WO2019189671A1 - Force-tactile transmitting system, force-tactile transmitting device, force-tactile transmitting method and program - Google Patents

Force-tactile transmitting system, force-tactile transmitting device, force-tactile transmitting method and program Download PDF

Info

Publication number
WO2019189671A1
WO2019189671A1 PCT/JP2019/013816 JP2019013816W WO2019189671A1 WO 2019189671 A1 WO2019189671 A1 WO 2019189671A1 JP 2019013816 W JP2019013816 W JP 2019013816W WO 2019189671 A1 WO2019189671 A1 WO 2019189671A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
fishing
fishing rod
robot
tactile sensation
Prior art date
Application number
PCT/JP2019/013816
Other languages
French (fr)
Japanese (ja)
Inventor
貴裕 野崎
脩平 新明
大西 公平
Original Assignee
合同会社Re-al
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同会社Re-al filed Critical 合同会社Re-al
Priority to JP2020511040A priority Critical patent/JP7029521B2/en
Publication of WO2019189671A1 publication Critical patent/WO2019189671A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K97/00Accessories for angling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements

Definitions

  • the present invention relates to a force / haptic transmission system, a force / haptic transmission device, a force / haptic transmission method, and a program.
  • An object of the present invention is to provide a technique that enables a more realistic experience to be realized via a robot.
  • a force / tactile sensation transmission system including a fishing robot capable of performing a fishing operation, a fishing rod type manipulator installed apart from the fishing robot, and a control device configured to be able to communicate with the fishing robot and the fishing rod type manipulator. And The controller is Based on information indicating a current or past external force input to a fishing rod provided in the fishing robot, the fishing rod-type manipulator outputs a force / tactile force due to the external force input to the fishing rod.
  • FIG. 1 is a schematic diagram showing a system configuration of a force / tactile sensation transmission system according to the present invention. It is a block diagram which shows the structure of a master side control apparatus. It is a schematic diagram which shows the structural example of the actuator used in a force-tactile transmission system. It is a flowchart which shows the flow of the force haptic transmission process which a force haptic transmission system performs. It is a flowchart which shows the flow of the remote fishing experience control process which a force-tactile transmission system performs.
  • a human physical action is configured by individual “functions” such as one joint alone or in combination. Therefore, hereinafter, in the present embodiment, “act” represents an integrated function realized by using individual “functions” of parts in the human body as components. For example, an action involving bending and stretching of the middle finger (an action of turning a screw or the like) is an integrated function having the function of each joint of the middle finger as a component.
  • the basic principle of the present invention is that any action can be mathematically expressed by three elements of force source, velocity (position) source, and transformation representing the action. Therefore, for a variable group defined by transformation and inverse transformation, By supplying control energy from the ideal force source and ideal velocity (position) source in a dual relationship to the controlled system, the extracted physical action is structured, reconstructed or expanded, and the physical action is reversible. Automatic realization (reproduction).
  • FIG. 1 is a schematic diagram showing the concept of the basic principle according to the present invention.
  • the basic principle shown in FIG. 1 represents a control law of an actuator that can be used to realize a human physical action.
  • the current position of the actuator is used as an input, and at least one of position (or velocity) or force is used.
  • the operation of the actuator is determined by performing the calculation in the region. That is, the basic principle of the present invention is that the control target system S, the function-specific force / speed allocation conversion block FT, the ideal force source block FC or the ideal speed (position) source block PC, and the inverse conversion block IFT. It is expressed as a control law including
  • the control target system S is a robot operated by an actuator (for example, an avatar or the like installed at a location remote from the user), and controls the actuator based on acceleration or the like.
  • the control target system S realizes the function of one or a plurality of parts in the human body. If a control law for realizing the function is applied, the specific configuration is as follows. It is not necessarily a form that imitates the human body.
  • the control target system S can be a robot that controls an instrument (such as a fishing rod) used by a user with an actuator.
  • the function-specific force / speed allocation conversion block FT is a block that defines conversion of control energy into a speed (position) and force area set according to the function of the control target system S.
  • coordinate conversion is defined in which the function reference value (reference value) of the control target system S and the current position of the actuator are input.
  • this coordinate conversion generally, an input vector whose elements are a reference value and a current speed (position) is converted into an output vector composed of a speed (position) for calculating a control target value of the speed (position), and a reference value
  • an input vector having the current force as an element is converted into an output vector composed of a force for calculating a force control target value.
  • the coordinate conversion in the function-specific force / speed allocation conversion block FT is generalized as in the following equations (1) and (2).
  • x ′ 1 to x ′ n are velocity vectors for deriving the speed state value
  • x ′ a to x ′ m are 1 or more
  • h 1a to h nm are elements of the transformation matrix representing the function It is.
  • f ′′ 1 to f ′′ n (n is an integer of 1 or more) is a force vector for deriving force state values
  • f ′′ a to f ′′ m ( m is an integer of 1 or more) is a vector whose elements are a force based on the reference value and the action of the actuator (the force of the moving element of the actuator or the force of the object moved by the actuator).
  • the variables of the actuator alone are converted into variable groups (virtual space in the virtual space) representing the functions to be realized.
  • Variable assigns control energy to velocity (position) control energy and force control energy. For this reason, it is possible to independently give control energy of speed (position) and control energy of force as compared with a case where control is performed with a variable of the actuator alone (variable in real space).
  • the ideal force source block FC is a block that performs calculations in the force region in accordance with the coordinate conversion defined by the function-specific force / speed allocation conversion block FT.
  • a target value related to a force for performing a calculation based on the coordinate transformation defined by the function-specific force / speed allocation transformation block FT is set.
  • This target value is set as a fixed value or a variable value depending on the function to be realized. For example, when realizing a function similar to the function indicated by the reference value, zero is set as the target value, and when scaling is performed, a value obtained by enlarging or reducing the information indicating the function to be reproduced is set. it can.
  • the ideal speed (position) source block PC is a block that performs calculations in the speed (position) area according to the coordinate conversion defined by the function-specific force / speed allocation conversion block FT.
  • a target value related to the speed (position) when performing the calculation based on the coordinate transformation defined by the function-specific force / speed assignment transformation block FT is set.
  • This target value is set as a fixed value or a variable value depending on the function to be realized. For example, when realizing a function similar to the function indicated by the reference value, zero is set as the target value, and when scaling is performed, a value obtained by enlarging or reducing the information indicating the function to be reproduced is set. it can.
  • the inverse conversion block IFT is a block that converts the value of the velocity (position) and force region into the value (for example, voltage value or current value) of the input region to the control target system S.
  • the function-specific force / speed allocation conversion block FT converts the control laws of the position and force regions corresponding to the functions. Then, in the ideal force source block FC, a force according to the function is calculated, and in the ideal speed (position) source block PC, a speed (position) according to the function is calculated, and the force and speed (position). Control energy is distributed to each.
  • the calculation results in the ideal force source block FC and the ideal speed (position) source block PC are information indicating the control target of the control target system S, and these calculation results are used as the input values of the actuator in the inverse conversion block IFT, and control is performed. Input to the target system S.
  • the actuator of the control target system S executes the operation according to the function defined by the function-specific force / speed allocation conversion block FT, and the target robot operation is realized. That is, in the present invention, it becomes possible to more appropriately realize the human physical action by the robot.
  • the force in the actuator is represented by the product of mass and acceleration
  • the velocity (position) in the actuator is represented by the integral of acceleration. Therefore, by controlling the speed (position) and force through the acceleration region, the current position of the actuator can be acquired and the intended function can be realized.
  • FIG. 2 is a schematic diagram showing the concept of control when the force / tactile transmission function is defined in the function-specific force / speed allocation conversion block FT.
  • Function (bilateral control function) can be realized.
  • the coordinate conversion in the function-specific force / speed allocation conversion block FT is expressed as the following equations (3) and (4).
  • x ′ p is a speed for deriving the state value of speed (position)
  • x ′ f is a speed related to the force state value
  • x ′ m is the speed (differential value of the current position of the master device) of the reference value (input from the master device)
  • x ′ s is the current speed (differential value of the current position) of the slave device.
  • f p is the force on the status value of the speed (position)
  • the f f is the force for deriving the state value of the force.
  • f m is a reference value (input from the master device)
  • f s is a current force of the slave device.
  • FIG. 3 is a schematic diagram showing a system configuration of the force-tactile transmission system 1 according to the present invention.
  • the force / tactile sensation transmission system 1 includes a fishing rod type manipulator 10 as a master device, a head mounted display 20, a master side control device 30, a slave side control device 40, and a fishing robot as a slave device.
  • the master side control device 30 and the slave side control device 40 are connected via a network 60 such as the Internet.
  • the fishing rod type manipulator 10 and the head mounted display 20 are configured to be able to communicate with the master-side control device 30 through a wireless communication network or a communication cable
  • the slave-side control device 40 is connected with the fishing robot 50 through a wireless communication network or a communication cable. It is configured to be able to communicate.
  • It is also possible to configure the force / tactile sensation transmission system 1 as a local system by connecting the master side control device 30 and the slave side control device 40 by wired communication such as a communication cable.
  • the force / tactile sensation transmission system 1 shown in FIG. 3 is a system that allows a remote user to experience fishing by operating a fishing robot 50 as an avatar with a fishing rod type manipulator 10. Further, in the force / tactile sensation transmission system 1, a force / tactile sensation due to an external force input to a fishing rod included in the fishing robot 50 is transmitted to the fishing rod type manipulator 10, and a force / tactile sensation by an operation performed by the user on the fishing rod type manipulator 10 is transmitted. 50.
  • the user can experience fishing remotely with the feeling of actually touching the fishing rod.
  • the force / tactile sensation transmission system 1 it is possible to provide a technology capable of realizing a more realistic experience via a robot.
  • the force / tactile sensation transmission system 1 in addition to simply transmitting the force / tactile sense, the force / tactile sense is enlarged or reduced according to the setting, or only the force / haptic sense of a specific frequency is enlarged / reduced. It is possible to communicate or add virtual force and tactile sensation.
  • a real haptics mode and a pseudo experience mode can be set as modes for the user to experience fishing.
  • the real haptics mode is a mode in which a force / tactile sensation is transmitted between the fishing rod type manipulator 10 and the fishing robot 50 in real time, and the fishing robot 50 becomes an avatar of a user who uses the fishing rod type manipulator 10.
  • the pseudo-experience mode is a mode that allows the user to experience the tactile sensation at the time of fishing by replaying data when the fish has been caught in the past.
  • the fishing rod type manipulator 10 is an operating device that imitates the whole fishing rod or the hand side, and is connected to a support base through a hinge 11 so as to be rotatable in the vertical direction.
  • the hinge 11 is provided with an actuator 12 that applies rotational torque and an encoder 13 that detects the rotational angle of the hinge 11.
  • the detection signal of the encoder 13 is output to the master-side control device 30, and the rotational torque output by the actuator 12 and the rotational position of the actuator are controlled by the master-side control device 30.
  • the fishing rod type manipulator 10 includes a reel 14 at a predetermined distance from the end portion on the hand side (that is, the position of the hinge 11).
  • the reel 14 is installed at a position corresponding to the distance between the human elbow and the hand (hereinafter referred to as “position R”) from the proximal end of the fishing rod type manipulator 10.
  • position R a position corresponding to the distance between the human elbow and the hand
  • the end of the fishing rod is adjusted to the position of the elbow, and the posture of holding the reel installation portion by hand is taken. Therefore, by installing the reel 14 of the fishing rod type manipulator 10 at the position R, the user operating the fishing rod type manipulator 10 operates the fishing rod type manipulator 10 with the same feeling as holding a fishing rod during actual fishing. can do.
  • the end of the fishing rod on the hand side is connected to the hinge, and the movement of the fishing rod around the end of the fishing rod on the hand side is detected.
  • the fishing rod type manipulator 10 may be configured not to include the reel 14.
  • the reel 14 may be provided with an actuator that applies rotational torque and an encoder that detects a rotational angle, like the hinge 11.
  • the fishing rod 50 held by the fishing robot 50 is also provided with an actuator and an encoder, so that a force / tactile sensation can be transmitted between the reel 14 and the fishing rod reel.
  • the head mounted display 20 is a display that is used by being mounted on the head so as to cover the user's field of view, and displays an image taken by a camera installed on the fishing robot 50.
  • the image displayed on the head mounted display 20 can also display the image etc. which were image
  • various display devices such as a stationary display, a projector and a screen can be used instead of the head mounted display 20.
  • the master-side control device 30 controls the entire force / tactile sensation transmission system 1 and is constituted by an information processing device such as a PC (Personal Computer) or an embedded microcomputer.
  • FIG. 4 is a block diagram illustrating a configuration of the master side control device 30.
  • the master-side control device 30 is constituted by a PC, and as shown in FIG. 4, a CPU (Central Processing Unit) 31, a RAM (Random Access Memory) 32, a storage device 33, and a communication interface ( Communication I / F) 34.
  • the master-side control device 30 includes a driver for driving the actuator 12, a battery for supplying power, an input device (for example, a keyboard and a mouse) for inputting various information, and the like.
  • a parameter storage unit 33a for storing time-series parameters handled in the force / tactile sense transmission process is formed in one area of the storage device 33.
  • the storage device 33 appropriately stores various data (such as fish images and audio data) used in the force / tactile transmission system 1.
  • the CPU 31 executes various programs for controlling the master-side control device 30, thereby realizing various target functions such as a basic force / haptic transmission function and additional functions. Specifically, when the CPU 31 executes various programs, the CPU 31 implements, as a functional configuration, a position acquisition unit 31a, a force / tactile transmission unit 31b, a management unit 31c, and a data recording unit 31d.
  • the position acquisition unit 31 a acquires a time-series detection value detected by the encoder 13 of the fishing rod manipulator 10 and a time-series detection value detected by the encoder 53 of the fishing robot 50.
  • the force / tactile sensation transmission unit 31b has functions of a function-specific force / speed allocation conversion block FT, an ideal force source block FC, an ideal speed (position) source block PC, and an inverse conversion block IFT in FIG.
  • coordinate transformation for realizing the force / tactile sense transmission function is defined. That is, the force / tactile sensation transmission unit 31b is detected by the time detection value detected by the encoder 13 of the fishing rod type manipulator 10 and the encoder 53 of the fishing robot 50 from the position detection unit 31a in the real haptics mode. A time-series detected value (reference value) is input.
  • the force / tactile sensation transmission unit 31b in the pseudo experience mode, the time-series detection values detected by the encoder 13 of the fishing rod type manipulator 10 from the position detection unit 31a and the past read from the parameter storage unit 33a. (A time-series detection value detected in the past by the encoder 53 of the fishing robot 50) (reference value) is input. These time-series detection values represent the user's operation on the fishing rod manipulator 10 (manipulation of the fishing rod when fishing) and the current or past external force on the fishing robot 50 (external force on the fishing rod by a fish or the like).
  • the force / tactile sensation transmission unit 31b applies coordinate transformation for realizing the force / tactile sensation transmission function to the velocity (position) and force information derived from the input detection value (position).
  • the force / tactile sensation transmission unit 31b performs an operation in the velocity (position) region on the velocity (position) for deriving the state value of the velocity (position) obtained by the coordinate transformation. Similarly, the force / tactile sensation transmission unit 31b performs a calculation in the force region on the force for deriving the force state value obtained by the coordinate transformation. Further, the force / tactile sensation transmission unit 31b performs a uniform dimension processing on acceleration and the like on the calculation result in the calculated velocity (position) region and the calculation result in the force region, and realizes a force / tactile transmission function.
  • the force / tactile sensation transmission unit 31b calculates the calculation result in the calculated velocity (position) region and the calculation result in the force region as the value (current value) of the input region to the actuator 12 and the actuator 52 of the fishing robot 50 described later. Etc.). Then, the force / tactile sensation transmission unit 31 b outputs a value input to the actuator 12 to the actuator 12. Further, the force / tactile sensation transmission unit 31 b transmits the value of the input area to the actuator 52 of the fishing robot 50 to the slave-side control device 40 via the network 60. In addition, the value of the area
  • the management unit 31c performs various settings in the remote fishing experience control process and manages the progress of the process. Specifically, in the remote fishing experience control process, the management unit 31c sets to either the real haptics mode or the simulated experience mode according to a preset condition, or whether or not the fish has been successfully caught. Or performing an effect display and sound output when a fish hits.
  • the real haptics mode is set immediately after the start of the process, and when the preset condition is satisfied, the pseudo experience mode is set.
  • the remote fishing experience control process only the real haptics mode or the simulated experience mode may be set.
  • the data recording unit 31d records parameters when the force / tactile sensation transmission processing is performed in the real haptics mode in the parameter storage unit 33a in time series.
  • the slave-side control device 40 is configured by an information processing device such as a PC or an embedded microcomputer.
  • the slave-side control device 40 is configured as an embedded microcomputer and is configured as a device built in the fishing robot 50.
  • the slave-side control device 40 transmits the time-series detection values detected by the encoder 53 of the fishing robot 50 to the master-side control device 30 via the network 60.
  • the slave-side control device 40 outputs the input value to the actuator 52 transmitted from the master-side control device 30 to the actuator 52 of the fishing robot 50.
  • the slave-side control device 40 is appropriately equipped with various devices necessary for the force / tactile sensation transmission system 1, such as a driver for driving the actuator 52, a battery for supplying power, and a speaker for outputting sound. Is done.
  • the fishing robot 50 is a robot that can hold a fishing rod and operates as an avatar of a user who operates the fishing rod-type manipulator 10. Therefore, the fishing robot 50 is installed at a place where fishing is performed, such as a fishing pond, a coast such as a rod and a quay, a fishing boat, a river shore, and a lake.
  • the fishing robot 50 includes an arm 50A that holds a fishing rod having a fishhook and fishing line, and a portion corresponding to an elbow of the arm 50A is connected to a support base via a hinge 51 so as to be rotatable in the vertical direction. ing.
  • the hinge 51 is provided with an actuator 52 that applies rotational torque and an encoder 53 that detects the rotational angle of the hinge 51.
  • the detection signal of the encoder 53 is output to the slave-side control device 40, and the rotational torque output by the actuator 52 and the rotational position of the actuator are controlled by the slave-side control device 40.
  • the reel provided in the fishing rod is installed at a position corresponding to the distance between the human elbow and the hand from the end on the hand side of the fishing rod. That is, the fishing rod reel is against the end of the fishing rod. It is installed at the same position as the reel 14 of the fishing rod type manipulator 10.
  • the fishing robot 50 is provided with a camera for photographing a fishing spot (such as a water surface near a fishing line).
  • the reel of the fishing rod may be provided with an actuator for applying a rotational torque and an encoder for detecting a rotational angle, similarly to the hinge 51.
  • an actuator for applying a rotational torque
  • an encoder for detecting a rotational angle
  • FIG. 5 is a schematic diagram illustrating a configuration example of the actuator 100 used in the force-tactile transmission system 1.
  • the actuator 100 shown in FIG. 5 can be used as the actuator 12 or the actuator 52, and a fishing rod-like member of the fishing rod type manipulator 10 or a fishing rod held by the fishing robot 50 can be installed.
  • the actuator 100 includes a motor 101, a gear 102, and an attachment member 103.
  • the motor 101 is configured by an electric motor such as a DC motor, for example, and outputs rotational torque to the gear 102.
  • the gear 102 amplifies the rotational torque input from the motor 101 and rotates the support member 103 with the amplified rotational torque.
  • the support member 103 is fixed to the output shaft of the gear 102 and rotates around the output shaft of the gear 102 by the rotational torque output from the gear 102. Further, the external force input to the support member 103 is input to the gear 102.
  • the actuator 100 is used as the actuator 12 of the fishing rod-type manipulator 10
  • the fishing rod-shaped member of the fishing rod-type manipulator 10 is fixed to the support member 103, and is attached to the rear end portion of the support member 103 (near the rotating shaft of the gear 102). Is touched by the user's elbow.
  • the actuator 100 is used as the actuator 52 of the fishing robot 50, a fishing rod held by the fishing robot 50 is fixed to the support member 103.
  • the elbow position of the user who uses the fishing rod type manipulator 10 is configured to match the rotation center of the actuator 12.
  • the force and position data obtained when the fish has been caught in the past are stored and reproduced at an arbitrary timing (the actuator 12 of the fishing rod type manipulator 10 is driven based on the data) to simulate the feeling of fishing.
  • the actuator 12 of the fishing rod type manipulator 10 is driven based on the data
  • the type of fish or the size of the fish is determined from the direction of pulling the fish and the strength.
  • the direction and force of pulling the fish can be detected by providing a sensor for detecting the direction and magnitude of the force applied to the fishing line at the tip of the fishing rod. Note that the direction of the force may be detected by a camera installed in the fishing robot 50.
  • the fish is discriminated by (3) and the vision system or the audio system is integrated to display the type of fish or the size of the fish on the display, and the type of fish or the size of the fish is also expressed by sound.
  • the depth of the fishing hook (or bait) and the depth of the fish that is caught are identified.
  • a pattern of force to be input to the rod is extracted from data when the fish has been caught in the past, and the force / tactile sensation is reproduced for each pattern in the fishing rod type manipulator 10.
  • the pattern to be extracted can be, for example, recorded data for each section divided by the water depth at which the fish is located and divided at a timing with small movement. In the pseudo-experience mode for experiencing a force tactile sense at the time of fishing in the past, this pattern is selected and the force tactile sense is reproduced in the fishing rod type manipulator 10.
  • the water depth in which a fish exists can be identified from the length of the fishing line drawn out from the reel 14, and the angle of a rod.
  • the fishing rod type manipulator 10 can be installed, for example, in an airport lobby or the like, and the fishing robot 50 can be installed in a famous fishing spot.
  • the user is assumed to be a boarding person who waits for the departure of the airplane. Therefore, after the user starts the remote fishing experience via the fishing robot 50, when the predetermined timing is reached, the user can reproduce the data when the fish has been caught in the past, thereby It can be controlled so that the force tactile sense at the time of fishing is simulated. Thereby, the user can actually experience remote fishing via the fishing robot 50 and can surely experience the force tactile sense when the fish is caught even if the fish does not hit. .
  • the predetermined timing includes a timing that is a predetermined time before the user's boarding time (for example, one hour before), or after the user starts a remote fishing experience in the force-tactile transmission system 1.
  • the timing at which a predetermined time (for example, 30 minutes) elapses can be set. Either remote fishing experience via the fishing robot 50 (real haptics mode) or pseudo fishing experience using data when fish were fished in the past (pseudo experience mode) is selected in advance. Then, the force / tactile sensation transmission system 1 may be operated.
  • the fishing rod type manipulator 10 has a fishing experience such as an airport, a transportation facility, a game center, an amusement facility such as an aquarium, and a training facility for learning fishing techniques. It can be installed in various places where it can be used.
  • the force / tactile sensation transmission system 1 having the above-described function can perform various operations.
  • a force / tactile sensation transmission process As a process for realizing a remote fishing experience using the fishing robot 50, a force / tactile sensation transmission process, The remote fishing experience control process is executed.
  • FIG. 6 is a flowchart showing a flow of force / tactile sensation transmission processing executed by the force / haptic transmission system 1.
  • the force / tactile sensation transmission process is started in response to activation of a function for transmitting force / tactile sensation in the master-side control device 30.
  • step S ⁇ b> 1 the position acquisition unit 31 a of the master-side control device 30 acquires information indicating the positions (rotation angles) of the hinges 11 and 51 from the encoder 13 of the fishing rod type manipulator 10 and the encoder 53 of the fishing robot 50.
  • the position acquisition unit 31 a of the master-side control device 30 acquires the position (rotation angle) of the hinge 51 detected by the encoder 53 of the fishing robot 50 via the slave-side control device 40.
  • the force / tactile sensation transmission unit 31b of the master-side control device 30 performs coordinate transformation (see FIG. 2) for force / haptic transmission.
  • the force / tactile sensation transmission unit 31b of the master-side control device 30 acquires information indicating acceleration from information indicating the position (rotation angle) of the hinges 11 and 51, and appropriately converts the information into dimensions such as speed or force. Used for conversion.
  • step S3 the force / tactile sensation transmission unit 31b of the master-side control device 30 calculates values of inputs to the actuators 12 and 52 from the control amount of speed (position) and the control amount of force based on the result of coordinate conversion. .
  • step S4 the force / tactile sensation transmission unit 31b of the master-side control device 30 transmits values of inputs to the actuators 12 and 52 to the fishing rod manipulator 10 and the fishing robot 50, respectively.
  • the fishing rod type manipulator 10 and the fishing robot 50 (slave-side control device 40) drive the actuators 12, 52 based on the input values transmitted from the master-side control device 30, and the encoders 13, 53 The position (rotation angle) of the hinges 11 and 51 is detected.
  • step S6 the management unit 31c of the master-side control device 30 determines whether or not the end of the force / tactile sensation transmission process is instructed.
  • the termination of the force / tactile sensation process is automatically instructed in response to the fact that all functions for transmitting force / tactile sensations are stopped in the master-side control device 30.
  • an operator who manages the master-side control device 30 can instruct the end of the force / tactile sensation transmission process. If the end of the force-tactile transmission process is not instructed, it is determined as NO in Step S6, and the process proceeds to Step S1.
  • YES is determined in step S6, and the force / tactile transmission process is terminated.
  • FIG. 7 is a flowchart showing the flow of remote fishing experience control processing executed by the force / tactile sensation transmission system 1.
  • the remote fishing experience control process is started in response to the master side control device 30 instructing execution of the remote fishing experience control process.
  • step S21 the management unit 31c of the master-side control device 30 sets the force / haptic transmission system 1 to the real haptics mode.
  • the real haptics mode as described above, a force / tactile sensation is transmitted in real time between the fishing rod manipulator 10 and the fishing robot 50, and the fishing robot 50 becomes an avatar of the user who uses the fishing rod manipulator 10.
  • step S22 the management unit 31c of the master-side control device 30 starts a force / tactile sensation transmission process.
  • step S ⁇ b> 23 the management unit 31 c of the master-side control device 30 determines whether or not a fish is hit in the fishing robot 50. Whether or not a fish has been hit is determined by using, for example, information such as the magnitude, acceleration, and frequency of an external force input to the fishing robot 50 as a reference threshold set based on experimental values or experience values. It can detect by comparing. If the fish is not hit in the fishing robot 50, NO is determined in step S23, and the process proceeds to step S24. On the other hand, when a fish is hit in the fishing robot 50, it is determined as YES in Step S23, and the process proceeds to Step S32.
  • step S24 the management unit 31c of the master-side control device 30 determines whether or not it is a predetermined timing after the start of the remote fishing experience control process.
  • a timing that is a predetermined time before the user's boarding time (for example, one hour before), or a remote fishing experience by the user in the force-tactile transmission system 1 The timing when a predetermined time (for example, 30 minutes) has passed can be set. If the predetermined timing is not reached after the remote fishing experience control process is started, NO is determined in step S24, and the process proceeds to step S23.
  • step S24 the management unit 31c of the master-side control device 30 sets the force / tactile sensation transmission system 1 to the pseudo experience mode.
  • the pseudo-experience mode as described above, the data when the fish has been caught in the past is reproduced, so that the user can experience the tactile sensation at the time of fishing.
  • step S26 the management unit 31c of the master-side control device 30 selects a force / tactile sensation transmission pattern.
  • the force-tactile sensation transmission pattern is, for example, recorded data for each section obtained by classifying data when a fish has been caught in the past according to the depth of water in which the fish is located and at a timing when the movement is small.
  • step S27 the management unit 31c of the master-side control device 30 reads the selected pattern data from the storage device.
  • step S28 the force / tactile sensation transmission unit 31b of the master-side control device 30 reproduces the force / tactile sensation in the fishing rod manipulator 10 by performing coordinate conversion using the read pattern data as a reference value (see FIG. 1).
  • step S ⁇ b> 29 the management unit 31 c of the master-side control device 30 displays the type of fish or the size of the fish on the head mounted display 20, and outputs the type of fish or the size of the fish from the speaker provided in the head mounted display 20. To do.
  • step S30 the management unit 31c of the master-side control device 30 determines whether or not the fish has been pulled up to a depth of 50 cm when the user operates the fishing rod manipulator 10. Here, as a reference whether or not the fish has been caught, it is determined whether or not the fish has been raised within a depth of 50 cm. If a fish is pulled up within 50 cm of water, it can usually be caught by scooping it with “Tama”.
  • “Depth of 50 cm” is an example, and can be appropriately changed according to the fishing situation (fishing place, type of fish to be aimed at, etc.). If the fish has not been pulled up to a depth of 50 cm, NO is determined in step S30, and the process proceeds to step S26. On the other hand, if the fish has been pulled up to a depth of 50 cm, YES is determined in step S30, and the process proceeds to step S31.
  • step S ⁇ b> 31 the management unit 31 c of the master-side control device 30 displays on the head-mounted display 20 that the fishing has been successful, assuming that the fish that has been hit has been successfully caught.
  • step S31 the remote fishing experience control process ends.
  • step S ⁇ b> 32 the data recording unit 31 d of the master control device 30 starts recording external force data input to the fishing robot 50. If the data recorded at this time can reproduce the force-tactile state, such as the position (rotation angle) data detected by the encoder 53, or a control parameter calculated as a result of coordinate conversion, Various formats can be used.
  • step S ⁇ b> 33 the management unit 31 c of the master-side control device 30 displays the type of fish or the size of the fish on the head mounted display 20, and outputs the type of fish or the size of the fish from the speaker provided in the head mounted display 20. To do.
  • step S ⁇ b> 34 the management unit 31 c of the master-side control device 30 determines whether or not the fish has been pulled up to a depth of 50 cm by operating the fishing rod type manipulator 10. If the fish has not been pulled up to a depth of 50 cm, NO is determined in step S34, and the process proceeds to step S26. On the other hand, if the fish has been pulled up to a depth of 50 cm, YES is determined in step S34, and the process proceeds to step S33.
  • step S ⁇ b> 35 the management unit 31 c of the master-side control device 30 displays on the head-mounted display 20 that the fishing has been successful, assuming that the fish that has been hit has been successfully caught.
  • step S ⁇ b> 36 the data recording unit 31 d of the master control device 30 ends the recording of the external force data input to the fishing robot 50. After step S36, the remote fishing control experience control process ends.
  • the user can experience fishing remotely with a sense of actually touching a fishing rod.
  • the force / tactile sensation transmission system 1 it is possible to provide a technology capable of realizing a more realistic experience via a robot.
  • FIG. 5 is shown as the actuator 100 used as the actuator 12 or the actuator 52, but the configuration is not limited thereto.
  • the output of the actuator 100 can be increased.
  • FIG. 8 is a schematic diagram illustrating another configuration example of the actuator 100 used in the force-tactile transmission system 1.
  • the actuator 100 of this modification has a configuration in which two motors 101 are connected to the configuration example shown in FIG. 5.
  • the output torque of the actuator 100 can be increased twice as compared with the configuration example shown in FIG. Note that the output torque can be doubled by doubling the reduction ratio of the gear 102, but the reduction ratio of the gear 102 is doubled.
  • FIG. 9 is a schematic diagram illustrating another configuration example of the actuator 100 used in the force-tactile transmission system 1. Since the actuator 100 includes the gear 102, the generation of friction is inevitable. Therefore, as shown in FIG. 9, it is possible to input a current for canceling the frictional force to the motor 101 and perform control for compensating the frictional force (applying compensation torque). At this time, a current is evenly input to the two motors 101 connected. As a result, it is possible to avoid a situation in which the final output torque decreases due to the current being biased to one of the motors 101.
  • a current for compensating the weight of a reel or the like installed on the fishing rod held by the fishing rod type manipulator 10 or the fishing robot 50 can be input to the motor 101 to control the gravity. Also in this case, a current is equally input to the two motors 101 connected.
  • FIG. 10 is a schematic diagram illustrating another configuration example of the actuator 100 used in the force-tactile transmission system 1.
  • a torque sensor 104 can be provided on the output shaft of the actuator 100, whereby an external force input to the actuator 100 can be measured.
  • the actuator 100 is used as the actuator 52 of the fishing robot 50, it is possible to directly measure the torque when fishing a fish. Since the difference between the torque output by the two connected motors 101 multiplied by the gear ratio of the gear 102 and the value measured by the torque sensor 104 corresponds to friction, the reaction force (torque) can be calculated with higher accuracy. It becomes possible to measure, and a sharp force-tactile transmission becomes possible.
  • FIG. 11 is a schematic diagram illustrating a configuration example of a fishing rod type manipulator 10 configured as a multi-axis mechanism.
  • FIG. 12 is a schematic diagram illustrating a configuration example of a fishing robot 50 configured as a multi-axis mechanism.
  • the fishing rod type manipulator 10 shown in FIG. 11 and the fishing robot 50 shown in FIG. 12 have the same joint mechanism, and the force / tactile sensation transmission unit 31b of the master-side control device 30 applies force between the actuators 100 provided in the corresponding joints. Tactile transmission is performed. Specifically, as shown in FIG. 11, the fishing rod type manipulator 10 rotates around the rotation axis R1, the first joint J1 rotating around the rotation axis R1, the second joint J2 rotating around the rotation axis R2, and the rotation axis R3. And a third joint J3.
  • the rotation axes R1 and R3 are set in a substantially vertical direction, and the rotation axis R2 is set in a substantially horizontal direction.
  • Each of the first joint J1 to the third joint J3 is provided with an actuator 100 for driving the joint.
  • the first joint J1 is installed as a joint corresponding to a human shoulder
  • the third joint J3 is installed as a joint corresponding to a human elbow.
  • the fishing robot 50 includes the first joint J1 to the third joint J3, similar to the fishing rod type manipulator 10, and actuators 100 are provided in these joints. Further, the fishing robot 50 is provided with a camera C for photographing the fishing spot. The camera C is installed at a position corresponding to the human viewpoint with respect to the first joint.
  • the real haptics mode is used to photograph the fishing ground from the position corresponding to the human viewpoint
  • a fishing robot 50 that performs fishing by a movement corresponding to the movement of the elbow is used as an avatar
  • external force input to the fishing robot 50 is transmitted to the fishing rod type manipulator 10 as well as an operation input by a human to the fishing rod type manipulator 10.
  • a remote fishing experience can be performed while accurately reproducing at 10.
  • the force / tactile sensation transmission system 1 by reproducing the data when the fish has been caught in the past in the pseudo experience mode, it is possible to cause the user to experience the force / tactile sense when fishing.
  • the fishing rod type manipulator 10 and the fishing robot 50 it is possible to perform fishing by movement corresponding to the movement of the human shoulder and elbow while photographing the fishing ground from the position corresponding to the human viewpoint.
  • the user can perform a remote fishing experience or a simulated fishing experience with a more natural sense.
  • the force / tactile sensation transmission system 1 configured as described above includes a fishing rod type manipulator 10, a master side control device 30, and a fishing robot 50.
  • the fishing robot 50 can execute a fishing operation, and the fishing rod type manipulator 10 is installed apart from the fishing robot 50.
  • the master side control device 30 is configured to be able to communicate with the fishing robot 50 and the fishing rod type manipulator 10.
  • the master-side control device 30 causes the fishing rod type manipulator 10 to output a force / tactile sensation due to the external force input to the fishing rod based on information indicating the current or past external force input to the fishing rod provided in the fishing robot 50. Thereby, the external force input to the fishing rod provided in the fishing robot 50 can be transmitted to the fishing rod manipulator 10. Therefore, it is possible to provide a technology capable of realizing a more realistic experience via a robot.
  • the master-side control device 30 causes the fishing robot 50 to output a force haptic by the external force input to the fishing rod type manipulator 10 based on information indicating the external force input by operating the fishing rod type manipulator 10. Thereby, the operation which the user performed with respect to the fishing rod type manipulator 10 can be accurately reproduced in the fishing robot 50, and fishing can be experienced in the position away from the fishing spot.
  • the master control device 30 obtains the operation in the first mode (real haptics mode) for transmitting the force / tactile sensation between the fishing rod type manipulator 10 and the fishing robot 50 in real time and the data when the fish has been caught in the past.
  • the fishing rod type manipulator 10 can execute the operation in the second mode (pseudo-experience mode) for artificially outputting the force / tactile sense at the time of fishing.
  • the second mode prseudo-experience mode
  • the master-side control device 30 executes switching between the first mode and the second mode in accordance with preset conditions. Thereby, depending on the situation, you can choose to experience fishing in real time at a position away from the fishing ground, and to reproduce the data when you caught fish in the past and experience fishing in a pseudo manner It becomes possible.
  • the preset condition includes the time until the departure time of the transportation facility. Thereby, it is possible to provide the user with a fishing experience with appropriate contents in accordance with the waiting time of the transportation facility.
  • the present invention can be appropriately modified and improved within the scope of the effects of the present invention, and is not limited to the above-described embodiments and modifications.
  • the present invention is implemented in the force / haptic transmission system 1 in addition to being realized as the force / haptic transmission system 1, the master side control device 30, or the slave side control device 40 (force / haptic transmission device) in the above-described embodiment. It can be realized as a force / tactile sensation transmission method constituted by each step or a program executed by a processor to realize the function of the force / tactile sensation transmission system 1.
  • the example in which the master-side control device 30 and the slave-side control device 40 are configured as different devices has been described, but it is also possible to configure them as an integrated control device.
  • the water depth of the fish is determined by the amount of fishing line wound on the reel of the fishing rod held by the fishing robot 50, or the water depth of the fish is determined by a camera installed in the fishing robot. You can do it. Further, when it is determined whether or not the fish has been caught from the water, it can be determined by the fact that when the fish is caught from the water, the buoyancy is lost and the weight applied to the fishing line increases rapidly.
  • the force / tactile sensation is bidirectionally transmitted between the fishing rod manipulator 10 and the fishing robot 50
  • the present invention is not limited thereto.
  • the force sense of the external force input to the fishing robot 50 is output from the fishing rod type manipulator 10, and the fishing rod type manipulator
  • the force / tactile sensation by the operation input to 10 may not be transmitted to the fishing robot 50 (or the operation may be transmitted in a rounded manner).
  • the fishing robot 50 When the operation by the operation input to the fishing rod manipulator 10 is rounded and transmitted to the fishing robot 50, for example, only a large operation such as lifting the fishing rod or winding up the reel 14 is transmitted to the fishing robot 50, and an accurate force / tactile sense is transmitted. Can be omitted. In this case, the fishing robot 50 may automatically perform control for fishing the fish.
  • the processing in the above-described embodiment or the like can be executed by either hardware or software. That is, it is only necessary that the force / tactile sensation transmission system 1 has a function capable of executing the above-described processing, and what functional configuration and hardware configuration are used to realize this function is not limited to the above-described example.
  • a program constituting the software is installed on a computer from a network or a storage medium.
  • the storage medium for storing the program includes a removable medium distributed separately from the apparatus main body, or a storage medium incorporated in the apparatus main body in advance.
  • the removable medium is composed of, for example, a semiconductor memory (flash memory or the like), a magnetic disk, an optical disk, a magneto-optical disk, or the like.
  • the optical disc is composed of, for example, a CD-ROM (Compact Disc-Read Only Memory), a DVD (Digital Versatile Disc), a Blu-ray Disc (registered trademark), and the like.
  • the magneto-optical disk is configured by MD (Mini-Disc) or the like.
  • the storage medium incorporated in advance in the apparatus main body is constituted by, for example, a ROM or a hard disk in which a program is stored.
  • the said embodiment has shown an example to which this invention is applied, and does not limit the technical scope of this invention. That is, the present invention can be modified in various ways such as omission and replacement without departing from the gist of the present invention, and can take various embodiments other than the above-described embodiments. Various embodiments that the present invention can take and modifications thereof are included in the invention described in the scope of claims and the equivalents thereof.
  • S Control target system FT function-specific force / speed allocation conversion block, FC ideal force source block, PC ideal speed (position) source block, IFT inverse conversion block, 1 force tactile transmission system, 10 fishing rod type manipulator, 11, 51 hinge 12, 52, 100 actuator, 13, 53 encoder, 14 reel, 20 head mounted display, 30 master side control device, 31 CPU, 31a position acquisition unit, 31b force / tactile transmission unit, 31c management unit, 31d data recording unit, 32 RAM, 33 storage device, 33a parameter storage unit, 34 communication interface, 40 slave side control device, 50 fishing robot, 50A arm, 60 network, 101 motor, 102 gear, 103 mounting member, 10 Torque sensor, R1-R3 rotation axis, J1-J3 first joint to third joint, C camera

Abstract

[Problem] To provide technology that can realize an experience with enhanced reality via a robot. [Solution] Provided is a force-tactile transmitting system that includes: an angling robot capable of performing an angling motion and a fishing-rod-shaped manipulator spaced from the angling robot; and a control device configured to be communicable with the angling robot and the fishing-rod-shaped manipulator, wherein, on the basis of information indicative of a current or prior external force inputted to a fishing rod mounted to the angling robot, the control device causes the fishing-rod-shaped manipulator to output a force-tactile sense generated by an external force inputted to the fishing rod.

Description

力触覚伝達システム、力触覚伝達装置、力触覚伝達方法及びプログラムForce-tactile transmission system, force-tactile transmission device, force-tactile transmission method, and program
 本発明は、力触覚伝達システム、力触覚伝達装置、力触覚伝達方法及びプログラムに関する。 The present invention relates to a force / haptic transmission system, a force / haptic transmission device, a force / haptic transmission method, and a program.
 近年、ユーザを代理して行動するアバターと呼ばれるロボットが開発されている。
 アバターを用いることにより、ユーザが遠隔にいる場合であっても、アバターが収集した視覚情報あるいは聴覚情報等をユーザにフィードバックすることで、ユーザはアバターを介して種々の体験を行うことができる。
 なお、アバターに関する技術は、例えば特許文献1に記載されている。
In recent years, robots called avatars acting on behalf of users have been developed.
By using an avatar, even if the user is remote, the user can perform various experiences via the avatar by feeding back to the user the visual information or auditory information collected by the avatar.
In addition, the technique regarding an avatar is described in patent document 1, for example.
特開2017-169839号公報JP 2017-169839
 しかしながら、アバターを用いてユーザが体験できることは、視覚情報あるいは聴覚情報を中心とする内容に限られており、リアリティが十分に高いものではなかった。なお、触覚等を伝達する技術をアバターに実装する提案も行われているが、アバターを用いてリアリティの高い体験を実現できるまでには至っていない。
 即ち、従来の技術においては、アバター等のロボットを介してリアリティの高い体験を実現可能な技術が提供されていなかった。
 本発明の課題は、ロボットを介してよりリアリティの高い体験を実現可能とする技術を提供することである。
However, what a user can experience using an avatar is limited to contents centered on visual information or auditory information, and reality is not sufficiently high. In addition, although proposals have been made to implement a technology for transmitting tactile sensation in an avatar, it has not yet been possible to realize a high-reality experience using an avatar.
That is, in the conventional technology, a technology capable of realizing a high reality experience via a robot such as an avatar has not been provided.
An object of the present invention is to provide a technique that enables a more realistic experience to be realized via a robot.
 上記課題を解決するため、本発明の一態様に係る力触覚伝達システムは、
 釣り上げる動作を実行可能な釣りロボット及び当該釣りロボットから離間して設置された釣り竿型マニピュレータと、前記釣りロボット及び前記釣り竿型マニピュレータと通信可能に構成された制御装置とを含む力触覚伝達システムであって、
 前記制御装置は、
 前記釣りロボットに備えられた釣り竿に入力する現在または過去の外力を示す情報に基づいて、前記釣り竿型マニピュレータに前記釣り竿に入力した外力による力触覚を出力させることを特徴とする。
In order to solve the above problems, a force / tactile sensation transmission system according to one aspect of the present invention provides:
A force / tactile sensation transmission system including a fishing robot capable of performing a fishing operation, a fishing rod type manipulator installed apart from the fishing robot, and a control device configured to be able to communicate with the fishing robot and the fishing rod type manipulator. And
The controller is
Based on information indicating a current or past external force input to a fishing rod provided in the fishing robot, the fishing rod-type manipulator outputs a force / tactile force due to the external force input to the fishing rod.
 本発明によれば、ロボットを介してよりリアリティの高い体験を実現可能な技術を提供することができる。 According to the present invention, it is possible to provide a technology capable of realizing a more realistic experience via a robot.
本発明に係る基本的原理の概念を示す模式図である。It is a schematic diagram which shows the concept of the basic principle which concerns on this invention. 機能別力・速度割当変換ブロックFTにおいて力触覚伝達機能が定義された場合の制御の概念を示す模式図である。It is a schematic diagram which shows the concept of control when the force / haptic transmission function is defined in the force / speed allocation conversion block FT by function. 本発明に係る力触覚伝達システムのシステム構成を示す模式図である。1 is a schematic diagram showing a system configuration of a force / tactile sensation transmission system according to the present invention. マスタ側制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of a master side control apparatus. 力触覚伝達システムにおいて用いられるアクチュエータの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the actuator used in a force-tactile transmission system. 力触覚伝達システムが実行する力触覚伝達処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the force haptic transmission process which a force haptic transmission system performs. 力触覚伝達システムが実行する遠隔釣り体験制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the remote fishing experience control process which a force-tactile transmission system performs. 力触覚伝達システムにおいて用いられるアクチュエータの他の構成例を示す模式図である。It is a schematic diagram which shows the other structural example of the actuator used in a force-tactile transmission system. 力触覚伝達システムにおいて用いられるアクチュエータの他の構成例を示す模式図である。It is a schematic diagram which shows the other structural example of the actuator used in a force-tactile transmission system. 力触覚伝達システムにおいて用いられるアクチュエータの他の構成例を示す模式図である。It is a schematic diagram which shows the other structural example of the actuator used in a force-tactile transmission system. 多軸の機構として構成された釣り竿型マニピュレータの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the fishing rod type manipulator comprised as a multi-axis mechanism. 多軸の機構として構成された釣りロボットの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the fishing robot comprised as a multi-axis mechanism.
 以下、本発明の実施形態について、図面を参照して説明する。
 初めに、本発明に係る力触覚伝達システム、力触覚伝達装置、力触覚伝達方法及びプログラムに適用される基本的原理について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, basic principles applied to the force / tactile sensation transmission system, the force / tactile sensation transmission device, the force / tactile sensation transmission method, and the program according to the present invention will be described.
 なお、人間の身体的行為は、1つの関節等の個別の「機能」が単独で、あるいは組み合わされて構成されるものである。
 したがって、以下、本実施形態において、「行為」とは、人間の身体における部位の個別の「機能」を構成要素として実現される統合的な機能を表すものとする。例えば、中指の曲げ伸ばしを伴う行為(ねじを回す行為等)は、中指の各関節の機能を構成要素とする統合的な機能である。
It should be noted that a human physical action is configured by individual “functions” such as one joint alone or in combination.
Therefore, hereinafter, in the present embodiment, “act” represents an integrated function realized by using individual “functions” of parts in the human body as components. For example, an action involving bending and stretching of the middle finger (an action of turning a screw or the like) is an integrated function having the function of each joint of the middle finger as a component.
(基本的原理)
 本発明における基本的原理は、どのような行為も力源と速度(位置)源および行為を表す変換の三要素で数理的に表現できることから、変換及び逆変換により定義される変数群に対し、双対関係にある理想力源および理想速度(位置)源より制御エネルギーを制御対象のシステムに供給することで、抽出した身体的行為を構造化し、再構築あるいは拡張増幅し身体的行為を可逆的に自動実現(再現)する、というものである。
(Basic principle)
The basic principle of the present invention is that any action can be mathematically expressed by three elements of force source, velocity (position) source, and transformation representing the action. Therefore, for a variable group defined by transformation and inverse transformation, By supplying control energy from the ideal force source and ideal velocity (position) source in a dual relationship to the controlled system, the extracted physical action is structured, reconstructed or expanded, and the physical action is reversible. Automatic realization (reproduction).
 図1は、本発明に係る基本的原理の概念を示す模式図である。
 図1に示す基本的原理は、人間の身体的行為を実現するために利用可能なアクチュエータの制御則を表しており、アクチュエータの現在位置を入力として、位置(または速度)あるいは力の少なくとも一方の領域における演算を行うことにより、アクチュエータの動作を決定するものである。
 即ち、本発明の基本的原理は、制御対象システムSと、機能別力・速度割当変換ブロックFTと、理想力源ブロックFCあるいは理想速度(位置)源ブロックPCの少なくとも1つと、逆変換ブロックIFTとを含む制御則として表される。
FIG. 1 is a schematic diagram showing the concept of the basic principle according to the present invention.
The basic principle shown in FIG. 1 represents a control law of an actuator that can be used to realize a human physical action. The current position of the actuator is used as an input, and at least one of position (or velocity) or force is used. The operation of the actuator is determined by performing the calculation in the region.
That is, the basic principle of the present invention is that the control target system S, the function-specific force / speed allocation conversion block FT, the ideal force source block FC or the ideal speed (position) source block PC, and the inverse conversion block IFT. It is expressed as a control law including
 制御対象システムSは、アクチュエータによって作動するロボット(例えば、ユーザから遠隔的な場所に設置されたアバター等)であり、加速度等に基づいてアクチュエータの制御を行う。ここで、制御対象システムSは、人間の身体における1つまたは複数の部位の機能を実現するものであるが、その機能を実現するための制御則が適用されていれば、具体的な構成は必ずしも人間の身体を模した形態でなくてもよい。例えば、制御対象システムSは、ユーザが用いる器具(釣り竿等)をアクチュエータによって制御するロボットとすることができる。 The control target system S is a robot operated by an actuator (for example, an avatar or the like installed at a location remote from the user), and controls the actuator based on acceleration or the like. Here, the control target system S realizes the function of one or a plurality of parts in the human body. If a control law for realizing the function is applied, the specific configuration is as follows. It is not necessarily a form that imitates the human body. For example, the control target system S can be a robot that controls an instrument (such as a fishing rod) used by a user with an actuator.
 機能別力・速度割当変換ブロックFTは、制御対象システムSの機能に応じて設定される速度(位置)及び力の領域への制御エネルギーの変換を定義するブロックである。具体的には、機能別力・速度割当変換ブロックFTでは、制御対象システムSの機能の基準となる値(基準値)と、アクチュエータの現在位置とを入力とする座標変換が定義されている。この座標変換は、一般に、基準値及び現在速度(位置)を要素とする入力ベクトルを速度(位置)の制御目標値を算出するための速度(位置)からなる出力ベクトルに変換すると共に、基準値及び現在の力を要素とする入力ベクトルを力の制御目標値を算出するための力からなる出力ベクトルに変換するものである。具体的には、機能別力・速度割当変換ブロックFTにおける座標変換は、次式(1)及び(2)のように一般化して表される。 The function-specific force / speed allocation conversion block FT is a block that defines conversion of control energy into a speed (position) and force area set according to the function of the control target system S. Specifically, in the function-specific force / speed allocation conversion block FT, coordinate conversion is defined in which the function reference value (reference value) of the control target system S and the current position of the actuator are input. In this coordinate conversion, generally, an input vector whose elements are a reference value and a current speed (position) is converted into an output vector composed of a speed (position) for calculating a control target value of the speed (position), and a reference value In addition, an input vector having the current force as an element is converted into an output vector composed of a force for calculating a force control target value. Specifically, the coordinate conversion in the function-specific force / speed allocation conversion block FT is generalized as in the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ただし、式(1)において、x’1~x’n(nは1以上の整数)は速度の状態値を導出するための速度ベクトルであり、x’a~x’m(mは1以上の整数)は、基準値及びアクチュエータの作用に基づく速度(アクチュエータの移動子の速度またはアクチュエータが移動させる対象物の速度)を要素とするベクトル、h1a~hnmは機能を表す変換行列の要素である。また、式(2)において、f’’1~f’’n(nは1以上の整数)は力の状態値を導出するための力ベクトルであり、f’’a~f’’m(mは1以上の整数)は、基準値及びアクチュエータの作用に基づく力(アクチュエータの移動子の力またはアクチュエータが移動させる対象物の力)を要素とするベクトルである。
 機能別力・速度割当変換ブロックFTにおける座標変換を、実現する機能に応じて設定することにより、各種行為を実現したり、スケーリングを伴う行為の再現を行ったりすることができる。
 即ち、本発明の基本的原理では、機能別力・速度割当変換ブロックFTにおいて、アクチュエータ単体の変数(実空間上の変数)を、実現する機能を表現するシステム全体の変数群(仮想空間上の変数)に“変換”し、速度(位置)の制御エネルギーと力の制御エネルギーとに制御エネルギーを割り当てる。そのため、アクチュエータ単体の変数(実空間上の変数)のまま制御を行う場合と比較して、速度(位置)の制御エネルギーと力の制御エネルギーとを独立に与えることが可能となっている。
In Equation (1), x ′ 1 to x ′ n (n is an integer of 1 or more) are velocity vectors for deriving the speed state value, and x ′ a to x ′ m (m is 1 or more). Is a vector whose elements are the reference value and the speed based on the action of the actuator (the speed of the actuator mover or the speed of the object moved by the actuator), and h 1a to h nm are elements of the transformation matrix representing the function It is. In Expression (2), f ″ 1 to f ″ n (n is an integer of 1 or more) is a force vector for deriving force state values, and f ″ a to f ″ m ( m is an integer of 1 or more) is a vector whose elements are a force based on the reference value and the action of the actuator (the force of the moving element of the actuator or the force of the object moved by the actuator).
By setting the coordinate conversion in the function-specific force / speed allocation conversion block FT according to the function to be realized, various actions can be realized or an action accompanied by scaling can be reproduced.
That is, according to the basic principle of the present invention, in the function-specific force / velocity allocation conversion block FT, the variables of the actuator alone (variables in the real space) are converted into variable groups (virtual space in the virtual space) representing the functions to be realized. Variable) and assigns control energy to velocity (position) control energy and force control energy. For this reason, it is possible to independently give control energy of speed (position) and control energy of force as compared with a case where control is performed with a variable of the actuator alone (variable in real space).
 理想力源ブロックFCは、機能別力・速度割当変換ブロックFTによって定義された座標変換に従って、力の領域における演算を行うブロックである。理想力源ブロックFCにおいては、機能別力・速度割当変換ブロックFTによって定義された座標変換に基づく演算を行う際の力に関する目標値が設定されている。この目標値は、実現される機能に応じて固定値または可変値として設定される。例えば、基準値が示す機能と同様の機能を実現する場合には、目標値としてゼロを設定したり、スケーリングを行う場合には、再現する機能を示す情報を拡大・縮小した値を設定したりできる。 The ideal force source block FC is a block that performs calculations in the force region in accordance with the coordinate conversion defined by the function-specific force / speed allocation conversion block FT. In the ideal force source block FC, a target value related to a force for performing a calculation based on the coordinate transformation defined by the function-specific force / speed allocation transformation block FT is set. This target value is set as a fixed value or a variable value depending on the function to be realized. For example, when realizing a function similar to the function indicated by the reference value, zero is set as the target value, and when scaling is performed, a value obtained by enlarging or reducing the information indicating the function to be reproduced is set. it can.
 理想速度(位置)源ブロックPCは、機能別力・速度割当変換ブロックFTによって定義された座標変換に従って、速度(位置)の領域における演算を行うブロックである。理想速度(位置)源ブロックPCにおいては、機能別力・速度割当変換ブロックFTによって定義された座標変換に基づく演算を行う際の速度(位置)に関する目標値が設定されている。この目標値は、実現される機能に応じて固定値または可変値として設定される。例えば、基準値が示す機能と同様の機能を実現する場合には、目標値としてゼロを設定したり、スケーリングを行う場合には、再現する機能を示す情報を拡大・縮小した値を設定したりできる。 The ideal speed (position) source block PC is a block that performs calculations in the speed (position) area according to the coordinate conversion defined by the function-specific force / speed allocation conversion block FT. In the ideal speed (position) source block PC, a target value related to the speed (position) when performing the calculation based on the coordinate transformation defined by the function-specific force / speed assignment transformation block FT is set. This target value is set as a fixed value or a variable value depending on the function to be realized. For example, when realizing a function similar to the function indicated by the reference value, zero is set as the target value, and when scaling is performed, a value obtained by enlarging or reducing the information indicating the function to be reproduced is set. it can.
 逆変換ブロックIFTは、速度(位置)及び力の領域の値を制御対象システムSへの入力の領域の値(例えば電圧値または電流値等)に変換するブロックである。
 このような基本的原理により、制御対象システムSのアクチュエータにおける位置の情報が機能別力・速度割当変換ブロックFTに入力されると、位置の情報に基づいて得られる速度(位置)及び力の情報を用いて、機能別力・速度割当変換ブロックFTにおいて、機能に応じた位置及び力の領域それぞれの制御則が適用される。そして、理想力源ブロックFCにおいて、機能に応じた力の演算が行われ、理想速度(位置)源ブロックPCにおいて、機能に応じた速度(位置)の演算が行われ、力及び速度(位置)それぞれに制御エネルギーが分配される。
The inverse conversion block IFT is a block that converts the value of the velocity (position) and force region into the value (for example, voltage value or current value) of the input region to the control target system S.
Based on such a basic principle, when position information in the actuator of the control target system S is input to the function-specific force / speed allocation conversion block FT, speed (position) and force information obtained based on the position information. In the function-specific force / speed allocation conversion block FT, the control laws of the position and force regions corresponding to the functions are applied. Then, in the ideal force source block FC, a force according to the function is calculated, and in the ideal speed (position) source block PC, a speed (position) according to the function is calculated, and the force and speed (position). Control energy is distributed to each.
 理想力源ブロックFC及び理想速度(位置)源ブロックPCにおける演算結果は、制御対象システムSの制御目標を示す情報となり、これらの演算結果が逆変換ブロックIFTにおいてアクチュエータの入力値とされて、制御対象システムSに入力される。
 その結果、制御対象システムSのアクチュエータは、機能別力・速度割当変換ブロックFTによって定義された機能に従う動作を実行し、目的とするロボットの動作が実現される。
 即ち、本発明においては、ロボットによって人間の身体的行為をより適切に実現することが可能となる。
The calculation results in the ideal force source block FC and the ideal speed (position) source block PC are information indicating the control target of the control target system S, and these calculation results are used as the input values of the actuator in the inverse conversion block IFT, and control is performed. Input to the target system S.
As a result, the actuator of the control target system S executes the operation according to the function defined by the function-specific force / speed allocation conversion block FT, and the target robot operation is realized.
That is, in the present invention, it becomes possible to more appropriately realize the human physical action by the robot.
(定義される機能例)
 次に、機能別力・速度割当変換ブロックFTによって定義される機能の具体例について説明する。
 機能別力・速度割当変換ブロックFTでは、入力されたアクチュエータの現在位置に基づいて得られる速度(位置)及び力を対象とした座標変換(実現する機能に対応した実空間から仮想空間への変換)が定義されている。
 機能別力・速度割当変換ブロックFTでは、このような現在位置から速度(位置)及び力と、機能の基準値としての速度(位置)及び力とを入力として、速度(位置)及び力それぞれについての制御則が加速度次元において適用される。
 即ち、アクチュエータにおける力は質量と加速度との積で表され、アクチュエータにおける速度(位置)は加速度の積分によって表される。そのため、加速度の領域を介して、速度(位置)及び力を制御することで、アクチュエータの現在位置を取得して、目的とする機能を実現することができる。
(Example of functions defined)
Next, a specific example of the function defined by the function-specific force / speed allocation conversion block FT will be described.
In the function-specific force / speed allocation conversion block FT, coordinate conversion for the speed (position) and force obtained based on the input current position of the actuator (conversion from real space to virtual space corresponding to the function to be realized) ) Is defined.
In the function-specific force / speed allocation conversion block FT, the speed (position) and force from the current position and the speed (position) and force as the reference value of the function are input, and the speed (position) and force are respectively input. The following control law is applied in the acceleration dimension.
That is, the force in the actuator is represented by the product of mass and acceleration, and the velocity (position) in the actuator is represented by the integral of acceleration. Therefore, by controlling the speed (position) and force through the acceleration region, the current position of the actuator can be acquired and the intended function can be realized.
 以下、本発明で用いる機能の具体例を説明する。
(力触覚伝達機能)
 図2は、機能別力・速度割当変換ブロックFTにおいて力触覚伝達機能が定義された場合の制御の概念を示す模式図である。
 図2に示すように、機能別力・速度割当変換ブロックFTによって定義される機能として、マスタ装置の動作をスレーブ装置に伝達すると共に、スレーブ装置に対する物体からの反力の入力をマスタ装置にフィードバックする機能(バイラテラル制御機能)を実現することができる。
 この場合、機能別力・速度割当変換ブロックFTにおける座標変換は、次式(3)及び(4)として表される。
Hereinafter, specific examples of functions used in the present invention will be described.
(Force / tactile transmission function)
FIG. 2 is a schematic diagram showing the concept of control when the force / tactile transmission function is defined in the function-specific force / speed allocation conversion block FT.
As shown in FIG. 2, as a function defined by the function-specific force / speed allocation conversion block FT, the operation of the master device is transmitted to the slave device, and the reaction force input from the object to the slave device is fed back to the master device. Function (bilateral control function) can be realized.
In this case, the coordinate conversion in the function-specific force / speed allocation conversion block FT is expressed as the following equations (3) and (4).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ただし、式(3)において、x’pは速度(位置)の状態値を導出するための速度、x’fは力の状態値に関する速度である。また、x’mは基準値(マスタ装置からの入力)の速度(マスタ装置の現在位置の微分値)、x’sはスレーブ装置の現在の速度(現在位置の微分値)である。また、式(4)において、fpは速度(位置)の状態値に関する力、ffは力の状態値を導出するための力である。また、fmは基準値(マスタ装置からの入力)の力、fsはスレーブ装置の現在の力である。 In Equation (3), x ′ p is a speed for deriving the state value of speed (position), and x ′ f is a speed related to the force state value. Further, x ′ m is the speed (differential value of the current position of the master device) of the reference value (input from the master device), and x ′ s is the current speed (differential value of the current position) of the slave device. Further, in the equation (4), f p is the force on the status value of the speed (position), the f f is the force for deriving the state value of the force. Further, f m is a reference value (input from the master device), and f s is a current force of the slave device.
(システム構成)
 図3は、本発明に係る力触覚伝達システム1のシステム構成を示す模式図である。
 図3に示すように、力触覚伝達システム1は、マスタ装置としての釣り竿型マニピュレータ10と、ヘッドマウントディスプレイ20と、マスタ側制御装置30と、スレーブ側制御装置40と、スレーブ装置としての釣りロボット50とを含んで構成され、マスタ側制御装置30とスレーブ側制御装置40とは、インターネット等のネットワーク60を介して接続されている。また、釣り竿型マニピュレータ10及びヘッドマウントディスプレイ20はマスタ側制御装置30と無線通信ネットワークあるいは通信ケーブル等によって通信可能に構成され、スレーブ側制御装置40は釣りロボット50と無線通信ネットワークあるいは通信ケーブル等によって通信可能に構成されている。なお、マスタ側制御装置30とスレーブ側制御装置40とを通信ケーブル等の有線通信で接続し、ローカルシステムとして力触覚伝達システム1を構成することも可能である。
(System configuration)
FIG. 3 is a schematic diagram showing a system configuration of the force-tactile transmission system 1 according to the present invention.
As shown in FIG. 3, the force / tactile sensation transmission system 1 includes a fishing rod type manipulator 10 as a master device, a head mounted display 20, a master side control device 30, a slave side control device 40, and a fishing robot as a slave device. The master side control device 30 and the slave side control device 40 are connected via a network 60 such as the Internet. Further, the fishing rod type manipulator 10 and the head mounted display 20 are configured to be able to communicate with the master-side control device 30 through a wireless communication network or a communication cable, and the slave-side control device 40 is connected with the fishing robot 50 through a wireless communication network or a communication cable. It is configured to be able to communicate. It is also possible to configure the force / tactile sensation transmission system 1 as a local system by connecting the master side control device 30 and the slave side control device 40 by wired communication such as a communication cable.
 図3に示す力触覚伝達システム1は、アバターとしての釣りロボット50を遠隔地にいるユーザが釣り竿型マニピュレータ10で操作することにより、遠隔的に釣りを体験することが可能なシステムである。また、力触覚伝達システム1では、釣りロボット50が備える釣り竿に入力した外力による力触覚を釣り竿型マニピュレータ10に伝達すると共に、釣り竿型マニピュレータ10に対してユーザが行った操作による力触覚を釣りロボット50に伝達する。 The force / tactile sensation transmission system 1 shown in FIG. 3 is a system that allows a remote user to experience fishing by operating a fishing robot 50 as an avatar with a fishing rod type manipulator 10. Further, in the force / tactile sensation transmission system 1, a force / tactile sensation due to an external force input to a fishing rod included in the fishing robot 50 is transmitted to the fishing rod type manipulator 10, and a force / tactile sensation by an operation performed by the user on the fishing rod type manipulator 10 is transmitted. 50.
 そのため、ユーザは、実際に釣り竿を触っている感覚で、遠隔的に釣りを体験することができる。
 このように、力触覚伝達システム1によれば、ロボットを介してよりリアリティの高い体験を実現可能な技術を提供することができる。
 また、力触覚伝達システム1においては、単に力触覚を伝達することに加え、設定に応じて、力触覚を拡大または縮小して伝達したり、特定の周波数の力触覚のみを拡大・縮小して伝えたり、仮想的な力触覚を加えて伝達したりすることが可能である。
 なお、本実施形態の力触覚伝達システム1においては、ユーザが釣りを体験するためのモードとして、リアルハプティクスモードと、疑似体験モードとが設定可能となっている。リアルハプティクスモードとは、釣り竿型マニピュレータ10と釣りロボット50との間でリアルタイムに力触覚の伝達を行い、釣りロボット50が釣り竿型マニピュレータ10を使用するユーザのアバターとなるモードである。また、疑似体験モードとは、過去に魚を釣り上げた際のデータを再生することにより、ユーザに釣り上げ時の力触覚を疑似体験させるモードである。
 以下、力触覚伝達システム1の構成について具体的に説明する。
Therefore, the user can experience fishing remotely with the feeling of actually touching the fishing rod.
As described above, according to the force / tactile sensation transmission system 1, it is possible to provide a technology capable of realizing a more realistic experience via a robot.
Further, in the force / tactile sensation transmission system 1, in addition to simply transmitting the force / tactile sense, the force / tactile sense is enlarged or reduced according to the setting, or only the force / haptic sense of a specific frequency is enlarged / reduced. It is possible to communicate or add virtual force and tactile sensation.
In the force / tactile sensation transmission system 1 of the present embodiment, a real haptics mode and a pseudo experience mode can be set as modes for the user to experience fishing. The real haptics mode is a mode in which a force / tactile sensation is transmitted between the fishing rod type manipulator 10 and the fishing robot 50 in real time, and the fishing robot 50 becomes an avatar of a user who uses the fishing rod type manipulator 10. The pseudo-experience mode is a mode that allows the user to experience the tactile sensation at the time of fishing by replaying data when the fish has been caught in the past.
Hereinafter, the configuration of the force / tactile sensation transmission system 1 will be described in detail.
 釣り竿型マニピュレータ10は、釣り竿の全体または手元側を模した操作装置であり、ヒンジ11を介して、手元側の端部を鉛直方向に回転自在に支持台に連結されている。ヒンジ11には、回転トルクを付与するアクチュエータ12と、ヒンジ11の回転角度を検出するエンコーダ13とが備えられている。エンコーダ13の検出信号はマスタ側制御装置30に出力され、アクチュエータ12が出力する回転トルク及びアクチュエータの回転位置はマスタ側制御装置30によって制御される。 The fishing rod type manipulator 10 is an operating device that imitates the whole fishing rod or the hand side, and is connected to a support base through a hinge 11 so as to be rotatable in the vertical direction. The hinge 11 is provided with an actuator 12 that applies rotational torque and an encoder 13 that detects the rotational angle of the hinge 11. The detection signal of the encoder 13 is output to the master-side control device 30, and the rotational torque output by the actuator 12 and the rotational position of the actuator are controlled by the master-side control device 30.
 また、釣り竿型マニピュレータ10は、手元側の端部(即ち、ヒンジ11の位置)から所定距離の位置に、リール14を備えている。本実施形態において、リール14は、釣り竿型マニピュレータ10の手元側の端部から、人間の肘と手の距離に相当する位置(以下、「位置R」と称する。)に設置されている。通常、釣りをする際に釣り竿を取り扱う場合、釣り竿の手元側の端部を肘の位置に合わせ、リールの設置部分を手で持つ姿勢が取られる。そのため、釣り竿型マニピュレータ10のリール14を位置Rに設置することで、釣り竿型マニピュレータ10を操作するユーザは、実際の釣りの際に釣り竿を持つのと同様の感覚で、釣り竿型マニピュレータ10を操作することができる。なお、後述するように、釣りロボット50においても、釣り竿の手元側の端部がヒンジに連結され、釣り竿の手元側の端部を回転中心とする釣り竿の動きが検出される。なお、リールが用いられない釣りの形態も存在することから、釣り竿型マニピュレータ10にリール14を備えない構成とすることも可能である。また、リール14にも、ヒンジ11と同様に、回転トルクを付与するアクチュエータ及び回転角度を検出するエンコーダを備えることとしてもよい。この場合、釣りロボット50が保持する釣り竿のリールにもアクチュエータ及びエンコーダを備えることで、リール14と釣り竿のリールとの間で力触覚伝達を行うことができる。 Further, the fishing rod type manipulator 10 includes a reel 14 at a predetermined distance from the end portion on the hand side (that is, the position of the hinge 11). In the present embodiment, the reel 14 is installed at a position corresponding to the distance between the human elbow and the hand (hereinafter referred to as “position R”) from the proximal end of the fishing rod type manipulator 10. Normally, when handling a fishing rod when fishing, the end of the fishing rod is adjusted to the position of the elbow, and the posture of holding the reel installation portion by hand is taken. Therefore, by installing the reel 14 of the fishing rod type manipulator 10 at the position R, the user operating the fishing rod type manipulator 10 operates the fishing rod type manipulator 10 with the same feeling as holding a fishing rod during actual fishing. can do. As will be described later, also in the fishing robot 50, the end of the fishing rod on the hand side is connected to the hinge, and the movement of the fishing rod around the end of the fishing rod on the hand side is detected. In addition, since there is a form of fishing in which no reel is used, the fishing rod type manipulator 10 may be configured not to include the reel 14. Also, the reel 14 may be provided with an actuator that applies rotational torque and an encoder that detects a rotational angle, like the hinge 11. In this case, the fishing rod 50 held by the fishing robot 50 is also provided with an actuator and an encoder, so that a force / tactile sensation can be transmitted between the reel 14 and the fishing rod reel.
 ヘッドマウントディスプレイ20は、ユーザの視界を覆うように頭部に装着して用いるディスプレイであり、釣りロボット50に設置されたカメラによって撮影された画像を表示する。なお、ヘッドマウントディスプレイ20に表示される画像は、釣りロボット50が現在撮影している画像の他、過去に撮影された画像等を表示することも可能である。例えば、過去に釣りロボット50において魚が釣れた際の力触覚を釣り竿型マニピュレータ10で再生することに合わせて、その時に撮影された画像をヘッドマウントディスプレイ20に表示することも可能である。また、ヘッドマウントディスプレイ20に代えて、据え置き型のディスプレイや、プロジェクタとスクリーン等、各種表示装置を用いることが可能である。 The head mounted display 20 is a display that is used by being mounted on the head so as to cover the user's field of view, and displays an image taken by a camera installed on the fishing robot 50. In addition, the image displayed on the head mounted display 20 can also display the image etc. which were image | photographed in the past other than the image which the fishing robot 50 is image | photographing now. For example, it is possible to display an image taken at that time on the head-mounted display 20 in accordance with the fishing rod 50 manipulator 10 playing back the force and tactile sensation when a fish was caught in the fishing robot 50 in the past. Further, various display devices such as a stationary display, a projector and a screen can be used instead of the head mounted display 20.
 マスタ側制御装置30は、力触覚伝達システム1全体を制御するものであり、PC(Personal Computer)あるいは組み込み型のマイコン等の情報処理装置によって構成される。
 図4は、マスタ側制御装置30の構成を示すブロック図である。
 本実施形態において、マスタ側制御装置30は、PCによって構成され、図4に示すように、CPU(Central Processing Unit)31と、RAM(Random Acess Memory)32と、記憶装置33と、通信インターフェース(通信I/F)34と、を備えている。なお、マスタ側制御装置30には、アクチュエータ12を駆動するためのドライバ、電力を供給するためのバッテリ、各種情報を入力するための入力装置(例えば、キーボードやマウス)等、力触覚伝達システム1で必要となる各種装置が適宜実装される。
 記憶装置33の一領域には、力触覚伝達処理において取り扱われる時系列のパラメータを記憶するパラメータ記憶部33aが形成される。パラメータ記憶部33aに記憶されたパラメータを時系列に読み出して再生することで、過去に釣り竿型マニピュレータ10及び釣りロボット50において伝達された力触覚を再現することができる。また、記憶装置33には、力触覚伝達システム1で用いられる各種データ(魚の画像や音声のデータ等)が適宜記憶される。
The master-side control device 30 controls the entire force / tactile sensation transmission system 1 and is constituted by an information processing device such as a PC (Personal Computer) or an embedded microcomputer.
FIG. 4 is a block diagram illustrating a configuration of the master side control device 30.
In the present embodiment, the master-side control device 30 is constituted by a PC, and as shown in FIG. 4, a CPU (Central Processing Unit) 31, a RAM (Random Access Memory) 32, a storage device 33, and a communication interface ( Communication I / F) 34. Note that the master-side control device 30 includes a driver for driving the actuator 12, a battery for supplying power, an input device (for example, a keyboard and a mouse) for inputting various information, and the like. Various devices necessary for the above are mounted as appropriate.
In one area of the storage device 33, a parameter storage unit 33a for storing time-series parameters handled in the force / tactile sense transmission process is formed. By reading and reproducing the parameters stored in the parameter storage unit 33a in time series, it is possible to reproduce the force and haptic sense transmitted in the past by the fishing rod manipulator 10 and the fishing robot 50. The storage device 33 appropriately stores various data (such as fish images and audio data) used in the force / tactile transmission system 1.
 CPU31は、マスタ側制御装置30の制御のための各種プログラムを実行することにより、基本的な力触覚伝達機能及び付加的な機能等、目的とする種々の機能を実現する。
 具体的には、CPU31が各種プログラムを実行することにより、CPU31には、機能的構成として、位置取得部31aと、力触覚伝達部31bと、管理部31cと、データ記録部31dとが実現される。
 位置取得部31aは、釣り竿型マニピュレータ10のエンコーダ13によって検出された時系列の検出値と、釣りロボット50のエンコーダ53によって検出された時系列の検出値とを取得する。
The CPU 31 executes various programs for controlling the master-side control device 30, thereby realizing various target functions such as a basic force / haptic transmission function and additional functions.
Specifically, when the CPU 31 executes various programs, the CPU 31 implements, as a functional configuration, a position acquisition unit 31a, a force / tactile transmission unit 31b, a management unit 31c, and a data recording unit 31d. The
The position acquisition unit 31 a acquires a time-series detection value detected by the encoder 13 of the fishing rod manipulator 10 and a time-series detection value detected by the encoder 53 of the fishing robot 50.
 力触覚伝達部31bは、図1における機能別力・速度割当変換ブロックFTと、理想力源ブロックFCと、理想速度(位置)源ブロックPCと、逆変換ブロックIFTとの機能を備えている。なお、力触覚伝達部31bにおいては、力触覚伝達機能を実現するための座標変換が定義されている。
 即ち、力触覚伝達部31bには、リアルハプティクスモードにおいては、位置検出部31aから、釣り竿型マニピュレータ10のエンコーダ13によって検出された時系列の検出値と、釣りロボット50のエンコーダ53によって検出された時系列の検出値(基準値)とが入力される。また、力触覚伝達部31bには、疑似体験モードにおいては、位置検出部31aから、釣り竿型マニピュレータ10のエンコーダ13によって検出された時系列の検出値と、パラメータ記憶部33aから読み出された過去のパラメータ(釣りロボット50のエンコーダ53によって過去に検出された時系列の検出値)(基準値)とが入力される。これら時系列の検出値は、釣り竿型マニピュレータ10に対するユーザの操作(釣りを行う際の釣り竿の操作)と、釣りロボット50に対する現在または過去の外力(魚等による釣り竿への外力)を表すものであり、力触覚伝達部31bは、入力された検出値(位置)から導出された速度(位置)及び力の情報に対して、力触覚伝達機能を実現するための座標変換を適用する。
The force / tactile sensation transmission unit 31b has functions of a function-specific force / speed allocation conversion block FT, an ideal force source block FC, an ideal speed (position) source block PC, and an inverse conversion block IFT in FIG. In the force / tactile sensation transmission unit 31b, coordinate transformation for realizing the force / tactile sense transmission function is defined.
That is, the force / tactile sensation transmission unit 31b is detected by the time detection value detected by the encoder 13 of the fishing rod type manipulator 10 and the encoder 53 of the fishing robot 50 from the position detection unit 31a in the real haptics mode. A time-series detected value (reference value) is input. Further, in the force / tactile sensation transmission unit 31b, in the pseudo experience mode, the time-series detection values detected by the encoder 13 of the fishing rod type manipulator 10 from the position detection unit 31a and the past read from the parameter storage unit 33a. (A time-series detection value detected in the past by the encoder 53 of the fishing robot 50) (reference value) is input. These time-series detection values represent the user's operation on the fishing rod manipulator 10 (manipulation of the fishing rod when fishing) and the current or past external force on the fishing robot 50 (external force on the fishing rod by a fish or the like). In addition, the force / tactile sensation transmission unit 31b applies coordinate transformation for realizing the force / tactile sensation transmission function to the velocity (position) and force information derived from the input detection value (position).
 そして、力触覚伝達部31bは、座標変換によって得られた速度(位置)の状態値を導出するための速度(位置)に対し、速度(位置)の領域における演算を行う。同様に、力触覚伝達部31bは、座標変換によって得られた力の状態値を導出するための力に対し、力の領域における演算を行う。さらに、力触覚伝達部31bは、算出した速度(位置)の領域における演算結果及び力の領域における演算結果に対して、加速度等への次元統一の処理を施し、また、力触覚伝達機能を実現するための座標変換の逆変換を適用する。これにより、力触覚伝達部31bは、算出した速度(位置)の領域における演算結果及び力の領域における演算結果をアクチュエータ12及び後述する釣りロボット50のアクチュエータ52への入力の領域の値(電流値等)に変換する。そして、力触覚伝達部31bは、アクチュエータ12への入力の値を、アクチュエータ12に出力する。さらに、力触覚伝達部31bは、釣りロボット50のアクチュエータ52への入力の領域の値を、ネットワーク60を介してスレーブ側制御装置40に送信する。なお、釣りロボット50のアクチュエータ52への入力の領域の値は、リアルハプティクスモードにおいてスレーブ側制御装置40に送信され、疑似体験モードにおいては送信されない。 Then, the force / tactile sensation transmission unit 31b performs an operation in the velocity (position) region on the velocity (position) for deriving the state value of the velocity (position) obtained by the coordinate transformation. Similarly, the force / tactile sensation transmission unit 31b performs a calculation in the force region on the force for deriving the force state value obtained by the coordinate transformation. Further, the force / tactile sensation transmission unit 31b performs a uniform dimension processing on acceleration and the like on the calculation result in the calculated velocity (position) region and the calculation result in the force region, and realizes a force / tactile transmission function. Apply the inverse transformation of coordinate transformation to As a result, the force / tactile sensation transmission unit 31b calculates the calculation result in the calculated velocity (position) region and the calculation result in the force region as the value (current value) of the input region to the actuator 12 and the actuator 52 of the fishing robot 50 described later. Etc.). Then, the force / tactile sensation transmission unit 31 b outputs a value input to the actuator 12 to the actuator 12. Further, the force / tactile sensation transmission unit 31 b transmits the value of the input area to the actuator 52 of the fishing robot 50 to the slave-side control device 40 via the network 60. In addition, the value of the area | region of the input to the actuator 52 of the fishing robot 50 is transmitted to the slave side control apparatus 40 in real haptics mode, and is not transmitted in pseudo experience mode.
 管理部31cは、遠隔釣り体験制御処理における各種設定を行ったり、処理の進捗を管理したりする。具体的には、管理部31cは、遠隔釣り体験制御処理において、予め設定された条件に応じて、リアルハプティクスモードまたは疑似体験モードのいずれかに設定したり、魚の釣り上げに成功したか否かの判定を行ったり、魚がヒットした場合等の演出表示及び音声出力を行ったりする。なお、本実施形態において、遠隔釣り体験制御処理が行われる場合、処理の開始直後はリアルハプティクスモードに設定され、予め設定された条件が充足された場合、疑似体験モードに設定される。ただし、遠隔釣り体験制御処理において、リアルハプティクスモードまたは疑似体験モードのいずれかのみに設定することとしてもよい。
 データ記録部31dは、リアルハプティクスモードにおいて力触覚伝達処理が行われている場合のパラメータを時系列にパラメータ記憶部33aに記録する。
The management unit 31c performs various settings in the remote fishing experience control process and manages the progress of the process. Specifically, in the remote fishing experience control process, the management unit 31c sets to either the real haptics mode or the simulated experience mode according to a preset condition, or whether or not the fish has been successfully caught. Or performing an effect display and sound output when a fish hits. In this embodiment, when the remote fishing experience control process is performed, the real haptics mode is set immediately after the start of the process, and when the preset condition is satisfied, the pseudo experience mode is set. However, in the remote fishing experience control process, only the real haptics mode or the simulated experience mode may be set.
The data recording unit 31d records parameters when the force / tactile sensation transmission processing is performed in the real haptics mode in the parameter storage unit 33a in time series.
 図3に戻り、スレーブ側制御装置40は、PCあるいは組み込み型のマイコン等の情報処理装置によって構成される。本実施形態において、スレーブ側制御装置40は、組み込み型のマイコンとして構成され、釣りロボット50に内蔵された装置として構成される。スレーブ側制御装置40は、釣りロボット50のエンコーダ53によって検出された時系列の検出値を、ネットワーク60を介してマスタ側制御装置30に送信する。また、スレーブ側制御装置40は、マスタ側制御装置30から送信されたアクチュエータ52への入力の値を釣りロボット50のアクチュエータ52に出力する。なお、スレーブ側制御装置40には、アクチュエータ52を駆動するためのドライバ、電力を供給するためのバッテリ、音声を出力するためのスピーカ等、力触覚伝達システム1で必要となる各種装置が適宜実装される。 Returning to FIG. 3, the slave-side control device 40 is configured by an information processing device such as a PC or an embedded microcomputer. In the present embodiment, the slave-side control device 40 is configured as an embedded microcomputer and is configured as a device built in the fishing robot 50. The slave-side control device 40 transmits the time-series detection values detected by the encoder 53 of the fishing robot 50 to the master-side control device 30 via the network 60. In addition, the slave-side control device 40 outputs the input value to the actuator 52 transmitted from the master-side control device 30 to the actuator 52 of the fishing robot 50. The slave-side control device 40 is appropriately equipped with various devices necessary for the force / tactile sensation transmission system 1, such as a driver for driving the actuator 52, a battery for supplying power, and a speaker for outputting sound. Is done.
 釣りロボット50は、釣り竿を保持可能なロボットであり、釣り竿型マニピュレータ10を操作するユーザのアバターとして動作する。したがって、釣りロボット50は、釣り堀、磯や岸壁等の海岸、釣り船、川岸、湖沼等の釣りが行われる場所に設置される。
 具体的には、釣りロボット50は、釣り針及び釣り糸を有する釣り竿を保持するアーム50Aを備え、ヒンジ51を介して、アーム50Aの肘に相当する部分を鉛直方向に回転自在に支持台に連結されている。ヒンジ51には、回転トルクを付与するアクチュエータ52と、ヒンジ51の回転角度を検出するエンコーダ53とが備えられている。エンコーダ53の検出信号はスレーブ側制御装置40に出力され、アクチュエータ52が出力する回転トルク及びアクチュエータの回転位置はスレーブ側制御装置40によって制御される。また、釣り竿に備えられたリールは、釣り竿の手元側の端部から、人間の肘と手の距離に相当する位置に設置されている。即ち、釣り竿のリールは、釣り竿の手元型の端部に対して。釣り竿型マニピュレータ10のリール14と同様の位置に設置されている。なお、釣りロボット50には、釣り場(釣り糸付近の水面等)を撮影するカメラが設置されている。また、上述したように、釣り竿のリールにも、ヒンジ51と同様に、回転トルクを付与するアクチュエータ及び回転角度を検出するエンコーダを備えることとしてもよい。この場合、釣り竿型マニピュレータ10のリール14にもアクチュエータ及びエンコーダを備えることで、リール14と釣り竿のリールとの間で力触覚伝達を行うことができる。
The fishing robot 50 is a robot that can hold a fishing rod and operates as an avatar of a user who operates the fishing rod-type manipulator 10. Therefore, the fishing robot 50 is installed at a place where fishing is performed, such as a fishing pond, a coast such as a rod and a quay, a fishing boat, a river shore, and a lake.
Specifically, the fishing robot 50 includes an arm 50A that holds a fishing rod having a fishhook and fishing line, and a portion corresponding to an elbow of the arm 50A is connected to a support base via a hinge 51 so as to be rotatable in the vertical direction. ing. The hinge 51 is provided with an actuator 52 that applies rotational torque and an encoder 53 that detects the rotational angle of the hinge 51. The detection signal of the encoder 53 is output to the slave-side control device 40, and the rotational torque output by the actuator 52 and the rotational position of the actuator are controlled by the slave-side control device 40. In addition, the reel provided in the fishing rod is installed at a position corresponding to the distance between the human elbow and the hand from the end on the hand side of the fishing rod. That is, the fishing rod reel is against the end of the fishing rod. It is installed at the same position as the reel 14 of the fishing rod type manipulator 10. The fishing robot 50 is provided with a camera for photographing a fishing spot (such as a water surface near a fishing line). Further, as described above, the reel of the fishing rod may be provided with an actuator for applying a rotational torque and an encoder for detecting a rotational angle, similarly to the hinge 51. In this case, by providing the reel 14 of the fishing rod type manipulator 10 also with an actuator and an encoder, force / tactile transmission can be performed between the reel 14 and the reel of the fishing rod.
[アクチュエータの構成例]
 図5は、力触覚伝達システム1において用いられるアクチュエータ100の構成例を示す模式図である。
 図5に示すアクチュエータ100は、アクチュエータ12またはアクチュエータ52として用いることが可能であり、釣り竿型マニピュレータ10の釣り竿状の部材あるいは釣りロボット50が保持する釣り竿を設置可能となっている。
 具体的には、アクチュエータ100は、モータ101と、ギア102と、取り付け部材103とを備えている。
[Example of actuator configuration]
FIG. 5 is a schematic diagram illustrating a configuration example of the actuator 100 used in the force-tactile transmission system 1.
The actuator 100 shown in FIG. 5 can be used as the actuator 12 or the actuator 52, and a fishing rod-like member of the fishing rod type manipulator 10 or a fishing rod held by the fishing robot 50 can be installed.
Specifically, the actuator 100 includes a motor 101, a gear 102, and an attachment member 103.
 モータ101は、例えば、DCモータ等の電動モータによって構成され、ギア102に対して回転トルクを出力する。
 ギア102は、モータ101から入力された回転トルクを増幅し、増幅した回転トルクにより支持部材103を回転させる。
 支持部材103は、ギア102の出力軸に固定され、ギア102が出力する回転トルクによって、ギア102の出力軸周りに回転する。また、支持部材103に入力された外力は、ギア102に入力される。アクチュエータ100が釣り竿型マニピュレータ10のアクチュエータ12として用いられる場合、支持部材103には、釣り竿型マニピュレータ10の釣り竿状の部材が固定され、支持部材103の後端部分(ギア102の回転軸付近)にはユーザの肘が当接される。また、アクチュエータ100が釣りロボット50のアクチュエータ52として用いられる場合、支持部材103には、釣りロボット50が保持する釣り竿が固定される。
The motor 101 is configured by an electric motor such as a DC motor, for example, and outputs rotational torque to the gear 102.
The gear 102 amplifies the rotational torque input from the motor 101 and rotates the support member 103 with the amplified rotational torque.
The support member 103 is fixed to the output shaft of the gear 102 and rotates around the output shaft of the gear 102 by the rotational torque output from the gear 102. Further, the external force input to the support member 103 is input to the gear 102. When the actuator 100 is used as the actuator 12 of the fishing rod-type manipulator 10, the fishing rod-shaped member of the fishing rod-type manipulator 10 is fixed to the support member 103, and is attached to the rear end portion of the support member 103 (near the rotating shaft of the gear 102). Is touched by the user's elbow. When the actuator 100 is used as the actuator 52 of the fishing robot 50, a fishing rod held by the fishing robot 50 is fixed to the support member 103.
(実装される機能例)
 上記力触覚伝達システム1においては、以下の機能を実装することができる。
(1)釣り竿型マニピュレータ10を使用するユーザの肘の位置が、アクチュエータ12の回転中心と合う構成とする。
(2)過去に魚を釣り上げた際の力と位置のデータを保存し、任意のタイミングで再生する(データに基づいて釣り竿型マニピュレータ10のアクチュエータ12を駆動する)ことで、釣りの感覚を疑似的に体験できる。
(Example of functions to be implemented)
In the force / tactile sensation transmission system 1, the following functions can be implemented.
(1) The elbow position of the user who uses the fishing rod type manipulator 10 is configured to match the rotation center of the actuator 12.
(2) The force and position data obtained when the fish has been caught in the past are stored and reproduced at an arbitrary timing (the actuator 12 of the fishing rod type manipulator 10 is driven based on the data) to simulate the feeling of fishing. Experience.
(3)魚の引きの方向、力加減から、魚の種類または魚の大きさを判別する。魚の引きの方向及び力加減は、釣り竿の先端に、釣り糸に加わる力の方向及び大きさを検出するセンサを備えることによって検出することができる。なお、力の方向については、釣りロボット50に設置されたカメラによって検出することとしてもよい。
(4)(3)により魚を判別すると共に、ビジョンシステムあるいはオーディオシステムを統合して、ディスプレイに魚の種類または魚の大きさを表示し、音声でも魚の種類または魚の大きさを表現する。
(5)リール14から繰り出されている釣り糸の長さ及び竿の角度から、釣り針(あるいはえさ)の深さやかかっている魚のいる深さを同定する。
(6)竿の素早い動きに対応可能なライブストリーミングシステムを備える。
(3) The type of fish or the size of the fish is determined from the direction of pulling the fish and the strength. The direction and force of pulling the fish can be detected by providing a sensor for detecting the direction and magnitude of the force applied to the fishing line at the tip of the fishing rod. Note that the direction of the force may be detected by a camera installed in the fishing robot 50.
(4) The fish is discriminated by (3) and the vision system or the audio system is integrated to display the type of fish or the size of the fish on the display, and the type of fish or the size of the fish is also expressed by sound.
(5) From the length of the fishing line fed out from the reel 14 and the angle of the rod, the depth of the fishing hook (or bait) and the depth of the fish that is caught are identified.
(6) Provided with a live streaming system capable of handling quick movements of the kite.
(7)過去に魚を釣り上げた際のデータから、竿に入力する力のパターンを抽出し、釣り竿型マニピュレータ10において、パターン毎に力触覚を再生する。抽出するパターンは、例えば、魚がいる水深で分類すると共に、動きの小さいタイミングで区切った区間毎の記録データとすることができる。過去の釣り上げ時の力触覚を体験する疑似体験モードでは、このパターンを選択して、釣り竿型マニピュレータ10において力触覚を再生する。なお、パターンを抽出する場合、魚がいる水深は、リール14から繰り出されている釣り糸の長さ及び竿の角度から同定できる。 (7) A pattern of force to be input to the rod is extracted from data when the fish has been caught in the past, and the force / tactile sensation is reproduced for each pattern in the fishing rod type manipulator 10. The pattern to be extracted can be, for example, recorded data for each section divided by the water depth at which the fish is located and divided at a timing with small movement. In the pseudo-experience mode for experiencing a force tactile sense at the time of fishing in the past, this pattern is selected and the force tactile sense is reproduced in the fishing rod type manipulator 10. In addition, when extracting a pattern, the water depth in which a fish exists can be identified from the length of the fishing line drawn out from the reel 14, and the angle of a rod.
(8)力触覚伝達システム1においては、釣り竿型マニピュレータ10を、例えば、空港のロビー等に設置することができ、釣りロボット50を有名な釣りスポットに設置することができる。この場合、ユーザとしては、飛行機の出発を待つ搭乗予定者が想定される。そのため、ユーザが釣りロボット50を介して、遠隔的な釣りの体験を開始した後、予め定めたタイミングとなった場合には、過去に魚を釣り上げた際のデータを再生することにより、ユーザに釣り上げ時の力触覚を疑似体験させるよう制御することができる。これにより、ユーザは、釣りロボット50を介して実際に遠隔的な釣りを体験できると共に、仮に魚がヒットしなかった場合でも、確実に、魚を釣り上げた際の力触覚を体験することができる。なお、上記予め定めたタイミングとしては、ユーザの搭乗時間の所定時間前(例えば、1時間前等)となったタイミングや、ユーザが力触覚伝達システム1において遠隔的な釣りの体験を開始した後、所定時間(例えば、30分等)が経過したタイミング等を設定することができる。なお、釣りロボット50を介した遠隔的な釣りの体験(リアルハプティクスモード)または過去に魚を釣り上げた際のデータを用いた擬似的な釣りの体験(疑似体験モード)のいずれかを予め選択して、力触覚伝達システム1を動作させることとしてもよい。 (8) In the force / tactile sensation transmission system 1, the fishing rod type manipulator 10 can be installed, for example, in an airport lobby or the like, and the fishing robot 50 can be installed in a famous fishing spot. In this case, the user is assumed to be a boarding person who waits for the departure of the airplane. Therefore, after the user starts the remote fishing experience via the fishing robot 50, when the predetermined timing is reached, the user can reproduce the data when the fish has been caught in the past, thereby It can be controlled so that the force tactile sense at the time of fishing is simulated. Thereby, the user can actually experience remote fishing via the fishing robot 50 and can surely experience the force tactile sense when the fish is caught even if the fish does not hit. . The predetermined timing includes a timing that is a predetermined time before the user's boarding time (for example, one hour before), or after the user starts a remote fishing experience in the force-tactile transmission system 1. The timing at which a predetermined time (for example, 30 minutes) elapses can be set. Either remote fishing experience via the fishing robot 50 (real haptics mode) or pseudo fishing experience using data when fish were fished in the past (pseudo experience mode) is selected in advance. Then, the force / tactile sensation transmission system 1 may be operated.
(9)力触覚伝達システム1において、釣り竿型マニピュレータ10は、空港等、交通機関の施設の他、ゲームセンター、水族館等の娯楽施設、釣りの技術を学ぶための訓練施設等、釣りの体験が活用可能な種々の場所に設置することができる。 (9) In the force / tactile sensation transmission system 1, the fishing rod type manipulator 10 has a fishing experience such as an airport, a transportation facility, a game center, an amusement facility such as an aquarium, and a training facility for learning fishing techniques. It can be installed in various places where it can be used.
(動作)
 次に、力触覚伝達システム1が実行する処理について説明する。
 上述の機能を備えた力触覚伝達システム1は、種々の動作を行うことが可能であるが、釣りロボット50を用いた遠隔的な釣り体験を実現するための処理として、力触覚伝達処理と、遠隔釣り体験制御処理とを実行する。
(Operation)
Next, processing executed by the force / tactile sensation transmission system 1 will be described.
The force / tactile sensation transmission system 1 having the above-described function can perform various operations. As a process for realizing a remote fishing experience using the fishing robot 50, a force / tactile sensation transmission process, The remote fishing experience control process is executed.
(力触覚伝達処理)
 図6は、力触覚伝達システム1が実行する力触覚伝達処理の流れを示すフローチャートである。
 力触覚伝達処理は、マスタ側制御装置30において、力触覚の伝達を行う機能が起動されることに対応して開始される。
 ステップS1において、マスタ側制御装置30の位置取得部31aは、釣り竿型マニピュレータ10のエンコーダ13及び釣りロボット50のエンコーダ53からヒンジ11,51の位置(回転角度)を示す情報を取得する。このとき、マスタ側制御装置30の位置取得部31aは、釣りロボット50のエンコーダ53によって検出されるヒンジ51の位置(回転角度)を、スレーブ側制御装置40を介して取得する。
 ステップS2において、マスタ側制御装置30の力触覚伝達部31bは、力触覚伝達のための座標変換(図2参照)を実行する。このとき、マスタ側制御装置30の力触覚伝達部31bは、ヒンジ11,51の位置(回転角度)を示す情報から加速度を示す情報を取得し、速度あるいは力等の次元に適宜変換して座標変換に用いる。
(Force / tactile transmission processing)
FIG. 6 is a flowchart showing a flow of force / tactile sensation transmission processing executed by the force / haptic transmission system 1.
The force / tactile sensation transmission process is started in response to activation of a function for transmitting force / tactile sensation in the master-side control device 30.
In step S <b> 1, the position acquisition unit 31 a of the master-side control device 30 acquires information indicating the positions (rotation angles) of the hinges 11 and 51 from the encoder 13 of the fishing rod type manipulator 10 and the encoder 53 of the fishing robot 50. At this time, the position acquisition unit 31 a of the master-side control device 30 acquires the position (rotation angle) of the hinge 51 detected by the encoder 53 of the fishing robot 50 via the slave-side control device 40.
In step S2, the force / tactile sensation transmission unit 31b of the master-side control device 30 performs coordinate transformation (see FIG. 2) for force / haptic transmission. At this time, the force / tactile sensation transmission unit 31b of the master-side control device 30 acquires information indicating acceleration from information indicating the position (rotation angle) of the hinges 11 and 51, and appropriately converts the information into dimensions such as speed or force. Used for conversion.
 ステップS3において、マスタ側制御装置30の力触覚伝達部31bは、座標変換の結果に基づいて、速度(位置)の制御量及び力の制御量からアクチュエータ12,52への入力の値を算出する。
 ステップS4において、マスタ側制御装置30の力触覚伝達部31bは、釣り竿型マニピュレータ10及び釣りロボット50にアクチュエータ12,52への入力の値をそれぞれ送信する。
 ステップS5において、釣り竿型マニピュレータ10及び釣りロボット50(スレーブ側制御装置40)は、マスタ側制御装置30から送信された入力の値に基づいてアクチュエータ12,52を駆動すると共に、エンコーダ13,53によってヒンジ11,51の位置(回転角度)を検出する。
In step S3, the force / tactile sensation transmission unit 31b of the master-side control device 30 calculates values of inputs to the actuators 12 and 52 from the control amount of speed (position) and the control amount of force based on the result of coordinate conversion. .
In step S4, the force / tactile sensation transmission unit 31b of the master-side control device 30 transmits values of inputs to the actuators 12 and 52 to the fishing rod manipulator 10 and the fishing robot 50, respectively.
In step S5, the fishing rod type manipulator 10 and the fishing robot 50 (slave-side control device 40) drive the actuators 12, 52 based on the input values transmitted from the master-side control device 30, and the encoders 13, 53 The position (rotation angle) of the hinges 11 and 51 is detected.
 ステップS6において、マスタ側制御装置30の管理部31cは、力触覚伝達処理の終了が指示されたか否かの判定を行う。力触覚伝達処理の終了は、マスタ側制御装置30において、力触覚の伝達を行う機能が全て停止されることに対応して自動的に指示される。なお、マスタ側制御装置30を管理するオペレータによって、力触覚伝達処理の終了を指示することも可能である。
 力触覚伝達処理の終了が指示されていない場合、ステップS6においてNOと判定されて、処理はステップS1に移行する。
 一方、力触覚伝達処理の終了が指示された場合、ステップS6においてYESと判定されて、力触覚伝達処理は終了となる。
In step S6, the management unit 31c of the master-side control device 30 determines whether or not the end of the force / tactile sensation transmission process is instructed. The termination of the force / tactile sensation process is automatically instructed in response to the fact that all functions for transmitting force / tactile sensations are stopped in the master-side control device 30. Note that an operator who manages the master-side control device 30 can instruct the end of the force / tactile sensation transmission process.
If the end of the force-tactile transmission process is not instructed, it is determined as NO in Step S6, and the process proceeds to Step S1.
On the other hand, when the termination of the force / tactile sensation transmission process is instructed, YES is determined in step S6, and the force / tactile transmission process is terminated.
(遠隔釣り体験制御処理)
 次に、遠隔釣り体験制御処理について説明する。
 図7は、力触覚伝達システム1が実行する遠隔釣り体験制御処理の流れを示すフローチャートである。
 遠隔釣り体験制御処理は、マスタ側制御装置30において、遠隔釣り体験制御処理の実行が指示されることに対応して開始される。
(Remote fishing experience control process)
Next, the remote fishing experience control process will be described.
FIG. 7 is a flowchart showing the flow of remote fishing experience control processing executed by the force / tactile sensation transmission system 1.
The remote fishing experience control process is started in response to the master side control device 30 instructing execution of the remote fishing experience control process.
 ステップS21において、マスタ側制御装置30の管理部31cは、力触覚伝達システム1をリアルハプティクスモードに設定する。リアルハプティクスモードにおいては、上述したように、釣り竿型マニピュレータ10と釣りロボット50との間でリアルタイムに力触覚の伝達が行われ、釣りロボット50が釣り竿型マニピュレータ10を使用するユーザのアバターとなる。
 ステップS22において、マスタ側制御装置30の管理部31cは、力触覚伝達処理を開始する。
In step S21, the management unit 31c of the master-side control device 30 sets the force / haptic transmission system 1 to the real haptics mode. In the real haptics mode, as described above, a force / tactile sensation is transmitted in real time between the fishing rod manipulator 10 and the fishing robot 50, and the fishing robot 50 becomes an avatar of the user who uses the fishing rod manipulator 10. .
In step S22, the management unit 31c of the master-side control device 30 starts a force / tactile sensation transmission process.
 ステップS23において、マスタ側制御装置30の管理部31cは、釣りロボット50において魚がヒットしたか否かの判定を行う。なお、魚がヒットしたか否かについては、例えば、釣りロボット50に入力される外力の大きさ、加速度、周波数等の情報を、実験値あるいは経験値に基づいて設定された基準となる閾値と比較することにより検出することができる。
 釣りロボット50において魚がヒットしていない場合、ステップS23においてNOと判定されて、処理はステップS24に移行する。
 一方、釣りロボット50において魚がヒットした場合、ステップS23においてYESと判定されて、処理はステップS32に移行する。
In step S <b> 23, the management unit 31 c of the master-side control device 30 determines whether or not a fish is hit in the fishing robot 50. Whether or not a fish has been hit is determined by using, for example, information such as the magnitude, acceleration, and frequency of an external force input to the fishing robot 50 as a reference threshold set based on experimental values or experience values. It can detect by comparing.
If the fish is not hit in the fishing robot 50, NO is determined in step S23, and the process proceeds to step S24.
On the other hand, when a fish is hit in the fishing robot 50, it is determined as YES in Step S23, and the process proceeds to Step S32.
 ステップS24において、マスタ側制御装置30の管理部31cは、遠隔釣り体験制御処理の開始後、予め定めたタイミングとなっているか否かの判定を行う。なお、予め定めたタイミングとしては、上述したように、ユーザの搭乗時間の所定時間前(例えば、1時間前等)となったタイミングや、ユーザが力触覚伝達システム1において遠隔的な釣りの体験を開始した後、所定時間(例えば、30分等)が経過したタイミング等を設定することができる。
 遠隔釣り体験制御処理の開始後、予め定めたタイミングとなっていない場合、ステップS24においてNOと判定されて、処理はステップS23に移行する。
 一方、遠隔釣り体験制御処理の開始後、予め定めたタイミングとなっている場合、ステップS24においてYESと判定されて、処理はステップS25に移行する。
 ステップS25において、マスタ側制御装置30の管理部31cは、力触覚伝達システム1を疑似体験モードに設定する。疑似体験モードにおいては、上述したように、過去に魚を釣り上げた際のデータが再生されることにより、ユーザは釣り上げ時の力触覚を疑似体験することができる。
In step S24, the management unit 31c of the master-side control device 30 determines whether or not it is a predetermined timing after the start of the remote fishing experience control process. Note that, as described above, as described above, as described above, a timing that is a predetermined time before the user's boarding time (for example, one hour before), or a remote fishing experience by the user in the force-tactile transmission system 1 The timing when a predetermined time (for example, 30 minutes) has passed can be set.
If the predetermined timing is not reached after the remote fishing experience control process is started, NO is determined in step S24, and the process proceeds to step S23.
On the other hand, if it is a predetermined timing after the start of the remote fishing experience control process, YES is determined in step S24, and the process proceeds to step S25.
In step S25, the management unit 31c of the master-side control device 30 sets the force / tactile sensation transmission system 1 to the pseudo experience mode. In the pseudo-experience mode, as described above, the data when the fish has been caught in the past is reproduced, so that the user can experience the tactile sensation at the time of fishing.
 ステップS26において、マスタ側制御装置30の管理部31cは、力触覚伝達のパターンを選択する。力触覚伝達のパターンは、例えば、過去に魚を釣り上げた際のデータを、魚がいる水深で分類すると共に、動きの小さいタイミングで区切った区間毎の記録データである。
 ステップS27において、マスタ側制御装置30の管理部31cは、選択したパターンのデータを記憶装置から読み出す。
 ステップS28において、マスタ側制御装置30の力触覚伝達部31bは、読み出したパターンのデータを基準値として座標変換を行うことにより(図1参照)、釣り竿型マニピュレータ10において力触覚を再生する。
In step S26, the management unit 31c of the master-side control device 30 selects a force / tactile sensation transmission pattern. The force-tactile sensation transmission pattern is, for example, recorded data for each section obtained by classifying data when a fish has been caught in the past according to the depth of water in which the fish is located and at a timing when the movement is small.
In step S27, the management unit 31c of the master-side control device 30 reads the selected pattern data from the storage device.
In step S28, the force / tactile sensation transmission unit 31b of the master-side control device 30 reproduces the force / tactile sensation in the fishing rod manipulator 10 by performing coordinate conversion using the read pattern data as a reference value (see FIG. 1).
 ステップS29において、マスタ側制御装置30の管理部31cは、ヘッドマウントディスプレイ20に魚の種類または魚の大きさを演出表示すると共に、ヘッドマウントディスプレイ20に備えられたスピーカから魚の種類または魚の大きさを出力する。
 ステップS30において、マスタ側制御装置30の管理部31cは、ユーザが釣り竿型マニピュレータ10を操作することにより、魚が水深50cm以内に引き上げられているか否かの判定を行う。なお、ここでは、魚が釣り上げられたか否かの基準として、魚が水深50cm以内に引き上げられたか否かを判定するものとする。水深50cm以内に魚が引き上げられた場合、通常、「たも」ですくうことにより、魚は釣り上げることができる。なお、「水深50cm」は例示であり、釣りの状況(釣り場や狙う魚の種類等)に応じて適宜変更することができる。
 魚が水深50cm以内に引き上げられていない場合、ステップS30においてNOと判定されて、処理はステップS26に移行する。
 一方、魚が水深50cm以内に引き上げられている場合、ステップS30においてYESと判定されて、処理はステップS31に移行する。
In step S <b> 29, the management unit 31 c of the master-side control device 30 displays the type of fish or the size of the fish on the head mounted display 20, and outputs the type of fish or the size of the fish from the speaker provided in the head mounted display 20. To do.
In step S30, the management unit 31c of the master-side control device 30 determines whether or not the fish has been pulled up to a depth of 50 cm when the user operates the fishing rod manipulator 10. Here, as a reference whether or not the fish has been caught, it is determined whether or not the fish has been raised within a depth of 50 cm. If a fish is pulled up within 50 cm of water, it can usually be caught by scooping it with “Tama”. “Depth of 50 cm” is an example, and can be appropriately changed according to the fishing situation (fishing place, type of fish to be aimed at, etc.).
If the fish has not been pulled up to a depth of 50 cm, NO is determined in step S30, and the process proceeds to step S26.
On the other hand, if the fish has been pulled up to a depth of 50 cm, YES is determined in step S30, and the process proceeds to step S31.
 ステップS31において、マスタ側制御装置30の管理部31cは、ヒットした魚の釣り上げに成功したものとして、ヘッドマウントディスプレイ20に釣り上げに成功した旨の表示を行う。
 ステップS31の後、遠隔釣り体験制御処理は終了となる。
 ステップS32において、マスタ側制御装置30のデータ記録部31dは、釣りロボット50に入力される外力のデータの記録を開始する。このとき記録されるデータは、エンコーダ53によって検出された位置(回転角度)のデータ、あるいは、座標変換の結果算出される制御のためのパラメータ等、力触覚の状態を再現できるものであれば、種々の形式とすることができる。
 ステップS33において、マスタ側制御装置30の管理部31cは、ヘッドマウントディスプレイ20に魚の種類または魚の大きさを演出表示すると共に、ヘッドマウントディスプレイ20に備えられたスピーカから魚の種類または魚の大きさを出力する。
In step S <b> 31, the management unit 31 c of the master-side control device 30 displays on the head-mounted display 20 that the fishing has been successful, assuming that the fish that has been hit has been successfully caught.
After step S31, the remote fishing experience control process ends.
In step S <b> 32, the data recording unit 31 d of the master control device 30 starts recording external force data input to the fishing robot 50. If the data recorded at this time can reproduce the force-tactile state, such as the position (rotation angle) data detected by the encoder 53, or a control parameter calculated as a result of coordinate conversion, Various formats can be used.
In step S <b> 33, the management unit 31 c of the master-side control device 30 displays the type of fish or the size of the fish on the head mounted display 20, and outputs the type of fish or the size of the fish from the speaker provided in the head mounted display 20. To do.
 ステップS34において、マスタ側制御装置30の管理部31cは、ユーザが釣り竿型マニピュレータ10を操作することにより、魚が水深50cm以内に引き上げられているか否かの判定を行う。
 魚が水深50cm以内に引き上げられていない場合、ステップS34においてNOと判定されて、処理はステップS26に移行する。
 一方、魚が水深50cm以内に引き上げられている場合、ステップS34においてYESと判定されて、処理はステップS33に移行する。
In step S <b> 34, the management unit 31 c of the master-side control device 30 determines whether or not the fish has been pulled up to a depth of 50 cm by operating the fishing rod type manipulator 10.
If the fish has not been pulled up to a depth of 50 cm, NO is determined in step S34, and the process proceeds to step S26.
On the other hand, if the fish has been pulled up to a depth of 50 cm, YES is determined in step S34, and the process proceeds to step S33.
 ステップS35において、マスタ側制御装置30の管理部31cは、ヒットした魚の釣り上げに成功したものとして、ヘッドマウントディスプレイ20に釣り上げに成功した旨の表示を行う。
 ステップS36において、マスタ側制御装置30のデータ記録部31dは、釣りロボット50に入力される外力のデータの記録を終了する。
 ステップS36の後、遠隔釣り制御体験制御処理は終了となる。
In step S <b> 35, the management unit 31 c of the master-side control device 30 displays on the head-mounted display 20 that the fishing has been successful, assuming that the fish that has been hit has been successfully caught.
In step S <b> 36, the data recording unit 31 d of the master control device 30 ends the recording of the external force data input to the fishing robot 50.
After step S36, the remote fishing control experience control process ends.
 以上のように、本実施形態に係る力触覚伝達システム1によれば、ユーザは、実際に釣り竿を触っている感覚で、遠隔的に釣りを体験することができる。
 このように、力触覚伝達システム1によれば、ロボットを介してよりリアリティの高い体験を実現可能な技術を提供することができる。
As described above, according to the force / tactile sensation transmission system 1 according to the present embodiment, the user can experience fishing remotely with a sense of actually touching a fishing rod.
As described above, according to the force / tactile sensation transmission system 1, it is possible to provide a technology capable of realizing a more realistic experience via a robot.
[変形例1]
 上述の実施形態において、アクチュエータ12またはアクチュエータ52として用いられるアクチュエータ100として、図5に示す構成例を示したが、これに限られない。
 例えば、アクチュエータ100の出力をより高める構成とすることができる。
 図8は、力触覚伝達システム1において用いられるアクチュエータ100の他の構成例を示す模式図である。
 図8に示すように、本変形例のアクチュエータ100では、図5に示す構成例に対し、モータ101を2台接続した構成となっている。
 これにより、図5に示す構成例に比べ、アクチュエータ100の出力トルクを2倍に増加させることができる。
 なお、ギア102の減速比を2倍とすることで出力トルクを2倍とすることも可能であるが、ギア102の減速比を2倍とすると。摩擦の影響が増加すると共に、人間がアクチュエータ100に外力を入力する際に感じる慣性が減速比の2乗で増加することとなる。そのため、ギア102の減速比を2倍とするよりも、モータ101を2台接続する方が慣性の観点で有利となる。
[Modification 1]
In the above-described embodiment, the configuration example illustrated in FIG. 5 is shown as the actuator 100 used as the actuator 12 or the actuator 52, but the configuration is not limited thereto.
For example, the output of the actuator 100 can be increased.
FIG. 8 is a schematic diagram illustrating another configuration example of the actuator 100 used in the force-tactile transmission system 1.
As shown in FIG. 8, the actuator 100 of this modification has a configuration in which two motors 101 are connected to the configuration example shown in FIG. 5.
Thereby, the output torque of the actuator 100 can be increased twice as compared with the configuration example shown in FIG.
Note that the output torque can be doubled by doubling the reduction ratio of the gear 102, but the reduction ratio of the gear 102 is doubled. As the influence of friction increases, the inertia that humans feel when inputting an external force to the actuator 100 increases with the square of the reduction ratio. Therefore, it is more advantageous from the viewpoint of inertia to connect two motors 101 than to double the reduction ratio of the gear 102.
[変形例2]
 上述の実施形態及び変形例1において、モータ101により摩擦及び重力を補償する制御を行うことが可能である。
 図9は、力触覚伝達システム1において用いられるアクチュエータ100の他の構成例を示す模式図である。
 アクチュエータ100は、ギア102を備えることから、摩擦の発生は不可避となる。そのため、図9に示すように、摩擦力をキャンセルするための電流をモータ101に入力し、摩擦力を補償する制御(補償用トルクの付与)を行うことができる。このとき、2台接続されたモータ101に対し、均等に電流が入力される。これにより、一方のモータ101に電流が偏ることにより、最終的な出力トルクが減少する事態を避けることができる。
 同様に、釣り竿型マニピュレータ10あるいは釣りロボット50が保持する釣り竿に設置されたリール等の重さを補償するための電流をモータ101に入力し、重力を補償する制御を行うことができる。この場合にも、2台接続されたモータ101に対し、均等に電流が入力される。
[Modification 2]
In the embodiment and the first modification described above, the motor 101 can perform control to compensate for friction and gravity.
FIG. 9 is a schematic diagram illustrating another configuration example of the actuator 100 used in the force-tactile transmission system 1.
Since the actuator 100 includes the gear 102, the generation of friction is inevitable. Therefore, as shown in FIG. 9, it is possible to input a current for canceling the frictional force to the motor 101 and perform control for compensating the frictional force (applying compensation torque). At this time, a current is evenly input to the two motors 101 connected. As a result, it is possible to avoid a situation in which the final output torque decreases due to the current being biased to one of the motors 101.
Similarly, a current for compensating the weight of a reel or the like installed on the fishing rod held by the fishing rod type manipulator 10 or the fishing robot 50 can be input to the motor 101 to control the gravity. Also in this case, a current is equally input to the two motors 101 connected.
[変形例3]
 上述の実施形態及び変形例1,2において、アクチュエータ100の出力軸にトルクセンサを備える構成とすることができる。
 図10は、力触覚伝達システム1において用いられるアクチュエータ100の他の構成例を示す模式図である。
 図10に示すように、アクチュエータ100の出力軸にトルクセンサ104を備えることが可能であり、これにより、アクチュエータ100に入力する外力を測定することができる。
 例えば、アクチュエータ100を釣りロボット50のアクチュエータ52として用いた場合、魚を釣り上げる際のトルクを直接的に測定することができる。2台接続されたモータ101が出力するトルクをギア102のギア比倍した値と、トルクセンサ104によって測定された値との差分が摩擦に相当するため、より高精度に反力(トルク)を測定することが可能となり、鋭敏な力触覚伝達が可能となる。
[Modification 3]
In the above-described embodiment and Modifications 1 and 2, the output shaft of the actuator 100 can be provided with a torque sensor.
FIG. 10 is a schematic diagram illustrating another configuration example of the actuator 100 used in the force-tactile transmission system 1.
As shown in FIG. 10, a torque sensor 104 can be provided on the output shaft of the actuator 100, whereby an external force input to the actuator 100 can be measured.
For example, when the actuator 100 is used as the actuator 52 of the fishing robot 50, it is possible to directly measure the torque when fishing a fish. Since the difference between the torque output by the two connected motors 101 multiplied by the gear ratio of the gear 102 and the value measured by the torque sensor 104 corresponds to friction, the reaction force (torque) can be calculated with higher accuracy. It becomes possible to measure, and a sharp force-tactile transmission becomes possible.
[変形例4]
 上述の実施形態において、釣り竿型マニピュレータ10及び釣りロボット50をヒンジ11またはヒンジ51を備える1軸の機構として構成する例について説明した。
 これに対し、釣り竿型マニピュレータ10及び釣りロボット50を動きの自由度がより高い多軸の機構として構成することができる。
 図11は、多軸の機構として構成された釣り竿型マニピュレータ10の構成例を示す模式図である。
 また、図12は、多軸の機構として構成された釣りロボット50の構成例を示す模式図である。
[Modification 4]
In the above-described embodiment, the example in which the fishing rod type manipulator 10 and the fishing robot 50 are configured as a uniaxial mechanism including the hinge 11 or the hinge 51 has been described.
On the other hand, the fishing rod type manipulator 10 and the fishing robot 50 can be configured as a multi-axis mechanism having a higher degree of freedom of movement.
FIG. 11 is a schematic diagram illustrating a configuration example of a fishing rod type manipulator 10 configured as a multi-axis mechanism.
FIG. 12 is a schematic diagram illustrating a configuration example of a fishing robot 50 configured as a multi-axis mechanism.
 図11に示す釣り竿型マニピュレータ10及び図12に示す釣りロボット50は、同一の関節機構を備え、マスタ側制御装置30の力触覚伝達部31bは、対応する関節に備えられたアクチュエータ100同士で力触覚の伝達が実行される。
 具体的には、図11に示すように、釣り竿型マニピュレータ10は、回転軸R1周りに回転する第1関節J1と、回転軸R2周りに回転する第2関節J2と、回転軸R3周りに回転する第3関節J3とを備えている。回転軸R1、R3は、略鉛直方向に設定され、回転軸R2は、略水平方向に設定されている。これら第1関節J1~第3関節J3には、関節を駆動するためのアクチュエータ100がそれぞれ備えられている。
 本実施形態において、第1関節J1は、人間の肩に相当する関節として設置され、第3関節J3は、人間の肘に相当する関節として設置されている。
The fishing rod type manipulator 10 shown in FIG. 11 and the fishing robot 50 shown in FIG. 12 have the same joint mechanism, and the force / tactile sensation transmission unit 31b of the master-side control device 30 applies force between the actuators 100 provided in the corresponding joints. Tactile transmission is performed.
Specifically, as shown in FIG. 11, the fishing rod type manipulator 10 rotates around the rotation axis R1, the first joint J1 rotating around the rotation axis R1, the second joint J2 rotating around the rotation axis R2, and the rotation axis R3. And a third joint J3. The rotation axes R1 and R3 are set in a substantially vertical direction, and the rotation axis R2 is set in a substantially horizontal direction. Each of the first joint J1 to the third joint J3 is provided with an actuator 100 for driving the joint.
In the present embodiment, the first joint J1 is installed as a joint corresponding to a human shoulder, and the third joint J3 is installed as a joint corresponding to a human elbow.
 また、図12に示すように、釣りロボット50は、釣り竿型マニピュレータ10と同様に、第1関節J1~第3関節J3を備え、これらの関節には、アクチュエータ100がそれぞれ備えられている。さらに、釣りロボット50には、釣り場を撮影するカメラCが設置されている。カメラCは、第1関節に対して、人間の視点に対応する位置に設置されている。 Further, as shown in FIG. 12, the fishing robot 50 includes the first joint J1 to the third joint J3, similar to the fishing rod type manipulator 10, and actuators 100 are provided in these joints. Further, the fishing robot 50 is provided with a camera C for photographing the fishing spot. The camera C is installed at a position corresponding to the human viewpoint with respect to the first joint.
 このような構成の釣り竿型マニピュレータ10及び釣りロボット50を用いることにより、力触覚伝達システム1においては、リアルハプティクスモードにより、人間の視点に相当する位置から釣り場を撮影しながら、人間の肩及び肘の動きに相当する動きによって釣りを行う釣りロボット50をアバターとして、釣りロボット50に入力する外力を釣り竿型マニピュレータ10に力触覚伝達すると共に、釣り竿型マニピュレータ10に人間が入力した操作を釣りロボット10において正確に再現しながら、遠隔的な釣りの体験を行うことができる。
 また、力触覚伝達システム1においては、疑似体験モードにより、過去に魚を釣り上げた際のデータを再生することにより、ユーザに釣り上げ時の力触覚を疑似体験させることができる。
 このとき、釣り竿型マニピュレータ10及び釣りロボット50を用いることで、人間の視点に相当する位置から釣り場を撮影しながら、人間の肩及び肘の動きに相当する動きによって釣りを行うことができるため、ユーザは、より自然な感覚で遠隔的な釣りの体験あるいは擬似的な釣りの体験を行うことができる。
By using the fishing rod type manipulator 10 and the fishing robot 50 having such a configuration, in the force / tactile sensation transmission system 1, the real haptics mode is used to photograph the fishing ground from the position corresponding to the human viewpoint, A fishing robot 50 that performs fishing by a movement corresponding to the movement of the elbow is used as an avatar, and external force input to the fishing robot 50 is transmitted to the fishing rod type manipulator 10 as well as an operation input by a human to the fishing rod type manipulator 10. A remote fishing experience can be performed while accurately reproducing at 10.
Further, in the force / tactile sensation transmission system 1, by reproducing the data when the fish has been caught in the past in the pseudo experience mode, it is possible to cause the user to experience the force / tactile sense when fishing.
At this time, by using the fishing rod type manipulator 10 and the fishing robot 50, it is possible to perform fishing by movement corresponding to the movement of the human shoulder and elbow while photographing the fishing ground from the position corresponding to the human viewpoint. The user can perform a remote fishing experience or a simulated fishing experience with a more natural sense.
 以上のように構成される力触覚伝達システム1は、釣り竿型マニピュレータ10と、マスタ側制御装置30と、釣りロボット50とを備える。
 釣りロボット50は、釣り上げる動作を実行可能であり、釣り竿型マニピュレータ10は、釣りロボット50から離間して設置される。また、マスタ側制御装置30は、釣りロボット50及び釣り竿型マニピュレータ10と通信可能に構成される。
 マスタ側制御装置30は、釣りロボット50に備えられた釣り竿に入力する現在または過去の外力を示す情報に基づいて、釣り竿型マニピュレータ10に釣り竿に入力した外力による力触覚を出力させる。
 これにより、釣りロボット50が備える釣り竿に入力された外力を釣り竿型マニピュレータ10に伝達することができる。
 したがって、ロボットを介してよりリアリティの高い体験を実現可能な技術を提供することができる。
The force / tactile sensation transmission system 1 configured as described above includes a fishing rod type manipulator 10, a master side control device 30, and a fishing robot 50.
The fishing robot 50 can execute a fishing operation, and the fishing rod type manipulator 10 is installed apart from the fishing robot 50. Further, the master side control device 30 is configured to be able to communicate with the fishing robot 50 and the fishing rod type manipulator 10.
The master-side control device 30 causes the fishing rod type manipulator 10 to output a force / tactile sensation due to the external force input to the fishing rod based on information indicating the current or past external force input to the fishing rod provided in the fishing robot 50.
Thereby, the external force input to the fishing rod provided in the fishing robot 50 can be transmitted to the fishing rod manipulator 10.
Therefore, it is possible to provide a technology capable of realizing a more realistic experience via a robot.
 マスタ側制御装置30は、釣り竿型マニピュレータ10が操作されることにより入力する外力を示す情報に基づいて、釣りロボット50に釣り竿型マニピュレータ10に入力した外力による力触覚を出力させる。
 これにより、ユーザが釣り竿型マニピュレータ10に対して行った操作を釣りロボット50において正確に再現して、釣り場から離間した位置において釣りを体験することができる。
The master-side control device 30 causes the fishing robot 50 to output a force haptic by the external force input to the fishing rod type manipulator 10 based on information indicating the external force input by operating the fishing rod type manipulator 10.
Thereby, the operation which the user performed with respect to the fishing rod type manipulator 10 can be accurately reproduced in the fishing robot 50, and fishing can be experienced in the position away from the fishing spot.
 マスタ制御装置30は、釣り竿型マニピュレータ10と釣りロボット50との間でリアルタイムに力触覚の伝達を行う第1のモード(リアルハプティクスモード)による動作と、過去に魚を釣り上げた際のデータを再生することにより、釣り竿型マニピュレータ10において釣り上げ時の力触覚を疑似的に出力する第2のモード(疑似体験モード)による動作とを実行可能である。
 これにより、釣り場から離間した位置でリアルタイムに釣りを体験すること、及び、過去に魚を釣り上げた際のデータを再生して擬似的に釣りを体験することが可能となる。
The master control device 30 obtains the operation in the first mode (real haptics mode) for transmitting the force / tactile sensation between the fishing rod type manipulator 10 and the fishing robot 50 in real time and the data when the fish has been caught in the past. By reproducing, the fishing rod type manipulator 10 can execute the operation in the second mode (pseudo-experience mode) for artificially outputting the force / tactile sense at the time of fishing.
As a result, it is possible to experience fishing in real time at a position away from the fishing ground, and to reproduce the data when the fish has been caught in the past and experience fishing in a pseudo manner.
 マスタ側制御装置30は、予め設定された条件に応じて、第1のモード及び第2のモードを切り替えて実行する。
 これにより、状況に応じて、釣り場から離間した位置でリアルタイムに釣りを体験すること、及び、過去に魚を釣り上げた際のデータを再生して擬似的に釣りを体験することを選択することが可能となる。
The master-side control device 30 executes switching between the first mode and the second mode in accordance with preset conditions.
Thereby, depending on the situation, you can choose to experience fishing in real time at a position away from the fishing ground, and to reproduce the data when you caught fish in the past and experience fishing in a pseudo manner It becomes possible.
 予め設定された条件には、交通機関の出発時刻までの時間が含まれる。
 これにより、交通機関の待ち時間等に合わせて、適切な内容の釣りの体験をユーザに提供することができる。
The preset condition includes the time until the departure time of the transportation facility.
Thereby, it is possible to provide the user with a fishing experience with appropriate contents in accordance with the waiting time of the transportation facility.
 なお、本発明は、本発明の効果を奏する範囲で変形、改良等を適宜行うことができ、上述の実施形態及び変形例に限定されない。
 例えば、本発明は、上述の実施形態における力触覚伝達システム1、マスタ側制御装置30あるいはスレーブ側制御装置40(力触覚伝達装置)として実現することの他、力触覚伝達システム1において実行される各ステップによって構成される力触覚伝達方法、あるいは、力触覚伝達システム1の機能を実現するためにプロセッサによって実行されるプログラムとして実現することができる。
 また、上述の実施形態では、マスタ側制御装置30とスレーブ側制御装置40とを異なる装置として構成する例について説明したが、これらを一体の制御装置として構成することも可能である。
Note that the present invention can be appropriately modified and improved within the scope of the effects of the present invention, and is not limited to the above-described embodiments and modifications.
For example, the present invention is implemented in the force / haptic transmission system 1 in addition to being realized as the force / haptic transmission system 1, the master side control device 30, or the slave side control device 40 (force / haptic transmission device) in the above-described embodiment. It can be realized as a force / tactile sensation transmission method constituted by each step or a program executed by a processor to realize the function of the force / tactile sensation transmission system 1.
Further, in the above-described embodiment, the example in which the master-side control device 30 and the slave-side control device 40 are configured as different devices has been described, but it is also possible to configure them as an integrated control device.
 また、上述の実施形態において、魚の水深を判定する場合、釣りロボット50が保持する釣り竿のリールにおける釣り糸の巻き取り量によって魚の水深を判定したり、釣りロボットに設置されたカメラによって魚の水深を判定したりすることができる。また、魚が水中から釣り上げられたか否かを判定する場合には、魚が水中から釣り上げられた際に浮力がなくなり釣り糸に加わる重量が急激に増すことによって判定することができる。 In the above-described embodiment, when determining the water depth of the fish, the water depth of the fish is determined by the amount of fishing line wound on the reel of the fishing rod held by the fishing robot 50, or the water depth of the fish is determined by a camera installed in the fishing robot. You can do it. Further, when it is determined whether or not the fish has been caught from the water, it can be determined by the fact that when the fish is caught from the water, the buoyancy is lost and the weight applied to the fishing line increases rapidly.
 また、上述の実施形態において、釣り竿型マニピュレータ10と釣りロボット50との間で双方向に力触覚を伝達する場合を例に挙げて説明したが、これに限られない。例えば、釣り竿型マニピュレータ10を保持するユーザに魚が釣れた場合の釣り竿の感覚を体験させる場合であれば、釣りロボット50に入力した外力による力触覚を釣り竿型マニピュレータ10において出力し、釣り竿型マニピュレータ10に入力された操作による力触覚を釣りロボット50に伝達しない(あるいは、動作を丸めて伝達する)こととしてもよい。釣り竿型マニピュレータ10に入力された操作による動作を丸めて釣りロボット50に伝達する場合、例えば、釣り竿を引き上げる、リール14を巻き上げるといった大きな動作のみを釣りロボット50に伝達し、正確な力触覚は伝達を省略することができる。この場、魚を釣り上げるための制御を釣りロボット50が自動的に行うこととしてもよい。 In the above-described embodiment, the case where the force / tactile sensation is bidirectionally transmitted between the fishing rod manipulator 10 and the fishing robot 50 has been described as an example, but the present invention is not limited thereto. For example, if the user holding the fishing rod type manipulator 10 is to experience the feeling of a fishing rod when a fish is caught, the force sense of the external force input to the fishing robot 50 is output from the fishing rod type manipulator 10, and the fishing rod type manipulator The force / tactile sensation by the operation input to 10 may not be transmitted to the fishing robot 50 (or the operation may be transmitted in a rounded manner). When the operation by the operation input to the fishing rod manipulator 10 is rounded and transmitted to the fishing robot 50, for example, only a large operation such as lifting the fishing rod or winding up the reel 14 is transmitted to the fishing robot 50, and an accurate force / tactile sense is transmitted. Can be omitted. In this case, the fishing robot 50 may automatically perform control for fishing the fish.
 上述の実施形態等における処理は、ハードウェア及びソフトウェアのいずれにより実行させることも可能である。
 即ち、上述の処理を実行できる機能が力触覚伝達システム1に備えられていればよく、この機能を実現するためにどのような機能構成及びハードウェア構成とするかは上述の例に限定されない。
 上述の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータにネットワークや記憶媒体からインストールされる。
The processing in the above-described embodiment or the like can be executed by either hardware or software.
That is, it is only necessary that the force / tactile sensation transmission system 1 has a function capable of executing the above-described processing, and what functional configuration and hardware configuration are used to realize this function is not limited to the above-described example.
When the above-described processing is executed by software, a program constituting the software is installed on a computer from a network or a storage medium.
 プログラムを記憶する記憶媒体は、装置本体とは別に配布されるリムーバブルメディア、あるいは、装置本体に予め組み込まれた記憶媒体等で構成される。リムーバブルメディアは、例えば、半導体メモリ(フラッシュメモリ等)、磁気ディスク、光ディスク、または光磁気ディスク等により構成される。光ディスクは、例えば、CD-ROM(Compact Disc-Read Only Memory),DVD(Digital Versatile Disc),Blu-ray Disc(登録商標)等により構成される。光磁気ディスクは、MD(Mini-Disc)等により構成される。また、装置本体に予め組み込まれた記憶媒体は、例えば、プログラムが記憶されているROMやハードディスク等で構成される。 The storage medium for storing the program includes a removable medium distributed separately from the apparatus main body, or a storage medium incorporated in the apparatus main body in advance. The removable medium is composed of, for example, a semiconductor memory (flash memory or the like), a magnetic disk, an optical disk, a magneto-optical disk, or the like. The optical disc is composed of, for example, a CD-ROM (Compact Disc-Read Only Memory), a DVD (Digital Versatile Disc), a Blu-ray Disc (registered trademark), and the like. The magneto-optical disk is configured by MD (Mini-Disc) or the like. Further, the storage medium incorporated in advance in the apparatus main body is constituted by, for example, a ROM or a hard disk in which a program is stored.
 なお、上記実施形態は、本発明を適用した一例を示しており、本発明の技術的範囲を限定するものではない。即ち、本発明は、本発明の要旨を逸脱しない範囲で、省略や置換等種々の変更を行うことができ、上記実施形態以外の各種実施形態を取ることが可能である。本発明が取ることができる各種実施形態及びその変形は、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 In addition, the said embodiment has shown an example to which this invention is applied, and does not limit the technical scope of this invention. That is, the present invention can be modified in various ways such as omission and replacement without departing from the gist of the present invention, and can take various embodiments other than the above-described embodiments. Various embodiments that the present invention can take and modifications thereof are included in the invention described in the scope of claims and the equivalents thereof.
 S 制御対象システム、FT 機能別力・速度割当変換ブロック、FC 理想力源ブロック、PC 理想速度(位置)源ブロック、IFT 逆変換ブロック、1 力触覚伝達システム、10 釣り竿型マニピュレータ、11,51 ヒンジ、12,52,100 アクチュエータ、13,53 エンコーダ、14 リール、20 ヘッドマウントディスプレイ、30 マスタ側制御装置、31 CPU、31a 位置取得部、31b 力触覚伝達部、31c 管理部、31d データ記録部、32 RAM、33 記憶装置、33a パラメータ記憶部、34 通信インターフェース、40 スレーブ側制御装置、50 釣りロボット、50A アーム、60 ネットワーク、101 モータ、102 ギア、103 取り付け部材、104 トルクセンサ、R1~R3 回転軸、J1~J3 第1関節~第3関節、C カメラ S Control target system, FT function-specific force / speed allocation conversion block, FC ideal force source block, PC ideal speed (position) source block, IFT inverse conversion block, 1 force tactile transmission system, 10 fishing rod type manipulator, 11, 51 hinge 12, 52, 100 actuator, 13, 53 encoder, 14 reel, 20 head mounted display, 30 master side control device, 31 CPU, 31a position acquisition unit, 31b force / tactile transmission unit, 31c management unit, 31d data recording unit, 32 RAM, 33 storage device, 33a parameter storage unit, 34 communication interface, 40 slave side control device, 50 fishing robot, 50A arm, 60 network, 101 motor, 102 gear, 103 mounting member, 10 Torque sensor, R1-R3 rotation axis, J1-J3 first joint to third joint, C camera

Claims (9)

  1.  釣り上げる動作を実行可能な釣りロボット及び当該釣りロボットから離間して設置された釣り竿型マニピュレータと、前記釣りロボット及び前記釣り竿型マニピュレータと通信可能に構成された制御装置とを含む力触覚伝達システムであって、
     前記制御装置は、
     前記釣りロボットに備えられた釣り竿に入力する現在または過去の外力を示す情報に基づいて、前記釣り竿型マニピュレータに前記釣り竿に入力した外力による力触覚を出力させることを特徴とする力触覚伝達システム。
    A force / tactile sensation transmission system including a fishing robot capable of performing a fishing operation, a fishing rod type manipulator installed apart from the fishing robot, and a control device configured to be able to communicate with the fishing robot and the fishing rod type manipulator. And
    The controller is
    A force / tactile sensation transmission system that causes the fishing rod type manipulator to output a force / tactile sensation caused by an external force input to the fishing rod based on information indicating a current or past external force input to a fishing rod provided in the fishing robot.
  2.  前記制御装置は、前記釣り竿型マニピュレータが操作されることにより入力する外力を示す情報に基づいて、前記釣りロボットに前記釣り竿型マニピュレータに入力した外力による力触覚を出力させることを特徴とする請求項1に記載の力触覚伝達システム。 The control device causes the fishing robot to output a force / tactile force due to an external force input to the fishing rod type manipulator based on information indicating an external force input by operating the fishing rod type manipulator. 2. The force / tactile sensation transmission system according to 1.
  3.  前記制御装置は、前記釣り竿型マニピュレータと前記釣りロボットとの間でリアルタイムに力触覚の伝達を行う第1のモードによる動作と、過去に魚を釣り上げた際のデータを再生することにより、前記釣り竿型マニピュレータにおいて釣り上げ時の力触覚を疑似的に出力する第2のモードによる動作とを実行可能であることを特徴とする請求項1または2に記載の力触覚伝達システム。 The control device reproduces data when a fish has been caught in the past by reproducing an operation in a first mode in which a force / tactile sensation is transmitted between the fishing rod manipulator and the fishing robot in real time. 3. The force / tactile sensation transmission system according to claim 1, wherein the type manipulator can execute an operation in a second mode in which a force / tactile sense at the time of fishing is pseudo-outputted.
  4.  前記制御装置は、予め設定された条件に応じて、前記第1のモード及び前記第2のモードを切り替えて実行することを特徴とする請求項3に記載の力触覚伝達システム。 The force / tactile sensation transmission system according to claim 3, wherein the control device executes the first mode and the second mode by switching according to a preset condition.
  5.  前記予め設定された条件には、交通機関の出発時刻までの時間が含まれることを特徴とする請求項4に記載の力触覚伝達システム。 The force-tactile transmission system according to claim 4, wherein the preset condition includes a time until a departure time of the transportation facility.
  6.  前記釣り竿型マニピュレータと、前記釣りロボットとは、同一の関節機構及び当該関節に設置されたアクチュエータを備え、
     前記制御装置は、対応する前記関節に備えられた前記アクチュエータ同士において、力触覚の伝達を行うことを特徴とする請求項1から5のいずれか1項に記載の力触覚伝達システム。
    The fishing rod type manipulator and the fishing robot include the same joint mechanism and an actuator installed in the joint,
    The force / tactile sensation transmission system according to claim 1, wherein the control device transmits force / tactile sensation between the actuators provided in the corresponding joints.
  7.  釣り上げる動作を実行可能な釣りロボット及び当該釣りロボットから離間して設置された釣り竿型マニピュレータと通信可能に構成された力触覚伝達装置であって、
     前記釣りロボットに備えられた釣り竿に入力する現在または過去の外力を示す情報に基づいて、前記釣り竿型マニピュレータに前記釣り竿に入力した外力による力触覚を出力させることを特徴とする力触覚伝達装置。
    A force-tactile sensation transmission device configured to be able to communicate with a fishing robot capable of performing a fishing operation and a fishing rod type manipulator installed away from the fishing robot,
    A force / tactile sensation transmission device that causes the fishing rod type manipulator to output a force / tactile sensation caused by an external force input to the fishing rod based on information indicating a current or past external force input to a fishing rod provided in the fishing robot.
  8.  釣り上げる動作を実行可能な釣りロボット及び当該釣りロボットから離間して設置された釣り竿型マニピュレータと通信可能に構成された力触覚伝達装置が実行する力触覚伝達方法であって、
     前記釣りロボットに備えられた釣り竿に入力する現在または過去の外力を示す情報に基づいて、前記釣り竿型マニピュレータに前記釣り竿に入力した外力による力触覚を出力するステップを含むことを特徴とする力触覚伝達方法。
    A force / tactile transmission method executed by a force / tactile transmission device configured to be communicable with a fishing robot capable of performing a fishing operation and a fishing rod type manipulator installed away from the fishing robot,
    A force tactile sensation including the step of outputting a force tactile sensation due to the external force input to the fishing rod to the fishing rod type manipulator based on information indicating a current or past external force input to the fishing rod provided in the fishing robot. Transmission method.
  9.  釣り上げる動作を実行可能な釣りロボット及び当該釣りロボットから離間して設置された釣り竿型マニピュレータと通信可能に構成された力触覚伝達装置を制御するコンピュータに、
     前記釣りロボットに備えられた釣り竿に入力する現在または過去の外力を示す情報に基づいて、前記釣り竿型マニピュレータに前記釣り竿に入力した外力による力触覚を出力する機能を実現させることを特徴とするプログラム。
    A computer that controls a fishing robot capable of performing a fishing operation and a force / tactile sensation transmission device configured to be communicable with a fishing rod type manipulator installed away from the fishing robot.
    A program for realizing a function of outputting a force / tactile force by an external force input to the fishing rod to the fishing rod-type manipulator based on information indicating a current or past external force input to a fishing rod provided in the fishing robot. .
PCT/JP2019/013816 2018-03-28 2019-03-28 Force-tactile transmitting system, force-tactile transmitting device, force-tactile transmitting method and program WO2019189671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020511040A JP7029521B2 (en) 2018-03-28 2019-03-28 Force-tactile transmission system, force-tactile transmission device, force-tactile transmission method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018063369 2018-03-28
JP2018-063369 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189671A1 true WO2019189671A1 (en) 2019-10-03

Family

ID=68061901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013816 WO2019189671A1 (en) 2018-03-28 2019-03-28 Force-tactile transmitting system, force-tactile transmitting device, force-tactile transmitting method and program

Country Status (2)

Country Link
JP (1) JP7029521B2 (en)
WO (1) WO2019189671A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196309A1 (en) * 2021-03-15 2022-09-22 株式会社Re-al Fishing system, control method for fishing system, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060017367A (en) * 2004-08-20 2006-02-23 이미경 Real-time proxy fishing system and proxy fishing method using the same
JP2012058992A (en) * 2010-09-08 2012-03-22 Yellow:Kk Virtual fishing system and program
JP2013111136A (en) * 2011-11-26 2013-06-10 Sentaro Dosono Fishing real game system
JP2013158466A (en) * 2012-02-04 2013-08-19 Asuka Creation Co Ltd Real fishing game system
WO2015041046A1 (en) * 2013-09-19 2015-03-26 学校法人慶應義塾 Position/force controller, and position/force control method and program
WO2017155051A1 (en) * 2016-03-09 2017-09-14 学校法人慶應義塾 Position/force control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202558A (en) * 1997-01-22 1998-08-04 Toshiba Corp Master slave device
JP5032716B2 (en) 2010-08-31 2012-09-26 パナソニック株式会社 Master-slave robot control device, control method, and control program
KR20120048990A (en) * 2010-11-08 2012-05-16 (주)살구넷 Remote control fishing platform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060017367A (en) * 2004-08-20 2006-02-23 이미경 Real-time proxy fishing system and proxy fishing method using the same
JP2012058992A (en) * 2010-09-08 2012-03-22 Yellow:Kk Virtual fishing system and program
JP2013111136A (en) * 2011-11-26 2013-06-10 Sentaro Dosono Fishing real game system
JP2013158466A (en) * 2012-02-04 2013-08-19 Asuka Creation Co Ltd Real fishing game system
WO2015041046A1 (en) * 2013-09-19 2015-03-26 学校法人慶應義塾 Position/force controller, and position/force control method and program
WO2017155051A1 (en) * 2016-03-09 2017-09-14 学校法人慶應義塾 Position/force control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196309A1 (en) * 2021-03-15 2022-09-22 株式会社Re-al Fishing system, control method for fishing system, and program

Also Published As

Publication number Publication date
JP7029521B2 (en) 2022-03-03
JPWO2019189671A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP6660102B2 (en) Robot teaching device and control method thereof, robot system, program
JP3882287B2 (en) Fishing equipment
US20230305530A1 (en) Information processing apparatus, information processing method and program
JP6915605B2 (en) Image generator, robot training system, image generation method, and image generation program
US11069079B2 (en) Interaction with physical objects as proxy objects representing virtual objects
JPH11513163A (en) Modeling and control of virtual environment operation device
JP2017063916A (en) Apparatus, method and program for determining force sense to be presented
US20220097230A1 (en) Robot control device, robot control method, and program
US20190308327A1 (en) Condition-Based Robot Audio Techniques
JP7029521B2 (en) Force-tactile transmission system, force-tactile transmission device, force-tactile transmission method and program
US20200269421A1 (en) Information processing device, information processing method, and program
US11312002B2 (en) Apparatus control system and method
WO2019123744A1 (en) Information processing device, information processing method, and program
JP6341096B2 (en) Haptic sensation presentation device, information terminal, haptic presentation method, and computer-readable recording medium
JP2011215921A (en) Program, information storage medium, and image generation system
JP2022060900A5 (en)
Pouke et al. The plausibility paradox for scaled-down users in virtual environments
WO2021172580A1 (en) Position/force control system, worn unit, control unit, position/force control method, and program
JP2023017128A (en) Force tactile sense presentation system, force tactile sense presentation device, and force tactile sense presentation method and program
JP4413911B2 (en) GAME DEVICE, GAME PROCESSING METHOD, AND PROGRAM
WO2015045755A1 (en) Sense of tactile force presentation device, information terminal, sense of tactile force presentation method, and computer readable recording medium
KR20220061608A (en) Apparatus and method for providing fishing games through VR content
WO2022196309A1 (en) Fishing system, control method for fishing system, and program
KR20220162453A (en) Reel fishing game apparatus
KR102413939B1 (en) Home simulation system for trolling fishing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775591

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020511040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775591

Country of ref document: EP

Kind code of ref document: A1