WO2019191962A1 - 通信方法、装置及计算机可读存储介质 - Google Patents

通信方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2019191962A1
WO2019191962A1 PCT/CN2018/081997 CN2018081997W WO2019191962A1 WO 2019191962 A1 WO2019191962 A1 WO 2019191962A1 CN 2018081997 W CN2018081997 W CN 2018081997W WO 2019191962 A1 WO2019191962 A1 WO 2019191962A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
anchor carrier
valid
sib1
valid subframe
Prior art date
Application number
PCT/CN2018/081997
Other languages
English (en)
French (fr)
Inventor
李军
金哲
铁晓磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880092087.6A priority Critical patent/CN112042253B/zh
Priority to PCT/CN2018/081997 priority patent/WO2019191962A1/zh
Priority to EP18913511.4A priority patent/EP3780835A4/en
Publication of WO2019191962A1 publication Critical patent/WO2019191962A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present application relates to the field of communications and, more particularly, to a communication method, apparatus, and computer readable storage medium.
  • time division duplexing means that transmission and reception signals are performed in different time slots of the same frequency channel, and TDD uses time to separate the reception and transmission channels. Since the TDD scene does not need a pair of frequencies, it can be conveniently configured in a frequency band that is difficult to use in a frequency division duplexing (FDD) scenario, and has certain spectrum flexibility, which can effectively improve spectrum utilization.
  • FDD frequency division duplexing
  • SIB1 may instruct other SIBs to transmit on the non-anchor carrier.
  • the terminal device does not know the valid subframe configuration on the non-anchor carrier, and the terminal device may receive other SIBs in the invalid subframe, resulting in the terminal.
  • the device cannot receive other SIBs, and may eventually fail to work properly in a TDD scenario.
  • the present application provides a communication method, apparatus, and computer readable storage medium capable of determining valid subframes on a non-anchor carrier.
  • a communication method including: determining a valid subframe and an invalid subframe on an anchor carrier; determining, on a non-anchor carrier, a valid subframe and an invalid subframe on the anchor carrier At least one valid subframe; receiving other system information blocks SIB on at least one valid subframe of the non-anchor carrier, the other SIB being a system information block other than SIB1.
  • the terminal device can receive other SIBs in the effective subframe of the non-anchor carrier, so that the terminal device can correctly receive other SIBs, thereby ensuring that the terminal device can work normally in the TDD scenario.
  • the terminal device when determining the at least one valid subframe on the non-anchor carrier, the terminal device does not need to introduce new signaling, thereby saving signaling overhead.
  • the anchor carrier may be a carrier for transmitting PSS, SSS, and PBCH
  • the non-anchor carrier may be a carrier that does not transmit PSS, SSS, or PBCH, and is used for transmitting other information.
  • the SIB1 is a type of system information block, and mainly carries at least one of cell access and cell selection related information, or scheduling information of other SIB blocks, and belongs to the most important system information block.
  • the communications method includes: determining a valid downlink subframe and an invalid downlink subframe on an anchor carrier; determining a non-anchor according to a valid downlink subframe and an invalid downlink subframe on the anchor carrier At least one valid downlink subframe on the point carrier; receiving other SIBs on at least one valid downlink subframe of the non-anchor carrier.
  • the communications method includes: determining a valid downlink subframe and a valid special subframe on the anchor carrier; determining a non-anchor according to the valid downlink subframe and the valid special subframe on the anchor carrier At least one valid downlink subframe and a valid special subframe on the point carrier; receiving other SIBs on at least one valid downlink subframe and the valid special subframe of the non-anchor carrier.
  • the communications method includes: determining a valid subframe and an invalid subframe on an anchor carrier; determining, on the non-anchor carrier, based on the valid subframe and the invalid subframe on the anchor carrier At least one valid subframe; determining at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink sub-frame according to the uplink-downlink subframe configuration of the non-anchor carrier, and the at least one valid subframe on the non-anchor carrier a frame and a valid special subframe; receiving other SIBs on at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink subframe and a valid special subframe.
  • the determining, according to the valid subframe and the invalid subframe on the anchor carrier, determining at least one valid subframe on the non-anchor carrier including: placing the non-anchor carrier A subframe corresponding to a valid subframe on the anchor carrier is determined to be at least one valid subframe on the non-anchor carrier.
  • the correspondence may be: the superframe on the anchor carrier is in one-to-one correspondence with the superframe on the non-anchor carrier, and the radio frame on the anchor carrier and the radio frame on the non-anchor carrier are in one-to-one correspondence, and the anchor The subframes on the point carrier correspond one-to-one with the subframes on the non-anchor carrier.
  • the radio frame 0 on the anchor carrier corresponds to the radio frame 0 on the non-anchor carrier
  • the radio frame 1 on the anchor carrier corresponds to the radio frame 1 on the non-anchor carrier, and the like.
  • subframe 0 of the radio frame 0 on the anchor carrier corresponds to the subframe 0 of the radio frame 0 on the non-anchor carrier
  • subframe 1 of the radio frame 0 on the anchor carrier and the radio frame 0 on the non-anchor carrier corresponds to subframe 9 of radio frame 0 on the non-anchor carrier.
  • the determining, on the non-anchor carrier, a subframe corresponding to a valid subframe on the anchor carrier is determined as at least one valid subframe on the non-anchor carrier
  • the method includes: a subframe corresponding to the valid subframe on the anchor carrier on the non-anchor carrier, and a subframe on the non-anchor carrier and the target signal transmitted on the anchor carrier
  • the corresponding subframe is determined as at least one valid subframe on the non-anchor carrier
  • the target signal includes at least one of the following signals: a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH.
  • the target signal further includes the SIB1, where the SIB1 is transmitted on the anchor carrier.
  • a subframe of the PSS in the transmission target signal is a subframe 5
  • a subframe of the SSS in the transmission target signal is a subframe 0, and the transmission is performed.
  • the subframe of the PBCH in the target signal is the subframe 9
  • the subframe of the SIB1 in the transmission target signal is the subframe 0 or the subframe 4.
  • the subframe corresponding to the subframe on which the target signal is transmitted on the anchor carrier on the non-anchor carrier may be: the subframe 5 transmitting the PSS on the anchor carrier corresponds to the subframe 5 on the non-anchor carrier, and the anchor
  • the subframe 0 transmitting the SSS on the point carrier corresponds to the subframe 0 on the non-anchor carrier
  • the subframe 9 transmitting the PBCH on the anchor carrier corresponds to the subframe 9 on the non-anchor carrier
  • the SIB1 is transmitted on the anchor carrier.
  • Subframe 0 corresponds to subframe 0 on the non-anchor carrier
  • subframe 4 on which the SIB1 is transmitted on the anchor carrier corresponds to subframe 4 on the non-anchor carrier.
  • the SIB1 is transmitted on the non-anchor carrier, and the subframe corresponding to the valid subframe on the anchor carrier on the non-anchor carrier is determined as
  • the at least one valid subframe on the non-anchor carrier includes: determining, on the non-anchor carrier, a subframe corresponding to a valid subframe on the anchor carrier as the non-anchor carrier At least one valid subframe, and determining a subframe on which the SIB1 is transmitted on the non-anchor carrier is an invalid subframe on the non-anchor carrier.
  • the determining the valid subframe and the invalid subframe on the anchor carrier includes: receiving the SIB1, where the SIB1 includes first information, where the first information is used to indicate the a valid subframe configuration on the anchor carrier; determining a valid subframe on the anchor carrier according to a valid subframe configuration on the anchor carrier, and a subframe transmitting the first signal on the anchor carrier Invalid subframe, the first signal includes at least one of the following signals: PSS, SSS, PBCH, SIB1.
  • a second aspect provides a communication method, including: receiving a system information block SIB1, where the SIB1 includes first information, where the first information is used to indicate a valid subframe configuration on a non-anchor carrier; a valid subframe configuration on the anchor carrier, determining at least one valid subframe on the non-anchor carrier; receiving other system information blocks SIB on at least one valid subframe of the non-anchor carrier, the other SIB It is a system information block other than SIB1.
  • the terminal device can receive other SIBs in the effective subframe of the non-anchor carrier, so that the terminal device can correctly receive other SIBs, thereby ensuring that the terminal device can work normally in the TDD scenario.
  • the first information is further used to indicate a valid subframe configuration on an anchor carrier.
  • the application can multiplex the first information, and the first information is used to indicate the effective subframe configuration of the anchor carrier and the non-anchor carrier, so that the signaling overhead can be reduced.
  • the SIB1 further includes second information, where the second information is used to indicate a valid subframe configuration on the anchor carrier.
  • Such an indication manner can accurately indicate a valid subframe and an invalid subframe in the non-anchor carrier, thereby avoiding waste of resources.
  • the bit occupied by the first information is M bits, and each of the M bits is used to indicate that the subframe corresponding to each bit is in the non-anchor
  • the point carrier is a valid subframe or an invalid subframe, where M is a positive integer.
  • the M bits are 10 bits or 40 bits.
  • each of the M bits is in one-to-one correspondence with each of the non-anchor carriers.
  • the correspondence relationship means that the first bit corresponds to the subframe 0 in the radio frame 0, the second bit corresponds to the subframe 1 in the radio frame 0, and so on. 10 bits correspond to subframe 9 in radio frame 0.
  • a third aspect provides a communication method, including: receiving a system information block SIB1, where the SIB1 includes first information and second information, where the first information is used to indicate a valid subframe configuration on an anchor carrier, where The second information is used to indicate a valid subframe configuration of a subframe corresponding to an invalid subframe on the anchor carrier on a non-anchor carrier; according to a valid subframe configuration on the anchor carrier, and the Determining a valid subframe configuration of a subframe corresponding to an invalid subframe on the anchor carrier on a non-anchor carrier, determining at least one valid subframe on the non-anchor carrier; Other SIBs are received on at least one valid subframe, the other SIBs being system information blocks other than SIB1.
  • the technical solution provided by the present application only needs less information to indicate whether a subframe corresponding to an invalid subframe in the anchor carrier in the non-anchor carrier is a valid subframe or an invalid subframe, and thus can be smaller.
  • the signaling overhead accurately determines valid subframes and null subframes in the non-anchor carrier.
  • a fourth aspect provides a communication method, including: determining a valid subframe and an invalid subframe on an anchor carrier; determining, on a non-anchor carrier, a valid subframe and an invalid subframe on the anchor carrier At least one valid subframe; transmitting other system information blocks SIB on at least one valid subframe of the non-anchor carrier, the other SIB being a system information block other than SIB1.
  • the network device determines at least one valid subframe on the non-anchor carrier in a certain manner, and sends other SIBs on at least one valid subframe of the non-anchor carrier, so that the terminal device can be ensured. Receive other SIBs to ensure that the terminal device can work normally in the TDD scenario.
  • the network device does not need to introduce new signaling when determining at least one valid subframe on the non-anchor carrier, thereby saving signaling overhead.
  • the anchor carrier may be a carrier for transmitting PSS, SSS, and PBCH
  • the non-anchor carrier may be a carrier that does not transmit PSS, SSS, or PBCH, and is used for transmitting other information.
  • the SIB1 is a type of system information block, and mainly carries at least one of cell access and cell selection related information, or scheduling information of other SIB blocks, and belongs to the most important system information block.
  • the communications method includes: determining a valid downlink subframe and an invalid downlink subframe on an anchor carrier; determining a non-anchor according to a valid downlink subframe and an invalid downlink subframe on the anchor carrier At least one valid downlink subframe on the point carrier; transmitting other SIBs on at least one valid downlink subframe on the non-anchor carrier.
  • the communications method includes: determining a valid downlink subframe and a valid special subframe on the anchor carrier; determining a non-anchor according to the valid downlink subframe and the valid special subframe on the anchor carrier At least one valid downlink subframe and a valid special subframe on the point carrier; transmitting other SIBs on at least one valid downlink subframe and a valid special subframe of the non-anchor carrier.
  • the communications method includes: determining a valid subframe and an invalid subframe on an anchor carrier; determining, on the non-anchor carrier, based on the valid subframe and the invalid subframe on the anchor carrier At least one valid subframe; determining at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink sub-frame according to the uplink-downlink subframe configuration of the non-anchor carrier, and the at least one valid subframe on the non-anchor carrier a frame and a valid special subframe; transmitting other SIBs on at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink subframe and a valid special subframe.
  • the determining, according to the valid subframe and the invalid subframe on the anchor carrier, determining at least one valid subframe on the non-anchor carrier including: placing the non-anchor carrier A subframe corresponding to a valid subframe on the anchor carrier is determined to be at least one valid subframe on the non-anchor carrier.
  • the correspondence may be: the superframe on the anchor carrier is in one-to-one correspondence with the superframe on the non-anchor carrier, and the radio frame on the anchor carrier and the radio frame on the non-anchor carrier are in one-to-one correspondence, and the anchor The subframes on the point carrier correspond one-to-one with the subframes on the non-anchor carrier.
  • the radio frame 0 on the anchor carrier corresponds to the radio frame 0 on the non-anchor carrier
  • the radio frame 1 on the anchor carrier corresponds to the radio frame 1 on the non-anchor carrier.
  • subframe 0 of the radio frame 0 on the anchor carrier corresponds to the subframe 0 of the radio frame 0 on the non-anchor carrier
  • subframe 1 of the radio frame 0 on the anchor carrier and the radio frame 0 on the non-anchor carrier corresponds to subframe 9 of radio frame 0 on the non-anchor carrier.
  • the determining, on the non-anchor carrier, a subframe corresponding to a valid subframe on the anchor carrier is determined as at least one valid subframe on the non-anchor carrier
  • the method includes: a subframe corresponding to the valid subframe on the anchor carrier on the non-anchor carrier, and a subframe on the non-anchor carrier that transmits a target signal on the anchor carrier
  • the corresponding subframe is determined as at least one valid subframe on the non-anchor carrier
  • the target signal includes at least one of the following signals: a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH.
  • the target signal further includes the SIB1, where the SIB1 is transmitted on the anchor carrier.
  • a subframe of the PSS in the transmission target signal is a subframe 5
  • a subframe of the SSS in the transmission target signal is a subframe 0, and the transmission is performed.
  • the subframe of the PBCH in the target signal is the subframe 9
  • the subframe of the SIB1 in the transmission target signal is the subframe 0 or the subframe 4.
  • the subframe corresponding to the subframe on which the target signal is transmitted on the anchor carrier on the non-anchor carrier may be: the subframe 5 transmitting the PSS on the anchor carrier corresponds to the subframe 5 on the non-anchor carrier, and the anchor
  • the subframe 0 transmitting the SSS on the point carrier corresponds to the subframe 0 on the non-anchor carrier
  • the subframe 9 transmitting the PBCH on the anchor carrier corresponds to the subframe 9 on the non-anchor carrier
  • the SIB1 is transmitted on the anchor carrier.
  • Subframe 0 corresponds to subframe 0 on the non-anchor carrier
  • subframe 4 on which the SIB1 is transmitted on the anchor carrier corresponds to subframe 4 on the non-anchor carrier.
  • the SIB1 is transmitted on the non-anchor carrier, and the subframe corresponding to the valid subframe on the anchor carrier on the non-anchor carrier is determined as
  • the at least one valid subframe on the non-anchor carrier includes: determining, on the non-anchor carrier, a subframe corresponding to a valid subframe on the anchor carrier as the non-anchor carrier At least one valid subframe, and determining a subframe on which the SIB1 is transmitted on the non-anchor carrier is an invalid subframe on the non-anchor carrier.
  • the determining the valid subframe and the invalid subframe on the anchor carrier includes: sending the SIB1, where the SIB1 includes first information, where the first information is used to indicate the a valid subframe configuration on the anchor carrier; determining a valid subframe on the anchor carrier according to a valid subframe configuration on the anchor carrier, and a subframe transmitting the first signal on the anchor carrier Invalid subframe, the first signal includes at least one of the following signals: PSS, SSS, PBCH, SIB1.
  • a fifth aspect provides a communication method, including: transmitting a system information block SIB1, where the SIB1 includes first information, where the first information is used to indicate a valid subframe configuration on a non-anchor carrier; Determining a valid subframe configuration on the anchor carrier, determining at least one valid subframe on the non-anchor carrier; transmitting another system information block SIB on the at least one valid subframe of the non-anchor carrier, the other SIB It is a system information block other than SIB1.
  • the network device determines at least one valid subframe on the non-anchor carrier in a certain manner, and sends other SIBs on the effective subframe of the non-anchor carrier, so that the terminal device can correctly receive other
  • the SIB ensures that the terminal device can work normally in the TDD scenario.
  • the first information is further used to indicate a valid subframe configuration on an anchor carrier.
  • the application can multiplex the first information, and the first information is used to indicate the effective subframe configuration of the anchor carrier and the non-anchor carrier, so that the signaling overhead can be reduced.
  • the SIB1 further includes second information, where the second information is used to indicate a valid subframe configuration on the anchor carrier.
  • Such an indication manner can accurately indicate a valid subframe and an invalid subframe in the non-anchor carrier, thereby avoiding waste of resources.
  • the bit occupied by the first information is M bits, and each of the M bits is used to indicate that the subframe corresponding to each bit is in the non-
  • the anchor carrier is a valid subframe or an invalid subframe, where M is a positive integer.
  • the M bits are 10 bits or 40 bits.
  • each of the M bits is in one-to-one correspondence with each of the non-anchor carriers.
  • the correspondence relationship means that the first bit corresponds to the subframe 0 in the radio frame 1, the second bit corresponds to the subframe 1 in the radio frame 1, and so on. 10 bits correspond to subframe 9 in radio frame 1.
  • a sixth aspect provides a communication method, including: transmitting a system information block SIB1, where the SIB1 includes first information and second information, where the first information is used to indicate a valid subframe configuration on an anchor carrier, where The second information is used to indicate a valid subframe configuration of a subframe corresponding to an invalid subframe on the anchor carrier on a non-anchor carrier; according to a valid subframe configuration on the anchor carrier, and the Determining a valid subframe configuration of a subframe corresponding to an invalid subframe on the anchor carrier on a non-anchor carrier, determining at least one valid subframe on the non-anchor carrier;
  • Other SIBs are transmitted on at least one valid subframe, and the other SIBs are system information blocks other than SIB1.
  • the technical solution provided by the present application only needs less information to indicate whether a subframe corresponding to an invalid subframe in the anchor carrier in the non-anchor carrier is a valid subframe or an invalid subframe, and thus can be smaller.
  • the signaling overhead accurately determines valid subframes and null subframes in the non-anchor carrier.
  • a communication apparatus comprising means for performing the method of any of the first aspect or the implementation of the first aspect.
  • a communication apparatus comprising means for performing the method of any of the above second aspect or the second aspect.
  • a communication apparatus comprising means for performing the method of any of the above third aspect or the third aspect.
  • a communication apparatus comprising means for performing the method of any of the above fourth aspect or the fourth aspect.
  • a communication apparatus comprising means for performing the method of any of the fifth or fifth aspects described above.
  • a communication apparatus comprising means for performing the method of any of the sixth aspect or the sixth aspect.
  • a communication device comprising: a processor and a transceiver, for performing the method of any of the first aspect or the first aspect.
  • a communication device comprising: a processor and a transceiver, for performing the method of any of the second aspect or the second aspect.
  • a communication device comprising: a processor and a transceiver, for performing the method of any one of the third aspect or the third aspect.
  • a communication device comprising: a processor and a transceiver, for performing the method of any of the above fourth aspect or the fourth aspect.
  • a communication device comprising: a processor and a transceiver, for performing the method of any one of the fifth aspect or the fifth aspect.
  • a communication device comprising: a processor and a transceiver, for performing the method of any one of the sixth aspect or the sixth aspect.
  • a computer readable storage medium for program code executed by a device, the program code comprising means for performing the method of the first aspect or various implementations thereof instruction.
  • a computer readable storage medium for program code executed by a device, the program code comprising means for performing the method of the second aspect or various implementations thereof instruction.
  • a twenty-first aspect a computer readable storage medium for program code executed by a device, the program code comprising a method for performing the third aspect or various implementations thereof Instructions.
  • a twenty-second aspect a computer readable storage medium for program code executed by a device, the program code comprising a method for performing the fourth aspect or various implementations thereof Instructions.
  • a twenty-third aspect a computer readable storage medium for program code executed by a device, the program code comprising a method for performing the fifth aspect or various implementations thereof Instructions.
  • a twenty-fourth aspect a computer readable storage medium for program code executed by a device, the program code comprising a method for performing the sixth aspect or various implementations thereof Instructions.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform any of the first aspect or the first aspect The method described in the implementation.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform any of the second aspect or the second aspect The method described in the implementation.
  • a twenty-seventh aspect a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform any one of the third aspect or the third aspect described above The method described in the implementation.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform any one of the fourth aspect or the fourth aspect described above The method described in the implementation.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform any of the fifth aspect or the fifth aspect The method described in the implementation.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform any of the sixth aspect or the sixth aspect described above The method described in the manner.
  • a chip comprising a processor and a memory, the memory being for storing a computer program for calling and running the computer program from the memory, the computer program for implementing the above aspects method.
  • a communication system comprising the terminal device according to the seventh aspect, the ninth aspect, the tenth aspect or the eleventh aspect, and the eighth aspect and the twelfth aspect, The network device of the thirteenth aspect or the fourteenth aspect.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a diagram showing an example of an indication manner of a valid subframe according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of determining at least one valid subframe on a non-anchor carrier according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart diagram of another communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart diagram of another communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart diagram of another communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 110 may be a device that communicates with terminal device 120.
  • Network device 110 may provide communication coverage for a particular geographic area and may communicate with terminal device 120 located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The application embodiment does not limit this.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like.
  • network entities such as a network controller, a mobility management entity, and the like.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE advanced long term evolution
  • UMTS universal mobile telecommunication system
  • NR new radio access technology
  • NB-IoT Narrowband Internet of Things
  • GSM Global System for Mobile communications
  • UMTS Universal Mobile Communications
  • LTE Long Term Evolution
  • the terminal may include, but is not limited to, a terminal device applied in the Internet of Things, for example, may be a terminal device in the NB-IoT (which may be referred to as an “NB-IoT terminal”). : smart meter reading equipment, logistics tracking equipment, environmental monitoring equipment, etc.; the terminal may also include but is not limited to a mobile station (MS), a mobile terminal, a mobile telephone, a user equipment (user) Equipment, UE), handsets, and portable equipment.
  • the terminal device can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal device may be a mobile phone (or "cellular" phone), a computer with wireless communication capabilities, etc., and the terminal device may also be a portable, pocket, handheld, computer built-in or vehicle-mounted mobile device.
  • the network device may be an access network device, for example, a base station, a transmit and receive point (TRP), or an access point.
  • the base station may be a base transceiver station (BTS) in GSM or CDMA, or a base station (nodeB) in WCDMA, or an evolved base station (evolved node B, eNB or e-NodeB) in LTE. It may be an NR or a 5G base station (gNB), which is not specifically limited in this embodiment of the present application.
  • the deployment mode of the carrier is not specifically limited in this embodiment of the present application.
  • the deployment mode of the carrier may be a standalone deployment mode (standalone), and the independent carrier deployment mode may not depend on other communication systems.
  • the carrier deployment bandwidth of the standalone deployment mode can be completely decoupled from the long term evolution (LTE) cell.
  • the carrier deployment mode may be a guard band deployment mode (guardband), and the carrier of the protection band deployment mode may not occupy resources of other communication systems.
  • the carrier in the protection band deployment mode may not occupy LTE resources and may be deployed. On resource blocks that are not used in the LTE edge guard band.
  • the carrier deployment may also be an inband deployment mode (inband), and the in-band deployment mode carrier may be deployed in the working bandwidth of other communication systems.
  • an in-band deployment mode carrier may be deployed in LTE work. In the bandwidth.
  • an anchor carrier is a terminal device that assumes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a physical broadcast channel (PBCH), and a system information block. (system information block; SIB) carrier transmitted.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • SIB system information block
  • the non-anchor carrier refers to a carrier that the terminal device assumes that there is no PSS, SSS, PBCH, or SIB transmission.
  • the anchor carrier can be understood as a carrier for transmitting PSS, SSS, and PBCH, and a non-anchor carrier is understood as a carrier that does not transmit PSS, SSS, or PBCH.
  • the TDD scenario and the definition of the anchor carrier in the FDD scenario may be slightly different. Regardless of the TDD scenario and the FDD scenario, the anchor carrier can transmit more information types than the non-anchor carrier.
  • the subframe in which the PSS is transmitted is subframe 5, and the PSS is transmitted in each radio frame.
  • the subframe in which the SSS is transmitted is subframe 0, and the SSS is transmitted in the even radio frame.
  • the subframe in which the PBCH is transmitted is the subframe 9, and the PBCH is transmitted in each radio frame.
  • the subframe in which the SIB1 is transmitted is the subframe 0 or the subframe 4, wherein the subframe 0 transmitting the SIB1 refers to the subframe 0 in which the SSS is not transmitted.
  • SIBs In the communication system, there are many types of SIBs, and different SIBs carry different parameters and have different functions.
  • SIB1 mainly carries information about cell access and cell selection, as well as scheduling information of other SIBs, and belongs to the most important system information block.
  • the scheduling information of the other SIBs carried in the SIB1 may include the period of the system information (SI), the length of the SI window, the offset of the SI window, the repetition mode of the SI, the size of the system information block, and other SIBs. Map at least one of the information.
  • SIBs refer to other system information blocks other than SIB1.
  • the SIB1 refers to the system information block type 1-narrow band (SIB1-NB), and the other SIBs refer to other SIB-NBs.
  • the following uplink and downlink subframe configurations 0 to 6 are supported in the LTE communication system, and the uplink and downlink subframe configurations are as shown in Table 1.
  • “D” indicates a downlink subframe for downlink transmission.
  • "U” indicates an uplink subframe for uplink transmission.
  • "S” indicates a special subframe, and the special subframe includes a guard period (GP), an uplink pilot time slot (UpPTS), and a downlink pilot time slot (downlink pilot time slot; DwPTS) three parts. UpPTS is used for uplink transmission and DwPTS is used for downlink transmission.
  • GP guard period
  • UpPTS uplink pilot time slot
  • DwPTS downlink pilot time slot
  • the NB-IoT TDD supports the uplink and downlink subframe configuration 1 to 5, and the uplink and downlink subframe configuration 6 is under discussion. In the future, in the NB-IoT TDD scenario, the uplink and downlink subframe configuration 6 may also be supported.
  • SIBs may be transmitted on non-anchor carriers.
  • a master information block may indicate whether SIB1 is transmitted on an anchor carrier or a non-anchor carrier, and SIB1 also indicates whether other SIBs are transmitted on an anchor carrier or a non-anchor carrier.
  • the terminal device When other SIBs are transmitted on a non-anchor carrier, the terminal device does not know which subframes on the non-anchor carrier transmitting other SIBs are valid subframes, and the terminal device may have an invalid subframe on the non-anchor carrier. Receive other SIBs. This may cause the terminal device to fail to receive other SIBs correctly. Eventually, the terminal device may not work properly in the TDD scenario.
  • the valid subframes mentioned in the embodiments of the present application may include valid downlink subframes, valid uplink subframes, and/or valid special subframes.
  • a valid downlink subframe may be a downlink subframe for physical downlink shared channel (PDSCH) transmission, except for SIB1, that is, the terminal device determines the subframe in which the PDSCH carrying the SIB1 is located as an invalid downlink. frame.
  • the invalid downlink subframe may not be used for the downlink subframe of the PDSCH transmission.
  • An effective uplink subframe may refer to an uplink subframe used for physical uplink shared channel (PUSCH) and/or physical random access channel (PRACH) transmission.
  • An invalid uplink subframe may refer to an uplink subframe that cannot be used for PUSCH and/or PRACH transmission.
  • a valid special subframe is a special subframe that can be used to transmit information about a terminal device and/or a network device.
  • An invalid special subframe is a special subframe that cannot transmit related information.
  • the embodiment of the present application provides a communication method, which can determine a valid subframe on a non-anchor carrier that transmits other SIBs, and ensure that the terminal device can work normally in a TDD scenario.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method of FIG. 2 may be performed by a terminal device or may also be performed by a chip within the terminal device.
  • the method of Figure 2 includes steps 210-230, which are described in detail below.
  • step 210 a valid subframe and an invalid subframe on the anchor carrier are determined.
  • step 220 at least one valid subframe on the non-anchor carrier is determined based on the valid subframe and the null subframe on the anchor carrier.
  • At least one valid subframe on the non-anchor carrier may also be referred to as a valid subframe set on the non-anchor carrier.
  • the non-anchor carrier refers to a carrier that transmits other SIBs.
  • the terminal device may determine which subframes in the non-anchor carrier are valid subframes and which subframes are invalid subframes according to the effective subframe configuration on the anchor carrier.
  • step 230 other SIBs are received on at least one valid subframe of the non-anchor carrier. That is, the terminal device receives other SIBs on the set of valid subframes of the non-anchor carrier.
  • the terminal device receives another SIB on at least one valid subframe of the non-anchor carrier, where the terminal device is at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink subframe, and Other SIBs are received on valid special subframes.
  • the terminal device can receive other SIBs in the effective subframe of the non-anchor carrier, so that the terminal device can correctly receive other SIBs, thereby ensuring that the terminal device can work normally in the TDD scenario.
  • the terminal device when determining the at least one valid subframe on the non-anchor carrier, the terminal device does not need to introduce new signaling, thereby saving signaling overhead.
  • the terminal device may determine the valid subframe and the invalid subframe on the anchor carrier according to the effective subframe configuration on the anchor carrier and the subframe on which the first signal is transmitted on the anchor carrier.
  • the first signal may include at least one of the following signals: PSS, SSS, PBCH, SIB1.
  • the terminal device receives the SIB1 sent by the network device, where the SIB1 carries preset information, where the preset information is used to indicate a valid subframe configuration on the anchor carrier.
  • the preset information can be a string of fields or characters.
  • the preset information can be represented by bit bits.
  • the preset information may be represented by a 10-bit bit, or may be represented by a 40-bit or 80-bit bit. This embodiment of the present application does not specifically limit this.
  • 10 bits or 40 bits may be used to represent preset information.
  • 40 bits can be used to represent the preset information.
  • the 10 bits correspond to 10 subframes in one radio frame, 40 bits correspond to 40 subframes in 4 radio frames, and 80 bits correspond to 80 subframes in 8 radio frames.
  • Subframe 1 in frame 0 corresponds, and so on, the 10th bit corresponds to subframe 9 in radio frame 0.
  • a certain bit takes a value of 0, it indicates that the subframe corresponding to the bit is an invalid subframe; when a certain bit takes a value of 1, it indicates that the subframe corresponding to the bit is a valid subframe.
  • the first information is represented by 0111111001. Then, the first information indicates that subframe 0, subframe 7 and subframe 8 are invalid subframes, and the remaining subframes are valid subframes.
  • the second bit corresponds to subframe 1 of radio frame X, and so on
  • the tenth The subframe 9 of the bit radio frame X corresponds
  • the 11th bit corresponds to the subframe 0 of the radio frame X+1, and so on
  • the 40th bit corresponds to the subframe 9 of the radio frame X+3.
  • the 40 bits are 01111110011111111101 01101110011111111001, it indicates that subframe 0, subframe 7, and subframe 8 in radio frame 0 are invalid subframes, and subframe 8 in radio frame 1 is an invalid subframe.
  • the subframe 0, the subframe 3, the subframe 7, and the subframe 8 in the radio frame 2 are invalid subframes, and the subframe 7 and the subframe 8 in the radio frame 3 are invalid subframes.
  • the remaining subframes are valid subframes.
  • the terminal device further determines a subframe on the anchor carrier that transmits the first signal, and determines a subframe on the anchor carrier that transmits the first signal as an invalid subframe. For example, if the terminal device determines that the subframe on which the SSS is transmitted on the anchor carrier is the subframe 0, the subframe in which the PSS is transmitted is the subframe 5, the subframe in which the PBCH is transmitted is the subframe 9, and the subframe in which the SIB1 is transmitted is the subframe 4. Then, the terminal device further determines subframe 0, subframe 5, subframe 9 and subframe 4 of the transmission SIB1-NB on the anchor carrier as invalid subframes.
  • the terminal device finally determines that the effective subframe on the anchor carrier is subframe 1, subframe 2, subframe 3, and subframe 6, and the invalid subframe is subframe 0, subframe 4, and subframe 5 of the transmission SSS. , subframe 7, subframe 8, and subframe 9.
  • the periods of the above first signals are not all 10 ms, that is, the first signal is not transmitted in every radio frame.
  • the terminal device only determines the corresponding subframe in the radio frame transmitting the first signal as an invalid subframe of the anchor carrier.
  • the SSS signal is transmitted on the subframe 0 in the even radio frame, and the terminal device only determines the subframe 0 in the even radio frame as the invalid subframe, and the subframe 0 in the odd radio frame is still based on Preset information to determine if it is a valid subframe. If the bit corresponding to the preset information indicates that the subframe 0 in the odd radio frame is a valid subframe, the subframe 0 in the radio frame is a valid subframe.
  • the terminal device determines that the invalid subframe in the radio frame 0 on the anchor carrier is subframe 0, subframe 5, subframe 7, subframe 8, and subframe 9, and the effective subframe is subframe 1.
  • the valid downlink subframe in the radio frame 0 is the subframe 4 and the subframe 6, and the valid special subframe is the subframe 1.
  • the terminal device determines that the invalid subframe in the radio frame 1 is the subframe 0, the subframe 4, the subframe 5, the subframe 7, the subframe 8, and the subframe 9, and the effective subframe is the subframe 1, the subframe 2, and the subframe 3. , subframe 6.
  • the valid downlink subframe in the radio frame 1 is the subframe 6, and the valid special subframe is the subframe 1.
  • the terminal device may determine at least one valid downlink subframe on the non-anchor carrier according to the valid downlink subframe and the invalid downlink subframe on the anchor carrier.
  • the terminal device receives other SIBs on at least one valid downlink subframe of the non-anchor carrier.
  • the terminal device may determine at least one valid downlink subframe and a valid special subframe on the non-anchor carrier according to the valid downlink subframe and the valid special subframe on the anchor carrier.
  • the terminal device receives other SIBs on at least one valid downlink subframe and a valid special subframe on the non-anchor carrier.
  • the terminal device may determine a valid subframe on the non-anchor carrier based on the valid subframe and the null subframe on the anchor carrier. Determining, by the terminal device, at least one valid downlink subframe or at least one valid downlink subframe and a special on the non-anchor carrier according to the uplink and downlink subframe configuration on the non-anchor carrier and the at least one valid subframe on the non-anchor carrier Subframe. The terminal device receives other SIBs on at least one valid downlink subframe or at least one valid downlink subframe and special subframe on the non-anchor carrier.
  • step 220 The specific implementation of step 220 is described in detail below.
  • the terminal device may directly determine a subframe on the non-anchor carrier corresponding to the valid subframe on the anchor carrier as at least one valid subframe on the non-anchor carrier.
  • the correspondence may be that the superframe on the anchor carrier corresponds to the superframe on the non-anchor carrier, and the radio frame on the anchor carrier corresponds to the radio frame on the non-anchor carrier, and the anchor carrier is on the anchor carrier.
  • the subframes correspond one-to-one with the subframes on the non-anchor carrier.
  • the radio frame 0 on the anchor carrier corresponds to the radio frame 0 on the non-anchor carrier
  • the radio frame 1 on the anchor carrier corresponds to the radio frame 1 on the non-anchor carrier, and the like.
  • the subframe 1 in the radio frame 0 on the anchor carrier corresponds to the subframe 1 in the radio frame 0 on the non-anchor carrier, and the subframe 2 and the non-anchor carrier in the radio frame 0 on the anchor carrier Correspondence of subframe 2 in radio frame 0, and so on.
  • the terminal device determines that at least one valid subframe in the radio frame 0 on the non-anchor carrier is subframe 1, subframe 2, and subframe. 3. Subframe 4 and subframe 6.
  • the terminal device may transmit a subframe corresponding to a valid subframe on the anchor carrier on the non-anchor carrier, and a subframe transmitting the target signal on the anchor carrier.
  • the corresponding subframe is determined to be at least one valid subframe on the non-anchor carrier.
  • the target signal includes at least one of the following signals: PSS, SSS, PBCH, SIB1.
  • the subframe corresponding to the subframe on which the target signal is transmitted on the anchor carrier may be: the subframe 5 transmitting the PSS on the anchor carrier corresponds to the subframe 5 on the non-anchor carrier, and transmitting on the anchor carrier
  • the subframe 0 of the SSS corresponds to the subframe 0 on the non-anchor carrier
  • the subframe 9 on which the PBCH is transmitted on the anchor carrier corresponds to the subframe 9 on the non-anchor carrier
  • the subframe 0 of the SIB1 is transmitted on the anchor carrier.
  • the subframe 0 on the non-anchor carrier corresponds to, or the subframe 4 on which the SIB1 is transmitted on the anchor carrier corresponds to the subframe 4 on the non-anchor carrier.
  • the terminal device determines that the subframe on which the SSS is transmitted on the anchor carrier is the subframe 0, the subframe in which the PSS is transmitted is the subframe 5, the subframe in which the PBCH is transmitted is the subframe 9, and the subframe in which the SIB1 is transmitted is Subframe 4.
  • the terminal device determines that at least one valid subframe in the radio frame 0 on the non-anchor carrier is subframe 0, subframe 1, subframe 2, subframe 3, subframe 4, subframe 5, subframe 6, and subframe 9. .
  • the terminal device determines that the valid downlink subframes in the radio frame 0 on the non-anchor carrier are subframe 0, subframe 4, subframe 5, subframe 6, and subframe 9, and the valid special subframe is subframe 1.
  • the terminal device may determine, on the non-anchor carrier, a subframe corresponding to the valid subframe on the anchor carrier as the at least one valid subframe on the non-anchor carrier, and determine the subframe on the non-anchor carrier transmitting the SIB1 as Invalid subframe.
  • the terminal device may also determine, on the non-anchor carrier, a subframe corresponding to the subframe on which the PSS, SSS, and PBCH are transmitted on the anchor carrier, as a valid subframe on the non-anchor carrier.
  • the PSS refers to a narrow band primary synchronization signal (NPSS)
  • the SSS refers to a narrow band secondary synchronization signal (NSSS)
  • the PBCH refers to ( Narrow band physical broadcast channel; NPBCH)
  • SIB1 refers to SIB1-NB.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the method of Figure 5 includes steps 510-530, which are described in detail below.
  • step 510 SIB1 is received, the SIB1 including first information, which is used to indicate a valid subframe configuration on a non-anchor carrier.
  • the first information can be a string of fields or characters.
  • the first information can be represented by bits.
  • the bit occupied by the first information is M bits, and M is a positive integer.
  • the M bits may be 10 bits or 40 bits or 80 bits, which is not specifically limited in this embodiment of the present application.
  • 10 bits or 40 bits may be used to represent preset information.
  • 40 bits can be used to represent the first information.
  • Each of the M bits is used to indicate whether the subframe corresponding to each bit is a valid subframe or an invalid subframe on a non-anchor carrier.
  • the correspondence may mean that each of the M bits is in one-to-one correspondence with each of the non-anchor carriers.
  • the 10 bits correspond to 10 subframes in one radio frame, 40 bits correspond to 40 subframes in 4 radio frames, and 80 bits correspond to 80 subframes in 8 radio frames.
  • the correspondence relationship means that the first bit corresponds to the subframe 0 in the radio frame 0, the second bit corresponds to the subframe 1 in the radio frame 0, and so on. 10 bits correspond to subframe 9 in radio frame 0.
  • a value of a bit is 0, it indicates that the subframe corresponding to the bit is an invalid subframe; when a bit has a value of 1, it indicates that the subframe corresponding to the bit is a valid subframe.
  • step 520 at least one valid subframe on the non-anchor carrier is determined based on the effective subframe configuration on the non-anchor carrier.
  • At least one valid subframe on the non-anchor carrier may also be referred to as a valid subframe set on the non-anchor carrier.
  • the non-anchor carrier refers to a carrier that transmits other SIBs.
  • the terminal device may determine which subframes in the non-anchor carrier are valid subframes and which subframes are invalid subframes according to the effective subframe configuration on the non-anchor carrier.
  • step 530 other SIBs are received on at least one valid subframe on the non-anchor carrier.
  • the terminal device receives another SIB on at least one valid subframe of the non-anchor carrier, where the terminal device is at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink subframe, and Other SIBs are received on valid special subframes.
  • the terminal device can receive other SIBs in the effective subframe of the non-anchor carrier, so that the terminal device can correctly receive other SIBs, thereby ensuring that the terminal device can work normally in the TDD scenario.
  • the first information may be used to indicate a valid subframe configuration in the anchor carrier. That is, the embodiment of the present application may multiplex the first information, and use the first information to indicate the effective subframe configuration of the anchor carrier and the non-anchor carrier, so that the signaling overhead can be reduced.
  • the SIB1 further includes second information, where the second information is used to indicate a valid subframe configuration of the anchor carrier. That is to say, the first information is a newly added information in SIB1, and the first information is specifically used to indicate a valid subframe configuration on a non-anchor carrier.
  • the first information is a newly added information in SIB1
  • the first information is specifically used to indicate a valid subframe configuration on a non-anchor carrier.
  • the embodiment of the present application further provides a communication method, where the terminal device receives the SIB1, where the SIB1 includes the third information and the fourth information, where the third information is used to indicate the effective subframe configuration on the anchor carrier, the fourth information.
  • a valid subframe configuration for indicating a subframe on the non-anchor carrier corresponding to an invalid subframe on the anchor carrier. Determining, by the terminal device, at least one valid subframe on the non-anchor carrier according to the effective subframe configuration on the anchor carrier, and the effective subframe configuration of the subframe corresponding to the invalid subframe on the anchor carrier on the non-anchor point, And receiving other SIBs on at least one valid subframe of the non-anchor carrier.
  • the terminal device may determine, according to the foregoing method, which subframes on the anchor carrier are valid subframes, and which subframes are invalid subframes.
  • the terminal device may determine, as a valid subframe, a subframe corresponding to the effective subframe of the anchor carrier on the non-anchor carrier, and determine, according to the fourth information, whether the remaining subframe on the non-anchor carrier is a valid subframe, or Invalid subframe.
  • the fourth information can be a string of fields or characters. This fourth information can be represented by bits. When a certain bit is taken as 1, it indicates that the subframe corresponding to the bit is a valid subframe; when a certain bit takes 0, it indicates that the subframe corresponding to the bit is an invalid subframe.
  • FIG. 6 is a schematic flowchart diagram of another communication method provided by an embodiment of the present application.
  • the method of Figure 6 can be performed by a network device or by a chip within the network device.
  • the method of Figure 6 includes steps 610-630, which are described in detail below.
  • step 610 a valid subframe and an invalid subframe on the anchor carrier are determined.
  • step 620 at least one valid subframe on the non-anchor carrier is determined based on the valid subframe and the null subframe on the anchor carrier.
  • At least one valid subframe on the non-anchor carrier may also be referred to as a valid subframe set on the non-anchor carrier.
  • the non-anchor carrier refers to a carrier that transmits other SIBs.
  • the network device may determine which subframes in the non-anchor carrier are valid subframes and which subframes are invalid subframes according to the effective subframe configuration on the anchor carrier.
  • step 630 other SIBs are transmitted on at least one valid subframe of the non-anchor carrier. That is, the terminal device transmits other SIBs on the set of valid subframes of the non-anchor carrier.
  • the network device sends another SIB on at least one valid subframe of the non-anchor carrier, where the network device is at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink subframe and Other SIBs are sent on valid special subframes.
  • the network device determines at least one valid subframe on the non-anchor carrier in a certain manner, and sends another SIB on at least one valid subframe on the non-anchor carrier, so that the terminal device can correctly receive other SIBs, and the terminal and the terminal are guaranteed.
  • the device communicates normally.
  • the network device does not need to introduce new signaling when determining at least one valid subframe on the non-anchor carrier, thereby saving signaling overhead.
  • the network device may determine the valid subframe and the invalid subframe on the anchor carrier according to the effective subframe configuration on the anchor carrier and the subframe on the anchor carrier transmitting the first signal.
  • the first signal includes at least one of the following signals: PSS, SSS, PBCH, SIB1.
  • the SIB1 when the network device sends the SIB1, the SIB1 carries preset information, where the preset information is used to indicate a valid subframe configuration on the anchor carrier.
  • the preset information can be a string of fields or characters.
  • the preset information can be represented by bit bits.
  • the preset information may be represented by a 10-bit bit, or may be represented by a 40-bit or 80-bit bit. This embodiment of the present application does not specifically limit this.
  • 10 bits or 40 bits may be used to represent preset information.
  • 40 bits can be used to represent the preset information.
  • the 10 bits correspond to 10 subframes in one radio frame, 40 bits correspond to 40 subframes in 4 radio frames, and 80 bits correspond to 80 subframes in 8 radio frames.
  • the correspondence may mean that the first bit corresponds to subframe 0 in radio frame 0, the second bit corresponds to subframe 1 in radio frame 0, and so on, the 10th bit Corresponds to subframe 9 in radio frame 0.
  • a certain bit takes a value of 0, it indicates that the subframe corresponding to the bit is an invalid subframe; when a certain bit takes a value of 1, it indicates that the subframe corresponding to the bit is a valid subframe.
  • the network device After determining the valid subframe and the invalid subframe on the anchor carrier according to the preset information, the network device further determines the subframe on which the first signal is sent on the anchor carrier, and sends the first signal on the anchor carrier.
  • the subframe is determined to be an invalid subframe.
  • the network device may determine at least one valid downlink subframe on the non-anchor carrier according to the valid downlink subframe and the invalid downlink subframe on the anchor carrier.
  • the network device transmits other SIBs on at least one valid downlink subframe of the non-anchor carrier.
  • the network device may determine at least one valid downlink subframe and a valid special subframe on the non-anchor carrier according to the valid downlink subframe and the valid special subframe on the anchor carrier.
  • the network device transmits other SIBs on at least one valid downlink subframe and a valid special subframe on the non-anchor carrier.
  • the network device may determine a valid subframe on the non-anchor carrier based on the valid subframe and the null subframe on the anchor carrier.
  • the network device determines, according to the uplink and downlink subframe configuration on the non-anchor carrier, and the at least one valid subframe on the non-anchor carrier, the at least one valid downlink subframe or the at least one valid downlink subframe and the special on the non-anchor carrier. Subframe.
  • the network device transmits other SIBs on at least one valid downlink subframe or at least one valid downlink subframe and special subframe on the non-anchor carrier.
  • step 620 The specific implementation manner of step 620 is described in detail below.
  • the network device may directly determine a subframe on the non-anchor carrier that corresponds to a valid subframe on the anchor carrier as at least one valid subframe on the non-anchor carrier.
  • the correspondence may be that the superframe on the anchor carrier corresponds to the superframe on the non-anchor carrier, and the radio frame on the anchor carrier corresponds to the radio frame on the non-anchor carrier, and the anchor carrier is on the anchor carrier.
  • the subframes correspond one-to-one with the subframes on the non-anchor carrier.
  • the radio frame 0 on the anchor carrier corresponds to the radio frame 0 on the non-anchor carrier
  • the radio frame 1 on the anchor carrier corresponds to the radio frame 1 on the non-anchor carrier
  • the subframe 1 on the anchor carrier corresponds to the subframe 1 on the non-anchor carrier
  • the subframe 2 on the anchor carrier corresponds to the subframe 2 on the non-anchor carrier, and the like.
  • the network device may transmit a subframe on the non-anchor carrier corresponding to the valid subframe on the anchor carrier, and a subframe on the anchor carrier that transmits the target signal.
  • the corresponding subframe is determined to be at least one subframe on the non-anchor carrier.
  • the target signal includes at least one of the following signals: PSS, SSS, PBCH, SIB1.
  • the subframe corresponding to the subframe on which the target signal is transmitted on the anchor carrier may be: the subframe 5 transmitting the PSS on the anchor carrier corresponds to the subframe 5 on the non-anchor carrier, and transmitting on the anchor carrier
  • the subframe 0 of the SSS corresponds to the subframe 0 on the non-anchor carrier
  • the subframe 9 on which the PBCH is transmitted on the anchor carrier corresponds to the subframe 9 on the non-anchor carrier
  • the subframe 0 of the SIB1 is transmitted on the anchor carrier.
  • the subframe 0 on the non-anchor carrier corresponds to, or the subframe 4 on which the SIB1 is transmitted on the anchor carrier corresponds to the subframe 4 on the non-anchor carrier.
  • the network device may determine, on the non-anchor carrier, a subframe corresponding to the valid subframe on the anchor carrier as the at least one valid subframe on the non-anchor carrier, and determine the subframe on the non-anchor carrier transmitting the SIB1 as Invalid subframe.
  • the network device may also determine, on the non-anchor carrier, a subframe corresponding to the subframe on which the PSS, SSS, and PBCH are transmitted on the anchor carrier, as a valid subframe on the non-anchor carrier.
  • PSS refers to NPSS
  • SSS refers to NSSS
  • PBCH refers to NPBCH
  • SIB1 refers to SIB1-NB.
  • FIG. 7 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the method of Figure 7 can be performed by a network device or by a chip within the network device.
  • the method of Figure 7 includes steps 710-730, which are described in detail below.
  • SIB1 is transmitted, the SIB1 including first information, which is used to indicate a valid subframe configuration on a non-anchor carrier.
  • the first information can be a string of fields or characters.
  • the first information can be represented by bits.
  • the bit occupied by the first information is M bits, and M is a positive integer.
  • the M bits may be 10 bits or 40 bits or 80 bits, which is not specifically limited in this embodiment of the present application.
  • Each of the M bits is used to indicate whether the subframe corresponding to each bit is a valid subframe or an invalid subframe on a non-anchor carrier.
  • the correspondence may mean that each of the M bits is in one-to-one correspondence with each of the non-anchor carriers.
  • the 10 bits correspond to 10 subframes in one radio frame, 40 bits correspond to 40 subframes in 4 radio frames, and 80 bits correspond to 80 subframes in 8 radio frames.
  • the correspondence relationship means that the first bit corresponds to the subframe 0 in the radio frame 0, the second bit corresponds to the subframe 1 in the radio frame 0, and so on. 10 bits correspond to subframe 9 in radio frame 0.
  • a certain bit takes a value of 0, it indicates that the subframe corresponding to the bit is an invalid subframe; when a certain bit takes a value of 1, it indicates that the subframe corresponding to the bit is a valid subframe.
  • step 720 at least one valid subframe on the non-anchor carrier is determined based on the effective subframe configuration on the non-anchor carrier.
  • At least one valid subframe on the non-anchor carrier may also be referred to as a valid subframe set on the non-anchor carrier.
  • the non-anchor carrier refers to a carrier that transmits other SIBs.
  • the network device may determine which subframes in the non-anchor carrier are valid subframes and which subframes are invalid subframes according to the effective subframe configuration on the non-anchor carrier.
  • step 730 other SIBs are transmitted on at least one valid subframe on the non-anchor carrier.
  • the network device sends another SIB on at least one valid subframe of the non-anchor carrier, where the network device is at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink subframe and Other SIBs are sent on valid special subframes.
  • the network device determines at least one valid subframe on the non-anchor carrier in a certain manner, and sends another SIB on at least one valid subframe on the non-anchor carrier, so that the terminal device can correctly receive other SIBs, and the terminal and the terminal are guaranteed.
  • the device communicates normally.
  • the first information may be used to indicate a valid subframe configuration in the anchor carrier. That is, the embodiment of the present application may multiplex the first information, and use the first information to indicate the effective subframe configuration of the anchor carrier and the non-anchor carrier, so that the signaling overhead can be reduced.
  • the SIB1 further includes second information, where the second information is used to indicate a valid subframe configuration of the anchor carrier. That is to say, the first information is a newly added information in SIB1, and the first information is specifically used to indicate a valid subframe configuration on a non-anchor carrier.
  • the first information is a newly added information in SIB1
  • the first information is specifically used to indicate a valid subframe configuration on a non-anchor carrier.
  • the embodiment of the present application further provides a communication method, where the network device sends the SIB1, where the SIB1 includes the third information and the fourth information, where the third information is used to indicate the effective subframe configuration on the anchor carrier, the fourth information.
  • a valid subframe configuration for indicating a subframe on the non-anchor carrier corresponding to an invalid subframe on the anchor carrier. Determining, by the network device, at least one valid subframe on the non-anchor carrier according to a valid subframe configuration on the anchor carrier, and a valid subframe configuration of the subframe corresponding to the invalid subframe on the anchor carrier on the non-anchor point, And transmitting other SIBs on at least one valid subframe of the non-anchor carrier.
  • the fourth information can be a string of fields or characters. This fourth information can be represented by bits. When a certain bit is taken as 1, it indicates that the subframe corresponding to the bit is a valid subframe; when a certain bit takes 0, it indicates that the subframe corresponding to the bit is an invalid subframe.
  • FIG. 8 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device can be a terminal device or a chip or other component within the terminal device.
  • the communication device includes a determining unit 810 and a receiving unit 820.
  • the determining unit 810 is configured to determine a valid subframe and an invalid subframe on the anchor carrier.
  • the determining unit 810 is further configured to: determine, according to the valid subframe and the invalid subframe on the anchor carrier, at least one valid subframe on the non-anchor carrier.
  • At least one valid subframe on the non-anchor carrier may also be referred to as a valid subframe set on the non-anchor carrier.
  • the non-anchor carrier refers to a carrier that transmits other SIBs.
  • the terminal device may determine which subframes in the non-anchor carrier are valid subframes and which subframes are invalid subframes according to the effective subframe configuration on the anchor carrier.
  • the receiving unit 820 is configured to receive other system information blocks SIB on at least one valid subframe of the non-anchor carrier.
  • the terminal device receives another SIB on at least one valid subframe of the non-anchor carrier, where the terminal device is at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink subframe, and Other SIBs are received on valid special subframes.
  • the terminal device may determine the valid subframe and the invalid subframe on the anchor carrier according to the effective subframe configuration on the anchor carrier and the subframe on which the first signal is transmitted on the anchor carrier.
  • the first signal includes at least one of the following signals: PSS, SSS, PBCH, SIB1.
  • the manner in which the terminal device determines at least one valid subframe on the non-anchor carrier is not specifically limited.
  • the terminal device may directly determine a subframe on the non-anchor carrier corresponding to the valid subframe on the anchor carrier as at least one valid subframe on the non-anchor carrier.
  • the terminal device may transmit a subframe corresponding to a valid subframe on the anchor carrier on the non-anchor carrier, and a subframe transmitting the target signal on the anchor carrier.
  • the corresponding subframe is determined to be at least one valid subframe on the non-anchor carrier.
  • the target signal includes at least one of the following signals: PSS, SSS, PBCH, SIB1.
  • the terminal device may determine, on the non-anchor carrier, a subframe corresponding to the valid subframe on the anchor carrier as the at least one valid subframe on the non-anchor carrier, and determine the subframe on the non-anchor carrier transmitting the SIB1 as Invalid subframe.
  • the terminal device may also determine, on the non-anchor carrier, a subframe corresponding to the subframe on which the PSS, SSS, and PBCH are transmitted on the anchor carrier, as a valid subframe on the non-anchor carrier.
  • FIG. 9 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • the communication device can be a terminal device or a chip or other component within the terminal device.
  • the communication device includes a receiving unit 910 and a determining unit 920.
  • the receiving unit 910 is configured to receive a system information block SIB1, where the SIB1 includes first information, where the first information is used to indicate a valid subframe configuration on a non-anchor carrier.
  • the first information can be a string of fields or characters.
  • the first information can be represented by bits.
  • the bit occupied by the first information is M bits, and M is a positive integer.
  • the M bits may be 10 bits or 40 bits or 80 bits, which is not specifically limited in this embodiment of the present application.
  • 10 bits or 40 bits may be used to represent preset information.
  • 40 bits can be used to represent the first information.
  • the determining unit 920 is configured to determine at least one valid subframe on the non-anchor carrier according to the effective subframe configuration on the non-anchor carrier.
  • At least one valid subframe on the non-anchor carrier may also be referred to as a valid subframe set on the non-anchor carrier.
  • the non-anchor carrier refers to a carrier that transmits other SIBs.
  • the terminal device may determine which subframes in the non-anchor carrier are valid subframes and which subframes are invalid subframes according to the effective subframe configuration on the non-anchor carrier.
  • the receiving unit 910 is further configured to: receive another system information block SIB on at least one valid subframe of the non-anchor carrier.
  • the terminal device receives another SIB on at least one valid subframe of the non-anchor carrier, where the terminal device is at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink subframe, and Other SIBs are received on valid special subframes.
  • the terminal device can receive other SIBs in the at least one valid subframe of the non-anchor carrier, so that the terminal device can correctly receive other SIBs, thereby ensuring that the terminal device can work normally in the TDD scenario.
  • the first information may be used to indicate a valid subframe configuration in the anchor carrier. That is, the embodiment of the present application may multiplex the first information, and use the first information to indicate the effective subframe configuration of the anchor carrier and the non-anchor carrier, so that the signaling overhead can be reduced.
  • the SIB1 further includes second information, where the second information is used to indicate a valid subframe configuration of the anchor carrier. That is to say, the first information is a newly added information in SIB1, and the first information is specifically used to indicate a valid subframe configuration on a non-anchor carrier.
  • the first information is a newly added information in SIB1
  • the first information is specifically used to indicate a valid subframe configuration on a non-anchor carrier.
  • the embodiment of the present application further provides a communication device, where the terminal device receives the SIB1, where the SIB1 includes the third information and the fourth information, where the third information is used to indicate a valid subframe configuration on the anchor carrier, the fourth information.
  • a valid subframe configuration for indicating a subframe on the non-anchor carrier corresponding to an invalid subframe on the anchor carrier. Determining, by the terminal device, at least one valid subframe on the non-anchor carrier according to the effective subframe configuration on the anchor carrier, and the effective subframe configuration of the subframe corresponding to the invalid subframe on the anchor carrier on the non-anchor point, And receiving other SIBs on at least one valid subframe of the non-anchor carrier.
  • the fourth information can be a string of fields or characters. This fourth information can be represented by bits. When a certain bit is taken as 1, it indicates that the subframe corresponding to the bit is a valid subframe; when a certain bit takes 0, it indicates that the subframe corresponding to the bit is an invalid subframe.
  • the embodiment of the present application further provides a communication device 1000.
  • the communication device 1000 includes a processor 1010, a memory 1020 and a transceiver 1030.
  • the memory 1020 is for storing instructions, and the processor 1010 and the transceiver 1030 are configured to execute instructions stored by the memory 1020.
  • the communication device 1000 can be a terminal device or a component thereof, such as a chip or chipset.
  • the communication device 800 shown in FIG. 8 or the communication device 1000 shown in FIG. 10 can be used to perform the operations or processes related to the above-described method embodiments, and the operations of the respective units in the communication device 800 or the communication device 1000 and/or The functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • the embodiment of the present application further provides a communication device 1100.
  • the communication device 1100 includes a processor 1110, a memory 1120 and a transceiver 1130.
  • the memory 1120 is for storing instructions, and the processor 1110 and the transceiver 1130 are configured to execute instructions stored by the memory 1120.
  • the communication device 1100 can be a terminal device or a component thereof, such as a chip or chipset.
  • the communication device 900 shown in FIG. 9 or the communication device 1100 shown in FIG. 11 can be used to perform the operations or processes related to the above-described method embodiments, and the operations of the respective units in the communication device 900 or the communication device 1100 and/or The functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • FIG. 12 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • the communication device can be a network device or a chip or other component within the network device.
  • the communication device includes a determining unit 1210 and a transmitting unit 1220.
  • the determining unit 1210 is configured to determine a valid subframe and an invalid subframe on the anchor carrier.
  • the determining unit 1210 is further configured to: determine, according to the valid subframe and the invalid subframe on the anchor carrier, at least one valid subframe on the non-anchor carrier.
  • At least one valid subframe on the non-anchor carrier may also be referred to as a valid subframe set on the non-anchor carrier.
  • the non-anchor carrier refers to a carrier that transmits other SIBs.
  • the network device may determine which subframes in the non-anchor carrier are valid subframes and which subframes are invalid subframes according to the effective subframe configuration on the anchor carrier.
  • the sending unit 1220 is configured to send another system information block SIB on at least one valid subframe of the non-anchor carrier.
  • the network device sends another SIB on at least one valid subframe of the non-anchor carrier, where the network device is at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink subframe and Other SIBs are sent on valid special subframes.
  • the network device is capable of transmitting other SIBs on at least one valid subframe on the non-anchor carrier, thereby enabling normal communication with the terminal device.
  • the network device does not need to introduce new signaling when determining at least one valid subframe on the non-anchor carrier, thereby saving signaling overhead.
  • the network device may determine the valid subframe and the invalid subframe on the anchor carrier according to the effective subframe configuration on the anchor carrier and the subframe on the anchor carrier transmitting the first signal.
  • the first signal includes at least one of the following signals: PSS, SSS, PBCH, SIB1.
  • the manner in which the network device determines at least one valid subframe on the non-anchor carrier is not specifically limited.
  • the network device may directly determine a subframe on the non-anchor carrier that corresponds to a valid subframe on the anchor carrier as at least one valid subframe on the non-anchor carrier.
  • the network device may transmit a subframe on the non-anchor carrier corresponding to the valid subframe on the anchor carrier, and a subframe on the anchor carrier that transmits the target signal.
  • the corresponding subframe is determined to be at least one valid subframe on the non-anchor carrier.
  • the target signal includes at least one of the following signals: PSS, SSS, PBCH, SIB1.
  • the network device may determine, on the non-anchor carrier, a subframe corresponding to the valid subframe on the anchor carrier as the at least one valid subframe on the non-anchor carrier, and determine the subframe on the non-anchor carrier transmitting the SIB1 as Invalid subframe.
  • the network device may also determine, on the non-anchor carrier, a subframe corresponding to the subframe on which the PSS, SSS, and PBCH are transmitted on the anchor carrier, as a valid subframe on the non-anchor carrier.
  • PSS refers to NPSS
  • SSS refers to NSSS
  • PBCH refers to NPBCH
  • SIB1 refers to SIB1-NB.
  • FIG. 13 is a schematic block diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication device can be a network device or a chip or other component within the network device.
  • the communication device includes a transmitting unit 1310 and a determining unit 1320.
  • the sending unit 1310 is configured to send a system information block SIB1, where the SIB1 includes first information, where the first information is used to indicate a valid subframe configuration on a non-anchor carrier.
  • the first information can be a string of fields or characters.
  • the first information can be represented by bits.
  • the bit occupied by the first information is M bits, and M is a positive integer.
  • the M bits may be 10 bits or 40 bits or 80 bits, which is not specifically limited in this embodiment of the present application.
  • 10 bits or 40 bits may be used to represent preset information.
  • 40 bits can be used to represent the first information.
  • the determining unit 1320 is configured to determine at least one valid subframe on the non-anchor carrier according to the effective subframe configuration on the non-anchor carrier.
  • At least one valid subframe on the non-anchor carrier may also be referred to as a valid subframe set on the non-anchor carrier.
  • the non-anchor carrier refers to a carrier that transmits other SIBs.
  • the network device may determine which subframes in the non-anchor carrier are valid subframes and which subframes are invalid subframes according to the effective subframe configuration on the non-anchor carrier.
  • the sending unit 1310 is further configured to: send another system information block SIB on at least one valid subframe of the non-anchor carrier.
  • the network device sends another SIB on at least one valid subframe of the non-anchor carrier, where the network device is at least one valid downlink subframe of the non-anchor carrier, or at least one valid downlink subframe and Other SIBs are sent on valid special subframes.
  • the network device is capable of transmitting other SIBs on at least one valid subframe on the non-anchor carrier, thereby enabling normal communication with the terminal device.
  • the first information may be used to indicate a valid subframe configuration in the anchor carrier. That is, the embodiment of the present application may multiplex the first information, and use the first information to indicate the effective subframe configuration of the anchor carrier and the non-anchor carrier, so that the signaling overhead can be reduced.
  • the SIB1 further includes second information, where the second information is used to indicate a valid subframe configuration of the anchor carrier. That is to say, the first information is a newly added information in SIB1, and the first information is specifically used to indicate a valid subframe configuration on a non-anchor carrier.
  • the first information is a newly added information in SIB1
  • the first information is specifically used to indicate a valid subframe configuration on a non-anchor carrier.
  • the embodiment of the present application further provides a communication device, where the network device sends the SIB1, where the SIB1 includes the third information and the fourth information, where the third information is used to indicate the effective subframe configuration on the anchor carrier, the fourth information.
  • a valid subframe configuration for indicating a subframe on the non-anchor carrier corresponding to an invalid subframe on the anchor carrier. Determining, by the network device, at least one valid subframe on the non-anchor carrier according to a valid subframe configuration on the anchor carrier, and a valid subframe configuration of the subframe corresponding to the invalid subframe on the anchor carrier on the non-anchor point, And receiving other SIBs on at least one valid subframe of the non-anchor carrier.
  • the fourth information can be a string of fields or characters. This fourth information can be represented by bits. When a certain bit is taken as 1, it indicates that the subframe corresponding to the bit is a valid subframe; when a certain bit takes 0, it indicates that the subframe corresponding to the bit is an invalid subframe.
  • the embodiment of the present application further provides a communication device 1400.
  • the communication device 1400 includes a processor 1410, a memory 1420 and a transceiver 1430.
  • the memory 1420 is for storing instructions for the processor 1410 and the transceiver 1430 to execute instructions stored by the memory 1420.
  • Communication device 1400 can be a network device or a component thereof, such as a chip or chipset.
  • the communication device 1200 shown in FIG. 12 or the communication device 1400 shown in FIG. 14 can be used to perform the operations or processes related to the above method embodiments, and the operations of the respective units in the communication device 1200 or the communication device 1400 and/or The functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • the embodiment of the present application further provides a communication device 1500.
  • the communication device 1500 includes a processor 1510, a memory 1520 and a transceiver 1530.
  • the memory 1520 is for storing instructions, and the processor 1510 and the transceiver 1530 are configured to execute the instructions stored by the memory 1520.
  • Communication device 1500 can be a network device or a component thereof, such as a chip or chipset.
  • the communication device 1300 shown in FIG. 13 or the communication device 1500 shown in FIG. 15 can be used to perform the operations or processes related to the above-described method embodiments, and the operations of the respective units in the communication device 1300 or the communication device 1500 and/or The functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • the transceiver in any of Figures 10, 11, 14, and 15 is used for specific signal transceiving.
  • the processor is used to control the transceiver for signal transceiving and perform other processing or determining functions. Therefore, the transceiver is equivalent to the executor of the air interface signal transmission and reception, and the processor is the controller of the air interface signal transmission and reception, which is used for scheduling or controlling the transceiver to implement transmission and reception.
  • the processor controls the operation of the transceiver under the driving of the instructions in the memory, implements various types of signal transceiving, and jointly implements the flow of any of the above method embodiments.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、装置及计算机可读存储介质,该通信方法包括:确定锚点载波上的有效子帧和无效子帧;根据锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧;在非锚点载波的至少一个有效子帧上接收其他系统信息块SIB。由于终端设备在非锚点载波的至少一个有效子帧上接收其他SIB,所以能够保证终端设备正确接收其他SIB,从而保证终端设备在TDD场景下能够正常工作。此外,终端设备在确定非锚点载波上的至少一个有效子帧时,无需引人入新的信令,从而能够节省信令开销。

Description

通信方法、装置及计算机可读存储介质 技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法、装置及计算机可读存储介质。
背景技术
在通信系统中,时分双工(time division duplexing,TDD)是指发射和接收信号是在同一频率信道的不同时隙中进行的,TDD用时间来分离接收和发送信道。由于TDD场景无需成对的频率,可以方便的配置在频分双工(frequency division duplexing,FDD)场景所不易使用的零散频段上,具有一定的频谱灵活性,能够有效地提高频谱利用率。
但是在TDD场景下,由于锚点载波上的下行子帧个数有限,为了解决资源配置的问题,因此SIB1可能会指示其他SIB在非锚点载波上发送。当其他SIB在非锚点载波上发送时,终端设备不知道该非锚点载波上的有效(valid)子帧配置,则终端设备可能会在无效(invalid)子帧上接收其他SIB,导致终端设备接收不到其他SIB,最后有可能会导致在TDD场景下无法正常工作。
发明内容
本申请提供一种通信方法、装置及计算机可读存储介质,能够确定非锚点载波上的有效子帧。
第一方面,提供了一种通信方法,包括:确定锚点载波上的有效子帧和无效子帧;根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧;在所述非锚点载波的至少一个有效子帧上接收其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
根据本申请提供的技术方案,由于终端设备在非锚点载波的有效子帧上接收其他SIB,所以能够保证终端设备正确接收其他SIB,从而保证终端设备在TDD场景下能够正常工作。此外,终端设备在确定非锚点载波上的至少一个有效子帧时,无需引人入新的信令,从而能够节省信令开销。
具体地,该锚点载波可以为用于传输PSS、SSS、PBCH的载波,该非锚点载波可以为不传输PSS、SSS、PBCH的载波,用于传输其他信息。
该SIB1是系统信息块的一种类型,主要携带小区接入和小区选择相关信息,或其他SIB块的调度信息等的至少一项,属于最重要的系统信息块。
在一种可能的实现方式中,所述通信方法包括:确定锚点载波上的有效下行子帧和无效下行子帧;根据锚点载波上的有效下行子帧和无效下行子帧,确定非锚点载波上的至少一个有效下行子帧;在非锚点载波的至少一个有效下行子帧上接收其他SIB。
在一种可能的实现方式中,所述通信方法包括:确定锚点载波上的有效下行子帧和有 效特殊子帧;根据锚点载波上的有效下行子帧和有效特殊子帧,确定非锚点载波上的至少一个有效下行子帧和有效特殊子帧;在非锚点载波的至少一个有效下行子帧和有效特殊子帧上接收其他SIB。
在一种可能的实现方式中,所述通信方法包括:确定锚点载波上的有效子帧和无效子帧;根据锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧;根据非锚点载波的上下行子帧配置,以及非锚点载波上的至少一个有效子帧,确定非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧;在非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧上接收其他SIB。
在一种可能的实现方式中,所述根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧,包括:将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧。
具体地,该对应关系可以指:锚点载波上的超帧与非锚点载波上的超帧一一对应,锚点载波上的无线帧与非锚点载波上的无线帧一一对应,锚点载波上的子帧与非锚点载波上的子帧一一对应。例如,锚点载波上的无线帧0与非锚点载波上的无线帧0对应,锚点载波上的无线帧1与非锚点载波上的无线帧1对应等。锚点载波上的无线帧0的子帧0与非锚点载波上的无线帧0的子帧0对应,锚点载波上的无线帧0的子帧1与非锚点载波上的无线帧0的子帧1的对应,以此类推,锚点载波上的无线帧0的子帧9与非锚点载波上的无线帧0的子帧9对应。
在一种可能的实现方式中,所述将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,包括:将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧,以及所述非锚点载波上与所述锚点载波上传输目标信号的子帧所对应的子帧确定为所述非锚点载波上的至少一个有效子帧,所述目标信号包括以下信号中的至少一个:主同步信号PSS、辅同步信号SSS、物理广播信道PBCH。
在一种可能的实现方式中,所述目标信号还包括所述SIB1,所述SIB1在所述锚点载波上传输。
在一种可能的实现方式中,在锚点载波中,所述传输目标信号中的PSS的子帧为子帧5,所述传输目标信号中的SSS的子帧为子帧0,所述传输目标信号中的PBCH的子帧为子帧9,所述传输目标信号中的SIB1的子帧为子帧0或者子帧4。
具体地,非锚点载波上与锚点载波上传输目标信号的子帧所对应的子帧可以指:锚点载波上传输PSS的子帧5与非锚点载波上的子帧5对应,锚点载波上传输SSS的子帧0与非锚点载波上的子帧0对应,锚点载波上传输PBCH的子帧9与非锚点载波上的子帧9对应,锚点载波上传输SIB1的子帧0与非锚点载波上的子帧0对应,或锚点载波上传输SIB1的子帧4与非锚点载波上的子帧4对应。
在一种可能的实现方式中,所述SIB1在所述非锚点载波上传输,所述将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,包括:将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,并将所述非锚点载波上传输SIB1的子帧确定为所述非锚点载波上的无效子帧。
在一种可能的实现方式中,所述确定锚点载波上的有效子帧和无效子帧,包括:接收 所述SIB1,所述SIB1包括第一信息,所述第一信息用于指示所述锚点载波上的有效子帧配置;根据所述锚点载波上的有效子帧配置,以及所述锚点载波上传输第一信号的子帧,确定所述锚点载波上的有效子帧和无效子帧,所述第一信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
第二方面,提供了一种通信方法,包括:接收系统信息块SIB1,所述SIB1包括第一信息,所述第一信息用于指示非锚点载波上的有效子帧配置;根据所述非锚点载波上的有效子帧配置,确定所述非锚点载波上的至少一个有效子帧;在所述非锚点载波的至少一个有效子帧上接收其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
根据本申请提供的技术方案,由于终端设备在非锚点载波的有效子帧上接收其他SIB,所以能够保证终端设备正确接收其他SIB,从而保证终端设备在TDD场景下能够正常工作。
在一种可能的实现方式中,所述第一信息还用于指示锚点载波上的有效子帧配置。
本申请可以复用第一信息,将第一信息同时用于指示锚点载波和非锚点载波的有效子帧配置,这样可以减小信令开销。
在一种可能的实现方式中,所述SIB1还包括第二信息,所述第二信息用于指示所述锚点载波上的有效子帧配置。
这种指示方式能够准确地指示非锚点载波中的有效子帧和无效子帧,从而能够避免资源的浪费。
在一种可能的实现方式中,所述第一信息所占用的比特为M个比特,所述M个比特中的每个比特用于指示所述每个比特对应的子帧在所述非锚点载波上是有效子帧或者无效子帧,其中,M为正整数。
在一种可能的实现方式中,所述M个比特为10比特或40比特。
具体地,该对应关系可以指:该M个比特中的每个比特与非锚点载波中的每个子帧一一对应。以M比特为10比特为例,该对应关系是指:第一个比特与无线帧0中的子帧0对应,第二个比特与无线帧0中的子帧1对应,以此类推,第10个比特与无线帧0中的子帧9对应。
第三方面,提供了一种通信方法,包括:接收系统信息块SIB1,所述SIB1包括第一信息和第二信息,所述第一信息用于指示锚点载波上的有效子帧配置,所述第二信息用于指示非锚点载波上的与所述锚点载波上的无效子帧对应的子帧的有效子帧配置;根据所述锚点载波上的有效子帧配置,以及所述非锚点载波上的与所述锚点载波上的无效子帧对应的子帧的有效子帧配置,确定所述非锚点载波上的至少一个有效子帧;在所述非锚点载波的至少一个有效子帧上接收其他SIB,所述其他SIB为除SIB1之外的系统信息块。
本申请提供的技术方案,只需要较小的信息去指示非锚点载波中的与锚点载波中的无效子帧对应的子帧到底是有效子帧还是无效子帧,因此能够以较小的信令开销准确地确定非锚点载波中的有效子帧和无效子帧。
第四方面,提供了一种通信方法,包括:确定锚点载波上的有效子帧和无效子帧;根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧;在所述非锚点载波的至少一个有效子帧上发送其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
根据本申请提供的技术方案,网络设备按照一定的方式确定非锚点载波上的至少一个有效子帧,并在非锚点载波的至少一个有效子帧上发送其他SIB,所以能够保证终端设备正确接收其他SIB,从而保证终端设备在TDD场景下能够正常工作。此外,网络设备在确定非锚点载波上的至少一个有效子帧时,无需引人入新的信令,从而能够节省信令开销。
具体地,该锚点载波可以为用于传输PSS、SSS、PBCH的载波,该非锚点载波可以为不传输PSS、SSS、PBCH的载波,用于传输其他信息。
该SIB1是系统信息块的一种类型,主要携带小区接入和小区选择相关信息,或其他SIB块的调度信息等的至少一项,属于最重要的系统信息块。
在一种可能的实现方式中,所述通信方法包括:确定锚点载波上的有效下行子帧和无效下行子帧;根据锚点载波上的有效下行子帧和无效下行子帧,确定非锚点载波上的至少一个有效下行子帧;在非锚点载波上的至少一个有效下行子帧上发送其他SIB。
在一种可能的实现方式中,所述通信方法包括:确定锚点载波上的有效下行子帧和有效特殊子帧;根据锚点载波上的有效下行子帧和有效特殊子帧,确定非锚点载波上的至少一个有效下行子帧和有效特殊子帧;在非锚点载波的至少一个有效下行子帧和有效特殊子帧上发送其他SIB。
在一种可能的实现方式中,所述通信方法包括:确定锚点载波上的有效子帧和无效子帧;根据锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧;根据非锚点载波的上下行子帧配置,以及非锚点载波上的至少一个有效子帧,确定非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧;在非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧上发送其他SIB。
在一种可能的实现方式中,所述根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧,包括:将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧。
具体地,该对应关系可以指:锚点载波上的超帧与非锚点载波上的超帧一一对应,锚点载波上的无线帧与非锚点载波上的无线帧一一对应,锚点载波上的子帧与非锚点载波上的子帧一一对应。例如,锚点载波上的无线帧0与非锚点载波上的无线帧0对应,锚点载波上的无线帧1与非锚点载波上的无线帧1对应。锚点载波上的无线帧0的子帧0与非锚点载波上的无线帧0的子帧0对应,锚点载波上的无线帧0的子帧1与非锚点载波上的无线帧0的子帧1的对应,以此类推,锚点载波上的无线帧0的子帧9与非锚点载波上的无线帧0的子帧9对应。
在一种可能的实现方式中,所述将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,包括:将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧,以及所述非锚点载波上的与所述锚点载波上传输目标信号的子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,所述目标信号包括以下信号中的至少一个:主同步信号PSS、辅同步信号SSS、物理广播信道PBCH。
在一种可能的实现方式中,所述目标信号还包括所述SIB1,所述SIB1在所述锚点载波上传输。
在一种可能的实现方式中,在锚点载波中,所述传输目标信号中的PSS的子帧为子帧5,所述传输目标信号中的SSS的子帧为子帧0,所述传输目标信号中的PBCH的子帧为 子帧9,所述传输目标信号中的SIB1的子帧为子帧0或者子帧4。
具体地,非锚点载波上与锚点载波上传输目标信号的子帧所对应的子帧可以指:锚点载波上传输PSS的子帧5与非锚点载波上的子帧5对应,锚点载波上传输SSS的子帧0与非锚点载波上的子帧0对应,锚点载波上传输PBCH的子帧9与非锚点载波上的子帧9对应,锚点载波上传输SIB1的子帧0与非锚点载波上的子帧0对应,或锚点载波上传输SIB1的子帧4与非锚点载波上的子帧4对应。
在一种可能的实现方式中,所述SIB1在所述非锚点载波上传输,所述将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,包括:将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,并将所述非锚点载波上传输SIB1的子帧确定为所述非锚点载波上的无效子帧。
在一种可能的实现方式中,所述确定锚点载波上的有效子帧和无效子帧,包括:发送所述SIB1,所述SIB1包括第一信息,所述第一信息用于指示所述锚点载波上的有效子帧配置;根据所述锚点载波上的有效子帧配置,以及所述锚点载波上传输第一信号的子帧,确定所述锚点载波上的有效子帧和无效子帧,所述第一信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
第五方面,提供了一种通信方法,包括:发送系统信息块SIB1,所述SIB1包括第一信息,所述第一信息用于指示非锚点载波上的有效子帧配置;根据所述非锚点载波上的有效子帧配置,确定所述非锚点载波上的至少一个有效子帧;在所述非锚点载波的至少一个有效子帧上发送其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
根据本申请提供的技术方案,网络设备按照一定的方式确定非锚点载波上的至少一个有效子帧,并在非锚点载波的有效子帧上发送其他SIB,所以能够保证终端设备正确接收其他SIB,从而保证终端设备在TDD场景下能够正常工作。
在一种可能的实现方式中,所述第一信息还用于指示锚点载波上的有效子帧配置。
本申请可以复用第一信息,将第一信息同时用于指示锚点载波和非锚点载波的有效子帧配置,这样可以减小信令开销。
在一种可能的实现方式中,所述SIB1还包括第二信息,所述第二信息用于指示所述锚点载波上的有效子帧配置。
这种指示方式能够准确地指示非锚点载波中的有效子帧和无效子帧,从而能够避免资源的浪费。
在一种可能的实现方式中,所述第一信息所占用的比特位为M个比特,所述M个比特中的每个比特用于指示所述每个比特对应的子帧在所述非锚点载波上是有效子帧或者无效子帧,其中,M为正整数。
在一种可能的实现方式中,所述M个比特为10比特或40比特。
具体地,该对应关系可以指:该M个比特中的每个比特与非锚点载波中的每个子帧一一对应。以M比特为10比特为例,该对应关系是指:第一个比特与无线帧1中的子帧0对应,第二个比特与无线帧1中的子帧1对应,以此类推,第10个比特与无线帧1中的子帧9对应。
第六方面,提供了一种通信方法,包括:发送系统信息块SIB1,所述SIB1包括第一 信息和第二信息,所述第一信息用于指示锚点载波上的有效子帧配置,所述第二信息用于指示非锚点载波上的与所述锚点载波上的无效子帧对应的子帧的有效子帧配置;根据所述锚点载波上的有效子帧配置,以及所述非锚点载波上的与所述锚点载波上的无效子帧对应的子帧的有效子帧配置,确定所述非锚点载波上的至少一个有效子帧;在所述非锚点载波的至少一个有效子帧上发送其他SIB,所述其他SIB为除SIB1之外的系统信息块。
本申请提供的技术方案,只需要较小的信息去指示非锚点载波中的与锚点载波中的无效子帧对应的子帧到底是有效子帧还是无效子帧,因此能够以较小的信令开销准确地确定非锚点载波中的有效子帧和无效子帧。
第七方面,提供了一种通信装置,包括用于执行上述第一方面或第一方面中任一种实现方式所述的方法的单元。
第八方面,提供了一种通信装置,包括用于执行上述第二方面或第二方面中任一种实现方式所述的方法的单元。
第九方面,提供了一种通信装置,包括用于执行上述第三方面或第三方面中任一种实现方式所述的方法的单元。
第十方面,提供了一种通信装置,包括用于执行上述第四方面或第四方面中任一种实现方式所述的方法的单元。
第十一方面,提供了一种通信装置,包括用于执行上述第五方面或第五方面中任一种实现方式所述的方法的单元。
第十二方面,提供了一种通信装置,包括用于执行上述第六方面或第六方面中任一种实现方式所述的方法的单元。
第十三方面,提供了一种通信装置,该通信装置包括:处理器和收发器,用于执行上述第一方面或第一方面的任一种实现方式所述的方法。
第十四方面,提供了一种通信装置,该通信装置包括:处理器和收发器,用于执行上述第二方面或第二方面的任一种实现方式所述的方法。
第十五方面,提供了一种通信装置,该通信装置包括:处理器和收发器,用于执行上述第三方面或第三方面的任一种实现方式所述的方法。
第十六方面,提供了一种通信装置,该通信装置包括:处理器和收发器,用于执行上述第四方面或第四方面的任一种实现方式所述的方法。
第十七方面,提供了一种通信装置,该通信装置包括:处理器和收发器,用于执行上述第五方面或第五方面的任一种实现方式所述的方法。
第十八方面,提供了一种通信装置,该通信装置包括:处理器和收发器,用于执行上述第六方面或第六方面的任一种实现方式所述的方法。
第十九方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于设备执行的程序代码,所述程序代码包括用于执行第一方面或其各种实现方式中的方法的指令。
第二十方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于设备执行的程序代码,所述程序代码包括用于执行第二方面或其各种实现方式中的方法的指令。
第二十一方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于设备执行的程序代码,所述程序代码包括用于执行第三方面或其各种实现方式中的方法的指令。
第二十二方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于设备执 行的程序代码,所述程序代码包括用于执行第四方面或其各种实现方式中的方法的指令。
第二十三方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于设备执行的程序代码,所述程序代码包括用于执行第五方面或其各种实现方式中的方法的指令。
第二十四方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于设备执行的程序代码,所述程序代码包括用于执行第六方面或其各种实现方式中的方法的指令。
第二十五方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一种实现方式所述的方法。
第二十六方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述第二方面或第二方面中任一种实现方式所述的方法。
第二十七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述第三方面或第三方面中任一种实现方式所述的方法。
第二十八方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述第四方面或第四方面中任一种实现方式所述的方法。
第二十九方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述第五方面或第五方面中任一种实现方式所述的方法。
第三十方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述第六方面或第六方面中任一种实现方式所述的方法。
第三十一方面,提供一种芯片,包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,该计算机程序用于实现上述各方面中的方法。
第三十二方面,提供了一种通信系统,该通信系统包括上述第七方面、第九方面、第十方面或第十一方面所述的终端设备以及上述第八方面、第十二方面、第十三方面或第十四方面所述的网络设备。
附图说明
图1是本申请实施例应用的通信系统的架构示意图。
图2是本申请实施例提供的一种通信方法的流程示意图。
图3是本申请实施例提供的一种有效子帧的指示方式的示例图。
图4是本申请实施例提供的一种确定非锚点载波上的至少一个有效子帧的示意图。
图5是本申请实施例提供的另一种通信方法的流程示意图。
图6是本申请实施例提供的另一种通信方法的流程示意图。
图7是本申请实施例提供的另一种通信方法的流程示意图。
图8是本申请实施例提供的一种通信装置的示意性框图。
图9是本申请实施例提供的另一种通信装置的示意性框图。
图10是本申请实施例提供的另一种通信装置的示意性框图。
图11是本申请实施例提供的另一种通信装置的示意性框图。
图12是本申请实施例提供的另一种通信装置的示意性框图。
图13是本申请实施例提供的另一种通信装置的示意性框图。
图14是本申请实施例提供的另一种通信装置的示意性框图。
图15是本申请实施例提供的另一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、新空口(new radio access technology,NR)、5G等。
随着智能城市、大数据时代的来临,无线通信将实现万物连接。目前已经出现了大量物与物的联接,这些物与物之间的联接大多通过蓝牙、Wi-Fi等短距通信技术承载,并非是通过运营商移动网络。为了满足不同物联网(internet of things,IoT)业务的传输需求,第三代合作伙伴计划(the 3rd generation partnership project,3GPP)基于物联网业务特性和移动通信网络特点,开展了增强移动通信网络功能的技术研究以适应蓬勃发展的物联网业务需求。
基于蜂窝网络的窄带物联网(narrow band-IoT,NB-IoT)成为万物互联网络的一个重要分支。NB-IoT构建于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络,以降低NB-IoT的部署成本、实现平滑升级。
还应理解,在本申请实施例中,终端可以包括但不限于应用于物联网中的终端设备,例如,可以是接入NB-IoT中的终端设备(可以称为“NB-IoT终端”):智能抄表设备、物流追踪设备、环境监测设备等;该终端还可以包括但不限于移动台(mobile station,MS)、移动终端(mobile terminal)、移动电话(mobile telephone)、用户设备(user equipment,UE)、手机(handset)及便携设备(portable equipment)等。该终端设备可以经无线接入 网(radio access network,RAN)与一个或多个核心网进行通信。例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本申请实施例中,网络设备可以是接入网设备,例如可以是基站、发射和接收点(transmit and receive point,TRP)或接入点。基站可以是GSM或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA中的基站(nodeB),还可以是LTE中的演进型基站(evolved node B,eNB或e-NodeB),还可以是NR或5G的基站(gNB),本申请实施例对此不作具体限定。
本申请实施例对提及的载波的部署模式不做具体限定。作为一个示例,载波的部署模式可以是独立部署模式(standalone),独立的载波部署模式可以不依赖于其他通信系统。例如,独立部署模式的载波部署带宽可以与长期演进(long term evolution,LTE)小区完全解耦。作为另一个示例,载波的部署模式可以是保护带部署模式(guardband),保护带部署模式的载波可以不占用其他通信系统的资源,例如,保护带部署模式的载波可以不占用LTE资源,可以部署在LTE边缘保频带中未使用的资源块上。作为另一个示例,载波的部署还可以是带内部署模式(inband),带内部署模式的载波可以部署在其他通信系统的工作带宽中,例如,带内部署模式的载波可以部署在LTE的工作带宽中。
在FDD场景中,锚点载波是指终端设备假定有主同步信号(primary synchronization signal;PSS)、辅同步信号(secondary synchronization signal;SSS)、物理广播信道(physical broadcast channel;PBCH)、系统信息块(system information block;SIB)传输的载波。非锚点载波是指终端设备假定没有PSS、SSS、PBCH、SIB传输的载波。
在TDD场景中,可以参考FDD,可以把锚点载波理解为用于传输PSS、SSS、PBCH的载波,把非锚点载波理解为不传输PSS、SSS、PBCH的载波。TDD场景与FDD场景中的锚点载波的定义可略有不同,无论是TDD场景与FDD场景,锚点载波上能够传输的信息类型多于非锚点载波。
通常,传输PSS的子帧为子帧5,且PSS在每个无线帧中都传输。传输SSS的子帧为子帧0,且SSS在偶数无线帧中传输。传输PBCH的子帧为子帧9,且PBCH在每个无线帧中都传输。在锚点载波上,传输SIB1的子帧为子帧0或子帧4,其中,传输SIB1的子帧0是指没有传输SSS的子帧0。
在通信系统中,SIB的类型有多种,不同的SIB携带不同的参数,具备不同的作用。
SIB1主要携带小区接入和小区选择相关信息,以及其他SIB的调度信息等,属于最重要的系统信息块。其中,SIB1中携带的其他SIB的调度信息,可以包括系统信息(system information,SI)的周期、SI的窗口长度、SI窗口的偏移、SI的重复模式、系统信息块的大小、其他SIB的映射信息中的至少一项。其他SIB是指除SIB1之外的其他系统信息块。
需要说明的是,在NB-IoT场景下,SIB1是指窄带系统信息块类型1(system information block type1-narrow band,SIB1-NB),其他SIB是指其他SIB-NB。
在TDD场景中,目前LTE通信系统中支持以下几种上下行子帧配置0~6,上下行子帧配置如表1所示。其中,“D”表示下行子帧,用于下行传输。“U”表示上行子帧,用于上行传输。“S”表示特殊子帧,特殊子帧包括保护时间(guard period;GP)、上行链路导频时隙(uplink pilot time slot;UpPTS)和下行链路导频时隙(downlink pilot time slot; DwPTS)三个部分。UpPTS用于上行传输,DwPTS用于下行传输。目前NB-IoT TDD支持上下行子帧配置1~5,上下行子帧配置6正在讨论中,未来在NB-IoT TDD场景下,也有可能会支持上下行子帧配置6。
表1
Figure PCTCN2018081997-appb-000001
在TDD场景中,由于一个无线帧中的下行子帧个数有限,因此,其他SIB有可能会在非锚点载波上发送。具体地,主信息块(master information block;MIB)可能会指示SIB1是在锚点载波还是非锚点载波上发送,SIB1也会指示其他SIB是在锚点载波还是非锚点载波上发送。
当其他SIB是在非锚点载波上发送时,终端设备不知道传输其他SIB的非锚点载波上的哪些子帧是有效子帧,则终端设备有可能会在非锚点载波的无效子帧上接收其他SIB。这会造成终端设备不能正确接收其他SIB,最后有可能会导致终端设备在TDD场景下无法正确工作。
本申请实施例提及的有效子帧可以包括有效下行子帧、有效上行子帧和/或有效特殊子帧。
有效下行子帧可以指用于物理下行共享信道(physical downlink shared channel,PDSCH)传输的下行子帧,但是SIB1除外,也就是说,终端设备将承载SIB1的PDSCH所在的子帧确定为无效下行子帧。无效下行子帧可以不能够用于PDSCH传输的下行子帧。
有效上行子帧可以指用于物理上行共享信道(physical uplink shared channel,PUSCH)和/或物理随机接入信道(physical random access channel,PRACH)传输的上行子帧。无效上行子帧可以指不能用于PUSCH和/或PRACH传输的上行子帧。
有效特殊子帧是可以用于传输终端设备和/或网络设备相关信息的特殊子帧。无效特殊子帧是不能够传输相关信息的特殊子帧。
上述有效上行子帧、无效上行子帧和有效特殊子帧、无效特殊子帧的定义是参考FDD场景中的定义,在TDD场景中的定义可能会略有不同。
本申请实施例提供一种通信方法,能够确定传输其他SIB的非锚点载波上的有效子帧,保证终端设备在TDD场景下能够正常工作。
图2是本申请实施例提供的一种通信方法的示意性流程图。图2的方法可以由终端设备来执行,或者也可以由终端设备内的芯片来执行。图2的方法包括步骤210-230,下面分别对步骤210-230进行详细描述。
在步骤210中,确定锚点载波上的有效子帧和无效子帧。
在步骤220中,根据锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧。
在本申请实施例中,也可以将非锚点载波上的至少一个有效子帧称为非锚点载波上的有效子帧集合。该非锚点载波是指传输其他SIB的载波。终端设备可以根据锚点载波上的有效子帧配置,确定非锚点载波中哪些子帧是有效子帧,哪些子帧是无效子帧。
在步骤230中,在该非锚点载波的至少一个有效子帧上接收其他SIB。也就是说,终端设备在该非锚点载波的有效子帧集合上接收其他SIB。
在本申请实施例中,终端设备在非锚点载波的至少一个有效子帧上接收其他SIB,是指终端设备在非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧上接收其他SIB。
由于终端设备在非锚点载波的有效子帧上接收其他SIB,所以能够保证终端设备正确接收其他SIB,从而保证终端设备在TDD场景下能够正常工作。此外,终端设备在确定非锚点载波上的至少一个有效子帧时,无需引人入新的信令,从而能够节省信令开销。
可选地,终端设备可以根据锚点载波上的有效子帧配置,以及锚点载波上传输第一信号的子帧,确定锚点载波上的有效子帧和无效子帧。该第一信号可以包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
具体地,终端设备接收网络设备发送的SIB1,SIB1中携带预设信息,该预设信息用于指示锚点载波上的有效子帧配置。
该预设信息可以为一串字段或字符。该预设信息可以用比特(bit)位来表示。例如该预设信息可以用10bit的比特位来表示,也可以用40bit或80bit的比特位来表示。本申请实施例对此不做具体限定。具体地,在带内部署模式下,可以采用10bit或40bit来表示预设信息。在独立部署或保护带部署模式下,可以采用40bit来表示预设信息。
该10bit与一个无线帧中的10个子帧对应,40bit与4个无线帧中的40个子帧对应,80bit与8个无线帧中的80个子帧对应。
下面结合图3,对本申请实施例的有效子帧的指示方式进行描述。
以10比特为例,该对应关系可以指:第一个比特与无线帧X(X mod(10/10)=0)(例如无线帧0)中的子帧0对应,第二个比特与无线帧0中的子帧1对应,以此类推,第10个比特与无线帧0中的子帧9对应。当某个比特取值为0时,表示该比特对应的子帧为无效子帧;当某个比特取值为1时,表示该比特对应的子帧为有效子帧。
以图3为例,假如该10个比特为0111111001,也就是第一信息用0111111001表示。则该第一信息表示子帧0、子帧7和子帧8为无效子帧,其余的子帧为有效子帧。
以40bit为例,第一个比特与无线帧X(X mod(40/10)=0)的子帧0对应,第二个比特与无线帧X的子帧1对应,以此类推,第10个比特无线帧X的子帧9对应,第11个比特与无线帧X+1的子帧0对应,以此类推,第40个比特与无线帧X+3的子帧9对应。
以图3为例,假如该40个比特为01111110011111111101 01101110011111111001,则表示无线帧0中的子帧0、子帧7、子帧8为无效子帧,无线帧1中的子帧8为无效子帧,无线帧2中的子帧0、子帧3、子帧7、子帧8为无效子帧,无线帧3中的子帧7、子帧8为无效子帧。其余的子帧为有效子帧。
其次,终端设备会进一步地确定锚点载波上发送第一信号的子帧,并将锚点载波上发 送第一信号的子帧确定为无效子帧。例如,如果终端设备确定锚点载波上传输SSS的子帧为子帧0,传输PSS的子帧为子帧5,传输PBCH的子帧为子帧9,传输SIB1的子帧为子帧4,则终端设备会进一步地将锚点载波上的传输SSS的子帧0、子帧5、子帧9和传输SIB1-NB的子帧4确定为无效子帧。也就是说,终端设备最终确定锚点载波上的有效子帧为子帧1、子帧2、子帧3和子帧6,无效子帧为传输SSS的子帧0、子帧4、子帧5、子帧7、子帧8和子帧9。
应理解,上述第一信号的周期并不都是10ms,也就是说,并不是在每个无线帧中都传输第一信号。终端设备只是将传输第一信号的无线帧中对应的子帧确定为锚点载波的无效子帧。以SSS信号为例,SSS信号在偶数无线帧中的子帧0上发送,则终端设备只是将偶数无线帧中的子帧0确定为无效子帧,而奇数无线帧中的子帧0仍然根据预设信息来确定是否为有效子帧。如果预设信息对应的比特位指示该奇数无线帧中的子帧0为有效子帧,则该无线帧中的子帧0为有效子帧。
以图4为例,终端设备确定锚点载波上无线帧0中的无效子帧为子帧0、子帧5、子帧7、子帧8和子帧9,有效子帧为子帧1、子帧2、子帧3、子帧4、子帧6。其中无线帧0中的有效下行子帧为子帧4和子帧6,有效特殊子帧为子帧1。终端设备确定无线帧1中的无效子帧为子帧0、子帧4、子帧5、子帧7、子帧8和子帧9,有效子帧为子帧1、子帧2、子帧3、子帧6。其中,无线帧1中的有效下行子帧为子帧6,有效特殊子帧为子帧1。
本申请实施例对步骤220的具体实现方式不做具体限定。作为一个示例,终端设备可以根据锚点载波上的有效下行子帧和无效下行子帧,确定非锚点载波上的至少一个有效下行子帧。终端设备在非锚点载波的至少一个有效下行子帧上接收其他SIB。作为另一个示例,终端设备可以根据锚点载波上的有效下行子帧和有效特殊子帧,确定非锚点载波上的至少一个有效下行子帧和有效特殊子帧。终端设备在非锚点载波上的至少一个有效下行子帧和有效特殊子帧上接收其他SIB。作为另一个示例,终端设备可以根据锚点载波上的有效子帧和无效子帧,确定非锚点载波上的有效子帧。终端设备根据非锚点载波上的上下行子帧配置,以及非锚点载波上的至少一个有效子帧,确定非锚点载波上的至少一个有效下行子帧或至少一个有效下行子帧和特殊子帧。终端设备在非锚点载波上的至少一个有效下行子帧或至少一个有效下行子帧和特殊子帧上接收其他SIB。
下面对步骤220的具体实现方式进行详细的举例说明。
作为一个示例,终端设备可直接将非锚点载波上的与锚点载波上的有效子帧对应的子帧确定为非锚点载波上的至少一个有效子帧。该对应关系可以指:锚点载波上的超帧与非锚点载波上的超帧一一对应,锚点载波上的无线帧与非锚点载波上的无线帧一一对应,锚点载波上的子帧与非锚点载波上的子帧一一对应。例如,锚点载波上的无线帧0与非锚点载波上的无线帧0对应,锚点载波上的无线帧1与非锚点载波上的无线帧1对应等。锚点载波上的无线帧0中的子帧1与非锚点载波上的无线帧0中的子帧1对应,锚点载波上的无线帧0中的子帧2与非锚点载波上的无线帧0中的子帧2的对应等。
以上述锚点载波上的无线帧0中有效子帧和无效子帧为例,终端设备确定非锚点载波上无线帧0中的至少一个有效子帧为子帧1、子帧2、子帧3、子帧4、子帧6。
作为另一个示例,当SIB1在锚点载波上传输时,终端设备可以将非锚点载波上的与 锚点载波上的有效子帧对应的子帧,以及锚点载波上传输目标信号的子帧对应的子帧确定为非锚点载波上的至少一有效个子帧。该目标信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
非锚点载波上与锚点载波上传输目标信号的子帧对应的子帧可以指:锚点载波上传输PSS的子帧5与非锚点载波上的子帧5对应,锚点载波上传输SSS的子帧0与非锚点载波上的子帧0对应,锚点载波上传输PBCH的子帧9与非锚点载波上的子帧9对应,锚点载波上传输SIB1的子帧0与非锚点载波上的子帧0对应,或锚点载波上传输SIB1的子帧4与非锚点载波上的子帧4对应。
以图4为例,终端设备如果确定锚点载波上传输SSS的子帧为子帧0,传输PSS的子帧为子帧5,传输PBCH的子帧为子帧9,传输SIB1的子帧为子帧4。则终端设备确定非锚点载波上无线帧0中的至少一个有效子帧为子帧0、子帧1、子帧2、子帧3、子帧4、子帧5、子帧6和子帧9。其中,终端设备确定非锚点载波上无线帧0中的有效下行子帧为子帧0、子帧4、子帧5、子帧6和子帧9,有效特殊子帧为子帧1。
可选地,作为一个实施例,如果终端设备确定SIB1在非锚点载波上传输,且传输SIB1的非锚点载波与传输其他SIB的非锚点载波是同一个非锚点载波时,则终端设备可以将非锚点载波上与锚点载波上的有效子帧对应的子帧确定为非锚点载波上的至少一个有效子帧,并将该非锚点载波上传输SIB1的子帧确定为无效子帧。
进一步地,终端设备也可以将非锚点载波上与锚点载波上传输PSS、SSS、PBCH的子帧对应的子帧确定为非锚点载波上的有效子帧。
需要说明的是,在NB-IoT场景下,PSS是指窄带主同步信号(narrow band primary synchronization signal;NPSS),SSS是指窄带辅同步信号(narrow band secondary synchronization signal;NSSS),PBCH是指(narrow band physical broadcast channel;NPBCH),SIB1是指SIB1-NB。
图5是本申请实施例提供的另一种通信方法的示意性流程图。图5的方法包括步骤510-530,下面对步骤510-530进行详细描述。
在步骤510中,接收SIB1,该SIB1包括第一信息,该第一信息用于指示非锚点载波上的有效子帧配置。
该第一信息可以为一串字段或字符。该第一信息可以用比特位来表示。例如,该第一信息所占用的比特为M个比特,M为正整数。该M个比特可以为10比特,也可以为40比特或80比特,本申请实施例对此不做具体限定。具体地,在带内部署模式下,可以采用10bit或40bit来表示预设信息。在独立部署或保护带部署模式下,可以采用40bit来表示第一信息。
该M个比特中的每个比特用于指示该每个比特对应的子帧在非锚点载波上是有效子帧还是无效子帧。该对应关系可以指:该M个比特中的每个比特与非锚点载波中的每个子帧一一对应。该10bit与一个无线帧中的10个子帧对应,40bit与4个无线帧中的40个子帧对应,80bit与8个无线帧中的80个子帧对应。
以M比特为10比特为例,该对应关系是指:第一个比特与无线帧0中的子帧0对应,第二个比特与无线帧0中的子帧1对应,以此类推,第10个比特与无线帧0中的子帧9对应。当某个比特取值为0时,表示该比特对应的子帧为无效子帧;当某个比特取值为1 时,表示该比特对应的子帧为有效子帧。
在步骤520中,根据非锚点载波上的有效子帧配置,确定非锚点载波上的至少一个有效子帧。
在本申请实施例中,也可以将非锚点载波上的至少一个有效子帧称为非锚点载波上的有效子帧集合。该非锚点载波是指传输其他SIB的载波。终端设备可以根据非锚点载波上的有效子帧配置,确定非锚点载波中哪些子帧是有效子帧,哪些子帧是无效子帧。
在步骤530中,在非锚点载波上的至少一个有效子帧上接收其他SIB。
在本申请实施例中,终端设备在非锚点载波的至少一个有效子帧上接收其他SIB,是指终端设备在非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧上接收其他SIB。
在本申请实施例中,由于终端设备在非锚点载波的有效子帧上接收其他SIB,所以能够保证终端设备正确接收其他SIB,从而保证终端设备在TDD场景下能够正常工作。
可选地,作为一个实施例,该第一信息可以同时用于指示锚点载波中的有效子帧配置。也就是说,本申请实施例可以复用第一信息,将第一信息同时用于指示锚点载波和非锚点载波的有效子帧配置,这样可以减小信令开销。
可选地,作为一个实施例,SIB1中还包括第二信息,该第二信息用于指示锚点载波的有效子帧配置。也就是说,第一信息是SIB1中新增加的一个信息,该第一信息专门用于指示非锚点载波上的有效子帧配置。这种指示方式能够准确地指示非锚点载波中的有效子帧和无效子帧,从而能够避免资源的浪费。
此外,本申请实施例还提供一种通信方法,终端设备接收SIB1,SIB1中包括第三信息和第四信息,该第三信息用于指示锚点载波上的有效子帧配置,该第四信息用于指示非锚点载波上与锚点载波上的无效子帧对应的子帧的有效子帧配置。终端设备根据锚点载波上的有效子帧配置,以及非锚点上与锚点载波上的无效子帧对应的子帧的有效子帧配置,确定非锚点载波上的至少一个有效子帧,并在非锚点载波的至少一个有效子帧上接收其他SIB。
具体地,终端设备在接收到锚点载波上的有效子帧配置后,可以按照上述方法确定锚点载波上哪些子帧是有效子帧,哪些子帧是无效子帧。终端设备可以将非锚点载波上与锚点载波的有效子帧对应的子帧确定为有效子帧,并根据第四信息,确定非锚点载波上的剩余子帧到底是有效子帧,还是无效子帧。
该第四信息可以为一串字段或字符。该第四信息可以用比特位来表示。当某个比特位取1时,表示该比特位对应的子帧为有效子帧;当某个比特位取0时,表示该比特位对应的子帧为无效子帧。
根据本申请实施例提供的技术方案,只需要较小的信息去指示非锚点载波中的与锚点载波中的无效子帧对应的子帧到底是有效子帧还是无效子帧,因此能够以较小的信令开销准确地确定非锚点载波中的有效子帧和无效子帧。
图6是本申请实施例提供的另一种通信方法的流程示意图。图6的方法可以由网络设备来执行,也可以由网络设备内的芯片来执行。图6的方法包括步骤610-630,下面对步骤610-630进行详细描述。
在步骤610中,确定锚点载波上的有效子帧和无效子帧。
在步骤620中,根据锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧。
在本申请实施例中,也可以将非锚点载波上的至少一个有效子帧称为非锚点载波上的有效子帧集合。该非锚点载波是指传输其他SIB的载波。网络设备可以根据锚点载波上的有效子帧配置,确定非锚点载波中哪些子帧是有效子帧,哪些子帧是无效子帧。
在步骤630中,在该非锚点载波的至少一个有效子帧上发送其他SIB。也就是说,终端设备在该非锚点载波的有效子帧集合上发送其他SIB。
在本申请实施例中,网络设备在非锚点载波的至少一个有效子帧上发送其他SIB,是指网络设备在非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧上发送其他SIB。
网络设备按照一定的方式确定非锚点载波上的至少一个有效子帧,并在非锚点载波上的至少一个有效子帧上发送其他SIB,从而能够保证终端设备正确接收其他SIB,保证与终端设备进行正常通信。此外,网络设备在确定非锚点载波上的至少一个有效子帧时,无需引人入新的信令,从而能够节省信令开销。
可选地,网络设备可以根据锚点载波上的有效子帧配置,以及锚点载波上传输第一信号的子帧,确定锚点载波上的有效子帧和无效子帧。该第一信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
具体地,网络设备发送SIB1时,SIB1中携带预设信息,该预设信息用于指示锚点载波上的有效子帧配置。
该预设信息可以为一串字段或字符。该预设信息可以用比特(bit)位来表示。例如该预设信息可以用10bit的比特位来表示,也可以用40bit或80bit的比特位来表示。本申请实施例对此不做具体限定。具体地,在带内部署模式下,可以采用10bit或40bit来表示预设信息。在独立部署或保护带部署模式下,可以采用40bit来表示预设信息。
该10bit与一个无线帧中的10个子帧对应,40bit与4个无线帧中的40个子帧对应,80bit与8个无线帧中的80个子帧对应。以10比特为例,该对应关系可以指:第一个比特与无线帧0中的子帧0对应,第二个比特与无线帧0中的子帧1对应,以此类推,第10个比特与无线帧0中的子帧9对应。当某个比特取值为0时,表示该比特对应的子帧为无效子帧;当某个比特取值为1时,表示该比特对应的子帧为有效子帧。
网络设备在根据预设信息确定出锚点载波上的有效子帧和无效子帧后,会进一步地确定锚点载波上发送第一信号的子帧,并将锚点载波上发送第一信号的子帧确定为无效子帧。具体的确定锚点载波上的有效子帧和无效子帧的方式可以参照上文的描述,为了简洁,在此不再赘述。
本申请实施例对步骤620的具体实现方式不做具体限定。作为一个示例,网络设备可以根据锚点载波上的有效下行子帧和无效下行子帧,确定非锚点载波上的至少一个有效下行子帧。网络设备在非锚点载波的至少一个有效下行子帧上发送其他SIB。作为另一个示例,网络设备可以根据锚点载波上的有效下行子帧和有效特殊子帧,确定非锚点载波上的至少一个有效下行子帧和有效特殊子帧。网络设备在非锚点载波上的至少一个有效下行子帧和有效特殊子帧上发送其他SIB。作为另一个示例,网络设备可以根据锚点载波上的有效子帧和无效子帧,确定非锚点载波上的有效子帧。网络设备根据非锚点载波上的上下行 子帧配置,以及非锚点载波上的至少一个有效子帧,确定非锚点载波上的至少一个有效下行子帧或至少一个有效下行子帧和特殊子帧。网络设备在非锚点载波上的至少一个有效下行子帧或至少一个有效下行子帧和特殊子帧上发送其他SIB。
下面对步骤620的具体实现方式进行详细的举例说明。
作为一个示例,网络设备可直接将非锚点载波上的与锚点载波上的有效子帧对应的子帧确定为非锚点载波上的至少一个有效子帧。该对应关系可以指:锚点载波上的超帧与非锚点载波上的超帧一一对应,锚点载波上的无线帧与非锚点载波上的无线帧一一对应,锚点载波上的子帧与非锚点载波上的子帧一一对应。例如,锚点载波上的无线帧0与非锚点载波上的无线帧0对应,锚点载波上的无线帧1与非锚点载波上的无线帧1对应等。锚点载波上的子帧1与非锚点载波上的子帧1对应,锚点载波上的子帧2与非锚点载波上的子帧2的对应等。
作为另一个示例,当SIB1在锚点载波上传输时,网络设备可以将非锚点载波上的与锚点载波上的有效子帧对应的子帧,以及锚点载波上传输目标信号的子帧对应的子帧确定为非锚点载波上的至少一个子帧。该目标信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
非锚点载波上与锚点载波上传输目标信号的子帧对应的子帧可以指:锚点载波上传输PSS的子帧5与非锚点载波上的子帧5对应,锚点载波上传输SSS的子帧0与非锚点载波上的子帧0对应,锚点载波上传输PBCH的子帧9与非锚点载波上的子帧9对应,锚点载波上传输SIB1的子帧0与非锚点载波上的子帧0对应,或锚点载波上传输SIB1的子帧4与非锚点载波上的子帧4对应。
可选地,作为一个实施例,如果网络设备确定SIB1在非锚点载波上传输,且传输SIB1的非锚点载波与传输其他SIB的非锚点载波是同一个非锚点载波时,则网络设备可以将非锚点载波上与锚点载波上的有效子帧对应的子帧确定为非锚点载波上的至少一个有效子帧,并将该非锚点载波上传输SIB1的子帧确定为无效子帧。
进一步地,网络设备也可以将非锚点载波上与锚点载波上传输PSS、SSS、PBCH的子帧对应的子帧确定为非锚点载波上的有效子帧。
需要说明的是,在NB-IoT场景下,PSS是指NPSS,SSS是指NSSS,PBCH是指NPBCH,SIB1是指SIB1-NB。
图7是本申请实施例提供的另一种通信方法的示意性流程图。图7的方法可以由网络设备来执行,也可以由网络设备内的芯片来执行。图7的方法包括步骤710-730,下面对步骤710-730进行详细描述。
在步骤710中,发送SIB1,该SIB1包括第一信息,该第一信息用于指示非锚点载波上的有效子帧配置。
该第一信息可以为一串字段或字符。该第一信息可以用比特位来表示。例如,该第一信息所占用的比特为M个比特,M为正整数。该M个比特可以为10比特,也可以为40比特或80比特,本申请实施例对此不做具体限定。
该M个比特中的每个比特用于指示该每个比特对应的子帧在非锚点载波上是有效子帧还是无效子帧。该对应关系可以指:该M个比特中的每个比特与非锚点载波中的每个子帧一一对应。该10bit与一个无线帧中的10个子帧对应,40bit与4个无线帧中的40个 子帧对应,80bit与8个无线帧中的80个子帧对应。
以M比特为10比特为例,该对应关系是指:第一个比特与无线帧0中的子帧0对应,第二个比特与无线帧0中的子帧1对应,以此类推,第10个比特与无线帧0中的子帧9对应。当某个比特取值为0时,表示该比特对应的子帧为无效子帧;当某个比特取值为1时,表示该比特对应的子帧为有效子帧。
在步骤720中,根据非锚点载波上的有效子帧配置,确定非锚点载波上的至少一个有效子帧。
在本申请实施例中,也可以将非锚点载波上的至少一个有效子帧称为非锚点载波上的有效子帧集合。该非锚点载波是指传输其他SIB的载波。网络设备可以根据非锚点载波上的有效子帧配置,确定非锚点载波中哪些子帧是有效子帧,哪些子帧是无效子帧。
在步骤730中,在非锚点载波上的至少一个有效子帧上发送其他SIB。
在本申请实施例中,网络设备在非锚点载波的至少一个有效子帧上发送其他SIB,是指网络设备在非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧上发送其他SIB。
网络设备按照一定的方式确定非锚点载波上的至少一个有效子帧,并在非锚点载波上的至少一个有效子帧上发送其他SIB,从而能够保证终端设备正确接收其他SIB,保证与终端设备进行正常通信。
可选地,作为一个实施例,该第一信息可以同时用于指示锚点载波中的有效子帧配置。也就是说,本申请实施例可以复用第一信息,将第一信息同时用于指示锚点载波和非锚点载波的有效子帧配置,这样可以减小信令开销。
可选地,作为一个实施例,SIB1中还包括第二信息,该第二信息用于指示锚点载波的有效子帧配置。也就是说,第一信息是SIB1中新增加的一个信息,该第一信息专门用于指示非锚点载波上的有效子帧配置。这种指示方式能够准确地指示非锚点载波中的有效子帧和无效子帧,从而能够避免资源的浪费。
此外,本申请实施例还提供一种通信方法,网络设备发送SIB1,SIB1中包括第三信息和第四信息,该第三信息用于指示锚点载波上的有效子帧配置,该第四信息用于指示非锚点载波上与锚点载波上的无效子帧对应的子帧的有效子帧配置。网络设备根据锚点载波上的有效子帧配置,以及非锚点上与锚点载波上的无效子帧对应的子帧的有效子帧配置,确定非锚点载波上的至少一个有效子帧,并在非锚点载波的至少一个有效子帧上发送其他SIB。
该第四信息可以为一串字段或字符。该第四信息可以用比特位来表示。当某个比特位取1时,表示该比特位对应的子帧为有效子帧;当某个比特位取0时,表示该比特位对应的子帧为无效子帧。
根据本申请实施例提供的技术方案,只需要较小的信息去指示非锚点载波中的与锚点载波中的无效子帧对应的子帧到底是有效子帧还是无效子帧,因此能够以较小的信令开销准确地确定非锚点载波中的有效子帧和无效子帧。
图8是本申请实施例提供的一种通信装置的示意性框图。该通信装置可以为终端设备,也可以为终端设备内的芯片或其他部件。该通信装置包括确定单元810和接收单元820。
确定单元810,用于确定锚点载波上的有效子帧和无效子帧。
确定单元810还用于:根据锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧。
在本申请实施例中,也可以将非锚点载波上的至少一个有效子帧称为非锚点载波上的有效子帧集合。该非锚点载波是指传输其他SIB的载波。终端设备可以根据锚点载波上的有效子帧配置,确定非锚点载波中哪些子帧是有效子帧,哪些子帧是无效子帧。
接收单元820,用于在非锚点载波的至少一个有效子帧上接收其他系统信息块SIB。
在本申请实施例中,终端设备在非锚点载波的至少一个有效子帧上接收其他SIB,是指终端设备在非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧上接收其他SIB。
可选地,终端设备可以根据锚点载波上的有效子帧配置,以及锚点载波上传输第一信号的子帧,确定锚点载波上的有效子帧和无效子帧。该第一信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
本申请实施例对终端设备确定非锚点载波上的至少一个有效子帧的方式不做具体限定。作为一个示例,终端设备可直接将非锚点载波上的与锚点载波上的有效子帧对应的子帧确定为非锚点载波上的至少一个有效子帧。作为另一个示例,当SIB1在锚点载波上传输时,终端设备可以将非锚点载波上的与锚点载波上的有效子帧对应的子帧,以及锚点载波上传输目标信号的子帧对应的子帧确定为非锚点载波上的至少一有效个子帧。该目标信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
可选地,作为一个实施例,如果终端设备确定SIB1在非锚点载波上传输,且传输SIB1的非锚点载波与传输其他SIB的非锚点载波是同一个非锚点载波时,则终端设备可以将非锚点载波上与锚点载波上的有效子帧对应的子帧确定为非锚点载波上的至少一个有效子帧,并将该非锚点载波上传输SIB1的子帧确定为无效子帧。
进一步地,终端设备也可以将非锚点载波上与锚点载波上传输PSS、SSS、PBCH的子帧对应的子帧确定为非锚点载波上的有效子帧。
图9是本申请实施例提供的另一种通信装置的示意性框图。该通信装置可以为终端设备,也可以为终端设备内的芯片或其他部件。该通信装置包括接收单元910和确定单元920。
接收单元910,用于接收系统信息块SIB1,该SIB1包括第一信息,该第一信息用于指示非锚点载波上的有效子帧配置。
该第一信息可以为一串字段或字符。该第一信息可以用比特位来表示。例如,该第一信息所占用的比特为M个比特,M为正整数。该M个比特可以为10比特,也可以为40比特或80比特,本申请实施例对此不做具体限定。具体地,在带内部署模式下,可以采用10bit或40bit来表示预设信息。在独立部署或保护带部署模式下,可以采用40bit来表示第一信息。
确定单元920,用于根据非锚点载波上的有效子帧配置,确定非锚点载波上的至少一个有效子帧。
在本申请实施例中,也可以将非锚点载波上的至少一个有效子帧称为非锚点载波上的有效子帧集合。该非锚点载波是指传输其他SIB的载波。终端设备可以根据非锚点载波上 的有效子帧配置,确定非锚点载波中哪些子帧是有效子帧,哪些子帧是无效子帧。
该接收单元910还用于:在非锚点载波的至少一个有效子帧上接收其他系统信息块SIB。
在本申请实施例中,终端设备在非锚点载波的至少一个有效子帧上接收其他SIB,是指终端设备在非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧上接收其他SIB。
在本申请实施例中,由于终端设备在非锚点载波的至少一个有效子帧上接收其他SIB,所以能够保证终端设备正确接收其他SIB,从而保证终端设备在TDD场景下能够正常工作。
可选地,作为一个实施例,该第一信息可以同时用于指示锚点载波中的有效子帧配置。也就是说,本申请实施例可以复用第一信息,将第一信息同时用于指示锚点载波和非锚点载波的有效子帧配置,这样可以减小信令开销。
可选地,作为一个实施例,SIB1中还包括第二信息,该第二信息用于指示锚点载波的有效子帧配置。也就是说,第一信息是SIB1中新增加的一个信息,该第一信息专门用于指示非锚点载波上的有效子帧配置。这种指示方式能够准确地指示非锚点载波中的有效子帧和无效子帧,从而能够避免资源的浪费。
此外,本申请实施例还提供一种通信装置,终端设备接收SIB1,SIB1中包括第三信息和第四信息,该第三信息用于指示锚点载波上的有效子帧配置,该第四信息用于指示非锚点载波上与锚点载波上的无效子帧对应的子帧的有效子帧配置。终端设备根据锚点载波上的有效子帧配置,以及非锚点上与锚点载波上的无效子帧对应的子帧的有效子帧配置,确定非锚点载波上的至少一个有效子帧,并在非锚点载波的至少一个有效子帧上接收其他SIB。
该第四信息可以为一串字段或字符。该第四信息可以用比特位来表示。当某个比特位取1时,表示该比特位对应的子帧为有效子帧;当某个比特位取0时,表示该比特位对应的子帧为无效子帧。
根据本申请实施例提供的技术方案,只需要较小的信息去指示非锚点载波中的与锚点载波中的无效子帧对应的子帧到底是有效子帧还是无效子帧,因此能够以较小的信令开销准确地确定非锚点载波中的有效子帧和无效子帧。
如图10所示,本申请实施例还提供一种通信装置1000。该通信装置1000包括处理器1010,存储器1020与收发器1030。该存储器1020用于存储指令,该处理器1010与收发器1030用于执行该存储器1020存储的指令。通信装置1000可以是终端设备或其中部件,如芯片或芯片组。
应理解,图8所示的通信装置800或图10所示的通信装置1000可用于执行上述方法实施例中相关的操作或流程,并且通信装置800或通信装置1000中的各个单元的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
如图11所示,本申请实施例还提供一种通信装置1100。该通信装置1100包括处理器1110,存储器1120与收发器1130。该存储器1120用于存储指令,该处理器1110与收发器1130用于执行该存储器1120存储的指令。通信装置1100可以是终端设备或其中部件,如芯片或芯片组。
应理解,图9所示的通信装置900或图11所示的通信装置1100可用于执行上述方法实施例中相关的操作或流程,并且通信装置900或通信装置1100中的各个单元的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例提供的另一种通信装置的示意性框图。该通信装置可以为网络设备,也可以为网络设备内的芯片或其他部件。该通信装置包括确定单元1210和发送单元1220。
确定单元1210,用于确定锚点载波上的有效子帧和无效子帧。
该确定单元1210还用于:根据锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧。
在本申请实施例中,也可以将非锚点载波上的至少一个有效子帧称为非锚点载波上的有效子帧集合。该非锚点载波是指传输其他SIB的载波。网络设备可以根据锚点载波上的有效子帧配置,确定非锚点载波中哪些子帧是有效子帧,哪些子帧是无效子帧。
发送单元1220,用于在非锚点载波的至少一个有效子帧上发送其他系统信息块SIB。
在本申请实施例中,网络设备在非锚点载波的至少一个有效子帧上发送其他SIB,是指网络设备在非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧上发送其他SIB。
网络设备能够在非锚点载波上的至少一个有效子帧上发送其他SIB,从而能够保证与终端设备进行正常通信。此外,网络设备在确定非锚点载波上的至少一个有效子帧时,无需引人入新的信令,从而能够节省信令开销。
可选地,网络设备可以根据锚点载波上的有效子帧配置,以及锚点载波上传输第一信号的子帧,确定锚点载波上的有效子帧和无效子帧。该第一信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
本申请实施例对网络设备确定非锚点载波上的至少一个有效子帧的方式不做具体限定。作为一个示例,网络设备可直接将非锚点载波上的与锚点载波上的有效子帧对应的子帧确定为非锚点载波上的至少一个有效子帧。作为另一个示例,当SIB1在锚点载波上传输时,网络设备可以将非锚点载波上的与锚点载波上的有效子帧对应的子帧,以及锚点载波上传输目标信号的子帧对应的子帧确定为非锚点载波上的至少一个有效子帧。该目标信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
可选地,作为一个实施例,如果网络设备确定SIB1在非锚点载波上传输,且传输SIB1的非锚点载波与传输其他SIB的非锚点载波是同一个非锚点载波时,则网络设备可以将非锚点载波上与锚点载波上的有效子帧对应的子帧确定为非锚点载波上的至少一个有效子帧,并将该非锚点载波上传输SIB1的子帧确定为无效子帧。
进一步地,网络设备也可以将非锚点载波上与锚点载波上传输PSS、SSS、PBCH的子帧对应的子帧确定为非锚点载波上的有效子帧。
需要说明的是,在NB-IoT场景下,PSS是指NPSS,SSS是指NSSS,PBCH是指NPBCH,SIB1是指SIB1-NB。
图13是本申请实施例提供的另一种通信装置的示意性框图。该通信装置可以为网络设备,也可以为网络设备内的芯片或其他部件。该通信装置包括发送单元1310和确定单元1320。
发送单元1310,用于发送系统信息块SIB1,该SIB1包括第一信息,该第一信息用于指示非锚点载波上的有效子帧配置。
该第一信息可以为一串字段或字符。该第一信息可以用比特位来表示。例如,该第一信息所占用的比特为M个比特,M为正整数。该M个比特可以为10比特,也可以为40比特或80比特,本申请实施例对此不做具体限定。具体地,在带内部署模式下,可以采用10bit或40bit来表示预设信息。在独立部署或保护带部署模式下,可以采用40bit来表示第一信息。
确定单元1320,用于根据非锚点载波上的有效子帧配置,确定非锚点载波上的至少一个有效子帧。
在本申请实施例中,也可以将非锚点载波上的至少一个有效子帧称为非锚点载波上的有效子帧集合。该非锚点载波是指传输其他SIB的载波。网络设备可以根据非锚点载波上的有效子帧配置,确定非锚点载波中哪些子帧是有效子帧,哪些子帧是无效子帧。
该发送单元1310还用于:在非锚点载波的至少一个有效子帧上发送其他系统信息块SIB。
在本申请实施例中,网络设备在非锚点载波的至少一个有效子帧上发送其他SIB,是指网络设备在非锚点载波的至少一个有效下行子帧,或至少一个有效下行子帧和有效特殊子帧上发送其他SIB。
网络设备能够在非锚点载波上的至少一个有效子帧上发送其他SIB,从而能够保证与终端设备进行正常通信。
可选地,作为一个实施例,该第一信息可以同时用于指示锚点载波中的有效子帧配置。也就是说,本申请实施例可以复用第一信息,将第一信息同时用于指示锚点载波和非锚点载波的有效子帧配置,这样可以减小信令开销。
可选地,作为一个实施例,SIB1中还包括第二信息,该第二信息用于指示锚点载波的有效子帧配置。也就是说,第一信息是SIB1中新增加的一个信息,该第一信息专门用于指示非锚点载波上的有效子帧配置。这种指示方式能够准确地指示非锚点载波中的有效子帧和无效子帧,从而能够避免资源的浪费。
此外,本申请实施例还提供一种通信装置,网络设备发送SIB1,SIB1中包括第三信息和第四信息,该第三信息用于指示锚点载波上的有效子帧配置,该第四信息用于指示非锚点载波上与锚点载波上的无效子帧对应的子帧的有效子帧配置。网络设备根据锚点载波上的有效子帧配置,以及非锚点上与锚点载波上的无效子帧对应的子帧的有效子帧配置,确定非锚点载波上的至少一个有效子帧,并在非锚点载波的至少一个有效子帧上接收其他SIB。
该第四信息可以为一串字段或字符。该第四信息可以用比特位来表示。当某个比特位取1时,表示该比特位对应的子帧为有效子帧;当某个比特位取0时,表示该比特位对应的子帧为无效子帧。
根据本申请实施例提供的技术方案,只需要较小的信息去指示非锚点载波中的与锚点载波中的无效子帧对应的子帧到底是有效子帧还是无效子帧,因此能够以较小的信令开销准确地确定非锚点载波中的有效子帧和无效子帧。
如图14所示,本申请实施例还提供一种通信装置1400。该通信装置1400包括处理 器1410,存储器1420与收发器1430。该存储器1420用于存储指令,该处理器1410与收发器1430用于执行该存储器1420存储的指令。通信装置1400可以是网络设备或其中部件,如芯片或芯片组。
应理解,图12所示的通信装置1200或图14所示的通信装置1400可用于执行上述方法实施例中相关的操作或流程,并且通信装置1200或通信装置1400中的各个单元的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
如图15所示,本申请实施例还提供一种通信装置1500。该通信装置1500包括处理器1510,存储器1520与收发器1530。该存储器1520用于存储指令,该处理器1510与收发器1530用于执行该存储器1520存储的指令。通信装置1500可以是网络设备或其中部件,如芯片或芯片组。
应理解,图13所示的通信装置1300或图15所示的通信装置1500可用于执行上述方法实施例中相关的操作或流程,并且通信装置1300或通信装置1500中的各个单元的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
图10、图11、图14和图15中任一个中的收发器用于具体的信号收发。处理器则用于控制收发器做信号收发,并执行其他的处理或确定功能。因此收发器相当于空口信号收发的执行者,而处理器则是该空口信号收发的控制者,用于调度或控制收发器实现收发。处理器在存储器中的指令的驱动下控制收发器工作,实现各类信号收发,共同实现以上任一方法实施例的流程。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (76)

  1. 一种通信方法,其特征在于,包括:
    确定锚点载波上的有效子帧和无效子帧;
    根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧;
    在所述非锚点载波的至少一个有效子帧上接收其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  2. 根据权利要求1所述的通信方法,其特征在于,所述根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧,包括:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧。
  3. 根据权利要求2所述的通信方法,其特征在于,所述将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,包括:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧,以及所述非锚点载波上与所述锚点载波上传输目标信号的子帧所对应的子帧确定为所述非锚点载波上的至少一个有效子帧,所述目标信号包括以下信号中的至少一个:主同步信号PSS、辅同步信号SSS、物理广播信道PBCH。
  4. 根据权利要求3所述的通信方法,其特征在于,所述目标信号还包括所述SIB1,所述SIB1在所述锚点载波上传输。
  5. 根据权利要求4所述的通信方法,其特征在于,所述传输目标信号中的PSS的子帧为子帧5,所述传输目标信号中的SSS的子帧为子帧0,所述传输目标信号中的PBCH的子帧为子帧9,所述传输目标信号中的SIB1的子帧为子帧0或者子帧4。
  6. 根据权利要求2或3所述的通信方法,其特征在于,所述SIB1在所述非锚点载波上传输,所述将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,包括:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,并将所述非锚点载波上传输SIB1的子帧确定为所述非锚点载波上的无效子帧。
  7. 根据权利要求1-6中任一项所述的通信方法,其特征在于,所述确定锚点载波上的有效子帧和无效子帧,包括:
    接收所述SIB1,所述SIB1包括第一信息,所述第一信息用于指示所述锚点载波上的有效子帧配置;
    根据所述锚点载波上的有效子帧配置,以及所述锚点载波上传输第一信号的子帧,确定所述锚点载波上的有效子帧和无效子帧,所述第一信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
  8. 一种通信方法,其特征在于,包括:
    接收系统信息块SIB1,所述SIB1包括第一信息,所述第一信息用于指示非锚点载波上的有效子帧配置;
    根据所述非锚点载波上的有效子帧配置,确定所述非锚点载波上的至少一个有效子帧;
    在所述非锚点载波的至少一个有效子帧上接收其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  9. 根据权利要求8所述的通信方法,其特征在于,所述第一信息还用于指示锚点载波上的有效子帧配置。
  10. 根据权利要求8所述的通信方法,其特征在于,所述SIB1还包括第二信息,所述第二信息用于指示所述锚点载波上的有效子帧配置。
  11. 根据权利要求8-10中任一项所述的通信方法,其特征在于,所述第一信息所占用的比特为M个比特,所述M个比特中的每个比特用于指示所述每个比特对应的子帧在所述非锚点载波上是有效子帧或者无效子帧,其中,M为正整数。
  12. 根据权利要求11所述的通信方法,所述M个比特为10比特或40比特。
  13. 一种通信方法,其特征在于,包括:
    确定锚点载波上的有效子帧和无效子帧;
    根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧;
    在所述非锚点载波的至少一个有效子帧上发送其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  14. 根据权利要求13所述的通信方法,其特征在于,所述根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧,包括:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧。
  15. 根据权利要求14所述的通信方法,其特征在于,所述将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,包括:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧,以及所述非锚点载波上的与所述锚点载波上传输目标信号的子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,所述目标信号包括以下信号中的至少一个:主同步信号PSS、辅同步信号SSS、物理广播信道PBCH。
  16. 根据权利要求15所述的通信方法,其特征在于,所述目标信号还包括所述SIB1,所述SIB1在所述锚点载波上传输。
  17. 根据权利要求16所述的通信方法,其特征在于,所述传输目标信号中的PSS的子帧为子帧5,所述传输目标信号中的SSS的子帧为子帧0,所述传输目标信号中的PBCH的子帧为子帧9,所述传输目标信号中的SIB1的子帧为子帧0或者子帧4。
  18. 根据权利要求14或15所述的通信方法,其特征在于,所述SIB1在所述非锚点载波上传输,所述将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,包括:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,并将所述非锚点载波上传输SIB1的子帧确定为所述非锚点载波上的无效子帧。
  19. 根据权利要求13-18中任一项所述的通信方法,其特征在于,所述确定锚点载波上的有效子帧和无效子帧,包括:
    发送所述SIB1,所述SIB1包括第一信息,所述第一信息用于指示所述锚点载波上的有效子帧配置;
    根据所述锚点载波上的有效子帧配置,以及所述锚点载波上传输第一信号的子帧,确定所述锚点载波上的有效子帧和无效子帧,所述第一信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
  20. 一种通信方法,其特征在于,包括:
    发送系统信息块SIB1,所述SIB1包括第一信息,所述第一信息用于指示非锚点载波上的有效子帧配置;
    根据所述非锚点载波上的有效子帧配置,确定所述非锚点载波上的至少一个有效子帧;
    在所述非锚点载波的至少一个有效子帧上发送其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  21. 根据权利要求20所述的通信方法,其特征在于,所述第一信息还用于指示锚点载波上的有效子帧配置。
  22. 根据权利要求20所述的通信方法,其特征在于,所述SIB1还包括第二信息,所述第二信息用于指示所述锚点载波上的有效子帧配置。
  23. 根据权利要求20-22中任一项所述的通信方法,其特征在于,所述第一信息所占用的比特位为M个比特,所述M个比特中的每个比特用于指示所述每个比特对应的子帧在所述非锚点载波上是有效子帧或者无效子帧,其中,M为正整数。
  24. 根据权利要求23所述的通信方法,所述M个比特为10比特或40比特。
  25. 一种通信装置,其特征在于,包括:
    确定单元,用于确定锚点载波上的有效子帧和无效子帧;
    所述确定单元还用于:根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧;
    接收单元:用于在所述非锚点载波的至少一个有效子帧上接收其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  26. 根据权利要求25所述的通信装置,其特征在于,所述确定单元具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧。
  27. 根据权利要求26所述的通信装置,其特征在于,所述确定单元具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧,以及所述非锚点载波上与所述锚点载波上传输目标信号的子帧所对应的子帧确定为所述非锚点载波上的至少一个有效子帧,所述目标信号包括以下信号中的至少一个:主同步信号PSS、辅同步信号SSS、物理广播信道PBCH。
  28. 根据权利要求27所述的通信装置,其特征在于,所述目标信号还包括所述SIB1,所述SIB1在所述锚点载波上传输。
  29. 根据权利要求28所述的通信装置,其特征在于,所述传输目标信号中的PSS的子帧为子帧5,所述传输目标信号中的SSS的子帧为子帧0,所述传输目标信号中的PBCH的子帧为子帧9,所述传输目标信号中的SIB1的子帧为子帧0或者子帧4。
  30. 根据权利要求26或27所述的通信装置,其特征在于,所述SIB1在所述非锚点载波上传输,所述确定单元具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,并将所述非锚点载波上传输SIB1的子帧确定为所述非锚点载波上的无效子帧。
  31. 根据权利要求25-30中任一项所述通信装置,其特征在于,所述接收单元还用于:
    接收所述SIB1,所述SIB1包括第一信息,所述第一信息用于指示所述锚点载波上的有效子帧配置;
    所述确定单元具体用于:
    根据所述锚点载波上的有效子帧配置,以及所述锚点载波上传输第一信号的子帧,确定所述锚点载波上的有效子帧和无效子帧,所述第一信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
  32. 一种通信装置,其特征在于,包括:
    接收单元,用于接收系统信息块SIB1,所述SIB1包括第一信息,所述第一信息用于指示非锚点载波上的有效子帧配置;
    确定单元,用于根据所述非锚点载波上的有效子帧配置,确定所述非锚点载波上的至少一个有效子帧;
    所述接收单元还用于:在所述非锚点载波的至少一个有效子帧上接收其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  33. 根据权利要求32所述的通信装置,其特征在于,所述第一信息还用于指示锚点载波上的有效子帧配置。
  34. 根据权利要求32所述的通信装置,其特征在于,所述SIB1还包括第二信息,所述第二信息用于指示所述锚点载波上的有效子帧配置。
  35. 根据权利要求32-34中任一项所述的通信装置,其特征在于,所述第一信息所占用的比特为M个比特,所述M个比特中的每个比特用于指示所述每个比特对应的子帧在所述非锚点载波上是有效子帧或者无效子帧,其中,M为正整数。
  36. 根据权利要求35所述的通信装置,其特征在于,所述M个比特为10比特或40比特。
  37. 一种通信装置,其特征在于,包括:
    确定单元,用于确定锚点载波上的有效子帧和无效子帧;
    所述确定单元还用于:根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧;
    发送单元:在所述非锚点载波的至少一个有效子帧上发送其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  38. 根据权利要求37所述的通信装置,其特征在于,所述确定单元具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧。
  39. 根据权利要求38所述的通信装置,其特征在于,所述确定单元具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧,以及所述非锚点载波上的与所述锚点载波上传输目标信号的子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,所述目标信号包括以下信号中的至少一个:主同步信号PSS、辅同步信号SSS、物理广播信道PBCH。
  40. 根据权利要求39所述的通信装置,其特征在于,所述目标信号还包括所述SIB1,所述SIB1在所述锚点载波上传输。
  41. 根据权利要求40所述的通信装置,其特征在于,所述传输目标信号中的PSS的子帧为子帧5,所述传输目标信号中的SSS的子帧为子帧0,所述传输目标信号中的PBCH的子帧为子帧9,所述传输目标信号中的SIB1的子帧为子帧0或者子帧4。
  42. 根据权利要求38或39所述的通信装置,其特征在于,所述SIB1在所述非锚点载波上传输,所述确定单元具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,并将所述非锚点载波上传输SIB1的子帧确定为所述非锚点载波上的无效子帧。
  43. 根据权利要求37-42中任一项所述的通信装置,其特征在于,所述发送单元还用于:
    发送所述SIB1,所述SIB1包括第一信息,所述第一信息用于指示所述锚点载波上的有效子帧配置;
    所述确定单元具体用于:
    根据所述锚点载波上的有效子帧配置,以及所述锚点载波上传输第一信号的子帧,确定所述锚点载波上的有效子帧和无效子帧,所述第一信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
  44. 一种通信装置,其特征在于,包括:
    发送单元,用于发送系统信息块SIB1,所述SIB1包括第一信息,所述第一信息用于指示非锚点载波上的有效子帧配置;
    确定单元:用于根据所述非锚点载波上的有效子帧配置,确定所述非锚点载波上的至少一个有效子帧;
    所述发送单元还用于:在所述非锚点载波的至少一个有效子帧上发送其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  45. 根据权利要求44所述的通信装置,其特征在于,所述第一信息还用于指示锚点载波上的有效子帧配置。
  46. 根据权利要求44所述的通信装置,其特征在于,所述SIB1还包括第二信息,所述第二信息用于指示所述锚点载波上的有效子帧配置。
  47. 根据权利要求44-46中任一项所述的通信装置,其特征在于,所述第一信息所占用的比特位为M个比特,所述M个比特中的每个比特用于指示所述每个比特对应的子帧 在所述非锚点载波上是有效子帧或者无效子帧,其中,M为正整数。
  48. 根据权利要求47所述的通信装置,其特征在于,所述M个比特为10比特或40比特。
  49. 一种通信装置,其特征在于,包括收发器和处理器;
    所述处理器,用于:
    确定锚点载波上的有效子帧和无效子帧;
    根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧;
    所述收发器,用于在所述非锚点载波的至少一个有效子帧上接收其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  50. 根据权利要求49所述的通信装置,其特征在于,所述处理器具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧。
  51. 根据权利要求50所述的通信装置,其特征在于,所述处理器具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧,以及所述非锚点载波上与所述锚点载波上传输目标信号的子帧所对应的子帧确定为所述非锚点载波上的至少一个有效子帧,所述目标信号包括以下信号中的至少一个:主同步信号PSS、辅同步信号SSS、物理广播信道PBCH。
  52. 根据权利要求51所述的通信装置,其特征在于,所述目标信号还包括所述SIB1,所述SIB1在所述锚点载波上传输。
  53. 根据权利要求52所述的通信装置,其特征在于,所述传输目标信号中的PSS的子帧为子帧5,所述传输目标信号中的SSS的子帧为子帧0,所述传输目标信号中的PBCH的子帧为子帧9,所述传输目标信号中的SIB1的子帧为子帧0或者子帧4。
  54. 根据权利要求50或51所述的通信装置,其特征在于,所述SIB1在所述非锚点载波上传输,所述处理器具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,并将所述非锚点载波上传输SIB1的子帧确定为所述非锚点载波上的无效子帧。
  55. 根据权利要求49-54中任一项所述通信装置,其特征在于,所述收发器还用于:
    接收所述SIB1,所述SIB1包括第一信息,所述第一信息用于指示所述锚点载波上的有效子帧配置;
    所述处理器具体用于:
    根据所述锚点载波上的有效子帧配置,以及所述锚点载波上传输第一信号的子帧,确定所述锚点载波上的有效子帧和无效子帧,所述第一信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
  56. 一种通信装置,其特征在于,包括收发器和处理器;
    所述收发器,用于接收系统信息块SIB1,所述SIB1包括第一信息,所述第一信息用于指示非锚点载波上的有效子帧配置;
    所述处理器用于:根据所述非锚点载波上的有效子帧配置,确定所述非锚点载波上的 至少一个有效子帧;
    所述收发器还用于:在所述非锚点载波的至少一个有效子帧上接收其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  57. 根据权利要求56所述的通信装置,其特征在于,所述第一信息还用于指示锚点载波上的有效子帧配置。
  58. 根据权利要求56所述的通信装置,其特征在于,所述SIB1还包括第二信息,所述第二信息用于指示所述锚点载波上的有效子帧配置。
  59. 根据权利要求56-58中任一项所述的通信装置,其特征在于,所述第一信息所占用的比特为M个比特,所述M个比特中的每个比特用于指示所述每个比特对应的子帧在所述非锚点载波上是有效子帧或者无效子帧,其中,M为正整数。
  60. 根据权利要求59所述的通信装置,其特征在于,所述M个比特为10比特或40比特。
  61. 一种通信装置,其特征在于,包括收发器和处理器;
    所述处理器,用于确定锚点载波上的有效子帧和无效子帧;
    所述处理器还用于:根据所述锚点载波上的有效子帧和无效子帧,确定非锚点载波上的至少一个有效子帧;
    所述收发器:用于在所述非锚点载波的至少一个有效子帧上发送其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  62. 根据权利要求61所述的通信装置,其特征在于,所述处理器具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧。
  63. 根据权利要求62所述的通信装置,其特征在于,所述处理器具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧,以及所述非锚点载波上的与所述锚点载波上传输目标信号的子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,所述目标信号包括以下信号中的至少一个:主同步信号PSS、辅同步信号SSS、物理广播信道PBCH。
  64. 根据权利要求63所述的通信装置,其特征在于,所述目标信号还包括所述SIB1,所述SIB1在所述锚点载波上传输。
  65. 根据权利要求64所述的通信装置,其特征在于,所述传输目标信号中的PSS的子帧为子帧5,所述传输目标信号中的SSS的子帧为子帧0,所述传输目标信号中的PBCH的子帧为子帧9,所述传输目标信号中的SIB1的子帧为子帧0或者子帧4。
  66. 根据权利要求62或63所述的通信装置,其特征在于,所述SIB1在所述非锚点载波上传输,所述处理器具体用于:
    将所述非锚点载波上的与所述锚点载波上的有效子帧对应的子帧确定为所述非锚点载波上的至少一个有效子帧,并将所述非锚点载波上传输SIB1的子帧确定为所述非锚点载波上的无效子帧。
  67. 根据权利要求61-66中任一项所述的通信装置,其特征在于,所述收发器还用于:
    发送所述SIB1,所述SIB1包括第一信息,所述第一信息用于指示所述锚点载波上的有效子帧配置;
    所述处理器具体用于:
    根据所述锚点载波上的有效子帧配置,以及所述锚点载波上传输第一信号的子帧,确定所述锚点载波上的有效子帧和无效子帧,所述第一信号包括以下信号中的至少一个:PSS、SSS、PBCH、SIB1。
  68. 一种通信装置,其特征在于,包括收发器和处理器;
    所述收发器用于:发送系统信息块SIB1,所述SIB1包括第一信息,所述第一信息用于指示非锚点载波上的有效子帧配置;
    所述处理器用于:根据所述非锚点载波上的有效子帧配置,确定所述非锚点载波上的至少一个有效子帧;
    所述收发器还用于:在所述非锚点载波的至少一个有效子帧上发送其他系统信息块SIB,所述其他SIB为除SIB1之外的系统信息块。
  69. 根据权利要求68所述的通信装置,其特征在于,所述第一信息还用于指示锚点载波上的有效子帧配置。
  70. 根据权利要求68所述的通信装置,其特征在于,所述SIB1还包括第二信息,所述第二信息用于指示所述锚点载波上的有效子帧配置。
  71. 根据权利要求68-70中任一项所述的通信装置,其特征在于,所述第一信息所占用的比特位为M个比特,所述M个比特中的每个比特用于指示所述每个比特对应的子帧在所述非锚点载波上是有效子帧或者无效子帧,其中,M为正整数。
  72. 根据权利要求71所述的通信装置,其特征在于,所述M个比特为10比特或40比特。
  73. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1-7中任一项所述的方法。
  74. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求8-12中任一项所述的方法。
  75. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求13-19中任一项所述的方法。
  76. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求20-24中任一项所述的方法。
PCT/CN2018/081997 2018-04-04 2018-04-04 通信方法、装置及计算机可读存储介质 WO2019191962A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880092087.6A CN112042253B (zh) 2018-04-04 2018-04-04 通信方法、装置及计算机可读存储介质
PCT/CN2018/081997 WO2019191962A1 (zh) 2018-04-04 2018-04-04 通信方法、装置及计算机可读存储介质
EP18913511.4A EP3780835A4 (en) 2018-04-04 2018-04-04 COMMUNICATION PROCESS AND DEVICE AND COMPUTER-READABLE STORAGE MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081997 WO2019191962A1 (zh) 2018-04-04 2018-04-04 通信方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2019191962A1 true WO2019191962A1 (zh) 2019-10-10

Family

ID=68099994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081997 WO2019191962A1 (zh) 2018-04-04 2018-04-04 通信方法、装置及计算机可读存储介质

Country Status (3)

Country Link
EP (1) EP3780835A4 (zh)
CN (1) CN112042253B (zh)
WO (1) WO2019191962A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11425724B2 (en) * 2019-07-12 2022-08-23 Qualcomm Incorporated Carrier aggregation for narrowband internet of things user equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017192624A1 (en) * 2016-05-02 2017-11-09 Intel IP Corporation Methods for multi-carrier operation with multiple anchor carriers in narrow-band internet-of-things
CN107371240A (zh) * 2016-05-11 2017-11-21 夏普株式会社 基站、用户设备和相关方法
WO2018026199A1 (en) * 2016-08-02 2018-02-08 Samsung Electronics Co., Ltd. Method and apparatus for communicating in a wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017192624A1 (en) * 2016-05-02 2017-11-09 Intel IP Corporation Methods for multi-carrier operation with multiple anchor carriers in narrow-band internet-of-things
CN107371240A (zh) * 2016-05-11 2017-11-21 夏普株式会社 基站、用户设备和相关方法
WO2018026199A1 (en) * 2016-08-02 2018-02-08 Samsung Electronics Co., Ltd. Method and apparatus for communicating in a wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780835A4 *

Also Published As

Publication number Publication date
CN112042253B (zh) 2022-10-11
EP3780835A1 (en) 2021-02-17
EP3780835A4 (en) 2021-04-07
CN112042253A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
CN108347778B (zh) 通信方法及装置
EP3592065B1 (en) Method for transmitting data, and terminal device
EP3637818B1 (en) Signal sending and receiving method and device
US11765625B2 (en) Information transmission method, network apparatus, and terminal apparatus
CN114631347A (zh) 一种小区配置方法及装置、终端设备、网络设备
US20210144692A1 (en) Method and apparatus for wireless communication
EP3595348A1 (en) Method for determining cooperative cell, and network device
CN110891316A (zh) 一种时域资源配置方法及接入网设备
US11469852B2 (en) Signal sending and receiving method, and apparatus
CN113661751A (zh) 数据传输方法及相关设备
WO2019191962A1 (zh) 通信方法、装置及计算机可读存储介质
US11212795B2 (en) Method and apparatus for indicating and determining slot structure
CN115023914A (zh) 信息处理方法及设备
CN110366263B (zh) 通信方法、装置、设备及存储介质
US20220104247A1 (en) Information transmission method, apparatus, device and storage medium
CN115668838A (zh) 无线通信方法、终端设备和网络设备
EP3876459A1 (en) Method and device for transmitting downlink control information
WO2019157734A1 (zh) 确定最大发送功率的方法、装置、系统及存储介质
CN112332969B (zh) 参考信号的传输方法、终端及网络设备
EP4156585A1 (en) Method for determining antenna panel for transmission, and terminal device
CN118044142A (zh) 无线通信的方法、终端设备和网络设备
CN114826513A (zh) 一种终端识别方法及设备
CN117796094A (zh) 通信方法及通信装置
CN117501636A (zh) 用于物理上行链路控制信道(pucch)传输的方法及设备
CN116803166A (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018913511

Country of ref document: EP

Effective date: 20201104