device may determine, by using a value of a bit state of the fourth field, that the resource allocation field is used to indicate whether the allocated resource block resource is used to allocate a subcarrier resource.
  • the fourth field is the first field of the downlink control information.
  • the terminal device may determine, according to the status indicated by the fourth field, the presence or absence of other fields in the downlink control information, or the size of other fields.
  • the size of the eighth field in the downlink control information is S bits, and the downlink control information is used for the subcarrier.
  • the size of the eighth field in the downlink control information is S-1 bits. S is a positive integer greater than or equal to 1. In this application, if S is equal to 1, when the downlink control information is used for subcarrier resource allocation, the size of the eighth field in the downlink control information is 0 bits, indicating that the eighth field is not included in the downlink control information.
  • the eighth field may be a Flag format 6-0B/format 6-1B differentiation field, a Modulation and coding scheme field, a HARQ process number field, or a Repetition number field.
  • the Flag format 6-0B/format 6-1B differentiation field is 1 bit; when the bit status of the fourth field indicates that the downlink control information is used for When the subcarrier resource is allocated, the Flag format 6-0B/format 6-1B differentiation field is not included in the downlink control information.
  • the Modulation and coding scheme field size is 4 bits; when the bit status of the fourth field indicates that the downlink control information is used for subcarrier resource allocation, The Modulation and coding scheme field size is 3 bits.
  • the HARQ process number field size is 1 bit; when the bit status of the fourth field indicates that the downlink control information is used for subcarrier resource allocation, the downlink The control information does not contain the HARQ process number field.
  • the Repetition number field size is 3 bits; when the bit status of the fourth field indicates that the downlink control information is used for subcarrier resource allocation, Repetition number The field size is 2 bits.
  • the size of the ninth field in the downlink control information is P bits, and when the downlink control information is used for subcarrier resource allocation, the downlink is performed.
  • the size of the ninth field in the control information is P-1 bits.
  • P is a positive integer greater than or equal to 1.
  • the ninth field is a field different from the aforementioned eighth field.
  • the ninth field is a Flag format 6-0B/format 6-1B differentiation field, a Modulation and coding scheme field, a HARQ process number field, or a Repetition number field.
  • the eighth field is a Flag format 6-0B/format 6-1B differentiation field
  • the ninth field is a Modulation and coding scheme field.
  • the eighth field is a Flag format 6-0B/format 6-1B differentiation field
  • the ninth field is a HARQ process number field.
  • the eighth field is a Flag format 6-0B/format 6-1B differentiation field
  • the ninth field is a Repetition number field.
  • the eighth field is a Modulation and coding scheme field
  • the ninth field is a HARQ process number field.
  • the eighth field is a Modulation and coding scheme field
  • the ninth field is a Repetition number field.
  • the eighth field is a Repetition number field
  • the ninth field is a HARQ process number field.
  • the downlink control information when the downlink control information is used for resource block allocation, the downlink control information includes a field indicating a narrowband index, and when the downlink control information is used for subcarrier resource allocation, the downlink control information is used. Fields indicating narrowband indexes are not included.
  • the downlink control information when the downlink control information is used for resource block allocation, the downlink control information includes a narrowband resource adjustment field, and when the downlink control information is used for subcarrier resource allocation, the downlink control information is used. Does not include a narrowband resource adjustment field. Alternatively, when the downlink control information is used for resource block allocation, the downlink control information does not include a narrowband resource adjustment field. When the downlink control information is used for subcarrier resource allocation, the downlink control information includes a narrowband resource adjustment field. The narrowband resource adjustment field is used to indicate whether the narrowband is offset, the narrowband offset direction, or the narrowband offset size field.
  • the terminal device may determine that the resource block allocated by the resource allocation field is high. If the resource allocation field is used to indicate the allocated subcarrier resource, the terminal device may determine that the subcarrier resource allocated by the resource allocation field is two. 3 subcarriers or 6 subcarriers within a resource block.
  • the uplink resource allocation mode 2 is adopted.
  • the two resource blocks are resource blocks configured by the network or preset resource blocks;
  • the two resource blocks can be high Within the narrow band corresponding to the narrowband index indicated by the bit, it may also be any resource block on the system bandwidth.
  • the downlink control information further includes a fifth field
  • the terminal device may determine, according to the bit status of the first field, the resource indicated by the network device.
  • the fifth field size is 1 bit
  • the fifth field indicates the number of resource units
  • the two states corresponding to the 1 bit indicate the number of two resource units.
  • the number of the two resource units may be 1 and 2.
  • the terminal device determines the allocated resource according to the downlink control information, and sends the information on the allocated resource.
  • the network device through the resource allocation field can be used to indicate resource allocation in units of resource blocks, or the resource allocation field can be used to indicate resource allocation in units of subcarrier resources, and through the resource allocation field.
  • the included high bit state and low bit state determine the allocated resource, and the terminal device can use the resource allocated by the network device to complete the sending of the uplink information.
  • the network device indicates that the resource device allocates a resource block or a subcarrier resource to the terminal device by using a different value of the bit state included in the resource allocation field, and the resource allocation field is used to indicate the allocated resource block.
  • the resource allocation field is high Bits and low M+X bits, high The bits indicate a narrowband index, the high M bits of the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, and the resource allocation field is used to indicate the allocated sub-
  • the resource allocation field contains high Bits and low L bits, high The bits indicate the narrowband index, and the low L bits indicate the allocation of the subcarrier resources in the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, so that resources capable of supporting allocation of less than 12 subcarriers can be effectively implemented.
  • the resources are allocated to more UEs, which improves the efficiency of spectrum utilization.
  • the foregoing embodiment describes the method for transmitting information provided by the embodiment of the present application from the perspective of the terminal device.
  • the method for transmitting information provided by the embodiment of the present application is described from the perspective of the network device.
  • the present application is shown in FIG. Embodiments provide a method for information transmission, including:
  • the network device determines to allocate a resource block or a subcarrier resource to the terminal device.
  • the network device determines downlink control information, where the downlink control information includes a resource allocation field, where the resource allocation field is used to indicate the allocated resource block or subcarrier resource.
  • the resource allocation field When the resource allocation field is used to indicate the allocated resource block, the resource allocation field includes high Bits and low M+X bits, high The bits indicate a narrowband index, and the high M bits in the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, M is a positive integer, and X is greater than or equal to 0.
  • Integer Indicates the number of resource blocks included in the uplink bandwidth; or, when the resource allocation field is used to indicate the allocated subcarrier resource, the resource allocation field includes high Bits and low L bits, high The bits indicate a narrowband index, and the low L bits indicate the allocation of subcarrier resources within the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, L is a positive integer, and K is a positive integer.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the downlink control information further includes a first field, the size of the first field is 2 bits;
  • the first field There are three kinds of bit states respectively indicating three different resource unit numbers, and/or one bit state in the first field indicates that the resource allocation field is used to indicate the allocated resource block; when the first field indicates the number of resource units
  • the resource allocation field indicates the allocation of subcarrier resources.
  • the 00 bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block; or the 11 bit status of the first field indicates that the resource allocation field is used to indicate the allocated Resource block.
  • the subcarrier resource is 2 subcarriers, 3 subcarriers, or 6 subcarriers.
  • the downlink control information when the subcarrier resource is 3 subcarriers, the downlink control information further includes a third field, and the third field indicates a modulation mode of the information transmission of the terminal device. When the modulation mode is Pi/2BPSK modulation, two consecutive subcarriers of the three subcarriers are used.
  • the subcarrier resource allocated by the resource allocation field is 2 subcarriers
  • the subcarrier index within is ⁇ 0, 1 ⁇ + H, ⁇ 3, 4 ⁇ + H, ⁇ 6, 7 ⁇ + H, or ⁇ 9, 10 ⁇ + H, where H is a value determined according to the cell identity, and The value of H is equal to 0 or 1.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the downlink control information further includes a fourth field, the size of the fourth field is 1 bit; the fourth field When the bit status is 0, the resource allocation field is used to indicate the allocated resource block; when the bit status of the fourth field is 1, the resource allocation field is used to indicate the allocated subcarrier resource.
  • the network device sends downlink control information to the terminal device.
  • the network device receives the information sent by the terminal device on the resource determined by the downlink control information.
  • the network device indicates the resource block or the subcarrier resource allocated to the terminal device by using the value of the bit state included in the resource allocation field, and the resource allocation field is used to indicate the allocated resource.
  • the resource allocation field includes high Bits and low M+X bits, high The bits indicate a narrowband index, the high M bits of the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, and the resource allocation field is used to indicate the allocated sub-
  • the resource allocation field contains high Bits and low L bits, high The bits indicate the narrowband index, and the low L bits indicate the allocation of the subcarrier resources in the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, so that resources capable of supporting allocation of less than 12 subcarriers can be effectively implemented.
  • the resources are allocated to more UEs, which improves the efficiency of spectrum utilization.
  • the terminal device 500 includes:
  • the receiving module 501 is configured to receive downlink control information that is sent by the network device, where the downlink control information includes a resource allocation field, where the resource allocation field is used to indicate the allocated resource block or subcarrier resource;
  • the resource allocation field When the resource allocation field is used to indicate the allocated resource block, the resource allocation field includes a high Bits and low M+X bits, the high The bits indicate a narrowband index, the high M bits of the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, and M is a positive integer, X Is an integer greater than or equal to 0, Indicates the number of resource blocks included in the upstream bandwidth; or,
  • the resource allocation field When the resource allocation field is used to indicate the allocated subcarrier resource, the resource allocation field includes a high Bits and low L bits, the high The bits indicate a narrowband index, the low L bits indicate allocation of subcarrier resources within the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, L is a positive integer, and K is a positive integer;
  • the processing module 502 is configured to determine, according to the downlink control information, an allocated resource
  • the sending module 503 is configured to send information on the allocated resource.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the downlink control information further includes a first field, where the size of the first field is 2 bits;
  • the three types of bit states in the first field respectively indicate three different resource unit numbers, and/or one bit status in the first field indicates that the resource allocation field is used to indicate the allocated resource block. ;
  • the resource allocation field indicates allocation of the subcarrier resources.
  • the 00 bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block;
  • the 11-bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block.
  • the downlink control information further includes a second a field, the second field indicating that the terminal device uses the three subcarriers for information transmission, or uses two consecutive subcarriers of the three subcarriers for information transmission; or
  • the downlink control information further includes a third field, where the third field indicates a modulation method for information transmission of a terminal device, where the modulation method is Pi/2BPSK modulation, and information is transmitted by using two consecutive subcarriers of the three subcarriers, the modulation mode is quadrature phase shift keying QPSK In modulation, the three subcarriers are used for information transmission, wherein Pi/2 represents a rotation angle of 90 degrees; or
  • the subcarrier index of the 2 subcarriers in the associated resource block is ⁇ 0, 1 ⁇ +H, ⁇ 3,4 ⁇ +H, ⁇ 6,7 ⁇ +H, or ⁇ 9,10 ⁇ +H, where H is a value determined according to the cell identity, and the value of H is equal to 0 or 1; or,
  • the subcarrier index of the 2 subcarriers in the belonging resource block is ⁇ 0, 1 ⁇ +H, ⁇ 3,4 ⁇ +H, ⁇ 6,7 ⁇ +H, or ⁇ 9,10 ⁇ +H, where H is a value determined according to the cell identity, and the value of H is equal to 0 or 1.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the downlink control information further includes a fourth field, where the size of the fourth field is 1 bit;
  • the resource allocation field is used to indicate the allocated resource block
  • the resource allocation field is used to indicate the allocated subcarrier resource.
  • the downlink control information further includes a fifth field, and the fifth field size is 1 Bit, the fifth field indicates the number of resource units.
  • the embodiment of the present application provides a network device 600, including:
  • the processing module 601 is configured to determine to allocate a resource block or a subcarrier resource to the terminal device;
  • the processing module 601 is configured to determine downlink control information, where the downlink control information includes a resource allocation field, where the resource allocation field is used to indicate the allocated resource block or subcarrier resource;
  • the resource allocation field When the resource allocation field is used to indicate the allocated resource block, the resource allocation field includes a high Bits and low M+X bits, the high The bits indicate a narrowband index, the high M bits of the low M+X bits indicate resource allocation within the narrowband, and the number of resource blocks indicated by the resource allocation field is greater than or equal to 1, and M is a positive integer, X Is an integer greater than or equal to 0, Indicates the number of resource blocks included in the upstream bandwidth; or,
  • the resource allocation field When the resource allocation field is used to indicate the allocated subcarrier resource, the resource allocation field includes a high Bits and low L bits, the high The bits indicate a narrowband index, the low L bits indicate allocation of subcarrier resources within the K resource blocks, and the number of subcarriers indicated by the resource allocation field is less than 12, L is a positive integer, and K is a positive integer;
  • the sending module 602 is configured to send downlink control information to the terminal device.
  • the receiving module 603 is configured to receive information sent by the terminal device on the resource determined by the downlink control information.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the downlink control information further includes a first field, where the size of the first field is 2 bits;
  • the three types of bit states in the first field respectively indicate three different resource unit numbers, and/or one bit status in the first field indicates that the resource allocation field is used to indicate the allocated resource block. ;
  • the resource allocation field indicates allocation of the subcarrier resources.
  • the 00 bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block;
  • the 11-bit status of the first field indicates that the resource allocation field is used to indicate the allocated resource block.
  • the downlink control information further includes a second a field, the second field indicating that the terminal device uses the three subcarriers for information transmission, or uses two consecutive subcarriers of the three subcarriers for information transmission; or
  • the downlink control information further includes a third field, where the third field indicates a modulation method for information transmission of a terminal device, where the modulation method is Pi/2BPSK modulation, and information is transmitted by using two consecutive subcarriers of the three subcarriers, the modulation mode is quadrature phase shift keying QPSK In modulation, the three subcarriers are used for information transmission, wherein Pi/2 represents a rotation angle of 90 degrees; or
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the downlink control information further includes a fourth field, where the size of the fourth field is 1 bit;
  • the resource allocation field is used to indicate the allocated resource block
  • the resource allocation field is used to indicate the allocated subcarrier resource.
  • the downlink control information further includes a fifth field
  • the fifth field size is 1 bit
  • the fifth field indicates the number of resource units.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps described in the foregoing method embodiments.
  • FIG. 7 is a schematic structural diagram of still another device according to an embodiment of the present application.
  • the device is a terminal device, and the terminal device may include: a processor 131 (eg, a CPU), a memory 132, a transmitter 134, and a receiver 133.
  • the transmitter 134 and the receiver 133 are coupled to the processor 131, which controls the transmitting action of the transmitter 134 and the receiving action of the receiver 133.
  • the memory 132 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • the terminal device involved in the embodiment of the present application may further include one or more of a power source 135, a communication bus 136, and a communication port 137.
  • the receiver 133 and the transmitter 134 may be integrated in the transceiver of the terminal device, or may be separate receiving and transmitting antennas on the terminal device.
  • Communication bus 136 is used to implement a communication connection between components.
  • the communication port 137 is used to implement connection communication between the terminal device and other peripheral devices.
  • the foregoing memory 132 is configured to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 131 to perform the processing action of the terminal device in the foregoing method embodiment, so that The transmitter 134 performs the sending operation of the terminal device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of still another device according to an embodiment of the present application.
  • the device is a network device, and the network device may include: a processor (for example, a CPU) 141, a memory 142, a receiver 143, and a transmitter 144.
  • the receiver 143 and the transmitter 144 are coupled to the processor 141, which controls the receiving action of the receiver 143 and the transmitting action of the transmitter 144.
  • the memory 142 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • NVM non-volatile memory
  • the network device involved in the embodiment of the present application may further include one or more of a power source 145, a communication bus 146, and a communication port 147.
  • the receiver 143 and the transmitter 144 may be integrated in a transceiver of the network device, or may be separate receiving and transmitting antennas on the network device.
  • Communication bus 146 is used to implement a communication connection between components.
  • the communication port 147 is used to implement connection communication between the network device and other peripheral devices.
  • the memory 142 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 141 to perform the processing action of the network device in the foregoing method embodiment, so that The transmitter 144 performs the sending action of the network device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the chip comprises: a processing unit and a communication unit
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input/output interface, Pin or circuit, etc.
  • the processing unit may execute computer execution instructions stored by the storage unit to cause the chip within the terminal to perform the wireless communication method of any of the above aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read) -only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the integrated circuit of the program execution of the first aspect wireless communication method may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically may be implemented as one or more communication buses or signal lines.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present application.
  • a computer device may be A personal computer, server, or network device, etc.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输方法和设备。一种信息传输的方法,包括:终端设备接收网络设备发送的下行控制信息,下行控制信息包含资源分配字段,资源分配字段用于指示分配的资源块或子载波资源;资源分配字段用于指示分配的资源块时,资源分配字段包括高式(I)个比特和低M+X比特,高式(I)个比特指示窄带索引,低M+X比特中的高M比特指示窄带内的资源分配,且资源分配字段所指示的资源块的数目大于或等于1;或,资源分配字段用于指示分配的子载波资源时,资源分配字段包含高式(I)个比特和低L比特,低L比特指示K个资源块内的子载波资源的分配,且资源分配字段所指示子载波个数小于12;终端设备根据下行控制信息确定分配的资源,并在分配的资源上发送信息。本申请实施例提供的方法和设备提高了网络的覆盖能力,可以应用于物联网,例如MTC、IoT、LTE-M、M2M等。

Description

一种信息传输方法和设备 技术领域
本申请实施例涉及通信领域,尤其涉及一种信息传输方法和设备。
背景技术
机器类型通信(machine type communication,MTC),是指通过部署具有一定感知、计算、执行和通信能力的各种设备,获取物理世界的信息,通过网络实现信息传输、协同和处理,从而实现人与物、物与物的互联。目前长期演进(long term evolution,LTE)的Rel(release)-12、Rel-13、Rel-14、Rel-15版本能够支持MTC业务。
在Rel-14及其以前的版本中,对物理上行共享信道(physical uplink shared channel,PUSCH)进行资源分配的最小单位是1个资源块。为了提升PUSCH的频谱效率,为PUSCH分配小于12个子载波的资源是可能采用的有效技术手段之一。
如何实现为PUSCH分配小于12个子载波的资源是亟待解决的问题。
发明内容
本申请实施例提供了一种信息传输方法和设备,能够实现尽量考虑到网络侧的情况,且避免对传输资源的浪费。
第一方面,本申请实施例提供一种信息传输的方法,包括:
终端设备接收网络设备发送的下行控制信息,其中所述下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源;
所述资源分配字段用于指示所述分配的资源块时,所述资源分配字段包括高
Figure PCTCN2018083623-appb-000001
个比特和低M+X比特,所述高
Figure PCTCN2018083623-appb-000002
个比特指示窄带索引,所述低M+X比特中的高M比特指示所述窄带内的资源分配,且所述资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,所述
Figure PCTCN2018083623-appb-000003
表示上行带宽中包含的资源块的个数;或,
所述资源分配字段用于指示所述分配的子载波资源时,所述资源分配字段包含高
Figure PCTCN2018083623-appb-000004
个比特和低L比特,所述高
Figure PCTCN2018083623-appb-000005
个比特指示窄带索引,所述低L比特指示K个资源块内的子载波资源的分配,且所述资源分配字段所指示子载波个数小于12,L是正整数,K是正整数;
所述终端设备根据所述下行控制信息确定分配的资源,并在所述分配的资源上发送信息。
在本申请实施例中,网络设备通过资源分配字段包括的比特状态的取值不同来指示为终端设备分配资源块或者子载波资源,资源分配字段用于指示所述分配的资源块时,资源 分配字段包括高
Figure PCTCN2018083623-appb-000006
个比特和低M+X比特,高
Figure PCTCN2018083623-appb-000007
个比特指示窄带索引,低M+X比特中的高M比特指示窄带内的资源分配,且资源分配字段所指示的资源块的数目大于或等于1,资源分配字段用于指示所述分配的子载波资源时,资源分配字段包含高
Figure PCTCN2018083623-appb-000008
个比特和低L比特,高
Figure PCTCN2018083623-appb-000009
个比特指示窄带索引,低L比特指示K个资源块内的子载波资源的分配,且资源分配字段所指示子载波个数小于12,从而实现能支持分配小于12个子载波的资源,可以将有效的资源分配给更多的UE,提高了频谱利用效率。
在第一方面一种可能的设计中,所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述下行控制信息还包括第一字段,所述第一字段的大小是2个比特;
所述第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或所述第一字段中有1种比特状态指示所述资源分配字段用于指示所述分配的资源块;
所述第一字段指示资源单元数时,所述资源分配字段指示所述子载波资源的分配。
在本申请实施例中,第一字段中有3种比特状态指示资源单元数时,资源分配字段指示子载波资源的分配,即终端设备根据资源分配字段的比特状态可以确定出网络设备分配给终端设备的子载波资源。
在第一方面一种可能的设计中,
所述第一字段的00比特状态指示所述资源分配字段用于指示所述分配的资源块;或,
所述第一字段的11比特状态指示所述资源分配字段用于指示所述分配的资源块。
在第一方面一种可能的设计中,
所述K=5,M=5,L=5,且所述资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,
所述K=3,M=5,L=5,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,
所述K=6,M=5,L=6,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
在第一方面一种可能的设计中,
所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第二字段,所述第二字段指示所述终端设备使用所述3个子载波进行信息传输,或者使用所述3个子载波中的2个连续子载波进行信息传输;或,
所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第三字段,所述第三字段指示所述终端设备的信息传输的调制方式,所述调制方式是Pi/2BPSK调制时,使用所述3个子载波中的2个连续子载波进行信息传输,所述调制方式是正交相移键控QPSK调制时,使用所述3个子载波进行信息传输,其中,Pi表示旋转角度为90度;或,
所述K=3,M=5,L=5,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,
所述K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
本申请实施例中,下行控制信息中还可以携带第二字段或者第三字段,终端设备还可以通过第二字段指示终端设备使用3个子载波进行信息传输,或者使用3个子载波中的2个连续子载波进行信息传输,或者,终端设备可以通过第三字段确定信息传输的调制方式,例如调制方式可以包括:Pi/2BPSK调制或者QPSK调制,从而终端设备可以按照网络设备指示的调制方式来传输信息。
在第一方面一种可能的设计中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述下行控制信息还包括第四字段,所述第四字段的大小是1个比特;
所述第四字段的比特状态为0时,所述资源分配字段用于指示所述分配的资源块;
所述第四字段的比特状态为1时,所述资源分配字段用于指示所述分配的子载波资源。
在本申请实施例中,终端设备可以通过第四字段的比特状态的取值确定资源分配字段用于指示所述分配的资源块资源还是用于分配子载波资源。
在第一方面一种可能的设计中,
所述K=2,M=3,L=4,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,
所述K=2,M=3,L=5,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波,且所述资源分配字段指示了资源单元个数。
在第一方面一种可能的设计中,
所述K=2,M=3,L=4时,所述下行控制信息还包括第五字段,所述第五字段大小是1个比特,所述第五字段指示了资源单元个数。
第二方面,本申请实施例还提供一种信息传输的方法,包括:
网络设备确定为终端设备分配资源块或者子载波资源;
所述网络设备确定下行控制信息,其中所述下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源;
所述资源分配字段用于指示所述分配的资源块时,所述资源分配字段包括高
Figure PCTCN2018083623-appb-000010
个比特和低M+X比特,所述高
Figure PCTCN2018083623-appb-000011
个比特指示窄带索引,所述低M+X比特中的高M比特指示所述窄带内的资源分配,且所述资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,所述
Figure PCTCN2018083623-appb-000012
表示上行带宽中包含的资源块的个数;或,
所述资源分配字段用于指示所述分配的子载波资源时,所述资源分配字段包含高
Figure PCTCN2018083623-appb-000013
个比特和低L比特,所述高
Figure PCTCN2018083623-appb-000014
个比特指示窄带索引,所述低L比特指示K个资源块内的子载波资源的分配,且所述资源分配字段所指示子载波个数小于12,L是正整数,K是正整数;
所述网络设备向所述终端设备发送下行控制信息;
所述网络设备在所述下行控制信息确定的资源上接收所述终端设备发送的信息。
在第二方面一种可能的设计中,
所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述下行控制信息还包括第一字段,所述第一字段的大小是2个比特;
所述第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或所述第一字段中有1种比特状态指示所述资源分配字段用于指示所述分配的资源块;
所述第一字段指示资源单元数时,所述资源分配字段指示所述子载波资源的分配。
在第二方面一种可能的设计中,
所述第一字段的00比特状态指示所述资源分配字段用于指示所述分配的资源块;或,
所述第一字段的11比特状态指示所述资源分配字段用于指示所述分配的资源块。
在第二方面一种可能的设计中,
所述K=5,M=5,L=5,且所述资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,
所述K=3,M=5,L=5,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,
所述K=6,M=5,L=6,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
在第二方面一种可能的设计中,
所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第二字段,所述第二字段指示所述终端设备使用所述3个子载波进行信息传输,或者使用所述3个子载波中的2个连续子载波进行信息传输;或,
所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第三字段,所述第三字段指示所述终端设备的信息传输的调制方式,所述调制方式是Pi/2BPSK调制时,使用所述3个子载波中的2个连续子载波进行信息传输,所述调制方式是正交相移键控QPSK调制时,使用所述3个子载波进行信息传输,其中,Pi/2表示旋转角度为90度;或,
所述K=3,M=5,L=5,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,
所述K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
在第二方面一种可能的设计中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述下行控制信息还包括第四字段,所述第四字段的大小是1个比特;
所述第四字段的比特状态为0时,所述资源分配字段用于指示所述分配的资源块;
所述第四字段的比特状态为1时,所述资源分配字段用于指示所述分配的子载波资源。
在第二方面一种可能的设计中,
所述K=2,M=3,L=4,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,
所述K=2,M=3,L=5,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波,且所述资源分配字段指示了资源单元个数。
在第二方面一种可能的设计中,
所述K=2,M=3,L=4时,所述下行控制信息还包括第五字段,所述第五字段大小是1个比特,所述第五字段指示了资源单元个数。
第三方面,本申请实施例还提供一种终端设备,包括:
接收模块,用于接收网络设备发送的下行控制信息,其中所述下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源;
所述资源分配字段用于指示所述分配的资源块时,所述资源分配字段包括高
Figure PCTCN2018083623-appb-000015
个比特和低M+X比特,所述高
Figure PCTCN2018083623-appb-000016
个比特指示窄带索引,所述低M+X比特中的高M比特指示所述窄带内的资源分配,且所述资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,所述
Figure PCTCN2018083623-appb-000017
表示上行带宽中包含的资源块的个数;或,
所述资源分配字段用于指示所述分配的子载波资源时,所述资源分配字段包含高
Figure PCTCN2018083623-appb-000018
个比特和低L比特,所述高
Figure PCTCN2018083623-appb-000019
个比特指示窄带索引,所述低L比特指示K个资源块内的子载波资源的分配,且所述资源分配字段所指示子载波个数小于12,L是正整数,K是正整数;
处理模块,用于根据所述下行控制信息确定分配的资源;
发送模块,用于在所述分配的资源上发送信息。
在第三方面的一种可能设计中,
所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述下行控制信息还包括第一字段,所述第一字段的大小是2个比特;
所述第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或所述第一字段中有1种比特状态指示所述资源分配字段用于指示所述分配的资源块;
所述第一字段指示资源单元数时,所述资源分配字段指示所述子载波资源的分配。
在第三方面的一种可能设计中,
所述第一字段的00比特状态指示所述资源分配字段用于指示所述分配的资源块;或,
所述第一字段的11比特状态指示所述资源分配字段用于指示所述分配的资源块。
在第三方面的一种可能设计中,
所述K=5,M=5,L=5,且所述资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,
所述K=3,M=5,L=5,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,
所述K=6,M=5,L=6,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
在第三方面的一种可能设计中,
所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第二字段,所述第二字段指示所述终端设备使用所述3个子载波进行信息传输,或者使用所述3个子载波中的2个连续子载波进行信息传输;或,
所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第三字段,所述第三字段指示所述终端设备的信息传输的调制方式,所述调制方式是Pi/2BPSK调制时,使用所述3个子载波中的2个连续子载波进行信息传输,所述调制方式是正交相移键控QPSK调制时,使用所述3个子载波进行信息传输,其中,Pi/2表示旋转角度为90度;或,
所述K=3,M=5,L=5,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,
所述K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
在第三方面的一种可能设计中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述下行控制信息还包括第四字段,所述第四字段的大小是1个比特;
所述第四字段的比特状态为0时,所述资源分配字段用于指示所述分配的资源块;
所述第四字段的比特状态为1时,所述资源分配字段用于指示所述分配的子载波资源。
在第三方面的一种可能设计中,
所述K=2,M=3,L=4,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,
所述K=2,M=3,L=5,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波,且所述资源分配字段指示了资源单元个数。
在第三方面的一种可能设计中,
所述K=2,M=3,L=4时,所述下行控制信息还包括第五字段,所述第五字段大小是1个比特,所述第五字段指示了资源单元个数。
在本申请的第三方面中,终端设备的组成模块还可以执行前述第一方面以及各种可能的实现方式中所描述的步骤,详见前述对第一方面以及各种可能的实现方式中的说明。
第四方面,本申请实施例还提供一种网络设备,包括:
处理模块,用于确定为终端设备分配资源块或者子载波资源;
处理模块,用于确定下行控制信息,其中所述下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源;
所述资源分配字段用于指示所述分配的资源块时,所述资源分配字段包括高
Figure PCTCN2018083623-appb-000020
个比特和低M+X比特,所述高
Figure PCTCN2018083623-appb-000021
个比特指示窄带索引,所述低M+X比特中的高M比特指示所述窄带内的资源分配,且所述资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,所述
Figure PCTCN2018083623-appb-000022
表示上行带宽中包含的资源块的个数;或,
所述资源分配字段用于指示所述分配的子载波资源时,所述资源分配字段包含高
Figure PCTCN2018083623-appb-000023
个比特和低L比特,所述高
Figure PCTCN2018083623-appb-000024
个比特指示窄带索引,所述低L比特指示K个资源块内的子载波资源的分配,且所述资源分配字段所指示子载波个数小于12,L是正整数,K是正整数;
发送模块,用于向所述终端设备发送下行控制信息;
接收模块,用于在所述下行控制信息确定的资源上接收所述终端设备发送的信息。
在第四方面的一种可能设计中,
所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述下行控制信息还包括第一字段,所述第一字段的大小是2个比特;
所述第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或所述第一字段中有1种比特状态指示所述资源分配字段用于指示所述分配的资源块;
所述第一字段指示资源单元数时,所述资源分配字段指示所述子载波资源的分配。
在第四方面的一种可能设计中,
所述第一字段的00比特状态指示所述资源分配字段用于指示所述分配的资源块;或,
所述第一字段的11比特状态指示所述资源分配字段用于指示所述分配的资源块。
在第四方面的一种可能设计中,
所述K=5,M=5,L=5,且所述资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,
所述K=3,M=5,L=5,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,
所述K=6,M=5,L=6,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
在第四方面的一种可能设计中,
所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第二字段,所述第二字段指示所述终端设备使用所述3个子载波进行信息传输,或者使用所述3个子载波中的2个连续子载波进行信息传输;或,
所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第三字段,所述第三字段指示所述终端设备的信息传输的调制方式,所述调制方式是Pi/2BPSK调制时,使用所述3个子载波中的2个连续子载波进行信息传输,所述调制方式是正交相移键控QPSK调制时,使用所述3个子载波进行信息传输,其中,Pi/2表示旋转角度为90度;或,
所述K=3,M=5,L=5,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,
所述K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
在第四方面的一种可能设计中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述下行控制信息还包括第四字段,所述第四字段的大小是1个比特;
所述第四字段的比特状态为0时,所述资源分配字段用于指示所述分配的资源块;
所述第四字段的比特状态为1时,所述资源分配字段用于指示所述分配的子载波资源。
在第四方面的一种可能设计中,
所述K=2,M=3,L=4,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,
所述K=2,M=3,L=5,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波,且所述资源分配字段指示了资源单元个数。
在第四方面的一种可能设计中,
所述K=2,M=3,L=4时,所述下行控制信息还包括第五字段,所述第五字段大小是1个比特,所述第五字段指示了资源单元个数。
在本申请的第四方面中,网络设备的组成模块还可以执行前述第二方面以及各种可能的实现方式中所描述的步骤,详见前述对第二方面以及各种可能的实现方式中的说明。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置可以包括终端设备或者网络设备或者芯片等实体,所述通信装置包括:处理器、存储器;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,使得所述通信装置执行如前述第一方面或第二方面中任一项所述的方法。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备或终端设备实现上述方面中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他 分立器件。
附图说明
图1为本申请实施例提供的一种信息传输方法的系统架构示意图;
图2为本申请实施例提供的终端设备和网络设备之间的交互流程示意图;
图3为本申请实施例提供的一种信息传输方法的流程方框示意图;
图4为本申请实施例提供的另一种信息传输方法的流程方框示意图;
图5为本申请实施例提供的一种终端设备的组成结构示意图;
图6为本申请实施例提供的一种网络设备的组成结构示意图;
图7为本申请实施例提供的另一种终端设备的组成结构示意图;
图8为本申请实施例提供的另一种网络设备的组成结构示意图。
具体实施方式
本申请实施例提供了一种信息传输方法和设备,能够实现尽量考虑到网络侧的情况,且避免对传输资源的浪费。
下面结合附图,对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本发明实施例的技术方案可以应用于各种数据处理的通信系统,例如:例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier,FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。第五代(5 Generation,简称:“5G”)通信系统、新空口(New Radio,简称“NR)是正在研究当中的下一代通信系统。此外,所述通信系统还可以适用于面向未来的通信技术,都适用本发明实施例提供的技术方案。本发明实 施例描述的系统架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本申请实施例的一种可能的无线接入网(radio access network,简称RAN)的结构示意图。所述RAN可以为2G网络的基站接入系统(即所述RAN包括基站和基站控制器),或可以为3G网络的基站接入系统(即所述RAN包括基站和RNC),或可以为4G网络的基站接入系统(即所述RAN包括eNB和RNC),或可以为5G网络的基站接入系统。
所述RAN包括一个或多个网络设备。所述网络设备可以是任意一种具有无线收发功能的设备,或,设置于具体无线收发功能的设备内的芯片。所述网络设备包括但不限于:基站(例如基站BS,基站NodeB、演进型基站eNodeB或eNB、第五代5G通信系统中的基站gNodeB或gNB、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的一种或者多种技术的网络,或者未来演进网络。所述核心网可以支持上述提及一种或者多种技术的网络,或者未来演进网络。基站可以包含一个或多个共站或非共站的传输接收点(Transmission receiving point,TRP)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)或者分布单元(distributed unit,DU)等。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备1-6进行通信,也可以通过中继站与终端设备1-6进行通信。终端设备1-6可以支持与不同技术的多个基站进行通信,例如,终端设备可以支持与支持LTE网络的基站通信,也可以支持与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
终端设备1-6,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备,或,设置于该设备内的芯片,例如,具有无线连接功允许的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical  surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
在本申请实施例中,基站和UE1~UE6组成一个通信系统,在该通信系统中,基站发送系统信息、RAR消息和寻呼消息中的一种或多种给UE1~UE6中的一个或多个UE,此外,UE4~UE6也组成一个通信系统,在该通信系统中,UE5可以作为基站的功能实现,UE5可以发送系统信息、控制信息和寻呼消息中的一种或多种给UE4和UE6中的一个或多个UE。
请参阅图2所示,为本申请实施例提供的网络设备和终端设备之间的一种交互流程示意图,本申请实施例提供的信息传输的方法,主要包括如下步骤。
201、网络设备确定为终端设备分配资源块或者子载波资源。
在本申请实施例中,网络设备为终端设备进行资源分配时可以分配资源块,即以最小单位为1个资源块进行资源分配,网络设备还可以为终端设备分配子载波资源,即以最小单位为1子载波进行资源分配。例如网络设备可以根据当前网络负载确定以资源块或者子载波资源为单位进行资源分配。举例说明,在本发明实施例中,网络设备使用下行控制信息(Downlink Control Information,DCI)格式6-0A对物理上行共享信道(Physical Uplink Shared channel,PUSCH)进行资源分配时,最小单位可以是1个资源块,并且也能够支持分配小于12个子载波的资源,因此提高了PUSCH的频谱效率。
202、网络设备确定下行控制信息,其中下行控制信息包含资源分配字段,资源分配字段用于指示所述分配的资源块或子载波资源。
在本申请实施例中,网络设备为终端设备进行资源分配时可以采用资源块为单位,也可以采用子载波为单位,网络设备可以通过下行控制信息包含的资源分配字段来指示具体的资源分配情况。
其中,资源分配字段用于指示所述分配的资源块时,资源分配字段包括高
Figure PCTCN2018083623-appb-000025
个比特和低M+X比特,高
Figure PCTCN2018083623-appb-000026
个比特指示窄带索引,低M+X比特中的高M比特指示窄带内的资源分配,且资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,
Figure PCTCN2018083623-appb-000027
表示上行带宽中包含的资源块的个数;或,
资源分配字段用于指示所述分配的子载波资源时,资源分配字段包含高
Figure PCTCN2018083623-appb-000028
个比特和低L比特,高
Figure PCTCN2018083623-appb-000029
个比特指示窄带索引,低L比特指示K个资源块内的子载波资源的分配,且资源分配字段所指示子载波个数小于12,L是正整数,K是正整数。
具体的,
Figure PCTCN2018083623-appb-000030
表示系统带宽中包含的上行物理资源块(physical resource block,PRB)的个数,
Figure PCTCN2018083623-appb-000031
表示向下取整运算,
Figure PCTCN2018083623-appb-000032
表示向上取整运算。当资源分配字段用于指示所述分配的资源块时,资源分配字段也可以包括的高比特是
Figure PCTCN2018083623-appb-000033
即X的位置在最前,则所述高比特
Figure PCTCN2018083623-appb-000034
中的低
Figure PCTCN2018083623-appb-000035
比特指示窄带索引,资源分配字段包括低比特是低M比特,用于指示窄带内的资源分配,其中,窄带是指频域上六个非重叠的连续物理资源块。M的取值可以为5或者3,X可以为0或更大的整数,具体结合应用场景来确定M和X的取值。资源分配字段所指示的资源块的数目大于或等于1,即资源分配以资源块为单位资源块。
资源分配字段用于指示所述分配的子载波资源时,资源分配字段包含高
Figure PCTCN2018083623-appb-000036
个比特和低L比特,高
Figure PCTCN2018083623-appb-000037
个比特指示窄带索引,低L比特指示K个资源块内的子载波资源的分配,且资源分配字段所指示子载波个数小于12。通常情况下,1个资源块包括12个子载波,本申请实施例中资源分配字段所指示子载波个数小于12,即资源分配以子载波为单位资源块资源块,因此可以分配更少的资源。该L可以是等于M+X。低L比特指示K个资源块内的子载波资源的分配,此时的K个资源块为网络设备配置的资源块或者预设的资源块,从而通过低L个比特,网络设备可以向终端设备指示所分配的子载波资源。
203、网络设备向终端设备发送下行控制信息。
其中,网络设备确定下行控制信息之后,网络设备可以向终端设备发送下行控制信息,该下行控制信息包含资源分配字段,资源分配字段指示了分配给终端设备的资源块或者子载波资源。
204、终端设备接收网络设备发送的下行控制信息,其中下行控制信息包含资源分配字段。
终端设备首先接收网络设备发送的下行控制信息,从该下行控制信息中确定出资源分配字段。
205、终端设备根据下行控制信息确定分配的资源。
206、在分配的资源上发送信息。
在本发明实施例中,终端设备通过资源分配字段可以确定网络设备以资源块为单位进行资源分配,或者以子载波资源为单位进行资源分配,并通过资源分配字段包括的高比特的状态和低比特的状态确定出分配给的资源,终端设备可以在网络设备分配的资源完成上行信息的发送。
207、网络设备在下行控制信息确定的资源上接收终端设备发送的信息。
在本申请实施例中,网络设备在分配给终端设备的资源上检测终端设备发送的信息,终端设备发送的信息可以使用网络设备分配的资源块或者子载波资源,具体取决于网络设备对资源的配置情况。
通过前述实施例对本申请的举例说明可知,网络设备通过资源分配字段包括的比特状态的取值不同来指示为终端设备分配资源块或者子载波资源,资源分配字段用于指示所述分配的资源块时,资源分配字段包括高
Figure PCTCN2018083623-appb-000038
个比特和低M+X比特,高
Figure PCTCN2018083623-appb-000039
个比特指示窄带索引,低M+X比特中的高M比特指示窄带内的资源分配,且资源分配字段所指示的资源块的数目大于或等于1,资源分配字段用于指示所述分配的子载波资源时,资源分配字段包含高
Figure PCTCN2018083623-appb-000040
个比特和低L比特,高
Figure PCTCN2018083623-appb-000041
个比特指示窄带索引,低L比特指示K个资源块内的子载波资源的分配,且资源分配字段所指示子载波个数小于12,从而实现能支持分配小于12个子载波的资源,可以将有效的资源分配给更多的UE,提高了频谱利用效率。
接下来分别从终端设备和网络设备的角度描述本申请实施例提供的信息处理方法,首先请参阅图3所示,本申请实施例提供一种信息传输的方法,包括:
301、终端设备接收网络设备发送的下行控制信息,其中下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源。
其中,资源分配字段用于指示所述分配的资源块时,资源分配字段包括高
Figure PCTCN2018083623-appb-000042
个比特和低M+X比特,高
Figure PCTCN2018083623-appb-000043
个比特指示窄带索引,低M+X比特中的高M比特指示窄带内的资源分配,且资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,NRUBL表示上行带宽中包含的资源块的个数;或,
资源分配字段用于指示所述分配的子载波资源时,资源分配字段包含高
Figure PCTCN2018083623-appb-000044
个比特和低L比特,高
Figure PCTCN2018083623-appb-000045
个比特指示窄带索引,低L比特指示K个资源块内的子载波资源的分配,且资源分配字段所指示子载波个数小于12,L是正整数,K是正整数。
在本申请的一些实施例中,终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式(Mode)A;
下行控制信息还包括第一字段,第一字段的大小是2个比特;
第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或第一字段中有1种比特状态指示资源分配字段用于指示所述分配的资源块;
第一字段指示资源单元数时,资源分配字段指示子载波资源的分配。
其中,终端设备处于ModeA或者ModeB为连接态的覆盖增强(coverage enhancement,CE)等级(level)分类,CE level0/1/2/3为空闲态的覆盖增强等级,ModeA对应着CE level 0/1,ModeB对应着CE level 2/3。当终端设备处于处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A时,下行控制信息还包括第一字段,第一字段的大小是2个比特,该第一字段可以具有4中比特状态,第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或第一字段中有1种比特状态指示资源分配字段用于指示所述分配的资源块。其中,资源单元(Resource Unit,RU)在频域上占用的子载波个数小于12,时域上占用的资源大于一个子帧,资源单元用于描述物理上行共享信道到资源元素的映射,一个资源单元定义为时域上连续的X个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号或者单载波频分复用符号(Single-carrier,Frequency-Division Multiple Access,SC-FDMA),频域上Y个连续的子载波,其中X和Y为正整数。在本申请实施例中,第一字段中有3种比特状态指示资源单元数时,资源分配字段指示子载波资源的分配,即终端设备根据资源分配字段的比特状态可以确定出网络设备分配给终端设备的子载波资源。
可选的,当资源分配字段用于指示所述分配的资源块时,采用上行资源分配方式0分配资源块。
进一步的,在本申请的一些实施例中,第一字段的00比特状态指示资源分配字段用于指示所述分配的资源块;或,第一字段的11比特状态指示资源分配字段用于指示所述分配的资源块。
其中,第一字段采用2比特指示RU个数,如下表1所述的第一字段的含义:
表1
2比特状态 含义
00 表示RB级的资源分配
01 RU个数为1
10 RU个数为2
11 RU个数为4
其中,比特状态为“00”用于指示资源块级的资源分配,比特状态为“01/11/10”用于指示子载波级的资源分配,并且通过第一字段的3种不同比特状态指示了RU个数的取值情况,3种不同的资源单元数是1、2和4。
可选的,第一字段为下行控制信息的第一个字段。终端设备可以根据第一字段指示的状态确定下行控制信息中其他字段的有无,或者其他字段的大小。
在本申请的一些实施例中,K=5,M=5,L=5,且资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,K=3,M=5,L=5,且资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,K=6,M=5,L=6,且资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
可选的,在本申请的一些实施例中,K个资源块是窄带内的K个资源块或者预先规定的K个资源块,所述预先规定的K个资源块可以是窄带内的也可以是系统带宽上任意的K个资源块。
进一步的,在本申请的一些实施例中,K=5,M=5,L=5,且资源分配字段所分配的子载波资源是3个子载波时,下行控制信息还包括第二字段,第二字段指示终端设备使用3个子载波进行信息传输,或者使用3个子载波中的2个连续子载波进行信息传输;或,K=5,M=5,L=5,且资源分配字段所分配的子载波资源是3个子载波时,下行控制信息还包括第三字段,第三字段指示终端设备的信息传输的调制方式,调制方式是Pi/2BPSK调制时,使用3个子载波中的2个连续子载波进行信息传输,调制方式是正交相移键控(Quadrature Phase Shift Keyin,QPSK)调制时,使用3个子载波进行信息传输,其中,Pi/2表示旋转角度为90度;或,K=3,M=5,L=5,资源分配字段分配的子载波资源是2个子载波时,2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
具体的,本申请实施例中,下行控制信息中还可以携带第二字段或者第三字段,终端设备还可以通过第二字段指示终端设备使用3个子载波进行信息传输,或者使用3个子载波中的2个连续子载波进行信息传输,或者,终端设备可以通过第三字段确定信息传输的调制方式,例如调制方式可以包括:Pi/2BPSK调制或者QPSK调制,从而终端设备可以按照网络设备指示的调制方式来传输信息。
可选的,当HARQ进程号字段占用的比特数少于3时,所述第二字段或者第三字段可以占用HARQ进程号字段中没被占用的比特。
进一步,可选的,当K=3,M=5,L=5,资源分配字段分配的子载波资源是2个子载波时,2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。举例说明,当K=5,M=5,L=5时,资源分配字段包含
Figure PCTCN2018083623-appb-000046
个比特,则
Figure PCTCN2018083623-appb-000047
用于指示系统带宽内的窄带索引,5比特用于指示所述窄带索引对应的窄带内的资源块以资源块为单位的资源分配或者用于指示以子载波为单位资源块的资源分配。
资源分配字段用于以子载波为单位的资源分配时,网络设备分配的子载波资源为5个资源块内的,所述5个资源块为高层配置的或者预设的用于以子载波为单位的资源分配,可以是窄带索引指示的窄带内的,也可以是系统带宽上的任意的5个资源块。此种情况下,网络设备分配的子载波资源不区分2个子载波和3个子载波。具体的低5比特的状态和分配的子载波资源的映射关系满足下表2所述,其中资源块n~资源块n+4为高层配置的或者预设的用于以子载波为单位的资源分配的资源块。又如,当K=3,M=5,L=5,资源分配字段包含
Figure PCTCN2018083623-appb-000048
个比特,则
Figure PCTCN2018083623-appb-000049
用于指示系统带宽内的窄带索引,5比特用 于指示所述窄带索引对应的窄带内的资源块以资源块为单位的资源分配或者用于指示以子载波为单位资源块的资源分配。
资源分配字段用于以子载波为单位的资源分配时,网络设备分配的子载波资源为3个资源块内的,所述3个资源块为高层配置的或者预设的用于以子载波为单位的资源分配的,可以是窄带索引指示的窄带内的,也可以是系统带宽上的任意的3个资源块。此种情况下,网络设备分配的子载波资源区分2个子载波和3个子载波,具体的5比特的状态和分配的子载波资源的映射关系可以满足下表3、表4、表5或表6所述,其中资源块n~资源块n+2为高层配置的或者预设的用于以子载波为单位的资源分配的资源块,其中n,n+1和n+2为资源块的索引,且为整数。
又如,当K=6,M=5,L=6,资源分配字段用于指示以资源块为单位的资源时,资源分配字段包含
Figure PCTCN2018083623-appb-000050
个比特,则高
Figure PCTCN2018083623-appb-000051
用于指示系统带宽内的窄带索引,低5比特用于指示所述窄带索引对应的窄带内的以资源块为单位的资源分配;资源分配字段用于指示以子载波为单位的资源分配时,资源分配字段包含
Figure PCTCN2018083623-appb-000052
个比特,则高
Figure PCTCN2018083623-appb-000053
比特用于指示系统带宽内的窄带索引,低6比特用于指示6个资源块内的2个子载波、3个子载波或者6个子载波的资源分配,所述6个资源块为网络设备配置或者预设的用于以子载波为单位的资源分配,可以是窄带索引指示的窄带内的,也可以是系统带宽上的任意的6个资源块。资源分配字段用于指示以子载波为单位的资源分配时,低6比特指示的64种比特状态中的60种比特状态用于指示窄带索引指示的窄带内的任意一个RB内的2个子载波、3个子载波或者6个子载波的资源分配。具体的低6比特的比特状态和分配的子载波资源的映射关系可以满足下表7所述,其中资源块n~资源块n+5为网络配置的或者预设的用于以子载波为单位的资源分配的资源块。
表2
Figure PCTCN2018083623-appb-000054
Figure PCTCN2018083623-appb-000055
表3
Figure PCTCN2018083623-appb-000056
Figure PCTCN2018083623-appb-000057
表4
Figure PCTCN2018083623-appb-000058
Figure PCTCN2018083623-appb-000059
表5
Figure PCTCN2018083623-appb-000060
Figure PCTCN2018083623-appb-000061
表6
Figure PCTCN2018083623-appb-000062
Figure PCTCN2018083623-appb-000063
Figure PCTCN2018083623-appb-000064
表7
Figure PCTCN2018083623-appb-000065
Figure PCTCN2018083623-appb-000066
本申请实施例下行控制信息可以增加2比特,能同时支持以资源块为单位、以子载波为单位的资源分配以及支持资源单元个数的指示。
可选的,在本申请的一些实施例中,当所述下行控制信息用于资源块分配时,下行控制信息中的第六字段的大小是N比特,当所述下行控制信息用于子载波资源分配时,下行控制信息中的第六字段的大小是N-1比特。N是大于等于1的正整数。本申请中,如果N等于1,当所述下行控制信息用于子载波资源分配时,下行控制信息中的第六字段的大小是0比特,则表示下行控制信息中不包括第六字段。
第六字段可以是Flag format 6-0A/format 6-1A differentiation字段、Modulation and coding scheme字段、HARQ process number字段、或Repetition number字段。
举例说明,下行控制信息用于资源块分配时,Flag format 6-0A/format 6-1A differentiation字段是1比特;下行控制信息用于子载波资源分配时,下行控制信息中不包括Flag format 6-0A/format 6-1A differentiation字段。
又如,下行控制信息用于资源块分配时,Modulation and coding scheme字段大小是4比特;下行控制信息用于子载波资源分配时,Modulation and coding scheme字段大小是3比特。
又如,下行控制信息用于资源块分配时,HARQ process number字段大小是3比特;下行控制信息用于子载波资源分配时,HARQ process number字段大小是2比特。
又如,下行控制信息用于资源块分配时,Repetition number字段大小是2比特;下行控制信息用于子载波资源分配时,Repetition number字段大小是1比特。
可选的,在前述实施方式的基础上,当下行控制信息用于资源块分配时,下行控制信息中的第七字段的大小是P比特,当下行控制信息用于子载波资源分配时,下行控制信息中的第七字段的大小是P-1比特。P是大于等于1的正整数。其中第七字段是与前述第六字段不同的字段。如第七字段是Flag format 6-0A/format 6-1A differentiation字段、Modulation and coding scheme字段、HARQ process number字段、或Repetition number字段。
举例说明,例如,第六字段是Flag format 6-0A/format 6-1A differentiation字段,第七字段是Modulation and coding scheme字段。
又如,第六字段是Flag format 6-0A/format 6-1A differentiation字段,第七字段是HARQ process number字段。
又如,第六字段是Flag format 6-0A/format 6-1A differentiation字段,第七字段是Repetition number字段。
又如,第六字段是Modulation and coding scheme字段,第七字段是HARQ process number字段。
又如,第六字段是Modulation and coding scheme字段,第七字段是Repetition number字段。
又如,第六字段是Repetition number字段,第七字段是HARQ process number字段。
举例说明,下行控制信息用于资源块分配时,第六字段大小是1比特,第七字段大小是4比特;下行控制信息用于子载波资源分配时,下行控制信息中不包括第六字段,第七字段大小是3比特。
进一步地,可选的,在本申请的一些实施例中,当下行控制信息用于资源块分配时,下行控制信息中包含窄带资源调整字段,当下行控制信息用于子载波资源分配时,下行控制信息中不包含窄带资源调整字段。或者,当下行控制信息用于资源块分配时,下行控制信息中不包含窄带资源调整字段,当下行控制信息用于子载波资源分配时,下行控制信息中包含窄带资源调整字段。所述窄带资源调整字段用于指示窄带是否偏移、窄带偏移方向、或者窄带偏移大小的字段。
可选的,在本申请的一些实施例中,当下行控制信息用于资源块分配时,下行控制信息中包含指示窄带索引的字段,当下行控制信息用于子载波资源分配时,下行控制信息中不包含指示窄带索引的字段。
在本申请的一些实施例中,终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
下行控制信息还包括第四字段,第四字段的大小是1个比特;
第四字段的比特状态为0时,资源分配字段用于指示所述分配的资源块;
第四字段的比特状态为1时,资源分配字段用于指示所述分配的子载波资源。
终端设备可以通过第四字段的比特状态的取值确定资源分配字段用于指示所述分配的资源块资源还是用于分配子载波资源。
进一步的,在本申请的一些实施例中,K=2,M=3,L=4,资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,K=2,M=3,L=5,资源分配字段所分配的子载波资源是3个子载波或6个子载波,且资源分配字段指示了资源单元个数;或,K=3,M=3,L=5,资源分配字段所分配的子载波资源是2个子载波、3个子载波或6个子载波。
例如,当K=2,M=3,L=4时,资源分配字段用于指示所述分配的资源块时,终端设备可以确定资源分配字段所分配的资源块是高
Figure PCTCN2018083623-appb-000067
个比特指示的窄带索引对应的窄带内的1个或者2个资源块;资源分配字段用于指示所述分配的子载波资源时,终端设备可以确定资源分配字段所分配的子载波资源是2个资源块内的3个子载波或6个子载波。当K=2,M=3,L=5时,资源分配字段用于指示所述分配的资源块时,终端设备可以确定资源分配字段所分配的资源块是高
Figure PCTCN2018083623-appb-000068
个比特指示的窄带索引对应的窄带内的1个或者2个资源块;资源分配字段用于指示所述分配的子载波资源时,终端设备可以确定资源分配字段所分配的子载波资源是2个资源块内的3个子载波或6个子载波,且资源分配字段指示了两种资源单元个数。
进一步的,可选的,当资源分配字段用于指示所述分配的资源块时,采用上行资源分配方式2。
进一步,可选的,资源分配字段用于指示所述分配的子载波资源时,所述2个资源块为网络配置的资源块或者预设的资源块;
进一步,可选的,这两个资源块可以是高
Figure PCTCN2018083623-appb-000069
个比特指示的窄带索引对应的窄带内的,也可以是系统带宽上任意的资源块。
进一步的,在本申请的一些实施例中,K=2,M=3,L=4时,或者,K=3,M=3,L=5时,下行控制信息还包括第五字段,终端设备可以根据第字段的比特状态来确定网络设备指示的资源单元个数。第五字段大小是1个比特,第五字段指示了资源单元个数,所述1个比特对应的两种状态指示两种资源单元个数。
进一步,可选的,所述两种资源单元个数可以为1和2。
进一步,可选的,所述两种资源单元个数可以为2和4。
可选的,第四字段为下行控制信息的第一个字段,终端设备可以根据第四字段指示的状态确定下行控制信息中其他字段的有无,或者其他字段的大小。
可选的,在本申请的一些实施例中,当所述下行控制信息用于资源块分配时,下行控制信息中的第八字段的大小是S比特,当所述下行控制信息用于子载波资源分配时,下行控制信息中的第八字段的大小是S-1比特。S是大于等于1的正整数。本申请中,如果S等于1,当所述下行控制信息用于子载波资源分配时,下行控制信息中的第八字段的大小是0比特,则表示下行控制信息中不包括第八字段。
第八字段可以是Flag format 6-0B/format 6-1B differentiation字段、Modulation and coding scheme字段、HARQ process number字段、或Repetition number字段。
举例说明,当第四字段的比特状态指示下行控制信息用于资源块分配时,Flag format 6-0B/format 6-1B differentiation字段是1比特;当第四字段的比特状态指示下行控制信息用于子载波资源分配时,下行控制信息中不包括Flag format 6-0B/format 6-1B differentiation字段。
又如,当第四字段的比特状态指示下行控制信息用于资源块分配时,Modulation and coding scheme字段大小是4比特;当第四字段的比特状态指示下行控制信息用于子载波资源分配时,Modulation and coding scheme字段大小是3比特。
又如,当第四字段的比特状态指示下行控制信息用于资源块分配时,HARQ process number字段大小是1比特;当第四字段的比特状态指示下行控制信息用于子载波资源分配时,下行控制信息不包含HARQ process number字段。
又如,当第四字段的比特状态指示下行控制信息用于资源块分配时,Repetition number字段大小是3比特;当第四字段的比特状态指示下行控制信息用于子载波资源分配时,Repetition number字段大小是2比特。
可选的,在前述实施方式的基础上,当下行控制信息用于资源块分配时,下行控制信息中的第九字段的大小是P比特,当下行控制信息用于子载波资源分配时,下行控制信息中的第九字段的大小是P-1比特。P是大于等于1的正整数。其中第九字段是与前述第八字段不同的字段。如第九字段是Flag format 6-0B/format 6-1B differentiation字段、Modulation and coding scheme字段、HARQ process number字段、或Repetition number字段。
举例说明,例如,第八字段是Flag format 6-0B/format 6-1B differentiation字段,第九字段是Modulation and coding scheme字段。
又如,第八字段是Flag format 6-0B/format 6-1B differentiation字段,第九字段是HARQ process number字段。
又如,第八字段是Flag format 6-0B/format 6-1B differentiation字段,第九字段是Repetition number字段。
又如,第八字段是Modulation and coding scheme字段,第九字段是HARQ process number字段。
又如,第八字段是Modulation and coding scheme字段,第九字段是Repetition number字段。
又如,第八字段是Repetition number字段,第九字段是HARQ process number字段。
可选的,在本申请的一些实施例中,当下行控制信息用于资源块分配时,下行控制信息中包含指示窄带索引的字段,当下行控制信息用于子载波资源分配时,下行控制信息中不包含指示窄带索引的字段。
可选的,在本申请的一些实施例中,当下行控制信息用于资源块分配时,下行控制信息中包含窄带资源调整字段,当下行控制信息用于子载波资源分配时,下行控制信息中不包含窄带资源调整字段。或者,当下行控制信息用于资源块分配时,下行控制信息中不包含窄带资源调整字段,当下行控制信息用于子载波资源分配时,下行控制信息中包含窄带资源调整字段。所述窄带资源调整字段用于指示窄带是否偏移、窄带偏移方向、或者窄带偏移大小的字段。
302、终端设备根据下行控制信息确定分配的资源,并在分配的资源上发送信息。
在本发明实施例中,网络设备通过资源分配字段能够用于指示以资源块为单位进行资源分配,或者通过资源分配字段能够用于指示以子载波资源为单位进行资源分配,并通过资源分配字段包括的高比特的状态和低比特的状态确定出分配给的资源,终端设备可以使用网络设备分配的资源完成上行信息的发送。
通过前述实施例对本申请的举例说明可知,网络设备通过资源分配字段包括的比特状态的取值不同来指示为终端设备分配资源块或者子载波资源,资源分配字段用于指示所述分配的资源块时,资源分配字段包括高
Figure PCTCN2018083623-appb-000070
个比特和低M+X比特,高
Figure PCTCN2018083623-appb-000071
个比特指示窄带索引,低M+X比特中的高M比特指示窄带内的资源分配,且资源分配字段所指示的资源块的数目大于或等于1,资源分配字段用于指示所述分配的子载波资源时,资源分配字段包含高
Figure PCTCN2018083623-appb-000072
个比特和低L比特,高
Figure PCTCN2018083623-appb-000073
个比特指示窄带索引,低L比特指示K个资源块内的子载波资源的分配,且资源分配字段所指示子载波个数小于12,从而实现能支持分配小于12个子载波的资源,可以将有效的资源分配给更多的UE,提高了频谱利用效率。
接下来又提供一种从终端设备角度描述本申请实施例提供的信息处理方法,首先请参阅图3所示,本申请实施例提供一种信息传输的方法,包括:
301、终端设备接收网络设备发送的下行控制信息,其中下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源。
其中,资源分配字段用于指示所述分配的资源块时,资源分配字段包括高
Figure PCTCN2018083623-appb-000074
个比特和低M+X比特,高
Figure PCTCN2018083623-appb-000075
个比特指示窄带索引,低M+X比特中的高M比特指示窄带内的资源分配,且资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,
Figure PCTCN2018083623-appb-000076
表示上行带宽中包含的资源块的个数;或,
资源分配字段用于指示所述分配的子载波资源时,资源分配字段包含L比特,所述L比特用于指示K个资源块内的子载波资源的分配;或者,资源分配字段包含高
Figure PCTCN2018083623-appb-000077
个比特和低L比特,高
Figure PCTCN2018083623-appb-000078
个比特指示窄带索引,低L比特指示K个资源块内的子载波资源的分配,且资源分配字段所指示子载波个数小于12,L是正整数,K是正整数。
在本申请的一些实施例中,终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式(Mode)A;
下行控制信息还包括第一字段,第一字段的大小是2个比特;
第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或第一字段中有1种比特状态指示资源分配字段用于指示所述分配的资源块;
第一字段指示资源单元数时,资源分配字段指示子载波资源的分配。
其中,终端设备处于ModeA或者ModeB为连接态的覆盖增强(coverage enhancement,CE)等级(level)分类,CE level0/1/2/3为空闲态的覆盖增强等级,ModeA对应着CE level 0/1,ModeB对应着CE level 2/3。当终端设备处于处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A时,下行控制信息还包括第一字段,第一字段的大小是2个比特,该第一字段可以具有4中比特状态,第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或第一字段中有1种比特状态指示资源分配字段用于指示所述分配的资源块。其中,资源单元(Resource Unit,RU)在频域上占用的子载波个数小于12,时域上占用的资源大于一个子帧,资源单元用于描述物理上行共享信道到资源元素的映射,一个资源单元定义为时域上连续的X个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号或者单载波频分复用符号(Single-carrier,Frequency-Division Multiple Access,SC-FDMA),频域上Y个连续的子载波,其中X和Y为正整数。在本申请实施例中,第一字段中有3种比特状态指示资源单元数时,资源分配字段指示子载波资源的分配,即终端设备根据资源分配字段的比特状态可以确定出网络设备分配给终端设备的子载波资源。
可选的,当资源分配字段用于指示所述分配的资源块时,采用上行资源分配方式0分配资源块。
进一步的,在本申请的一些实施例中,第一字段的00比特状态指示资源分配字段用于指示所述分配的资源块;或,第一字段的11比特状态指示资源分配字段用于指示所述分配的资源块。
其中,第一字段采用2比特指示RU个数,如下表1所述的第一字段的含义:
表1
2比特状态 含义
00 表示RB级的资源分配
01 RU个数为1
10 RU个数为2
11 RU个数为4
其中,比特状态为“00”用于指示资源块级的资源分配,比特状态为“01/11/10”用于指示子载波级的资源分配,并且通过第一字段的3种不同比特状态指示了RU个数的取值情况,3种不同的资源单元数是1、2和4。
可选的,第一字段为下行控制信息的第一个字段。终端设备可以根据第一字段指示的状态确定下行控制信息中其他字段的有无,或者其他字段的大小。
可选的,在本申请的一些实施例中,当所述下行控制信息用于资源块分配时,下行控制信息中的第六字段的大小是N比特,当所述下行控制信息用于子载波资源分配时,下行控制信息中的第六字段的大小是N-1比特。N是大于等于1的正整数。本申请中,如果N等于1,当所述下行控制信息用于子载波资源分配时,下行控制信息中的第六字段的大小是0比特,则表示下行控制信息中不包括第六字段。
第六字段可以是Flag format 6-0A/format 6-1A differentiation字段、Modulation and coding scheme字段、HARQ process number字段、或Repetition number字段。
举例说明,当第一字段的比特状态指示下行控制信息用于资源块分配时,Flag format 6-0A/format 6-1A differentiation字段是1比特;当第一字段的比特状态指示下行控制信息用于子载波资源分配时,下行控制信息中不包括Flag format 6-0A/format 6-1A differentiation字段。
又如,当第一字段的比特状态指示下行控制信息用于资源块分配时,Modulation and coding scheme字段大小是4比特;当第一字段的比特状态指示下行控制信息用于子载波资源分配时,Modulation and coding scheme字段大小是3比特。
又如,当第一字段的比特状态指示下行控制信息用于资源块分配时,HARQ process number字段大小是3比特;当第一字段的比特状态指示下行控制信息用于子载波资源分配时,HARQ process number字段大小是2比特。
又如,当第一字段的比特状态指示下行控制信息用于资源块分配时,Repetition number字段大小是2比特;当第一字段的比特状态指示下行控制信息用于子载波资源分配时,Repetition number字段大小是1比特。
可选的,在前述实施方式的基础上,当下行控制信息用于资源块分配时,下行控制信息中的第七字段的大小是P比特,当下行控制信息用于子载波资源分配时,下行控制信息 中的第七字段的大小是P-1比特。P是大于等于1的正整数。其中第七字段是与前述第六字段不同的字段。如第七字段是Flag format 6-0A/format 6-1A differentiation字段、Modulation and coding scheme字段、HARQ process number字段、或Repetition number字段。
举例说明,例如,第六字段是Flag format 6-0A/format 6-1A differentiation字段,第七字段是Modulation and coding scheme字段。
又如,第六字段是Flag format 6-0A/format 6-1A differentiation字段,第七字段是HARQ process number字段。
又如,第六字段是Flag format 6-0A/format 6-1A differentiation字段,第七字段是Repetition number字段。
又如,第六字段是Modulation and coding scheme字段,第七字段是HARQ process number字段。
又如,第六字段是Modulation and coding scheme字段,第七字段是Repetition number字段。
又如,第六字段是Repetition number字段,第七字段是HARQ process number字段。
可选的,在本申请的一些实施例中,当下行控制信息用于资源块分配时,下行控制信息中包含指示窄带索引的字段,当下行控制信息用于子载波资源分配时,下行控制信息中不包含指示窄带索引的字段。
可选的,在本申请的一些实施例中,当下行控制信息用于资源块分配时,下行控制信息中包含窄带资源调整字段,当下行控制信息用于子载波资源分配时,下行控制信息中不包含窄带资源调整字段。或者,当下行控制信息用于资源块分配时,下行控制信息中不包含窄带资源调整字段,当下行控制信息用于子载波资源分配时,下行控制信息中包含窄带资源调整字段。所述窄带资源调整字段用于指示窄带是否偏移、窄带偏移方向、或者窄带偏移大小的字段。
在本申请的一些实施例中,K=6,M=5,L=6,且资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。进一步的,可选的,在本申请的一些实施例中,K个资源块是窄带内的K个资源块或者预先规定的K个资源块,所述预先规定的K个资源块可以是窄带内的也可以是系统带宽上任意的K个资源块。
进一步的,在本申请的一些实施例中,K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
当K=6,M=5,L=6,资源分配字段用于指示以资源块为单位的资源时,资源分配字段包含
Figure PCTCN2018083623-appb-000079
个比特,则高
Figure PCTCN2018083623-appb-000080
用于指示系统带宽内的窄带索引,低5比特用于指示所述窄带索引对应的窄带内的以资源块为单位的资源分配。资源分配字段用于指示以子载波为单位的资源分配时,资源分配字段包含
Figure PCTCN2018083623-appb-000081
个比特,则高
Figure PCTCN2018083623-appb-000082
比特用于指示系统带宽内的窄带索引,低6比特用于指示所述窄带索引对应的窄带内6个资源块内的2个子载波、3个子载波或者6个子载波的资源分配;或者,资源分配字段用于指示以子载波为单位的资源分配时,资源分配字段包含6比特,用于指示网络配置的或者预先定义的6个资源块内的2个子载波、3个子载波或者6个子载波的资源分配。
在本申请的一些实施例中,终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
下行控制信息还包括第四字段,第四字段的大小是1个比特;
第四字段的比特状态为0时,资源分配字段用于指示所述分配的资源块;
第四字段的比特状态为1时,资源分配字段用于指示所述分配的子载波资源。
终端设备可以通过第四字段的比特状态的取值确定资源分配字段用于指示所述分配的资源块资源还是用于分配子载波资源。
可选的,第四字段为下行控制信息的第一个字段。终端设备可以根据第四字段指示的状态确定下行控制信息中其他字段的有无,或者其他字段的大小。
可选的,在本申请的一些实施例中,当所述下行控制信息用于资源块分配时,下行控制信息中的第八字段的大小是S比特,当所述下行控制信息用于子载波资源分配时,下行控制信息中的第八字段的大小是S-1比特。S是大于等于1的正整数。本申请中,如果S等于1,当所述下行控制信息用于子载波资源分配时,下行控制信息中的第八字段的大小是0比特,则表示下行控制信息中不包括第八字段。
第八字段可以是Flag format 6-0B/format 6-1B differentiation字段、Modulation and coding scheme字段、HARQ process number字段、或Repetition number字段。
举例说明,当第四字段的比特状态指示下行控制信息用于资源块分配时,Flag format 6-0B/format 6-1B differentiation字段是1比特;当第四字段的比特状态指示下行控制信息用于子载波资源分配时,下行控制信息中不包括Flag format 6-0B/format 6-1B differentiation字段。
又如,当第四字段的比特状态指示下行控制信息用于资源块分配时,Modulation and coding scheme字段大小是4比特;当第四字段的比特状态指示下行控制信息用于子载波资源分配时,Modulation and coding scheme字段大小是3比特。
又如,当第四字段的比特状态指示下行控制信息用于资源块分配时,HARQ process number字段大小是1比特;当第四字段的比特状态指示下行控制信息用于子载波资源分配时,下行控制信息不包含HARQ process number字段。
又如,当第四字段的比特状态指示下行控制信息用于资源块分配时,Repetition number字段大小是3比特;当第四字段的比特状态指示下行控制信息用于子载波资源分配时,Repetition number字段大小是2比特。
可选的,在前述实施方式的基础上,当下行控制信息用于资源块分配时,下行控制信息中的第九字段的大小是P比特,当下行控制信息用于子载波资源分配时,下行控制信息中的第九字段的大小是P-1比特。P是大于等于1的正整数。其中第九字段是与前述第八字段不同的字段。如第九字段是Flag format 6-0B/format 6-1B differentiation字段、Modulation and coding scheme字段、HARQ process number字段、或Repetition number字段。
举例说明,例如,第八字段是Flag format 6-0B/format 6-1B differentiation字段,第九字段是Modulation and coding scheme字段。
又如,第八字段是Flag format 6-0B/format 6-1B differentiation字段,第九字段是HARQ process number字段。
又如,第八字段是Flag format 6-0B/format 6-1B differentiation字段,第九字段是Repetition number字段。
又如,第八字段是Modulation and coding scheme字段,第九字段是HARQ process number字段。
又如,第八字段是Modulation and coding scheme字段,第九字段是Repetition number字段。
又如,第八字段是Repetition number字段,第九字段是HARQ process number字段。
可选的,在本申请的一些实施例中,当下行控制信息用于资源块分配时,下行控制信息中包含指示窄带索引的字段,当下行控制信息用于子载波资源分配时,下行控制信息中不包含指示窄带索引的字段。
可选的,在本申请的一些实施例中,当下行控制信息用于资源块分配时,下行控制信息中包含窄带资源调整字段,当下行控制信息用于子载波资源分配时,下行控制信息中不包含窄带资源调整字段。或者,当下行控制信息用于资源块分配时,下行控制信息中不包含窄带资源调整字段,当下行控制信息用于子载波资源分配时,下行控制信息中包含窄带资源调整字段。所述窄带资源调整字段用于指示窄带是否偏移、窄带偏移方向、或者窄带偏移大小的字段。
进一步的,在本申请的一些实施例中,K=2,M=3,L=4,资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,K=2,M=3,L=5,资源分配字段所分配的子载波资源是3个子载波或6个子载波,且资源分配字段指示了资源单元个数。
例如,当K=2,M=3,L=4时,资源分配字段用于指示所述分配的资源块时,终端设备可以确定资源分配字段所分配的资源块是高
Figure PCTCN2018083623-appb-000083
个比特指示的窄带索引对应的窄带内的1个或者2个资源块;资源分配字段用于指示所述分配的子载波资源时,终端设备可以确定资源分配字段所分配的子载波资源是2个资源块内的3个子载波或6个子载波。当K=2,M=3,L=5时,资源分配字段用于指示所述分配的资源块时,终端设备可以确定资源分配字段所分配的资源块是高
Figure PCTCN2018083623-appb-000084
个比特指示的窄带索引对应的窄带内的1个或者2个资源块;资源分配字段用于指示所述分配的子载波资源时,终端设备可以确定资源分配字段所分配的子载波资源是2个资源块内的3个子载波或6个子载波,且资源分配字段指示了两种资源单元个数。
进一步的,可选的,当资源分配字段用于指示所述分配的资源块时,采用上行资源分配方式2。
进一步,可选的,资源分配字段用于指示所述分配的子载波资源时,所述2个资源块为网络配置的资源块或者预设的资源块;
进一步,可选的,这两个资源块可以是高
Figure PCTCN2018083623-appb-000085
个比特指示的窄带索引对应的窄带内的,也可以是系统带宽上任意的资源块。
进一步的,在本申请的一些实施例中,K=2,M=3,L=4时,下行控制信息还包括第五字段,终端设备可以根据第字段的比特状态来确定网络设备指示的资源单元个数。第五字段大小是1个比特,第五字段指示了资源单元个数,所述1个比特对应的两种状态指示两种资源单元个数。
进一步,可选的,所述两种资源单元个数可以为1和2。
302、终端设备根据下行控制信息确定分配的资源,并在分配的资源上发送信息。
在本发明实施例中,网络设备通过资源分配字段能够用于指示以资源块为单位进行资源分配,或者通过资源分配字段能够用于指示以子载波资源为单位进行资源分配,并通过资源分配字段包括的高比特的状态和低比特的状态确定出分配给的资源,终端设备可以使用网络设备分配的资源完成上行信息的发送。
通过前述实施例对本申请的举例说明可知,网络设备通过资源分配字段包括的比特状态的取值不同来指示为终端设备分配资源块或者子载波资源,资源分配字段用于指示所述分配的资源块时,资源分配字段包括高
Figure PCTCN2018083623-appb-000086
个比特和低M+X比特,高
Figure PCTCN2018083623-appb-000087
个比特指示窄带索引,低M+X比特中的高M比特指示窄带内的资源分配,且资源分配字段所指示的资源块的数目大于或等于1,资源分配字段用于指示所述分配的子载波资源时,资源分配字段包含高
Figure PCTCN2018083623-appb-000088
个比特和低L比特,高
Figure PCTCN2018083623-appb-000089
个比特指示窄带索引,低L比特指示K个资源块内的子载波资源的分配,且资源分配字段所指示子载波个数小于12,从而实现能支持分配小于12个子载波的资源,可以将有效的资源分配给更多的UE,提高了频谱利用效率。
前述实施例从终端设备的角度描述了本申请实施例提供的信息传输的方法,接下来从网络设备的角度来描述本申请实施例提供的信息传输的方法,请参阅图4所示,本申请实施例提供一种信息传输的方法,包括:
401、网络设备确定为终端设备分配资源块或者子载波资源。
402、网络设备确定下行控制信息,其中下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源。
资源分配字段用于指示所述分配的资源块时,资源分配字段包括高
Figure PCTCN2018083623-appb-000090
个比特和低M+X比特,高
Figure PCTCN2018083623-appb-000091
个比特指示窄带索引,低M+X比特中的高M比特指示窄带内的资源分配,且资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,
Figure PCTCN2018083623-appb-000092
表示上行带宽中包含的资源块的个数;或, 资源分配字段用于指示所述分配的子载波资源时,资源分配字段包含高
Figure PCTCN2018083623-appb-000093
个比特和低L比特,高
Figure PCTCN2018083623-appb-000094
个比特指示窄带索引,低L比特指示K个资源块内的子载波资源的分配,且资源分配字段所指示子载波个数小于12,L是正整数,K是正整数。
在本申请的一些实施例中,终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;下行控制信息还包括第一字段,第一字段的大小是2个比特;第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或第一字段中有1种比特状态指示资源分配字段用于指示所述分配的资源块;第一字段指示资源单元数时,资源分配字段指示子载波资源的分配。
在本申请的一些实施例中,第一字段的00比特状态指示资源分配字段用于指示所述分配的资源块;或,第一字段的11比特状态指示资源分配字段用于指示所述分配的资源块。
在本申请的一些实施例中,K=5,M=5,L=5,且资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,K=3,M=5,L=5,且资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,K=6,M=5,L=6,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
进一步的,在本申请的一些实施例中,K=5,M=5,L=5,且资源分配字段所分配的子载波资源是3个子载波时,下行控制信息还包括第二字段,第二字段指示终端设备使用3个子载波进行信息传输,或者使用3个子载波中的2个连续子载波进行信息传输;或,K=5,M=5,L=5,且资源分配字段所分配的子载波资源是3个子载波时,下行控制信息还包括第三字段,第三字段指示终端设备的信息传输的调制方式,调制方式是Pi/2BPSK调制时,使用3个子载波中的2个连续子载波进行信息传输,调制方式是正交相移键控QPSK调制时,使用3个子载波进行信息传输,其中,Pi/2表示旋转角度为90度;或,K=3,M=5,L=5,资源分配字段分配的子载波资源是2个子载波时,2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
在本申请的一些实施例中,终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;下行控制信息还包括第四字段,第四字段的大小是1个比特;第四字段的比特状态为0时,资源分配字段用于指示所述分配的资源块;第四字段的比特状态为1时,资源分配字段用于指示所述分配的子载波资源。
在本申请的一些实施例中,K=2,M=3,L=4,资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,K=2,M=3,L=5,资源分配字段所分配的子载波资源是3个子载波或6个子载波,且资源分配字段指示了资源单元个数。
在本申请的一些实施例中,K=2,M=3,L=4时,下行控制信息还包括第五字段,第五字段大小是1个比特,第五字段指示了资源单元个数。
403、网络设备向终端设备发送下行控制信息。
404、网络设备在下行控制信息确定的资源上接收终端设备发送的信息。
通过前述实施例对本申请的举例说明可知,网络设备通过资源分配字段包括的比特状态的取值不同来指示为终端设备分配的资源块或者子载波资源,资源分配字段用于指示所述分配的资源块时,资源分配字段包括高
Figure PCTCN2018083623-appb-000095
个比特和低M+X比特,高
Figure PCTCN2018083623-appb-000096
个比特指示窄带索引,低M+X比特中的高M比特指示窄带内的资源分配,且资源分配字段所指示的资源块的数目大于或等于1,资源分配字段用于指示所述分配的子载波资源时,资源分配字段包含高
Figure PCTCN2018083623-appb-000097
个比特和低L比特,高
Figure PCTCN2018083623-appb-000098
个比特指示窄带索引,低L比特指示K个资源块内的子载波资源的分配,且资源分配字段所指示子载波个数小于12,从而实现能支持分配小于12个子载波的资源,可以将有效的资源分配给更多的UE,提高了频谱利用效率。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
为便于更好的实施本发明实施例的上述方案,下面还提供用于实施上述方案的相关装置。
本申请实施例提供一种终端设备,如图5所示,终端设备500包括:
接收模块501,用于接收网络设备发送的下行控制信息,其中所述下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源;
所述资源分配字段用于指示所述分配的资源块时,所述资源分配字段包括高
Figure PCTCN2018083623-appb-000099
个比特和低M+X比特,所述高
Figure PCTCN2018083623-appb-000100
个比特指示窄带索引,所述低M+X比特中的高M比特指示所述窄带内的资源分配,且所述资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,所述
Figure PCTCN2018083623-appb-000101
表示上行带宽中包含的资源块的个数;或,
所述资源分配字段用于指示所述分配的子载波资源时,所述资源分配字段包含高
Figure PCTCN2018083623-appb-000102
个比特和低L比特,所述高
Figure PCTCN2018083623-appb-000103
个比特指示窄带索引,所述低L比特指示K个资源块内的子载波资源的分配,且所述资源分配字段所指示子载波个数小于12,L是正整数,K是正整数;
处理模块502,用于根据所述下行控制信息确定分配的资源;
发送模块503,用于在所述分配的资源上发送信息。
在本申请的一些实施例中,所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述下行控制信息还包括第一字段,所述第一字段的大小是2个比特;
所述第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或所述第一字段中有1种比特状态指示所述资源分配字段用于指示所述分配的资源块;
所述第一字段指示资源单元数时,所述资源分配字段指示所述子载波资源的分配。
在本申请的一些实施例中,所述第一字段的00比特状态指示所述资源分配字段用于指示所述分配的资源块;或,
所述第一字段的11比特状态指示所述资源分配字段用于指示所述分配的资源块。
在本申请的一些实施例中,所述K=5,M=5,L=5,且所述资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,
所述K=3,M=5,L=5,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,
所述K=6,M=5,L=6,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
在本申请的一些实施例中,所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第二字段,所述第二字段指示所述终端设备使用所述3个子载波进行信息传输,或者使用所述3个子载波中的2个连续子载波进行信息传输;或,
所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第三字段,所述第三字段指示所述终端设备的信息传输的调制方式,所述调制方式是Pi/2BPSK调制时,使用所述3个子载波中的2个连续子载波进行信息传输,所述调制方式是正交相移键控QPSK调制时,使用所述3个子载波进行信息传输,其中,Pi/2表示旋转角度为90度;或,
所述K=3,M=5,L=5,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,
所述K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
在本申请的一些实施例中,所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述下行控制信息还包括第四字段,所述第四字段的大小是1个比特;
所述第四字段的比特状态为0时,所述资源分配字段用于指示所述分配的资源块;
所述第四字段的比特状态为1时,所述资源分配字段用于指示所述分配的子载波资源。
在本申请的一些实施例中,所述K=2,M=3,L=4,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,
所述K=2,M=3,L=5,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波,且所述资源分配字段指示了资源单元个数;或,K=3,M=3,L=5,资源分配字段所分配的子载波资源是2个子载波、3个子载波或6个子载波。
在本申请的一些实施例中,
所述K=2,M=3,L=4时,或,K=3,M=3,L=5时,所述下行控制信息还包括第五字段,所述第五字段大小是1个比特,所述第五字段指示了资源单元个数。
在本申请的一些实施例中,如图6所示,本申请实施例提供一种网络设备600,包括:
处理模块601,用于确定为终端设备分配资源块或者子载波资源;
处理模块601,用于确定下行控制信息,其中所述下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源;
所述资源分配字段用于指示所述分配的资源块时,所述资源分配字段包括高
Figure PCTCN2018083623-appb-000104
个比特和低M+X比特,所述高
Figure PCTCN2018083623-appb-000105
个比特指示窄带索引,所述低M+X比特中的高M比特指示所述窄带内的资源分配,且所述资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,所述
Figure PCTCN2018083623-appb-000106
表示上行带宽中包含的资源块的个数;或,
所述资源分配字段用于指示所述分配的子载波资源时,所述资源分配字段包含高
Figure PCTCN2018083623-appb-000107
个比特和低L比特,所述高
Figure PCTCN2018083623-appb-000108
个比特指示窄带索引,所述低L比特指示K个资源块内的子载波资源的分配,且所述资源分配字段所指示子载波个数小于12,L是正整数,K是正整数;
发送模块602,用于向所述终端设备发送下行控制信息;
接收模块603,用于在所述下行控制信息确定的资源上接收所述终端设备发送的信息。
在本申请的一些实施例中,所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述下行控制信息还包括第一字段,所述第一字段的大小是2个比特;
所述第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或所述第一字段中有1种比特状态指示所述资源分配字段用于指示所述分配的资源块;
所述第一字段指示资源单元数时,所述资源分配字段指示所述子载波资源的分配。
在本申请的一些实施例中,所述第一字段的00比特状态指示所述资源分配字段用于指示所述分配的资源块;或,
所述第一字段的11比特状态指示所述资源分配字段用于指示所述分配的资源块。
在本申请的一些实施例中,所述K=5,M=5,L=5,且所述资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,
所述K=3,M=5,L=5,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,
所述K=6,M=5,L=6,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
在本申请的一些实施例中,所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第二字段,所述第二字段指示所述终端设备使用所述3个子载波进行信息传输,或者使用所述3个子载波中的2个连续子载波进行信息传输;或,
所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第三字段,所述第三字段指示所述终端设备的信息传输的调制方式,所述调制方式是Pi/2BPSK调制时,使用所述3个子载波中的2个连续子载波进行信息传输,所述调制方式是正交相移键控QPSK调制时,使用所述3个子载波进行信息传输,其中,Pi/2表示旋转角度为90度;或,
所述K=3,M=5,L=5,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,所述K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
在本申请的一些实施例中,所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述下行控制信息还包括第四字段,所述第四字段的大小是1个比特;
所述第四字段的比特状态为0时,所述资源分配字段用于指示所述分配的资源块;
所述第四字段的比特状态为1时,所述资源分配字段用于指示所述分配的子载波资源。
在本申请的一些实施例中,所述K=2,M=3,L=4,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,
所述K=2,M=3,L=5,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波,且所述资源分配字段指示了资源单元个数;或,K=3,M=3,L=5,资源分配字段所分配的子载波资源是2个子载波、3个子载波或6个子载波。
在本申请的一些实施例中,所述K=2,M=3,L=4时,或,K=3,M=3,L=5时,所述下行控制信息还包括第五字段,所述第五字段大小是1个比特,所述第五字段指示了资源单元个数。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本发明方法实施例基于同一构思,其带来的技术效果与本发明方法实施例相同,具体内容可参见本发明前述所示的方法实施例中的叙述,此处不再赘述。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
如图7所示,为本申请实施例的又一种设备的结构示意图,该设备为终端设备,该终端设备可以包括:处理器131(例如CPU)、存储器132、发送器134和接收器133;发送器134和接收器133耦合至处理器131,处理器131控制发送器134的发送动作和接收器133 的接收动作。存储器132可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器132中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的终端设备还可以包括:电源135、通信总线136以及通信端口137中的一个或多个。接收器133和发送器134可以集成在终端设备的收发器中,也可以为终端设备上分别独立的收、发天线。通信总线136用于实现元件之间的通信连接。上述通信端口137用于实现终端设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器132用于存储计算机可执行程序代码,程序代码包括指令;当处理器131执行指令时,指令使处理器131执行上述方法实施例中终端设备的处理动作,使发送器134执行上述方法实施例中终端设备的发送动作,其实现原理和技术效果类似,在此不再赘述。
如图8所示,为本申请实施例的又一种设备的结构示意图,该设备为网络设备,该网络设备可以包括:处理器(例如CPU)141、存储器142、接收器143和发送器144;接收器143和发送器144耦合至处理器141,处理器141控制接收器143的接收动作和发送器144的发送动作。存储器142可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器142中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的网络设备还可以包括:电源145、通信总线146以及通信端口147中的一个或多个。接收器143和发送器144可以集成在网络设备的收发器中,也可以为网络设备上分别独立的收、发天线。通信总线146用于实现元件之间的通信连接。上述通信端口147用于实现网络设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器142用于存储计算机可执行程序代码,程序代码包括指令;当处理器141执行指令时,指令使处理器141执行上述方法实施例中网络设备的处理动作,使发送器144执行上述方法实施例中网络设备的发送动作,其实现原理和技术效果类似,在此不再赘述。
在另一种可能的设计中,当该装置为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的无线通信方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面无线通信方法的程序执行的集成电路。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际 的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (36)

  1. 一种信息传输的方法,其特征在于,包括:
    终端设备接收网络设备发送的下行控制信息,其中所述下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源;
    所述资源分配字段用于指示所述分配的资源块时,所述资源分配字段包括高
    Figure PCTCN2018083623-appb-100001
    个比特和低M+X比特,所述高
    Figure PCTCN2018083623-appb-100002
    个比特指示窄带索引,所述低M+X比特中的高M比特指示所述窄带内的资源分配,且所述资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,所述
    Figure PCTCN2018083623-appb-100003
    表示上行带宽中包含的资源块的个数;或,
    所述资源分配字段用于指示所述分配的子载波资源时,所述资源分配字段包含高
    Figure PCTCN2018083623-appb-100004
    个比特和低L比特,所述高
    Figure PCTCN2018083623-appb-100005
    个比特指示窄带索引,所述低L比特指示K个资源块内的子载波资源的分配,且所述资源分配字段所指示子载波个数小于12,L是正整数,K是正整数;
    所述终端设备根据所述下行控制信息确定分配的资源,并在所述分配的资源上发送信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
    所述下行控制信息还包括第一字段,所述第一字段的大小是2个比特;
    所述第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或所述第一字段中有1种比特状态指示所述资源分配字段用于指示所述分配的资源块;
    所述第一字段指示资源单元数时,所述资源分配字段指示所述子载波资源的分配。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一字段的00比特状态指示所述资源分配字段用于指示所述分配的资源块;或,
    所述第一字段的11比特状态指示所述资源分配字段用于指示所述分配的资源块。
  4. 根据权利要求1至3中任一项权利要求所述的方法,其特征在于,
    所述K=5,M=5,L=5,且所述资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,
    所述K=3,M=5,L=5,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,
    所述K=6,M=5,L=6,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
  5. 根据权利要求4所述的方法,其特征在于,
    所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第二字段,所述第二字段指示所述终端设备使用所述3个子载波进行信息传输,或者使用所述3个子载波中的2个连续子载波进行信息传输;或,
    所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第三字段,所述第三字段指示所述终端设备的信息传输的调制方式,所述调制方式是Pi/2BPSK调制时,使用所述3个子载波中的2个连续子载波进行信息传输,所述调制方式是正交相移键控QPSK调制时,使用所述3个子载波进行信息传输,其中,Pi表示旋转角度为90度;或,
    所述K=3,M=5,L=5,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,
    所述K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
  6. 根据权利要求1所述的方法,其特征在于,
    所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
    所述下行控制信息还包括第四字段,所述第四字段的大小是1个比特;
    所述第四字段的比特状态为0时,所述资源分配字段用于指示所述分配的资源块;
    所述第四字段的比特状态为1时,所述资源分配字段用于指示所述分配的子载波资源。
  7. 根据权利要求6所述的方法,其特征在于,
    所述K=2,M=3,L=4,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,
    所述K=2,M=3,L=5,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波,且所述资源分配字段指示了资源单元个数;或,K=3,M=3,L=5,资源分配字段所分配的子载波资源是2个子载波、3个子载波或6个子载波。
  8. 根据权利要求7所述的方法,其特征在于,
    所述K=2,M=3,L=4时,或K=3,M=3,L=5时,所述下行控制信息还包括第五字段,所述第五字段大小是1个比特,所述第五字段指示了资源单元个数。
  9. 一种信息传输的方法,其特征在于,包括:
    网络设备确定为终端设备分配资源块或者子载波资源;
    所述网络设备确定下行控制信息,其中所述下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源;
    所述资源分配字段用于指示所述分配的资源块时,所述资源分配字段包括高
    Figure PCTCN2018083623-appb-100006
    个比特和低M+X比特,所述高
    Figure PCTCN2018083623-appb-100007
    个比特指示窄带索引,所述低M+X比特中的高M比特指示所述窄带内的资源分配,且所述资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,所述
    Figure PCTCN2018083623-appb-100008
    表示上行带宽中包含的资源块的个数;或,
    所述资源分配字段用于指示所述分配的子载波资源时,所述资源分配字段包含高
    Figure PCTCN2018083623-appb-100009
    个比特和低L比特,所述高
    Figure PCTCN2018083623-appb-100010
    个比特指示窄带索引,所述低L比特指示K个资源块内的子载波资源的分配,且所述资源分配字段所指示子载波个数小于12,L是正整数,K是正整数;
    所述网络设备向所述终端设备发送下行控制信息;
    所述网络设备在所述下行控制信息确定的资源上接收所述终端设备发送的信息。
  10. 根据权利要求9所述的方法,其特征在于,
    所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
    所述下行控制信息还包括第一字段,所述第一字段的大小是2个比特;
    所述第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或所述第一字段中有1种比特状态指示所述资源分配字段用于指示所述分配的资源块;
    所述第一字段指示资源单元数时,所述资源分配字段指示所述子载波资源的分配。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一字段的00比特状态指示所述资源分配字段用于指示所述分配的资源块;或,
    所述第一字段的11比特状态指示所述资源分配字段用于指示所述分配的资源块。
  12. 根据权利要求9至11中任一项权利要求所述的方法,其特征在于,
    所述K=5,M=5,L=5,且所述资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,
    所述K=3,M=5,L=5,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,
    所述K=6,M=5,L=6,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
  13. 根据权利要求12所述的方法,其特征在于,
    所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第二字段,所述第二字段指示所述终端设备使用所述3个子载波进行信息传输,或者使用所述3个子载波中的2个连续子载波进行信息传输;或,
    所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第三字段,所述第三字段指示所述终端设备的信息传输的调制方式,所述调制方式是Pi/2BPSK调制时,使用所述3个子载波中的2个连续子载波进行信息传输,所述调制方式是正交相移键控QPSK调制时,使用所述3个子载波进行信息传输,其中,Pi/2表示旋转角度为90度;或,
    所述K=3,M=5,L=5,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,
    所述K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
  14. 根据权利要求9所述的方法,其特征在于,
    所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
    所述下行控制信息还包括第四字段,所述第四字段的大小是1个比特;
    所述第四字段的比特状态为0时,所述资源分配字段用于指示所述分配的资源块;
    所述第四字段的比特状态为1时,所述资源分配字段用于指示所述分配的子载波资源。
  15. 根据权利要求14所述的方法,其特征在于,
    所述K=2,M=3,L=4,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,
    所述K=2,M=3,L=5,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波,且所述资源分配字段指示了资源单元个数;或,K=3,M=3,L=5,资源分配字段所分配的子载波资源是2个子载波、3个子载波或6个子载波。
  16. 根据权利要求15所述的方法,其特征在于,
    所述K=2,M=3,L=4时,或,K=3,M=3,L=5时,所述下行控制信息还包括第五字段,所述第五字段大小是1个比特,所述第五字段指示了资源单元个数。
  17. 一种终端设备,其特征在于,包括:
    接收模块,用于接收网络设备发送的下行控制信息,其中所述下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源;
    所述资源分配字段用于指示所述分配的资源块时,所述资源分配字段包括高
    Figure PCTCN2018083623-appb-100011
    个比特和低M+X比特,所述高
    Figure PCTCN2018083623-appb-100012
    个比特指示窄带索引,所述低M+X比特中的高M比特指示所述窄带内的资源分配,且所述资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,所述
    Figure PCTCN2018083623-appb-100013
    表示上行带宽中包含的资源块的个数;或,
    所述资源分配字段用于指示所述分配的子载波资源时,所述资源分配字段包含高
    Figure PCTCN2018083623-appb-100014
    个比特和低L比特,所述高
    Figure PCTCN2018083623-appb-100015
    个比特指示窄带索引,所述低L比特指示K个资源块内的子载波资源的分配,且所述资源分配字段所指示子载波个数小于12,L是正整数,K是正整数;
    处理模块,用于根据所述下行控制信息确定分配的资源;
    发送模块,用于在所述分配的资源上发送信息。
  18. 根据权利要求17所述的终端设备,其特征在于,
    所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
    所述下行控制信息还包括第一字段,所述第一字段的大小是2个比特;
    所述第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或所述第一字段中有1种比特状态指示所述资源分配字段用于指示所述分配的资源块;
    所述第一字段指示资源单元数时,所述资源分配字段指示所述子载波资源的分配。
  19. 根据权利要求18所述的终端设备,其特征在于,
    所述第一字段的00比特状态指示所述资源分配字段用于指示所述分配的资源块;或,
    所述第一字段的11比特状态指示所述资源分配字段用于指示所述分配的资源块。
  20. 根据权利要求17至19中任一项权利要求所述的终端设备,其特征在于,
    所述K=5,M=5,L=5,且所述资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,
    所述K=3,M=5,L=5,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,
    所述K=6,M=5,L=6,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
  21. 根据权利要求20所述的终端设备,其特征在于,
    所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第二字段,所述第二字段指示所述终端设备使用所述3个子载波进行信息传输,或者使用所述3个子载波中的2个连续子载波进行信息传输;或,
    所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第三字段,所述第三字段指示所述终端设备的信息传输的调制方式,所述调制方式是Pi/2BPSK调制时,使用所述3个子载波中的2个连续子载波进行信息传输,所述调制方式是正交相移键控QPSK调制时,使用所述3个子载波进行信息传输,其中,Pi/2表示旋转角度为90度;或,
    所述K=3,M=5,L=5,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,
    所述K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
  22. 根据权利要求17所述的终端设备,其特征在于,
    所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
    所述下行控制信息还包括第四字段,所述第四字段的大小是1个比特;
    所述第四字段的比特状态为0时,所述资源分配字段用于指示所述分配的资源块;
    所述第四字段的比特状态为1时,所述资源分配字段用于指示所述分配的子载波资源。
  23. 根据权利要求22所述的终端设备,其特征在于,
    所述K=2,M=3,L=4,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,
    所述K=2,M=3,L=5,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波,且所述资源分配字段指示了资源单元个数;或,K=3,M=3,L=5,资源分配字段所分配的子载波资源是2个子载波、3个子载波或6个子载波。
  24. 根据权利要求23所述的终端设备,其特征在于,
    所述K=2,M=3,L=4时,或,K=3,M=3,L=5时,所述下行控制信息还包括第五字段,所述第五字段大小是1个比特,所述第五字段指示了资源单元个数。
  25. 一种网络设备,其特征在于,包括:
    处理模块,用于确定为终端设备分配资源块或者子载波资源;
    处理模块,用于确定下行控制信息,其中所述下行控制信息包含资源分配字段,所述资源分配字段用于指示所述分配的资源块或子载波资源;
    所述资源分配字段用于指示所述分配的资源块时,所述资源分配字段包括高
    Figure PCTCN2018083623-appb-100016
    个比特和低M+X比特,所述高
    Figure PCTCN2018083623-appb-100017
    个比特指示窄带索引,所述低M+X比特中的高M比特指示所述窄带内的资源分配,且所述资源分配字段所指示的资源块的数目大于或等于1,M是正整数,X是大于或等于0的整数,所述
    Figure PCTCN2018083623-appb-100018
    表示上行带宽中包含的资源块的个数;或,
    所述资源分配字段用于指示所述分配的子载波资源时,所述资源分配字段包含高
    Figure PCTCN2018083623-appb-100019
    个比特和低L比特,所述高
    Figure PCTCN2018083623-appb-100020
    个比特指示窄带索引,所述低L比特指示K个资源块内的子载波资源的分配,且所述资源分配字段所指示子载波个数小于12,L是正整数,K是正整数;
    发送模块,用于向所述终端设备发送下行控制信息;
    接收模块,用于在所述下行控制信息确定的资源上接收所述终端设备发送的信息。
  26. 根据权利要求25所述的网络设备,其特征在于,
    所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
    所述下行控制信息还包括第一字段,所述第一字段的大小是2个比特;
    所述第一字段中有3种比特状态分别指示3种不同的资源单元数,和/或所述第一字段中有1种比特状态指示所述资源分配字段用于指示所述分配的资源块;
    所述第一字段指示资源单元数时,所述资源分配字段指示所述子载波资源的分配。
  27. 根据权利要求26所述的网络设备,其特征在于,
    所述第一字段的00比特状态指示所述资源分配字段用于指示所述分配的资源块;或,
    所述第一字段的11比特状态指示所述资源分配字段用于指示所述分配的资源块。
  28. 根据权利要求25至27中任一项权利要求所述的网络设备,其特征在于,
    所述K=5,M=5,L=5,且所述资源分配字段所指示的子载波资源是3个子载波或6个子载波;或,
    所述K=3,M=5,L=5,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波;或,
    所述K=6,M=5,L=6,且所述资源分配字段所指示的子载波资源是2个子载波、3个子载波或6个子载波。
  29. 根据权利要求28所述的网络设备,其特征在于,
    所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第二字段,所述第二字段指示所述终端设备使用所述3个子载波进行信息传输,或者使用所述3个子载波中的2个连续子载波进行信息传输;或,
    所述K=5,M=5,L=5,且所述资源分配字段所分配的子载波资源是3个子载波时,所述下行控制信息还包括第三字段,所述第三字段指示所述终端设备的信息传输的调制方式,所述调制方式是Pi/2BPSK调制时,使用所述3个子载波中的2个连续子载波进行信息传输,所述调制方式是正交相移键控QPSK调制时,使用所述3个子载波进行信息传输,其中,Pi/2表示旋转角度为90度;或,
    所述K=3,M=5,L=5,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1;或,
    所述K=6,M=5,L=6,所述资源分配字段分配的子载波资源是2个子载波时,所述2个子载波在所属的资源块内的子载波索引是{0,1}+H、{3,4}+H、{6,7}+H、或{9,10}+H,其中H是根据小区标识确定的值,且H的值等于0或1。
  30. 根据权利要求25所述的网络设备,其特征在于,
    所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
    所述下行控制信息还包括第四字段,所述第四字段的大小是1个比特;
    所述第四字段的比特状态为0时,所述资源分配字段用于指示所述分配的资源块;
    所述第四字段的比特状态为1时,所述资源分配字段用于指示所述分配的子载波资源。
  31. 根据权利要求30所述的网络设备,其特征在于,
    所述K=2,M=3,L=4,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波;或,
    所述K=2,M=3,L=5,所述资源分配字段所分配的子载波资源是3个子载波或6个子载波,且所述资源分配字段指示了资源单元个数;或,K=3,M=3,L=5,资源分配字段所分配的子载波资源是2个子载波、3个子载波或6个子载波。
  32. 根据权利要求31所述的网络设备,其特征在于,
    所述K=2,M=3,L=4时,或,K=3,M=3,L=5时,所述下行控制信息还包括第五字段,所述第五字段大小是1个比特,所述第五字段指示了资源单元个数。
  33. 一种终端设备,其特征在于,所述终端设备包括:处理器,存储器;所述处理器、所述存储器之间进行相互的通信;
    所述存储器用于存储指令;
    所述处理器用于执行所述存储器中的所述指令,执行如权利要求1至8中任一项所述的方法。
  34. 一种终端设备,其特征在于,所述终端设备包括:处理器,存储器;所述处理器、所述存储器之间进行相互的通信;
    所述存储器用于存储指令;
    所述处理器用于执行所述存储器中的所述指令,执行如权利要求9至16中任一项所述的方法。
  35. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-8、或9-16任意一项所述的方法。
  36. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-8、或9-16任意一项所述的方法。
PCT/CN2018/083623 2018-04-04 2018-04-18 一种信息传输方法和设备 WO2019192034A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18913708.6A EP3761543B1 (en) 2018-04-04 2018-04-18 Information transmission method and device
KR1020207029921A KR102430394B1 (ko) 2018-04-04 2018-04-18 정보 전송 방법 및 디바이스
JP2020554138A JP7062080B2 (ja) 2018-04-04 2018-04-18 情報伝送方法及びデバイス
BR112020019930-3A BR112020019930A2 (pt) 2018-04-04 2018-04-18 Método e dispositivo de transmissão de informações
CN201880091790.5A CN112292824B (zh) 2018-04-04 2018-04-18 一种信息传输方法和设备
US17/063,247 US11477777B2 (en) 2018-04-04 2020-10-05 Information transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/082056 WO2019192001A1 (zh) 2018-04-04 2018-04-04 一种信息传输方法和设备
CNPCT/CN2018/082056 2018-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/063,247 Continuation US11477777B2 (en) 2018-04-04 2020-10-05 Information transmission method and device

Publications (1)

Publication Number Publication Date
WO2019192034A1 true WO2019192034A1 (zh) 2019-10-10

Family

ID=68099800

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/082056 WO2019192001A1 (zh) 2018-04-04 2018-04-04 一种信息传输方法和设备
PCT/CN2018/083623 WO2019192034A1 (zh) 2018-04-04 2018-04-18 一种信息传输方法和设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082056 WO2019192001A1 (zh) 2018-04-04 2018-04-04 一种信息传输方法和设备

Country Status (7)

Country Link
US (1) US11477777B2 (zh)
EP (1) EP3761543B1 (zh)
JP (1) JP7062080B2 (zh)
KR (1) KR102430394B1 (zh)
CN (1) CN112292824B (zh)
BR (1) BR112020019930A2 (zh)
WO (2) WO2019192001A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020145A (zh) * 2019-05-31 2020-12-01 华为技术有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123019A (zh) * 2010-01-11 2011-07-13 三星电子株式会社 针对无线通信系统的下行数据传输执行ack/nack反馈的方法
CN102237985A (zh) * 2010-05-06 2011-11-09 中兴通讯股份有限公司 回程链路上行控制信息的处理方法、系统及中继站
CN103095437A (zh) * 2011-11-07 2013-05-08 北京三星通信技术研究有限公司 针对下行数据传输的ack/nack反馈方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2464987A (en) * 2008-11-03 2010-05-05 Nec Corp Methods for designating resource allocation
US8908617B2 (en) * 2009-12-31 2014-12-09 Samsung Electronics Co., Ltd. Uplink demodulation reference signal design for MIMO transmission
CN102263622B (zh) * 2010-05-28 2015-04-29 华为技术有限公司 应答信息和调度请求反馈方法及相关设备
EP4287668A3 (en) * 2012-10-29 2024-01-03 Huawei Technologies Co., Ltd. Resource determining method, and base station
CN106162897B (zh) * 2015-05-15 2020-02-14 华为技术有限公司 传输控制信息的方法、基站和用户设备
GB2541213A (en) * 2015-08-12 2017-02-15 Nec Corp Communication system
CN107006032B (zh) * 2015-08-14 2020-05-08 华为技术有限公司 一种信息的传输方法和基站以及用户设备
CN107197524B (zh) * 2016-03-15 2021-06-22 株式会社Kt 用于发送窄带物联网用户设备上行数据的方法及装置
US11039460B2 (en) * 2016-08-09 2021-06-15 Lg Electronics Inc. Method for transmitting/receiving data in wireless communication system supporting Narrow Band Internet-of-Things and device therefor
KR102154746B1 (ko) * 2016-08-09 2020-09-10 엘지전자 주식회사 협대역 사물인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
US10397924B2 (en) * 2016-08-10 2019-08-27 Apple Inc. Robust downlink control information with flexible resource assignments
KR102042032B1 (ko) * 2016-08-11 2019-11-11 주식회사 케이티 무선 통신 시스템에서 데이터 채널 자원을 할당하는 방법 및 그 장치
CN107734692B (zh) * 2016-08-11 2021-10-08 株式会社Kt 在无线通信系统中分配数据信道资源的方法和装置
TWI643513B (zh) * 2016-08-12 2018-12-01 華碩電腦股份有限公司 無線通訊系統中用於決定基礎參數頻寬的方法和設備
CN107872779B (zh) * 2016-09-27 2020-12-01 中兴通讯股份有限公司 资源分配方法及装置
EP3537822A4 (en) * 2016-11-04 2020-05-20 LG Electronics Inc. -1- METHOD FOR SENDING AND RECEIVING DATA IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREFOR
WO2018087734A1 (en) * 2016-11-14 2018-05-17 Telefonaktiebolaget L M Ericsson (Publ) Resource allocation for bandwidth limited operation
EP3718274A4 (en) * 2017-11-17 2021-11-03 Nokia Technologies Oy PROCESS FOR ALLOCATING RESOURCES FOR UPRIGHT SUB-PRB LINK TRANSMISSION
US11895681B2 (en) * 2020-08-18 2024-02-06 Samsung Electronics Co., Ltd. Method and apparatus for fast beam indication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123019A (zh) * 2010-01-11 2011-07-13 三星电子株式会社 针对无线通信系统的下行数据传输执行ack/nack反馈的方法
CN102237985A (zh) * 2010-05-06 2011-11-09 中兴通讯股份有限公司 回程链路上行控制信息的处理方法、系统及中继站
CN103095437A (zh) * 2011-11-07 2013-05-08 北京三星通信技术研究有限公司 针对下行数据传输的ack/nack反馈方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "On Sub-RB Resource Allocation for MTC PUSCH", R1-1801432, 26 February 2018 (2018-02-26), pages 1 - 5, XP051396928 *
See also references of EP3761543A4 *
ZTE ET AL.: "Design of PUSCH Sub-PRB Allocation for MTC", R1-1801600, 26 February 2018 (2018-02-26), pages 1 - 6, XP051397619 *

Also Published As

Publication number Publication date
CN112292824A (zh) 2021-01-29
JP2021518081A (ja) 2021-07-29
US20210022126A1 (en) 2021-01-21
EP3761543A1 (en) 2021-01-06
EP3761543A4 (en) 2021-04-07
CN112292824B (zh) 2022-04-26
JP7062080B2 (ja) 2022-05-02
BR112020019930A2 (pt) 2021-01-05
KR20200134272A (ko) 2020-12-01
WO2019192001A1 (zh) 2019-10-10
KR102430394B1 (ko) 2022-08-05
EP3761543B1 (en) 2023-08-09
US11477777B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
JP7148208B2 (ja) 伝送方法、端末デバイス、コンピュータ可読記憶媒体及びプログラム
EP3627733B1 (en) Communication method, network device and terminal device
WO2021031390A1 (zh) 用于指示控制信息的方法和装置
WO2018228500A1 (zh) 一种调度信息传输方法及装置
CN111726877B (zh) 数据传输方法、终端和基站
WO2019028699A1 (zh) 信号传输方法及相关设备
WO2019213978A1 (zh) 一种信息传输方法和终端设备以及网络设备
JP2020513174A (ja) リソースを判定する方法および装置ならびに記憶媒体
WO2018228501A1 (zh) 通信方法及装置
CN111937472B (zh) 一种数据发送方法、信息发送方法及装置
EP3589042A1 (en) Information transmitting method and information receiving method and device
WO2020029300A1 (zh) 一种tdd系统中的资源分配方法和设备
WO2019192034A1 (zh) 一种信息传输方法和设备
WO2019213975A1 (zh) 一种信息传输方法和通信设备以及网络设备
US11477793B2 (en) Information transmission method and device
WO2018188095A1 (zh) 一种通信方法及装置
WO2019191995A1 (zh) 一种信息处理方法和设备
WO2019192008A1 (zh) 一种信息发送的方法、信息接收的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018913708

Country of ref document: EP

Effective date: 20201002

ENP Entry into the national phase

Ref document number: 20207029921

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019930

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020019930

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200929