WO2019190217A1 - Cathode active material precursor and lithium secondary battery utilizing same - Google Patents

Cathode active material precursor and lithium secondary battery utilizing same Download PDF

Info

Publication number
WO2019190217A1
WO2019190217A1 PCT/KR2019/003624 KR2019003624W WO2019190217A1 WO 2019190217 A1 WO2019190217 A1 WO 2019190217A1 KR 2019003624 W KR2019003624 W KR 2019003624W WO 2019190217 A1 WO2019190217 A1 WO 2019190217A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
material precursor
electrode active
secondary battery
Prior art date
Application number
PCT/KR2019/003624
Other languages
French (fr)
Korean (ko)
Inventor
노미정
김직수
김상복
하동욱
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190033031A external-priority patent/KR102495992B1/en
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to CN201980023350.0A priority Critical patent/CN112219297B/en
Priority to US17/041,959 priority patent/US20210098787A1/en
Publication of WO2019190217A1 publication Critical patent/WO2019190217A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material precursor and a lithium secondary battery using the same. More specifically, the present invention relates to a positive electrode active material precursor including a plurality of metal elements and a lithium secondary battery using the same.
  • Secondary batteries are batteries that can be repeatedly charged and discharged and have been widely applied to portable electronic communication devices such as camcorders, mobile phones, notebook PCs, etc. according to the development of the information communication and display industries.
  • Examples of secondary batteries include lithium secondary batteries, nickel-cadmium batteries, nickel-hydrogen batteries, and the like.
  • lithium secondary batteries have a high operating voltage and high energy density per unit weight, and are advantageous for charging speed and light weight. It has been actively developed and applied in that respect.
  • the lithium secondary battery may include an electrode assembly including a positive electrode, a negative electrode, and a separator (separator), and an electrolyte impregnating the electrode assembly.
  • the lithium secondary battery may further include, for example, a pouch type exterior material containing the electrode assembly and the electrolyte.
  • Lithium metal oxide may be used as an active material for a positive electrode of a lithium secondary battery.
  • the lithium metal oxide include nickel-based lithium metal oxides.
  • Nickel-containing precursor compounds are used to prepare the nickel-based lithium metal oxides.
  • the content of nickel has been increased to secure sufficient capacity and output characteristics.
  • the proportion of nickel in the nickel-containing precursor increases. do.
  • the reliability of the positive electrode active material may decrease due to mismatches and side reactions with lithium.
  • Korean Patent Publication No. 10-0821523 discloses a method of manufacturing a positive electrode active material using a lithium composite metal oxide, but does not consider the above-described nickel-containing precursor.
  • One object of the present invention is to provide a positive electrode active material precursor that can provide improved output and stability.
  • One object of the present invention is to provide a positive electrode active material and a lithium secondary battery prepared from a positive electrode active material precursor capable of providing improved output and stability.
  • the positive electrode active material precursor according to the exemplary embodiments includes nickel (Ni) and cobalt (Co), and contains an excess of nickel, and the area (A 001 ) of the (001) plane peak by X-ray diffraction analysis.
  • the ratio of the area (A 101 ) of the (101) plane peak to (A 101 / A 001 ) may be greater than or equal to 1, and the intensity of the (101) plane peak with respect to the intensity (I 001 ) of the ( 001 ) plane peak (I 101).
  • the ratio I 101 / I 001 may be one or more.
  • a 101 / A 001 can range from 1 to 2.
  • I 101 / I 001 may range from 1 to 2.
  • the cathode active material precursor may be represented by Formula 1 below.
  • M is Mg, Sr, Ba, B, Al, Si, Mn, Ti, Zr or W There may be at least one.
  • the content ratio of Ni in Ni, Co, and Mn may be 0.75 to 0.95.
  • the content of Co may be higher than the content of Mn.
  • a cathode active material formed from the cathode active material precursor is provided.
  • the cathode active material may be represented by Formula 2 below.
  • the long axis length of the primary particles of the positive electrode active material may be 1.5 to 7 times the short axis length.
  • a lithium secondary battery including a positive electrode including a positive electrode active material formed from the positive electrode active material precursor, and a separator disposed between the positive electrode and the negative electrode is provided.
  • the positive electrode active material precursor according to embodiments of the present invention may include, for example, an excessive amount of nickel to provide high output and high capacity.
  • the positive electrode active material precursor has a predetermined A 101 / A 001 range through XRD analysis, and may have an improved crystallinity.
  • the positive electrode active material and the lithium secondary battery may have a high output, a high capacity, and an improved long life and stability through the positive electrode active material precursor.
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery according to example embodiments.
  • 2A and 2B are XRD and capacity retention analysis graphs of the positive electrode active material precursor and the secondary battery according to Example 1 and Comparative Example 1, respectively.
  • 3A and 3B are XRD and capacity retention analysis graphs of the positive electrode active material precursor and the secondary battery according to Example 2 and Comparative Example 2, respectively.
  • 4A and 4B are XRD and capacity retention analysis graphs of the positive electrode active material precursor and the secondary battery according to Example 3 and Comparative Example 3, respectively.
  • 5A and 5B are XRD and capacity retention analysis graphs of the positive electrode active material precursor and the secondary battery according to Example 4 and Comparative Example 4, respectively.
  • 6A and 6B are XRD and capacity retention analysis graphs of the positive electrode active material precursor and the secondary battery according to Example 5 and Example 6, respectively.
  • Embodiments of the present invention are, for example, nickel-cobalt-based containing nickel (Ni) and cobalt (Co) -based, in one embodiment nickel-cobalt-manganese (NCM) -based positive electrode active material can be prepared as a precursor A positive electrode active material precursor having a predetermined A 101 / A 001 range by X-ray diffraction analysis is provided.
  • NCM nickel-cobalt-manganese
  • embodiments of the present invention provides a lithium secondary battery including a cathode active material prepared through the cathode active material precursor, and a cathode manufactured from the cathode active material.
  • the cathode active material precursor according to exemplary embodiments of the present invention includes a nickel-cobalt-based compound, preferably a nickel-cobalt-manganese (NCM) -based compound, and may include, for example, an NCM-based hydroxide.
  • NCM nickel-cobalt-manganese
  • the cathode active material precursor may be represented by the following Chemical Formula 1.
  • M represents a dopant or a transition metal.
  • M may include, for example, Mg, Sr, Ba, B, Al, Si, Mn, Ti, Zr or W. These may be included alone or in combination of two or more.
  • the positive electrode active material precursor includes an excess (for example, the highest amount) of Ni among the metal elements included, and the content or concentration of Ni may be about 0.6 or more. Accordingly, the output and capacity of a sufficient secondary battery can be secured through the use of excess Ni.
  • the content of Ni can be adjusted in the range of about 0.75 to 0.95.
  • Co may be included to improve life stability and capacity retention characteristics through Mn while maintaining electrical conductivity.
  • M may be included as a dopant to further enhance long-term stability and high temperature stability.
  • the content or concentration of Co may be greater than Mn. Accordingly, the conductivity can be increased by lowering the resistance through the cathode active material. Relatively decreasing the long-term capacity stability due to the decrease in the Mn content or concentration can be compensated for or improved through the adjustment of A 101 / A 001 which will be described later.
  • the cathode active material precursor may have about 1 or more A 101 / A 001 .
  • a 101 represents the peak area of the (101) plane by X-ray diffraction (XRD) analysis of the positive electrode active material precursor
  • a 001 refers to the (001) plane of the (001) plane by XRD analysis. The peak area is shown. Accordingly, A 101 / A 001 represents the area ratio of the XRD peak of the (101) plane to the (001) plane.
  • the XRD analysis is performed using a diffraction angle of 15 ° to 90 ° using Cu K ⁇ rays as a light source for a powder sample dried at 110 ° C to 250 ° C after synthesizing the positive electrode active material precursor. 2 ⁇ ) at a scan rate of 0.02 o / step.
  • the positive electrode active material generated through the positive electrode active material precursor having the range XRD analysis result has excellent crystallinity, and thus it is possible to stably maintain excellent output and capacity characteristics for a long time even during repeated charging and discharging operations.
  • the Ni content when the Ni content is increased, cation disturbance due to interchange of Ni and lithium (Li) may occur, and Ni ions may occupy Li ion sites. Accordingly, sufficient crystallinity of the cathode active material may not be secured from the cathode active material precursor.
  • the firing temperature is increased to increase the crystallinity, a desired crystal structure may not be formed due to a topotactic transition in which lithium ions in the cathode active material precursor are substituted.
  • a 101 / A 001 of the positive electrode active material precursor may be adjusted to about 1 or more to obtain a positive electrode active material that produces excellent crystallinity while using high content Ni without excessively increasing the firing temperature. . Therefore, a secondary battery having improved high output, high capacity, and long lifespan can be obtained.
  • a 101 / A 001 of the positive electrode active material precursor may be adjusted by changing the amount of O 2 , reaction time, reaction temperature, etc. in the coprecipitation reaction for forming the precursor.
  • a 101 / A 001 can be adjusted in the range of about 1 to 2, preferably in the range of about 1 to about 1.6.
  • the cathode active material precursor may have about 1 or more I 101 / I 001 .
  • I 101 refers to the peak intensity (or peak height) of the (101) plane by X-ray diffraction (XRD) analysis of the positive electrode active material precursor, and "I 001 Indicates peak intensities of the (001) plane by XRD analysis. Accordingly, I 101 / I 001 represents the intensity ratio of the XRD peak of the (101) plane to the (001) plane.
  • XRD X-ray diffraction
  • both the above-described area ratio (A 101 / A 001 ) and strength ratio (I 101 / I 001 ) satisfy at least one, so that it is easier and more effective to implement the improved crystallinity and high content Ni structure. have.
  • I 101 / I 001 can be adjusted in the range of about 1 to 2, preferably in the range of about 1 to 1.6.
  • the positive electrode active material precursor described above may be prepared through coprecipitation of metal salts.
  • the metal salts may include nickel salts, manganese salts and cobalt salts.
  • nickel salts examples include nickel sulfate, nickel hydroxide, nickel nitrate, nickel acetate, hydrates thereof, and the like.
  • manganese salts examples include manganese sulfate, manganese acetate, hydrates thereof, and the like.
  • cobalt salts examples include cobalt sulfate, cobalt nitrate, cobalt carbonate, and hydrates thereof.
  • the metal salts may be mixed with a precipitant and / or a chelating agent in a ratio that satisfies the content or concentration ratio of each metal described with reference to Formula 1 to prepare an aqueous solution.
  • the aqueous solution may be co-precipitated in a reactor to prepare a cathode active material precursor.
  • the precipitant may include an alkaline compound such as sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ), and the like.
  • the chelating agent may include, for example, ammonia water (eg, NH 3 H 2 O), ammonium carbonate (eg, NH 3 HCO 3 ), and the like.
  • the temperature of the coprecipitation reaction can be controlled, for example, in the range of about 40 ° C to 60 ° C.
  • the reaction time can be adjusted in the range of about 24 to 72 hours.
  • Embodiments of the present invention provide a cathode active material formed from the cathode active material precursor described above.
  • the cathode active material may be represented by Formula 2 below.
  • a lithium precursor compound may be mixed with the cathode active material precursor and reacted through a coprecipitation method to prepare a cathode active material.
  • the lithium precursor compound may include, for example, lithium carbonate, lithium nitrate, lithium acetate, lithium oxide, lithium hydroxide, and the like. These may be used alone or in combination of two or more.
  • lithium impurities or unreacted precursors may be removed through a water washing process, and metal particles may be fixed or crystallinity may be increased through a heat treatment process.
  • the heat treatment temperature may range from about 600 °C to 1000 °C.
  • the primary particles of the cathode active material prepared from the cathode active material precursor may have rods, ellipses, or rods having different major and minor axes.
  • the length of the long axis of the primary particles may be about 1.5 to 7 times the length of the short axis.
  • Embodiments of the present invention provide a lithium secondary battery including a cathode active material prepared from the cathode active material precursor described above.
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery according to example embodiments.
  • a lithium secondary battery may include a positive electrode 130, a negative electrode 140, and a separator 150 interposed between the positive electrode and the negative electrode.
  • the positive electrode 130 may include the positive electrode active material layer 115 formed by applying the positive electrode active material to the positive electrode current collector 110.
  • the cathode active material may be manufactured using the cathode active material precursor according to the above-described exemplary embodiments.
  • the positive electrode active material precursor may be, for example, represented by Formula 1 and may have an A 101 / A 001 of about 1 or more.
  • the cathode active material represented by Chemical Formula 2 may be manufactured through the cathode active material precursor. Accordingly, a lithium secondary battery in which a high crystallinity of the positive electrode is increased and a high output and high capacity characteristics are stably maintained for a long time can be manufactured.
  • a slurry may be prepared by mixing and stirring the positive electrode active material in a solvent, a binder, a conductive material and / or a dispersant, and the like. After coating the slurry on the positive electrode current collector 110, the cathode 130 may be manufactured by compressing and drying the slurry.
  • the positive electrode current collector 110 may include, for example, stainless steel, nickel, aluminum, titanium, copper, or an alloy thereof, and may preferably include aluminum or an aluminum alloy.
  • the binder is, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethylmethacryl Organic binders such as polymethylmethacrylate, or aqueous binders such as styrene-butadiene rubber (SBR), and may be used together with a thickener such as carboxymethyl cellulose (CMC).
  • PVDF series binder can be used as a binder for positive electrode formation. In this case, the amount of the binder for forming the positive electrode active material layer may be reduced, thereby improving output and capacity of the secondary battery.
  • the conductive material may be included to promote electron transfer between active material particles.
  • the conductive material may be a carbon-based conductive material such as graphite, carbon black, graphene, carbon nanotubes, and / or perovskite materials such as tin, tin oxide, titanium oxide, LaSrCoO 3 , and LaSrMnO 3. It may include a metal-based conductive material including a.
  • the negative electrode 140 may include the negative electrode current collector 120 and the negative electrode active material layer 125 formed by coating the negative electrode active material on the negative electrode current collector 120.
  • the negative electrode active material may be used without particular limitation that is known in the art that can occlude and desorb lithium ions.
  • carbon-based materials such as crystalline carbon, amorphous carbon, a carbon composite, carbon fiber; Lithium alloys; Silicon or tin and the like can be used.
  • the amorphous carbon include hard carbon, coke, mesocarbon microbead (MCMB) fired at 1500 ° C. or lower, mesophase pitch-based carbon fiber (MPCF), and the like.
  • Examples of the crystalline carbon include graphite-based carbon such as natural graphite, graphitized coke, graphitized MCMB, graphitized MPCF, and the like.
  • the element included in the lithium alloy include aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium or indium.
  • the negative electrode current collector 120 may include, for example, gold, stainless steel, nickel, aluminum, titanium, copper, or an alloy thereof, and may preferably include copper or a copper alloy.
  • a slurry may be prepared by mixing and stirring the negative electrode active material in a solvent, a binder, a conductive material and / or a dispersant, and the like. After coating the slurry on the negative electrode current collector 120, the negative electrode 140 may be manufactured by compressing and drying the slurry.
  • the binder and the conductive material materials substantially the same as or similar to those described above may be used.
  • the binder for the formation of the negative electrode may include an aqueous binder such as styrene-butadiene rubber (SBR), for example, for compatibility with the carbon-based active material, and such as carboxymethyl cellulose (CMC). Can be used with thickeners.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • the separator 150 may be interposed between the anode 130 and the cathode 140.
  • the separator 150 may include a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, ethylene / methacrylate copolymer, and the like.
  • the separator may include a nonwoven fabric formed of high melting glass fibers, polyethylene terephthalate fibers, or the like.
  • an area eg, contact area of the separator 150
  • a volume of the cathode 140 may be larger than that of the anode 130. Accordingly, lithium ions generated from the anode 130 may be smoothly moved to the cathode 140 without being deposited in the middle. Therefore, the effect of simultaneous improvement of output and stability through the combination with the above-described positive electrode active material precursor or the positive electrode active material can be more easily realized.
  • the electrode cell 160 is defined by the anode 130, the cathode 140, and the separator 150, and the plurality of electrode cells 160 are stacked to, for example, jelly rolls ( An electrode assembly in the form of a jelly roll may be formed.
  • the electrode assembly may be formed by winding, laminating, or folding the separator.
  • the electrode assembly may be accommodated together with an electrolyte in the exterior case 170 to define a lithium secondary battery.
  • a nonaqueous electrolyte may be used as the electrolyte.
  • the non-aqueous electrolyte comprising an electrolyte of a lithium salt and an organic solvent, wherein the lithium salt is for example Li + X - is represented by the lithium salt anion (X -) as F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, ( CF 3) 5 PF -, ( CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO - , (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3
  • organic solvent examples include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC).
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • Methylpropyl carbonate, dipropyl carbonate, dimethylsulfuroxide, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite, tetrahydrofuran and the like can be used. . These may be used alone or in combination of two or more.
  • Electrode tabs may be formed from the positive electrode collector 110 and the negative electrode collector 120 belonging to each electrode cell, respectively, and may extend to one side of the exterior case 170.
  • the electrode tabs may be fused together with the one side of the exterior case 170 to form an electrode lead extending or exposed to the outside of the exterior case 170.
  • the lithium secondary battery may be manufactured in, for example, a cylindrical shape, a square shape, a pouch type or a coin type using a can.
  • NiSO 4 , CoSO 4 , and MnSO 4 were mixed at a ratio of 0.75: 0.15: 0.10 using distilled water from which internal dissolved oxygen was removed by bubbling with N 2 for 24 hours.
  • a precipitating agent respectively, and a chelating agent as a positive electrode active material precursor of 14 ⁇ m Ni 0.75 Co 0.15 Mn 0.1 ( OH) 2 was obtained.
  • the precursor obtained was dried at 80 ° C. for 12 hours and then re-dried at 110 ° C. for 12 hours.
  • Lithium hydroxide and the positive electrode active material precursor were added to the dry high speed mixer in a ratio of 1.05: 1 and mixed uniformly for 5 minutes.
  • the mixture was placed in a kiln and the temperature was raised to 710 ° C at a temperature increase rate of 2 ° C / min, and maintained at 710 ° C for 10 hours.
  • Oxygen was passed continuously at a flow rate of 10 mL / min during elevated temperature and maintenance. After completion of the calcination, natural cooling was performed to room temperature, followed by grinding and classification to obtain a positive electrode active material LiNi 0.75 Co 0.15 Mn 0.1 O 2 .
  • a slurry was prepared by mixing the positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder at a weight ratio of 94: 3: 3.
  • the slurry was uniformly applied to an aluminum foil having a thickness of 15 ⁇ m, and vacuum dried at 130 ° C. to prepare a positive electrode for a lithium secondary battery.
  • a liquid electrolyte in which LiPF 6 is dissolved at a concentration of 1.0 M, a battery cell in the form of a coin half cell was manufactured according to a commonly known manufacturing process.
  • NiSO 4 , CoSO 4 and MnSO 4 were mixed in distilled water at a ratio of 0.75: 0.15: 0.10, respectively.
  • the solution in the reactor of 60 °C and NaOH and NH 3 to H 2 O as the positive electrode active material precursor by a coprecipitation reaction proceeds for 24 hours by using a zero rating precipitating agent and skill of 14 ⁇ m Ni 0.75 Co 0.15 Mn 0.1 ( OH) 2 Obtained.
  • the precursor obtained was dried at 80 ° C. for 12 hours and then re-dried at 110 ° C. for 12 hours.
  • cathode active material precursor a cathode active material and a secondary battery (battery cell) were manufactured in the same manner as in Example 1.
  • a positive electrode active material precursor, a positive electrode active material, and a secondary battery were prepared in the same manner as in Example 1 and Comparative Example 1, except that NiSO 4 , CoSO 4 , and MnSO 4 were respectively mixed at 0.80: 0.11: 0.09.
  • a positive electrode active material precursor, a positive electrode active material, and a secondary battery were prepared in the same manner as in Example 1 and Comparative Example 1, except that NiSO 4 , CoSO 4 , and MnSO 4 were respectively mixed at 0.88: 0.09: 0.03.
  • a positive electrode active material precursor, a positive electrode active material, and a secondary battery were prepared in the same manner as in Example 1 and Comparative Example 1, except that NiSO 4 , CoSO 4 , and MnSO 4 were respectively mixed at 0.92: 0.05: 0.03.
  • the positive electrode of Examples 5 and 6 in the same manner as in Example 2 except that NiSO 4 , CoSO 4 , MnSO 4 were mixed at 0.80: 0.09: 0.11, respectively, and the reaction temperature was adjusted to 50 ° C. and 60 ° C., respectively.
  • An active material precursor, a positive electrode active material, and a secondary battery were prepared.
  • the discharge capacity of the secondary batteries according to Examples and Comparative Examples was measured by charging (CC / CV 0.5C 4.3V 0.05CA CUT-OFF) and discharging (CC 1.0C 3.0V CUT-OFF).
  • the capacity retention rate was evaluated as a percentage of the value obtained by dividing the discharge capacity at 200 times by the discharge capacity at one time by repeating 200 cycles performed when the 1C discharge capacity was measured.
  • the positive electrode active material precursors of the embodiments satisfying at least one of A 101 / A 001 and I 101 / I 001 exhibited a capacity retention of 70% or more, but are comparative examples.
  • the retention was significantly reduced after 200 cycles at the same composition and capacity.
  • the long-term stability deteriorates rapidly as the content of Ni increases.
  • Example 6 in the case of Example 6, as the values of A 101 / A 001 and I 101 / I 001 are slightly increased, the capacity retention ratio is reduced compared to Example 5, but the predetermined A 101 / A 001 is reduced. And maintaining the I 101 / I 001 range, a significant dose reduction as in the comparative examples was avoided.

Abstract

A cathode active material precursor according to embodiments of the present invention comprises nickel (Ni) and cobalt (Co), the nickel being contained at an excessive amount, wherein the ratio of the area (A101) of the (101) plane peak to the area ((A 001) of the (001) plane peak, A101/A 001, according to X-ray diffraction analysis is 1 or greater. The cathode active material precursor can be used to attain a cathode and a lithium secondary battery, which are excellent in the degree of crystallization and long-term stability.

Description

양극 활물질 전구체 및 이를 활용한 리튬 이차 전지Cathode active material precursor and lithium secondary battery using same
본 발명은 양극 활물질 전구체 및 이를 활용한 리튬 이차 전지에 관한 것이다. 보다 상세하게는, 복수의 금속 원소들을 포함하는 양극 활물질 전구체 및 이를 활용한 리튬 이차 전지에 관한 것이다.The present invention relates to a positive electrode active material precursor and a lithium secondary battery using the same. More specifically, the present invention relates to a positive electrode active material precursor including a plurality of metal elements and a lithium secondary battery using the same.
이차 전지는 충전 및 방전이 반복 가능한 전지로서, 정보 통신 및 디스플레이 산업의 발전에 따라 캠코더, 휴대폰, 노트북 PC 등과 같은 휴대용 전자통신 기기에 널리 적용되어 왔다. 이차 전지로서 예를 들면, 리튬 이차 전지, 니켈-카드뮴 전지, 니켈-수소 전지 등을 들 수 있으며, 이들 중 리튬 이차 전지가 작동 전압 및 단위 중량당 에너지 밀도가 높으며, 충전 속도 및 경량화에 유리하다는 점에서 활발히 개발 및 적용되어 왔다.Secondary batteries are batteries that can be repeatedly charged and discharged and have been widely applied to portable electronic communication devices such as camcorders, mobile phones, notebook PCs, etc. according to the development of the information communication and display industries. Examples of secondary batteries include lithium secondary batteries, nickel-cadmium batteries, nickel-hydrogen batteries, and the like. Among these, lithium secondary batteries have a high operating voltage and high energy density per unit weight, and are advantageous for charging speed and light weight. It has been actively developed and applied in that respect.
리튬 이차 전지는 양극, 음극 및 분리막(세퍼레이터)를 포함하는 전극 조립체, 및 상기 전극 조립체를 함침시키는 전해질을 포함할 수 있다. 상기 리튬 이차 전지는 상기 전극 조립체 및 전해질을 수용하는 예를 들면, 파우치 형태의 외장재를 더 포함할 수 있다.The lithium secondary battery may include an electrode assembly including a positive electrode, a negative electrode, and a separator (separator), and an electrolyte impregnating the electrode assembly. The lithium secondary battery may further include, for example, a pouch type exterior material containing the electrode assembly and the electrolyte.
리튬 이차 전지의 양극용 활물질로서 리튬 금속 산화물이 사용될 수 있다. 상기 리튬 금속 산화물의 예로서 니켈계 리튬 금속 산화물을 들 수 있다. 상기 니켈계 리튬 금속 산화물 제조를 위해서는 니켈 함유 전구체 화합물이 사용된다.Lithium metal oxide may be used as an active material for a positive electrode of a lithium secondary battery. Examples of the lithium metal oxide include nickel-based lithium metal oxides. Nickel-containing precursor compounds are used to prepare the nickel-based lithium metal oxides.
최근, 리튬 이차 전지의 적용 범위가 소형 전자 기기에서 하이브리드 차량과 같은 대형 기기로 확장되면서 충분한 용량 및 출력 특성 확보를 위해 니켈의 함량을 증가되고 있으며, 이 경우 상기 니켈 함유 전구체에서도 니켈의 비율이 증가된다. 그러나, 니켈의 비율이 증가되면서 리튬과의 부정합, 부반응으로 인해 양극 활물질의 신뢰성이 저하될 수 있다.Recently, as the range of application of lithium secondary batteries has been expanded from small electronic devices to large devices such as hybrid vehicles, the content of nickel has been increased to secure sufficient capacity and output characteristics. In this case, the proportion of nickel in the nickel-containing precursor increases. do. However, as the proportion of nickel increases, the reliability of the positive electrode active material may decrease due to mismatches and side reactions with lithium.
예를 들면, 한국등록특허공보 제10-0821523호는 리튬 복합금속 산화물을 사용한 양극 활물질 제조 방법을 개시하고 있으나, 상술한 니켈 함유 전구체에 대해서는 고려하고 있지 않다.For example, Korean Patent Publication No. 10-0821523 discloses a method of manufacturing a positive electrode active material using a lithium composite metal oxide, but does not consider the above-described nickel-containing precursor.
본 발명의 일 과제는 향상된 출력 및 안정성을 제공할 수 있는 양극 활물질 전구체를 제공하는 것이다. One object of the present invention is to provide a positive electrode active material precursor that can provide improved output and stability.
본 발명의 일 과제는 향상된 출력 및 안정성을 제공할 수 있는 양극 활물질 전구체로부터 제조된 양극 활물질 및 리튬 이차 전지를 제공하는 것이다.One object of the present invention is to provide a positive electrode active material and a lithium secondary battery prepared from a positive electrode active material precursor capable of providing improved output and stability.
예시적인 실시예들에 따르는 양극 활물질 전구체는 니켈(Ni) 및 코발트(Co)를 포함하며, 니켈을 과량으로 포함하고, X-선 회절 분석에 의한 (001)면 피크의 면적(A 001)에 대한 (101)면 피크의 면적(A 101)의 비율(A 101/A 001)이 1 이상일 수 이며, (001)면 피크의 강도(I 001)에 대한 (101)면 피크의 강도(I 101)의 비율(I 101/I 001)이 1 이상일 수 있다.The positive electrode active material precursor according to the exemplary embodiments includes nickel (Ni) and cobalt (Co), and contains an excess of nickel, and the area (A 001 ) of the (001) plane peak by X-ray diffraction analysis. The ratio of the area (A 101 ) of the (101) plane peak to (A 101 / A 001 ) may be greater than or equal to 1, and the intensity of the (101) plane peak with respect to the intensity (I 001 ) of the ( 001 ) plane peak (I 101). The ratio I 101 / I 001 may be one or more.
일부 실시예들에 있어서, 상기 A 101/A 001가 1 내지 2 범위일 수 있다.In some embodiments, A 101 / A 001 can range from 1 to 2.
일부 실시예들에 있어서, 상기 I 101/I 001가 1 내지 2 범위일 수 있다.In some embodiments, I 101 / I 001 may range from 1 to 2.
일부 실시예들에 있어서, 상기 양극 활물질 전구체는 하기의 화학식 1로 표시될 수 있다.In some embodiments, the cathode active material precursor may be represented by Formula 1 below.
[화학식 1][Formula 1]
Ni 1-x-y-zCo xMn yM z(OH) 2+a Ni 1-xyz Co x Mn y M z (OH) 2 + a
화학식 1 중 0.02≤x≤0.15, 0≤y≤0.15, 0≤z≤0.1, -0.5≤a≤0.1, M은 Mg, Sr, Ba, B, Al, Si, Mn, Ti, Zr 또는 W 중 적어도 하나일 수 있다.0.02≤x≤0.15, 0≤y≤0.15, 0≤z≤0.1, -0.5≤a≤0.1 in Formula 1, M is Mg, Sr, Ba, B, Al, Si, Mn, Ti, Zr or W There may be at least one.
일부 실시예들에 있어서, Ni, Co 및 Mn 중 Ni의 함량비는 0.75 내지 0.95 일 수 있다.In some embodiments, the content ratio of Ni in Ni, Co, and Mn may be 0.75 to 0.95.
일부 실시예들에 있어서, Co의 함량이 Mn의 함량보다 높을 수 있다.In some embodiments, the content of Co may be higher than the content of Mn.
예시적인 실시예들에 따르면 상기 양극 활물질 전구체로부터 형성된 양극 활물질이 제공된다. According to exemplary embodiments, a cathode active material formed from the cathode active material precursor is provided.
일부 실시예들에 있어서, 상기 양극 활물질은 하기 화학식 2로 표시될 수 있다.In some embodiments, the cathode active material may be represented by Formula 2 below.
[화학식 2][Formula 2]
Li 1+bNi 1-x-y-zCo xMn yM zO 2+c Li 1 + b Ni 1-xyz Co x Mn y M z O 2 + c
상기 화학식 2 중, -0.05=b=0.15 이며, 0.02≤x≤0.15, 0≤y≤0.15, 0≤z≤0.1, -0.5≤c≤0.1 이며, M은 Mg, Sr, Ba, B, Al, Si, Mn, Ti, Zr 또는 W 중 적어도 하나일 수 있다.In Formula 2, -0.05 = b = 0.15, 0.02≤x≤0.15, 0≤y≤0.15, 0≤z≤0.1, -0.5≤c≤0.1, and M is Mg, Sr, Ba, B, Al , Si, Mn, Ti, Zr or W may be at least one.
일부 실시예들에 있어서, 상기 양극 활물질의 1차 입자의 장축 길이는 단축 길이 대비 1.5 내지 7배인일 수 있다.In some embodiments, the long axis length of the primary particles of the positive electrode active material may be 1.5 to 7 times the short axis length.
예시적인 실시예들에 따르면, 상기 양극 활물질 전구체로부터 형성된 양극 활물질을 포함하는 양극, 음극 및 상기 양극 및 상기 음극 사이에 배치되는 분리막을 포함하는 리튬 이차 전지가 제공된다.According to exemplary embodiments, a lithium secondary battery including a positive electrode including a positive electrode active material formed from the positive electrode active material precursor, and a separator disposed between the positive electrode and the negative electrode is provided.
본 발명의 실시예들에 따르는 양극 활물질 전구체는 예를 들면, 니켈을 과량으로 포함하여 고출력, 고용량을 제공할 수 있다. 또한, 상기 양극 활물질 전구체는 XRD 분석을 통한 소정의 A 101/A 001 범위를 가지며, 향상된 결정화도를 가질 수 있다.The positive electrode active material precursor according to embodiments of the present invention may include, for example, an excessive amount of nickel to provide high output and high capacity. In addition, the positive electrode active material precursor has a predetermined A 101 / A 001 range through XRD analysis, and may have an improved crystallinity.
이에 따라, 상기 양극 활물질 전구체를 통해 고출력, 고용량과 함께 향상된 장기 수명, 안정성을 갖는 양극 활물질 및 리튬 이차 전지를 구현할 수 있다.Accordingly, the positive electrode active material and the lithium secondary battery may have a high output, a high capacity, and an improved long life and stability through the positive electrode active material precursor.
도 1은 예시적인 실시예들에 따른 리튬 이차 전지의 개략적인 단면도이다.1 is a schematic cross-sectional view of a lithium secondary battery according to example embodiments.
도 2a 및 도 2b는 각각 실시예 1 및 비교예 1에 따른 양극 활물질 전구체 및 이차 전지의 XRD 및 용량 유지율 분석 그래프이다.2A and 2B are XRD and capacity retention analysis graphs of the positive electrode active material precursor and the secondary battery according to Example 1 and Comparative Example 1, respectively.
도 3a 및 도 3b는 각각 실시예 2 및 비교예 2에 따른 양극 활물질 전구체 및 이차 전지의 XRD 및 용량 유지율 분석 그래프이다.3A and 3B are XRD and capacity retention analysis graphs of the positive electrode active material precursor and the secondary battery according to Example 2 and Comparative Example 2, respectively.
도 4a 및 도 4b는 각각 실시예 3 및 비교예 3에 따른 양극 활물질 전구체 및 이차 전지의 XRD 및 용량 유지율 분석 그래프이다.4A and 4B are XRD and capacity retention analysis graphs of the positive electrode active material precursor and the secondary battery according to Example 3 and Comparative Example 3, respectively.
도 5a 및 도 5b는 각각 실시예 4 및 비교예 4에 따른 양극 활물질 전구체 및 이차 전지의 XRD 및 용량 유지율 분석 그래프이다.5A and 5B are XRD and capacity retention analysis graphs of the positive electrode active material precursor and the secondary battery according to Example 4 and Comparative Example 4, respectively.
도 6a 및 도 6b는 각각 실시예 5 및 실시예 6에 따른 양극 활물질 전구체 및 이차 전지의 XRD 및 용량 유지율 분석 그래프이다.6A and 6B are XRD and capacity retention analysis graphs of the positive electrode active material precursor and the secondary battery according to Example 5 and Example 6, respectively.
본 발명의 실시예들은 예를 들면, 니켈(Ni) 및 코발트(Co)를 함유하는 니켈-코발트 계, 일 실시예에 있어서 니켈-코발트-망간(NCM) 계 양극 활물질을 제조할 수 있는 전구체로서 X-선 회절 분석에 의한 소정의 A 101/A 001 범위를 갖는 양극 활물질 전구체가 제공된다. 또한, 본 발명의 실시예들은 상기 양극 활물질 전구체를 통해 제조된 양극 활물질, 및 상기 양극 활물질로부터 제조된 양극을 포함하는 리튬 이차 전지를 제공한다.Embodiments of the present invention are, for example, nickel-cobalt-based containing nickel (Ni) and cobalt (Co) -based, in one embodiment nickel-cobalt-manganese (NCM) -based positive electrode active material can be prepared as a precursor A positive electrode active material precursor having a predetermined A 101 / A 001 range by X-ray diffraction analysis is provided. In addition, embodiments of the present invention provides a lithium secondary battery including a cathode active material prepared through the cathode active material precursor, and a cathode manufactured from the cathode active material.
이하에서는, 첨부된 도면을 참조로 본 발명의 실시예들에 대해 상세히 설명하기로 한다. 그러나 이는 예시적인 것에 불과하며 본 발명이 예시적으로 설명된 구체적인 실시 형태로 제한되는 것은 아니다. Hereinafter, with reference to the accompanying drawings will be described in detail embodiments of the present invention. However, this is merely exemplary and the present invention is not limited to the specific embodiments described by way of example.
본 발명의 예시적인 실시예들에 따르는 양극 활물질 전구체는 니켈-코발트 계 화합물, 바람직하게는 니켈-코발트-망간(NCM)계 화합물을 포함하며, 예를 들면 NCM계 수산화물을 포함할 수 있다.The cathode active material precursor according to exemplary embodiments of the present invention includes a nickel-cobalt-based compound, preferably a nickel-cobalt-manganese (NCM) -based compound, and may include, for example, an NCM-based hydroxide.
일부 실시예들에 있어서, 상기 양극 활물질 전구체는 하기 화학식 1로 표시될 수 있다.In some embodiments, the cathode active material precursor may be represented by the following Chemical Formula 1.
[화학식 1][Formula 1]
Ni 1-x-y-zCo xMn yM z(OH) 2+a Ni 1-xyz Co x Mn y M z (OH) 2 + a
화학식 1 중, 0.02≤x≤0.15, 0≤y≤0.15, 0≤z≤0.1, -0.5≤a≤0.1일 수 있다. M은 도펀트 또는 전이 금속을 나타낸다. M은 예를 들면, Mg, Sr, Ba, B, Al, Si, Mn, Ti, Zr 또는 W를 포함할 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 포함될 수 있다.In Formula 1, 0.02 ≦ x ≦ 0.15, 0 ≦ y ≦ 0.15, 0 ≦ z ≦ 0.1, and −0.5 ≦ a ≦ 0.1. M represents a dopant or a transition metal. M may include, for example, Mg, Sr, Ba, B, Al, Si, Mn, Ti, Zr or W. These may be included alone or in combination of two or more.
상기 화학식 1에 따르면, 상기 양극 활물질 전구체는 포함된 금속 원소들 중 Ni을 과량으로(예를 들면, 가장 많은 양으로) 포함하며, Ni의 함량 또는 농도가 약 0.6 이상일 수 있다. 이에 따라, 과량의 Ni 사용을 통해 충분한 이차 전지의 출력 및 용량을 확보할 수 있다.According to Formula 1, the positive electrode active material precursor includes an excess (for example, the highest amount) of Ni among the metal elements included, and the content or concentration of Ni may be about 0.6 or more. Accordingly, the output and capacity of a sufficient secondary battery can be secured through the use of excess Ni.
바람직한 일 실시예에 있어서, Ni의 함량은 약 0.75 내지 0.95 범위에서 조절될 수 있다.In a preferred embodiment, the content of Ni can be adjusted in the range of about 0.75 to 0.95.
Ni의 함량이 증가됨에 따라, 상대적으로 양극 또는 이차 전지의 장기 보존 안정성, 수명 안정성이 저하될 수 있다. 그러나, 예시적인 실시예들에 따르면 Co를 포함시켜 전기 전도성을 유지하면서, Mn을 통해 수명 안정성, 용량 유지 특성을 향상시킬 수 있다. 또한, 도펀트로서 M을 포함시켜 장기 안정성, 고온 안정성을 보다 증진할 수 있다.As the content of Ni is increased, the long-term storage stability and lifespan stability of the positive electrode or the secondary battery may decrease. However, according to exemplary embodiments, Co may be included to improve life stability and capacity retention characteristics through Mn while maintaining electrical conductivity. In addition, M may be included as a dopant to further enhance long-term stability and high temperature stability.
일 실시예에 있어서, Co의 함량 또는 농도는 Mn보다 클 수 있다. 이에 따라, 양극 활물질을 통한 저항을 낮추어 전도성을 증가시킬 수 있다. 상대적으로 Mn의 함량 또는 농도 감소에 따른 장기 용량 안정성 저하는 후술하는 A 101/A 001 조절을 통해 보완 또는 향상시킬 수 있다.In one embodiment, the content or concentration of Co may be greater than Mn. Accordingly, the conductivity can be increased by lowering the resistance through the cathode active material. Relatively decreasing the long-term capacity stability due to the decrease in the Mn content or concentration can be compensated for or improved through the adjustment of A 101 / A 001 which will be described later.
예시적인 실시예들에 따르면, 상기 양극 활물질 전구체는 약 1 이상의 A 101/A 001 을 가질 수 있다.In example embodiments, the cathode active material precursor may have about 1 or more A 101 / A 001 .
본 출원에서 사용된 용어 "A 101"은 상기 양극 활물질 전구체의 X-선 회절(XRD) 분석에 의한 (101)면의 피크 면적을 나타내며, "A 001"은 XRD 분석에 의한 (001) 면의 피크 면적을 나타낸다. 이에 따라, A 101/A 001 은 (001) 면에 대한 (101) 면의 XRD 피크의 면적비를 나타낸다. As used herein, the term “A 101 ” represents the peak area of the (101) plane by X-ray diffraction (XRD) analysis of the positive electrode active material precursor, and “A 001 ” refers to the (001) plane of the (001) plane by XRD analysis. The peak area is shown. Accordingly, A 101 / A 001 represents the area ratio of the XRD peak of the (101) plane to the (001) plane.
예시적인 실시예들에 있어서, 상기 XRD 분석은 양극 활물질 전구체 합성 후 110℃ 내지 250℃에 건조시킨 분말 샘플에 대하여 광원으로 Cu Kα 선(ray)을 이용하여, 15 o 내지 90 o의 회절각(2θ) 범위에서, 0.02 o/step의 스캔속도(scan rate)로 실시한다.In exemplary embodiments, the XRD analysis is performed using a diffraction angle of 15 ° to 90 ° using Cu Kα rays as a light source for a powder sample dried at 110 ° C to 250 ° C after synthesizing the positive electrode active material precursor. 2θ) at a scan rate of 0.02 o / step.
상기 범위 XRD 분석 결과를 갖는 양극 활물질 전구체를 통해 생성되는 양극 활물질은 우수한 결정화도를 가지며, 이에 따라 반복 충방전 동작 시에도 우수한 출력, 용량 특성을 장시간 안정적으로 유지할 수 있다.The positive electrode active material generated through the positive electrode active material precursor having the range XRD analysis result has excellent crystallinity, and thus it is possible to stably maintain excellent output and capacity characteristics for a long time even during repeated charging and discharging operations.
또한, 화학식 1을 참조로 설명한 바와 같이, 과량의 Ni을 사용하여 고용량, 고출력 특성을 확보하되, 상기 A 101/A 001를 통해 Ni 함량 증가에 의한 부작용을 억제할 수 있다.In addition, as described with reference to Formula 1, by using an excess of Ni to ensure a high capacity, high output characteristics, it is possible to suppress the side effects due to the Ni content increase through the A 101 / A 001 .
예를 들면, Ni의 함량이 증가하는 경우, Ni과 리튬(Li)의 상호 교환으로 인한 양이온 교란(cation disorder)이 발생하여, Li이온 사이트를 Ni 이온이 점유할 수 있다. 이에 따라, 상기 양극 활물질 전구체로부터 양극 활물질의 충분한 결정화도가 확보되지 않을 수 있다. 또한, 결정화도 상승을 위해 소성 온도를 상승시키는 경우, 양극 활물질 전구체 내 리튬 이온이 치환되는 위상 전이(topotactic transition) 등에 의해 원하는 결정 구조가 형성되지 않을 수 있다.For example, when the Ni content is increased, cation disturbance due to interchange of Ni and lithium (Li) may occur, and Ni ions may occupy Li ion sites. Accordingly, sufficient crystallinity of the cathode active material may not be secured from the cathode active material precursor. In addition, when the firing temperature is increased to increase the crystallinity, a desired crystal structure may not be formed due to a topotactic transition in which lithium ions in the cathode active material precursor are substituted.
그러나, 예시적인 실시예들에 따르면 양극 활물질 전구체의 A 101/A 001를 약 1 이상으로 조절하여 소성온도의 지나친 증가 없이, 고 함량 Ni을 사용하면서도 우수한 결정화도를 생성하는 양극 활물질을 수득할 수 있다. 따라서, 고출력, 고용량, 장기 수명 안정성이 함께 향상된 이차 전지를 획득할 수 있다.However, according to exemplary embodiments, A 101 / A 001 of the positive electrode active material precursor may be adjusted to about 1 or more to obtain a positive electrode active material that produces excellent crystallinity while using high content Ni without excessively increasing the firing temperature. . Therefore, a secondary battery having improved high output, high capacity, and long lifespan can be obtained.
일 실시예에 있어서, 상기 양극 활물질 전구체의 A 101/A 001는 전구체 형성을 위한 공침 반응에서 O 2 양, 반응 시간, 반응 온도 등을 변경하여 조절될 수 있다. 일 실시예에 있어서, A 101/A 001는 약 1 내지 2 범위, 바람직하게는 약 1 내지 약 1.6 범위로 조절될 수 있다.In one embodiment, A 101 / A 001 of the positive electrode active material precursor may be adjusted by changing the amount of O 2 , reaction time, reaction temperature, etc. in the coprecipitation reaction for forming the precursor. In one embodiment, A 101 / A 001 can be adjusted in the range of about 1 to 2, preferably in the range of about 1 to about 1.6.
예시적인 실시예들에 따르면, 상기 양극 활물질 전구체는 약 1 이상의 I 101/I 001 을 가질 수 있다.In example embodiments, the cathode active material precursor may have about 1 or more I 101 / I 001 .
본 출원에서 사용된 용어 "I 101"은 상기 양극 활물질 전구체의 X-선 회절(XRD) 분석에 의한 (101)면의 피크 강도(intensity) (또는 피크 높이(height))를 나타내며, "I 001"은 XRD 분석에 의한 (001) 면의 피크 강도를 나타낸다. 이에 따라, I 101/I 001 은 (001) 면에 대한 (101) 면의 XRD 피크의 강도비를 나타낸다. The term "I 101 " as used herein refers to the peak intensity (or peak height) of the (101) plane by X-ray diffraction (XRD) analysis of the positive electrode active material precursor, and "I 001 Indicates peak intensities of the (001) plane by XRD analysis. Accordingly, I 101 / I 001 represents the intensity ratio of the XRD peak of the (101) plane to the (001) plane.
예시적인 실시예들에 따르면, 상술한 면적비(A 101/A 001) 및 강도비(I 101/I 001) 모두 1 이상을 만족함에 따라 향상된 결정화도 및 고 함량 Ni 구조 구현을 보다 용이하게 효과적으로 구현할 수 있다.According to exemplary embodiments, both the above-described area ratio (A 101 / A 001 ) and strength ratio (I 101 / I 001 ) satisfy at least one, so that it is easier and more effective to implement the improved crystallinity and high content Ni structure. have.
일부 실시예들에 있어서, I 101/I 001는 약 1 내지 2 범위, 바람직하게는 약 1 내지 1.6 범위로 조절될 수 있다.In some embodiments, I 101 / I 001 can be adjusted in the range of about 1 to 2, preferably in the range of about 1 to 1.6.
상술한 양극 활물질 전구체는 금속염들의 공침반응을 통해 제조될 수 있다. 상기 금속염들은 니켈염, 망간염 및 코발트 염을 포함할 수 있다. The positive electrode active material precursor described above may be prepared through coprecipitation of metal salts. The metal salts may include nickel salts, manganese salts and cobalt salts.
상기 니켈염의 예로서 니켈 설페이트, 니켈 하이드록사이드, 니켈 나이트레이트, 니켈 아세테이트, 이들의 수화물 등을 들 수 있다. 상기 망간염의 예로서 망간 설페이트, 망간 아세테이트, 이들의 수화물 등을 들 수 있다. 상기 코발트 염의 에로서 코발트 설페이트, 코발트 나이트레이트, 코발트 카보네이트, 이들의 수화물 등을 들 수 있다,Examples of the nickel salts include nickel sulfate, nickel hydroxide, nickel nitrate, nickel acetate, hydrates thereof, and the like. Examples of the manganese salts include manganese sulfate, manganese acetate, hydrates thereof, and the like. Examples of the cobalt salts include cobalt sulfate, cobalt nitrate, cobalt carbonate, and hydrates thereof.
상기 금속염들은 화학식 1을 참조로 설명한 각 금속의 함량 또는 농도비를 만족하는 비율로 침전제 및/또는 킬레이팅 제와 함께 혼합하여 수용액을 제조할 수 있다. 상기 수용액을 반응기 내에서 공침시켜 양극 활물질 전구체를 제조할 수 있다.The metal salts may be mixed with a precipitant and / or a chelating agent in a ratio that satisfies the content or concentration ratio of each metal described with reference to Formula 1 to prepare an aqueous solution. The aqueous solution may be co-precipitated in a reactor to prepare a cathode active material precursor.
상기 침전제는 수산화 나트륨(NaOH), 탄산 나트륨(Na 2CO 3) 등과 같은 알칼리성 화합물을 포함할 수 있다. 상기 킬레이팅제는 예를 들면, 암모니아수(예를 들면, NH 3H 2O), 탄산 암모늄(예를 들면, NH 3HCO 3) 등을 포함할 수 있다. The precipitant may include an alkaline compound such as sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ), and the like. The chelating agent may include, for example, ammonia water (eg, NH 3 H 2 O), ammonium carbonate (eg, NH 3 HCO 3 ), and the like.
상기 공침 반응의 온도는 예를 들면 약 40℃ 내지 60℃ 범위에서 조절될 수 있다. 반응 시간은 약 24 내지 72 시간 범위에서 조절될 수 있다.The temperature of the coprecipitation reaction can be controlled, for example, in the range of about 40 ° C to 60 ° C. The reaction time can be adjusted in the range of about 24 to 72 hours.
본 발명의 실시예들은 상술한 양극 활물질 전구체로부터 형성된 양극 활물질을 제공한다.Embodiments of the present invention provide a cathode active material formed from the cathode active material precursor described above.
예시적인 실시예들에 있어서, 상기 양극 활물질은 아래 화학식 2로 표시될 수 있다.In example embodiments, the cathode active material may be represented by Formula 2 below.
[화학식 2][Formula 2]
Li 1+bNi 1-x-y-zCo xMn yM zO 2+c Li 1 + b Ni 1-xyz Co x Mn y M z O 2 + c
상기 화학식 2 중, -0.05=b=0.15, -0.5≤c≤0.1 일 수 있다. x, y, z 및 M은 상기 화학식 1에서 정의된 바와 같다.In Formula 2, -0.05 = b = 0.15 and -0.5≤c≤0.1. x, y, z and M are as defined in the formula (1).
예를 들면, 리튬 전구체 화합물을 상기 양극 활물질 전구체와 혼합하고 공침법을 통해 반응시켜 양극 활물질을 제조할 수 있다. 상기 리튬 전구체 화합물은 예를 들면, 상기 리튬염으로는 리튬 카보네이트, 리튬 나이트레이트, 리튬 아세테이트, 리튬 옥사이드, 리튬 수산화물 등을 포함할 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.For example, a lithium precursor compound may be mixed with the cathode active material precursor and reacted through a coprecipitation method to prepare a cathode active material. The lithium precursor compound may include, for example, lithium carbonate, lithium nitrate, lithium acetate, lithium oxide, lithium hydroxide, and the like. These may be used alone or in combination of two or more.
이후, 예를 들면 수세 공정을 통해 리튬 불순물 또는 미반응 전구체들을 제거하고, 열처리 공정을 통해 금속 입자들을 고정 또는 결정도를 상승시킬 수 있다.Then, for example, lithium impurities or unreacted precursors may be removed through a water washing process, and metal particles may be fixed or crystallinity may be increased through a heat treatment process.
일 실시예에 있어서, 상기 열처리 온도는 약 600℃ 내지 1000℃ 범위일 수 있다.In one embodiment, the heat treatment temperature may range from about 600 ℃ to 1000 ℃.
일부 실시예들에 있어서, 상기 양극 활물질 전구체로부터 제조된 상기 양극 활물질의 1차 입자는 상이한 장축 및 단축을 로드(rod), 타원, 또는 막대 형상을 가질 수 있다. 일 실시예에 있어서, 상기 1차 입자의 장축의 길이가 단축의 길이 대비 약 1.5 내지 7배일 수 있다.In some embodiments, the primary particles of the cathode active material prepared from the cathode active material precursor may have rods, ellipses, or rods having different major and minor axes. In one embodiment, the length of the long axis of the primary particles may be about 1.5 to 7 times the length of the short axis.
본 발명의 실시예들은 상술한 양극 활물질 전구체로부터 제조된 양극 활물질을 포함하는 리튬 이차 전지를 제공한다.Embodiments of the present invention provide a lithium secondary battery including a cathode active material prepared from the cathode active material precursor described above.
도 1은 예시적인 실시예들에 따른 리튬 이차 전지의 개략적인 단면도이다.1 is a schematic cross-sectional view of a lithium secondary battery according to example embodiments.
도 1을 참조하면, 리튬 이차 전지는 양극(130), 음극(140) 및 상기 양극과 음극 사이에 개재된 분리막(150)을 포함할 수 있다.Referring to FIG. 1, a lithium secondary battery may include a positive electrode 130, a negative electrode 140, and a separator 150 interposed between the positive electrode and the negative electrode.
양극(130)은 양극 활물질을 양극 집전체(110)에 도포하여 형성한 양극 활물질 층(115)을 포함할 수 있다. 예시적인 실시예들에 따르면 상기 양극 활물질은 상술한 예시적인 실시예들에 따른 양극 활물질 전구체를 사용하여 제조될 수 있다.The positive electrode 130 may include the positive electrode active material layer 115 formed by applying the positive electrode active material to the positive electrode current collector 110. According to exemplary embodiments, the cathode active material may be manufactured using the cathode active material precursor according to the above-described exemplary embodiments.
상기 양극 활물질 전구체는 예를 들면, 화학식 1로 표시되며 약 1 이상의 A 101/A 001를 가질 수 있다. 상기 양극 활물질 전구체를 통해 예를 들면 화학식 2로 표시되는 양극 활물질이 제조될 수 있다. 이에 따라, 양극의 결정화도가 상승하면서 고출력, 고용량 특성을 장기간 안정적으로 유지된 리튬 이차 전지가 제조될 수 있다. The positive electrode active material precursor may be, for example, represented by Formula 1 and may have an A 101 / A 001 of about 1 or more. For example, the cathode active material represented by Chemical Formula 2 may be manufactured through the cathode active material precursor. Accordingly, a lithium secondary battery in which a high crystallinity of the positive electrode is increased and a high output and high capacity characteristics are stably maintained for a long time can be manufactured.
상기 양극 활물질을 용매 내에서 바인더, 도전재 및/또는 분산재 등과 혼합 및 교반하여 슬러리를 제조할 수 있다. 상기 슬러리를 양극 집전체(110)에 코팅한 후, 압축 및 건조하여 양극(130)을 제조할 수 있다.A slurry may be prepared by mixing and stirring the positive electrode active material in a solvent, a binder, a conductive material and / or a dispersant, and the like. After coating the slurry on the positive electrode current collector 110, the cathode 130 may be manufactured by compressing and drying the slurry.
양극 집전체(110)는 예를 들면, 스테인레스강, 니켈, 알루미늄, 티탄, 구리 또는 이들의 합금을 포함할 수 있으며, 바람직하게는 알루미늄 또는 알루미늄 합금을 포함할 수 있다.The positive electrode current collector 110 may include, for example, stainless steel, nickel, aluminum, titanium, copper, or an alloy thereof, and may preferably include aluminum or an aluminum alloy.
상기 바인더는, 예를 들면, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등의 유기계 바인더, 또는 스티렌-부타디엔 러버(SBR) 등의 수계 바인더를 포함할 수 있으며, 카르복시메틸 셀룰로오스(CMC)와 같은 증점제와 함께 사용될 수 있다. 예를 들면, 양극 형성용 바인더로서 PVDF 계열 바인더를 사용할 수 있다. 이 경우, 양극 활물질 층 형성을 위한 바인더의 양을 감소시키고 이에 따라 이차 전지의 출력, 용량을 향상시킬 수 있다.The binder is, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethylmethacryl Organic binders such as polymethylmethacrylate, or aqueous binders such as styrene-butadiene rubber (SBR), and may be used together with a thickener such as carboxymethyl cellulose (CMC). For example, PVDF series binder can be used as a binder for positive electrode formation. In this case, the amount of the binder for forming the positive electrode active material layer may be reduced, thereby improving output and capacity of the secondary battery.
상기 도전재는 활물질 입자들 사이의 전자 이동을 촉진하기 위해 포함될 수 있다. 예를 들면, 상기 도전재는 흑연, 카본 블랙, 그래핀, 탄소 나노 튜브 등과 같은 탄소계열 도전재 및/또는 주석, 산화주석, 산화티타늄, LaSrCoO 3, LaSrMnO 3와 같은 페로브스카이트(perovskite) 물질 등을 포함하는 금속 계열 도전재를 포함할 수 있다.The conductive material may be included to promote electron transfer between active material particles. For example, the conductive material may be a carbon-based conductive material such as graphite, carbon black, graphene, carbon nanotubes, and / or perovskite materials such as tin, tin oxide, titanium oxide, LaSrCoO 3 , and LaSrMnO 3. It may include a metal-based conductive material including a.
예시적인 실시예들에 따르면, 음극(140)은 음극 집전체(120) 및 음극 활물질을 음극 집전체(120)에 코팅하여 형성된 음극 활물질 층(125)을 포함할 수 있다. According to example embodiments, the negative electrode 140 may include the negative electrode current collector 120 and the negative electrode active material layer 125 formed by coating the negative electrode active material on the negative electrode current collector 120.
상기 음극 활물질은 리튬 이온을 흡장 및 탈리할 수 있는, 당 분야에서 공지된 것이 특별한 제한 없이 사용될 수 있다. 예를 들면 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등의 탄소 계열 재료; 리튬 합금; 규소 또는 주석 등이 사용될 수 있다. 상기 비정질 탄소의 예로서 하드카본, 코크스, 1500℃ 이하에서 소성한 메조카본 마이크로비드(mesocarbon microbead: MCMB), 메조페이스피치계 탄소섬유(mesophase pitch-based carbon fiber: MPCF) 등을 들 수 있다. 상기 결정질 탄소의 예로서 천연흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등과 같은 흑연계 탄소를 들 수 있다. 상기 리튬 합금에 포함되는 원소로서 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨 또는 인듐 등을 들 수 있다.The negative electrode active material may be used without particular limitation that is known in the art that can occlude and desorb lithium ions. For example, carbon-based materials, such as crystalline carbon, amorphous carbon, a carbon composite, carbon fiber; Lithium alloys; Silicon or tin and the like can be used. Examples of the amorphous carbon include hard carbon, coke, mesocarbon microbead (MCMB) fired at 1500 ° C. or lower, mesophase pitch-based carbon fiber (MPCF), and the like. Examples of the crystalline carbon include graphite-based carbon such as natural graphite, graphitized coke, graphitized MCMB, graphitized MPCF, and the like. Examples of the element included in the lithium alloy include aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium or indium.
음극 집전체(120)는 예를 들면, 금, 스테인레스강, 니켈, 알루미늄, 티탄, 구리 또는 이들의 합금을 포함할 수 있으며, 바람직하게는 구리 또는 구리 합금을 포함할 수 있다.The negative electrode current collector 120 may include, for example, gold, stainless steel, nickel, aluminum, titanium, copper, or an alloy thereof, and may preferably include copper or a copper alloy.
일부 실시예들에 있어서, 상기 음극 활물질을 용매 내에서 바인더, 도전재 및/또는 분산재 등과 혼합 및 교반하여 슬러리를 제조할 수 있다. 상기 슬러리를 음극 집전체(120)에 코팅한 후, 압축 및 건조하여 음극(140)을 제조할 수 있다.In some embodiments, a slurry may be prepared by mixing and stirring the negative electrode active material in a solvent, a binder, a conductive material and / or a dispersant, and the like. After coating the slurry on the negative electrode current collector 120, the negative electrode 140 may be manufactured by compressing and drying the slurry.
상기 바인더 및 도전재로서 상술한 물질들과 실질적으로 동일하거나 유사한 물질들이 사용될 수 있다. 일부 실시예들에 있어서, 음극 형성을 위한 바인더는 예를 들면, 탄소 계열 활물질과의 정합성을 위해 스티렌-부타디엔 러버(SBR) 등의 수계 바인더를 포함할 수 있으며, 카르복시메틸 셀룰로오스(CMC)와 같은 증점제와 함께 사용될 수 있다.As the binder and the conductive material, materials substantially the same as or similar to those described above may be used. In some embodiments, the binder for the formation of the negative electrode may include an aqueous binder such as styrene-butadiene rubber (SBR), for example, for compatibility with the carbon-based active material, and such as carboxymethyl cellulose (CMC). Can be used with thickeners.
양극(130) 및 음극(140) 사이에는 분리막(150)이 개재될 수 있다. 분리막(150)은 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체, 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 포함할 수 있다. 상기 분리막은 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 형성된 부직포를 포함할 수도 있다.The separator 150 may be interposed between the anode 130 and the cathode 140. The separator 150 may include a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, ethylene / methacrylate copolymer, and the like. The separator may include a nonwoven fabric formed of high melting glass fibers, polyethylene terephthalate fibers, or the like.
일부 실시예들에 있어서, 음극(140)의 면적(예를 들면, 분리막(150)과 접촉 면적) 및/또는 부피는 양극(130)보다 클 수 있다. 이에 따라, 양극(130)으로부터 생성된 리튬 이온이 예를 들면, 중간에 석출되지 않고 음극(140)으로 원활히 이동될 수 있다. 따라서, 상술한 양극 활물질 전구체 또는 양극 활물질과의 조합을 통한 출력 및 안정성의 동시 향상의 효과를 보다 용이하게 구현할 수 있다.In some embodiments, an area (eg, contact area of the separator 150) and / or a volume of the cathode 140 may be larger than that of the anode 130. Accordingly, lithium ions generated from the anode 130 may be smoothly moved to the cathode 140 without being deposited in the middle. Therefore, the effect of simultaneous improvement of output and stability through the combination with the above-described positive electrode active material precursor or the positive electrode active material can be more easily realized.
예시적인 실시예들에 따르면, 양극(130), 음극(140) 및 분리막(150)에 의해 전극 셀(160)이 정의되며, 복수의 전극 셀(160)들이 적층되어 예를 들면, 젤리 롤(jelly roll) 형태의 전극 조립체가 형성될 수 있다. 예를 들면, 상기 분리막의 권취(winding), 적층(lamination), 접음(folding) 등을 통해 상기 전극 조립체를 형성할 수 있다.According to example embodiments, the electrode cell 160 is defined by the anode 130, the cathode 140, and the separator 150, and the plurality of electrode cells 160 are stacked to, for example, jelly rolls ( An electrode assembly in the form of a jelly roll may be formed. For example, the electrode assembly may be formed by winding, laminating, or folding the separator.
상기 전극 조립체가 외장 케이스(170) 내에 전해질과 함께 수용되어 리튬 이차 전지가 정의될 수 있다. 예시적인 실시예들에 따르면, 상기 전해질로서 비수 전해액을 사용할 수 있다.The electrode assembly may be accommodated together with an electrolyte in the exterior case 170 to define a lithium secondary battery. According to exemplary embodiments, a nonaqueous electrolyte may be used as the electrolyte.
비수 전해액은 전해질인 리튬염과 유기 용매를 포함하며, 상기 리튬염은 예를 들면 Li +X -로 표현되며 상기 리튬염의 음이온(X -)으로서 F -, Cl -, Br -, I -, NO 3 -, N(CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2PF 4 -, (CF 3) 3PF 3 -, (CF 3) 4PF 2 -, (CF 3) 5PF -, (CF 3) 6P -, CF 3SO 3 -, CF 3CF 2SO 3 -, (CF 3SO 2) 2N -, (FSO 2) 2N - , CF 3CF 2(CF 3) 2CO -, (CF 3SO 2) 2CH -, (SF 5) 3C -, (CF 3SO 2) 3C -, CF 3(CF 2) 7SO 3 -, CF 3CO 2 -, CH 3CO 2 -, SCN - 및 (CF 3CF 2SO 2) 2N - 등을 예시할 수 있다.The non-aqueous electrolyte comprising an electrolyte of a lithium salt and an organic solvent, wherein the lithium salt is for example Li + X - is represented by the lithium salt anion (X -) as F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, ( CF 3) 5 PF -, ( CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO - , (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - and (CF 3 CF 2 SO 2 ) 2 N - and the like can be exemplified.
상기 유기 용매로서 예를 들면, 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로퓨란 등을 사용할 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.Examples of the organic solvent include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC). ), Methylpropyl carbonate, dipropyl carbonate, dimethylsulfuroxide, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite, tetrahydrofuran and the like can be used. . These may be used alone or in combination of two or more.
각 전극 셀에 속한 양극 집전체(110) 및 음극 집전체로(120)부터 각각 전극 탭이 형성되어 외장 케이스(170)의 일 측부까지 연장될 수 있다. 상기 전극 탭들은 외장 케이스(170)의 상기 일측부와 함께 융착되어 외장 케이스(170)의 외부로 연장 또는 노출된 전극 리드를 형성할 수 있다. Electrode tabs may be formed from the positive electrode collector 110 and the negative electrode collector 120 belonging to each electrode cell, respectively, and may extend to one side of the exterior case 170. The electrode tabs may be fused together with the one side of the exterior case 170 to form an electrode lead extending or exposed to the outside of the exterior case 170.
상기 리튬 이차 전지는 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등으로 제조될 수 있다.The lithium secondary battery may be manufactured in, for example, a cylindrical shape, a square shape, a pouch type or a coin type using a can.
이하, 본 발명의 이해를 돕기 위하여 구체적인 실시예 및 비교예들을 포함하는 실험예를 제시하나, 이는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, experimental examples including specific examples and comparative examples are provided to help understanding of the present invention, but these are merely illustrative of the present invention and not intended to limit the appended claims, and the scope and spirit of the present invention. It is apparent to those skilled in the art that various changes and modifications to the embodiments can be made within the scope, and such variations and modifications are within the scope of the appended claims.
실시예 및 비교예Examples and Comparative Examples
실시예 1Example 1
(1) 양극 활물질 전구체의 제조(1) Preparation of Positive Electrode Active Material Precursor
N 2로 24시간동안 버블링하여 내부 용존산소를 제거한 증류수를 이용하여 NiSO 4, CoSO 4, MnSO 4를 각각 0.75:0.15:0.10의 비율로 혼합하였다. 50℃의 반응기에 상기 용액을 투입하고 NaOH와 NH 3H 2O를 각각 침전제 및 킬레이팅제로 활용하여 48시간 동안 공침 반응을 진행시켜 양극 활물질 전구체로서 14㎛의 Ni 0.75Co 0.15Mn 0.1(OH) 2를 수득하였다. 수득된 상기 전구체는 80℃에서 12시간 건조 후, 110℃에서 12시간 재건조되었다.NiSO 4 , CoSO 4 , and MnSO 4 were mixed at a ratio of 0.75: 0.15: 0.10 using distilled water from which internal dissolved oxygen was removed by bubbling with N 2 for 24 hours. In the solution in the reactor of 50 ℃ NaOH and NH 3 and H 2 O by the co-precipitation reaction to proceed for 48 hours by using a precipitating agent, respectively, and a chelating agent as a positive electrode active material precursor of 14㎛ Ni 0.75 Co 0.15 Mn 0.1 ( OH) 2 was obtained. The precursor obtained was dried at 80 ° C. for 12 hours and then re-dried at 110 ° C. for 12 hours.
(2) 양극 활물질 제조(2) Preparation of positive electrode active material
수산화 리튬 및 상기 양극 활물질 전구체를 1.05:1의 비율로 건식 고속 혼합기에 첨가하고 5분 동안 균일하게 혼합하였다. 상기 혼합물을 소성로에 넣고 2℃/분의 승온속도로 710℃까지 승온하고, 710℃에서 10시간 동안 유지시켰다. 승온 및 유지 동안 연속적으로 10mL/min의 유속으로 산소를 통과시켰다. 소성 종료 후 실온까지 자연냉각을 진행하고 분쇄, 분급을 거쳐 양극 활물질 LiNi 0.75Co 0.15Mn 0.1O 2를 얻었다.Lithium hydroxide and the positive electrode active material precursor were added to the dry high speed mixer in a ratio of 1.05: 1 and mixed uniformly for 5 minutes. The mixture was placed in a kiln and the temperature was raised to 710 ° C at a temperature increase rate of 2 ° C / min, and maintained at 710 ° C for 10 hours. Oxygen was passed continuously at a flow rate of 10 mL / min during elevated temperature and maintenance. After completion of the calcination, natural cooling was performed to room temperature, followed by grinding and classification to obtain a positive electrode active material LiNi 0.75 Co 0.15 Mn 0.1 O 2 .
(3) 이차 전지의 제조(3) manufacture of a secondary battery
상기 양극 활물질, 도전재로 카본블랙, 바인더로 폴리비닐리덴 플로라이드(PVDF)를 94:3:3의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 15㎛ 두께의 알루미늄박에 균일하게 도포하고, 130℃에서 진공 건조하여 리튬 이차 전지용 양극을 제조하였다. 상기 양극, 상대 전극으로서 리튬 호일, 세퍼레이터로서 다공성폴리에틸렌막 (두께: 21㎛)을 사용하여 전극 조립체를 형성하고, 상기 전극 조립체를 에틸렌 카보네이트와 에틸메틸카보네이트가 부피비로 3:7로 혼합된 용매에 LiPF 6가 1.0M 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인 하프 셀 형태의 전지 셀을 제조하였다. A slurry was prepared by mixing the positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder at a weight ratio of 94: 3: 3. The slurry was uniformly applied to an aluminum foil having a thickness of 15 μm, and vacuum dried at 130 ° C. to prepare a positive electrode for a lithium secondary battery. The anode, a lithium foil as a counter electrode, a porous polyethylene membrane (thickness: 21 μm) as a separator to form an electrode assembly, and the electrode assembly in a solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7. Using a liquid electrolyte in which LiPF 6 is dissolved at a concentration of 1.0 M, a battery cell in the form of a coin half cell was manufactured according to a commonly known manufacturing process.
비교예 1Comparative Example 1
NiSO 4, CoSO 4, MnSO 4를 각각 0.75:0.15:0.10의 비율로 증류수에 혼합하였다. 60℃의 반응기에 상기 용액을 투입하고 NaOH와 NH 3H 2O를 침전제 및 킬레이팅제로 활용하여 24시간 동안 공침 반응을 진행시켜 양극 활물질 전구체로서 14㎛의 Ni 0.75Co 0.15Mn 0.1(OH) 2를 수득하였다. 수득된 상기 전구체는 80℃에서 12시간 건조 후, 110℃에서 12시간 재건조되었다.NiSO 4 , CoSO 4 and MnSO 4 were mixed in distilled water at a ratio of 0.75: 0.15: 0.10, respectively. In the solution in the reactor of 60 ℃ and NaOH and NH 3 to H 2 O as the positive electrode active material precursor by a coprecipitation reaction proceeds for 24 hours by using a zero rating precipitating agent and skill of 14㎛ Ni 0.75 Co 0.15 Mn 0.1 ( OH) 2 Obtained. The precursor obtained was dried at 80 ° C. for 12 hours and then re-dried at 110 ° C. for 12 hours.
상기 양극 활물질 전구체를 사용하여 실시예 1과 동일한 방법으로 양극 활물질 및 이차 전지(전지 셀)을 제조하였다. Using the cathode active material precursor, a cathode active material and a secondary battery (battery cell) were manufactured in the same manner as in Example 1.
실시예 2 및 비교예 2Example 2 and Comparative Example 2
NiSO 4, CoSO 4, MnSO 4를 각각 0.80:0.11:0.09로 혼합한 것을 제외하고는 각각 실시예 1 및 비교예 1과 동일한 방법으로 양극 활물질 전구체, 양극 활물질 및 이차 전지를 제조하였다.A positive electrode active material precursor, a positive electrode active material, and a secondary battery were prepared in the same manner as in Example 1 and Comparative Example 1, except that NiSO 4 , CoSO 4 , and MnSO 4 were respectively mixed at 0.80: 0.11: 0.09.
실시예 3 및 비교예 3Example 3 and Comparative Example 3
NiSO 4, CoSO 4, MnSO 4를 각각 0.88:0.09:0.03로 혼합한 것을 제외하고는 각각 실시예 1 및 비교예 1과 동일한 방법으로 양극 활물질 전구체, 양극 활물질 및 이차 전지를 제조하였다.A positive electrode active material precursor, a positive electrode active material, and a secondary battery were prepared in the same manner as in Example 1 and Comparative Example 1, except that NiSO 4 , CoSO 4 , and MnSO 4 were respectively mixed at 0.88: 0.09: 0.03.
실시예 4 및 비교예 4Example 4 and Comparative Example 4
NiSO 4, CoSO 4, MnSO 4를 각각 0.92:0.05:0.03로 혼합한 것을 제외하고는 각각 실시예 1 및 비교예 1과 동일한 방법으로 양극 활물질 전구체, 양극 활물질 및 이차 전지를 제조하였다.A positive electrode active material precursor, a positive electrode active material, and a secondary battery were prepared in the same manner as in Example 1 and Comparative Example 1, except that NiSO 4 , CoSO 4 , and MnSO 4 were respectively mixed at 0.92: 0.05: 0.03.
실시예 5 및 실시예 6Example 5 and Example 6
NiSO 4, CoSO 4, MnSO 4를 각각 0.80:0.09:0.11로 혼합하여 반응 온도를 각각 50℃ 및 60℃로 조절한 것을 제외하고는 실시예 2와 동일한 방법으로 실시예 5 및 실시예 6의 양극 활물질 전구체, 양극 활물질 및 이차 전지를 제조하였다.The positive electrode of Examples 5 and 6 in the same manner as in Example 2 except that NiSO 4 , CoSO 4 , MnSO 4 were mixed at 0.80: 0.09: 0.11, respectively, and the reaction temperature was adjusted to 50 ° C. and 60 ° C., respectively. An active material precursor, a positive electrode active material, and a secondary battery were prepared.
실험예Experimental Example
(1) A 101/A 001 및 I 101/I 001측정(1) Measuring A 101 / A 001 and I 101 / I 001
상기 실시예들 및 비교예들 각각의 양극 활물질 전구체 분말에 대하여 X-선 회절 광원으로 Cu Kα 선(ray)을 이용하고 15 o 내지 90 o 범위의 회절각(2θ) 범위에서, 0.02 o/step의 스캔속도로 (001) 면 및(101) 면의 피크 면적 및 피크 강도를 측정한 후, A 101/A 001 및 I 101/I 001값을 산출하였다.0.02 o / step in the diffraction angle (2θ) range of 15 o to 90 o using Cu Kα ray as the X-ray diffraction light source for each of the positive electrode active material precursor powders of the Examples and Comparative Examples After measuring the peak areas and peak intensities of the (001) plane and the (101) plane at a scan rate of, the values A 101 / A 001 and I 101 / I 001 were calculated.
(2) 방전용량 측정(2) Discharge capacity measurement
실시예 및 비교예들에 따른 이차 전지에 대해 충전(CC/CV 0.5C 4.3V 0.05CA CUT-OFF)과 방전(CC 1.0C 3.0V CUT-OFF)을 수행하여 방전 용량을 측정하였다.The discharge capacity of the secondary batteries according to Examples and Comparative Examples was measured by charging (CC / CV 0.5C 4.3V 0.05CA CUT-OFF) and discharging (CC 1.0C 3.0V CUT-OFF).
(3) 용량 유지율(Discharge Capacity Retention) 측정(3) Discharge Capacity Retention Measurement
상기 1C 방전용량 측정시 실시한 사이클을 200회 반복하여 200회에서의 방전용량을 1회에서의 방전용량으로 나눈 값의 백분율로 용량 유지율을 평가하였다.The capacity retention rate was evaluated as a percentage of the value obtained by dividing the discharge capacity at 200 times by the discharge capacity at one time by repeating 200 cycles performed when the 1C discharge capacity was measured.
평가 결과는 하기 표 1, 도 2a 및 도 2b 내지 도 6a 및 도 6b에 기재되었다.The evaluation results are shown in Table 1 below, FIGS. 2A and 2B to 6A and 6B.
Figure PCTKR2019003624-appb-img-000001
Figure PCTKR2019003624-appb-img-000001
표 1, 및 도 2a 내지 도 5b를 참조하면, 1 이상의 A 101/A 001 및 I 101/I 001을 만족하는 실시예들의 양극 활물질 전구체의 경우 모두 70% 이상의 용량 유지율을 나타냈으나, 비교예들의 경우 동일한 조성, 용량에서 200 사이클 후 현저히 유지율이 저하되었다. 특히, Ni의 함량이 증가할수록 급격히 장기 안정성이 열화됨을 알 수 있다.Referring to Table 1 and FIGS. 2A to 5B, the positive electrode active material precursors of the embodiments satisfying at least one of A 101 / A 001 and I 101 / I 001 exhibited a capacity retention of 70% or more, but are comparative examples. In the case of the same composition, the retention was significantly reduced after 200 cycles at the same composition and capacity. In particular, it can be seen that the long-term stability deteriorates rapidly as the content of Ni increases.
도 6a 및 도 6b를 참조하면, 실시예 6의 경우 A 101/A 001 및 I 101/I 001 값이 다소 증가함에 따라, 용량 유지율이 실시예 5에 비해 감소하였으나, 소정의 A 101/A 001 및 I 101/I 001 범위를 유지함에 따라 비교예들에서와 같이 현저한 용량 감소는 방지되었다.6A and 6B, in the case of Example 6, as the values of A 101 / A 001 and I 101 / I 001 are slightly increased, the capacity retention ratio is reduced compared to Example 5, but the predetermined A 101 / A 001 is reduced. And maintaining the I 101 / I 001 range, a significant dose reduction as in the comparative examples was avoided.

Claims (10)

  1. 니켈(Ni) 및 코발트(Co)를 포함하며, 니켈을 과량으로 포함하고,Nickel (Ni) and cobalt (Co), including nickel in excess,
    X-선 회절 분석에 의한 (001)면 피크의 면적(A 001)에 대한 (101)면 피크의 면적(A 101)의 비율(A 101/A 001)이 1 이상이며, (001)면 피크의 강도(I 001)에 대한 (101)면 피크의 강도(I 101)의 비율(I 101/I 001)이 1 이상인, 양극 활물질 전구체.X- ray diffraction analysis, and by the (001) surface area of the peak (A 001) (101) of the surface area ratio of the peak for the (A 101) (A 101 / A 001) is at least 1, (001) plane peak the ratio of intensity of (101) face peak strength of (101 I) to (001 I) (I 101 / I 001) of 1 or more, a positive electrode active material precursor.
  2. 청구항 1에 있어서, 상기 A 101/A 001가 1 내지 2 범위인, 양극 활물질 전구체.The cathode active material precursor of claim 1, wherein A 101 / A 001 is in the range of 1-2.
  3. 청구항 1에 있어서, 상기 I 101/I 001가 1 내지 2 범위인, 양극 활물질 전구체.The positive electrode active material precursor of claim 1, wherein I 101 / I 001 is in the range of 1-2.
  4. 청구항 1에 있어서, 하기 화학식 1로 표시되는 양극 활물질 전구체:The cathode active material precursor of claim 1, wherein:
    [화학식 1][Formula 1]
    Ni 1-x-y-zCo xMn yM z(OH) 2+a Ni 1-xyz Co x Mn y M z (OH) 2 + a
    (화학식 1 중 0.02≤x≤0.15, 0≤y≤0.15, 0≤z≤0.1, -0.5≤a≤0.1, M은 Mg, Sr, Ba, B, Al, Si, Mn, Ti, Zr 또는 W 중 적어도 하나임).In Formula 1, 0.02≤x≤0.15, 0≤y≤0.15, 0≤z≤0.1, -0.5≤a≤0.1, M is Mg, Sr, Ba, B, Al, Si, Mn, Ti, Zr or W At least one of).
  5. 청구항 4에 있어서, Ni, Co 및 Mn 중 Ni의 함량비는 0.75 내지 0.95 인, 양극 활물질 전구체.The positive electrode active material precursor according to claim 4, wherein the content ratio of Ni in Ni, Co, and Mn is 0.75 to 0.95.
  6. 청구항 5에 있어서, Co의 함량이 Mn의 함량보다 높은, 양극 활물질 전구체.The cathode active material precursor according to claim 5, wherein the content of Co is higher than the content of Mn.
  7. 청구항 1 내지 6 중 어느 한 항의 양극 활물질 전구체로부터 얻어지는 양극 활물질.The positive electrode active material obtained from the positive electrode active material precursor of any one of Claims 1-6.
  8. 청구항 7에 있어서, 하기 화학식 2로 표시되는 양극 활물질:The cathode active material of claim 7, wherein the cathode active material is represented by Formula 2 below:
    [화학식 2][Formula 2]
    Li 1+bNi 1-x-y-zCo xMn yM zO 2+c Li 1 + b Ni 1-xyz Co x Mn y M z O 2 + c
    (상기 화학식 2 중, -0.05=b=0.15 이며, 0.02≤x≤0.15, 0≤y≤0.15, 0≤z≤0.1, -0.5≤c≤0.1 이며, M은 Mg, Sr, Ba, B, Al, Si, Mn, Ti, Zr 또는 W 중 적어도 하나임)(In Formula 2, -0.05 = b = 0.15, 0.02≤x≤0.15, 0≤y≤0.15, 0≤z≤0.1, -0.5≤c≤0.1, and M is Mg, Sr, Ba, B, At least one of Al, Si, Mn, Ti, Zr, or W)
  9. 청구항 7에 있어서, 1차 입자의 장축 길이가 단축길이 대비 1.5 내지 7배인, 양극 활물질.The positive electrode active material according to claim 7, wherein the long axis length of the primary particles is 1.5 to 7 times the short axis length.
  10. 청구항 1 내지 6 중 어느 한 항의 양극 활물질 전구체로부터 형성된 양극 활물질을 포함하는 양극;A positive electrode comprising a positive electrode active material formed from the positive electrode active material precursor of any one of claims 1 to 6;
    음극; 및cathode; And
    상기 양극 및 상기 음극 사이에 배치되는 분리막을 포함하는, 리튬 이차 전지.Lithium secondary battery comprising a separator disposed between the positive electrode and the negative electrode.
PCT/KR2019/003624 2018-03-28 2019-03-28 Cathode active material precursor and lithium secondary battery utilizing same WO2019190217A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980023350.0A CN112219297B (en) 2018-03-28 2019-03-28 Positive electrode active material precursor and lithium secondary battery using same
US17/041,959 US20210098787A1 (en) 2018-03-28 2019-03-28 Cathode active material precursor and lithium secondary battery utilizing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180035933 2018-03-28
KR10-2018-0035933 2018-03-28
KR1020190033031A KR102495992B1 (en) 2018-03-28 2019-03-22 Cathode active material precursor and lithium secondary battery utilizing the same
KR10-2019-0033031 2019-03-22

Publications (1)

Publication Number Publication Date
WO2019190217A1 true WO2019190217A1 (en) 2019-10-03

Family

ID=68060298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003624 WO2019190217A1 (en) 2018-03-28 2019-03-28 Cathode active material precursor and lithium secondary battery utilizing same

Country Status (1)

Country Link
WO (1) WO2019190217A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119218A (en) * 2002-09-26 2004-04-15 Seimi Chem Co Ltd Positive active material for lithium secondary battery and its manufacturing method
KR20110136002A (en) * 2010-06-13 2011-12-21 삼성에스디아이 주식회사 Positive active material precursor for rechargeable lithium battery, positive active material using same and rechargeable lithium battery including the positive active material
KR20150078672A (en) * 2013-12-31 2015-07-08 삼성정밀화학 주식회사 Complx metal precursor for lithium secondary battery, method for production thereof, cathode active material, lithium secondary battery including the same
JP2017033669A (en) * 2015-07-29 2017-02-09 ニッポン高度紙工業株式会社 Active material for battery cathode, battery, and manufacturing method of active material for battery cathode
WO2018020845A1 (en) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119218A (en) * 2002-09-26 2004-04-15 Seimi Chem Co Ltd Positive active material for lithium secondary battery and its manufacturing method
KR20110136002A (en) * 2010-06-13 2011-12-21 삼성에스디아이 주식회사 Positive active material precursor for rechargeable lithium battery, positive active material using same and rechargeable lithium battery including the positive active material
KR20150078672A (en) * 2013-12-31 2015-07-08 삼성정밀화학 주식회사 Complx metal precursor for lithium secondary battery, method for production thereof, cathode active material, lithium secondary battery including the same
JP2017033669A (en) * 2015-07-29 2017-02-09 ニッポン高度紙工業株式会社 Active material for battery cathode, battery, and manufacturing method of active material for battery cathode
WO2018020845A1 (en) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US9887420B2 (en) Lithium transition metal composite particles, preparation method thereof, and cathode active material including the same
KR102495992B1 (en) Cathode active material precursor and lithium secondary battery utilizing the same
WO2016108384A1 (en) Cathode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery comprising same
WO2009145471A1 (en) Novel precursor for the production of a lithium composite transition metal oxide
WO2012039563A2 (en) Positive electrode active material comprising lithium manganese oxide and non-aqueous electrolyte secondary battery
WO2013109038A1 (en) Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
WO2011084003A2 (en) Cathode active material containing lithium manganese oxide that exhibits excellent charge-discharge characteristics in 4v and 3v regions
WO2015099243A1 (en) Electrode active material containing boron compound and electrochemical device using same
WO2014098419A1 (en) Cathode material for lithium secondary battery, method for manufacturing same and lithium secondary battery comprising same
CN112514115B (en) Positive electrode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2015012640A1 (en) Electrode for secondary battery having improved energy density and lithium secondary battery comprising same
WO2019083330A2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
WO2015026121A1 (en) Lithium cobalt-based complex oxide having good lifespan properties, and secondary battery anode active material including same
WO2014077662A1 (en) Method for producing anode active material precursor for sodium secondary battery by using coprecipitation technique and anode active material precursor for sodium secondary battery produced thereby
WO2014077663A1 (en) Anode active material for sodium secondary battery and method for producing same
WO2010047522A2 (en) Cathode composite material with improved electrode efficiency and energy density characteristics
WO2013002513A2 (en) Positive electrode active material for a secondary battery having improved rate characteristics
WO2022014858A1 (en) Positive electrode active material for lithium secondary battery
WO2018004250A1 (en) Positive electrode active material for lithium secondary battery, containing high-voltage lithium cobalt oxide having doping element, and method for preparing same
WO2019190217A1 (en) Cathode active material precursor and lithium secondary battery utilizing same
WO2016137287A1 (en) Cathode active material, cathode comprising same, and lithium secondary battery
WO2020055210A1 (en) Cathode active material, method for preparing same, and lithium secondary battery comprising same
WO2018038509A1 (en) Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
WO2014163359A1 (en) Precursor for producing lithium-rich cathode active material, and lithium-rich cathode active material produced thereby
WO2021215546A1 (en) Positive active material for lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774536

Country of ref document: EP

Kind code of ref document: A1